WO2020137770A1 - Contact resistance measurement device - Google Patents

Contact resistance measurement device Download PDF

Info

Publication number
WO2020137770A1
WO2020137770A1 PCT/JP2019/049732 JP2019049732W WO2020137770A1 WO 2020137770 A1 WO2020137770 A1 WO 2020137770A1 JP 2019049732 W JP2019049732 W JP 2019049732W WO 2020137770 A1 WO2020137770 A1 WO 2020137770A1
Authority
WO
WIPO (PCT)
Prior art keywords
probe
voltage
current
contact resistance
power supply
Prior art date
Application number
PCT/JP2019/049732
Other languages
French (fr)
Japanese (ja)
Inventor
知博 竹迫
英彰 若松
池田 正和
Original Assignee
日置電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日置電機株式会社 filed Critical 日置電機株式会社
Publication of WO2020137770A1 publication Critical patent/WO2020137770A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/26Testing of individual semiconductor devices

Definitions

  • the present invention provides a contact resistance of each of a pair of probes (a first current supply probe and a first voltage detection probe) brought into contact with one electrode of a measurement target, and another contact resistance brought into contact with the other electrode of the measurement target.
  • the present invention relates to a contact resistance measuring device for individually measuring the contact resistance of each of the pair of probes (the second current supply probe and the second voltage detection probe).
  • This contact resistance measuring device includes first to fourth contact pins (four probes), a constant current source for supplying a constant current, a DC voltmeter for measuring a voltage, a relay circuit, and a control unit. It is configured to include and.
  • the first and second contact pins make contact with one lead terminal (first lead terminal) of the pair of lead terminals to be measured, and the third and fourth contact pins are the other of the measurement object.
  • the lead terminal (second lead terminal) To the lead terminal (second lead terminal).
  • the relay circuit includes first to ninth relays, electrically connects and disconnects the first to fourth contact pins and the constant current source, and also connects the first to fourth contact pins and the DC voltmeter. To electrically connect and disconnect.
  • the first relay is interposed between one terminal of the constant current source and the first contact pin.
  • the second relay is interposed between one terminal of the constant current source and the second contact pin.
  • the third relay is interposed between the other terminal of the constant current source and the third contact pin.
  • the fourth relay is interposed between the other terminal of the constant current source and the fourth contact pin.
  • the fifth relay is interposed between one terminal of the DC voltmeter and the first contact pin.
  • the sixth relay is interposed between one terminal of the DC voltmeter and the second contact pin.
  • the seventh relay is interposed between the other terminal of the DC voltmeter and the third contact pin.
  • the eighth relay is interposed between the other terminal of the DC voltmeter and the fourth contact pin.
  • the ninth relay is interposed between a connection point between the second and sixth relays and the second contact pin and a connection point between the third and seventh relays and the third contact pin.
  • the control unit is realized by the CPU and controls the relay circuit and the constant current source. Further, the control unit acquires the measurement value of the DC voltmeter.
  • the control unit controls the relay circuit to supply the constant current Is1 from the constant current source to the path from the first contact pin to the fourth contact pin via the measurement target.
  • a voltage Vm1 generated between the first contact pin and the fourth contact pin in a constant current supply state is measured by a DC voltmeter.
  • control unit supplies the constant current Is1 from the constant current source to the path from the second contact pin to the third contact pin through the measurement target, and in the constant current supply state, the second contact pin and the second contact pin
  • the voltage Vm2 generated between the third contact pins is measured with a DC voltmeter.
  • r2+R+r3 Vm2/Is1
  • control unit supplies the constant current Is1 from the constant current source to the path from the second contact pin to the fourth contact pin via the measurement target, and in the constant current supply state, the second contact pin and the fourth contact pin are supplied.
  • control unit supplies a constant current Is1 from a constant current source to a path from the first contact pin to the second contact pin, and a voltage generated between the first contact pin and the second contact pin in the constant current supply state.
  • Is1 constant current source
  • Vm4 DC voltmeter
  • control unit supplies a constant current Is1 from a constant current source to a path from the third contact pin to the fourth contact pin, and a voltage generated between the third contact pin and the fourth contact pin in the constant current supply state.
  • Is1 constant current source
  • Vm5 DC voltmeter
  • the control unit obtains four contact resistances r1, r2, r3, r4 for the first to fourth contact pins from the simultaneous equations composed of the above five equations.
  • the above-mentioned contact resistance measuring device has the following problems to be solved. That is, even if the measurement target has the characteristic that the resistance R is affected by the applied voltage or temperature, the contact resistance measuring device is normally affected by the above-described properties of the resistance R of the measurement target.
  • the contact resistances r1, r2, r3, r4 should be accurately measured.
  • the above five equations for obtaining the contact resistances r1, r2, r3, and r4 include equations including the resistance R to be measured, There is a problem in that the contact resistances r1, r2, r3, and r4 may not be accurately measured due to the influence of the above-described characteristics of the resistance R to be measured.
  • the present invention has been made in view of such problems to be solved, and a contact capable of individually and accurately measuring the contact resistance of two probes brought into contact with at least one electrode of a pair of electrodes to be measured.
  • the main purpose is to provide a resistance measuring device.
  • the contact resistance measuring device is a first probe group including a first current supply probe and a first voltage detection probe that are brought into contact with one electrode of a measurement target.
  • a contact resistance measuring device for individually measuring the contact resistance of at least one probe group among the contact resistances between the contact resistance and a fixed power supply unit for outputting a fixed voltage with reference to a reference potential; It has a variable power supply unit capable of varying an adjustment voltage to be output with reference to a potential, and an operational amplifier in which a non-inverting input terminal is regulated to the reference potential and a feedback resistor is connected between the inverting input terminal and the output terminal.
  • a current detector that converts the input current supplied to the inverting input terminal into a voltage and outputs the voltage as a detection voltage from the output terminal, the fixed power supply unit, the variable power supply unit, and the current detection unit.
  • connection switching unit disposed between the four probes, and a processing unit, the processing unit executes control of the connection switching unit so that one probe of the first probe group Connected to the fixed power supply unit, the other probe of the first probe group is connected to the variable power supply unit, one probe of the second probe group is unconnected, and the other probe of the second probe group In a first connection state in which is connected to the inverting input terminal of the operational amplifier, and in the first connection state, the fixed voltage is applied to the fixed power supply unit by the first probe group. Output to the other probe of the first probe group, the adjustment voltage is output to the other probe of the first probe group, and a current flowing through the measurement target is used as the input current to detect the current.
  • the fixed voltage is output to the one probe of the first probe group, and the first probe is based on the detection voltage output by the current detection unit with the current flowing in the first probe group as the input current.
  • a first resistance calculation process for individually calculating the first contact resistance and the second contact resistance based on a process and the ratio calculated in the first calculation process and the sum calculated in the second calculation process. And execute.
  • the contact resistance measuring device is the contact resistance measuring device according to claim 1, wherein the processing unit executes control of the connection switching unit, and the one probe of the second probe group. Is connected to the fixed power supply unit, the other probe of the second probe group is connected to the variable power supply unit, the one probe of the first probe group is unconnected, and A third connection switching process of shifting the other probe to a third connection state in which it is connected to the inverting input terminal of the operational amplifier; and in the third connection state, the fixed voltage is applied to the fixed power supply unit.
  • the output voltage is output to the one probe of the second probe group, the adjustment voltage is output to the other probe of the second probe group to the variable power supply unit, and the current flowing to the measurement target is the input current.
  • a second adjustment process of changing the adjustment voltage by executing control of the variable power supply unit so that the current flowing through the measurement target becomes zero based on the detection voltage output by the current detection unit,
  • the one probe and the other electrode of the second probe group based on the reference potential, the fixed voltage, and the adjustment voltage in the second adjustment process when the current flowing through the measurement target is zero.
  • the control is executed such that the one probe of the second probe group is connected to the fixed power supply unit, the other probe of the second probe group is connected to the inverting input terminal of the operational amplifier, and A fourth connection switching process of shifting each probe of the first probe group to a fourth connection state in which the probes are unconnected, and in the fourth connection state, the fixed voltage is applied to the fixed power supply unit by the second probe group.
  • the current flowing in the second probe group is used as the input current
  • the current flowing in the second probe group is used as the second current based on the detection voltage output from the current detection unit.
  • a second current measuring process for measuring a fourth calculating process for calculating the sum of the third contact resistance and the fourth contact resistance based on the fixed voltage and the second current, and the third calculating process.
  • Second resistance calculation for individually calculating the third contact resistance and the fourth contact resistance based on the calculated ratio and the sum calculated in the fourth calculation processing. Perform processing and.
  • a pair of probes forming a first probe group that is brought into contact with one electrode of the measurement target and a second probe group that is brought into contact with the other electrode of the measurement target are provided.
  • the first contact resistance and the second contact resistance of the pair of probes forming the first probe group of the pair of probes forming the pair can be accurately measured individually without being affected by the impedance of the measurement target. ..
  • the third contact resistance and the fourth contact resistance of the pair of probes forming the second probe group are also affected by the impedance of the measurement target. It can be measured individually and accurately.
  • the contact resistance measuring device 1 includes a first current supply probe PLc1, a second current supply probe PLc2, a first voltage detection probe PLp1, a second voltage detection probe PLp2, and a fixed power supply unit 2. 1, a variable power supply unit 3, a current detection unit 4, an A/D conversion unit 5, a connection switching unit 6, a processing unit 7, and an output unit 8.
  • the contact resistance measuring device 1 includes a first current supply probe PLc1 and a first voltage detection probe PLp1 which are brought into contact with one electrode (one connection terminal of the measurement target 11 in this example) 11a of the measurement target 11.
  • the contact resistance between the other electrode 11b of the second probe group composed of the supply probe PLc2 and the second voltage detection probe PLp2 is determined by the first current supply probe PLc1 and the first voltage detection probe PLp1.
  • the second current supply probe PLc2 and the second voltage detection probe PLp2 are individually measured.
  • the contact resistance measuring device 1 includes a contact resistance (first contact resistance) R1 between the first current supply probe PLc1 and the one electrode 11a, and a contact resistance between the first voltage detection probe PLp1 and the one electrode 11a.
  • Contact resistance (second contact resistance) R2 a contact resistance (third contact resistance) R3 between the second current supply probe PLc2 and the other electrode 11b, and a second voltage detection probe PLp2 and the other electrode 11b.
  • the contact resistance (4th contact resistance) R4 between and is measured individually.
  • the contact resistance measuring device 1 is used by being incorporated in, for example, an impedance measuring device that measures the impedance of the measurement target 11.
  • the first current supply probe PLc1 is connected to the fixed power supply unit 2 through the connection switching unit 6 and functions as the Hi-side source terminal Hc
  • the second current supply probe PLc2 connects the connection switching unit 6 to the fixed power supply unit 2. It is connected to the current detection unit 4 via and functions as the source terminal Lc on the Lo side.
  • the first voltage detection probe PLp1 is connected to the positive side detection terminal of a voltage detection unit (not shown) that constitutes the impedance measuring device via the connection switching unit 6, and functions as the Hi-side sense terminal Hp.
  • the second voltage detection probe PLp2 is connected to the negative side detection terminal of the voltage detection section via the connection switching section 6 and functions as the Lo side sense terminal Lp. Further, in the impedance measuring device, the current value of the current detected by the current detecting unit 4 (the current flowing in the measurement target 11 is taken into consideration while taking into consideration the contact resistances R1, R2, R3, R4 measured by the contact resistance measuring device 1 Current value) and the voltage value of the voltage detected by the voltage detection unit (voltage value generated between the electrodes 11a and 11b of the measurement target 11), the processing unit 7 measures the above impedance.
  • a contact resistance measuring device used by being incorporated in an impedance measuring device for measuring the impedance (resistance value or inductance) of a measurement target 11 capable of flowing a direct current such as a resistance or an inductor. 1, the configuration of each element will be described.
  • the fixed power supply unit 2 has a fixed voltage V1 (a DC voltage, which is a known potential.
  • V1 a DC voltage, which is a known potential.
  • the potential (zero volt) of the internal ground G of the contact resistance measuring device 1) which is a DC voltage
  • the voltage value V1 is constant and is known).
  • the same reference numeral is used for both the fixed voltage V1 and its voltage value V1.
  • the fixed power supply unit 2 is controlled by the processing unit 7 to execute the output of the fixed voltage V1 and the stop of the output of the fixed voltage V1.
  • the variable power supply unit 3 is configured to output an adjustment voltage (DC voltage) V2 based on the reference potential Vr (potential of the internal ground G) and to change the voltage value V2 of the adjustment voltage V2.
  • Vr potential of the internal ground G
  • V2 the same reference numeral is used for both the adjustment voltage V2 and its voltage value V2.
  • the variable power supply unit 3 is controlled by the processing unit 7 to stop the output of the adjustment voltage V2 and the output of the adjustment voltage V2 and change the voltage value V2 (specifically, the processing unit 7). Change to the voltage value instructed in).
  • the current detection unit 4 includes, for example, an input unit 4a, an output unit 4b, an operational amplifier 4c, and a feedback resistor 4d (resistance value Rf), the inverting input terminal of the operational amplifier 4c is connected to the input unit 4a, and the operational amplifier 4c. Of the operational amplifier 4c is connected to the output section 4b, and the non-inverting input terminal of the operational amplifier 4c is fed back between the inverting input terminal and the output terminal of the operational amplifier 4c.
  • the resistor 4b is connected and configured.
  • the A/D conversion unit 5 receives the detection voltage Vi and samples it at a predetermined sampling period to obtain waveform data indicating the instantaneous value of the detection voltage Vi (the instantaneous value of the input current Iin input to the current detection unit 4). Since it can be said that the waveform data indicates that, the following is referred to as waveform data Di). Note that the A/D conversion unit 5 is not limited to the configuration that is separate from the processing unit 7 as in this example, and although not shown, a configuration that is incorporated in the processing unit 7 (the processing unit 7 and It is also possible to adopt a configuration of integrally forming).
  • the connection switching unit 6 includes, for example, a plurality of first ports (first port 6 1 to which the first current supply probe PLc1 is connected, first port 6 2 to which the first voltage detection probe PLp1 is connected, and second port 6 2 the first port 6 4) in which the first port 6 3 current supplying probe PLc2 is connected, and a second voltage detector probe PLp2 is connected, the plurality of second ports (fixed power source unit 2 is connected 2 port 6 a, variable second port 6 b of the power supply unit 3 is connected, a second port 6 d of the voltage detecting portion of the second port 6 c, and not shown current detector 4 is connected is connected, 6 e ) and one-to-one connection of any first port of the plurality of first ports to any second port under the control of the processing unit 7, and from the second port of any first port And a matrix switch circuit (not shown) capable of performing disconnection.
  • the processing unit 7 includes a CPU and a memory (neither of which is shown), and controls the fixed power supply unit 2, the variable power supply unit 3, and the connection switching unit 6. In addition, the processing unit 7 performs the first contact resistance measurement process of measuring the contact resistances R1 and R2 between the measurement target 11 of the first probe group and one electrode 11a of the measurement target 11, and the measurement target 11 of the second probe group. The second contact resistance measurement process of measuring the contact resistances R3 and R4 with the other electrode 11b of is performed. Further, the processing unit 7 executes an output process of causing the output unit 8 to output the measured contact resistances R1 to R4.
  • the output unit 8 is configured by a display device, for example, and displays (outputs) the contact resistances R1 to R4 output from the processing unit 7 on the screen.
  • the output unit 8 can be configured by various interface circuits instead of the display device.
  • the output unit 8 is calculated by an external device connected via a transmission line via the external interface circuit.
  • the measured (measured) contact resistances R1 to R4 are output, and when configured by the medium interface circuit, the calculated (measured) contact resistances R1 to R4 are stored in the storage medium connected to the medium interface circuit.
  • the connection switching unit 6 of the contact resistance measuring device 1 includes a first current supply probe PLc1, a first voltage detection probe PLp1, a second current supply probe PLc2, and a second voltage detection probe PLc1.
  • the probe PLp2 is connected to the contact resistance measuring apparatus 1, and the measurement object 11 is connected to the contact resistance measuring apparatus 1 via the probes PLc1, PLp1, PLc2, and PLp2.
  • the processing unit 7 executes the first contact resistance measuring process 50 shown in FIG.
  • the processing unit 7 first executes the first connection switching process (step 51).
  • the processing unit 7 controls the connection switching unit 6 so that one of the probes in the first probe group (in this example, the first current supply probe PLc1) is the fixed power supply unit 2 , The other probe of the first probe group (in this example, the first voltage detection probe PLp1) is connected to the variable power supply unit 3, and one probe of the second probe group (in this example, the second current The supply probe PLc2) is unconnected (a state in which it is not connected to any of the second ports of the connection switching unit 6), and the other probe of the second probe group (in this example, the second voltage detection probe PLp2) is The first connection state (connection state represented by the equivalent circuit shown in FIG. 4) connected to the input section 4a of the current detection section 4 (and the inverting input terminal of the operational amplifier 4c) is
  • the processing unit 7 executes the first adjustment processing (step 52).
  • the processing unit 7 applies the fixed voltage V1 to the fixed power supply unit 2 via the connection switching unit 6 to the one probe (for supplying the first current) in the first connection state.
  • the adjustment voltage V2 is output to the variable power supply unit 3 via the connection switching unit 6 to the other probe of the first probe group (first voltage detection probe PLp1).
  • the processing unit 7 controls the variable power supply unit 3 to change the voltage value V2 of the adjustment voltage V2 (state where the voltage value V2 is not adjusted)
  • one of the measurement targets 11 is usually Due to the application of the fixed voltage V1 or the like to the electrode 11a
  • the input current Iin flows from one electrode 11a to the input unit 4a of the current detection unit 4 via the measurement target 11 and the other electrode 11b.
  • the current detection unit 4 converts the input current Iin input to the input unit 4a in this way into a voltage, and outputs the voltage as the detection voltage Vi from the output unit 4b.
  • the A/D conversion unit 5 converts the detected voltage Vi into waveform data Di and outputs the waveform data Di to the processing unit 7.
  • the processing unit 7 calculates the current value of the current (that is, the input current Iin) flowing through the measurement target 11 based on the waveform data Di, and the variable power supply so that the calculated current value of the input current Iin becomes zero.
  • the control of the unit 3 is executed to change (adjust) the voltage value V2 of the adjustment voltage V2.
  • the processing unit 7 stores the voltage value V2 (adjusted voltage value V2) of the adjusted voltage V2 when the current value of the input current Iin is zero.
  • the processing unit 7 executes control of the fixed power supply unit 2 and the variable power supply unit 3 to stop the output of the fixed voltage V1 and the adjustment voltage V2.
  • the processing unit 7 executes the first calculation process (step 53).
  • the processing unit 7 performs the reference potential Vr (known potential; in this example, the potential of the internal ground G (zero volt)), the known voltage value V1 of the fixed voltage V1, and the first adjustment process.
  • Vr known potential; in this example, the potential of the internal ground G (zero volt)
  • the contact resistance R1 between one probe (first current supply probe PLc1) of the first probe group and the one electrode 11a based on the stored adjusted voltage value V2 of the adjustment voltage V2, and the first
  • the ratio A1 (R1/R2) of the contact resistance R2 between the other probe (first voltage detection probe PLp1) of the probe group and the one electrode 11a is calculated.
  • the current value of the input current Iin is zero means that one electrode 11a of the measurement target 11 has the potential of the other electrode 11b (that is, the known reference potential Vr (zero volt which is the potential of the internal ground G in this example)). ) And the same potential. That is, the voltage V0 becomes a known reference potential Vr (zero volt which is the potential of the internal ground G in this example). Therefore, the processing unit 7 substitutes the voltage V0, which is the known reference potential Vr (zero volt), the known voltage value V1, and the adjusted voltage value V2, into the above equation (1), The value (R1/R2) is calculated and stored as the ratio A1.
  • the processing unit 7 executes the second connection switching process (step 54).
  • the processing unit 7 executes control of the connection switching unit 6 so that one probe (first current supply probe PLc1 in this example) of the first probe group is fixed to the fixed power supply unit 2.
  • the other probe of the first probe group (in this example, the first voltage detection probe PLp1) is connected to the input section 4a of the current detection section 4 (and the inverting input terminal of the operational amplifier 4c), and A second connection state in which the respective probes (the second current supply probe PLc2 and the second voltage detection probe PLp2) of the two probe group are unconnected (a state in which they are not connected to any second port of the connection switching unit 6) ( The connection state represented by the equivalent circuit shown in FIG. 5) is entered.
  • the processing unit 7 executes the first current measurement process (step 55).
  • the processing unit 7 causes the fixed power supply unit 2 to output the fixed voltage V1 to one probe (first current supply probe PLc1) of the first probe group in the second connection state.
  • a current that is, a current flowing through the first probe group
  • the current flowing through the first probe group
  • the current value I1 is measured.
  • the processing unit 7 controls the fixed power supply unit 2 to stop the output of the fixed voltage V1.
  • the same reference numeral is used for both the first current I1 and its current value I1.
  • the processing unit 7 executes the second calculation process (step 56).
  • the processing unit 7 determines the contact resistance R1 and the contact resistance R2 based on the known voltage value V1 of the fixed voltage V1 and the current value I1 of the first current I1 measured in the first current measurement process. Calculate the sum B1 (R1+R2) of
  • the processing unit 7 executes the first resistance calculation process (step 57).
  • the processing unit 7 individually calculates the contact resistance R1 and the contact resistance R2 based on the ratio A1 calculated in the first calculation process and the sum B1 calculated in the second calculation process. ..
  • the ratio A1 is expressed by the following expression (3) based on the above expression (1). Further, the sum B1 is represented by the following equation (4) based on the above equation (2). Further, based on the equations (3) and (4), the contact resistance R1 is represented by the following equation (5), and the contact resistance R2 is represented by the following equation (6).
  • A1 R1/R2 (3)
  • B1 R1+R2 (4)
  • R1 A1 ⁇ B1/(1+A1) (5)
  • R2 B1/(1+A1) (6) Therefore, the processing unit 7 substitutes the calculated ratio A1 and the sum B1 into the above equations (5) and (6) to obtain the contact resistance R1 and the contact resistance R2 (each probe PLc1, which constitutes the first probe group).
  • the contact resistance for PLp1) is individually calculated and stored. This completes the first contact resistance measurement process 50.
  • the contact resistances R1 and R2 calculated in this way are calculated based on the equations (1) and (2) that are not affected by the impedance of the measurement target 11 as described above. , Is a value accurately calculated without being affected by the impedance of the measurement target 11.
  • the processing unit 7 executes the second contact resistance measurement processing 60 shown in FIG.
  • the processing unit 7 executes the processes (steps 51 to 57) performed on the probes PLc1 and PLp1 that form the first probe group (first connection switching process, First adjustment processing, first calculation processing, second connection switching processing, first current measurement processing, second calculation processing and first resistance calculation processing), each processing from step 61 to step 67 (third step), which will be described later.
  • the processing unit 7 executes a third connection switching process corresponding to the first connection switching process (step 61).
  • the processing unit 7 executes control of the connection switching unit 6 so that one probe (the second current supply probe PLc2 in this example) of the second probe group is fixed to the fixed power supply unit 2.
  • the other probe of the second probe group (in this example, the second voltage detection probe PLp2) is connected to the variable power supply unit 3, and one probe of the first probe group (in this example, the first current The supply probe PLc1) is unconnected (not connected to any of the second ports of the connection switching unit 6), and the other probe of the first probe group (in this example, the first voltage detection probe PLp1) is The third connection state (connection state represented by the equivalent circuit shown in FIG. 6) connected to the input section 4a of the current detection section 4 (and the inverting input terminal of the operational amplifier 4c) is shifted.
  • the processing unit 7 executes the second adjustment process corresponding to the first adjustment process (step 62).
  • the processing unit 7 applies the fixed voltage V1 to the fixed power supply unit 2 through the connection switching unit 6 in the third connection state to the one probe (for supplying the second current) of the second probe group.
  • the adjustment voltage V2 is output to the variable power supply unit 3 via the connection switching unit 6 to the other probe (second voltage detection probe PLp2) of the second probe group.
  • the other electrode 11b causes The input current Iin flows in a path from the measurement target 11 and the one electrode 11a to the input unit 4a of the current detection unit 4.
  • the current detection unit 4 converts this input current Iin into a voltage and outputs it as a detection voltage Vi from the output unit 4b.
  • the A/D conversion unit 5 converts the detected voltage Vi into waveform data Di and outputs the waveform data Di to the processing unit 7.
  • the processing unit 7 calculates the current value of the current (that is, the input current Iin) flowing through the measurement target 11 based on the waveform data Di, and the variable power supply so that the calculated current value of the input current Iin becomes zero.
  • the control of the unit 3 is executed to change (adjust) the voltage value V2 of the adjustment voltage V2.
  • the processing unit 7 stores the voltage value V2 (adjusted voltage value V2) of the adjusted voltage V2 when the current value of the input current Iin is zero.
  • the second adjustment process is completed, so that the processing unit 7 controls the fixed power supply unit 2 and the variable power supply unit 3 to stop the output of the fixed voltage V1 and the adjustment voltage V2.
  • the processing unit 7 executes the third calculation process corresponding to the first calculation process (step 63).
  • the processing unit 7 causes the reference potential Vr (known potential; potential of the internal ground G (zero volt)), the known voltage value V1 of the fixed voltage V1, and the adjustment voltage stored in the second adjustment process.
  • Vr known potential; potential of the internal ground G (zero volt)
  • the current value of the input current Iin is zero means that the other electrode 11b of the measurement target 11 has the potential of the one electrode 11a (that is, the known reference potential Vr (zero volt which is the potential of the internal ground G in this example)). ) And the same potential. That is, the voltage V0 becomes a known reference potential Vr (zero volt which is the potential of the internal ground G in this example). Therefore, the processing unit 7 substitutes the voltage V0, which is the known reference potential Vr (zero volt), the known voltage value V1, and the adjusted voltage value V2, into the above equation (1), The value (R3/R4) is calculated and stored as the ratio A2.
  • the processing unit 7 executes the fourth connection switching process corresponding to the second connection switching process (step 64).
  • the processing unit 7 controls the connection switching unit 6 so that one of the probes in the second probe group (in this example, the second current supply probe PLc2) causes the fixed power supply unit 2 to operate.
  • the other probe of the second probe group (in this example, the second voltage detection probe PLp2) is connected to the input section 4a of the current detection section 4 (and the inverting input terminal of the operational amplifier 4c), and
  • the fourth connection state in which the respective probes (the first current supply probe PLc1 and the first voltage detection probe PLp1) of the one probe group are unconnected (a state in which they are not connected to any of the second ports of the connection switching unit 6) (The connection state represented by the equivalent circuit shown in FIG. 7) is entered.
  • the processing unit 7 executes the second current measurement process corresponding to the first current measurement process (step 65).
  • the processing unit 7 causes the fixed power supply unit 2 to output the fixed voltage V1 to one probe (the second current supply probe PLc2) of the second probe group in the fourth connection state.
  • a current that is, a current flowing through the second probe group flowing through the one probe (the second current supply probe PLc2) and the other probe (the second voltage detection probe PLp2) of the second probe group is input current.
  • the processing unit 7 controls the fixed power supply unit 2 to stop the output of the fixed voltage V1.
  • the processing unit 7 executes the fourth calculation process corresponding to the second calculation process (step 66).
  • the processing unit 7 determines the contact resistance R3 and the contact resistance R4 based on the known voltage value V1 of the fixed voltage V1 and the current value I2 of the second current I2 measured in the second current measurement process. Calculate the sum B2 (R3+R4) of
  • the processing unit 7 executes the second resistance calculation process corresponding to the first resistance calculation process (step 67).
  • the processing unit 7 individually calculates the contact resistance R3 and the contact resistance R4 based on the ratio A2 calculated in the third calculation process and the sum B2 calculated in the fourth calculation process. ..
  • the ratio A2 is represented by the following equation (9) based on the above equation (7). Further, the sum B2 is expressed by the following expression (10) based on the above expression (8). Further, based on these equations (9) and (10), the contact resistance R4 is represented by the following equation (11), and the contact resistance R3 is represented by the following equation (12).
  • A2 R3/R4 (9)
  • B2 R3+R4 (10)
  • R3 A2 ⁇ B2/(1+A2) (11)
  • R4 B2/(1+A2) (12)
  • the processing unit 7 substitutes the calculated ratio A2 and the sum B2 into the above equations (11) and (12) to obtain the contact resistance R3 and the contact resistance R4 (each probe PLc2 that constitutes the second probe group).
  • the contact resistance for PLp2) is calculated and stored individually. This completes the second contact resistance measurement process 60.
  • the processing unit 7 executes an output process to cause the output unit 8 to output the measured contact resistances R1 to R4. This completes the measurement of the contact resistances R1 to R4.
  • the contact resistances R3 and R4 thus calculated are calculated based on the equations (7) and (8) that are not affected by the impedance of the measurement target 11 as described above. , Is a value accurately calculated without being affected by the impedance of the measurement target 11.
  • the contact resistance measuring apparatus 1 the first current supply probe PLc1 and the first voltage detection probe PLp1 that form the first probe group that are brought into contact with the one electrode 11a of the measurement target 11
  • the contact resistances R1 and R2 can be individually and accurately measured without being affected by the impedance of the measurement target 11.
  • R3 and R4 can also be individually and accurately measured without being affected by the impedance of the measurement target 11.
  • the impedance of the measuring object 11 can be accurately measured by utilizing the accurately measured contact resistances R1 to R4.
  • a measurement target 11 capable of flowing a DC current such as resistance and inductance a measurement target capable of flowing only an AC current without flowing a DC current such as a capacitor
  • a contact resistance measuring device 1A used by being incorporated in an impedance measuring device that measures 11 impedances (at least one of a resistance value, an inductance value, and a capacitance value) will be described.
  • the same components as those of the contact resistance measuring device 1 described above are designated by the same reference numerals, and duplicate description will be omitted.
  • the contact resistance measuring device 1A includes a first current supply probe PLc1, a second current supply probe PLc2, a first voltage detection probe PLp1, a second voltage detection probe PLp2, and a fixed power supply unit 2A.
  • the variable power supply unit 3A, the current detection unit 4, the A/D conversion unit 5, the connection switching unit 6, the processing unit 7A, and the output unit 8 are provided.
  • the fixed power supply unit 2A has a fixed voltage V1 (amplitude and frequency are constant and known with reference to a reference potential Vr (known potential. In this example, the potential (zero volt) of the internal ground G of the contact resistance measuring device 1 as an example)).
  • the AC voltage (sine wave voltage) of is output.
  • represents the amplitude of the fixed voltage V1
  • arg(V1) represents the phase of the fixed voltage V1.
  • the fixed power supply unit 2A is controlled by the processing unit 7A and executes the output of the fixed voltage V1 and the stop of the output of the fixed voltage V1. Further, the fixed power supply unit 2A outputs a signal indicating the phase state of the fixed voltage V1 (for example, a signal indicating the current phase arg(V1)) to the processing unit 7A.
  • the variable power supply unit 3A outputs an adjustment voltage V2 (AC voltage (sine wave voltage) having a set amplitude and the same frequency as the fixed voltage V1) with reference to the reference potential Vr (potential of the internal ground G).
  • represents the amplitude of the adjustment voltage V2
  • arg(V2) represents the phase of the adjustment voltage V2.
  • the variable power supply unit 3A is controlled by the processing unit 7A to stop the output of the adjustment voltage V2 and the output of the adjustment voltage V2, and change the amplitude
  • the variable power supply unit 3A also processes a signal indicating the phase state of the adjustment voltage V2 (for example, a signal indicating the timing of the rising zero cross point or the falling zero cross point, or a signal indicating the current phase arg(V2)), as the processing unit 7A. Output to.
  • a signal indicating the phase state of the adjustment voltage V2 for example, a signal indicating the timing of the rising zero cross point or the falling zero cross point, or a signal indicating the current phase arg(V2)
  • the processing unit 7A executes the first contact resistance measurement processing 50A shown in FIG. 2 and the second contact resistance measurement processing 60A shown in FIG.
  • the connection switching unit 6 of the contact resistance measuring device 1A includes a first current supply probe PLc1, a first voltage detection probe PLp1, a second current supply probe PLc2, and a second voltage detection. It is assumed that the probe PLp2 is connected to the contact resistance measuring device 1A, and the measurement object 11 is connected to the contact resistance measuring device 1A via these probes PLc1, PLp1, PLc2, and PLp2.
  • the processing unit 7A executes the first contact resistance measuring processing 50A shown in FIG.
  • the processing unit 7A first executes the first connection switching processing (step 51).
  • the processing unit 7A executes the control on the connection switching unit 6 in the same manner as the first connection switching process in the first contact resistance measurement process 50 described above.
  • the state is changed to the connection state (connection state represented by the equivalent circuit shown in FIG. 4).
  • the processing unit 7A executes the first adjustment processing (step 52A).
  • the processing unit 7A first applies the fixed voltage V1 to the fixed power supply unit 2A via the connection switching unit 6 to the one probe (first current) of the first probe group. Output to the supply probe PLc1). Further, the output of the adjustment voltage V2 to the variable power supply unit 3A is stopped (that is, the amplitude
  • the one electrode 11a passes through the measurement target 11 and the other electrode 11b to the input unit 4a of the current detection unit 4.
  • An input current (alternating current) Iin flows through the path.
  • the current detection unit 4 converts the input current Iin input to the input unit 4a in this way into a voltage, and outputs the voltage as the detection voltage Vi from the output unit 4b.
  • the A/D converter 5 converts the detected voltage Vi into waveform data Di and outputs the waveform data Di to the processor 7A.
  • the processing unit 7A receives the signal waveform of the detection voltage Vi represented by the waveform data Di (also the signal waveform indicating the signal waveform of the input current Iin), the known amplitude
  • the processing unit 7A next stops the output of the fixed voltage V1 from the fixed power supply unit 2A in the first connection state (that is, the amplitude
  • of the adjustment voltage V2 is set to a known value other than zero for the variable power supply unit 3A, and the adjustment voltage V2 is set to the other probe (first probe) of the first probe group via the connection switching unit 6. 1 Output to the voltage detection probe PLp1).
  • the one electrode 11a is connected to the input unit 4a of the current detection unit 4 via the measurement target 11 and the other electrode 11b.
  • An input current (alternating current) Iin flows through the path.
  • the current detection unit 4 converts the input current Iin input to the input unit 4a in this way into a voltage, and outputs the voltage as the detection voltage Vi from the output unit 4b.
  • the A/D converter 5 converts the detected voltage Vi into waveform data Di and outputs the waveform data Di to the processor 7A.
  • the processing section 7A receives the signal waveform of the detection voltage Vi (also the signal waveform showing the signal waveform of the input current Iin) represented by the waveform data Di, the known amplitude
  • the processing unit 7A continues to operate the fixed voltage V1 from the fixed power supply unit 2A via the first current supply probe PLc1 in the first connection state shown in FIG.
  • the adjustment voltage V2 (adjustment voltage V2 at the set amplitude
  • the processing unit 7A outputs a signal (phase arg(V1)) indicating the known amplitude
  • the phase changes arg(G1) and arg(G2) into the above equations (14) and (15) the input current Iin flowing through the measurement target 11 is reduced to zero when the fixed voltage V1 is applied.
  • the first adjustment process is completed, so that the processing unit 7A executes control on the fixed power supply unit 2A and the variable power supply unit 3A to stop the output of the fixed voltage V1 and the adjustment voltage V2.
  • the processing unit 7A executes the first calculation processing (step 53).
  • the fixed voltage V1 is applied and the adjusted voltage V2 of the amplitude
  • the fixed voltage V1 is an AC voltage having an amplitude
  • the adjustment voltage V2 is an amplitude
  • the processing unit 7A performs data regarding the fixed voltage V1 (known amplitude
  • the processing unit 7A executes the second connection switching process (step 54).
  • the processing unit 7A executes the control on the connection switching unit 6 in the same manner as the second connection switching process in the first contact resistance measurement process 50 described above.
  • the state is changed to the connection state (connection state represented by the equivalent circuit shown in FIG. 5).
  • the processing unit 7A executes the first current measurement processing (step 55).
  • the processing unit 7A determines the current (input current Iin) flowing through the first probe group in the same manner as in the first current measurement process in the first contact resistance measurement process 50 described above.
  • the current value I1 is measured and stored as one current I1.
  • the processing unit 7A executes the second calculation process (step 56).
  • the processing unit 7A uses the above equation (2) in the same manner as in the second calculation process of the first contact resistance measurement process 50 described above, and thereby the value (R1+R2) is obtained. Is calculated and stored as the sum B1.
  • the processing unit 7A executes the first resistance calculation processing (step 57).
  • the processing unit 7A performs the same calculation as in the above-described first resistance calculation process of the first contact resistance measurement process 50, that is, the ratio A1 calculated in the first calculation process and the second calculation process.
  • the contact resistance R1 and the contact resistance R2 are individually calculated and stored based on the sum B1 calculated in step 1 and the above equations (5) and (6). This completes the first contact resistance measurement processing 50A.
  • the processing unit 7A executes the second contact resistance measurement processing 60A shown in FIG.
  • the processing unit 7A first executes the third connection switching processing (step 61).
  • the processing unit 7A executes the control for the connection switching unit 6 in the same manner as the third connection switching process in the second contact resistance measurement process 60 described above, thereby performing the third connection switching process.
  • the connection state (the connection state represented by the equivalent circuit shown in FIG. 6) is entered.
  • the processing unit 7A executes the second adjustment processing (step 62A).
  • the processing unit 7A first applies the fixed voltage V1 to the fixed power supply unit 2A via the connection switching unit 6 to the one probe (second current) of the second probe group. Output to the supply probe PLc2). Further, the output of the adjustment voltage V2 to the variable power supply unit 3A is stopped (that is, the amplitude
  • the other electrode 11b causes An input current (alternating current) Iin flows in a path from the measurement target 11 and the one electrode 11a to the input unit 4a of the current detection unit 4.
  • the current detection unit 4 converts this input current Iin into a voltage and outputs it as a detection voltage Vi from the output unit 4b.
  • the A/D converter 5 converts the detected voltage Vi into waveform data Di and outputs the waveform data Di to the processor 7A.
  • the processing unit 7A receives the signal waveform of the detection voltage Vi represented by the waveform data Di (also the signal waveform indicating the signal waveform of the input current Iin), the known amplitude
  • the processing unit 7A next stops the output of the fixed voltage V1 from the fixed power supply unit 2A in the third connection state (that is, the amplitude
  • the current detection unit 4 converts the input current Iin input to the input unit 4a in this way into a voltage, and outputs the voltage as the detection voltage Vi from the output unit 4b. Further, the A/D converter 5 converts the detected voltage Vi into waveform data Di and outputs the waveform data Di to the processor 7A.
  • the processing section 7A receives the signal waveform of the detection voltage Vi (also the signal waveform showing the signal waveform of the input current Iin) represented by the waveform data Di, the known amplitude
  • the processing unit 7A continuously applies the fixed voltage V1 from the fixed power supply unit 2A to the other through the second current supply probe PLc2 in the third connection state shown in FIG.
  • the adjustment voltage V2 (adjustment voltage V2 at the set amplitude
  • the processing unit 7A outputs a signal (phase arg(V1)) indicating the known amplitude
  • the phase changes arg(G3) and arg(G4) into the above equations (17) and (18)
  • the input current Iin flowing through the measurement target 11 is reduced to zero when the fixed voltage V1 is applied.
  • and the phase arg(V2) for the adjustment voltage V2 to be set for the variable power supply unit 3A are calculated and stored.
  • the second adjustment process is completed, so that the processing unit 7A controls the fixed power supply unit 2A and the variable power supply unit 3A to stop the output of the fixed voltage V1 and the adjustment voltage V2.
  • the processing unit 7A executes the third calculation processing (step 63).
  • and the phase arg(V2) calculated in the second adjustment process is further applied to the other electrode 11b of the measurement target 11. Since the input current Iin becomes zero, the above-mentioned formula (7) is established. Therefore, in the third calculation process, the processing unit 7A performs the same data as the fixed voltage V1 (known amplitude
  • the processing unit 7A executes the fourth connection switching process (step 64).
  • the processing unit 7A executes the control for the connection switching unit 6 in the same manner as the fourth connection switching process in the second contact resistance measurement process 60 described above.
  • the state is changed to the connection state (connection state represented by the equivalent circuit shown in FIG. 7).
  • the processing unit 7A executes the second current measurement processing (step 65).
  • the processing unit 7A determines the current (input current Iin) flowing through the second probe group in the same manner as the second current measurement process in the second contact resistance measurement process 60 described above.
  • the current value I2 is measured and stored as the two currents I2.
  • the processing unit 7A executes the fourth calculation process (step 66).
  • the processing unit 7A uses the above equation (8) in the same manner as in the fourth calculation process in the second contact resistance measurement process 60 described above, and thereby the value (R3+R4) is obtained. Is calculated as the sum B2 and stored.
  • the processing unit 7A executes the second resistance calculation process (step 67).
  • the processing unit 7A performs the same calculation as the second resistance calculation process in the second contact resistance measurement process 60 described above, and the ratio A2 calculated in the third calculation process and the fourth calculation process.
  • the contact resistance R3 and the contact resistance R4 are individually calculated and stored based on the sum B2 calculated in step S1 and the above equations (11) and (12). This completes the second contact resistance measurement processing 60A.
  • the processing unit 7A executes an output process and causes the output unit 8 to output the measured contact resistances R1 to R4. This completes the measurement of the contact resistances R1 to R4.
  • the contact resistance measuring apparatus 1A not only the measurement target 11 such as resistance and inductance capable of flowing a direct current but also the alternating current not capable of flowing a direct current such as a capacitor is used. Also for the measurement target 11 that can flow, the contact resistances R1 and R2 for the first current supply probe PLc1 and the first voltage detection probe PLp1 that form the first probe group that are brought into contact with one electrode 11a of the measurement target 11 are set. The individual measurement can be performed accurately without being affected by the impedance of the measurement target 11.
  • R3 and R4 can also be individually and accurately measured without being affected by the impedance of the measurement target 11.
  • the impedance of the measuring object 11 can be accurately measured by utilizing the accurately measured contact resistances R1 to R4.
  • the processing unit 7 (7A) executes both the first contact resistance measuring process 50 (50A) and the second contact resistance measuring process 60 (60A), and The contact resistances R1 and R2 between one electrode 11a of the measurement target 11 for one probe group and the contact resistances R3 and R4 between the other electrode 11b of the measurement target 11 for the second probe group are measured.
  • the configuration is adopted, only one of the first contact resistance measurement processing 50 (50A) and the second contact resistance measurement processing 60 (60A) is executed to execute the first probe group and the second probe group. Only one of the contact resistances (only one of the contact resistances R1 and R2 and the contact resistances R3 and R4) of the pair of probes that configure one of the probe groups may be measured.
  • the contact resistance of each of the pair of probes (the first current supply probe and the first voltage detection probe) brought into contact with one electrode of the measurement target, and the other electrode of the measurement target are brought into contact. It can be widely applied to a contact resistance measuring device that individually measures the contact resistance of each of the other pair of probes (second current supply probe and second voltage detection probe).

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Resistance Or Impedance (AREA)
  • Testing Of Individual Semiconductor Devices (AREA)

Abstract

[Problem] To individually measure contact resistances of two probes in contact with a single electrode that is an object to be measured. A processing unit 7: controls a connection switching unit 6 for shifting to a state where a probe PLc1 is connected to a power supply unit 2, a probe PLp1 is connected to a power supply unit 3, a probe PLp2 is connected to an arithmetic operation amplifier 4c, and a probe PLc2 is in non-connection; causes voltages V1 and V2 to be outputted from the power supply units 2, 3, respectively; changes the voltage V2 such that a current Iin flowing in an object 11 to be measured becomes zero; calculates a ratio R1/R2 from the voltage V2 at this time; controls the connection switching unit 6 for shifting to a state where the probe PLc1 is connected to the power supply unit 2 and the probe PLp1 is connected to the arithmetic operation amplifier 4c, and the probes PLc2, PLp2 are in non-connection; causes the voltage V1 to be outputted from the power supply unit 2 so as to measure the current Iin flowing in the probe PLp1; calculates a sum R1+R2 from the voltage V1 and a current I1; and individually calculates contact resistances R1, R2 from the calculated ratio and sum.

Description

接触抵抗測定装置Contact resistance measuring device
 本発明は、測定対象の一方の電極に接触させられる一対のプローブ(第1電流供給用プローブおよび第1電圧検出用プローブ)のそれぞれの接触抵抗、および測定対象の他方の電極に接触させられる他の一対のプローブ(第2電流供給用プローブおよび第2電圧検出用プローブ)のそれぞれの接触抵抗を個別に測定する接触抵抗測定装置に関するものである。 The present invention provides a contact resistance of each of a pair of probes (a first current supply probe and a first voltage detection probe) brought into contact with one electrode of a measurement target, and another contact resistance brought into contact with the other electrode of the measurement target. The present invention relates to a contact resistance measuring device for individually measuring the contact resistance of each of the pair of probes (the second current supply probe and the second voltage detection probe).
 この種の接触抵抗測定装置の一例として、下記の特許文献1に開示された接触抵抗測定方法を実行する接触抵抗測定装置が知られている。この接触抵抗測定装置(測定装置)は、第1~第4コンタクトピン(4本のプローブ)と、定電流を供給する定電流源と、電圧を計測する直流電圧計と、リレー回路と、制御部とを含んで構成されている。 As an example of this type of contact resistance measuring device, a contact resistance measuring device that executes the contact resistance measuring method disclosed in Patent Document 1 below is known. This contact resistance measuring device (measuring device) includes first to fourth contact pins (four probes), a constant current source for supplying a constant current, a DC voltmeter for measuring a voltage, a relay circuit, and a control unit. It is configured to include and.
 この場合、第1および第2コンタクトピンは、測定対象の一対のリード端子のうちの一方のリード端子(第1のリード端子)に接触し、第3および第4コンタクトピンは、測定対象の他方のリード端子(第2のリード端子)に接触する。 In this case, the first and second contact pins make contact with one lead terminal (first lead terminal) of the pair of lead terminals to be measured, and the third and fourth contact pins are the other of the measurement object. To the lead terminal (second lead terminal).
 リレー回路は、第1~第9リレーを有して構成されて、第1~第4コンタクトピンと定電流源とを電気的に、導通および遮断すると共に、第1~第4コンタクトピンと直流電圧計とを電気的に、導通および遮断する。第1リレーは、定電流源の一方の端子と第1コンタクトピンとの間に介在する。第2リレーは、定電流源の一方の端子と第2コンタクトピンとの間に介在する。第3リレーは、定電流源の他方の端子と第3コンタクトピンとの間に介在する。第4リレーは、定電流源の他方の端子と第4コンタクトピンとの間に介在する。第5リレーは、直流電圧計の一方の端子と第1コンタクトピンとの間に介在する。第6リレーは、直流電圧計の一方の端子と第2コンタクトピンとの間に介在する。第7リレーは、直流電圧計の他方の端子と第3コンタクトピンとの間に介在する。第8リレーは、直流電圧計の他方の端子と第4コンタクトピンとの間に介在する。第9リレーは、第2および第6リレーと第2コンタクトピンとの接続点と、第3および第7リレーと第3コンタクトピンとの接続点との間に介在する。制御部は、CPUによって実現されて、リレー回路を制御すると共に、定電流源を制御する。また、制御部は、直流電圧計の計測値を取得する。 The relay circuit includes first to ninth relays, electrically connects and disconnects the first to fourth contact pins and the constant current source, and also connects the first to fourth contact pins and the DC voltmeter. To electrically connect and disconnect. The first relay is interposed between one terminal of the constant current source and the first contact pin. The second relay is interposed between one terminal of the constant current source and the second contact pin. The third relay is interposed between the other terminal of the constant current source and the third contact pin. The fourth relay is interposed between the other terminal of the constant current source and the fourth contact pin. The fifth relay is interposed between one terminal of the DC voltmeter and the first contact pin. The sixth relay is interposed between one terminal of the DC voltmeter and the second contact pin. The seventh relay is interposed between the other terminal of the DC voltmeter and the third contact pin. The eighth relay is interposed between the other terminal of the DC voltmeter and the fourth contact pin. The ninth relay is interposed between a connection point between the second and sixth relays and the second contact pin and a connection point between the third and seventh relays and the third contact pin. The control unit is realized by the CPU and controls the relay circuit and the constant current source. Further, the control unit acquires the measurement value of the DC voltmeter.
 この接触抵抗測定装置では、制御部は、リレー回路を制御することにより、第1コンタクトピンから測定対象を経由して第4コンタクトピンに至る経路に定電流源から定電流Is1を供給し、この定電流の供給状態において第1コンタクトピンおよび第4コンタクトピン間に生じる電圧Vm1を直流電圧計で計測させる。この場合、第1~第4コンタクトピンについての接触抵抗をそれぞれ、符号r1,r2,r3,r4で表し、測定対象の抵抗を符号Rで表すと、これらと、定電流Is1と、電圧Vm1との間には、次の式が成り立つ。
 r1+R+r4=Vm1/Is1
In this contact resistance measuring device, the control unit controls the relay circuit to supply the constant current Is1 from the constant current source to the path from the first contact pin to the fourth contact pin via the measurement target. A voltage Vm1 generated between the first contact pin and the fourth contact pin in a constant current supply state is measured by a DC voltmeter. In this case, when the contact resistances of the first to fourth contact pins are represented by reference signs r1, r2, r3, r4, respectively, and the resistance of the measurement target is represented by reference sign R, these, the constant current Is1, and the voltage Vm1 In between, the following equation holds.
r1+R+r4=Vm1/Is1
 同様にして、制御部は、第2コンタクトピンから測定対象を経由して第3コンタクトピンに至る経路に定電流源から定電流Is1を供給し、この定電流の供給状態において第2コンタクトピンおよび第3コンタクトピン間に生じる電圧Vm2を直流電圧計で計測させる。この場合、次の式が成り立つ。
 r2+R+r3=Vm2/Is1
Similarly, the control unit supplies the constant current Is1 from the constant current source to the path from the second contact pin to the third contact pin through the measurement target, and in the constant current supply state, the second contact pin and the second contact pin The voltage Vm2 generated between the third contact pins is measured with a DC voltmeter. In this case, the following equation holds.
r2+R+r3=Vm2/Is1
 また、制御部は、第2コンタクトピンから測定対象を経由して第4コンタクトピンに至る経路に定電流源から定電流Is1を供給し、この定電流の供給状態において第2コンタクトピンおよび第4コンタクトピン間に生じる電圧Vm3を直流電圧計で計測させる。この場合、次の式が成り立つ。
 r2+R+r4=Vm3/Is1
Further, the control unit supplies the constant current Is1 from the constant current source to the path from the second contact pin to the fourth contact pin via the measurement target, and in the constant current supply state, the second contact pin and the fourth contact pin are supplied. The voltage Vm3 generated between the contact pins is measured with a DC voltmeter. In this case, the following equation holds.
r2+R+r4=Vm3/Is1
 また、制御部は、第1コンタクトピンから第2コンタクトピンに至る経路に定電流源から定電流Is1を供給し、この定電流の供給状態において第1コンタクトピンおよび第2コンタクトピン間に生じる電圧Vm4を直流電圧計で計測させる。この場合、次の式が成り立つ。
 r1+r2=Vm4/Is1
Further, the control unit supplies a constant current Is1 from a constant current source to a path from the first contact pin to the second contact pin, and a voltage generated between the first contact pin and the second contact pin in the constant current supply state. Measure Vm4 with a DC voltmeter. In this case, the following equation holds.
r1+r2=Vm4/Is1
 また、制御部は、第3コンタクトピンから第4コンタクトピンに至る経路に定電流源から定電流Is1を供給し、この定電流の供給状態において第3コンタクトピンおよび第4コンタクトピン間に生じる電圧Vm5を直流電圧計で計測させる。この場合、次の式が成り立つ。
 r3+r4=Vm5/Is1
Further, the control unit supplies a constant current Is1 from a constant current source to a path from the third contact pin to the fourth contact pin, and a voltage generated between the third contact pin and the fourth contact pin in the constant current supply state. Measure Vm5 with a DC voltmeter. In this case, the following equation holds.
r3+r4=Vm5/Is1
 制御部は、上記した5つの式で構成される連立方程式から、第1~第4コンタクトピンについての4つの接触抵抗r1,r2,r3,r4を求める。 The control unit obtains four contact resistances r1, r2, r3, r4 for the first to fourth contact pins from the simultaneous equations composed of the above five equations.
特開2006-337268号公報(第7-11頁、第1図)Japanese Patent Laid-Open No. 2006-337268 (page 7-11, FIG. 1)
 ところが、上記した接触抵抗測定装置には、以下のような解決すべき課題が存在している。すなわち、抵抗Rが印加電圧や温度の影響を受けるという特性を測定対象が有していたとしても、接触抵抗測定装置は、本来であれば測定対象の抵抗Rについての上記の特性の影響を受けることなく、接触抵抗r1,r2,r3,r4を正確に測定すべきである。しかしながら、上記した接触抵抗測定装置には、接触抵抗r1,r2,r3,r4を求めるための上記の5つの式に、測定対象の抵抗Rを含んで構成される式が含まれているため、測定対象の抵抗Rについての上記の特性の影響を受けて、接触抵抗r1,r2,r3,r4を正確に測定できないことがあるという課題が存在している。 However, the above-mentioned contact resistance measuring device has the following problems to be solved. That is, even if the measurement target has the characteristic that the resistance R is affected by the applied voltage or temperature, the contact resistance measuring device is normally affected by the above-described properties of the resistance R of the measurement target. The contact resistances r1, r2, r3, r4 should be accurately measured. However, in the above-mentioned contact resistance measuring device, the above five equations for obtaining the contact resistances r1, r2, r3, and r4 include equations including the resistance R to be measured, There is a problem in that the contact resistances r1, r2, r3, and r4 may not be accurately measured due to the influence of the above-described characteristics of the resistance R to be measured.
 本発明は、かかる解決すべき課題に鑑みてなされたものであり、測定対象の一対の電極のうちの少なくとも1つの電極に接触させられる2つのプローブの接触抵抗を個別に正確に測定し得る接触抵抗測定装置を提供することを主目的とする。 The present invention has been made in view of such problems to be solved, and a contact capable of individually and accurately measuring the contact resistance of two probes brought into contact with at least one electrode of a pair of electrodes to be measured. The main purpose is to provide a resistance measuring device.
 上記目的を達成すべく請求項1記載の接触抵抗測定装置は、測定対象の一方の電極に接触させられる第1電流供給用プローブおよび第1電圧検出用プローブで構成される第1プローブ群についての当該一方の電極との間の接触抵抗、並びに当該測定対象の他方の電極に接触させられる第2電流供給用プローブおよび第2電圧検出用プローブで構成される第2プローブ群についての当該他方の電極との間の接触抵抗のうちの少なくとも1つのプローブ群についての前記接触抵抗を個別に測定する接触抵抗測定装置であって、基準電位を基準とする固定電圧を出力する固定電源部と、前記基準電位を基準として出力する調整電圧を可変可能な可変電源部と、非反転入力端子が前記基準電位に規定されると共に反転入力端子と出力端子との間に帰還抵抗が接続された演算増幅器を有して構成されて、当該反転入力端子に供給される入力電流を電圧に変換して検出電圧として当該出力端子から出力する電流検出部と、前記固定電源部、前記可変電源部および前記電流検出部と4つの前記プローブとの間に配設された接続切替部と、処理部とを備え、前記処理部は、前記接続切替部に対する制御を実行して、前記第1プローブ群の一方のプローブが前記固定電源部に接続され、前記第1プローブ群の他方のプローブが前記可変電源部に接続され、前記第2プローブ群の一方のプローブが未接続となり、かつ前記第2プローブ群の他方のプローブが前記演算増幅器の前記反転入力端子に接続される第1接続状態に移行させる第1接続切替処理と、前記第1接続状態において、前記固定電源部に対して前記固定電圧を前記第1プローブ群の前記一方のプローブへ出力させると共に、前記可変電源部に対して前記調整電圧を前記第1プローブ群の前記他方のプローブへ出力させ、かつ前記測定対象に流れる電流を前記入力電流として前記電流検出部が出力する前記検出電圧に基づいて、当該測定対象に流れる当該電流がゼロになるように前記可変電源部に対する制御を実行して前記調整電圧を変更する第1調整処理と、前記基準電位と前記固定電圧と前記測定対象に流れる前記電流がゼロのときの前記第1調整処理での前記調整電圧とに基づいて、前記第1プローブ群の前記一方のプローブと前記一方の電極との間の第1接触抵抗と、前記第1プローブ群の前記他方のプローブと前記一方の電極との間の第2接触抵抗との比を算出する第1算出処理と、前記接続切替部に対する制御を実行して、前記第1プローブ群の前記一方のプローブが前記固定電源部に接続され、前記第1プローブ群の前記他方のプローブが前記演算増幅器の前記反転入力端子に接続され、かつ前記第2プローブ群の各前記プローブが未接続となる第2接続状態に移行させる第2接続切替処理と、前記第2接続状態において、前記固定電源部に対して前記固定電圧を前記第1プローブ群の前記一方のプローブへ出力させると共に、当該第1プローブ群に流れる電流を前記入力電流として前記電流検出部が出力する前記検出電圧に基づいて、当該第1プローブ群に流れる電流を第1電流として測定する第1電流測定処理と、前記固定電圧と前記第1電流とに基づいて、前記第1接触抵抗と前記第2接触抵抗の和を算出する第2算出処理と、前記第1算出処理で算出した前記比および前記第2算出処理で算出した前記和に基づいて、前記第1接触抵抗と前記第2接触抵抗とを個別に算出する第1抵抗算出処理とを実行する。 In order to achieve the above object, the contact resistance measuring device according to claim 1 is a first probe group including a first current supply probe and a first voltage detection probe that are brought into contact with one electrode of a measurement target. The contact resistance with the one electrode, and the other electrode of the second probe group including the second current supply probe and the second voltage detection probe brought into contact with the other electrode of the measurement target. A contact resistance measuring device for individually measuring the contact resistance of at least one probe group among the contact resistances between the contact resistance and a fixed power supply unit for outputting a fixed voltage with reference to a reference potential; It has a variable power supply unit capable of varying an adjustment voltage to be output with reference to a potential, and an operational amplifier in which a non-inverting input terminal is regulated to the reference potential and a feedback resistor is connected between the inverting input terminal and the output terminal. A current detector that converts the input current supplied to the inverting input terminal into a voltage and outputs the voltage as a detection voltage from the output terminal, the fixed power supply unit, the variable power supply unit, and the current detection unit. And a connection switching unit disposed between the four probes, and a processing unit, the processing unit executes control of the connection switching unit so that one probe of the first probe group Connected to the fixed power supply unit, the other probe of the first probe group is connected to the variable power supply unit, one probe of the second probe group is unconnected, and the other probe of the second probe group In a first connection state in which is connected to the inverting input terminal of the operational amplifier, and in the first connection state, the fixed voltage is applied to the fixed power supply unit by the first probe group. Output to the other probe of the first probe group, the adjustment voltage is output to the other probe of the first probe group, and a current flowing through the measurement target is used as the input current to detect the current. A first adjustment process of changing the adjustment voltage by executing control of the variable power supply unit so that the current flowing through the measurement target becomes zero based on the detection voltage output by the unit. Based on the fixed voltage and the adjustment voltage in the first adjustment process when the current flowing through the measurement target is zero, between the one probe and the one electrode of the first probe group A first calculating a ratio of a first contact resistance and a second contact resistance between the other probe of the first probe group and the one electrode A calculation process and a control for the connection switching unit are executed so that the one probe of the first probe group is connected to the fixed power supply unit and the other probe of the first probe group is the operational amplifier. A second connection switching process of shifting to a second connection state in which each probe of the second probe group is unconnected and connected to an inverting input terminal; and in the second connection state, with respect to the fixed power supply unit The fixed voltage is output to the one probe of the first probe group, and the first probe is based on the detection voltage output by the current detection unit with the current flowing in the first probe group as the input current. A first current measurement process of measuring a current flowing through the group as a first current, and a second calculation of calculating a sum of the first contact resistance and the second contact resistance based on the fixed voltage and the first current. A first resistance calculation process for individually calculating the first contact resistance and the second contact resistance based on a process and the ratio calculated in the first calculation process and the sum calculated in the second calculation process. And execute.
 また、請求項2記載の接触抵抗測定装置は、請求項1記載の接触抵抗測定装置において、前記処理部は、前記接続切替部に対する制御を実行して、前記第2プローブ群の前記一方のプローブが前記固定電源部に接続され、前記第2プローブ群の前記他方のプローブが前記可変電源部に接続され、前記第1プローブ群の前記一方のプローブが未接続となり、かつ前記第1プローブ群の前記他方のプローブが前記演算増幅器の前記反転入力端子に接続される第3接続状態に移行させる第3接続切替処理と、前記第3接続状態において、前記固定電源部に対して前記固定電圧を前記第2プローブ群の前記一方のプローブへ出力させると共に、前記可変電源部に対して前記調整電圧を前記第2プローブ群の前記他方のプローブへ出力させ、かつ前記測定対象に流れる電流を前記入力電流として前記電流検出部が出力する前記検出電圧に基づいて、当該測定対象に流れる当該電流がゼロになるように前記可変電源部に対する制御を実行して前記調整電圧を変更する第2調整処理と、前記基準電位と前記固定電圧と前記測定対象に流れる前記電流がゼロのときの前記第2調整処理での前記調整電圧とに基づいて、前記第2プローブ群の前記一方のプローブと前記他方の電極との間の第3接触抵抗と、前記第2プローブ群の前記他方のプローブと前記他方の電極との間の第4接触抵抗との比を算出する第3算出処理と、前記接続切替部に対する制御を実行して、前記第2プローブ群の前記一方のプローブが前記固定電源部に接続され、前記第2プローブ群の前記他方のプローブが前記演算増幅器の前記反転入力端子に接続され、かつ前記第1プローブ群の各前記プローブが未接続となる第4接続状態に移行させる第4接続切替処理と、前記第4接続状態において、前記固定電源部に対して前記固定電圧を前記第2プローブ群の前記一方のプローブへ出力させると共に、当該第2プローブ群に流れる電流を前記入力電流として前記電流検出部が出力する前記検出電圧に基づいて、当該第2プローブ群に流れる電流を第2電流として測定する第2電流測定処理と、前記固定電圧と前記第2電流とに基づいて、前記第3接触抵抗と前記第4接触抵抗の和を算出する第4算出処理と、前記第3算出処理で算出した前記比および前記第4算出処理で算出した前記和に基づいて、前記第3接触抵抗と前記第4接触抵抗とを個別に算出する第2抵抗算出処理とを実行する。 The contact resistance measuring device according to claim 2 is the contact resistance measuring device according to claim 1, wherein the processing unit executes control of the connection switching unit, and the one probe of the second probe group. Is connected to the fixed power supply unit, the other probe of the second probe group is connected to the variable power supply unit, the one probe of the first probe group is unconnected, and A third connection switching process of shifting the other probe to a third connection state in which it is connected to the inverting input terminal of the operational amplifier; and in the third connection state, the fixed voltage is applied to the fixed power supply unit. The output voltage is output to the one probe of the second probe group, the adjustment voltage is output to the other probe of the second probe group to the variable power supply unit, and the current flowing to the measurement target is the input current. A second adjustment process of changing the adjustment voltage by executing control of the variable power supply unit so that the current flowing through the measurement target becomes zero based on the detection voltage output by the current detection unit, The one probe and the other electrode of the second probe group based on the reference potential, the fixed voltage, and the adjustment voltage in the second adjustment process when the current flowing through the measurement target is zero. And a third contact resistance between the second probe group and a fourth contact resistance between the other probe of the second probe group and the other electrode of the second probe group; The control is executed such that the one probe of the second probe group is connected to the fixed power supply unit, the other probe of the second probe group is connected to the inverting input terminal of the operational amplifier, and A fourth connection switching process of shifting each probe of the first probe group to a fourth connection state in which the probes are unconnected, and in the fourth connection state, the fixed voltage is applied to the fixed power supply unit by the second probe group. Of the second probe group, the current flowing in the second probe group is used as the input current, and the current flowing in the second probe group is used as the second current based on the detection voltage output from the current detection unit. A second current measuring process for measuring, a fourth calculating process for calculating the sum of the third contact resistance and the fourth contact resistance based on the fixed voltage and the second current, and the third calculating process. Second resistance calculation for individually calculating the third contact resistance and the fourth contact resistance based on the calculated ratio and the sum calculated in the fourth calculation processing. Perform processing and.
 請求項1記載の接触抵抗測定装置によれば、測定対象の一方の電極に接触させられる第1プローブ群を構成する一対のプローブ、および測定対象の他方の電極に接触させられる第2プローブ群を構成する一対のプローブのうちの第1プローブ群を構成する一対のプローブについての第1接触抵抗および第2接触抵抗を、測定対象のインピーダンスの影響を受けることなく個別に正確に測定することができる。 According to the contact resistance measuring device of claim 1, a pair of probes forming a first probe group that is brought into contact with one electrode of the measurement target and a second probe group that is brought into contact with the other electrode of the measurement target are provided. The first contact resistance and the second contact resistance of the pair of probes forming the first probe group of the pair of probes forming the pair can be accurately measured individually without being affected by the impedance of the measurement target. ..
 また、請求項2記載の接触抵抗測定装置によれば、さらに、第2プローブ群を構成する一対のプローブについての第3接触抵抗および第4接触抵抗についても、測定対象のインピーダンスの影響を受けることなく個別に正確に測定することができる。 Further, according to the contact resistance measuring apparatus of claim 2, the third contact resistance and the fourth contact resistance of the pair of probes forming the second probe group are also affected by the impedance of the measurement target. It can be measured individually and accurately.
接触抵抗測定装置1,1Aの構成を示す構成図である。It is a block diagram which shows the structure of the contact resistance measuring apparatus 1, 1A. 第1接触抵抗測定処理50(50A)のフローチャートである。It is a flow chart of the 1st contact resistance measurement processing 50 (50A). 第2接触抵抗測定処理60(60A)のフローチャートである。It is a flow chart of the second contact resistance measurement processing 60 (60A). 接触抵抗R1,R2の測定動作を説明するための説明図である。It is explanatory drawing for demonstrating the measurement operation of contact resistance R1, R2. 接触抵抗R1,R2の測定動作を説明するための他の説明図である。It is another explanatory view for explaining measurement operation of contact resistance R1 and R2. 接触抵抗R3,R4の測定動作を説明するための説明図である。It is explanatory drawing for demonstrating the measurement operation of contact resistance R3, R4. 接触抵抗R3,R4の測定動作を説明するための他の説明図である。It is another explanatory view for explaining measurement operation of contact resistance R3 and R4.
 以下、接触抵抗測定装置の実施の形態について、添付図面を参照して説明する。 Hereinafter, an embodiment of the contact resistance measuring device will be described with reference to the accompanying drawings.
 まず、接触抵抗測定装置としての接触抵抗測定装置1の構成について、図1を参照して説明する。 First, the configuration of the contact resistance measuring device 1 as the contact resistance measuring device will be described with reference to FIG.
 接触抵抗測定装置1は、図1に示すように、第1電流供給用プローブPLc1、第2電流供給用プローブPLc2、第1電圧検出用プローブPLp1、第2電圧検出用プローブPLp2、固定電源部2、可変電源部3、電流検出部4、A/D変換部5、接続切替部6、処理部7および出力部8を備えている。 As shown in FIG. 1, the contact resistance measuring device 1 includes a first current supply probe PLc1, a second current supply probe PLc2, a first voltage detection probe PLp1, a second voltage detection probe PLp2, and a fixed power supply unit 2. 1, a variable power supply unit 3, a current detection unit 4, an A/D conversion unit 5, a connection switching unit 6, a processing unit 7, and an output unit 8.
 また、接触抵抗測定装置1は、測定対象11の一方の電極(本例では測定対象11の一方の接続端子)11aに接触させられる第1電流供給用プローブPLc1および第1電圧検出用プローブPLp1で構成される第1プローブ群についてのこの一方の電極11aとの間の接触抵抗、および測定対象11の他方の電極(本例では測定対象11の他方の接続端子)11bに接触させられる第2電流供給用プローブPLc2および第2電圧検出用プローブPLp2で構成される第2プローブ群についてのこの他方の電極11bとの間の接触抵抗を、第1電流供給用プローブPLc1、第1電圧検出用プローブPLp1、第2電流供給用プローブPLc2および第2電圧検出用プローブPLp2について個別に測定する。つまり、接触抵抗測定装置1は、第1電流供給用プローブPLc1と一方の電極11aとの間の接触抵抗(第1接触抵抗)R1、第1電圧検出用プローブPLp1と一方の電極11aとの間の接触抵抗(第2接触抵抗)R2、第2電流供給用プローブPLc2と他方の電極11bとの間の接触抵抗(第3接触抵抗)R3、および第2電圧検出用プローブPLp2と他方の電極11bとの間の接触抵抗(第4接触抵抗)R4を個別に測定する。 Further, the contact resistance measuring device 1 includes a first current supply probe PLc1 and a first voltage detection probe PLp1 which are brought into contact with one electrode (one connection terminal of the measurement target 11 in this example) 11a of the measurement target 11. Contact resistance between the one electrode 11a of the configured first probe group and the second current that is brought into contact with the other electrode of the measurement target 11 (in this example, the other connection terminal of the measurement target 11) 11b. The contact resistance between the other electrode 11b of the second probe group composed of the supply probe PLc2 and the second voltage detection probe PLp2 is determined by the first current supply probe PLc1 and the first voltage detection probe PLp1. , The second current supply probe PLc2 and the second voltage detection probe PLp2 are individually measured. That is, the contact resistance measuring device 1 includes a contact resistance (first contact resistance) R1 between the first current supply probe PLc1 and the one electrode 11a, and a contact resistance between the first voltage detection probe PLp1 and the one electrode 11a. Contact resistance (second contact resistance) R2, a contact resistance (third contact resistance) R3 between the second current supply probe PLc2 and the other electrode 11b, and a second voltage detection probe PLp2 and the other electrode 11b. The contact resistance (4th contact resistance) R4 between and is measured individually.
 この接触抵抗測定装置1は、図示はしないが、例えば、測定対象11のインピーダンスを測定するインピーダンス測定装置に組み込まれて使用される。この場合、第1電流供給用プローブPLc1は接続切替部6を介して固定電源部2に接続されて、Hi側のソース端子Hcとして機能し、第2電流供給用プローブPLc2は接続切替部6を介して電流検出部4に接続されて、Lo側のソース端子Lcとして機能する。また、第1電圧検出用プローブPLp1は、接続切替部6を介してインピーダンス測定装置を構成する不図示の電圧検出部の正側検出端子に接続されて、Hi側のセンス端子Hpとして機能し、第2電圧検出用プローブPLp2は接続切替部6を介して電圧検出部の負側検出端子に接続されて、Lo側のセンス端子Lpとして機能する。また、インピーダンス測定装置では、接触抵抗測定装置1で測定された各接触抵抗R1,R2,R3,R4を考慮しつつ、電流検出部4で検出される電流の電流値(測定対象11に流れる電流の電流値)と、電圧検出部で検出される電圧の電圧値(測定対象11の電極11a,11b間に生じる電圧値)とに基づいて、処理部7が上記のインピーダンスを測定する。 Although not shown, the contact resistance measuring device 1 is used by being incorporated in, for example, an impedance measuring device that measures the impedance of the measurement target 11. In this case, the first current supply probe PLc1 is connected to the fixed power supply unit 2 through the connection switching unit 6 and functions as the Hi-side source terminal Hc, and the second current supply probe PLc2 connects the connection switching unit 6 to the fixed power supply unit 2. It is connected to the current detection unit 4 via and functions as the source terminal Lc on the Lo side. Further, the first voltage detection probe PLp1 is connected to the positive side detection terminal of a voltage detection unit (not shown) that constitutes the impedance measuring device via the connection switching unit 6, and functions as the Hi-side sense terminal Hp. The second voltage detection probe PLp2 is connected to the negative side detection terminal of the voltage detection section via the connection switching section 6 and functions as the Lo side sense terminal Lp. Further, in the impedance measuring device, the current value of the current detected by the current detecting unit 4 (the current flowing in the measurement target 11 is taken into consideration while taking into consideration the contact resistances R1, R2, R3, R4 measured by the contact resistance measuring device 1 Current value) and the voltage value of the voltage detected by the voltage detection unit (voltage value generated between the electrodes 11a and 11b of the measurement target 11), the processing unit 7 measures the above impedance.
 まず、第1実施の形態として、抵抗やインダクタなどの直流電流を流すことが可能な測定対象11のインピーダンス(抵抗値やインダクタンス)を測定するインピーダンス測定装置に組み込まれて使用される接触抵抗測定装置1を例に挙げて、各要素の構成を説明する。 First, as a first embodiment, a contact resistance measuring device used by being incorporated in an impedance measuring device for measuring the impedance (resistance value or inductance) of a measurement target 11 capable of flowing a direct current such as a resistance or an inductor. 1, the configuration of each element will be described.
 固定電源部2は、基準電位Vr(既知の電位。本例では一例として、接触抵抗測定装置1の内部グランドGの電位(ゼロボルト))を基準とする固定電圧V1(直流電圧であって、その電圧値V1は一定で、かつ既知)を出力する。本例では、理解の容易のため、固定電圧V1とその電圧値V1の双方について同じ符号を使用するものとする。また、固定電源部2は、処理部7によって制御されて、固定電圧V1の出力、および固定電圧V1の出力の停止を実行する。 The fixed power supply unit 2 has a fixed voltage V1 (a DC voltage, which is a known potential. As an example in this example, the potential (zero volt) of the internal ground G of the contact resistance measuring device 1), which is a DC voltage, The voltage value V1 is constant and is known). In this example, for ease of understanding, the same reference numeral is used for both the fixed voltage V1 and its voltage value V1. Further, the fixed power supply unit 2 is controlled by the processing unit 7 to execute the output of the fixed voltage V1 and the stop of the output of the fixed voltage V1.
 可変電源部3は、基準電位Vr(内部グランドGの電位)を基準とする調整電圧(直流電圧)V2を出力すると共に、この調整電圧V2の電圧値V2を可変可能に構成されている。本例では、理解の容易のため、調整電圧V2とその電圧値V2の双方について同じ符号を使用するものとする。また、可変電源部3は、処理部7によって制御されて、調整電圧V2の出力、および調整電圧V2の出力の停止を実行すると共に、電圧値V2を変更する(具体的には、処理部7で指示された電圧値に変更する)。 The variable power supply unit 3 is configured to output an adjustment voltage (DC voltage) V2 based on the reference potential Vr (potential of the internal ground G) and to change the voltage value V2 of the adjustment voltage V2. In this example, for ease of understanding, the same reference numeral is used for both the adjustment voltage V2 and its voltage value V2. The variable power supply unit 3 is controlled by the processing unit 7 to stop the output of the adjustment voltage V2 and the output of the adjustment voltage V2 and change the voltage value V2 (specifically, the processing unit 7). Change to the voltage value instructed in).
 電流検出部4は、一例として、入力部4a、出力部4b、演算増幅器4cおよび帰還抵抗4d(抵抗値Rf)を備え、演算増幅器4cの反転入力端子が入力部4aに接続され、演算増幅器4cの非反転入力端子が基準電位Vr(内部グランドGの電位)に規定され、演算増幅器4cの出力端子が出力部4bに接続され、かつ演算増幅器4cの反転入力端子と出力端子との間に帰還抵抗4bが接続されて構成されている。この構成により、電流検出部4は、入力部4aに供給される(つまり、演算増幅器4cの反転入力端子に供給される)入力電流Iinを電圧に変換して、演算増幅器4cの出力端子(つまり、出力部4b)から検出電圧Vi(=-Iin×Rf)として出力する。 The current detection unit 4 includes, for example, an input unit 4a, an output unit 4b, an operational amplifier 4c, and a feedback resistor 4d (resistance value Rf), the inverting input terminal of the operational amplifier 4c is connected to the input unit 4a, and the operational amplifier 4c. Of the operational amplifier 4c is connected to the output section 4b, and the non-inverting input terminal of the operational amplifier 4c is fed back between the inverting input terminal and the output terminal of the operational amplifier 4c. The resistor 4b is connected and configured. With this configuration, the current detection unit 4 converts the input current Iin supplied to the input unit 4a (that is, supplied to the inverting input terminal of the operational amplifier 4c) into a voltage, and outputs the output current of the operational amplifier 4c (that is, the input terminal Iin). , And output as the detection voltage Vi (=−Iin×Rf) from the output unit 4b).
 A/D変換部5は、検出電圧Viを入力して所定のサンプリング周期でサンプリングすることにより、検出電圧Viの瞬時値を示す波形データ(電流検出部4に入力される入力電流Iinの瞬時値を示す波形データとも言えることから、以下では波形データDiと表記する)を出力する。なお、A/D変換部5は、本例のように処理部7とは別体とする構成に限定されるものではなく、図示はしないが、処理部7内に組み込む構成(処理部7と一体的に形成する構成)とすることもできる。 The A/D conversion unit 5 receives the detection voltage Vi and samples it at a predetermined sampling period to obtain waveform data indicating the instantaneous value of the detection voltage Vi (the instantaneous value of the input current Iin input to the current detection unit 4). Since it can be said that the waveform data indicates that, the following is referred to as waveform data Di). Note that the A/D conversion unit 5 is not limited to the configuration that is separate from the processing unit 7 as in this example, and although not shown, a configuration that is incorporated in the processing unit 7 (the processing unit 7 and It is also possible to adopt a configuration of integrally forming).
 接続切替部6は、例えば、複数の第1ポート(第1電流供給用プローブPLc1が接続される第1ポート6、第1電圧検出用プローブPLp1が接続される第1ポート6、第2電流供給用プローブPLc2が接続される第1ポート6、および第2電圧検出用プローブPLp2が接続される第1ポート6)と、複数の第2ポート(固定電源部2が接続される第2ポート6、可変電源部3が接続される第2ポート6、電流検出部4が接続される第2ポート6、および不図示の電圧検出部が接続される第2ポート6,6)と、処理部7によって制御されて複数の第1ポートのうちの任意の第1ポートの任意の第2ポートへの一対一での接続、および任意の第1ポートの第2ポートからの切り離しを実行可能な不図示のマトリクススイッチ回路とを備えて構成されている。 The connection switching unit 6 includes, for example, a plurality of first ports (first port 6 1 to which the first current supply probe PLc1 is connected, first port 6 2 to which the first voltage detection probe PLp1 is connected, and second port 6 2 the first port 6 4) in which the first port 6 3 current supplying probe PLc2 is connected, and a second voltage detector probe PLp2 is connected, the plurality of second ports (fixed power source unit 2 is connected 2 port 6 a, variable second port 6 b of the power supply unit 3 is connected, a second port 6 d of the voltage detecting portion of the second port 6 c, and not shown current detector 4 is connected is connected, 6 e ) and one-to-one connection of any first port of the plurality of first ports to any second port under the control of the processing unit 7, and from the second port of any first port And a matrix switch circuit (not shown) capable of performing disconnection.
 処理部7は、CPUおよびメモリ(いずれも図示せず)を備えて、固定電源部2、可変電源部3および接続切替部6に対する制御を実行する。また、処理部7は、第1プローブ群についての測定対象11の一方の電極11aとの間の接触抵抗R1,R2を測定する第1接触抵抗測定処理、および第2プローブ群についての測定対象11の他方の電極11bとの間の接触抵抗R3,R4を測定する第2接触抵抗測定処理を実行する。また、処理部7は、測定した各接触抵抗R1~R4を出力部8に出力させる出力処理を実行する。 The processing unit 7 includes a CPU and a memory (neither of which is shown), and controls the fixed power supply unit 2, the variable power supply unit 3, and the connection switching unit 6. In addition, the processing unit 7 performs the first contact resistance measurement process of measuring the contact resistances R1 and R2 between the measurement target 11 of the first probe group and one electrode 11a of the measurement target 11, and the measurement target 11 of the second probe group. The second contact resistance measurement process of measuring the contact resistances R3 and R4 with the other electrode 11b of is performed. Further, the processing unit 7 executes an output process of causing the output unit 8 to output the measured contact resistances R1 to R4.
 出力部8は、一例として、表示装置で構成されて、処理部7から出力される接触抵抗R1~R4を画面上に表示する(出力する)。なお、出力部8は、表示装置に代えて種々のインターフェース回路で構成することもでき、外部インターフェース回路で構成されたときには、外部インターフェース回路を介して伝送路で接続された外部装置にこの算出(測定)した接触抵抗R1~R4を出力し、また媒体用インターフェース回路で構成されたときには、この媒体用インターフェース回路に接続された記憶媒体にこの算出(測定)した接触抵抗R1~R4を記憶させる。 The output unit 8 is configured by a display device, for example, and displays (outputs) the contact resistances R1 to R4 output from the processing unit 7 on the screen. Note that the output unit 8 can be configured by various interface circuits instead of the display device. When configured by an external interface circuit, the output unit 8 is calculated by an external device connected via a transmission line via the external interface circuit. The measured (measured) contact resistances R1 to R4 are output, and when configured by the medium interface circuit, the calculated (measured) contact resistances R1 to R4 are stored in the storage medium connected to the medium interface circuit.
 次に、接触抵抗測定装置1の動作について、図面を参照して説明する。なお、図1に示すように、接触抵抗測定装置1の接続切替部6には、第1電流供給用プローブPLc1、第1電圧検出用プローブPLp1、第2電流供給用プローブPLc2および第2電圧検出用プローブPLp2が接続され、また接触抵抗測定装置1には、これらのプローブPLc1,PLp1,PLc2,PLp2を介して測定対象11が接続されているものとする。 Next, the operation of the contact resistance measuring device 1 will be described with reference to the drawings. As shown in FIG. 1, the connection switching unit 6 of the contact resistance measuring device 1 includes a first current supply probe PLc1, a first voltage detection probe PLp1, a second current supply probe PLc2, and a second voltage detection probe PLc1. The probe PLp2 is connected to the contact resistance measuring apparatus 1, and the measurement object 11 is connected to the contact resistance measuring apparatus 1 via the probes PLc1, PLp1, PLc2, and PLp2.
 この状態において、接触抵抗測定装置1では、処理部7が、図2に示す第1接触抵抗測定処理50を実行する。この第1接触抵抗測定処理50では、処理部7は、まず、第1接続切替処理を実行する(ステップ51)。この第1接続切替処理では、処理部7は、接続切替部6に対する制御を実行して、第1プローブ群の一方のプローブ(本例では、第1電流供給用プローブPLc1)が固定電源部2に接続され、第1プローブ群の他方のプローブ(本例では、第1電圧検出用プローブPLp1)が可変電源部3に接続され、第2プローブ群の一方のプローブ(本例では、第2電流供給用プローブPLc2)が未接続(接続切替部6のいずれの第2ポートにも接続されない状態)となり、かつ第2プローブ群の他方のプローブ(本例では、第2電圧検出用プローブPLp2)が電流検出部4の入力部4a(および演算増幅器4cの反転入力端子)に接続される第1接続状態(図4に示す等価回路で表される接続状態)に移行させる。 In this state, in the contact resistance measuring device 1, the processing unit 7 executes the first contact resistance measuring process 50 shown in FIG. In the first contact resistance measurement process 50, the processing unit 7 first executes the first connection switching process (step 51). In this first connection switching process, the processing unit 7 controls the connection switching unit 6 so that one of the probes in the first probe group (in this example, the first current supply probe PLc1) is the fixed power supply unit 2 , The other probe of the first probe group (in this example, the first voltage detection probe PLp1) is connected to the variable power supply unit 3, and one probe of the second probe group (in this example, the second current The supply probe PLc2) is unconnected (a state in which it is not connected to any of the second ports of the connection switching unit 6), and the other probe of the second probe group (in this example, the second voltage detection probe PLp2) is The first connection state (connection state represented by the equivalent circuit shown in FIG. 4) connected to the input section 4a of the current detection section 4 (and the inverting input terminal of the operational amplifier 4c) is shifted.
 次いで、処理部7は、第1調整処理を実行する(ステップ52)。この第1調整処理では、処理部7は、第1接続状態において、固定電源部2に対して固定電圧V1を接続切替部6を介して第1プローブ群の一方のプローブ(第1電流供給用プローブPLc1)へ出力させると共に、可変電源部3に対して調整電圧V2を接続切替部6を介して第1プローブ群の他方のプローブ(第1電圧検出用プローブPLp1)へ出力させる。 Next, the processing unit 7 executes the first adjustment processing (step 52). In the first adjustment process, the processing unit 7 applies the fixed voltage V1 to the fixed power supply unit 2 via the connection switching unit 6 to the one probe (for supplying the first current) in the first connection state. In addition to the output to the probe PLc1), the adjustment voltage V2 is output to the variable power supply unit 3 via the connection switching unit 6 to the other probe of the first probe group (first voltage detection probe PLp1).
 この場合、処理部7が可変電源部3に対する制御を実行して調整電圧V2の電圧値V2を変更する前の状態(電圧値V2が未調整の状態)では、通常、測定対象11の一方の電極11aへの固定電圧V1等の印加に起因して、一方の電極11aから、測定対象11および他方の電極11bを経由して電流検出部4の入力部4aに至る経路に入力電流Iinが流れる。電流検出部4は、このようにして入力部4aに入力される入力電流Iinを電圧に変換して、出力部4bから検出電圧Viとして出力する。また、A/D変換部5は、検出電圧Viを波形データDiに変換して処理部7に出力する。処理部7は、この波形データDiに基づいて測定対象11に流れる電流(つまり、入力電流Iin)の電流値を算出しつつ、算出した入力電流Iinの電流値がゼロになるように、可変電源部3に対する制御を実行して調整電圧V2の電圧値V2を変更(調整)する。また、処理部7は、入力電流Iinの電流値がゼロになっているときの調整電圧V2の電圧値V2(調整済みの電圧値V2)を記憶する。これにより、第1調整処理が完了するため、処理部7は、固定電源部2および可変電源部3に対する制御を実行して、固定電圧V1および調整電圧V2の出力を停止させる。 In this case, in a state before the processing unit 7 controls the variable power supply unit 3 to change the voltage value V2 of the adjustment voltage V2 (state where the voltage value V2 is not adjusted), one of the measurement targets 11 is usually Due to the application of the fixed voltage V1 or the like to the electrode 11a, the input current Iin flows from one electrode 11a to the input unit 4a of the current detection unit 4 via the measurement target 11 and the other electrode 11b. .. The current detection unit 4 converts the input current Iin input to the input unit 4a in this way into a voltage, and outputs the voltage as the detection voltage Vi from the output unit 4b. Further, the A/D conversion unit 5 converts the detected voltage Vi into waveform data Di and outputs the waveform data Di to the processing unit 7. The processing unit 7 calculates the current value of the current (that is, the input current Iin) flowing through the measurement target 11 based on the waveform data Di, and the variable power supply so that the calculated current value of the input current Iin becomes zero. The control of the unit 3 is executed to change (adjust) the voltage value V2 of the adjustment voltage V2. In addition, the processing unit 7 stores the voltage value V2 (adjusted voltage value V2) of the adjusted voltage V2 when the current value of the input current Iin is zero. As a result, the first adjustment process is completed, and thus the processing unit 7 executes control of the fixed power supply unit 2 and the variable power supply unit 3 to stop the output of the fixed voltage V1 and the adjustment voltage V2.
 続いて、処理部7は、第1算出処理を実行する(ステップ53)。この第1算出処理では、処理部7は、基準電位Vr(既知の電位。本例では、内部グランドGの電位(ゼロボルト))、固定電圧V1の既知の電圧値V1、および第1調整処理で記憶した調整電圧V2についての調整済みの電圧値V2に基づいて、第1プローブ群の一方のプローブ(第1電流供給用プローブPLc1)と一方の電極11aとの間の接触抵抗R1と、第1プローブ群の他方のプローブ(第1電圧検出用プローブPLp1)と一方の電極11aとの間の接触抵抗R2との比A1(R1/R2)を算出する。 Subsequently, the processing unit 7 executes the first calculation process (step 53). In the first calculation process, the processing unit 7 performs the reference potential Vr (known potential; in this example, the potential of the internal ground G (zero volt)), the known voltage value V1 of the fixed voltage V1, and the first adjustment process. The contact resistance R1 between one probe (first current supply probe PLc1) of the first probe group and the one electrode 11a based on the stored adjusted voltage value V2 of the adjustment voltage V2, and the first The ratio A1 (R1/R2) of the contact resistance R2 between the other probe (first voltage detection probe PLp1) of the probe group and the one electrode 11a is calculated.
 第1調整処理において入力電流Iinの電流値がゼロになっているときの測定対象11の一方の電極11aの電圧をV0としたときには、第1プローブ群側の回路において、以下の式(1)が成り立つ。この式(1)は、測定対象11に流れる入力電流Iinがゼロのとき(つまり、測定対象11に電流が流れないとき)に成り立つ式であるため、測定対象11のインピーダンスの影響を受けない式である。
 R1/R2=(V1-V0)/(V0-V2) ・・・(1)
When the voltage of one electrode 11a of the measurement target 11 when the current value of the input current Iin is zero in the first adjustment process is V0, the following equation (1) is applied to the circuit on the first probe group side. Holds. This equation (1) is an equation that holds when the input current Iin flowing through the measurement target 11 is zero (that is, when no current flows through the measurement target 11), and therefore is not affected by the impedance of the measurement target 11. Is.
R1/R2=(V1-V0)/(V0-V2) (1)
 また、入力電流Iinの電流値がゼロということは、測定対象11の一方の電極11aは他方の電極11bの電位(つまり、既知の基準電位Vr(本例では内部グランドGの電位であるゼロボルト))と同電位となる。つまり、電圧V0は既知の基準電位Vr(本例では内部グランドGの電位であるゼロボルト)となる。したがって、処理部7は、既知の基準電位Vr(ゼロボルト)となるこの電圧V0と、既知の電圧値V1と、上記の調整済みの電圧値V2とを上記式(1)に代入することで、値(R1/R2)を比A1として算出して記憶する。 Further, that the current value of the input current Iin is zero means that one electrode 11a of the measurement target 11 has the potential of the other electrode 11b (that is, the known reference potential Vr (zero volt which is the potential of the internal ground G in this example)). ) And the same potential. That is, the voltage V0 becomes a known reference potential Vr (zero volt which is the potential of the internal ground G in this example). Therefore, the processing unit 7 substitutes the voltage V0, which is the known reference potential Vr (zero volt), the known voltage value V1, and the adjusted voltage value V2, into the above equation (1), The value (R1/R2) is calculated and stored as the ratio A1.
 次いで、処理部7は、第2接続切替処理を実行する(ステップ54)。この第2接続切替処理では、処理部7は、接続切替部6に対する制御を実行して、第1プローブ群の一方のプローブ(本例では、第1電流供給用プローブPLc1)が固定電源部2に接続され、第1プローブ群の他方のプローブ(本例では、第1電圧検出用プローブPLp1)が電流検出部4の入力部4a(および演算増幅器4cの反転入力端子)に接続され、かつ第2プローブ群の各プローブ(第2電流供給用プローブPLc2および第2電圧検出用プローブPLp2)が未接続(接続切替部6のいずれの第2ポートにも接続されない状態)となる第2接続状態(図5に示す等価回路で表される接続状態)に移行させる。 Next, the processing unit 7 executes the second connection switching process (step 54). In this second connection switching process, the processing unit 7 executes control of the connection switching unit 6 so that one probe (first current supply probe PLc1 in this example) of the first probe group is fixed to the fixed power supply unit 2. The other probe of the first probe group (in this example, the first voltage detection probe PLp1) is connected to the input section 4a of the current detection section 4 (and the inverting input terminal of the operational amplifier 4c), and A second connection state in which the respective probes (the second current supply probe PLc2 and the second voltage detection probe PLp2) of the two probe group are unconnected (a state in which they are not connected to any second port of the connection switching unit 6) ( The connection state represented by the equivalent circuit shown in FIG. 5) is entered.
 続いて、処理部7は、第1電流測定処理を実行する(ステップ55)。この第1電流測定処理では、処理部7は、第2接続状態において、固定電源部2に対して固定電圧V1を第1プローブ群の一方のプローブ(第1電流供給用プローブPLc1)へ出力させると共に、この一方のプローブ(第1電流供給用プローブPLc1)および第1プローブ群の他方のプローブ(第1電圧検出用プローブPLp1)に流れる電流(つまり、第1プローブ群に流れる電流)を入力電流Iinとして電流検出部4が出力する検出電圧Viに基づいて、第1プローブ群に流れる電流(入力電流Iin)を第1電流I1としてその電流値I1(=|Vi/Rf|)を測定して記憶する。これにより、第1電流測定処理が完了するため、処理部7は、固定電源部2に対する制御を実行して、固定電圧V1の出力を停止させる。本例では、理解の容易のため、第1電流I1とその電流値I1の双方について同じ符号を使用するものとする。 Subsequently, the processing unit 7 executes the first current measurement process (step 55). In the first current measurement process, the processing unit 7 causes the fixed power supply unit 2 to output the fixed voltage V1 to one probe (first current supply probe PLc1) of the first probe group in the second connection state. At the same time, a current (that is, a current flowing through the first probe group) flowing through the one probe (first current supply probe PLc1) and the other probe (first voltage detection probe PLp1) of the first probe group is input current. Based on the detection voltage Vi output from the current detection unit 4 as Iin, the current (input current Iin) flowing through the first probe group is set as the first current I1 and its current value I1 (=|Vi/Rf|) is measured. Remember. As a result, the first current measurement process is completed, so that the processing unit 7 controls the fixed power supply unit 2 to stop the output of the fixed voltage V1. In this example, for easy understanding, the same reference numeral is used for both the first current I1 and its current value I1.
 次いで、処理部7は、第2算出処理を実行する(ステップ56)。この第2算出処理では、処理部7は、固定電圧V1の既知の電圧値V1と第1電流測定処理で測定した第1電流I1の電流値I1とに基づいて、接触抵抗R1と接触抵抗R2の和B1(R1+R2)を算出する。 Next, the processing unit 7 executes the second calculation process (step 56). In the second calculation process, the processing unit 7 determines the contact resistance R1 and the contact resistance R2 based on the known voltage value V1 of the fixed voltage V1 and the current value I1 of the first current I1 measured in the first current measurement process. Calculate the sum B1 (R1+R2) of
 この場合、第1電流測定処理において電流値I1を測定している状態では、第1プローブ群側の回路において、以下の式(2)が成り立つ。この式(2)は、測定対象11を含まない回路で成り立つ式であるため、測定対象11のインピーダンスの影響を受けない式である。
 R1+R2=V1/I1 ・・・(2)
 したがって、処理部7は、既知の電圧値V1と上記の測定した電流値I1とを上記式(2)に代入することで、値(R1+R2)を和B1として算出して記憶する。
In this case, in the state where the current value I1 is being measured in the first current measurement process, the following equation (2) is established in the circuit on the first probe group side. Since this equation (2) is an equation that holds in a circuit that does not include the measurement target 11, it is a formula that is not affected by the impedance of the measurement target 11.
R1+R2=V1/I1 (2)
Therefore, the processing unit 7 substitutes the known voltage value V1 and the measured current value I1 into the above equation (2) to calculate and store the value (R1+R2) as the sum B1.
 続いて、処理部7は、第1抵抗算出処理を実行する(ステップ57)。この第1抵抗算出処理では、処理部7は、第1算出処理で算出した比A1、および第2算出処理で算出した和B1に基づいて、接触抵抗R1と接触抵抗R2とを個別に算出する。 Subsequently, the processing unit 7 executes the first resistance calculation process (step 57). In the first resistance calculation process, the processing unit 7 individually calculates the contact resistance R1 and the contact resistance R2 based on the ratio A1 calculated in the first calculation process and the sum B1 calculated in the second calculation process. ..
 この場合、比A1については、上記の式(1)に基づいて下記式(3)で表される。また、和B1については、上記の式(2)に基づいて下記式(4)で表される。また、この各式(3),(4)に基づいて、接触抵抗R1は下記の式(5)で表され、接触抵抗R2は下記の式(6)で表される。
 A1=R1/R2 ・・・(3)
 B1=R1+R2 ・・・(4)
 R1=A1×B1/(1+A1) ・・・(5)
 R2=B1/(1+A1) ・・・(6)
 したがって、処理部7は、算出した比A1および和B1を上記の式(5),(6)に代入することで、接触抵抗R1および接触抵抗R2(第1プローブ群を構成する各プローブPLc1,PLp1についての接触抵抗)を個別に算出して記憶する。これにより、第1接触抵抗測定処理50が完了する。なお、このようにして算出された各接触抵抗R1,R2は、上記したように測定対象11のインピーダンスの影響を受けない式(1),(2)に基づいて算出されたものであることから、測定対象11のインピーダンスの影響を受けることなく正確に算出された値である。
In this case, the ratio A1 is expressed by the following expression (3) based on the above expression (1). Further, the sum B1 is represented by the following equation (4) based on the above equation (2). Further, based on the equations (3) and (4), the contact resistance R1 is represented by the following equation (5), and the contact resistance R2 is represented by the following equation (6).
A1=R1/R2 (3)
B1=R1+R2 (4)
R1=A1×B1/(1+A1) (5)
R2=B1/(1+A1) (6)
Therefore, the processing unit 7 substitutes the calculated ratio A1 and the sum B1 into the above equations (5) and (6) to obtain the contact resistance R1 and the contact resistance R2 (each probe PLc1, which constitutes the first probe group). The contact resistance for PLp1) is individually calculated and stored. This completes the first contact resistance measurement process 50. The contact resistances R1 and R2 calculated in this way are calculated based on the equations (1) and (2) that are not affected by the impedance of the measurement target 11 as described above. , Is a value accurately calculated without being affected by the impedance of the measurement target 11.
 次いで、処理部7は、図3に示す第2接触抵抗測定処理60を実行する。この第2接触抵抗測定処理60では、処理部7は、第1プローブ群を構成する各プローブPLc1,PLp1に対して実行した上記のステップ51~ステップ57までの各処理(第1接続切替処理、第1調整処理、第1算出処理、第2接続切替処理、第1電流測定処理、第2算出処理および第1抵抗算出処理)と同等の後述するステップ61~ステップ67までの各処理(第3接続切替処理、第2調整処理、第3算出処理、第4接続切替処理、第2電流測定処理、第4算出処理および第2抵抗算出処理)を、第2プローブ群を構成する第2電流供給用プローブPLc2および第2電圧検出用プローブPLp2に対して実行して、各プローブPLc2,PLp2についての接触抵抗R3,R4を測定する。 Next, the processing unit 7 executes the second contact resistance measurement processing 60 shown in FIG. In the second contact resistance measurement process 60, the processing unit 7 executes the processes (steps 51 to 57) performed on the probes PLc1 and PLp1 that form the first probe group (first connection switching process, First adjustment processing, first calculation processing, second connection switching processing, first current measurement processing, second calculation processing and first resistance calculation processing), each processing from step 61 to step 67 (third step), which will be described later. Connection switching processing, second adjustment processing, third calculation processing, fourth connection switching processing, second current measurement processing, fourth calculation processing and second resistance calculation processing), and second current supply constituting the second probe group Is performed for the probe PLc2 and the second voltage detection probe PLp2 to measure the contact resistances R3, R4 of the probes PLc2, PLp2.
 具体的には、まず、処理部7は、第1接続切替処理に対応する第3接続切替処理を実行する(ステップ61)。この第3接続切替処理では、処理部7は、接続切替部6に対する制御を実行して、第2プローブ群の一方のプローブ(本例では、第2電流供給用プローブPLc2)が固定電源部2に接続され、第2プローブ群の他方のプローブ(本例では、第2電圧検出用プローブPLp2)が可変電源部3に接続され、第1プローブ群の一方のプローブ(本例では、第1電流供給用プローブPLc1)が未接続(接続切替部6のいずれの第2ポートにも接続されない状態)となり、かつ第1プローブ群の他方のプローブ(本例では、第1電圧検出用プローブPLp1)が電流検出部4の入力部4a(および演算増幅器4cの反転入力端子)に接続される第3接続状態(図6に示す等価回路で表される接続状態)に移行させる。 Specifically, first, the processing unit 7 executes a third connection switching process corresponding to the first connection switching process (step 61). In this third connection switching process, the processing unit 7 executes control of the connection switching unit 6 so that one probe (the second current supply probe PLc2 in this example) of the second probe group is fixed to the fixed power supply unit 2. And the other probe of the second probe group (in this example, the second voltage detection probe PLp2) is connected to the variable power supply unit 3, and one probe of the first probe group (in this example, the first current The supply probe PLc1) is unconnected (not connected to any of the second ports of the connection switching unit 6), and the other probe of the first probe group (in this example, the first voltage detection probe PLp1) is The third connection state (connection state represented by the equivalent circuit shown in FIG. 6) connected to the input section 4a of the current detection section 4 (and the inverting input terminal of the operational amplifier 4c) is shifted.
 次いで、処理部7は、第1調整処理に対応する第2調整処理を実行する(ステップ62)。この第2調整処理では、処理部7は、第3接続状態において、固定電源部2に対して固定電圧V1を接続切替部6を介して第2プローブ群の一方のプローブ(第2電流供給用プローブPLc2)へ出力させると共に、可変電源部3に対して調整電圧V2を接続切替部6を介して第2プローブ群の他方のプローブ(第2電圧検出用プローブPLp2)へ出力させる。 Next, the processing unit 7 executes the second adjustment process corresponding to the first adjustment process (step 62). In the second adjustment process, the processing unit 7 applies the fixed voltage V1 to the fixed power supply unit 2 through the connection switching unit 6 in the third connection state to the one probe (for supplying the second current) of the second probe group. In addition to outputting to the probe PLc2), the adjustment voltage V2 is output to the variable power supply unit 3 via the connection switching unit 6 to the other probe (second voltage detection probe PLp2) of the second probe group.
 この場合、第1調整処理のときと同様に、電圧値V2が未調整の状態では、測定対象11の他方の電極11bへの固定電圧V1等の印加に起因して、他方の電極11bから、測定対象11および一方の電極11aを経由して電流検出部4の入力部4aに至る経路に入力電流Iinが流れる。電流検出部4は、この入力電流Iinを電圧に変換して、出力部4bから検出電圧Viとして出力する。また、A/D変換部5は、検出電圧Viを波形データDiに変換して処理部7に出力する。処理部7は、この波形データDiに基づいて測定対象11に流れる電流(つまり、入力電流Iin)の電流値を算出しつつ、算出した入力電流Iinの電流値がゼロになるように、可変電源部3に対する制御を実行して調整電圧V2の電圧値V2を変更(調整)する。また、処理部7は、入力電流Iinの電流値がゼロになっているときの調整電圧V2の電圧値V2(調整済みの電圧値V2)を記憶する。これにより、第2調整処理が完了するため、処理部7は、固定電源部2および可変電源部3に対する制御を実行して、固定電圧V1および調整電圧V2の出力を停止させる。 In this case, as in the case of the first adjustment process, in the state where the voltage value V2 is not adjusted, due to the application of the fixed voltage V1 or the like to the other electrode 11b of the measurement target 11, the other electrode 11b causes The input current Iin flows in a path from the measurement target 11 and the one electrode 11a to the input unit 4a of the current detection unit 4. The current detection unit 4 converts this input current Iin into a voltage and outputs it as a detection voltage Vi from the output unit 4b. Further, the A/D conversion unit 5 converts the detected voltage Vi into waveform data Di and outputs the waveform data Di to the processing unit 7. The processing unit 7 calculates the current value of the current (that is, the input current Iin) flowing through the measurement target 11 based on the waveform data Di, and the variable power supply so that the calculated current value of the input current Iin becomes zero. The control of the unit 3 is executed to change (adjust) the voltage value V2 of the adjustment voltage V2. In addition, the processing unit 7 stores the voltage value V2 (adjusted voltage value V2) of the adjusted voltage V2 when the current value of the input current Iin is zero. As a result, the second adjustment process is completed, so that the processing unit 7 controls the fixed power supply unit 2 and the variable power supply unit 3 to stop the output of the fixed voltage V1 and the adjustment voltage V2.
 続いて、処理部7は、第1算出処理に対応する第3算出処理を実行する(ステップ63)。この第3算出処理では、処理部7は、基準電位Vr(既知の電位。内部グランドGの電位(ゼロボルト))、固定電圧V1の既知の電圧値V1、および第2調整処理で記憶した調整電圧V2についての調整済みの電圧値V2に基づいて、第2プローブ群の一方のプローブ(第2電流供給用プローブPLc2)と他方の電極11bとの間の接触抵抗R3と、第2プローブ群の他方のプローブ(第2電圧検出用プローブPLp2)と他方の電極11bとの間の接触抵抗R4との比A2(R3/R4)を算出する。 Subsequently, the processing unit 7 executes the third calculation process corresponding to the first calculation process (step 63). In the third calculation process, the processing unit 7 causes the reference potential Vr (known potential; potential of the internal ground G (zero volt)), the known voltage value V1 of the fixed voltage V1, and the adjustment voltage stored in the second adjustment process. Based on the adjusted voltage value V2 for V2, the contact resistance R3 between one probe (second current supply probe PLc2) of the second probe group and the other electrode 11b, and the other of the second probe group. The ratio A2 (R3/R4) between the probe (second voltage detection probe PLp2) and the contact resistance R4 between the other electrode 11b is calculated.
 第3調整処理において入力電流Iinの電流値がゼロになっているときの測定対象11の他方の電極11bの電圧をV0としたときには、第2プローブ群側の回路において、以下の式(7)が成り立つ。この式(7)は、測定対象11に流れる入力電流Iinがゼロのとき(つまり、測定対象11に電流が流れないとき)に成り立つ式であるため、測定対象11のインピーダンスの影響を受けない式である。
 R3/R4=(V1-V0)/(V0-V2) ・・・(7)
In the third adjustment process, when the voltage of the other electrode 11b of the measurement target 11 when the current value of the input current Iin is zero is V0, the following equation (7) in the circuit on the second probe group side is used. Holds. This expression (7) is an expression that holds when the input current Iin flowing through the measurement target 11 is zero (that is, when no current flows through the measurement target 11), and therefore is not affected by the impedance of the measurement target 11. Is.
R3/R4=(V1-V0)/(V0-V2) (7)
 また、入力電流Iinの電流値がゼロということは、測定対象11の他方の電極11bは一方の電極11aの電位(つまり、既知の基準電位Vr(本例では内部グランドGの電位であるゼロボルト))と同電位となる。つまり、電圧V0は既知の基準電位Vr(本例では内部グランドGの電位であるゼロボルト)となる。したがって、処理部7は、既知の基準電位Vr(ゼロボルト)となるこの電圧V0と、既知の電圧値V1と、上記の調整済みの電圧値V2とを上記式(1)に代入することで、値(R3/R4)を比A2として算出して記憶する。 Further, that the current value of the input current Iin is zero means that the other electrode 11b of the measurement target 11 has the potential of the one electrode 11a (that is, the known reference potential Vr (zero volt which is the potential of the internal ground G in this example)). ) And the same potential. That is, the voltage V0 becomes a known reference potential Vr (zero volt which is the potential of the internal ground G in this example). Therefore, the processing unit 7 substitutes the voltage V0, which is the known reference potential Vr (zero volt), the known voltage value V1, and the adjusted voltage value V2, into the above equation (1), The value (R3/R4) is calculated and stored as the ratio A2.
 次いで、処理部7は、第2接続切替処理に対応する第4接続切替処理を実行する(ステップ64)。この第4接続切替処理では、処理部7は、接続切替部6に対する制御を実行して、第2プローブ群の一方のプローブ(本例では、第2電流供給用プローブPLc2)が固定電源部2に接続され、第2プローブ群の他方のプローブ(本例では、第2電圧検出用プローブPLp2)が電流検出部4の入力部4a(および演算増幅器4cの反転入力端子)に接続され、かつ第1プローブ群の各プローブ(第1電流供給用プローブPLc1および第1電圧検出用プローブPLp1)が未接続(接続切替部6のいずれの第2ポートにも接続されない状態)となる第4接続状態(図7に示す等価回路で表される接続状態)に移行させる。 Next, the processing unit 7 executes the fourth connection switching process corresponding to the second connection switching process (step 64). In the fourth connection switching process, the processing unit 7 controls the connection switching unit 6 so that one of the probes in the second probe group (in this example, the second current supply probe PLc2) causes the fixed power supply unit 2 to operate. The other probe of the second probe group (in this example, the second voltage detection probe PLp2) is connected to the input section 4a of the current detection section 4 (and the inverting input terminal of the operational amplifier 4c), and The fourth connection state in which the respective probes (the first current supply probe PLc1 and the first voltage detection probe PLp1) of the one probe group are unconnected (a state in which they are not connected to any of the second ports of the connection switching unit 6) ( The connection state represented by the equivalent circuit shown in FIG. 7) is entered.
 続いて、処理部7は、第1電流測定処理に対応する第2電流測定処理を実行する(ステップ65)。この第2電流測定処理では、処理部7は、第4接続状態において、固定電源部2に対して固定電圧V1を第2プローブ群の一方のプローブ(第2電流供給用プローブPLc2)へ出力させると共に、この一方のプローブ(第2電流供給用プローブPLc2)および第2プローブ群の他方のプローブ(第2電圧検出用プローブPLp2)に流れる電流(つまり、第2プローブ群に流れる電流)を入力電流Iinとして電流検出部4が出力する検出電圧Viに基づいて、第2プローブ群に流れる電流(入力電流Iin)を第2電流I2)としてその電流値I2(=|Vi/Rf|)を測定して記憶する。これにより、第2電流測定処理が完了するため、処理部7は、固定電源部2に対する制御を実行して、固定電圧V1の出力を停止させる。 Subsequently, the processing unit 7 executes the second current measurement process corresponding to the first current measurement process (step 65). In the second current measurement process, the processing unit 7 causes the fixed power supply unit 2 to output the fixed voltage V1 to one probe (the second current supply probe PLc2) of the second probe group in the fourth connection state. At the same time, a current (that is, a current flowing through the second probe group) flowing through the one probe (the second current supply probe PLc2) and the other probe (the second voltage detection probe PLp2) of the second probe group is input current. Based on the detection voltage Vi output by the current detection unit 4 as Iin, the current value I2 (=|Vi/Rf|) is measured by setting the current (input current Iin) flowing through the second probe group as the second current I2). To remember. As a result, the second current measurement process is completed, so that the processing unit 7 controls the fixed power supply unit 2 to stop the output of the fixed voltage V1.
 次いで、処理部7は、第2算出処理に対応する第4算出処理を実行する(ステップ66)。この第4算出処理では、処理部7は、固定電圧V1の既知の電圧値V1と第2電流測定処理で測定した第2電流I2の電流値I2とに基づいて、接触抵抗R3と接触抵抗R4の和B2(R3+R4)を算出する。 Next, the processing unit 7 executes the fourth calculation process corresponding to the second calculation process (step 66). In the fourth calculation process, the processing unit 7 determines the contact resistance R3 and the contact resistance R4 based on the known voltage value V1 of the fixed voltage V1 and the current value I2 of the second current I2 measured in the second current measurement process. Calculate the sum B2 (R3+R4) of
 この場合、第2電流測定処理において電流値I2を測定している状態では、第2プローブ群側の回路において、以下の式(8)が成り立つ。この式(8)は、測定対象11を含まない回路で成り立つ式であるため、測定対象11のインピーダンスの影響を受けない式である。
 R3+R4=V1/I2 ・・・(8)
 したがって、処理部7は、既知の電圧値V1と上記の測定した電流値I2とを上記式(8)に代入することで、値(R3+R4)を和B2として算出して記憶する。
In this case, in the state where the current value I2 is being measured in the second current measurement process, the following equation (8) is established in the circuit on the second probe group side. Since this equation (8) is an equation that holds in a circuit that does not include the measurement target 11, it is a formula that is not affected by the impedance of the measurement target 11.
R3+R4=V1/I2 (8)
Therefore, the processing unit 7 substitutes the known voltage value V1 and the measured current value I2 into the above equation (8) to calculate and store the value (R3+R4) as the sum B2.
 続いて、処理部7は、第1抵抗算出処理に対応する第2抵抗算出処理を実行する(ステップ67)。この第2抵抗算出処理では、処理部7は、第3算出処理で算出した比A2、および第4算出処理で算出した和B2に基づいて、接触抵抗R3と接触抵抗R4とを個別に算出する。 Subsequently, the processing unit 7 executes the second resistance calculation process corresponding to the first resistance calculation process (step 67). In the second resistance calculation process, the processing unit 7 individually calculates the contact resistance R3 and the contact resistance R4 based on the ratio A2 calculated in the third calculation process and the sum B2 calculated in the fourth calculation process. ..
 この場合、比A2については、上記の式(7)に基づいて下記式(9)で表される。また、和B2については、上記の式(8)に基づいて下記式(10)で表される。また、この各式(9),(10)に基づいて、接触抵抗R4は下記の式(11)で表され、接触抵抗R3は下記の式(12)で表される。
 A2=R3/R4 ・・・(9)
 B2=R3+R4 ・・・(10)
 R3=A2×B2/(1+A2) ・・・(11)
 R4=B2/(1+A2) ・・・(12)
In this case, the ratio A2 is represented by the following equation (9) based on the above equation (7). Further, the sum B2 is expressed by the following expression (10) based on the above expression (8). Further, based on these equations (9) and (10), the contact resistance R4 is represented by the following equation (11), and the contact resistance R3 is represented by the following equation (12).
A2=R3/R4 (9)
B2=R3+R4 (10)
R3=A2×B2/(1+A2) (11)
R4=B2/(1+A2) (12)
 したがって、処理部7は、算出した比A2および和B2を上記の式(11),(12)に代入することで、接触抵抗R3および接触抵抗R4(第2プローブ群を構成する各プローブPLc2,PLp2についての接触抵抗)を個別に算出して記憶する。これにより、第2接触抵抗測定処理60が完了する。最後に、処理部7は、出力処理を実行して、測定した各接触抵抗R1~R4を出力部8に出力させる。これにより、各接触抵抗R1~R4の測定が完了する。なお、このようにして算出された各接触抵抗R3,R4は、上記したように測定対象11のインピーダンスの影響を受けない式(7),(8)に基づいて算出されたものであることから、測定対象11のインピーダンスの影響を受けることなく正確に算出された値である。 Therefore, the processing unit 7 substitutes the calculated ratio A2 and the sum B2 into the above equations (11) and (12) to obtain the contact resistance R3 and the contact resistance R4 (each probe PLc2 that constitutes the second probe group). The contact resistance for PLp2) is calculated and stored individually. This completes the second contact resistance measurement process 60. Finally, the processing unit 7 executes an output process to cause the output unit 8 to output the measured contact resistances R1 to R4. This completes the measurement of the contact resistances R1 to R4. The contact resistances R3 and R4 thus calculated are calculated based on the equations (7) and (8) that are not affected by the impedance of the measurement target 11 as described above. , Is a value accurately calculated without being affected by the impedance of the measurement target 11.
 このように、この接触抵抗測定装置1によれば、測定対象11の一方の電極11aに接触させられる第1プローブ群を構成する第1電流供給用プローブPLc1および第1電圧検出用プローブPLp1についての接触抵抗R1,R2を、測定対象11のインピーダンスの影響を受けることなく個別に正確に測定することができる。また、この接触抵抗測定装置1によれば、測定対象11の他方の電極11bに接触させられる第2プローブ群を構成する第2電流供給用プローブPLc2および第2電圧検出用プローブPLp2についての接触抵抗R3,R4についても、測定対象11のインピーダンスの影響を受けることなく個別に正確に測定することができる。また、この接触抵抗測定装置1が組み込まれたインピーダンス測定装置では、正確に測定された各接触抵抗R1~R4を利用して、測定対象11のインピーダンスを精度良く測定することが可能となる。 As described above, according to the contact resistance measuring apparatus 1, the first current supply probe PLc1 and the first voltage detection probe PLp1 that form the first probe group that are brought into contact with the one electrode 11a of the measurement target 11 The contact resistances R1 and R2 can be individually and accurately measured without being affected by the impedance of the measurement target 11. Further, according to the contact resistance measuring device 1, the contact resistances of the second current supply probe PLc2 and the second voltage detection probe PLp2 that form the second probe group that are brought into contact with the other electrode 11b of the measurement target 11. R3 and R4 can also be individually and accurately measured without being affected by the impedance of the measurement target 11. Further, in the impedance measuring device in which the contact resistance measuring device 1 is incorporated, the impedance of the measuring object 11 can be accurately measured by utilizing the accurately measured contact resistances R1 to R4.
 次に、第2実施の形態として、抵抗やインダクタンスなどの直流電流を流すことが可能な測定対象11に加えて、コンデンサなどの直流電流を流すことができずに交流電流のみを流し得る測定対象11のインピーダンス(抵抗値、インダクタンス値およびキャパシタンス値のうちの少なくとも1つ)を測定するインピーダンス測定装置に組み込まれて使用される接触抵抗測定装置1Aについて説明する。なお、上記した接触抵抗測定装置1の構成要素と同一の構成要素については同一の符号を付して重複する説明を省略する。 Next, as a second embodiment, in addition to the measurement target 11 capable of flowing a DC current such as resistance and inductance, a measurement target capable of flowing only an AC current without flowing a DC current such as a capacitor A contact resistance measuring device 1A used by being incorporated in an impedance measuring device that measures 11 impedances (at least one of a resistance value, an inductance value, and a capacitance value) will be described. The same components as those of the contact resistance measuring device 1 described above are designated by the same reference numerals, and duplicate description will be omitted.
 まず、接触抵抗測定装置としての接触抵抗測定装置1Aの構成について、図1を参照して説明する。 First, the configuration of the contact resistance measuring device 1A as the contact resistance measuring device will be described with reference to FIG.
 接触抵抗測定装置1Aは、図1に示すように、第1電流供給用プローブPLc1、第2電流供給用プローブPLc2、第1電圧検出用プローブPLp1、第2電圧検出用プローブPLp2、固定電源部2A、可変電源部3A、電流検出部4、A/D変換部5、接続切替部6、処理部7Aおよび出力部8を備えている。 As shown in FIG. 1, the contact resistance measuring device 1A includes a first current supply probe PLc1, a second current supply probe PLc2, a first voltage detection probe PLp1, a second voltage detection probe PLp2, and a fixed power supply unit 2A. The variable power supply unit 3A, the current detection unit 4, the A/D conversion unit 5, the connection switching unit 6, the processing unit 7A, and the output unit 8 are provided.
 固定電源部2Aは、基準電位Vr(既知の電位。本例では一例として、接触抵抗測定装置1の内部グランドGの電位(ゼロボルト))を基準とする固定電圧V1(振幅および周波数が一定かつ既知の交流電圧(正弦波電圧))を出力する。本例では、理解の容易のため、|V1|は、固定電圧V1の振幅を表し、arg(V1)は、固定電圧V1の位相を表すものとする。また、固定電源部2Aは、処理部7Aによって制御されて、固定電圧V1の出力、および固定電圧V1の出力の停止を実行する。また、固定電源部2Aは、固定電圧V1の位相状態を示す信号(例えば、現在の位相arg(V1)を示す信号)を処理部7Aに出力する。 The fixed power supply unit 2A has a fixed voltage V1 (amplitude and frequency are constant and known with reference to a reference potential Vr (known potential. In this example, the potential (zero volt) of the internal ground G of the contact resistance measuring device 1 as an example)). The AC voltage (sine wave voltage) of is output. In this example, for ease of understanding, |V1| represents the amplitude of the fixed voltage V1 and arg(V1) represents the phase of the fixed voltage V1. Further, the fixed power supply unit 2A is controlled by the processing unit 7A and executes the output of the fixed voltage V1 and the stop of the output of the fixed voltage V1. Further, the fixed power supply unit 2A outputs a signal indicating the phase state of the fixed voltage V1 (for example, a signal indicating the current phase arg(V1)) to the processing unit 7A.
 可変電源部3Aは、基準電位Vr(内部グランドGの電位)を基準とする調整電圧V2(設定された振幅で、かつ固定電圧V1と同じ周波数の交流電圧(正弦波電圧))を出力する。本例では、理解の容易のため、|V2|は、調整電圧V2の振幅を表し、arg(V2)は、調整電圧V2の位相を表すものとする。また、可変電源部3Aは、処理部7Aによって制御されて、調整電圧V2の出力、および調整電圧V2の出力の停止を実行すると共に、振幅|V2|および位相arg(V2)を変更する(具体的には、処理部7Aで指示された振幅|V2|および位相arg(V2)に変更する)。また、可変電源部3Aは、調整電圧V2の位相状態を示す信号(例えば、立ち上がりゼロクロス点や立ち下がりゼロクロス点のタイミングを示す信号や、現在の位相arg(V2)を示す信号)を処理部7Aに出力する。 The variable power supply unit 3A outputs an adjustment voltage V2 (AC voltage (sine wave voltage) having a set amplitude and the same frequency as the fixed voltage V1) with reference to the reference potential Vr (potential of the internal ground G). In this example, for easy understanding, |V2| represents the amplitude of the adjustment voltage V2, and arg(V2) represents the phase of the adjustment voltage V2. The variable power supply unit 3A is controlled by the processing unit 7A to stop the output of the adjustment voltage V2 and the output of the adjustment voltage V2, and change the amplitude |V2| and the phase arg(V2) (specifically Specifically, the amplitude is changed to the amplitude |V2| and the phase arg(V2) instructed by the processing unit 7A). The variable power supply unit 3A also processes a signal indicating the phase state of the adjustment voltage V2 (for example, a signal indicating the timing of the rising zero cross point or the falling zero cross point, or a signal indicating the current phase arg(V2)), as the processing unit 7A. Output to.
 処理部7Aは、図2に示す第1接触抵抗測定処理50A、および図3に示す第2接触抵抗測定処理60Aを実行する。 The processing unit 7A executes the first contact resistance measurement processing 50A shown in FIG. 2 and the second contact resistance measurement processing 60A shown in FIG.
 次に、接触抵抗測定装置1Aの動作について、図面を参照して説明する。なお、図1に示すように、接触抵抗測定装置1Aの接続切替部6には、第1電流供給用プローブPLc1、第1電圧検出用プローブPLp1、第2電流供給用プローブPLc2および第2電圧検出用プローブPLp2が接続され、また接触抵抗測定装置1Aには、これらのプローブPLc1,PLp1,PLc2,PLp2を介して測定対象11が接続されているものとする。 Next, the operation of the contact resistance measuring device 1A will be described with reference to the drawings. Note that, as shown in FIG. 1, the connection switching unit 6 of the contact resistance measuring device 1A includes a first current supply probe PLc1, a first voltage detection probe PLp1, a second current supply probe PLc2, and a second voltage detection. It is assumed that the probe PLp2 is connected to the contact resistance measuring device 1A, and the measurement object 11 is connected to the contact resistance measuring device 1A via these probes PLc1, PLp1, PLc2, and PLp2.
 この状態において、接触抵抗測定装置1Aでは、処理部7Aが、図2に示す第1接触抵抗測定処理50Aを実行する。この第1接触抵抗測定処理50Aでは、処理部7Aは、まず、第1接続切替処理を実行する(ステップ51)。この第1接続切替処理では、処理部7Aは、上記した第1接触抵抗測定処理50での第1接続切替処理のときと同様にして、接続切替部6に対する制御を実行することで、第1接続状態(図4に示す等価回路で表される接続状態)に移行させる。 In this state, in the contact resistance measuring device 1A, the processing unit 7A executes the first contact resistance measuring processing 50A shown in FIG. In the first contact resistance measurement processing 50A, the processing unit 7A first executes the first connection switching processing (step 51). In the first connection switching process, the processing unit 7A executes the control on the connection switching unit 6 in the same manner as the first connection switching process in the first contact resistance measurement process 50 described above. The state is changed to the connection state (connection state represented by the equivalent circuit shown in FIG. 4).
 次いで、処理部7Aは、第1調整処理を実行する(ステップ52A)。この第1調整処理では、処理部7Aは、第1接続状態において、まず、固定電源部2Aに対して固定電圧V1を接続切替部6を介して第1プローブ群の一方のプローブ(第1電流供給用プローブPLc1)へ出力させる。また、可変電源部3Aに対して調整電圧V2の出力を停止させる(つまり、調整電圧V2の振幅|V2|をゼロに移行させる)。 Next, the processing unit 7A executes the first adjustment processing (step 52A). In the first adjustment process, in the first connection state, the processing unit 7A first applies the fixed voltage V1 to the fixed power supply unit 2A via the connection switching unit 6 to the one probe (first current) of the first probe group. Output to the supply probe PLc1). Further, the output of the adjustment voltage V2 to the variable power supply unit 3A is stopped (that is, the amplitude |V2| of the adjustment voltage V2 is shifted to zero).
 この場合、測定対象11の一方の電極11aへの固定電圧V1の印加に起因して、一方の電極11aから、測定対象11および他方の電極11bを経由して電流検出部4の入力部4aに至る経路に入力電流(交流電流)Iinが流れる。電流検出部4は、このようにして入力部4aに入力される入力電流Iinを電圧に変換して、出力部4bから検出電圧Viとして出力する。また、A/D変換部5は、検出電圧Viを波形データDiに変換して処理部7Aに出力する。処理部7Aは、この波形データDiで示される検出電圧Viの信号波形(入力電流Iinの信号波形を示す信号波形でもある)と、固定電圧V1の既知の振幅|V1|と、固定電源部2Aから出力される固定電圧V1の位相状態を示す信号とに基づいて、固定電圧V1から入力電流Iinまでの伝達関数G1(ゲインを|G1|で表し、その位相変化をarg(G1)で表す)を測定して記憶する。 In this case, due to the application of the fixed voltage V1 to the one electrode 11a of the measurement target 11, the one electrode 11a passes through the measurement target 11 and the other electrode 11b to the input unit 4a of the current detection unit 4. An input current (alternating current) Iin flows through the path. The current detection unit 4 converts the input current Iin input to the input unit 4a in this way into a voltage, and outputs the voltage as the detection voltage Vi from the output unit 4b. Further, the A/D converter 5 converts the detected voltage Vi into waveform data Di and outputs the waveform data Di to the processor 7A. The processing unit 7A receives the signal waveform of the detection voltage Vi represented by the waveform data Di (also the signal waveform indicating the signal waveform of the input current Iin), the known amplitude |V1| of the fixed voltage V1, and the fixed power supply unit 2A. From the fixed voltage V1 to the input current Iin based on the signal indicating the phase state of the fixed voltage V1 output from the (a gain is represented by |G1| and its phase change is represented by arg(G1)). Measure and store.
 また、処理部7Aは、この第1調整処理では、第1接続状態において、次に、固定電源部2Aに対して固定電圧V1の出力を停止させる(つまり、固定電圧V1の振幅|V1|をゼロに移行させる)。また、可変電源部3Aに対して調整電圧V2の振幅|V2|をゼロでない既知の値に設定すると共に、この調整電圧V2を接続切替部6を介して第1プローブ群の他方のプローブ(第1電圧検出用プローブPLp1)へ出力させる。 In the first connection state, the processing unit 7A next stops the output of the fixed voltage V1 from the fixed power supply unit 2A in the first connection state (that is, the amplitude |V1| Move to zero). In addition, the amplitude |V2| of the adjustment voltage V2 is set to a known value other than zero for the variable power supply unit 3A, and the adjustment voltage V2 is set to the other probe (first probe) of the first probe group via the connection switching unit 6. 1 Output to the voltage detection probe PLp1).
 この場合、測定対象11の一方の電極11aへの調整電圧V2の印加に起因して、一方の電極11aから、測定対象11および他方の電極11bを経由して電流検出部4の入力部4aに至る経路に入力電流(交流電流)Iinが流れる。電流検出部4は、このようにして入力部4aに入力される入力電流Iinを電圧に変換して、出力部4bから検出電圧Viとして出力する。また、A/D変換部5は、検出電圧Viを波形データDiに変換して処理部7Aに出力する。処理部7Aは、この波形データDiで示される検出電圧Viの信号波形(入力電流Iinの信号波形を示す信号波形でもある)と、調整電圧V2の既知の振幅|V2|と、可変電源部3Aから出力される調整電圧V2の位相状態を示す信号とに基づいて、調整電圧V2Aから入力電流Iinまでの伝達関数G2(ゲインを|G2|で表し、その位相変化をarg(G2)で表す)を測定して記憶する。 In this case, due to the application of the adjustment voltage V2 to the one electrode 11a of the measurement target 11, the one electrode 11a is connected to the input unit 4a of the current detection unit 4 via the measurement target 11 and the other electrode 11b. An input current (alternating current) Iin flows through the path. The current detection unit 4 converts the input current Iin input to the input unit 4a in this way into a voltage, and outputs the voltage as the detection voltage Vi from the output unit 4b. Further, the A/D converter 5 converts the detected voltage Vi into waveform data Di and outputs the waveform data Di to the processor 7A. The processing section 7A receives the signal waveform of the detection voltage Vi (also the signal waveform showing the signal waveform of the input current Iin) represented by the waveform data Di, the known amplitude |V2| of the adjustment voltage V2, and the variable power supply section 3A. From the adjustment voltage V2A to the input current Iin (the gain is represented by |G2| and the phase change is represented by arg(G2)) based on the signal indicating the phase state of the adjustment voltage V2 output from Measure and store.
 また、処理部7Aは、この第1調整処理では、続いて、図4に示す第1接続状態のときに、固定電源部2Aからの固定電圧V1が第1電流供給用プローブPLc1を介して一方の電極11aに印加され、かつ可変電源部3Aからの調整電圧V2(設定された振幅|V2|で、かつ設定された位相arg(V2)での調整電圧V2)が第1電圧検出用プローブPLp1を介して一方の電極11aに印加されている状態において、測定対象11に流れる入力電流Iinをゼロにするための、この可変電源部3Aに対して設定すべき調整電圧V2についての振幅|V2|および位相arg(V2)を算出する。 In the first adjustment process, the processing unit 7A continues to operate the fixed voltage V1 from the fixed power supply unit 2A via the first current supply probe PLc1 in the first connection state shown in FIG. The adjustment voltage V2 (adjustment voltage V2 at the set amplitude |V2| and at the set phase arg(V2)) applied to the electrode 11a of the first power supply unit 3A is the first voltage detection probe PLp1. Amplitude |V2| for the adjustment voltage V2 to be set for the variable power supply unit 3A in order to reduce the input current Iin flowing to the measurement target 11 in the state of being applied to one electrode 11a via And the phase arg(V2) are calculated.
 この場合、ゲイン|G1|および位相変化arg(G1)を測定したときの上記の回路構成と、ゲイン|G2|および位相変化arg(G2)を測定したときの上記の回路構成とに重ね合わせの原理を適用すると、複素数で表されるゲインG1,G2、および同じく複素数で表される固定電圧V1および調整電圧V2について、以下の式(13)が成り立つ。
 G1×V1+G2×V2=0 ・・・(13)
 また、この式から、振幅|V2|は下記の式(14)で表され、位相arg(V2)は下記の式(15)で表される。
 |V2|=|V1|×|G1|/|G2| ・・・(14)
 arg(V2)=arg(V1)+arg(G1)-arg(G2)+180° ・・・(15)
In this case, the above circuit configuration when measuring the gain |G1| and the phase change arg(G1) and the above circuit configuration when measuring the gain |G2| and the phase change arg(G2) are superimposed. When the principle is applied, the following equation (13) is established for the gains G1 and G2 represented by complex numbers and the fixed voltage V1 and the adjustment voltage V2 also represented by complex numbers.
G1×V1+G2×V2=0 (13)
From this equation, the amplitude |V2| is represented by the following equation (14), and the phase arg(V2) is represented by the following equation (15).
|V2|=|V1|×|G1|/|G2|... (14)
arg(V2)=arg(V1)+arg(G1)−arg(G2)+180° (15)
 したがって、処理部7Aは、既知の振幅|V1|および固定電源部2Aから出力された固定電圧V1の位相状態を示す信号(位相arg(V1))と、測定したゲイン|G1|,|G2|および位相変化arg(G1),arg(G2)とを上記の式(14),(15)に代入することにより、固定電圧V1の印加状態において測定対象11に流れる入力電流Iinをゼロにするために可変電源部3Aに対して設定すべき調整電圧V2についての振幅|V2|および位相arg(V2)を算出して記憶する。これにより、第1調整処理が完了するため、処理部7Aは、固定電源部2Aおよび可変電源部3Aに対する制御を実行して、固定電圧V1および調整電圧V2の出力を停止させる。 Therefore, the processing unit 7A outputs a signal (phase arg(V1)) indicating the known amplitude |V1| and the phase state of the fixed voltage V1 output from the fixed power supply unit 2A, and the measured gains |G1| and |G2|. By substituting the phase changes arg(G1) and arg(G2) into the above equations (14) and (15), the input current Iin flowing through the measurement target 11 is reduced to zero when the fixed voltage V1 is applied. Then, the amplitude |V2| and the phase arg(V2) for the adjustment voltage V2 to be set for the variable power supply unit 3A are calculated and stored. As a result, the first adjustment process is completed, so that the processing unit 7A executes control on the fixed power supply unit 2A and the variable power supply unit 3A to stop the output of the fixed voltage V1 and the adjustment voltage V2.
 続いて、処理部7Aは、第1算出処理を実行する(ステップ53)。上記したように、固定電圧V1の印加状態において、第1調整処理で算出した振幅|V2|および位相arg(V2)の調整電圧V2がさらに測定対象11の一方の電極11aに印加された状態では、入力電流Iinがゼロになることから、上記した式(1)と同等の式(この式についても式(1)と表記する)が成り立つ。なお、この式(1)では、固定電圧V1は、振幅|V1|で、かつ位相arg(V1)の交流電圧であり、調整電圧V2は、振幅|V2|で、かつ位相arg(V2)の交流電圧である。このため、処理部7Aは、この第1算出処理において、上記した第1接触抵抗測定処理50での第1算出処理のときと同様にして、固定電圧V1についてのデータ(既知の振幅|V1|および位相arg(V1))と、調整電圧V2についてのデータ(振幅|V2|および位相arg(V2))と、既知の基準電位Vr(ゼロボルト)となるこの電圧V0とをこの式(1)に代入することで、値(R1/R2)を比A1として算出して記憶する。 Subsequently, the processing unit 7A executes the first calculation processing (step 53). As described above, when the fixed voltage V1 is applied and the adjusted voltage V2 of the amplitude |V2| and the phase arg(V2) calculated in the first adjustment process is further applied to the one electrode 11a of the measurement target 11, Since the input current Iin becomes zero, an equation equivalent to the above equation (1) (also referred to as equation (1)) holds. In this equation (1), the fixed voltage V1 is an AC voltage having an amplitude |V1| and a phase arg(V1), and the adjustment voltage V2 is an amplitude |V2| and a phase arg(V2). AC voltage. Therefore, in the first calculation process, the processing unit 7A performs data regarding the fixed voltage V1 (known amplitude |V1| in the same manner as in the first calculation process in the first contact resistance measurement process 50 described above). And the phase arg(V1)), the data (amplitude |V2| and the phase arg(V2)) about the adjustment voltage V2, and this voltage V0 that becomes the known reference potential Vr (zero volt) are given in this formula (1). By substituting, the value (R1/R2) is calculated and stored as the ratio A1.
 次いで、処理部7Aは、第2接続切替処理を実行する(ステップ54)。この第2接続切替処理では、処理部7Aは、上記した第1接触抵抗測定処理50での第2接続切替処理のときと同様にして、接続切替部6に対する制御を実行することで、第2接続状態(図5に示す等価回路で表される接続状態)に移行させる。 Next, the processing unit 7A executes the second connection switching process (step 54). In the second connection switching process, the processing unit 7A executes the control on the connection switching unit 6 in the same manner as the second connection switching process in the first contact resistance measurement process 50 described above. The state is changed to the connection state (connection state represented by the equivalent circuit shown in FIG. 5).
 続いて、処理部7Aは、第1電流測定処理を実行する(ステップ55)。この第1電流測定処理では、処理部7Aは、上記した第1接触抵抗測定処理50での第1電流測定処理のときと同様にして、第1プローブ群に流れる電流(入力電流Iin)を第1電流I1としてその電流値I1を測定して記憶する。 Subsequently, the processing unit 7A executes the first current measurement processing (step 55). In this first current measurement process, the processing unit 7A determines the current (input current Iin) flowing through the first probe group in the same manner as in the first current measurement process in the first contact resistance measurement process 50 described above. The current value I1 is measured and stored as one current I1.
 次いで、処理部7Aは、第2算出処理を実行する(ステップ56)。この第2算出処理では、処理部7Aは、上記した第1接触抵抗測定処理50での第2算出処理のときと同様にして、上記の式(2)を使用することで、値(R1+R2)を和B1として算出して記憶する。 Next, the processing unit 7A executes the second calculation process (step 56). In this second calculation process, the processing unit 7A uses the above equation (2) in the same manner as in the second calculation process of the first contact resistance measurement process 50 described above, and thereby the value (R1+R2) is obtained. Is calculated and stored as the sum B1.
 続いて、処理部7Aは、第1抵抗算出処理を実行する(ステップ57)。この第1抵抗算出処理では、処理部7Aは、上記した第1接触抵抗測定処理50での第1抵抗算出処理のときと同様にして、第1算出処理で算出した比A1、第2算出処理で算出した和B1、および上記の各式(5),(6)に基づいて、接触抵抗R1と接触抵抗R2とを個別に算出して記憶する。これにより、第1接触抵抗測定処理50Aが完了する。 Subsequently, the processing unit 7A executes the first resistance calculation processing (step 57). In this first resistance calculation process, the processing unit 7A performs the same calculation as in the above-described first resistance calculation process of the first contact resistance measurement process 50, that is, the ratio A1 calculated in the first calculation process and the second calculation process. The contact resistance R1 and the contact resistance R2 are individually calculated and stored based on the sum B1 calculated in step 1 and the above equations (5) and (6). This completes the first contact resistance measurement processing 50A.
 次いで、処理部7Aは、図2に示す第2接触抵抗測定処理60Aを実行する。この第2接触抵抗測定処理60Aでは、処理部7Aは、まず、第3接続切替処理を実行する(ステップ61)。この第3接続切替処理では、処理部7Aは、上記した第2接触抵抗測定処理60での第3接続切替処理のときと同様にして、接続切替部6に対する制御を実行することで、第3接続状態(図6に示す等価回路で表される接続状態)に移行させる。 Next, the processing unit 7A executes the second contact resistance measurement processing 60A shown in FIG. In the second contact resistance measurement processing 60A, the processing unit 7A first executes the third connection switching processing (step 61). In the third connection switching process, the processing unit 7A executes the control for the connection switching unit 6 in the same manner as the third connection switching process in the second contact resistance measurement process 60 described above, thereby performing the third connection switching process. The connection state (the connection state represented by the equivalent circuit shown in FIG. 6) is entered.
 次いで、処理部7Aは、第2調整処理を実行する(ステップ62A)。この第2調整処理では、処理部7Aは、第3接続状態において、まず、固定電源部2Aに対して固定電圧V1を接続切替部6を介して第2プローブ群の一方のプローブ(第2電流供給用プローブPLc2)へ出力させる。また、可変電源部3Aに対して調整電圧V2の出力を停止させる(つまり、調整電圧V2の振幅|V2|をゼロに移行させる)。 Next, the processing unit 7A executes the second adjustment processing (step 62A). In the second adjustment process, in the third connection state, the processing unit 7A first applies the fixed voltage V1 to the fixed power supply unit 2A via the connection switching unit 6 to the one probe (second current) of the second probe group. Output to the supply probe PLc2). Further, the output of the adjustment voltage V2 to the variable power supply unit 3A is stopped (that is, the amplitude |V2| of the adjustment voltage V2 is shifted to zero).
 この場合も、第1接触抵抗測定処理50Aでの第1調整処理のときと同様にして、測定対象11の他方の電極11bへの固定電圧V1の印加に起因して、他方の電極11bから、測定対象11および一方の電極11aを経由して電流検出部4の入力部4aに至る経路に入力電流(交流電流)Iinが流れる。電流検出部4は、この入力電流Iinを電圧に変換して、出力部4bから検出電圧Viとして出力する。また、A/D変換部5は、検出電圧Viを波形データDiに変換して処理部7Aに出力する。処理部7Aは、この波形データDiで示される検出電圧Viの信号波形(入力電流Iinの信号波形を示す信号波形でもある)と、固定電圧V1の既知の振幅|V1|と、固定電源部2Aから出力される固定電圧V1の位相状態を示す信号とに基づいて、固定電圧V1から入力電流Iinまでの伝達関数G3(ゲインを|G3|で表し、その位相変化をarg(G3)で表す)を測定して記憶する。 Also in this case, as in the case of the first adjustment process in the first contact resistance measurement process 50A, due to the application of the fixed voltage V1 to the other electrode 11b of the measurement target 11, the other electrode 11b causes An input current (alternating current) Iin flows in a path from the measurement target 11 and the one electrode 11a to the input unit 4a of the current detection unit 4. The current detection unit 4 converts this input current Iin into a voltage and outputs it as a detection voltage Vi from the output unit 4b. Further, the A/D converter 5 converts the detected voltage Vi into waveform data Di and outputs the waveform data Di to the processor 7A. The processing unit 7A receives the signal waveform of the detection voltage Vi represented by the waveform data Di (also the signal waveform indicating the signal waveform of the input current Iin), the known amplitude |V1| of the fixed voltage V1, and the fixed power supply unit 2A. From the fixed voltage V1 to the input current Iin based on the signal indicating the phase state of the fixed voltage V1 output from the (the gain is represented by |G3| and the phase change is represented by arg(G3)). Measure and store.
 また、処理部7Aは、この第2調整処理では、第3接続状態において、次に、固定電源部2Aに対して固定電圧V1の出力を停止させる(つまり、固定電圧V1の振幅|V1|をゼロに移行させる)。また、可変電源部3Aに対して調整電圧V2の振幅|V2|をゼロでない既知の値に設定すると共に、この調整電圧V2を接続切替部6を介して第2プローブ群の他方のプローブ(第2電圧検出用プローブPLp2)へ出力させる。 In the second adjustment process, the processing unit 7A next stops the output of the fixed voltage V1 from the fixed power supply unit 2A in the third connection state (that is, the amplitude |V1| Move to zero). Further, the amplitude |V2| of the adjustment voltage V2 is set to a known value other than zero with respect to the variable power source 3A, and the adjustment voltage V2 is set to the other probe (second probe) of the second probe group via the connection switching unit 6. 2 Output to the voltage detection probe PLp2).
 この場合、測定対象11の他方の電極11bへの調整電圧V2の印加に起因して、他方の電極11bから、測定対象11および一方の電極11aを経由して電流検出部4の入力部4aに至る経路に入力電流(交流電流)Iinが流れる。電流検出部4は、このようにして入力部4aに入力される入力電流Iinを電圧に変換して、出力部4bから検出電圧Viとして出力する。また、A/D変換部5は、検出電圧Viを波形データDiに変換して処理部7Aに出力する。処理部7Aは、この波形データDiで示される検出電圧Viの信号波形(入力電流Iinの信号波形を示す信号波形でもある)と、調整電圧V2の既知の振幅|V2|と、可変電源部3Aから出力される調整電圧V2の位相状態を示す信号とに基づいて、調整電圧V2から入力電流Iinまでの伝達関数G4(ゲインを|G4|で表し、その位相変化をarg(G4)で表す)を測定して記憶する。 In this case, due to the application of the adjustment voltage V2 to the other electrode 11b of the measurement target 11, from the other electrode 11b to the input unit 4a of the current detection unit 4 via the measurement target 11 and the one electrode 11a. An input current (alternating current) Iin flows through the path. The current detection unit 4 converts the input current Iin input to the input unit 4a in this way into a voltage, and outputs the voltage as the detection voltage Vi from the output unit 4b. Further, the A/D converter 5 converts the detected voltage Vi into waveform data Di and outputs the waveform data Di to the processor 7A. The processing section 7A receives the signal waveform of the detection voltage Vi (also the signal waveform showing the signal waveform of the input current Iin) represented by the waveform data Di, the known amplitude |V2| of the adjustment voltage V2, and the variable power supply section 3A. From the adjustment voltage V2 to the input current Iin (the gain is represented by |G4| and the phase change is represented by arg(G4)). Measure and store.
 また、処理部7Aは、この第2調整処理では、続いて、図6に示す第3接続状態のときに、固定電源部2Aからの固定電圧V1が第2電流供給用プローブPLc2を介して他方の電極11bに印加され、かつ可変電源部3Aからの調整電圧V2(設定された振幅|V2|で、かつ設定された位相arg(V2)での調整電圧V2)が第2電圧検出用プローブPLp2を介して他方の電極11bに印加されている状態において、測定対象11に流れる入力電流Iinをゼロにするための、この可変電源部3Aに対して設定すべき調整電圧V2についての振幅|V2|および位相arg(V2)を算出する。 Further, in the second adjustment process, the processing unit 7A continuously applies the fixed voltage V1 from the fixed power supply unit 2A to the other through the second current supply probe PLc2 in the third connection state shown in FIG. The adjustment voltage V2 (adjustment voltage V2 at the set amplitude |V2| and at the set phase arg(V2)) applied to the electrode 11b of the second power supply unit 3A is the second voltage detection probe PLp2. Amplitude |V2| for the adjustment voltage V2 to be set for this variable power supply unit 3A in order to make the input current Iin flowing through the measurement target 11 zero while being applied to the other electrode 11b via And the phase arg(V2) are calculated.
 この場合、ゲイン|G3|および位相変化arg(G3)を測定したときの上記の回路構成と、ゲイン|G4|および位相変化arg(G4)を測定したときの上記の回路構成とに重ね合わせの原理を適用すると、複素数で表されるゲインG3,G4、および同じく複素数で表される固定電圧V1および調整電圧V2について、以下の式(16)が成り立つ。
 G3×V1+G4×V2=0 ・・・(16)
 また、この式から、振幅|V2|は下記の式(17)で表され、位相arg(V2)は下記の式(18)で表される。
 |V2|=|V1|×|G3|/|G4| ・・・(17)
 arg(V2)=arg(V1)+arg(G3)-arg(G4)+180° ・・・(18)
In this case, the above circuit configuration when measuring the gain |G3| and the phase change arg(G3) and the above circuit configuration when measuring the gain |G4| and the phase change arg(G4) are superimposed. When the principle is applied, the following equation (16) is established for the gains G3 and G4 represented by complex numbers, and the fixed voltage V1 and the adjustment voltage V2 also represented by complex numbers.
G3×V1+G4×V2=0 (16)
From this equation, the amplitude |V2| is represented by the following equation (17), and the phase arg(V2) is represented by the following equation (18).
|V2|=|V1|×|G3|/|G4|... (17)
arg(V2)=arg(V1)+arg(G3)-arg(G4)+180° (18)
 したがって、処理部7Aは、既知の振幅|V1|および固定電源部2Aから出力された固定電圧V1の位相状態を示す信号(位相arg(V1))と、測定したゲイン|G3|,|G4|および位相変化arg(G3),arg(G4)とを上記の式(17),(18)に代入することにより、固定電圧V1の印加状態において測定対象11に流れる入力電流Iinをゼロにするために可変電源部3Aに対して設定すべき調整電圧V2についての振幅|V2|および位相arg(V2)を算出して記憶する。これにより、第2調整処理が完了するため、処理部7Aは、固定電源部2Aおよび可変電源部3Aに対する制御を実行して、固定電圧V1および調整電圧V2の出力を停止させる。 Therefore, the processing unit 7A outputs a signal (phase arg(V1)) indicating the known amplitude |V1| and the phase state of the fixed voltage V1 output from the fixed power supply unit 2A, and the measured gains |G3| and |G4|. By substituting the phase changes arg(G3) and arg(G4) into the above equations (17) and (18), the input current Iin flowing through the measurement target 11 is reduced to zero when the fixed voltage V1 is applied. Then, the amplitude |V2| and the phase arg(V2) for the adjustment voltage V2 to be set for the variable power supply unit 3A are calculated and stored. As a result, the second adjustment process is completed, so that the processing unit 7A controls the fixed power supply unit 2A and the variable power supply unit 3A to stop the output of the fixed voltage V1 and the adjustment voltage V2.
 続いて、処理部7Aは、第3算出処理を実行する(ステップ63)。上記したように、固定電圧V1の印加状態において、第2調整処理で算出した振幅|V2|および位相arg(V2)の調整電圧V2がさらに測定対象11の他方の電極11bに印加された状態では、入力電流Iinがゼロになることから、上記した式(7)が成り立つ。このため、処理部7Aは、この第3算出処理において、上記した第2接触抵抗測定処理60での第3算出処理のときと同様にして、固定電圧V1についてのデータ(既知の振幅|V1|および位相arg(V1))と、調整電圧V2についてのデータ(振幅|V2|および位相arg(V2))と、既知の基準電位Vr(ゼロボルト)となるこの電圧V0とを上記式(7)に代入することで、値(R3/R4)を比A2として算出して記憶する。 Subsequently, the processing unit 7A executes the third calculation processing (step 63). As described above, in the state where the fixed voltage V1 is applied, the adjustment voltage V2 of the amplitude |V2| and the phase arg(V2) calculated in the second adjustment process is further applied to the other electrode 11b of the measurement target 11. Since the input current Iin becomes zero, the above-mentioned formula (7) is established. Therefore, in the third calculation process, the processing unit 7A performs the same data as the fixed voltage V1 (known amplitude |V1| in the same manner as in the third calculation process of the second contact resistance measurement process 60 described above). And the phase arg(V1)), the data (amplitude |V2| and the phase arg(V2)) about the adjustment voltage V2, and this voltage V0 that becomes the known reference potential Vr (zero volt) are given in the above equation (7). By substituting, the value (R3/R4) is calculated and stored as the ratio A2.
 次いで、処理部7Aは、第4接続切替処理を実行する(ステップ64)。この第4接続切替処理では、処理部7Aは、上記した第2接触抵抗測定処理60での第4接続切替処理のときと同様にして、接続切替部6に対する制御を実行することで、第4接続状態(図7に示す等価回路で表される接続状態)に移行させる。 Next, the processing unit 7A executes the fourth connection switching process (step 64). In the fourth connection switching process, the processing unit 7A executes the control for the connection switching unit 6 in the same manner as the fourth connection switching process in the second contact resistance measurement process 60 described above. The state is changed to the connection state (connection state represented by the equivalent circuit shown in FIG. 7).
 続いて、処理部7Aは、第2電流測定処理を実行する(ステップ65)。この第2電流測定処理では、処理部7Aは、上記した第2接触抵抗測定処理60での第2電流測定処理のときと同様にして、第2プローブ群に流れる電流(入力電流Iin)を第2電流I2としてその電流値I2を測定して記憶する。 Subsequently, the processing unit 7A executes the second current measurement processing (step 65). In the second current measurement process, the processing unit 7A determines the current (input current Iin) flowing through the second probe group in the same manner as the second current measurement process in the second contact resistance measurement process 60 described above. The current value I2 is measured and stored as the two currents I2.
 次いで、処理部7Aは、第4算出処理を実行する(ステップ66)。この第4算出処理では、処理部7Aは、上記した第2接触抵抗測定処理60での第4算出処理のときと同様にして、上記の式(8)を使用することで、値(R3+R4)を和B2として算出して記憶する。 Next, the processing unit 7A executes the fourth calculation process (step 66). In the fourth calculation process, the processing unit 7A uses the above equation (8) in the same manner as in the fourth calculation process in the second contact resistance measurement process 60 described above, and thereby the value (R3+R4) is obtained. Is calculated as the sum B2 and stored.
 続いて、処理部7Aは、第2抵抗算出処理を実行する(ステップ67)。この第2抵抗算出処理では、処理部7Aは、上記した第2接触抵抗測定処理60での第2抵抗算出処理のときと同様にして、第3算出処理で算出した比A2、第4算出処理で算出した和B2、および上記の各式(11),(12)に基づいて、接触抵抗R3と接触抵抗R4とを個別に算出して記憶する。これにより、第2接触抵抗測定処理60Aが完了する。最後に、処理部7Aは、出力処理を実行して、測定した各接触抵抗R1~R4を出力部8に出力させる。これにより、各接触抵抗R1~R4の測定が完了する。 Subsequently, the processing unit 7A executes the second resistance calculation process (step 67). In the second resistance calculation process, the processing unit 7A performs the same calculation as the second resistance calculation process in the second contact resistance measurement process 60 described above, and the ratio A2 calculated in the third calculation process and the fourth calculation process. The contact resistance R3 and the contact resistance R4 are individually calculated and stored based on the sum B2 calculated in step S1 and the above equations (11) and (12). This completes the second contact resistance measurement processing 60A. Finally, the processing unit 7A executes an output process and causes the output unit 8 to output the measured contact resistances R1 to R4. This completes the measurement of the contact resistances R1 to R4.
 このように、この接触抵抗測定装置1Aによれば、抵抗やインダクタンスなどの直流電流を流すことが可能な測定対象11だけでなく、コンデンサなどの直流電流を流すことができずに交流電流のみを流し得る測定対象11についても、測定対象11の一方の電極11aに接触させられる第1プローブ群を構成する第1電流供給用プローブPLc1および第1電圧検出用プローブPLp1についての接触抵抗R1,R2を、測定対象11のインピーダンスの影響を受けることなく個別に正確に測定することができる。また、この接触抵抗測定装置1Aによれば、測定対象11の他方の電極11bに接触させられる第2プローブ群を構成する第2電流供給用プローブPLc2および第2電圧検出用プローブPLp2についての接触抵抗R3,R4についても、測定対象11のインピーダンスの影響を受けることなく個別に正確に測定することができる。また、この接触抵抗測定装置1Aが組み込まれたインピーダンス測定装置では、正確に測定された各接触抵抗R1~R4を利用して、測定対象11のインピーダンスを精度良く測定することが可能となる。 As described above, according to the contact resistance measuring apparatus 1A, not only the measurement target 11 such as resistance and inductance capable of flowing a direct current but also the alternating current not capable of flowing a direct current such as a capacitor is used. Also for the measurement target 11 that can flow, the contact resistances R1 and R2 for the first current supply probe PLc1 and the first voltage detection probe PLp1 that form the first probe group that are brought into contact with one electrode 11a of the measurement target 11 are set. The individual measurement can be performed accurately without being affected by the impedance of the measurement target 11. Further, according to the contact resistance measuring device 1A, the contact resistances of the second current supply probe PLc2 and the second voltage detection probe PLp2 that form the second probe group that are brought into contact with the other electrode 11b of the measurement target 11. R3 and R4 can also be individually and accurately measured without being affected by the impedance of the measurement target 11. Further, in the impedance measuring device incorporating the contact resistance measuring device 1A, the impedance of the measuring object 11 can be accurately measured by utilizing the accurately measured contact resistances R1 to R4.
 なお、上記の接触抵抗測定装置1,1Aでは、処理部7(7A)が、第1接触抵抗測定処理50(50A)および第2接触抵抗測定処理60(60A)の双方を実行して、第1プローブ群についての測定対象11の一方の電極11aとの間の接触抵抗R1,R2、および第2プローブ群についての測定対象11の他方の電極11bとの間の接触抵抗R3,R4を測定する構成を採用しているが、第1接触抵抗測定処理50(50A)および第2接触抵抗測定処理60(60A)のうちのいずれか一方のみを実行して、第1プローブ群および第2プローブ群のうちの一方のプローブ群を構成する一対のプローブについての接触抵抗のみ(接触抵抗R1,R2、および接触抵抗R3,R4のうちの一方のみ)を測定する構成であってもよい。 In the above contact resistance measuring devices 1 and 1A, the processing unit 7 (7A) executes both the first contact resistance measuring process 50 (50A) and the second contact resistance measuring process 60 (60A), and The contact resistances R1 and R2 between one electrode 11a of the measurement target 11 for one probe group and the contact resistances R3 and R4 between the other electrode 11b of the measurement target 11 for the second probe group are measured. Although the configuration is adopted, only one of the first contact resistance measurement processing 50 (50A) and the second contact resistance measurement processing 60 (60A) is executed to execute the first probe group and the second probe group. Only one of the contact resistances (only one of the contact resistances R1 and R2 and the contact resistances R3 and R4) of the pair of probes that configure one of the probe groups may be measured.
 本願発明によれば、測定対象の一方の電極に接触させられる第1プローブ群を構成する一対のプローブ、および測定対象の他方の電極に接触させられる第2プローブ群を構成する一対のプローブのうちの第1プローブ群を構成する一対のプローブについての第1接触抵抗および第2接触抵抗を、測定対象のインピーダンスの影響を受けることなく個別に正確に測定することができる。したがって、本発明は、測定対象の一方の電極に接触させられる一対のプローブ(第1電流供給用プローブおよび第1電圧検出用プローブ)のそれぞれの接触抵抗、および測定対象の他方の電極に接触させられる他の一対のプローブ(第2電流供給用プローブおよび第2電圧検出用プローブ)のそれぞれの接触抵抗を個別に測定する接触抵抗測定装置に広く適用することができる。 According to the invention of the present application, among the pair of probes forming the first probe group that is brought into contact with one electrode of the measurement target, and among the pair of probes forming the second probe group that is brought into contact with the other electrode of the measurement target The first contact resistance and the second contact resistance of the pair of probes forming the first probe group can be individually and accurately measured without being affected by the impedance of the measurement target. Therefore, according to the present invention, the contact resistance of each of the pair of probes (the first current supply probe and the first voltage detection probe) brought into contact with one electrode of the measurement target, and the other electrode of the measurement target are brought into contact. It can be widely applied to a contact resistance measuring device that individually measures the contact resistance of each of the other pair of probes (second current supply probe and second voltage detection probe).
     1,1A 接触抵抗測定装置
     2,2A 固定電源部
     3,3A 可変電源部
     4 電流検出部
     6 接続切替部
     7,7A 処理部
    11 測定対象
   11a 一方の電極
   11b 他方の電極
   Iin 入力電流
  PLc1 第1電流供給用プローブ
  PLc2 第2電流供給用プローブ
  PLp1 第1電圧検出用プローブ
  PLp2 第2電圧検出用プローブ
    R1 第1接触抵抗
    R2 第2接触抵抗
    R3 第3接触抵抗
    R4 第4接触抵抗
    V1 固定電圧
    V2 調整電圧
    Vi 検出電圧
    Vr 基準電位(内部グランドGの電位)
1,1A Contact resistance measuring device 2,2A Fixed power supply part 3,3A Variable power supply part 4 Current detection part 6 Connection switching part 7,7A Processing part 11 Measurement target 11a One electrode 11b Other electrode Iin Input current PLc1 First current Supply probe PLc2 Second current supply probe PLp1 First voltage detection probe PLp2 Second voltage detection probe R1 First contact resistance R2 Second contact resistance R3 Third contact resistance R4 Fourth contact resistance V1 Fixed voltage V2 Adjustment voltage Vi detection voltage Vr reference potential (potential of internal ground G)

Claims (2)

  1.  測定対象の一方の電極に接触させられる第1電流供給用プローブおよび第1電圧検出用プローブで構成される第1プローブ群についての当該一方の電極との間の接触抵抗、並びに当該測定対象の他方の電極に接触させられる第2電流供給用プローブおよび第2電圧検出用プローブで構成される第2プローブ群についての当該他方の電極との間の接触抵抗のうちの少なくとも1つのプローブ群についての前記接触抵抗を個別に測定する接触抵抗測定装置であって、
     基準電位を基準とする固定電圧を出力する固定電源部と、
     前記基準電位を基準として出力する調整電圧を可変可能な可変電源部と、
     非反転入力端子が前記基準電位に規定されると共に反転入力端子と出力端子との間に帰還抵抗が接続された演算増幅器を有して構成されて、当該反転入力端子に供給される入力電流を電圧に変換して検出電圧として当該出力端子から出力する電流検出部と、
     前記固定電源部、前記可変電源部および前記電流検出部と4つの前記プローブとの間に配設された接続切替部と、
     処理部とを備え、
     前記処理部は、
     前記接続切替部に対する制御を実行して、前記第1プローブ群の一方のプローブが前記固定電源部に接続され、前記第1プローブ群の他方のプローブが前記可変電源部に接続され、前記第2プローブ群の一方のプローブが未接続となり、かつ前記第2プローブ群の他方のプローブが前記演算増幅器の前記反転入力端子に接続される第1接続状態に移行させる第1接続切替処理と、
     前記第1接続状態において、前記固定電源部に対して前記固定電圧を前記第1プローブ群の前記一方のプローブへ出力させると共に、前記可変電源部に対して前記調整電圧を前記第1プローブ群の前記他方のプローブへ出力させ、かつ前記測定対象に流れる電流を前記入力電流として前記電流検出部が出力する前記検出電圧に基づいて、当該測定対象に流れる当該電流がゼロになるように前記可変電源部に対する制御を実行して前記調整電圧を変更する第1調整処理と、
     前記基準電位と前記固定電圧と前記測定対象に流れる前記電流がゼロのときの前記第1調整処理での前記調整電圧とに基づいて、前記第1プローブ群の前記一方のプローブと前記一方の電極との間の第1接触抵抗と、前記第1プローブ群の前記他方のプローブと前記一方の電極との間の第2接触抵抗との比を算出する第1算出処理と、
     前記接続切替部に対する制御を実行して、前記第1プローブ群の前記一方のプローブが前記固定電源部に接続され、前記第1プローブ群の前記他方のプローブが前記演算増幅器の前記反転入力端子に接続され、かつ前記第2プローブ群の各前記プローブが未接続となる第2接続状態に移行させる第2接続切替処理と、
     前記第2接続状態において、前記固定電源部に対して前記固定電圧を前記第1プローブ群の前記一方のプローブへ出力させると共に、当該第1プローブ群に流れる電流を前記入力電流として前記電流検出部が出力する前記検出電圧に基づいて、当該第1プローブ群に流れる電流を第1電流として測定する第1電流測定処理と、
     前記固定電圧と前記第1電流とに基づいて、前記第1接触抵抗と前記第2接触抵抗の和を算出する第2算出処理と、
     前記第1算出処理で算出した前記比および前記第2算出処理で算出した前記和に基づいて、前記第1接触抵抗と前記第2接触抵抗とを個別に算出する第1抵抗算出処理とを実行する接触抵抗測定装置。
    Contact resistance between the one electrode of the first current supply probe and the first voltage detection probe that are brought into contact with one electrode of the measurement target, and the other resistance of the measurement target Of at least one probe group of the contact resistance with the other electrode of the second probe group composed of the second current supply probe and the second voltage detection probe brought into contact with the other electrode. A contact resistance measuring device for individually measuring contact resistance,
    A fixed power supply unit that outputs a fixed voltage based on the reference potential,
    A variable power supply unit capable of varying the adjustment voltage output with the reference potential as a reference,
    A non-inverting input terminal is regulated to the reference potential, and a feedback resistor is connected between the inverting input terminal and the output terminal to form an operational amplifier, and the input current supplied to the inverting input terminal is A current detection unit that converts the voltage and outputs it as a detection voltage from the output terminal,
    A connection switching unit arranged between the fixed power supply unit, the variable power supply unit, the current detection unit and the four probes;
    And a processing unit,
    The processing unit is
    By executing control of the connection switching unit, one probe of the first probe group is connected to the fixed power supply unit, the other probe of the first probe group is connected to the variable power supply unit, and the second probe is connected to the variable power supply unit. A first connection switching process in which one probe of the probe group becomes unconnected, and the other probe of the second probe group transitions to a first connection state in which the other probe is connected to the inverting input terminal of the operational amplifier;
    In the first connection state, the fixed power supply unit outputs the fixed voltage to the one probe of the first probe group, and the variable power supply unit outputs the adjustment voltage of the first probe group. Based on the detection voltage output to the other probe and output by the current detection unit with the current flowing through the measurement target as the input current, the variable power supply so that the current flowing through the measurement target becomes zero. A first adjustment process for changing the adjustment voltage by executing control on the control section;
    Based on the reference potential, the fixed voltage, and the adjustment voltage in the first adjustment process when the current flowing through the measurement target is zero, the one probe and the one electrode of the first probe group. A first contact resistance between the first probe group and the second contact resistance between the other probe and the one electrode of the first probe group;
    By executing control of the connection switching unit, the one probe of the first probe group is connected to the fixed power supply unit, and the other probe of the first probe group is connected to the inverting input terminal of the operational amplifier. A second connection switching process of shifting to a second connection state in which the probes of the second probe group that are connected are unconnected;
    In the second connection state, the fixed power source unit outputs the fixed voltage to the one probe of the first probe group, and the current flowing in the first probe group is used as the input current to detect the current detection unit. A first current measurement process of measuring a current flowing through the first probe group as a first current based on the detected voltage output by
    A second calculation process for calculating the sum of the first contact resistance and the second contact resistance based on the fixed voltage and the first current;
    A first resistance calculation process for individually calculating the first contact resistance and the second contact resistance is executed based on the ratio calculated in the first calculation process and the sum calculated in the second calculation process. Contact resistance measuring device.
  2.  前記処理部は、
     前記接続切替部に対する制御を実行して、前記第2プローブ群の前記一方のプローブが前記固定電源部に接続され、前記第2プローブ群の前記他方のプローブが前記可変電源部に接続され、前記第1プローブ群の前記一方のプローブが未接続となり、かつ前記第1プローブ群の前記他方のプローブが前記演算増幅器の前記反転入力端子に接続される第3接続状態に移行させる第3接続切替処理と、
     前記第3接続状態において、前記固定電源部に対して前記固定電圧を前記第2プローブ群の前記一方のプローブへ出力させると共に、前記可変電源部に対して前記調整電圧を前記第2プローブ群の前記他方のプローブへ出力させ、かつ前記測定対象に流れる電流を前記入力電流として前記電流検出部が出力する前記検出電圧に基づいて、当該測定対象に流れる当該電流がゼロになるように前記可変電源部に対する制御を実行して前記調整電圧を変更する第2調整処理と、
     前記基準電位と前記固定電圧と前記測定対象に流れる前記電流がゼロのときの前記第2調整処理での前記調整電圧とに基づいて、前記第2プローブ群の前記一方のプローブと前記他方の電極との間の第3接触抵抗と、前記第2プローブ群の前記他方のプローブと前記他方の電極との間の第4接触抵抗との比を算出する第3算出処理と、
     前記接続切替部に対する制御を実行して、前記第2プローブ群の前記一方のプローブが前記固定電源部に接続され、前記第2プローブ群の前記他方のプローブが前記演算増幅器の前記反転入力端子に接続され、かつ前記第1プローブ群の各前記プローブが未接続となる第4接続状態に移行させる第4接続切替処理と、
     前記第4接続状態において、前記固定電源部に対して前記固定電圧を前記第2プローブ群の前記一方のプローブへ出力させると共に、当該第2プローブ群に流れる電流を前記入力電流として前記電流検出部が出力する前記検出電圧に基づいて、当該第2プローブ群に流れる電流を第2電流として測定する第2電流測定処理と、
     前記固定電圧と前記第2電流とに基づいて、前記第3接触抵抗と前記第4接触抵抗の和を算出する第4算出処理と、
     前記第3算出処理で算出した前記比および前記第4算出処理で算出した前記和に基づいて、前記第3接触抵抗と前記第4接触抵抗とを個別に算出する第2抵抗算出処理とを実行する請求項1記載の接触抵抗測定装置。
    The processing unit is
    The control of the connection switching unit is executed, the one probe of the second probe group is connected to the fixed power supply unit, the other probe of the second probe group is connected to the variable power supply unit, and A third connection switching process in which the one probe of the first probe group is unconnected, and the other probe of the first probe group is connected to the inverting input terminal of the operational amplifier When,
    In the third connection state, the fixed power supply unit outputs the fixed voltage to the one probe of the second probe group, and the variable power supply unit outputs the adjustment voltage of the second probe group. Based on the detection voltage output to the other probe and output by the current detection unit with the current flowing through the measurement target as the input current, the variable power supply so that the current flowing through the measurement target becomes zero. A second adjustment process of changing the adjustment voltage by executing control of the control section;
    The one probe and the other electrode of the second probe group based on the reference potential, the fixed voltage, and the adjustment voltage in the second adjustment process when the current flowing through the measurement target is zero. A third contact resistance between the second probe group and the fourth contact resistance between the other probe of the second probe group and the other electrode of the second probe group;
    By controlling the connection switching unit, the one probe of the second probe group is connected to the fixed power supply unit, and the other probe of the second probe group is connected to the inverting input terminal of the operational amplifier. A fourth connection switching process of shifting to a fourth connection state in which each probe of the first probe group is connected and is unconnected;
    In the fourth connection state, the fixed power supply unit outputs the fixed voltage to the one probe of the second probe group, and the current detection unit uses the current flowing in the second probe group as the input current. A second current measurement process of measuring a current flowing through the second probe group as a second current based on the detection voltage output by
    A fourth calculation process for calculating the sum of the third contact resistance and the fourth contact resistance based on the fixed voltage and the second current;
    A second resistance calculation process for individually calculating the third contact resistance and the fourth contact resistance is executed based on the ratio calculated in the third calculation process and the sum calculated in the fourth calculation process. The contact resistance measuring device according to claim 1.
PCT/JP2019/049732 2018-12-26 2019-12-19 Contact resistance measurement device WO2020137770A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-243235 2018-12-26
JP2018243235A JP7163174B2 (en) 2018-12-26 2018-12-26 Contact resistance measuring device

Publications (1)

Publication Number Publication Date
WO2020137770A1 true WO2020137770A1 (en) 2020-07-02

Family

ID=71128621

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/049732 WO2020137770A1 (en) 2018-12-26 2019-12-19 Contact resistance measurement device

Country Status (2)

Country Link
JP (1) JP7163174B2 (en)
WO (1) WO2020137770A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0421877U (en) * 1990-06-07 1992-02-24
US7030633B1 (en) * 2004-12-03 2006-04-18 Chunong Qiu Four-terminal methods for resistivity measurement of semiconducting materials
JP2007155567A (en) * 2005-12-07 2007-06-21 Hitachi Computer Peripherals Co Ltd Method and apparatus for measuring electric resistance
US20080061803A1 (en) * 2006-08-22 2008-03-13 Formfactor, Inc. Method and apparatus for making a determination relating to resistance of probes
JP2011247833A (en) * 2010-05-28 2011-12-08 Npc Inc Semiconductor characteristic measuring instrument with contact resistance measuring circuit, and probe holding printed board with contact resistance measuring circuit
JP2017223580A (en) * 2016-06-16 2017-12-21 トヨタ自動車株式会社 Charging/discharging device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0421877U (en) * 1990-06-07 1992-02-24
US7030633B1 (en) * 2004-12-03 2006-04-18 Chunong Qiu Four-terminal methods for resistivity measurement of semiconducting materials
JP2007155567A (en) * 2005-12-07 2007-06-21 Hitachi Computer Peripherals Co Ltd Method and apparatus for measuring electric resistance
US20080061803A1 (en) * 2006-08-22 2008-03-13 Formfactor, Inc. Method and apparatus for making a determination relating to resistance of probes
JP2011247833A (en) * 2010-05-28 2011-12-08 Npc Inc Semiconductor characteristic measuring instrument with contact resistance measuring circuit, and probe holding printed board with contact resistance measuring circuit
JP2017223580A (en) * 2016-06-16 2017-12-21 トヨタ自動車株式会社 Charging/discharging device

Also Published As

Publication number Publication date
JP7163174B2 (en) 2022-10-31
JP2020106314A (en) 2020-07-09

Similar Documents

Publication Publication Date Title
US8988063B2 (en) System and method for current measurement in the presence of high common mode voltages
JP2003028900A (en) Non-contact voltage measurement method and apparatus
WO2016059472A2 (en) Control circuit for use with a sensor, and measurement system including such a control circuit
WO2020137770A1 (en) Contact resistance measurement device
JP5512368B2 (en) Inspection apparatus and inspection method
CA2376732A1 (en) A current-comparator-based four-terminal resistance bridge for power frequencies
RU2586084C1 (en) Multi-channel converter of resistance of resistive sensors into voltage
JP4732292B2 (en) Input impedance measuring apparatus and method
JP4208560B2 (en) Impedance measuring device
JPH1172529A (en) Insulation resistance measurement instrument for capacitor
JP4040908B2 (en) Impedance measuring device
JP2992599B2 (en) Bridge measuring device
RU2627123C1 (en) Inverting scaling amplifier with frequency error compensation
JP2002139528A (en) Impedance measuring device
JP2001333891A (en) Equipment for measuring biological impedance
JP2007212192A (en) Current measuring circuit and testing apparatus using same
WO2022270104A1 (en) Impedance measurement device and impedance measurement method
JP6132718B2 (en) Impedance measuring apparatus and impedance measuring method
JPH039229A (en) Burn-out circuit for thermocouple
JP2002350473A (en) High input impedance circuit and alternating current signal voltmeter using it
JPS6382382A (en) Calibrator of dc source for ic test
RU2495440C2 (en) Measuring device of parameters of multielement passive bipoles
JPH08320346A (en) Coulombmeter
JP3003282B2 (en) Circuit inspection equipment
JPH03267781A (en) Unbalanced voltage adjusting circuit for hall element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19904363

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19904363

Country of ref document: EP

Kind code of ref document: A1