WO2020136908A1 - Storage battery device - Google Patents

Storage battery device Download PDF

Info

Publication number
WO2020136908A1
WO2020136908A1 PCT/JP2018/048601 JP2018048601W WO2020136908A1 WO 2020136908 A1 WO2020136908 A1 WO 2020136908A1 JP 2018048601 W JP2018048601 W JP 2018048601W WO 2020136908 A1 WO2020136908 A1 WO 2020136908A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
voltage
input
storage battery
current
Prior art date
Application number
PCT/JP2018/048601
Other languages
French (fr)
Japanese (ja)
Inventor
黒田 和人
関野 正宏
英生 山崎
岳史 大澤
敏彦 正岡
Original Assignee
株式会社東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社東芝 filed Critical 株式会社東芝
Priority to PCT/JP2018/048601 priority Critical patent/WO2020136908A1/en
Publication of WO2020136908A1 publication Critical patent/WO2020136908A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries

Definitions

  • the embodiment of the present invention relates to a storage battery device.
  • low-voltage system power (12V system power) is also expected as power for maintaining the minimum safety function required for a vehicle.
  • the present invention has been made in view of the above, and an object thereof is to provide a storage battery device capable of simultaneously supplying low-voltage system power and high-voltage system power while maintaining reliability.
  • the storage battery device of the embodiment is a storage battery device that is installed in a vehicle and supplies electric power to an in-vehicle device, and has a plurality of battery cells connected in series between a pair of first input/output voltage charge/discharge terminals.
  • a plurality of battery units connected in parallel that supply low-voltage system power via a pair of charging/discharging terminals, and convert the power supplied to the battery units to DC voltage, and output to the vehicle side via charging/discharging terminals.
  • a DC voltage converter capable of DC power conversion of the supplied power input from the vehicle side through the charging/discharging terminal and supplying the power to a plurality of battery units.
  • FIG. 1 is a schematic block diagram of a vehicle storage battery system according to an embodiment.
  • FIG. 2 is a schematic block diagram of the storage battery device.
  • FIG. 3 is a schematic configuration diagram of the DC-DC converter.
  • FIG. 4 is a processing flowchart of the embodiment.
  • FIG. 5 is an explanatory diagram of an example of operation control of the DC/DC converter.
  • FIG. 6 is a schematic configuration block diagram of the storage battery device of the second embodiment.
  • FIG. 7 is a processing flowchart of the second embodiment.
  • FIG. 1 is a schematic block diagram of a vehicle storage battery system according to an embodiment.
  • the vehicle storage battery system 10 functions as a generator 12G that is driven by the engine 11 and is capable of generating electricity, or functions as an electric motor (motor) 12M that is supplied with electric power and assists the driving of the engine 11.
  • Power device 12 a storage battery device 13 that supplies power to the vehicle-mounted device, a controller 14 that measures the charging state (voltage, charging current, and temperature) of the storage battery device 13 and controls the storage battery device 13, and a storage battery device.
  • the power device 12 is included in the second load group 16 when functioning as the electric motor 12M.
  • FIG. 2 is a schematic block diagram of the storage battery device.
  • the storage battery device 13 includes a control circuit 21, a first battery unit 22-1 to an nth battery unit 22-n (n: a natural number of 2 or more), a first monitoring circuit 23-1 to an nth monitoring circuit 23-n. And a smoothing capacitor 24, a DC/DC converter 25, and first to n-th circuit breakers 26-1 to 26-n.
  • the control circuit 21 controls the entire storage battery device 13.
  • the first battery unit 22-1 to the n-th battery unit 22-n are connected in parallel between the low-voltage system low-potential side input/output terminal TLN and the low-voltage system high-potential side input terminal TLP, and are respectively connected to the low voltage side. It is possible to supply voltage system power.
  • the first monitoring circuit 23-1 to the n-th monitoring circuit 23-n determine the state (SOC, voltage, charging current) of any one of the corresponding one of the first battery unit 22-1 to the n-th battery unit 22-n. And temperature), and the monitoring result is notified to the control circuit 21 via the monitoring result notification line LM and the DC/DC converter 25, and the failure state is notified to the control circuit 21 via the failure notification line LE.
  • the smoothing capacitor 24 flows with a large transient current. Stabilizes the voltage when the DC/DC converter 25 outputs high-voltage system power via the high-voltage system low-potential side output terminal THN and the high-voltage system high-potential side output terminal THP. Stabilizes the voltage when the DC/DC converter 25 outputs high-voltage system low-potential side output terminal THN and the high-voltage system high-potential side output terminal THP. Stabilizes the voltage when the DC/DC converter 25 outputs high-voltage system power via the high-voltage system low-potential side output terminal THN and the high-voltage system high-potential side output terminal THP.
  • the DC/DC converter 25 performs DC/DC conversion of low-voltage system power supplied from the first battery unit 22-1 to the n-th battery unit 22-n, and outputs the high-voltage system low-potential side output terminal THN and the high-voltage system. It outputs through the system high potential side output terminal THP.
  • the first circuit breaker 26-1 to the n-th circuit breaker 26-n operate under the control of the control circuit 21 and the first battery unit 22 under the control of the first monitor circuit 23-1 to the n-th monitor circuit 23-n. Any one of the corresponding -1 to n-th battery units 22-n is disconnected from the power supply path to cut off the low-voltage power supply.
  • control circuit 21 further includes a start signal terminal TW to which a start signal WU is input from the controller 14 and a communication terminal TC for communicating with the controller 14.
  • the first battery unit 22-1 to the n-th battery unit 22-n have the same configuration, and each has a plurality of battery cells 30 connected in series.
  • the DC/DC converter 25 boosts 12V to obtain a high output voltage of the rated output voltage 48V.
  • System power is output via the high voltage system low potential side output terminal THN and the high voltage system high potential side output terminal THP.
  • the battery cell 30 is preferably a lithium-ion secondary battery or a nickel-hydrogen secondary battery because it has excellent output characteristics. Further, from the viewpoint of high weight energy density, the lithium ion secondary battery is more preferable.
  • a lithium ion secondary battery in which the positive electrode having a larger operating voltage range than the maximum voltage of the cell is an iron phosphate type and the negative electrode is a carbon type lithium ion secondary battery, or a positive electrode Is more preferably a 3d transition metal lithium oxide (eg, lithium manganate oxide, lithium nickel oxide, lithium cobalt oxide, etc.) and the negative electrode is lithium titanate lithium ion secondary battery.
  • the positive electrode having a larger operating voltage range than the maximum voltage of the cell is an iron phosphate type and the negative electrode is a carbon type lithium ion secondary battery
  • a positive electrode Is more preferably a 3d transition metal lithium oxide (eg, lithium manganate oxide, lithium nickel oxide, lithium cobalt oxide, etc.) and the negative electrode is lithium titanate lithium ion secondary battery.
  • the above-mentioned positive electrode is a 3d transition metal lithium oxide (for example, lithium manganate lithium oxide , Lithium nickel oxide, lithium cobalt oxide, and a ternary (eg, Li(Ni—Mn—Co)O 2 ) lithium ion secondary battery in which part of lithium cobalt oxide is replaced with nickel and manganese. It is more preferable to use a lithium ion secondary battery in which the negative electrode has a lithium titanate oxide (for example, Li 4 Ti 5 O 12 ).
  • a lithium titanate oxide for example, Li 4 Ti 5 O 12
  • the configuration of the battery cell 30 will be described in more detail.
  • a case where a lithium ion battery cell is used as the battery cell 30 will be described as an example.
  • a second mode of the battery cell 30 includes a lithium metal compound containing at least one metal element selected from the group consisting of cobalt, nickel and manganese, and the lithium metal compound is Li a Ni b Co c Mn.
  • a positive electrode having a positive electrode active material-containing layer represented by d O 4 (where molar ratios a, b, c and d are 0 ⁇ a ⁇ 1.1, b+c+d 2), and a titanium-containing metal composite oxide.
  • a non-aqueous electrolyte secondary battery comprising a negative electrode containing the same and a non-aqueous electrolyte containing a non-aqueous solvent.
  • the average particle diameter of primary particles of lithium titanium oxide is 1 ⁇ m or less, and the specific surface area of the negative electrode layer by the BET method is 3 to 50 m 2. It is desirable that it be in the range of /g.
  • the lithium titanium oxide is represented by Li 4+x Ti 5 O 12 (x is ⁇ 1 ⁇ x ⁇ 3) or Li 2+x Ti 3 O 7 (x is ⁇ 1 ⁇ x ⁇ 3).
  • the titanium-containing metal composite oxide is a metal composite oxide containing Ti and at least one element selected from the group consisting of P, V, Sn, Cu, Ni and Fe. desirable.
  • FIG. 3 is a schematic configuration diagram of the DC-DC converter.
  • the DC/DC converter 25 is a push-pull insulation type DC-DC converter, and includes an insulation transformer 31.
  • the low voltage system high potential side input/output terminal TLP connected to the first battery unit 22 is connected to the first intermediate tap 31T1 which is an intermediate tap on the primary winding side of the insulating transformer 31, and is connected to one end of the primary winding. Is connected to one end of the first switch 32, and to the other end of the primary winding, one end of the second switch 33 is connected.
  • the other end of the first switch 32 and the other end of the second switch 33 are connected to the low voltage system low potential side input/output terminal TLN, respectively. Further, a current stabilizing capacitor 34 is connected between the low voltage system high potential side input/output terminal TLP and the low voltage system low potential side input/output terminal TLN.
  • one end of the third switch 35 is connected to one end of the secondary winding of the isolation transformer 31, and one end of the fourth switch 36 is connected to the other end of the secondary winding thereof. And the other end of the fourth switch 36 are connected to the high voltage system low potential side input/output terminal THN, respectively.
  • one end of a coil 37 is connected to a second intermediate tap 31T2 which is an intermediate tap on the secondary winding side of the insulating transformer 31.
  • the other end of the coil 37 is connected to the high voltage system high potential side input/output terminal THP.
  • a capacitor 38 that functions in cooperation with the coil 37 and functions as a low-pass filter is connected. There is.
  • the DC/DC converter 25 also includes a current sensor 39 that detects an output current to the high-voltage system high-potential side input/output terminal THP, a control signal from the control circuit 21, and the detected low-voltage system high-potential side input/output terminal.
  • a conversion operation circuit 40 that controls the first switch 32 to the fourth switch 36 based on the output current to the voltage system high potential side input/output terminal THP to perform DC/DC conversion.
  • FIG. 4 is a processing flowchart of the embodiment.
  • the first circuit breaker 26-1 to the n-th circuit breaker 26-m are assumed to be in the open state (OFF state).
  • step S12 when the failure notification notifying that the m-th battery unit 22-m is in the failure state is received from the m-th monitoring circuit 23-m via the failure notification line LE (step S12; Yes). ), the control circuit 21 opens the m-th circuit breaker (in this case, maintains the open state) (step S13). Then, the process proceeds to step S15.
  • step S12 When it is determined in step S12 that the failure notification notifying that the m-th battery unit 22-m is in the failure state has not been received from the m-th monitoring circuit 23-m via the failure notification line LE (step S12). No, the control circuit 21 turns on the m-th circuit breaker (step S14).
  • control circuit 21 adds 1 to the parameter m (step S15). Subsequently, the control circuit 21 determines whether the parameter m exceeds the number n of monitoring circuits (step S16).
  • step S16 if the parameter m has not exceeded the number n of monitoring circuits (step S16; No), the process is moved to step S12 again, and the processes of steps S12 to S16 described above are repeated. That is, it is determined whether or not the failure notification is received for all of the first monitoring circuit 23-1 to the nth monitoring circuit 23-n, and the mth circuit breaker 26-m is opened or closed.
  • step S16 when the parameter m exceeds the number n of monitoring circuits (step S16; Yes), the control circuit 21 is receiving the activation signal WU from the ECU (not shown) of the vehicle body. Is determined (step S17).
  • step S17 when the activation signal WU is being received from the ECU (not shown) of the vehicle body (step S17; Yes), the control circuit 21 causes the first circuit breaker 26-1 to the n-th circuit breaker 26-. Among the n, the DC/DC converter 25 is driven according to the number of circuit breakers actually turned on (the number of circuit breakers closed), and the first battery unit 22-1 to the n-th battery unit 22-n are driven. Of these, all the battery units connected via the turned-on breaker are charged or discharged (step S18).
  • FIG. 5 is an explanatory diagram of an example of operation control of the DC/DC converter.
  • the control circuit 21 causes the DC/DC converter 25 to simulate the resistance component in a pseudo manner (simulation), so that the high voltage system high potential side input/output terminal THP and the high voltage system low potential are obtained.
  • the output voltage decreases in proportion to the amount of the current (in the case of FIG. 5).
  • the voltage is controlled to 48 V or less.).
  • control circuit 21 causes the DC/DC converter 25 to input a large current through the high voltage system high potential side input/output terminal THP and the high voltage system low potential side input/output terminal THN (high voltage system).
  • the output voltage is controlled in proportion to the amount of the current (in the case of FIG. 5, it becomes 48 V or higher).
  • the operation of the battery cell 30 is simulated, and there is no need to perform special control, and the low voltage system side (for example, 12V system side) and the high voltage system side (for example, 48V system side) are connected. It is possible to determine the direction in which the current flows (the charging direction or the discharging direction with respect to the battery cell 30).
  • the low voltage system side for example, 12V system side
  • the high voltage system side for example, 48V system side
  • control circuit 21 controls the DC/DC of the first battery unit 22-1 to the nth battery unit 22-n based on the failure notification from the first monitoring circuit 23-1 to the nth monitoring circuit 23-n.
  • the input overcurrent protection current value of the DC/DC converter 25 is higher than the total current value when a current corresponding to a predetermined overcurrent protection current value is applied to the number of battery units actually connected to the converter 25.
  • the output current of the DC/DC converter 25 is limited according to the number of battery units in which a failure is detected among the first battery unit 22-1 to the nth battery unit 22-n. ..
  • the 1st to n-th monitoring circuits 23-n and the corresponding breaker is cut off by the corresponding 1st circuit breaker 26-1 to n-th circuit breaker 26-n another battery unit in operation is It is possible to prevent the entire system from being stopped because the circuit breakers are cut off all at once due to the overcurrent protection functioning in the current state.
  • step S17 when the activation signal WU is not being received from the ECU (not shown) of the vehicle body (step S17; No), the control circuit 21 stops the DC/DC converter 25 (step S19). ..
  • the high-voltage system high-potential side input/output terminal THP and the high-voltage meter low-potential side input/output terminal THN are not electrically connected to any of the first battery unit 22-1 to the nth battery unit 22-n. , High-voltage power is never supplied.
  • step S14 all the battery units connected via the circuit breakers that have been turned on among the first battery unit 22-1 to the nth battery unit 22-n have a low voltage system level. Since it is connected to the potential-side input/output terminal TLP and the low-voltage system low-potential-side input/output terminal TLN, the low-voltage system power can be used and the DC/DC converter 25 uses the high-voltage system power. Therefore, it is possible to improve the supply efficiency of the low voltage system electric power when the vehicle is not used.
  • the first embodiment it is possible to supply low-voltage system power and high-voltage system power at the same time, and it is wasteful in the DC/DC converter when the vehicle is not in use. It is possible to efficiently supply low-voltage power without power consumption, and it is possible to improve the reliability of low-voltage power supply.
  • FIG. 6 is a schematic configuration block diagram of the storage battery device of the second embodiment. 6 is different from that of the first embodiment in FIG. 2 in that a circuit breaker 51 and a circuit breaker 51 are provided between the high voltage system high potential side input/output terminal THP and the high voltage system low potential side input/output terminal THN.
  • the capacitor unit 53 having a plurality of capacitors 52 (for example, electric double layer capacitors) connected in series is provided, and the capacitor monitoring circuit 54 that monitors each capacitor 52 under the control of the control circuit 21 is provided.
  • the capacitor unit 53 is provided not between the low-voltage system high-potential side input/output terminal TLP and the low-voltage system low-potential side output terminal TLN but in the high-voltage system high-potential side input/output terminal THP and the high-voltage system low-potential.
  • the reason why it is provided between the side input/output terminal THN and the high-voltage system input/output terminals THP and THN is that a transient large charging/discharging current is absorbed by the capacitor section 53 to suppress voltage fluctuations. This is because the DC converter 25 does not have to withstand a large transient current and the configuration of the DC/DC converter 25 is further simplified.
  • FIG. 7 is a processing flowchart of the second embodiment.
  • the same parts as those in the first embodiment shown in FIG. 4 are designated by the same reference numerals.
  • the first circuit breaker 26-1 to the n-th circuit breaker 26-m and the circuit breaker 51 are in an open state (off state).
  • control circuit 21 performs the processing of steps S11 to S16 of the first embodiment in the same manner as the procedure described in the first embodiment. Then, in the determination of step S16, if the parameter m exceeds the number n of monitoring circuits (step S16; Yes), the control circuit 21 is receiving the activation signal WU from the ECU (not shown) of the vehicle body. It is determined whether or not (step S17).
  • step S17 when the activation signal WU is not being received from the ECU (not shown) of the vehicle body (step S17; No), the control circuit 21 stops the DC/DC converter 25 (step S18) and shuts off. The container 51 is released (step S19).
  • the high-voltage system high-potential side input/output terminal THP and the high-voltage meter low-potential side input/output terminal THN are not electrically connected to any of the first battery unit 22-1 to the nth battery unit 22-n. , High-voltage power is never supplied.
  • step S14 all the battery units connected via the breaker that have been turned on among the first battery unit 22-1 to the nth battery unit 22-n are input/output on the low voltage side high potential side. Since it is connected to the terminal TLP and the low-voltage system low-potential side input/output terminal TLN, the low-voltage system power can be used, and the DC/DC converter 25 does not use the low-voltage system power. Thus, it becomes possible to improve the supply efficiency of low-voltage system electric power when the vehicle is not in use.
  • step S17 when it is determined in step S17 that the control circuit 21 is receiving the activation signal WU from the ECU (not shown) of the vehicle body (step S17; Yes), the first circuit breaker 26-1 to the n-th circuit breaker are connected. Among the 26-n, the DC/DC converter 25 is driven according to the number of circuit breakers actually turned on (the number of circuit breakers closed), and the first battery unit 22-1 to the n-th battery unit 22- Of n, all the battery units connected via the breaker that has been turned on are charged or discharged (step S20).
  • step S21 determines whether or not the capacitor monitoring circuit 54 has detected a failure.
  • step S21 when the capacitor monitoring circuit 54 detects a failure (step S21; Yes), the control circuit 21 releases the circuit breaker 51 (or maintains the released state) (step S22).
  • control circuit 21 determines whether or not a failure has not been detected in all the monitoring circuits 23-1 to 23-n and the capacitor monitoring circuit 54 (step S23).
  • step S23 if no failure is detected in the monitoring circuits 23-1 to 23-n and the capacitor monitoring circuit 54 (step S23; Yes), the control circuit 21 determines that the vehicle (the ECU (not shown)) is On the other hand, the charge/discharge current limit signal is released (or the limit release state is maintained) (step S24), the process proceeds to step S11 again, and the above-described process is repeated.
  • step S23 When a failure is detected in any of the monitoring circuits 23-1 to 23-n or the capacitor monitoring circuit 54 in the determination in step S23 (step S23; No), the control circuit 21 determines that the vehicle (not shown in the ECU). ) Is output (or the limited state is maintained) (step S26), the process proceeds to step S11 again, and the above process is repeated.
  • step S21 when the capacitor monitoring circuit 54 does not detect the failure (step S21; No), the control circuit 21 turns on the circuit breaker 51 (or maintains the turn-on state) (step S25). ), the process proceeds to step S23, the same process as the above process is performed, the process proceeds to step S11 again, and the above process is repeated.
  • the control circuit 21 controls the first battery unit based on the failure notification from the first monitoring circuit 23-1 to the nth monitoring circuit 23-n. 22-1 to n-th battery unit 22-n, from the total current value when a current corresponding to a predetermined overcurrent protection current value is applied to the number of battery units actually connected to the DC/DC converter 25 Is also set so that the input overcurrent protection current value of the DC/DC converter 25 is high, and the number of battery units in which a failure is detected among the first battery unit 22-1 to the nth battery unit 22-n is determined. , The output current of the DC/DC converter 25 is limited.
  • the DC/DC converter 25 simulates the operation of the battery cell 30, so that the resistance value can be effectively (equivalently) increased as compared with the capacitor section 53, and the instantaneous large current can be increased. It naturally flows to the condenser section 53 side.
  • the DC/DC converter can be used even in the case where a large amount of power is temporarily required when the engine is started. It is possible to reliably supply a large amount of electric power without increasing the capacity.
  • a program executed by the storage battery device of the present embodiment is a file in an installable format or an executable format, which is a semiconductor memory such as a CD-ROM, a DVD (Digital Versatile Disk), or a USB memory. It is provided by being recorded in a computer-readable recording medium such as an apparatus.
  • the program executed by the storage battery device of this embodiment may be stored in a computer connected to a network such as the Internet and provided by being downloaded via the network. Further, the program executed by the storage battery device of this embodiment may be provided or distributed via a network such as the Internet. Further, the program executed by the storage battery device according to the present embodiment may be incorporated in a ROM or the like in advance and provided.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

A storage battery device according to the embodiments of the present application is installed in a vehicle and supplies power to in-vehicle equipment. The storage battery device comprises: a plurality of battery units that are connected in parallel, each having a plurality of battery cells connected in series between a pair of first input/output voltage charging/discharging terminals, and each supplying low voltage power via the pair of charging/discharging terminals; and a DC voltage converter that is capable of supplying power by subjecting the supplied power from the plurality of battery units to DC voltage conversion and outputting the converted power to the vehicle side via the charging/discharging terminals, and is capable of subjecting supplied power input from the vehicle side via the charging/discharging terminals to DC voltage conversion and supplying the converted power to the plurality of battery units. Thus, it is possible to simultaneously supply low voltage power and high voltage power while also ensuring reliability.

Description

蓄電池装置Storage battery
 本発明の実施形態は、蓄電池装置に関する。 The embodiment of the present invention relates to a storage battery device.
 近年、自動車においては、電装部品の消費電力の増加や回生エネルギーの活用のため、これまで12Vが一般的であった車載用機器(補機)、電装部品等に供給する車内の電源電圧を高電圧化(36~48V)する検討が進められている。例えば、定格電圧を48Vにすると、既存の12Vシステムに比べて出力を高くでき、使用する電流を下げられるため、一部のシステムでは効率を高められる。 In recent years, in automobiles, in order to increase the power consumption of electric components and to utilize regenerative energy, the power supply voltage in the vehicle has been increased to 12 V, which has been common until now, for in-vehicle devices (auxiliaries) and electric components. A study is underway to turn it into a voltage (36 to 48V). For example, a rated voltage of 48V can provide higher output and lower current consumption compared to existing 12V systems, thus increasing efficiency in some systems.
 一方で、回生エネルギーの活用のために、小型大容量で繰りかえしの充放電に耐えられる蓄電素子としてリチウムイオン電池の利用が広がっている。 On the other hand, in order to utilize regenerative energy, the use of lithium ion batteries is expanding as a storage element that can withstand repeated charging and discharging with a small capacity.
特開2009-277647号公報JP, 2009-277647, A 特開2001-136735号公報JP, 2001-136735, A
 しかしながら、車載用機器及び電装部品の全てが高電圧対応するには時間を要するため、低電圧系電力(12V系電力)と、高電圧系電力と、の双方を供給することが考えられている。一方、低電圧系電力(12V系電力)は、車両として求められる最低限の安全機能を維持するための電力としても期待されている。 However, since it takes time for all the in-vehicle equipment and electrical components to support high voltage, it is considered to supply both low voltage system power (12V system power) and high voltage system power. .. On the other hand, low-voltage system power (12V system power) is also expected as power for maintaining the minimum safety function required for a vehicle.
 本発明は、上記に鑑みてなされたものであって、信頼性を維持しつつ低電圧系電力と高電圧系電力とを同時に供給可能な蓄電池装置を提供することを目的としている。 The present invention has been made in view of the above, and an object thereof is to provide a storage battery device capable of simultaneously supplying low-voltage system power and high-voltage system power while maintaining reliability.
 実施形態の蓄電池装置は、車両に搭載されて車載用機器に電力を供給する蓄電池装置であって、一対の第1入出力電圧充放電端子の間に複数の直列接続された電池セルを有し、一対の充放電端子を介して低電圧系電力を供給する並列接続された複数の電池ユニットと、複数の電池ユニットの供給電力の直流電圧変換を行い、充放電端子を介して車両側に出力して電力供給可能であるとともに、車両側から充放電端子を介して入力された供給電力の直流電圧変換を行い、複数の電池ユニットに供給可能な直流電圧変換器と、を備える。 The storage battery device of the embodiment is a storage battery device that is installed in a vehicle and supplies electric power to an in-vehicle device, and has a plurality of battery cells connected in series between a pair of first input/output voltage charge/discharge terminals. , A plurality of battery units connected in parallel that supply low-voltage system power via a pair of charging/discharging terminals, and convert the power supplied to the battery units to DC voltage, and output to the vehicle side via charging/discharging terminals. And a DC voltage converter capable of DC power conversion of the supplied power input from the vehicle side through the charging/discharging terminal and supplying the power to a plurality of battery units.
図1は、実施形態の車両用蓄電池システムの概要構成ブロック図である。FIG. 1 is a schematic block diagram of a vehicle storage battery system according to an embodiment. 図2は、蓄電池装置の概要構成ブロック図である。FIG. 2 is a schematic block diagram of the storage battery device. 図3は、DC-DCコンバータの概要構成図である。FIG. 3 is a schematic configuration diagram of the DC-DC converter. 図4は、実施形態の処理フローチャートである。FIG. 4 is a processing flowchart of the embodiment. 図5は、DC/DCコンバータの動作制御の一例の説明図である。FIG. 5 is an explanatory diagram of an example of operation control of the DC/DC converter. 図6は、第2実施形態の蓄電池装置の概要構成ブロック図である。FIG. 6 is a schematic configuration block diagram of the storage battery device of the second embodiment. 図7は、第2実施形態の処理フローチャートである。FIG. 7 is a processing flowchart of the second embodiment.
[1]第1実施形態
 次に図面を参照して実施形態について詳細に説明する。
 図1は、実施形態の車両用蓄電池システムの概要構成ブロック図である。
 車両用蓄電池システム10は、エンジン11に駆動されて発電可能な発電機(ジェネレータ)12Gとして機能し、あるいは、電力が供給されてエンジン11の駆動を補助(アシスト)する電動機(モータ)12Mとして機能する電力機器12と、車載用機器に電力を供給する蓄電池装置13と、蓄電池装置13の充電状態(電圧、充電電流及び温度)を測定し、蓄電池装置13の制御を行うコントローラ14と、蓄電池装置13から低電圧系電力(例えば、12V系電力)が供給される第1負荷群15と、蓄電池装置13から高電圧系電力(例えば、48V系電力)が供給される第2負荷群16と、を備えている。
[1] First Embodiment Next, an embodiment will be described in detail with reference to the drawings.
FIG. 1 is a schematic block diagram of a vehicle storage battery system according to an embodiment.
The vehicle storage battery system 10 functions as a generator 12G that is driven by the engine 11 and is capable of generating electricity, or functions as an electric motor (motor) 12M that is supplied with electric power and assists the driving of the engine 11. Power device 12, a storage battery device 13 that supplies power to the vehicle-mounted device, a controller 14 that measures the charging state (voltage, charging current, and temperature) of the storage battery device 13 and controls the storage battery device 13, and a storage battery device. A first load group 15 to which low voltage system power (for example, 12 V system power) is supplied from 13; and a second load group 16 to which high voltage system power (for example, 48 V system power) is supplied from the storage battery device 13, Is equipped with.
 上記構成において、電力機器12は、電動機12Mとして機能する場合には、第2負荷群16に含まれる。 In the above configuration, the power device 12 is included in the second load group 16 when functioning as the electric motor 12M.
 ここで、第1実施形態の蓄電池装置13の構成について説明する。
 図2は、蓄電池装置の概要構成ブロック図である。
 蓄電池装置13は、制御回路21と、第1電池ユニット22-1~第n電池ユニット22-n(n:2以上の自然数)と、第1監視回路23-1~第n監視回路23-nと、平滑用コンデンサ24と、DC/DCコンバータ25と、第1遮断器26-1~第n遮断器26-nを備えている。
Here, the configuration of the storage battery device 13 of the first embodiment will be described.
FIG. 2 is a schematic block diagram of the storage battery device.
The storage battery device 13 includes a control circuit 21, a first battery unit 22-1 to an nth battery unit 22-n (n: a natural number of 2 or more), a first monitoring circuit 23-1 to an nth monitoring circuit 23-n. And a smoothing capacitor 24, a DC/DC converter 25, and first to n-th circuit breakers 26-1 to 26-n.
 制御回路21は、蓄電池装置13全体を制御する。
 第1電池ユニット22-1~第n電池ユニット22-nは、それぞれ低電圧系低電位側入出力端子TLNと低電圧系高電位側入力端子TLPとの間に並列に接続されて、それぞれ低電圧系電力を供給可能とされている。
The control circuit 21 controls the entire storage battery device 13.
The first battery unit 22-1 to the n-th battery unit 22-n are connected in parallel between the low-voltage system low-potential side input/output terminal TLN and the low-voltage system high-potential side input terminal TLP, and are respectively connected to the low voltage side. It is possible to supply voltage system power.
 第1監視回路23-1~第n監視回路23-nは、第1電池ユニット22-1~第n電池ユニット22-nのうち対応するいずれかの電池ユニットの状態(SOC、電圧、充電電流及び温度)を監視し、監視結果を監視結果通知ラインLM及びDC/DCコンバータ25を介して制御回路21に通知するとともに、故障通知ラインLEを介して故障状態を制御回路21に通知する。 The first monitoring circuit 23-1 to the n-th monitoring circuit 23-n determine the state (SOC, voltage, charging current) of any one of the corresponding one of the first battery unit 22-1 to the n-th battery unit 22-n. And temperature), and the monitoring result is notified to the control circuit 21 via the monitoring result notification line LM and the DC/DC converter 25, and the failure state is notified to the control circuit 21 via the failure notification line LE.
 平滑用コンデンサ24は、DC/DCコンバータ25が高電圧系低電位側出力端子THN及び高電圧系高電位側出力端子THPを介して高電圧系電力を出力するに際し、過渡的な大電流が流れたときに電圧を安定化させる。 When the DC/DC converter 25 outputs high-voltage system power via the high-voltage system low-potential side output terminal THN and the high-voltage system high-potential side output terminal THP, the smoothing capacitor 24 flows with a large transient current. Stabilizes the voltage when
 DC/DCコンバータ25は、第1電池ユニット22-1~第n電池ユニット22-nから供給される低電圧系電力のDC/DC変換を行って高電圧系低電位側出力端子THN及び高電圧系高電位側出力端子THPを介して出力する。 The DC/DC converter 25 performs DC/DC conversion of low-voltage system power supplied from the first battery unit 22-1 to the n-th battery unit 22-n, and outputs the high-voltage system low-potential side output terminal THN and the high-voltage system. It outputs through the system high potential side output terminal THP.
 第1遮断器26-1~第n遮断器26-nは、制御回路21の制御下で動作する第1監視回路23-1~第n監視回路23-nの制御下で第1電池ユニット22-1~第n電池ユニット22-nのうち対応するいずれか一つの電池ユニットを電力供給経路から切り離し、低電圧系電力の供給遮断を行う。 The first circuit breaker 26-1 to the n-th circuit breaker 26-n operate under the control of the control circuit 21 and the first battery unit 22 under the control of the first monitor circuit 23-1 to the n-th monitor circuit 23-n. Any one of the corresponding -1 to n-th battery units 22-n is disconnected from the power supply path to cut off the low-voltage power supply.
 上記構成において、さらに制御回路21は、コントローラ14から起動信号WUが入力される起動信号端子TWと、コントローラ14との間で通信を行うための通信端子TCと、を備えている。 In the above configuration, the control circuit 21 further includes a start signal terminal TW to which a start signal WU is input from the controller 14 and a communication terminal TC for communicating with the controller 14.
 第1電池ユニット22-1~第n電池ユニット22-nは、同一構成であり、それぞれ複数のバッテリセル30が直列接続されている。 The first battery unit 22-1 to the n-th battery unit 22-n have the same configuration, and each has a plurality of battery cells 30 connected in series.
 この場合において、例えば、第1電池ユニット22-1~第n電池ユニット22-nの定格出力電圧がそれぞれ12Vだとすると、DC/DCコンバータ25は、12Vを昇圧して、定格出力電圧48Vの高電圧系電力を高電圧系低電位側出力端子THN及び高電圧系高電位側出力端子THPを介して出力する。 In this case, for example, if the rated output voltage of each of the first battery unit 22-1 to the nth battery unit 22-n is 12V, the DC/DC converter 25 boosts 12V to obtain a high output voltage of the rated output voltage 48V. System power is output via the high voltage system low potential side output terminal THN and the high voltage system high potential side output terminal THP.
 上記構成において、バッテリセル30としては、出力特性に優れることからリチウムイオン二次電池、ニッケル水素二次電池が好適である。また、重量エネルギー密度の高さの観点からは、リチウムイオン二次電池の方がより好ましい。 In the above configuration, the battery cell 30 is preferably a lithium-ion secondary battery or a nickel-hydrogen secondary battery because it has excellent output characteristics. Further, from the viewpoint of high weight energy density, the lithium ion secondary battery is more preferable.
 さらにバッテリセル30としては、リチウムイオン二次電池の中でもセルの最大電圧と比較して稼働電圧範囲の割合の大きい正極がリン酸鉄系で負極が炭素系のリチウムイオン二次電池、もしくは、正極が3d遷移金属リチウム酸化物(例えば、マンガン酸リチウム酸化物、ニッケル酸リチウム酸化物、コバルト酸リチウム酸化物など)で、負極がチタン酸リチウム酸化物のリチウムイオン二次電池がより好ましい。 Further, as the battery cell 30, among lithium ion secondary batteries, a lithium ion secondary battery in which the positive electrode having a larger operating voltage range than the maximum voltage of the cell is an iron phosphate type and the negative electrode is a carbon type lithium ion secondary battery, or a positive electrode Is more preferably a 3d transition metal lithium oxide (eg, lithium manganate oxide, lithium nickel oxide, lithium cobalt oxide, etc.) and the negative electrode is lithium titanate lithium ion secondary battery.
 さらに、充放電において負極電位の平滑性が高いとセル間電位の差が少なくなり、横流やセルバランスの制御性に優れるため、前述した正極が3d遷移金属リチウム酸化物(例えばマンガン酸リチウム酸化物、ニッケル酸リチウム酸化物、コバルト酸リチウム酸化物、コバルト酸リチウムの一部をニッケルとマンガンで置換した三元系(例えば、Li(Ni-Mn-Co)O)のリチウムイオン二次電池であって負極がチタン酸リチウム酸化物(例えば、LiTi12)のリチウムイオン二次電池がより好ましい。 Furthermore, when the smoothness of the negative electrode potential during charge/discharge is high, the difference in the potential between cells is small, and because the controllability of cross current and cell balance is excellent, the above-mentioned positive electrode is a 3d transition metal lithium oxide (for example, lithium manganate lithium oxide , Lithium nickel oxide, lithium cobalt oxide, and a ternary (eg, Li(Ni—Mn—Co)O 2 ) lithium ion secondary battery in which part of lithium cobalt oxide is replaced with nickel and manganese. It is more preferable to use a lithium ion secondary battery in which the negative electrode has a lithium titanate oxide (for example, Li 4 Ti 5 O 12 ).
 ここで、より詳細にバッテリセル30の構成について説明する。
 この場合において、バッテリセル30として、リチウムイオンバッテリセルを用いる場合を例として説明する。
Here, the configuration of the battery cell 30 will be described in more detail.
In this case, a case where a lithium ion battery cell is used as the battery cell 30 will be described as an example.
 バッテリセル30の第1の態様としては、コバルト、ニッケルおよびマンガンよりなる群から選択される少なくとも一種類の金属元素を含有するリチウム金属化合物を含みリチウム金属化合物はLiNiCoMn(但し、モル比a,b,c及びdは0≦a≦1.1、b+c+d=1)で表される正極活物質含有層を備えた正極と、チタン含有金属複合酸化物を含む負極と、非水溶媒を含む非水電解質とを備えた非水電解質二次電池として構成される。  The first mode of the battery cell 30 includes a lithium metal compound containing at least one metal element selected from the group consisting of cobalt, nickel and manganese, and the lithium metal compound is Li a Ni b Co c Mn d O. 2 (provided that the molar ratios a, b, c and d are 0≦a≦1.1, b+c+d=1), and a negative electrode containing a titanium-containing metal composite oxide. And a non-aqueous electrolyte containing a non-aqueous solvent.
 また、バッテリセル30の第2の態様としては、コバルト、ニッケルおよびマンガンよりなる群から選択される少なくとも一種類の金属元素を含有するリチウム金属化合物を含みリチウム金属化合物はLiNiCoMn(但し、モル比a,b,c及びdは0≦a≦1.1、b+c+d=2)で表される正極活物質含有層を備えた正極と、チタン含有金属複合酸化物を含む負極と、非水溶媒を含む非水電解質と、を備えた非水電解質二次電池として構成される。  A second mode of the battery cell 30 includes a lithium metal compound containing at least one metal element selected from the group consisting of cobalt, nickel and manganese, and the lithium metal compound is Li a Ni b Co c Mn. a positive electrode having a positive electrode active material-containing layer represented by d O 4 (where molar ratios a, b, c and d are 0≦a≦1.1, b+c+d=2), and a titanium-containing metal composite oxide. A non-aqueous electrolyte secondary battery comprising a negative electrode containing the same and a non-aqueous electrolyte containing a non-aqueous solvent.
 また、上記第1の態様及び第2の態様のバッテリセル30を構成する場合にリチウムチタン酸化物の一次粒子の平均粒径が1μm以下で、負極層のBET法による比表面積が3~50m/gの範囲であるようにすることが望ましい。  Further, in the case of configuring the battery cell 30 of the first aspect and the second aspect, the average particle diameter of primary particles of lithium titanium oxide is 1 μm or less, and the specific surface area of the negative electrode layer by the BET method is 3 to 50 m 2. It is desirable that it be in the range of /g.
 さらに、リチウムチタン酸化物は、Li4+xTi12(xは-1≦x≦3)もしくはLi2+xTi(xは-1≦x≦3)で表されるようにするのが望ましい。
 さらにまた、チタン含有金属複合酸化物はP、V、Sn、Cu、Ni及びFeよりなる群から選択される少なくとも1種類の元素とTiとを含有する金属複合酸化物であるようにするのが望ましい。
Furthermore, the lithium titanium oxide is represented by Li 4+x Ti 5 O 12 (x is −1≦x≦3) or Li 2+x Ti 3 O 7 (x is −1≦x≦3). desirable.
Furthermore, the titanium-containing metal composite oxide is a metal composite oxide containing Ti and at least one element selected from the group consisting of P, V, Sn, Cu, Ni and Fe. desirable.
 図3は、DC-DCコンバータの概要構成図である。
 DC/DCコンバータ25は、プッシュプル方式の絶縁型DC-DCコンバータであり、絶縁トランス31を備えている。
FIG. 3 is a schematic configuration diagram of the DC-DC converter.
The DC/DC converter 25 is a push-pull insulation type DC-DC converter, and includes an insulation transformer 31.
 絶縁トランス31の一次巻線側の中間タップである第1中間タップ31T1には、第1電池ユニット22に接続される低電圧系高電位側入出力端子TLPが接続され、一次巻線の一端には、第1スイッチ32の一端が接続され、一次巻線の他端には、第2スイッチ33の一端が接続されている。 The low voltage system high potential side input/output terminal TLP connected to the first battery unit 22 is connected to the first intermediate tap 31T1 which is an intermediate tap on the primary winding side of the insulating transformer 31, and is connected to one end of the primary winding. Is connected to one end of the first switch 32, and to the other end of the primary winding, one end of the second switch 33 is connected.
 第1スイッチ32の他端及び第2スイッチ33の他端は、低電圧系低電位側入出力端子TLNにそれぞれ接続されている。
 さらに低電圧系高電位側入出力端子TLPと低電圧系低電位側入出力端子TLNとの間には、電流安定化用のコンデンサ34が接続されている。
The other end of the first switch 32 and the other end of the second switch 33 are connected to the low voltage system low potential side input/output terminal TLN, respectively.
Further, a current stabilizing capacitor 34 is connected between the low voltage system high potential side input/output terminal TLP and the low voltage system low potential side input/output terminal TLN.
 また、絶縁トランス31の二次巻線の一端には、第3スイッチ35の一端が接続され、二次次巻線の他端には、第4スイッチ36の一端が接続され、第3スイッチ35の他端及び第4スイッチ36の他端は、高電圧系低電位側入出力端子THNにそれぞれ接続されている。 Further, one end of the third switch 35 is connected to one end of the secondary winding of the isolation transformer 31, and one end of the fourth switch 36 is connected to the other end of the secondary winding thereof. And the other end of the fourth switch 36 are connected to the high voltage system low potential side input/output terminal THN, respectively.
 また、絶縁トランス31の二次巻線側の中間タップである第2中間タップ31T2には、コイル37の一端が接続されている。
 コイル37の他端は、高電圧系高電位側入出力端子THPが接続されている。
Further, one end of a coil 37 is connected to a second intermediate tap 31T2 which is an intermediate tap on the secondary winding side of the insulating transformer 31.
The other end of the coil 37 is connected to the high voltage system high potential side input/output terminal THP.
 さらにまた、コイル37と高電圧系高電位側入出力端子THPとの接続点及び第2入出力端子THNの間には、コイル37と共働してローパスフィルタとして機能するコンデンサ38が接続されている。 Furthermore, between the connection point between the coil 37 and the high-voltage system high potential side input/output terminal THP and the second input/output terminal THN, a capacitor 38 that functions in cooperation with the coil 37 and functions as a low-pass filter is connected. There is.
 また、DC/DCコンバータ25は、高電圧系高電位側入出力端子THPへの出力電流を検出する電流センサ39と、制御回路21からの制御信号、検出した低電圧系高電位側入出力端子TLP-低電圧系低電位側入出力端子TLN間の電圧、検出した高電圧系高電位側入出力端子THP-高電圧系低電位側入出力端子THN間の電圧及び電流センサ39により検出した高電圧系高電位側入出力端子THPへの出力電流に基づいて第1スイッチ32~第4スイッチ36を制御して、DC/DC変換を行う変換演算回路40と、を備えている。 The DC/DC converter 25 also includes a current sensor 39 that detects an output current to the high-voltage system high-potential side input/output terminal THP, a control signal from the control circuit 21, and the detected low-voltage system high-potential side input/output terminal. The voltage between TLP-low voltage system low potential side input/output terminal TLN, the detected high voltage system high potential side input/output terminal THP-high voltage system low potential side input/output terminal THN, and the high voltage detected by the current sensor 39. A conversion operation circuit 40 that controls the first switch 32 to the fourth switch 36 based on the output current to the voltage system high potential side input/output terminal THP to perform DC/DC conversion.
 図4は、実施形態の処理フローチャートである。
 初期状態において、第1遮断器26-1~第n遮断器26-mは、開状態(オフ状態)にあるものとする。
 制御回路21は、まず第1監視回路23-1~第n監視回路23-nの故障通知の受信の有無を判別するためのパラメータmを初期値=1とする(ステップS11)。
FIG. 4 is a processing flowchart of the embodiment.
In the initial state, the first circuit breaker 26-1 to the n-th circuit breaker 26-m are assumed to be in the open state (OFF state).
The control circuit 21 first sets the parameter m for determining whether or not the failure notification of the first monitoring circuit 23-1 to the nth monitoring circuit 23-n is received to an initial value=1 (step S11).
 続いて制御回路21は、第m監視回路23-mから故障通知を受信したか否かを判別する(ステップS12)。
 具体的には、この状態においては、パラメータm=1であるので、制御回路21は、第1監視回路23-1から故障通知ラインLEを介して第1電池ユニット22-1が故障状態にあることを通知する故障通知を受信したか否かを判別することとなる。
Subsequently, the control circuit 21 determines whether or not a failure notification has been received from the mth monitoring circuit 23-m (step S12).
Specifically, in this state, since the parameter m=1, the control circuit 21 causes the first battery unit 22-1 to be in the failed state from the first monitoring circuit 23-1 via the failure notification line LE. It will be determined whether or not a failure notification for notifying that is received.
 ステップS12の判別において、故障通知ラインLEを介して第m監視回路23-mから第m電池ユニット22-mが故障状態にあることを通知する故障通知を受信した場合には(ステップS12;Yes)、制御回路21は、第m遮断器を開放する(この場合には、開放維持する)(ステップS13)。そして処理をステップS15に移行する。 In the determination of step S12, when the failure notification notifying that the m-th battery unit 22-m is in the failure state is received from the m-th monitoring circuit 23-m via the failure notification line LE (step S12; Yes). ), the control circuit 21 opens the m-th circuit breaker (in this case, maintains the open state) (step S13). Then, the process proceeds to step S15.
 ステップS12の判別において、故障通知ラインLEを介して第m監視回路23-mから第m電池ユニット22-mが故障状態にあることを通知する故障通知を受信していない場合には(ステップS12;No)、制御回路21は、第m遮断器を投入する(ステップS14)。 When it is determined in step S12 that the failure notification notifying that the m-th battery unit 22-m is in the failure state has not been received from the m-th monitoring circuit 23-m via the failure notification line LE (step S12). No, the control circuit 21 turns on the m-th circuit breaker (step S14).
 次に制御回路21は、パラメータmに1を加算する(ステップS15)。
 続いて制御回路21は、パラメータmが監視回路の台数nを超えたか否かを判別する(ステップS16)。
Next, the control circuit 21 adds 1 to the parameter m (step S15).
Subsequently, the control circuit 21 determines whether the parameter m exceeds the number n of monitoring circuits (step S16).
 ステップS16の判別において、未だパラメータmが監視回路の台数nを超えていない場合には(ステップS16;No)、処理を再びステップS12に移行し、上述したステップS12~ステップS16の処理を繰り返す。すなわち、第1監視回路23-1~第n監視回路23-nの全てについて故障通知を受信したか否かを判別し、第m遮断器26-mの開放あるいは投入を行うこととなる。 In the determination in step S16, if the parameter m has not exceeded the number n of monitoring circuits (step S16; No), the process is moved to step S12 again, and the processes of steps S12 to S16 described above are repeated. That is, it is determined whether or not the failure notification is received for all of the first monitoring circuit 23-1 to the nth monitoring circuit 23-n, and the mth circuit breaker 26-m is opened or closed.
 ステップS16の判別において、パラメータmが監視回路の台数nを超えた場合には(ステップS16;Yes)、制御回路21は、車両本体の図示しないECUから起動信号WUを受信中であるか否かを判別する(ステップS17)。 In the determination of step S16, when the parameter m exceeds the number n of monitoring circuits (step S16; Yes), the control circuit 21 is receiving the activation signal WU from the ECU (not shown) of the vehicle body. Is determined (step S17).
 ステップS17の判別において、車両本体の図示しないECUから起動信号WUを受信中である場合には(ステップS17;Yes)、制御回路21は、第1遮断器26-1~第n遮断器26-nのうち、実際に投入状態とされた遮断器の数(遮断器の投入数)に応じてDC/DCコンバータ25を駆動し、第1電池ユニット22-1~第n電池ユニット22-nのうち、投入された遮断器を介して接続された全ての電池ユニットに対して充電または放電を行う(ステップS18)。 In the determination in step S17, when the activation signal WU is being received from the ECU (not shown) of the vehicle body (step S17; Yes), the control circuit 21 causes the first circuit breaker 26-1 to the n-th circuit breaker 26-. Among the n, the DC/DC converter 25 is driven according to the number of circuit breakers actually turned on (the number of circuit breakers closed), and the first battery unit 22-1 to the n-th battery unit 22-n are driven. Of these, all the battery units connected via the turned-on breaker are charged or discharged (step S18).
 ここで、DC/DCコンバータ25の動作について説明する。
 図5は、DC/DCコンバータの動作制御の一例の説明図である。
 本第1実施形態においては、制御回路21によりDC/DCコンバータ25は、擬似的に抵抗分をシミュレート(模擬)することにより、高電圧系高電位側入出力端子THP及び高電圧系低電位側入出力端子THNを介して大電流を出力する場合(低電圧系側から高電圧系側に電流が流れる場合)には、その電流量に比例して出力電圧が下降する(図5の場合48V以下となる。)ように制御がなされる。
Here, the operation of the DC/DC converter 25 will be described.
FIG. 5 is an explanatory diagram of an example of operation control of the DC/DC converter.
In the first embodiment, the control circuit 21 causes the DC/DC converter 25 to simulate the resistance component in a pseudo manner (simulation), so that the high voltage system high potential side input/output terminal THP and the high voltage system low potential are obtained. When a large current is output via the side input/output terminal THN (when a current flows from the low voltage system side to the high voltage system side), the output voltage decreases in proportion to the amount of the current (in the case of FIG. 5). The voltage is controlled to 48 V or less.).
 これに対し、制御回路21によりDC/DCコンバータ25は、高電圧系高電位側入出力端子THP及び高電圧系低電位側入出力端子THNを介して大電流が入力される場合(高電圧系側から低電圧系側に電流が流れる場合)には、その電流量に比例して出力電圧が上昇する(図5の場合48V以上となる。)ように制御がなされる。 On the other hand, when the control circuit 21 causes the DC/DC converter 25 to input a large current through the high voltage system high potential side input/output terminal THP and the high voltage system low potential side input/output terminal THN (high voltage system). When the current flows from the side to the low voltage system side), the output voltage is controlled in proportion to the amount of the current (in the case of FIG. 5, it becomes 48 V or higher).
 この結果、バッテリセル30の動作をシミュレートすることとなり、特別な制御を行う必要無く、低電圧系側(例えば、12V系側)と、高電圧系側(例えば、48V系側)との間で電流の流れる方向(バッテリセル30に対して、充電方向あるいは放電方向)を定めることが可能となる。 As a result, the operation of the battery cell 30 is simulated, and there is no need to perform special control, and the low voltage system side (for example, 12V system side) and the high voltage system side (for example, 48V system side) are connected. It is possible to determine the direction in which the current flows (the charging direction or the discharging direction with respect to the battery cell 30).
 さらに制御回路21は、第1監視回路23-1~第n監視回路23-nからの故障通知に基づいて、第1電池ユニット22-1~第n電池ユニット22-nのうち、DC/DCコンバータ25に実際に接続されている電池ユニット数に所定の過電流保護電流値に相当する電流を流した場合の全電流値よりもDC/DCコンバータ25の入力過電流保護電流値が高くなるように設定し、第1電池ユニット22-1~第n電池ユニット22-nのうち故障が検出された電池ユニットの数に応じて、DC/DCコンバータ25の出力電流の制限を行うようにしている。 Further, the control circuit 21 controls the DC/DC of the first battery unit 22-1 to the nth battery unit 22-n based on the failure notification from the first monitoring circuit 23-1 to the nth monitoring circuit 23-n. The input overcurrent protection current value of the DC/DC converter 25 is higher than the total current value when a current corresponding to a predetermined overcurrent protection current value is applied to the number of battery units actually connected to the converter 25. The output current of the DC/DC converter 25 is limited according to the number of battery units in which a failure is detected among the first battery unit 22-1 to the nth battery unit 22-n. ..
 この結果、高電圧系側において、大電流の充放電中に動作状態にあった第1電池ユニット22-1~第n電池ユニット22-nのうちいずれかの電池ユニットにおいて第1監視回路23-1~第n監視回路23-nにより故障が検出されて対応する第1遮断器26-1~第n遮断器26-nにより遮断されてしまった場合でも、他の動作中の電池ユニットが過電流状態となって過電流保護が働き、一斉に遮断器が遮断されてシステム全体が停止することを防止することができる。 As a result, on the high voltage system side, the first monitoring circuit 23-in any one of the first battery unit 22-1 to the n-th battery unit 22-n which has been in the operating state during the charging/discharging of the large current. Even when a failure is detected by the 1st to n-th monitoring circuits 23-n and the corresponding breaker is cut off by the corresponding 1st circuit breaker 26-1 to n-th circuit breaker 26-n, another battery unit in operation is It is possible to prevent the entire system from being stopped because the circuit breakers are cut off all at once due to the overcurrent protection functioning in the current state.
 一方、ステップS17の判別において、車両本体の図示しないECUから起動信号WUを受信中ではない場合には(ステップS17;No)、制御回路21は、DC/DCコンバータ25を停止する(ステップS19)。 On the other hand, in the determination of step S17, when the activation signal WU is not being received from the ECU (not shown) of the vehicle body (step S17; No), the control circuit 21 stops the DC/DC converter 25 (step S19). ..
 従って、高電圧系高電位側入出力端子THP及び高電圧計低電位側入出力端子THNは、第1電池ユニット22-1~第n電池ユニット22-nのいずれにも電気的に接続されないので、高電圧系の電力が供給がなされることはない。 Therefore, the high-voltage system high-potential side input/output terminal THP and the high-voltage meter low-potential side input/output terminal THN are not electrically connected to any of the first battery unit 22-1 to the nth battery unit 22-n. , High-voltage power is never supplied.
 しかしながら、このとき、ステップS14の処理により、第1電池ユニット22-1~第n電池ユニット22-nのうち、投入された遮断器を介して接続された全ての電池ユニットは、低電圧系高電位側入出力端子TLP及び低電圧系低電位側入出力端子TLNに接続されるので、低電圧系の電力を利用することができるとともに、DC/DCコンバータ25により高電圧系の電力が利用されることはなく、車両の非使用状態における低電圧系電力の供給効率を向上させることが可能となる。 However, at this time, as a result of the processing of step S14, all the battery units connected via the circuit breakers that have been turned on among the first battery unit 22-1 to the nth battery unit 22-n have a low voltage system level. Since it is connected to the potential-side input/output terminal TLP and the low-voltage system low-potential-side input/output terminal TLN, the low-voltage system power can be used and the DC/DC converter 25 uses the high-voltage system power. Therefore, it is possible to improve the supply efficiency of the low voltage system electric power when the vehicle is not used.
 以上の説明のように、本第1実施形態によれば、低電圧系電力及び高圧系電力を同時に供給可能とすることができるとともに、車両の非使用状態においては、DC/DCコンバータにおいて無駄に電力が消費されることがなく、低電圧系電力を効率よく供給することが可能となり、低電圧系電力供給の信頼性を向上させることができる。 As described above, according to the first embodiment, it is possible to supply low-voltage system power and high-voltage system power at the same time, and it is wasteful in the DC/DC converter when the vehicle is not in use. It is possible to efficiently supply low-voltage power without power consumption, and it is possible to improve the reliability of low-voltage power supply.
[2]第2実施形態
 次に第2実施形態について説明する。
 図6は、第2実施形態の蓄電池装置の概要構成ブロック図である。
 図6において、図2の第1実施形態と異なる点は、高電圧系高電位側入出力端子THPと高電圧系低電位側入出力端子THNとの間に、遮断器51及び遮断器51に直列接続された複数のコンデンサ52(例えば、電気二重層コンデンサ)を有するコンデンサ部53を設けた点、制御回路21の制御下で各コンデンサ52を監視するコンデンサ監視回路54を設けた点である。
[2] Second Embodiment Next, a second embodiment will be described.
FIG. 6 is a schematic configuration block diagram of the storage battery device of the second embodiment.
6 is different from that of the first embodiment in FIG. 2 in that a circuit breaker 51 and a circuit breaker 51 are provided between the high voltage system high potential side input/output terminal THP and the high voltage system low potential side input/output terminal THN. The capacitor unit 53 having a plurality of capacitors 52 (for example, electric double layer capacitors) connected in series is provided, and the capacitor monitoring circuit 54 that monitors each capacitor 52 under the control of the control circuit 21 is provided.
 上記構成において、コンデンサ部53を低電圧系高電位側入出力端子TLPと低電圧系低電位側出力端子TLNとの間ではなく、高電圧系高電位側入出力端子THPと高電圧系低電位側入出力端子THNとの間に設けている理由は、高電圧系入出力端子THP、THNに対する過渡的に大きな充放電電流をコンデンサ部53に吸収させて電圧変動を抑制することにより、DC/DCコンバータ25が過渡的な大電流に耐える必要がなくなり、DC/DCコンバータ25の構成がより簡素化されるからである。 In the above-described configuration, the capacitor unit 53 is provided not between the low-voltage system high-potential side input/output terminal TLP and the low-voltage system low-potential side output terminal TLN but in the high-voltage system high-potential side input/output terminal THP and the high-voltage system low-potential. The reason why it is provided between the side input/output terminal THN and the high-voltage system input/output terminals THP and THN is that a transient large charging/discharging current is absorbed by the capacitor section 53 to suppress voltage fluctuations. This is because the DC converter 25 does not have to withstand a large transient current and the configuration of the DC/DC converter 25 is further simplified.
 次に第2実施形態の動作について説明する。
 図7は、第2実施形態の処理フローチャートである。
 図7において、図4の第1実施形態と同様の部分には、同一の符号を付すものとする。
 初期状態において、第1遮断器26-1~第n遮断器26-m及び遮断器51は、開状態(オフ状態)にあるものとする。
Next, the operation of the second embodiment will be described.
FIG. 7 is a processing flowchart of the second embodiment.
In FIG. 7, the same parts as those in the first embodiment shown in FIG. 4 are designated by the same reference numerals.
In the initial state, the first circuit breaker 26-1 to the n-th circuit breaker 26-m and the circuit breaker 51 are in an open state (off state).
 まず、制御回路21は、第1実施形態のステップS11~ステップS16の処理を第1実施形態で説明した手順と同様に行う。
 そして、制御回路21は、ステップS16の判別において、パラメータmが監視回路の台数nを超えた場合には(ステップS16;Yes)、車両本体の図示しないECUから起動信号WUを受信中であるか否かを判別する(ステップS17)。
First, the control circuit 21 performs the processing of steps S11 to S16 of the first embodiment in the same manner as the procedure described in the first embodiment.
Then, in the determination of step S16, if the parameter m exceeds the number n of monitoring circuits (step S16; Yes), the control circuit 21 is receiving the activation signal WU from the ECU (not shown) of the vehicle body. It is determined whether or not (step S17).
 ステップS17の判別において、車両本体の図示しないECUから起動信号WUを受信中ではない場合には(ステップS17;No)、制御回路21は、DC/DCコンバータ25を停止し(ステップS18)、遮断器51を解放する(ステップS19)。 In the determination of step S17, when the activation signal WU is not being received from the ECU (not shown) of the vehicle body (step S17; No), the control circuit 21 stops the DC/DC converter 25 (step S18) and shuts off. The container 51 is released (step S19).
 従って、高電圧系高電位側入出力端子THP及び高電圧計低電位側入出力端子THNは、第1電池ユニット22-1~第n電池ユニット22-nのいずれにも電気的に接続されないので、高電圧系の電力が供給されることはない。 Therefore, the high-voltage system high-potential side input/output terminal THP and the high-voltage meter low-potential side input/output terminal THN are not electrically connected to any of the first battery unit 22-1 to the nth battery unit 22-n. , High-voltage power is never supplied.
 さらにステップS14の処理により、第1電池ユニット22-1~第n電池ユニット22-nのうち、投入された遮断器を介して接続された全ての電池ユニットは、低電圧系高電位側入出力端子TLP及び低電圧系低電位側入出力端子TLNに接続されるので、低電圧系の電力を利用することができるとともに、DC/DCコンバータ25により低電圧系の電力が利用されることはなく、車両の非使用状態における低電圧系電力の供給効率を向上させることが可能となる。 Further, by the process of step S14, all the battery units connected via the breaker that have been turned on among the first battery unit 22-1 to the nth battery unit 22-n are input/output on the low voltage side high potential side. Since it is connected to the terminal TLP and the low-voltage system low-potential side input/output terminal TLN, the low-voltage system power can be used, and the DC/DC converter 25 does not use the low-voltage system power. Thus, it becomes possible to improve the supply efficiency of low-voltage system electric power when the vehicle is not in use.
 一方、制御回路21は、ステップS17の判別において、車両本体の図示しないECUから起動信号WUを受信中である場合には(ステップS17;Yes)、第1遮断器26-1~第n遮断器26-nのうち、実際に投入状態とされた遮断器の数(遮断器の投入数)に応じてDC/DCコンバータ25を駆動し、第1電池ユニット22-1~第n電池ユニット22-nのうち、投入された遮断器を介して接続された全ての電池ユニットに対して充電または放電を行う(ステップS20)。 On the other hand, when it is determined in step S17 that the control circuit 21 is receiving the activation signal WU from the ECU (not shown) of the vehicle body (step S17; Yes), the first circuit breaker 26-1 to the n-th circuit breaker are connected. Among the 26-n, the DC/DC converter 25 is driven according to the number of circuit breakers actually turned on (the number of circuit breakers closed), and the first battery unit 22-1 to the n-th battery unit 22- Of n, all the battery units connected via the breaker that has been turned on are charged or discharged (step S20).
 次に制御回路21は、コンデンサ監視回路54が故障を検出しているか否かを判別する(ステップS21)。
 ステップS21の判別において、コンデンサ監視回路54が故障を検出している場合には(ステップS21;Yes)、制御回路21は遮断器51を解放(あるいは、解放状態を維持)する(ステップS22)。
Next, the control circuit 21 determines whether or not the capacitor monitoring circuit 54 has detected a failure (step S21).
In the determination of step S21, when the capacitor monitoring circuit 54 detects a failure (step S21; Yes), the control circuit 21 releases the circuit breaker 51 (or maintains the released state) (step S22).
 続いて、制御回路21は、全ての監視回路23-1~23-n及びコンデンサ監視回路54において故障が非検出であるか否かを判別する(ステップS23)。 Subsequently, the control circuit 21 determines whether or not a failure has not been detected in all the monitoring circuits 23-1 to 23-n and the capacitor monitoring circuit 54 (step S23).
 ステップS23の判別において、監視回路23-1~23-n及びコンデンサ監視回路54において故障が非検出である場合には(ステップS23;Yes)、制御回路21は、車両(の図示しないECU)に対して充放電電流の制限信号を解除(あるいは制限解除状態を維持)し(ステップS24)、再び処理をステップS11に移行して、上述した処理を繰り返す。 In the determination of step S23, if no failure is detected in the monitoring circuits 23-1 to 23-n and the capacitor monitoring circuit 54 (step S23; Yes), the control circuit 21 determines that the vehicle (the ECU (not shown)) is On the other hand, the charge/discharge current limit signal is released (or the limit release state is maintained) (step S24), the process proceeds to step S11 again, and the above-described process is repeated.
 ステップS23の判別において、監視回路23-1~23-nあるいはコンデンサ監視回路54のいずれかにおいて故障が検出された場合には(ステップS23;No)、制御回路21は、車両(の図示しないECU)に対して充放電電流の制限信号を出力(あるいは制限状態を維持)し(ステップS26)、再び処理をステップS11に移行して、上述した処理を繰り返す。 When a failure is detected in any of the monitoring circuits 23-1 to 23-n or the capacitor monitoring circuit 54 in the determination in step S23 (step S23; No), the control circuit 21 determines that the vehicle (not shown in the ECU). ) Is output (or the limited state is maintained) (step S26), the process proceeds to step S11 again, and the above process is repeated.
 また、ステップS21の判別において、コンデンサ監視回路54が故障を検出していない場合には(ステップS21;No)、制御回路21は遮断器51を投入(あるいは、投入状態を維持)し(ステップS25)、処理をステップS23に移行して、上述した処理と同様に処理を行い、再び処理をステップS11に移行して、上述した処理を繰り返す。 Further, in the determination of step S21, when the capacitor monitoring circuit 54 does not detect the failure (step S21; No), the control circuit 21 turns on the circuit breaker 51 (or maintains the turn-on state) (step S25). ), the process proceeds to step S23, the same process as the above process is performed, the process proceeds to step S11 again, and the above process is repeated.
 上記第2実施形態の構成においても、第1実施形態と同様に、制御回路21は、第1監視回路23-1~第n監視回路23-nからの故障通知に基づいて、第1電池ユニット22-1~第n電池ユニット22-nのうち、DC/DCコンバータ25に実際に接続されている電池ユニット数に所定の過電流保護電流値に相当する電流を流した場合の全電流値よりもDC/DCコンバータ25の入力過電流保護電流値が高くなるように設定し、第1電池ユニット22-1~第n電池ユニット22-nのうち故障が検出された電池ユニットの数に応じて、DC/DCコンバータ25の出力電流の制限を行っている。 In the configuration of the second embodiment as well, similar to the first embodiment, the control circuit 21 controls the first battery unit based on the failure notification from the first monitoring circuit 23-1 to the nth monitoring circuit 23-n. 22-1 to n-th battery unit 22-n, from the total current value when a current corresponding to a predetermined overcurrent protection current value is applied to the number of battery units actually connected to the DC/DC converter 25 Is also set so that the input overcurrent protection current value of the DC/DC converter 25 is high, and the number of battery units in which a failure is detected among the first battery unit 22-1 to the nth battery unit 22-n is determined. , The output current of the DC/DC converter 25 is limited.
 この結果、DC/DCコンバータ25は、バッテリセル30の動作をシミュレートすることとなり、コンデンサ部53に比較して、実効的(等価的)に抵抗値を高くすることができ、瞬時大電流が自然にコンデンサ部53側に流れる。 As a result, the DC/DC converter 25 simulates the operation of the battery cell 30, so that the resistance value can be effectively (equivalently) increased as compared with the capacitor section 53, and the instantaneous large current can be increased. It naturally flows to the condenser section 53 side.
 以上の説明のように、本第2実施形態によれば、第1実施形態の効果に加えて、エンジン始動時等の一時的に大電力の供給が要求される場合においても、DC/DCコンバータの容量を大きくすることなく、大電力を確実に供給することができる。 As described above, according to the second embodiment, in addition to the effects of the first embodiment, the DC/DC converter can be used even in the case where a large amount of power is temporarily required when the engine is started. It is possible to reliably supply a large amount of electric power without increasing the capacity.
[3]実施形態の変形例
 本実施形態の蓄電池装置で実行されるプログラムは、インストール可能な形式又は実行可能な形式のファイルでCD-ROM、DVD(Digital Versatile Disk)、USBメモリ等の半導体記憶装置等のコンピュータで読み取り可能な記録媒体に記録されて提供される。
[3] Modified Example of Embodiment A program executed by the storage battery device of the present embodiment is a file in an installable format or an executable format, which is a semiconductor memory such as a CD-ROM, a DVD (Digital Versatile Disk), or a USB memory. It is provided by being recorded in a computer-readable recording medium such as an apparatus.
 また、本実施形態の蓄電池装置で実行されるプログラムを、インターネット等のネットワークに接続されたコンピュータ上に格納し、ネットワーク経由でダウンロードさせることにより提供するように構成しても良い。また、本実施形態の蓄電池装置で実行されるプログラムをインターネット等のネットワーク経由で提供または配布するように構成しても良い。
 また、本実施形態の蓄電池装置で実行されるプログラムを、ROM等に予め組み込んで提供するように構成してもよい。
Further, the program executed by the storage battery device of this embodiment may be stored in a computer connected to a network such as the Internet and provided by being downloaded via the network. Further, the program executed by the storage battery device of this embodiment may be provided or distributed via a network such as the Internet.
Further, the program executed by the storage battery device according to the present embodiment may be incorporated in a ROM or the like in advance and provided.
 本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、請求の範囲に記載された発明とその均等の範囲に含まれる。 Although some embodiments of the present invention have been described, these embodiments are presented as examples and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the spirit of the invention. These embodiments and modifications thereof are included in the scope and the gist of the invention, and are also included in the invention described in the claims and an equivalent range thereof.

Claims (6)

  1.  車両に搭載されて車載用機器に電力を供給する蓄電池装置であって、
     一対の第1入出力電圧充放電端子の間に複数の直列接続された電池セルを有し、前記一対の充放電端子を介して低電圧系電力を供給する並列接続された複数の電池ユニットと、
     複数の前記電池ユニットの供給電力の直流電圧変換を行い、充放電端子を介して前記車両の側に出力して電力供給可能であるとともに、前記車両側から前記充放電端子を介して入力された供給電力の直流電圧変換を行い、複数の前記電池ユニットに供給可能な直流電圧変換器と、
     を備えた蓄電池装置。
    A storage battery device mounted on a vehicle for supplying electric power to an in-vehicle device,
    A plurality of battery cells connected in series between a pair of first input/output voltage charging/discharging terminals, and a plurality of battery units connected in parallel for supplying low-voltage power through the pair of charging/discharging terminals; ,
    DC voltage conversion of the power supplied to the plurality of battery units is performed, and the power can be output to the vehicle side via a charge/discharge terminal and power can be supplied, and input from the vehicle side via the charge/discharge terminal. Performing DC voltage conversion of the supplied power, a DC voltage converter capable of supplying the plurality of battery units,
    Storage battery device equipped with.
  2.  前記車両から電力供給を指示する起動信号が入力された場合に、前記直流電圧変換器を駆動状態とし、前記起動信号が入力されなくなった場合に前記直流電圧変換器を停止状態とする制御装置を備えた、
     請求項1記載の蓄電池装置。
    A control device for setting the DC voltage converter in a driving state when a start signal for instructing power supply from the vehicle is input, and for setting the DC voltage converter in a stop state when the start signal is not input. Prepared,
    The storage battery device according to claim 1.
  3.  前記直流電圧変換器の放電電力に重畳して電力を供給可能であるとともに、前記直流電圧変換器からの電力を蓄電可能なコンデンサ部を前記一対の充放電端子の間に備えた、
     請求項1又は請求項2記載の蓄電池装置。
    While being able to supply power by superimposing on the discharge power of the DC voltage converter, a capacitor unit capable of storing power from the DC voltage converter is provided between the pair of charging/discharging terminals,
    The storage battery device according to claim 1 or 2.
  4.  前記充放電端子を介した入出力電流を検出する電流センサを備え、
     前記直流電圧変換器は、出力電圧を検出し、前記電流センサの検出した入出力電流に基づいて、電流出力時には、出力電流量に比例して出力電圧が下降し、電流入力時には、入力電流量に比例して出力電圧が下降するように制御する、
     請求項1乃至請求項3のいずれか一項に記載の蓄電池装置。
    A current sensor for detecting an input/output current through the charge/discharge terminal,
    The DC voltage converter detects an output voltage, and based on the input/output current detected by the current sensor, the output voltage decreases in proportion to the output current amount at the time of current output, and the input current amount at the time of current input. The output voltage is controlled to decrease in proportion to
    The storage battery device according to any one of claims 1 to 3.
  5.  前記複数の電池ユニットのそれぞれに直列に接続された遮断器と、
     前記複数の電池ユニットのそれぞれの状態を監視し、前記監視の結果に基づいて、前記遮断器を遮断状態とする複数の監視回路と、
     を備えた請求項1乃至請求項4のいずれか一項に記載の蓄電池装置。
    A circuit breaker connected in series to each of the plurality of battery units,
    A plurality of monitoring circuits that monitor the respective states of the plurality of battery units and, based on the result of the monitoring, bring the circuit breaker into a cutoff state;
    The storage battery device according to any one of claims 1 to 4, further comprising:
  6.  前記監視回路の監視結果が入力されるとともに、前記電池ユニットの所定の過電流保護電流値に非遮断状態にある前記遮断器に対応する前記電池ユニットの数を乗じた値が、前記直流電圧変換器の入力過電流保護電流値よりも小さくなるように、前記直流電圧変換器を制御する制御部を備えた、
     請求項5記載の蓄電池装置。
    A value obtained by multiplying the predetermined overcurrent protection current value of the battery unit by the number of the battery units corresponding to the circuit breaker in the non-interrupted state is input with the monitoring result of the monitoring circuit, and the DC voltage conversion is performed. So as to be smaller than the input overcurrent protection current value of the converter, a control unit for controlling the DC voltage converter is provided,
    The storage battery device according to claim 5.
PCT/JP2018/048601 2018-12-28 2018-12-28 Storage battery device WO2020136908A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/048601 WO2020136908A1 (en) 2018-12-28 2018-12-28 Storage battery device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/048601 WO2020136908A1 (en) 2018-12-28 2018-12-28 Storage battery device

Publications (1)

Publication Number Publication Date
WO2020136908A1 true WO2020136908A1 (en) 2020-07-02

Family

ID=71127863

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/048601 WO2020136908A1 (en) 2018-12-28 2018-12-28 Storage battery device

Country Status (1)

Country Link
WO (1) WO2020136908A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010088202A (en) * 2008-09-30 2010-04-15 Toshiba Corp Battery unit and battery system using the same
JP2011010464A (en) * 2009-06-25 2011-01-13 Panasonic Electric Works Co Ltd Power supply unit
JP2014107910A (en) * 2012-11-26 2014-06-09 Toyota Motor Corp Power supply system
JP2015047893A (en) * 2013-08-30 2015-03-16 三菱電機株式会社 Ground battery control device and control method thereof, and ground battery control system for railway
JP2016516389A (en) * 2013-03-15 2016-06-02 レバント パワー コーポレイション Vehicle high power electrical systems and systems and methods for using voltage bus levels to signal system status

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010088202A (en) * 2008-09-30 2010-04-15 Toshiba Corp Battery unit and battery system using the same
JP2011010464A (en) * 2009-06-25 2011-01-13 Panasonic Electric Works Co Ltd Power supply unit
JP2014107910A (en) * 2012-11-26 2014-06-09 Toyota Motor Corp Power supply system
JP2016516389A (en) * 2013-03-15 2016-06-02 レバント パワー コーポレイション Vehicle high power electrical systems and systems and methods for using voltage bus levels to signal system status
JP2015047893A (en) * 2013-08-30 2015-03-16 三菱電機株式会社 Ground battery control device and control method thereof, and ground battery control system for railway

Similar Documents

Publication Publication Date Title
JP3364836B2 (en) Voltage equalizer device and method thereof
JP6178328B2 (en) DC voltage source including an electrochemical cell
TWI804503B (en) Power storage system and electric equipment
US20210249883A1 (en) Supercapacitor based energy storage device
CN105308825A (en) Pre-charging and voltage supply system for a DC-AC inverter
JP5864320B2 (en) Balance correction device and power storage system
JP5361529B2 (en) Lithium-ion battery charge control device and lithium-ion battery system
JP3755043B2 (en) Chargeable / dischargeable power supply
JP2021023018A (en) On-vehicle power supply system
Kim et al. Cell balancing control using adjusted filters in flyback converter with single switch
JP5705046B2 (en) Power system
WO2014122776A1 (en) Apparatus and method for controlling lithium-ion secondary cell
US10576835B2 (en) Energy storage device, transport apparatus, and control method
JP5503957B2 (en) Vehicle power supply
JP6194344B2 (en) Driving device and transportation equipment
JP6913050B2 (en) Power supply system with high voltage system and low voltage system
US20220077764A1 (en) Electric energy conversion and control device and energy storage system having the same
WO2020136908A1 (en) Storage battery device
US10439544B2 (en) Drive system, transporter, and control method performed by drive system
WO2020136907A1 (en) Storage battery device
WO2020075301A1 (en) Storage battery device
US11784492B2 (en) Power supply system
US11791638B2 (en) Power supply system
Hussein et al. A Prototype Development and Implementation of a Fast Lithium Battery Packs Active On-Load Balancing System
JP2011155785A (en) Method and apparatus for managing lithium ion battery pack

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18944242

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18944242

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP