WO2020136765A1 - Control device - Google Patents

Control device Download PDF

Info

Publication number
WO2020136765A1
WO2020136765A1 PCT/JP2018/047919 JP2018047919W WO2020136765A1 WO 2020136765 A1 WO2020136765 A1 WO 2020136765A1 JP 2018047919 W JP2018047919 W JP 2018047919W WO 2020136765 A1 WO2020136765 A1 WO 2020136765A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
motor
upper limit
control unit
generator
Prior art date
Application number
PCT/JP2018/047919
Other languages
French (fr)
Japanese (ja)
Inventor
大河 小松
山田 正樹
秀哲 有田
勇気 日高
浩之 東野
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2019528778A priority Critical patent/JP6697794B1/en
Priority to PCT/JP2018/047919 priority patent/WO2020136765A1/en
Publication of WO2020136765A1 publication Critical patent/WO2020136765A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/60Controlling or determining the temperature of the motor or of the drive
    • H02P29/64Controlling or determining the temperature of the winding
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/60Controlling or determining the temperature of the motor or of the drive
    • H02P29/66Controlling or determining the temperature of the rotor

Definitions

  • the present invention relates to a control device for controlling a motor including a stator and a rotor.
  • the motor is used as an alternator/generator in existing vehicles, and as a drive motor in electric vehicles such as electric vehicles and hybrid vehicles. These motors are controlled based on the motor temperature in order to expand the drivable range for the purpose of increasing torque and output.
  • the conventional electric vehicle shown in Patent Document 1 includes a motor, an inverter, and a control device that controls the electric vehicle.
  • the control device of Patent Document 1 estimates the temperature change of the inverter and the motor, and when the smaller value of either the drivable time of the motor or the drivable time of the inverter is less than or equal to a preset time. Then, the motor drive mode is switched.
  • Another conventional electric vehicle controls a motor based on temperature detection means for detecting the temperature of the motor, an instruction from the driver of the vehicle, and the detected temperature of the motor. Control means are provided. Further, the electric vehicle described in Patent Document 2 has a state detection unit that detects a drive state of the motor and a drive state of the motor that is preset when the detected temperature of the motor reaches a preset protection temperature. An electric motor control means for restraining the motor within the range is provided. The control unit of Patent Document 2 includes a time prediction unit that predicts the time until the temperature of the motor reaches the protection temperature based on the detected temperature of the motor, and notifies the driver of the predicted time.
  • the conventional motor control technique when determining whether or not the temperature of the motor reaches the protection temperature, the part of the internal temperature of the motor where the temperature change should be considered is specified and the temperature of the part is determined. It has not been decided based on. Therefore, the conventional motor control technique has a problem that the operation cannot be realized up to near the temperature limit originally possessed by the motor.
  • the present invention has been made in order to solve such a problem, and an object thereof is to obtain a control device capable of limiting the operation of a motor and improving the output.
  • a control device includes a control unit that controls a motor that includes a stator and a rotor, and the control unit controls each portion provided inside the motor when the operation of the motor is continued.
  • the saturation temperature is calculated based on the initial temperature of each part at the time of starting the operation of the motor and the temperature model of the motor, and based on the saturation temperature and a preset temperature upper limit threshold value of each part.
  • control device of the present invention it is possible to limit the operation of the motor and improve the output.
  • FIG. 6 is a graph showing a transition of a motor internal temperature when controlling a motor in the control device according to the first embodiment of the present invention. It is the figure which showed the transition of the motor internal temperature at the time of controlling the motor in the control apparatus concerning Embodiment 2 of this invention in a graph.
  • 5 is a flowchart showing a processing flow of the control device according to the second embodiment of the present invention. It is the figure which showed the transition of the motor internal temperature at the time of controlling the motor in the control apparatus which concerns on Embodiment 3 of this invention in the graph.
  • Embodiment 1. 1 is a diagram showing a configuration of a control device according to Embodiment 1 of the present invention.
  • an electric motor drive control device will be described as an example of the control device, but the present invention is not limited to this.
  • the control device controls the motor/generator 4, but the present invention is not limited to this, and the control device according to the present invention controls various motors. It is applicable to control of movement.
  • the control device according to the first embodiment includes a DC power supply 1, an inverter 2, a sensor 5, and a control unit 6. These will be described below.
  • the motor/generator 4 is composed of a stator 41 and a rotor 42 as shown in the motor internal model in the right diagram of FIG.
  • the stator 41 is composed of, for example, a stator core 43 and a stator coil 44.
  • the stator coil 44 is composed of three-phase coils of U phase, V phase and W phase. The coils of each phase of the stator coil 44 are wound around a plurality of teeth provided on the stator core 43.
  • the stator 41 may further include a stator frame and bearings.
  • the rotor 42 is rotatably provided with respect to the stator 41 via a bearing (not shown). The rotor 42 rotates with the shaft 45 as the rotation axis.
  • the rotor 42 is composed of, for example, a rotor core 46 and a plurality of permanent magnets 47.
  • the permanent magnets 47 are arranged along the outer circumference of the rotor core 46.
  • a gap called a gap exists between the stator core 43 and the rotor core 46.
  • the stator core 43 and the rotor core 46 are each composed of a plurality of laminated electromagnetic steel plates.
  • the motor/generator 4 outputs torque by energizing the stator coil 44 with a current while the magnetic flux is generated in the rotor 42.
  • the DC power supply 1 is connected to the inverter 2.
  • the DC power supply 1 is configured by a power storage device such as a lead storage battery or a lithium ion battery.
  • the DC power supply 1 supplies electric power to the inverter 2.
  • the inverter 2 converts the DC power from the DC power supply 1 into AC power.
  • the inverter 2 has one or more switching elements 3 inside.
  • the inverter 2 energizes the stator coil 44 of the stator 41 of the motor/generator 4 by making the switching element 3 conductive.
  • the inverter 2 controls the switching operation of the switching element 3 to control the amplitude and phase of the current flowing through the stator coil 44 of the stator 41.
  • the sensor 5 is attached inside the motor generator 4.
  • the sensor 5 detects the state of the motor/generator 4.
  • the sensor 5 detects information about the heat of the motor generator 4, such as a temperature sensor and a heat flux sensor.
  • examples of the temperature sensor used for the sensor 5 include a thermocouple and a thermistor.
  • the control unit 6 controls the inverter 2.
  • the control unit 6 instructs the inverter 2 on the switching timing of the switching element 3 to control the current value of the current flowing through the stator coil 44 of each phase of the stator 41.
  • the control unit 6 takes in the information detected by the sensor 5 and uses the information for controlling the current value.
  • the control unit 6 has a control logic that creates a current command value for the inverter 2 and a control logic that calculates a motor internal temperature distribution using a thermal network model.
  • the thermal network model is composed of the following elements.
  • Iv Multiple heat capacities of the motor/generator 4. These heat capacities are configured based on the material or shape inside the motor generator 4.
  • the thermal circuit network model is configured such that each heat generation, each heat flux, each heat resistance, and each heat capacity are connected to each other between nodes.
  • the thermal circuit network model is associated with the inside of the motor/generator 4, as shown in FIG.
  • FIG. 2 the left diagram shows a thermal network model
  • the right diagram shows an internal model of the motor generator 4.
  • reference numeral 40 indicates a motor surface of the motor generator 4.
  • reference numeral 400 indicates the temperature of the motor surface 40
  • reference numeral 440 indicates the heat generation of the stator coil 44
  • reference numeral 470 indicates the heat generation of the permanent magnet 47
  • reference numeral 460 indicates the rotor core 46.
  • 480 indicates a heat flux transferred from the inside of the motor to the outside and from the outside of the motor to the inside via the shaft 45.
  • reference numeral ⁇ 1> indicates a portion of the stator core 43 portion
  • reference numeral ⁇ 2> indicates a portion of the stator coil 44 portion
  • the portion of the stator coil 44 portion indicated by reference numeral ⁇ 2> constitutes the heat generating portion of the motor generator 4.
  • Reference numeral ⁇ 3> indicates a portion of the permanent magnet 47 portion
  • reference numeral ⁇ 4> indicates a portion of the rotor core 46 portion
  • reference numeral ⁇ 5> indicates a portion of the shaft 45 portion.
  • the respective parts ⁇ 1>, ⁇ 2>, ⁇ 3>, ⁇ 4> and ⁇ 5> in the motor internal model of the right diagram of FIG. 2 are the same as the ⁇ 1> of the thermal network model of the left diagram of FIG. , ⁇ 2>, ⁇ 3>, ⁇ 4>, and ⁇ 5>, respectively.
  • each part ⁇ 1>, ⁇ 2>, ⁇ 3>, ⁇ 4> and ⁇ 5> in the motor internal model shown in the right diagram of FIG. 2 are taken as an example.
  • the thermal network model may include elements corresponding to other parts.
  • each part ⁇ 1>, ⁇ 2>, ⁇ 3>, ⁇ 4> and ⁇ 5> will be simply referred to as “each part” or “each part inside the motor generator 4”. To do.
  • the thermal resistance R of each portion inside the motor/generator 4 shown in (iii) above is calculated by using the thermal conductivity k, the cross-sectional area A, and the length l of the portion as expressed by the equation (1). , Respectively.
  • the heat generated inside the motor/generator 4 shown in (i) above includes the following elements (a) to (d).
  • the iron loss in (b) above includes a hysteresis loss caused by the hysteresis characteristic of the steel sheet and an eddy current loss caused by the time variation of the magnetic flux density in the electromagnetic steel sheet.
  • the thermal circuit network model corresponds to the inside of the motor/generator 4.
  • the thermal circuit network model is used as a temperature model for calculating the internal temperature distribution of the motor/generator 4. Therefore, in the thermal network model, it is necessary to set boundary conditions regarding the external world of the motor/generator 4.
  • the thermal network model in the first embodiment is used to calculate the internal temperature distribution of the motor/generator 4 with the motor surface temperature 400 and the heat flux 480 as boundary conditions.
  • the motor surface temperature 400 indicates the temperature of the outer peripheral surface of the stator core 43, but is not limited to this.
  • the motor surface temperature 400 may be the surface temperature of the motor frame or the cooling water temperature inside the motor frame.
  • the control unit 6 is further configured to be able to acquire a torque request value for the motor/generator 4 from an in-vehicle ECU (Electronic Control Unit) (not shown) used for vehicle control.
  • ECU Electronic Control Unit
  • FIG. 3 is a flowchart showing the flow of processing of the control device according to the first embodiment.
  • FIG. 4 is a graph showing a transition of the internal temperature of the motor/generator 4 when the control device according to the first embodiment controls the motor/generator 4.
  • the horizontal axis represents time and the vertical axis represents temperature.
  • reference numeral t1 indicates the temperature of a certain part of the motor/generator 4 when the energization is started in a state where the temperature of the certain part of the motor/generator 4 is the initial temperature T0 and the operation of the motor/generator 4 is continued.
  • the symbol T1 indicates the temperature of the certain part at the final time when the stator coil 44 is continuously energized.
  • this temperature will be referred to as the saturation temperature T1.
  • the initial temperature T0, the required time t1, the temperature upper limit threshold value Tlim1, and the saturation temperature T1 are different for each part inside the motor generator 4.
  • step S1 the control unit 6 receives a torque request value from the vehicle-mounted ECU.
  • the torque request value is calculated by the vehicle-mounted ECU based on, for example, the amount of depression of the accelerator pedal by the driver of the vehicle, the change over time in the amount of depression, or the rotation speed of the motor.
  • the vehicle-mounted ECU is provided outside the control unit 6. Therefore, the torque request value is externally input to the control unit 6.
  • step S2 the control unit 6 determines whether or not the motor/generator 4 can output the torque according to the torque request value, based on the current rotational speed of the motor/generator 4, the internal temperature, and the like.
  • the control unit 6 outputs a torque output disable signal to the vehicle-mounted ECU.
  • the control unit 6 calculates the current command value for the inverter 2 based on the torque request value.
  • the inverter 2 applies the current I1 to the coils of each phase of the stator coil 44 of the motor/generator 4 based on the current command value.
  • step S3 the control unit 6 calculates the saturation temperature T1 of each part inside the motor generator 4 using the thermal circuit network model. The calculation method will be described later.
  • the saturation temperature T1 of each part becomes the internal temperature distribution of the motor/generator 4.
  • step S4 the saturation temperature T1 of each part is compared with a preset temperature upper limit threshold Tlim1 to determine whether or not there is a part where the saturation temperature T1 is equal to or higher than the temperature upper limit threshold Tlim1.
  • the saturation temperature T1 is lower than the temperature upper limit threshold Tlim1 in any part, it is determined that the torque according to the current torque request value can be continuously output, and the process proceeds to step S5.
  • the process proceeds to step S6.
  • step S5 the control unit 6 outputs the current command value calculated in step S2 to the inverter 2 to instruct the stator coil 44 to supply the current I1.
  • step S6 the difference between the saturation temperature T1 and the temperature upper limit threshold Tlim is calculated for each part, and the part having the maximum difference is specified.
  • the temperature of the motor is set to the temperature at a certain representative portion such as the coil end, and the control of the motor is changed based on the predicted temperature change at this representative portion.
  • the control unit 6 calculates the internal temperature distribution of the motor/generator 4 and identifies the portion closest to the temperature upper limit threshold Tlim1.
  • step S4 when it is determined in step S4 that there is a portion where the saturation temperature T1 is equal to or higher than the temperature upper limit threshold Tlim1, the motor generator 4 cannot continue to output the torque request value. This is because it is necessary to stop the operation of the motor/generator 4 when the temperature of the part specified in step S6 reaches the temperature upper limit threshold Tlim1.
  • step S7 it is assumed that the control unit 6 continues to output the torque request value, and in that case, the time t1 required for the temperature of the part specified in step S6 to reach the temperature Tlim1 is set to the temperature model. Is calculated based on the thermal circuit network model.
  • step S8 the control unit 6 outputs a current command value to the inverter 2 so that the stator coil 44 of the motor/generator 4 is supplied with the current I1 during the required time t1.
  • the control unit 6 stops the output of the current command value to the inverter 2 or switches to a current command value lower than the current current command value.
  • the control unit 6 uses the thermal network model shown in FIG.
  • the saturation temperature T1 is calculated using the thermal network model, it is necessary to understand the reference temperature and the amount of heat generated in each part of the motor/generator 4.
  • the reference temperature is calculated by using the temperature detected by the sensor 5 attached to the motor/generator 4, or by using the sensor information from other sensors.
  • examples of the heat generation amount at each portion include stator copper loss, iron loss, mechanical loss, and wind loss.
  • control unit 6 also calculates or measures the heat flux flowing in and out of the motor generator 4.
  • measurement of heat flux there are a method using a heat flux sensor and a method using two temperature sensors.
  • the temperatures T 1 and T 2 at two points are respectively measured by two temperature sensors at a site where the heat capacity is very narrow and negligible, and the thermal resistance R of the site is calculated.
  • the heat flux W can be derived.
  • the control unit 6 calculates the internal temperature of the motor/generator 4 by combining the reference temperature, the amount of heat generation, and the heat flux thus obtained with the thermal circuit network model. Further, here, as the internal temperature of the motor/generator 4, not only the internal temperature at the present time but also the future temperature distribution in which the power continues to be supplied is calculated. Further, the control unit 6 can also calculate the saturation temperature T1 of each part at the final time. Note that the calculation load can be reduced by calculating the temperature distribution at the final time using a thermal circuit network model that ignores the heat capacity of the thermal circuit network model.
  • the parameters such as the thermal resistance and the thermal capacity in the thermal network model which are determined by the specifications of the motor/generator 4, are assumed to be already determined before the motor/generator 4 is operated, and the parameters are determined. By using the value, the calculation load can be reduced.
  • the calculation of the saturation temperature T1 requires information on the amount of heat generation, and some of the amount of heat generation depends on the rotation speed of the rotor 42 of the motor/generator 4. What depends on the rotation speed of the rotor 42 is, for example, iron loss. As described above, iron loss includes hysteresis loss and eddy current loss. Although there are some differences depending on the model formula, the hysteresis loss is generally a formula proportional to the rotation speed, and the eddy current loss is generally a formula proportional to the square of the rotation speed. Therefore, it can be said that the saturation temperature T1 depends on the rotation speed of the rotor 42 of the motor generator 4. Therefore, the saturation temperature T1 is calculated based on the rotation speed of the rotor 42 of the motor/generator 4.
  • the saturation temperature of each part inside the motor/generator 4 is set to T1.
  • a temperature upper limit threshold Tlim1 determined from the material of each part is set in advance.
  • the temperature upper limit threshold value Tlim1 is set to, for example, the melting point of the coating for the stator coil 44, and is set to a temperature at which insulation cannot be guaranteed at temperatures higher than that.
  • the permanent magnet 47 is set to a temperature at which thermal demagnetization occurs, for example.
  • the saturation temperature T1 in each part inside the motor/generator 4 it is sufficient to ignore all the elements of the heat capacity in the thermal network model as shown in FIG. This is because the heat capacity is an element that only affects the transient response of temperature changes. This is clear from the fact that the heat capacity term in the heat circuit equation is proportional to the time derivative of temperature. Therefore, the saturation temperature T1 of each part is calculated from the information on the heat resistance, the heat generation amount, and the motor surface temperature 400.
  • step S6 the control unit 6 uses the saturation temperature T1 calculated in step S3 to identify the part where the difference between the temperature upper limit threshold Tlim1 and the saturation temperature T1 is maximum. Further, the control unit 6 calculates the time t1 required for the temperature of the specified portion to reach the temperature upper limit threshold Tlim1 from the current temperature. The required time t1 is calculated based on the thermal network model. At this time, depending on the model configuration, there is a possibility that the required time t1 can be calculated from only a part of the thermal network model. Therefore, in that case, the required time t1 may be calculated from a part of the thermal circuit network model. After calculating the required time t1 by the above method, the control unit 6 outputs information on the calculated required time t1 to the vehicle-mounted ECU.
  • control unit 6 transmits to the inverter 2 the current command value for outputting the torque according to the torque request value.
  • the inverter 2 switches the switching element 3 based on the current command value, and supplies a current to the stator coil 44 of the motor/generator 4.
  • the control device calculates the time t1 required for supplying the current based on the current command value to the motor generator 4. In this way, if the required time t1 during which the power can be supplied can be grasped in advance, the host vehicle-mounted ECU also determines whether or not the power can be supplied during the desired time when the motor/generator 4 is desired to operate. I can do things. Further, when it is determined that the power can be supplied, the control unit 6 may supply the power as it is.
  • control unit 6 energizes the specific portion where the temperature becomes the most severe for a time t1 required to reach the temperature upper limit threshold Tlim1 and then stops the energization. Such control can be performed.
  • the conventional method was to monitor the representative part of the motor with a temperature sensor and calculate the time to reach the preset temperature.
  • the temperature limit operation of the motor can be realized only when the representative portion of the motor is the portion where the temperature becomes the severest inside the motor.
  • the following problems also occur.
  • a representative portion of a motor is a stator coil.
  • the portion where the temperature becomes the most severe during motor operation is the permanent magnet in the rotor.
  • the temperature of the permanent magnet exceeds the limit, and the temperature of the motor becomes high, which may lead to deterioration in characteristics.
  • the control unit 6 calculates the time t1 required for the specified portion to reach the temperature limit indicated by the temperature upper limit threshold Tlim1. In this way, by calculating the required time t1 as the time during which power can be supplied, the motor/generator 4 can be operated during the time until the temperature limit which the motor/generator 4 originally allows is reached. As a result, the torque output can be increased as compared with the conventional case.
  • the time required to realize the operation and output the desired torque is transmitted to the higher-level in-vehicle ECU at any time, so that the higher-level in-vehicle ECU can achieve the operation required for the motor generator 4 in the future. It is possible to determine whether or not it is possible in.
  • the control unit 6 calculates the saturation temperature T1 based on the rotation speed of the rotor 42 of the motor/generator 4. As described above, by using the rotation speed as the heat generation amount in the internal temperature model of the motor/generator 4, it is possible to consider the iron loss or the like proportional to the rotation speed or the square thereof. Further, it becomes possible to calculate the internal temperature distribution of the motor/generator 4 corresponding to the change of the rotation speed, and as a result, it is possible to realize the expansion of the torque output according to the rotation speed.
  • the control unit 6 calculates the current command value based on the torque request value and supplies the stator coil 44 with the current I1 based on the current command value during the required time t1. Let In this way, when the motor/generator 4 operates, by actually supplying the current to the motor/generator 4, it is possible to realize the expansion of the torque output as compared with the conventional case.
  • the saturation temperature T1 and the temperature upper limit among the saturation temperatures T1 calculated for the respective parts inside the motor/generator 4 are specified as the specified parts for calculating the required time t1.
  • the part having the maximum difference from the threshold value Tlim1 is selected and specified.
  • Embodiment 2 A control device according to Embodiment 2 of the present invention will be described with reference to FIGS. 5 and 6.
  • the configurations of the control device and the motor/generator 4 according to the second embodiment are the same as those of the first embodiment described above, and therefore the description thereof will be omitted here.
  • FIG. 5 is a graph showing changes in the internal temperature of the motor/generator 4 when the control device according to the second embodiment controls the motor/generator 4.
  • the horizontal axis represents time and the vertical axis represents temperature.
  • the required time t1 is such that when the current I1 is started to be supplied while the temperature of a certain portion of the motor/generator 4 is the initial temperature T0, the temperature of the certain portion changes from the initial temperature T0 to the temperature upper limit threshold Tlim1. Indicates the time required to reach it.
  • the saturation temperature T1 indicates the temperature at the final time of the certain part when the current I1 is continuously supplied.
  • the required time t1j reaches the temperature upper limit threshold value Tlim1 from the temperature T0j when the current I1j starts to be supplied when the temperature of a certain part of the motor/generator 4 is the temperature T0j. Indicates the time required until.
  • the process of calculating the time t1 required to reach the temperature Tlim1 and energizing the current I1 only during the time t1 is the same as in the first embodiment.
  • the processing is added when the operation of the motor/generator 4 is changed by an instruction from the vehicle-mounted ECU at the time before the required time t1 elapses. Different from 1.
  • An example will be described below. For example, it is assumed that the torque request value delivered from the vehicle-mounted ECU has increased at a time before the required time t1 has elapsed.
  • the temperature of the internal portion of the motor/generator 4 at that time is T0j.
  • j is a natural number and indicates the number of times the required torque value has been changed.
  • the temperature at which the torque request value is changed for the first time after the energization of the motor/generator 4 is started is defined as the temperature T01.
  • the temperature at the time when the torque request value is changed for the second time after the energization of the motor/generator 4 is started is defined as the temperature T02.
  • the control unit 6 determines again whether the torque according to the torque request value can be output. When it is determined that the output is impossible, the control unit 6 transmits a torque output impossible signal to the vehicle-mounted ECU. On the other hand, when it is determined that the output is possible, the control unit 6 starts calculation of the internal temperature distribution of the motor/generator 4, as in the first embodiment. Since the current value changes with the change in the torque request value, the control unit 6 also recalculates the heat generation amount. The current supplied to the motor/generator 4 at this time is referred to as a current I1j.
  • the calorific value calculation method is the same as in the first embodiment, and the control unit 6 calculates copper loss, iron loss, and the like.
  • the control unit 6 calculates the internal temperature distribution of the motor/generator 4 and calculates the saturation temperature T1 in the same procedure as in the first embodiment using the generated heat value. Further, the control unit 6 compares the saturation temperature T1 with a preset temperature upper limit threshold Tlim1 to identify a portion where the saturation temperature T1 is equal to or higher than the temperature upper limit threshold Tlim1. After that, the control unit 6 calculates the time t1j required to reach the temperature upper limit threshold value Tlim1 at the relevant portion, based on the time when the torque request value changes. The above operation is shown as a flowchart in FIG.
  • step S1 to step S7 is the same as the processing from step S1 to step S7 shown in FIG. 3, and therefore the description thereof is omitted here.
  • step S18 as in step S2 of FIG. 3, the control unit 6 outputs a current command value to the inverter 2 so that the stator coil 44 of the motor/generator 4 is energized with current.
  • step S19 the control unit 6 determines whether the required time t1 has elapsed from the start of energization. If the required time t1 has elapsed, the processing of FIG. 6 ends. On the other hand, if the required time t1 has not elapsed, the process proceeds to step S20.
  • step S20 the control unit 6 determines whether or not the torque request value newly received from the vehicle-mounted ECU is larger than the torque request value received in step S1. If the result of determination is that the torque request value has not increased, processing returns to step S18. On the other hand, if the torque request value has increased, the process proceeds to step S21.
  • step S21 it is determined whether the torque can be output according to the torque request value newly received from the vehicle-mounted ECU. If it is determined that the output is impossible, the process proceeds to step S22. On the other hand, if it is determined that the output is possible, the process proceeds to step S23.
  • step S22 the control unit 6 outputs a torque output disable signal to the vehicle-mounted ECU. Then, the process of FIG. 6 is completed.
  • step S23 the control unit 6 calculates and updates the current command value for the inverter 2 based on the torque request value in the same procedure as in step S2.
  • step S24 the control unit 6 calculates the saturation temperature T1 of each part of the motor/generator 4 using the thermal network model in the same procedure as in step S3.
  • step S25 the control unit 6 identifies the part where the difference between the saturation temperature T1 and the temperature upper limit threshold Tlim is the maximum, in the same procedure as in step S6.
  • step S26 it is assumed that the control unit 6 continues to output the torque according to the torque request value in the same procedure as in step S7. In that case, the part specified in step S25 reaches the temperature Tlim1. The required time t1j up to is calculated. After the calculation, the process returns to step S18.
  • the steps S18 to S26 of FIG. 6 are executed each time the torque request value changes based on the command from the host ECU, as described above. Therefore, in the above description, the number of times the required torque value has changed has been described as one. However, each time the torque command value further changes, the control unit 6 repeats the calculation of the amount of heat generation according to the change, and The saturation temperature T1 of is calculated. In addition, this step is performed regardless of whether the inverter 2 is carrying a current. Therefore, the torque request value from the higher-level vehicle-mounted ECU changes during torque generation, and this is also performed when changing the energization current.
  • the present invention is not limited to this, and the control unit 6 calculates the required time t1j at any time even when the torque request value decreases. Then, the information is transmitted to the higher-level vehicle-mounted ECU.
  • the first embodiment is suitable as a motor limit operation realizing method when a command from the host vehicle-mounted ECU is once received, it is insufficient to deal with a change in state during operation.
  • the control unit 6 even if the operating state of the motor/generator 4 changes, the control unit 6 always calculates the temperature distribution of the motor/generator 4, so that the limit operation of the motor can always be realized.
  • the control unit 6 updates the current command value based on the changed torque request value. Further, the control unit 6 determines that the temperature of at least the specified portion of the respective portions of the motor generator 4 when the current I1j based on the updated current command value is applied to the coils of the respective phases of the stator coil 44, The time t1j required to reach the temperature upper limit threshold Tlim1 is calculated based on the internal temperature distribution. As a result, even after the internal temperature distribution of the motor/generator 4 is once predicted, even when the operating state of the motor/generator 4 changes, it is possible to deal with it by appropriately updating the temperature distribution prediction.
  • Embodiment 3 A control device according to the third embodiment of the present invention will be described with reference to FIG.
  • the configurations of the control device and the motor/generator 4 according to the third embodiment are the same as those of the first embodiment described above, and therefore the description thereof is omitted here.
  • one temperature upper limit threshold Tlim is set for each part, but in the third embodiment, a plurality of temperature upper limit thresholds Tlim are set for each part. It will be set. That is, consider the case where the temperature upper limit threshold Tlim is applied to the stator coil 44, for example. When the temperature upper limit threshold Tlim of the stator coil 44 is set near the melting point of the coil coating, the temperature upper limit threshold Tlim1 may be set to 90% of the temperature upper limit Tlim. In this way, K is a natural number of 2 or more, and K temperature upper limit thresholds Tlim1, Tlim2,..., Tlimk, Tlimk+1,..., TlimK are set for each part. Here, K and k are natural numbers.
  • FIG. 7 is a graph showing changes in the internal temperature of the motor/generator 4 when the control device according to the third embodiment controls the motor/generator 4.
  • the horizontal axis represents time and the vertical axis represents temperature.
  • the first temperature upper limit threshold is Tlim1 and the second temperature upper limit threshold is Tlim2.
  • the value of the second temperature upper limit threshold Tlim2 is larger than the first temperature upper limit threshold Tlim1.
  • control unit 6 takes time required for the temperature of each part of motor generator 4 to reach first temperature upper limit threshold value Tlim1. t1 is calculated, and the current I1 is applied to the stator coil 44. After that, when the temperature of the stator coil 44 reaches Tlim1, the control unit 6 transmits a signal indicating that the temperature upper limit threshold Tlimk has been reached to the host vehicle-mounted ECU.
  • the control unit 6 sets a new temperature upper limit threshold value Tlim2, and calculates a time t2 required for supplying a current until the temperature of each part of the motor/generator 4 reaches the new temperature upper limit threshold value Tlim2. ..
  • the current value to be applied when calculating the required time t2 is the second current I2.
  • the second current I2 is set in the same manner as the operation of the first embodiment based on the torque request value instructed by the host vehicle ECU. However, the second current I2 is set to a value smaller than the current I1 that has been flowing until then.
  • the control unit 6 transmits the calculated second required time t2 to the higher-level vehicle-mounted ECU as information.
  • the temperature upper limit threshold value Tlimk is set to a value smaller than the saturation temperature T1
  • the current Ik is passed through the stator coil 44, and the internal portion of the motor/generator 4 is supplied.
  • the control unit 6 calculates the second required time t(k+1) until the second temperature upper limit threshold Tlim(k+1) set again is reached.
  • the control unit 6 can control the degree of temperature rise until reaching the saturation temperature T1. For example, when the torque request value is transmitted from the host vehicle-mounted ECU, the output state of the motor/generator 4 can be maintained for a long time, and further, the high output can be maintained for the required time. It will be possible.
  • the increase range of the second temperature upper limit threshold value Tlim(k+1) with respect to the temperature upper limit threshold value Tlimk may be set as appropriate according to the characteristics or application of the motor/generator 4. Further, the increments of the adjacent temperature upper limit threshold values may be the same or different. That is, the increase amount of the temperature upper limit threshold value Tlim2 with respect to the temperature upper limit threshold value Tlim1 and the increase amount of the second temperature upper limit threshold value Tlim(k+1) with respect to the temperature upper limit threshold value Tlimk at any k may be the same or different. ..
  • the reduction range of the current (k+1) with respect to the current Ik may be set as appropriate according to the characteristics or application of the motor/generator 4. Further, the widths of the adjacent currents may be all the same or different. That is, the reduction width of the current I2 with respect to the current I1 and the reduction width of the current I(k+1) with respect to the current Ik at an arbitrary k may be the same or different.
  • steps S1 to S8 in FIG. 3 are performed as in the first embodiment, and therefore the same effects as those in the first embodiment can be obtained.
  • the control unit 6 determines the specified value.
  • the temperature upper limit threshold value Tlim(k+1) larger than the temperature upper limit threshold value Tlimk is newly set for the determined portion. Then, the control unit 6 causes the temperature of the specified portion when the current I(k+1) having a value smaller than the current Ik is applied to the stator coil 44 to reach the temperature upper limit threshold Tlim(k+1) from the temperature upper limit threshold Tlimk.
  • the required time t(k+1) up to is calculated based on the internal temperature distribution.
  • the control unit 6 controls the motor/generator 4 for another newly set temperature upper limit threshold.
  • the operation of the motor/generator 4 can be gradually brought close to the limit temperature.
  • the operation of the motor/generator 4 can be stopped and the temperature can be protected.
  • the configuration of the motor/generator 4 is not limited to the rotor 42 including the permanent magnet 47. That is, it may be a rotor including a field winding. In that case, the control unit 6 calculates the temperature of the field winding as one of the elements of the thermal network model.
  • the number of temperature sensors or heat flux sensors that transmit information to the control unit 6 is not limited to one, and a plurality of temperature sensors or heat flux sensors may be arranged. Further, the temperature detected by at least one of the temperature sensor and the heat flux sensor arranged in plurals is transmitted to the control unit 6 and utilized for calculating the temperature distribution inside the motor generator 4. May be.
  • control method using only the temperature distribution inside the motor/generator 4 has been described, but the present invention is not limited to this, and a method in combination with the inverter 2 or a converter (not shown) may be used. You can have it. For example, control may be performed in which information on the switching element 3 in the inverter 2 is passed to the control unit 6.
  • the motor/generator 4 is described assuming a driving state, but the present invention is not limited to this, and the same applies when the motor/generator 4 is in a regenerative state. I can say things.
  • Each function of the control unit 6 in the control device according to the first to third embodiments described above is realized by a processing circuit.
  • the processing circuit that implements each function may be dedicated hardware or a processor that executes a program stored in the memory.
  • the processing circuit is dedicated hardware
  • the processing circuit is, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC (Application Specific Integrated Circuit), or an FPGA (Field Programmable Gate Array). , Or a combination of these.
  • Each function of the control unit 6 may be realized by an individual processing circuit, or each function may be collectively realized by one processing circuit.
  • each function of the control unit 6 is realized by software, firmware, or a combination of software and firmware.
  • Software and firmware are described as programs and stored in memory.
  • the processor realizes each function by reading and executing the program stored in the memory. That is, the control unit 6 includes a memory for storing a program that, when executed by the processing circuit, results in that each step executed by the control unit 6 is executed.
  • the memory is, for example, a RAM (Random Access Memory), a ROM (Read Only Memory), a flash memory, an EPROM (Erasable Programmable Read Only Memory, etc.), an EEPROM (Electrically Organized Memory), or an EEPROM (Electrically Dirty Memory).
  • a volatile semiconductor memory is applicable.
  • a magnetic disk, a flexible disk, an optical disk, a compact disk, a mini disk, a DVD, etc. also correspond to the memory.
  • each unit described above may be partially implemented by dedicated hardware and partially implemented by software or firmware.
  • the processing circuit can realize the function of each unit described above by hardware, software, firmware, or a combination thereof.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Control Of Electric Motors In General (AREA)

Abstract

This control device comprises a control unit 6, wherein the control unit 6: calculates a saturation temperature T1 of individual parts inside a motor generator 4 when operation of the motor generator 4 continued, the calculations of saturation temperature T1 being based on the initial temperature of the parts at the start of operation of the motor generator 4 and on a thermal circuit network model of the motor generator 4; and, of the parts when operation of the motor generator 4 has been continued, calculates a required time t1 for the temperature of a part specified on the basis of the saturation temperature T1 to reach a temperature upper limit threshold Tlim1, the calculations of required time t1 being based on the thermal circuit network model.

Description

制御装置Control device
 この発明は、ステータとロータとからなるモータを制御する制御装置に関するものである。 The present invention relates to a control device for controlling a motor including a stator and a rotor.
 モータは、既存の自動車においてはオルタネータ・ジェネレータとして用いられ、電気自動車、ハイブリッド自動車などの電動車両においては、駆動モータとして用いられている。これらのモータは、高トルク化、高出力化などの目的で、駆動可能範囲を拡張するために、モータ温度に基づいて制御されている。 The motor is used as an alternator/generator in existing vehicles, and as a drive motor in electric vehicles such as electric vehicles and hybrid vehicles. These motors are controlled based on the motor temperature in order to expand the drivable range for the purpose of increasing torque and output.
 例えば特許文献1に示す従来の電動車両は、モータと、インバータと、電動車両を制御する制御装置とを備えている。特許文献1の制御装置は、インバータおよびモータの温度変化を推定し、モータの駆動可能時間およびインバータの駆動可能時間のいずれか一方の小さい方の値が、予め設定された時間以下になったときに、モータ走行モードを切り替えている。 For example, the conventional electric vehicle shown in Patent Document 1 includes a motor, an inverter, and a control device that controls the electric vehicle. The control device of Patent Document 1 estimates the temperature change of the inverter and the motor, and when the smaller value of either the drivable time of the motor or the drivable time of the inverter is less than or equal to a preset time. Then, the motor drive mode is switched.
 また、別の従来の電動車両は、例えば特許文献2に示すように、モータの温度を検出する温度検出手段と、車両の運転者からの指示とモータの検出温度とに基づいてモータを制御する制御手段とが設けられている。また、特許文献2に記載の電動車両は、モータの駆動状態を検出する状態検出手段と、モータの検出温度が予め設定された保護温度に達した場合に、モータの駆動状態を予め設定された範囲内に抑止する電動機制御手段を備えている。特許文献2の制御手段は、モータの温度が保護温度に到達するまでの時間を、モータの検出温度に基づいて予測する時間予測手段を備え、予測した時間を運転者に通知する。 Another conventional electric vehicle, for example, as shown in Patent Document 2, controls a motor based on temperature detection means for detecting the temperature of the motor, an instruction from the driver of the vehicle, and the detected temperature of the motor. Control means are provided. Further, the electric vehicle described in Patent Document 2 has a state detection unit that detects a drive state of the motor and a drive state of the motor that is preset when the detected temperature of the motor reaches a preset protection temperature. An electric motor control means for restraining the motor within the range is provided. The control unit of Patent Document 2 includes a time prediction unit that predicts the time until the temperature of the motor reaches the protection temperature based on the detected temperature of the motor, and notifies the driver of the predicted time.
特開2017-63575号公報JP, 2017-63575, A 特開2003-134609号公報JP-A-2003-134609
 特許文献1および特許文献2に記載の従来のモータ制御技術においては、モータまたはインバータの検出温度に基づいて、モータの温度変化を予測している。そのため、インバータ素子に過電流が流れることを防止する効果は得られる。しかしながら、モータから出力されるトルクは、或る制限値以下に留まり、高トルク化および高出力化させる手法までには至っていないという問題点があった。 In the conventional motor control techniques described in Patent Document 1 and Patent Document 2, the temperature change of the motor is predicted based on the detected temperature of the motor or the inverter. Therefore, the effect of preventing overcurrent from flowing through the inverter element can be obtained. However, there is a problem in that the torque output from the motor remains below a certain limit value, and a method for increasing the torque and increasing the output has not been reached.
 さらに、従来のモータ制御技術は、モータの温度が保護温度に到達するか否かを判定する際に、モータの内部温度のうち、最も温度変化を考慮すべき部位を特定して当該部位の温度に基づいて判定することまでは行っていない。従って、従来のモータ制御技術は、モータが本来有する温度限界付近までの動作を実現できていないという問題点があった。 Furthermore, in the conventional motor control technology, when determining whether or not the temperature of the motor reaches the protection temperature, the part of the internal temperature of the motor where the temperature change should be considered is specified and the temperature of the part is determined. It has not been decided based on. Therefore, the conventional motor control technique has a problem that the operation cannot be realized up to near the temperature limit originally possessed by the motor.
 この発明は、かかる問題点を解決するためになされたものであり、モータを限界動作させ、出力を向上することが可能な、制御装置を得ることを目的としている。 The present invention has been made in order to solve such a problem, and an object thereof is to obtain a control device capable of limiting the operation of a motor and improving the output.
 この発明に係る制御装置は、ステータとロータとからなるモータを制御する制御部を備え、前記制御部は、前記モータの動作を継続し続けた場合における前記モータの内部に設けられた各部位の飽和温度を、前記モータの動作開始時の前記各部位の初期温度と前記モータの温度モデルとに基づいて算出し、前記飽和温度と予め設定された温度上限閾値とに基づいて、前記各部位の中から1つの部位を特定し、前記モータの動作を継続し続けた場合に、前記モータの動作開始時から、特定された前記部位の温度が前記温度上限閾値に到達するまでの所要時間を、前記温度モデルに基づいて算出し、前記所要時間の間、前記モータに電流を通電させる。 A control device according to the present invention includes a control unit that controls a motor that includes a stator and a rotor, and the control unit controls each portion provided inside the motor when the operation of the motor is continued. The saturation temperature is calculated based on the initial temperature of each part at the time of starting the operation of the motor and the temperature model of the motor, and based on the saturation temperature and a preset temperature upper limit threshold value of each part. When one part is specified from the inside and the operation of the motor is continued, the time required from the start of the operation of the motor until the temperature of the specified part reaches the temperature upper limit threshold value, It is calculated based on the temperature model, and current is passed through the motor for the required time.
 この発明に係る制御装置によれば、モータを限界動作させ、出力を向上させることができる。 According to the control device of the present invention, it is possible to limit the operation of the motor and improve the output.
この発明の実施の形態1に係る制御装置の構成を示す構成図である。It is a block diagram which shows the structure of the control apparatus which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係る制御装置におけるモータ内部モデルに対応する熱回路網モデルを示す図である。It is a figure which shows the thermal circuit network model corresponding to the motor internal model in the control apparatus which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係る制御装置の処理の流れを示すフローチャートである。3 is a flowchart showing a processing flow of the control device according to the first embodiment of the present invention. この発明の実施の形態1に係る制御装置におけるモータを制御する際のモータ内部温度の推移をグラフで示した図である。FIG. 6 is a graph showing a transition of a motor internal temperature when controlling a motor in the control device according to the first embodiment of the present invention. この発明の実施の形態2に係る制御装置におけるモータを制御する際のモータ内部温度の推移をグラフで示した図である。It is the figure which showed the transition of the motor internal temperature at the time of controlling the motor in the control apparatus concerning Embodiment 2 of this invention in a graph. この発明の実施の形態2に係る制御装置の処理の流れを示すフローチャートである。5 is a flowchart showing a processing flow of the control device according to the second embodiment of the present invention. この発明の実施の形態3に係る制御装置におけるモータを制御する際のモータ内部温度の推移をグラフで示した図である。It is the figure which showed the transition of the motor internal temperature at the time of controlling the motor in the control apparatus which concerns on Embodiment 3 of this invention in the graph.
 以下、この発明に係る制御装置の実施の形態について、図面に基づいて説明する。なお、各図面において、同一または相当する構成については、同一符号を付して示し、重複する説明は省略する。 An embodiment of a control device according to the present invention will be described below with reference to the drawings. In each drawing, the same or corresponding components are designated by the same reference numerals, and duplicate description will be omitted.
 実施の形態1.
 図1は、この発明の実施の形態1に係る制御装置の構成を示す図である。ここでは、制御装置として、電動機駆動制御装置を例に挙げて説明するが、この発明は、これに限定されるものではない。本実施の形態1においては、図1に示すように、制御装置は、モータ・ジェネレータ4を制御対象としているが、これに限定されるものではなく、この発明に係る制御装置は、各種モータの動作の制御に適用可能である。図1に示すように、本実施の形態1に係る制御装置は、直流電源1と、インバータ2と、センサ5と、制御部6とを備えている。以下、これらについて説明する。
Embodiment 1.
1 is a diagram showing a configuration of a control device according to Embodiment 1 of the present invention. Here, an electric motor drive control device will be described as an example of the control device, but the present invention is not limited to this. In the first embodiment, as shown in FIG. 1, the control device controls the motor/generator 4, but the present invention is not limited to this, and the control device according to the present invention controls various motors. It is applicable to control of movement. As shown in FIG. 1, the control device according to the first embodiment includes a DC power supply 1, an inverter 2, a sensor 5, and a control unit 6. These will be described below.
 モータ・ジェネレータ4は、図2の右図のモータ内部モデルに示されるように、ステータ41とロータ42とから構成されている。ステータ41は、例えばステータコア43とステータコイル44とから構成されている。ステータコイル44は、U相、V相およびW相の3相のコイルから構成されている。ステータコイル44の各相のコイルは、ステータコア43に設けられた複数のティースに巻き回されている。ステータ41は、さらに、ステータフレームとベアリングとを有していてもよい。ロータ42は、図示しないベアリングを介して、ステータ41に対し、回転可能に設けられている。ロータ42は、シャフト45を回転軸として回転する。また、ロータ42は、例えばロータコア46と複数の永久磁石47とから構成されている。永久磁石47は、ロータコア46の外周に沿って配置されている。ステータコア43とロータコア46との間にはギャップと呼ばれる空隙が存在する。ステータコア43とロータコア46とは、それぞれ、積層された複数の電磁鋼板から構成されている。モータ・ジェネレータ4は、ロータ42にて磁束を発生させた状態で、ステータコイル44に電流を通電させることで、トルクを出力する。 The motor/generator 4 is composed of a stator 41 and a rotor 42 as shown in the motor internal model in the right diagram of FIG. The stator 41 is composed of, for example, a stator core 43 and a stator coil 44. The stator coil 44 is composed of three-phase coils of U phase, V phase and W phase. The coils of each phase of the stator coil 44 are wound around a plurality of teeth provided on the stator core 43. The stator 41 may further include a stator frame and bearings. The rotor 42 is rotatably provided with respect to the stator 41 via a bearing (not shown). The rotor 42 rotates with the shaft 45 as the rotation axis. The rotor 42 is composed of, for example, a rotor core 46 and a plurality of permanent magnets 47. The permanent magnets 47 are arranged along the outer circumference of the rotor core 46. A gap called a gap exists between the stator core 43 and the rotor core 46. The stator core 43 and the rotor core 46 are each composed of a plurality of laminated electromagnetic steel plates. The motor/generator 4 outputs torque by energizing the stator coil 44 with a current while the magnetic flux is generated in the rotor 42.
 図1の説明に戻る。直流電源1は、インバータ2に接続されている。直流電源1は、例えば、鉛蓄電池、リチウムイオンバッテリなどの蓄電装置によって構成されている。直流電源1は、インバータ2へ電力を供給する。 Return to the explanation of Figure 1. The DC power supply 1 is connected to the inverter 2. The DC power supply 1 is configured by a power storage device such as a lead storage battery or a lithium ion battery. The DC power supply 1 supplies electric power to the inverter 2.
 インバータ2は、直流電源1からの直流電力を交流電力へ変換する。インバータ2は、内部に1以上のスイッチング素子3を有している。インバータ2は、スイッチング素子3を導通させることにより、モータ・ジェネレータ4のステータ41のステータコイル44に電流を通電させる。インバータ2は、スイッチング素子3のスイッチング動作を制御することにより、ステータ41のステータコイル44に通電する電流の振幅および位相を制御する。 The inverter 2 converts the DC power from the DC power supply 1 into AC power. The inverter 2 has one or more switching elements 3 inside. The inverter 2 energizes the stator coil 44 of the stator 41 of the motor/generator 4 by making the switching element 3 conductive. The inverter 2 controls the switching operation of the switching element 3 to control the amplitude and phase of the current flowing through the stator coil 44 of the stator 41.
 センサ5は、モータ・ジェネレータ4の内部に取付けられている。センサ5は、モータ・ジェネレータ4の状態を検出する。ここでは、センサ5は、例えば温度センサ、熱流束センサなど、モータ・ジェネレータ4の熱に関する情報を検出する。また、センサ5に用いられる温度センサの例としては、熱電対、サーミスタなどが挙げられる。 The sensor 5 is attached inside the motor generator 4. The sensor 5 detects the state of the motor/generator 4. Here, the sensor 5 detects information about the heat of the motor generator 4, such as a temperature sensor and a heat flux sensor. Moreover, examples of the temperature sensor used for the sensor 5 include a thermocouple and a thermistor.
 制御部6はインバータ2を制御する。制御部6は、インバータ2に対して、スイッチング素子3のスイッチングタイミングを指令して、ステータ41の各相のステータコイル44に通電する電流の電流値を制御する。制御部6は、センサ5によって検出された情報を取込み、当該情報を電流値の制御に用いる。制御部6は、インバータ2への電流指令値を作成する制御ロジックと、熱回路網モデルを用いてモータ内部温度分布を算出する制御ロジックとを有している。 The control unit 6 controls the inverter 2. The control unit 6 instructs the inverter 2 on the switching timing of the switching element 3 to control the current value of the current flowing through the stator coil 44 of each phase of the stator 41. The control unit 6 takes in the information detected by the sensor 5 and uses the information for controlling the current value. The control unit 6 has a control logic that creates a current command value for the inverter 2 and a control logic that calculates a motor internal temperature distribution using a thermal network model.
 熱回路網モデルは、以下の要素から構成される。
 (i)モータ・ジェネレータ4の内部に発生する発熱。当該内部に発生する発熱は、ステータコイル44へ通電する電流の値、および、モータ・ジェネレータ4の回転数などを用いて演算される。
 (ii)モータ・ジェネレータ4の内部から外部へ、および、外部から内部へ伝達される熱流束。
 (iii)モータ・ジェネレータ4の複数の熱抵抗。これらの熱抵抗は、モータ・ジェネレータ4の内部の材質または形状を元に構成される。
 (iv)モータ・ジェネレータ4の複数の熱容量。これらの熱容量は、モータ・ジェネレータ4の内部の材質または形状を元に構成される。
The thermal network model is composed of the following elements.
(I) Heat generated inside the motor generator 4. The heat generated inside is calculated by using the value of the current passed through the stator coil 44, the rotation speed of the motor/generator 4, and the like.
(Ii) Heat flux transferred from the inside to the outside of the motor generator 4 and from the outside to the inside.
(Iii) A plurality of thermal resistances of the motor/generator 4. These thermal resistances are configured based on the material or shape inside the motor generator 4.
(Iv) Multiple heat capacities of the motor/generator 4. These heat capacities are configured based on the material or shape inside the motor generator 4.
 熱回路網モデルは、各発熱、各熱流束、各熱抵抗、および、各熱容量が、ノード間で互いに接続されるような構成となっている。 The thermal circuit network model is configured such that each heat generation, each heat flux, each heat resistance, and each heat capacity are connected to each other between nodes.
 熱回路網モデルは、図2に示されるように、モータ・ジェネレータ4の内部に対応付けられる。 The thermal circuit network model is associated with the inside of the motor/generator 4, as shown in FIG.
 図2について簡単に説明する。図2において、左図が熱回路網モデルを示し、右図がモータ・ジェネレータ4の内部モデルを示す。図2の右図において、符号40は、モータ・ジェネレータ4のモータ表面を示す。図2の左図の熱回路網モデルにおいて、符号400はモータ表面40の温度を示し、符号440はステータコイル44の発熱を示し、符号470は永久磁石47の発熱を示し、符号460はロータコア46の発熱を示し、符号480はシャフト45を介してモータの内部から外部へ、および、モータの外部から内部に伝達される熱流束を示す。また、図2の右図において、符号<1>はステータコア43部分の部位を示し、符号<2>はステータコイル44部分の部位を示す。ここで、符号<2>で示すステータコイル44部分の部位が、モータ・ジェネレータ4の発熱部を構成している。また、符号<3>は永久磁石47部分の部位を示し、符号<4>はロータコア46部分の部位を示し、符号<5>はシャフト45部分の部位を示す。このとき、図2の右図のモータ内部モデルにおける各部位<1>,<2>,<3>,<4>および<5>は、図2の左図の熱回路網モデルの<1>,<2>,<3>,<4>および<5>の各要素にそれぞれ対応している。 Brief explanation of Figure 2. In FIG. 2, the left diagram shows a thermal network model, and the right diagram shows an internal model of the motor generator 4. In the right diagram of FIG. 2, reference numeral 40 indicates a motor surface of the motor generator 4. In the thermal network model on the left side of FIG. 2, reference numeral 400 indicates the temperature of the motor surface 40, reference numeral 440 indicates the heat generation of the stator coil 44, reference numeral 470 indicates the heat generation of the permanent magnet 47, and reference numeral 460 indicates the rotor core 46. And 480 indicates a heat flux transferred from the inside of the motor to the outside and from the outside of the motor to the inside via the shaft 45. Further, in the right diagram of FIG. 2, reference numeral <1> indicates a portion of the stator core 43 portion, and reference numeral <2> indicates a portion of the stator coil 44 portion. Here, the portion of the stator coil 44 portion indicated by reference numeral <2> constitutes the heat generating portion of the motor generator 4. Reference numeral <3> indicates a portion of the permanent magnet 47 portion, reference numeral <4> indicates a portion of the rotor core 46 portion, and reference numeral <5> indicates a portion of the shaft 45 portion. At this time, the respective parts <1>, <2>, <3>, <4> and <5> in the motor internal model of the right diagram of FIG. 2 are the same as the <1> of the thermal network model of the left diagram of FIG. , <2>, <3>, <4>, and <5>, respectively.
 以下の説明においては、モータ・ジェネレータ4の各部位として、図2の右図のモータ内部モデルにおける各部位<1>,<2>,<3>,<4>および<5>を例に挙げて説明するが、これ以外の部位に対応する要素を熱回路網モデルが含んでいてもよい。また、各部位<1>,<2>,<3>,<4>および<5>を、以下では、単に、「各部位」あるいは「モータ・ジェネレータ4の内部の各部位」と呼ぶこととする。 In the following description, as the parts of the motor generator 4, the parts <1>, <2>, <3>, <4> and <5> in the motor internal model shown in the right diagram of FIG. 2 are taken as an example. However, the thermal network model may include elements corresponding to other parts. Further, in the following, each part <1>, <2>, <3>, <4> and <5> will be simply referred to as “each part” or “each part inside the motor generator 4”. To do.
 上記(iii)で示した、モータ・ジェネレータ4の内部の各部位の熱抵抗Rは、当該部位の熱伝導率k、断面積A、および、長さlを用いて、式(1)のように、それぞれ、表される。 The thermal resistance R of each portion inside the motor/generator 4 shown in (iii) above is calculated by using the thermal conductivity k, the cross-sectional area A, and the length l of the portion as expressed by the equation (1). , Respectively.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 また、上記(iv)で示した、モータ・ジェネレータ4の内部の各部位の熱容量Cは、当該部位の比熱cおよび密度ρを用いて、式(2)のように、それぞれ、表される。 Further, the heat capacity C of each portion inside the motor generator 4 shown in (iv) above is expressed using the specific heat c and the density ρ of the portion, respectively, as in Expression (2).
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 なお、ここで、上記(i)で示した、モータ・ジェネレータ4の内部に発生する発熱には、以下の(a)~(d)の各要素が含まれる。
 (a)ステータコイル44において発生するステータ銅損。
 (b)ステータコア43およびロータコア46の積層された電磁鋼板にて発生する鉄損。
 (c)ロータ42が回転することでベアリング部に発生する機械損。
 (d)ロータ42の回転時にギャップ中の空気の摩擦で発生する風損。
 なお、上記(b)の鉄損には、鋼板のヒステリシス特性によって発生するヒステリシス損と、電磁鋼板内の磁束密度の時間変動によって生じる渦電流損とが存在する。
The heat generated inside the motor/generator 4 shown in (i) above includes the following elements (a) to (d).
(A) Stator copper loss that occurs in the stator coil 44.
(B) Iron loss generated in the electromagnetic steel sheets in which the stator core 43 and the rotor core 46 are laminated.
(C) Mechanical loss that occurs in the bearing portion when the rotor 42 rotates.
(D) Wind loss caused by friction of air in the gap when the rotor 42 rotates.
The iron loss in (b) above includes a hysteresis loss caused by the hysteresis characteristic of the steel sheet and an eddy current loss caused by the time variation of the magnetic flux density in the electromagnetic steel sheet.
 このように、熱回路網モデルは、モータ・ジェネレータ4の内部に対応している。熱回路網モデルは、温度モデルとして、モータ・ジェネレータ4の内部温度分布の算出に用いられる。そのため、熱回路網モデルにおいては、モータ・ジェネレータ4の外界に関する境界条件を設定する必要がある。本実施の形態1における熱回路網モデルは、図2に示すように、モータ表面温度400と熱流束480とを境界条件として、モータ・ジェネレータ4の内部温度分布の算出に用いられる。なお、図2において、モータ表面温度400は、ステータコア43の外周表面の温度を指しているが、これに限るものではない。例えば、モータ・ジェネレータ4がモータフレームを有している場合には、モータ表面温度400を、モータフレームの表面温度、または、モータフレームの内部の冷却水温度にしても良い。 In this way, the thermal circuit network model corresponds to the inside of the motor/generator 4. The thermal circuit network model is used as a temperature model for calculating the internal temperature distribution of the motor/generator 4. Therefore, in the thermal network model, it is necessary to set boundary conditions regarding the external world of the motor/generator 4. As shown in FIG. 2, the thermal network model in the first embodiment is used to calculate the internal temperature distribution of the motor/generator 4 with the motor surface temperature 400 and the heat flux 480 as boundary conditions. In FIG. 2, the motor surface temperature 400 indicates the temperature of the outer peripheral surface of the stator core 43, but is not limited to this. For example, when the motor/generator 4 has a motor frame, the motor surface temperature 400 may be the surface temperature of the motor frame or the cooling water temperature inside the motor frame.
 制御部6は、さらに、車両制御に用いられる図示しない車載ECU(Electronic Control Unit)から、モータ・ジェネレータ4へのトルク要求値を取得することが可能な構成となっている。 The control unit 6 is further configured to be able to acquire a torque request value for the motor/generator 4 from an in-vehicle ECU (Electronic Control Unit) (not shown) used for vehicle control.
 次に、図3および図4を用いて、本実施の形態1に係る制御装置の動作について説明する。 Next, the operation of the control device according to the first embodiment will be described with reference to FIGS. 3 and 4.
 図3は、本実施の形態1に係る制御装置の処理の流れを示すフローチャートである。また、図4は、本実施の形態1に係る制御装置がモータ・ジェネレータ4を制御する際のモータ・ジェネレータ4の内部温度の推移を示したグラフである。 FIG. 3 is a flowchart showing the flow of processing of the control device according to the first embodiment. Further, FIG. 4 is a graph showing a transition of the internal temperature of the motor/generator 4 when the control device according to the first embodiment controls the motor/generator 4.
 図4において、横軸は時間を示し、縦軸は温度を示す。また、符号t1は、モータ・ジェネレータ4の或る部位の温度が初期温度T0の状態で通電を開始して、モータ・ジェネレータ4の動作を継続し続けた場合において、当該或る部位の温度が、動作開始時の初期温度T0から温度上限閾値Tlim1に到達するまでの所要時間を示す。また、符号T1は、ステータコイル44に通電し続けた場合における、当該或る部位の最終時刻における温度を示す。当該温度を、以下では、飽和温度T1と呼ぶ。なお、モータ・ジェネレータ4の内部の部位ごとに、初期温度T0、所要時間t1、温度上限閾値Tlim1、および、飽和温度T1は、それぞれ、異なる。 In FIG. 4, the horizontal axis represents time and the vertical axis represents temperature. Further, reference numeral t1 indicates the temperature of a certain part of the motor/generator 4 when the energization is started in a state where the temperature of the certain part of the motor/generator 4 is the initial temperature T0 and the operation of the motor/generator 4 is continued. , The time required from the initial temperature T0 at the start of operation to reaching the temperature upper limit threshold value Tlim1. The symbol T1 indicates the temperature of the certain part at the final time when the stator coil 44 is continuously energized. Hereinafter, this temperature will be referred to as the saturation temperature T1. The initial temperature T0, the required time t1, the temperature upper limit threshold value Tlim1, and the saturation temperature T1 are different for each part inside the motor generator 4.
 本実施の形態1に係る制御装置においては、図3に示すように、まず、ステップS1において、制御部6が、車載ECUから、トルク要求値を受け取る。トルク要求値は、例えば、車両の運転者のアクセルペダルの踏込量または踏込量の時間変化、モータの回転速度に基づいて、車載ECUにより算出される。車載ECUは、制御部6の外部に設けられている。従って、トルク要求値は、制御部6に対して、外部から入力される。 In the control device according to the first embodiment, as shown in FIG. 3, first, in step S1, the control unit 6 receives a torque request value from the vehicle-mounted ECU. The torque request value is calculated by the vehicle-mounted ECU based on, for example, the amount of depression of the accelerator pedal by the driver of the vehicle, the change over time in the amount of depression, or the rotation speed of the motor. The vehicle-mounted ECU is provided outside the control unit 6. Therefore, the torque request value is externally input to the control unit 6.
 ステップS2では、制御部6は、モータ・ジェネレータ4がトルク要求値に従うトルクが出力可能か否かを、現時点のモータ・ジェネレータ4の回転数および内部温度などを基に判定する。モータ・ジェネレータ4がトルク要求値に従うトルクを出力出来ないと判定した場合、制御部6は、車載ECUにトルク出力不可の信号を出力する。一方、モータ・ジェネレータ4がトルク要求値に従うトルクを出力出来ると判断した場合、制御部6は、トルク要求値に基づいて、インバータ2に対する電流指令値を算出する。これにより、インバータ2は、電流指令値に基づいて、モータ・ジェネレータ4のステータコイル44の各相のコイルに電流I1を通電する。 In step S2, the control unit 6 determines whether or not the motor/generator 4 can output the torque according to the torque request value, based on the current rotational speed of the motor/generator 4, the internal temperature, and the like. When it is determined that the motor/generator 4 cannot output the torque according to the torque request value, the control unit 6 outputs a torque output disable signal to the vehicle-mounted ECU. On the other hand, when it is determined that the motor/generator 4 can output the torque according to the torque request value, the control unit 6 calculates the current command value for the inverter 2 based on the torque request value. As a result, the inverter 2 applies the current I1 to the coils of each phase of the stator coil 44 of the motor/generator 4 based on the current command value.
 ステップS3では、制御部6は、熱回路網モデルを用いて、モータ・ジェネレータ4の内部の各部位の飽和温度T1をそれぞれ算出する。算出方法については、後述する。なお、各部位の飽和温度T1が、モータ・ジェネレータ4の内部温度分布となる。 In step S3, the control unit 6 calculates the saturation temperature T1 of each part inside the motor generator 4 using the thermal circuit network model. The calculation method will be described later. The saturation temperature T1 of each part becomes the internal temperature distribution of the motor/generator 4.
 ステップS4では、各部位の飽和温度T1と、予め設定された温度上限閾値Tlim1とを比較し、飽和温度T1が温度上限閾値Tlim1以上の部位があるか否かを判定する。ここで、いずれの部位においても、飽和温度T1が温度上限閾値Tlim1未満の場合、現在のトルク要求値に従うトルクを出力し続けることが可能であると判定し、ステップS5に進む。一方、飽和温度T1が温度上限閾値Tlim1以上の部位が存在する場合、ステップS6に進む。 In step S4, the saturation temperature T1 of each part is compared with a preset temperature upper limit threshold Tlim1 to determine whether or not there is a part where the saturation temperature T1 is equal to or higher than the temperature upper limit threshold Tlim1. Here, if the saturation temperature T1 is lower than the temperature upper limit threshold Tlim1 in any part, it is determined that the torque according to the current torque request value can be continuously output, and the process proceeds to step S5. On the other hand, if there is a portion where the saturation temperature T1 is equal to or higher than the temperature upper limit threshold Tlim1, the process proceeds to step S6.
 ステップS5では、制御部6は、インバータ2に対して、ステップS2で算出した電流指令値を出力して、ステータコイル44に電流I1を通電するよう指示する。 In step S5, the control unit 6 outputs the current command value calculated in step S2 to the inverter 2 to instruct the stator coil 44 to supply the current I1.
 ステップS6では、各部位について飽和温度T1と温度上限閾値Tlimとの差異を求め、当該差異が最大となる部位を特定する。 In step S6, the difference between the saturation temperature T1 and the temperature upper limit threshold Tlim is calculated for each part, and the part having the maximum difference is specified.
 なお、上記の特許文献2においては、モータの温度を例えばコイルエンドなどのある代表部位における温度とし、この代表部位における予測温度変化をもとにモータの制御を変化させている。これに対して、本実施の形態1においては、制御部6は、モータ・ジェネレータ4の内部温度分布を算出し、温度上限閾値Tlim1に最も近い部位を特定する。 Note that, in Patent Document 2 described above, the temperature of the motor is set to the temperature at a certain representative portion such as the coil end, and the control of the motor is changed based on the predicted temperature change at this representative portion. On the other hand, in the first embodiment, the control unit 6 calculates the internal temperature distribution of the motor/generator 4 and identifies the portion closest to the temperature upper limit threshold Tlim1.
 なお、ステップS4の判定で、飽和温度T1が温度上限閾値Tlim1以上の部位が存在する場合、モータ・ジェネレータ4は、トルク要求値を出力し続けることは出来ない。その理由としては、ステップS6で特定した部位の温度が温度上限閾値Tlim1に到達すると、モータ・ジェネレータ4の動作を停止する必要があるためである。 Note that, when it is determined in step S4 that there is a portion where the saturation temperature T1 is equal to or higher than the temperature upper limit threshold Tlim1, the motor generator 4 cannot continue to output the torque request value. This is because it is necessary to stop the operation of the motor/generator 4 when the temperature of the part specified in step S6 reaches the temperature upper limit threshold Tlim1.
 そこで、ステップS7において、制御部6は、トルク要求値を出力し続ける場合を想定し、その場合に、ステップS6で特定した部位の温度が温度Tlim1に到達するまでの所要時間t1を、温度モデルとしての熱回路網モデルに基づいて算出する。 Therefore, in step S7, it is assumed that the control unit 6 continues to output the torque request value, and in that case, the time t1 required for the temperature of the part specified in step S6 to reach the temperature Tlim1 is set to the temperature model. Is calculated based on the thermal circuit network model.
 ステップS8では、所要時間t1の間、制御部6は、モータ・ジェネレータ4のステータコイル44に電流I1を通電するよう、インバータ2に対して電流指令値を出す。所要時間t1が経過したら、その時点で、制御部6は、インバータ2への電流指令値の出力を停止する、または、現在の電流指令値よりも低い値の電流指令値に切り替える。 In step S8, the control unit 6 outputs a current command value to the inverter 2 so that the stator coil 44 of the motor/generator 4 is supplied with the current I1 during the required time t1. When the required time t1 has elapsed, at that time, the control unit 6 stops the output of the current command value to the inverter 2 or switches to a current command value lower than the current current command value.
 以下、ステップS3における各部位の飽和温度T1の算出方法について説明する。 The method of calculating the saturation temperature T1 of each part in step S3 will be described below.
 まず、モータ・ジェネレータ4の内部温度分布を算出するに当たり、制御部6は、図2に示した熱回路網モデルを使用する。熱回路網モデルを用いて、飽和温度T1を算出する際には、基準となる温度と、モータ・ジェネレータ4の各部位における発熱量とを、把握する必要がある。基準となる温度については、モータ・ジェネレータ4に取付けられたセンサ5による検出温度を用いて算出するか、あるいは、その他のセンサからのセンサ情報を用いて算出する。各部位における発熱量は、上記に示すように、ステータ銅損、鉄損、機械損、風損などが挙げられる。 First, in calculating the internal temperature distribution of the motor/generator 4, the control unit 6 uses the thermal network model shown in FIG. When the saturation temperature T1 is calculated using the thermal network model, it is necessary to understand the reference temperature and the amount of heat generated in each part of the motor/generator 4. The reference temperature is calculated by using the temperature detected by the sensor 5 attached to the motor/generator 4, or by using the sensor information from other sensors. As described above, examples of the heat generation amount at each portion include stator copper loss, iron loss, mechanical loss, and wind loss.
 さらに、制御部6は、モータ・ジェネレータ4の内外へ流れる熱流束についても算出するか、あるいは、計測する。熱流束の計測については、熱流束センサを用いる方法と、2つの温度センサを用いる方法がある。後者については、非常に狭く熱容量を無視できるような部位において2点の温度T1およびT2を2つの温度センサによってそれぞれ計測し、当該部位の熱抵抗Rを算出し、下式(3)から、熱流束Wを導出することが出来る。 Further, the control unit 6 also calculates or measures the heat flux flowing in and out of the motor generator 4. Regarding the measurement of heat flux, there are a method using a heat flux sensor and a method using two temperature sensors. Regarding the latter, the temperatures T 1 and T 2 at two points are respectively measured by two temperature sensors at a site where the heat capacity is very narrow and negligible, and the thermal resistance R of the site is calculated. , The heat flux W can be derived.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 制御部6は、このようにして取得した基準となる温度、発熱量、および、熱流束と、熱回路網モデルとを組合せて、モータ・ジェネレータ4の内部温度を算出する。また、ここで、モータ・ジェネレータ4の内部温度として、現時刻の内部温度だけでなく、通電し続けた未来の温度分布も算出される。さらに、制御部6は、最終時刻における各部位の飽和温度T1の算出も可能である。なお、最終時刻の温度分布については、熱回路網モデルのうち、熱容量を無視した熱回路網モデルを用いて計算することで、計算負荷を低減することが出来る。また、熱回路網モデル内の熱抵抗および熱容量など、モータ・ジェネレータ4の仕様によって決定されているパラメータについては、モータ・ジェネレータ4を動作させる前に既に決定されているものとし、当該決定された値を用いることで、計算負荷を低減することができる。 The control unit 6 calculates the internal temperature of the motor/generator 4 by combining the reference temperature, the amount of heat generation, and the heat flux thus obtained with the thermal circuit network model. Further, here, as the internal temperature of the motor/generator 4, not only the internal temperature at the present time but also the future temperature distribution in which the power continues to be supplied is calculated. Further, the control unit 6 can also calculate the saturation temperature T1 of each part at the final time. Note that the calculation load can be reduced by calculating the temperature distribution at the final time using a thermal circuit network model that ignores the heat capacity of the thermal circuit network model. Further, the parameters such as the thermal resistance and the thermal capacity in the thermal network model, which are determined by the specifications of the motor/generator 4, are assumed to be already determined before the motor/generator 4 is operated, and the parameters are determined. By using the value, the calculation load can be reduced.
 さらに、飽和温度T1の算出においては、発熱量の情報を必要としており、発熱量のうち、モータ・ジェネレータ4のロータ42の回転数に依存するものも存在する。ロータ42の回転数に依存するものとしては、例えば鉄損などが挙げられる。鉄損には、上記の通り、ヒステリシス損と渦電流損とが存在する。モデル式によって多少の違いはあるが、ヒステリシス損は回転数に比例する式が一般的であり、渦電流損は回転数の2乗に比例する式が一般的である。従って、飽和温度T1は、モータ・ジェネレータ4のロータ42の回転数に依存するということが言える。従って、飽和温度T1は、モータ・ジェネレータ4のロータ42の回転数に基づいて、算出される。 Furthermore, the calculation of the saturation temperature T1 requires information on the amount of heat generation, and some of the amount of heat generation depends on the rotation speed of the rotor 42 of the motor/generator 4. What depends on the rotation speed of the rotor 42 is, for example, iron loss. As described above, iron loss includes hysteresis loss and eddy current loss. Although there are some differences depending on the model formula, the hysteresis loss is generally a formula proportional to the rotation speed, and the eddy current loss is generally a formula proportional to the square of the rotation speed. Therefore, it can be said that the saturation temperature T1 depends on the rotation speed of the rotor 42 of the motor generator 4. Therefore, the saturation temperature T1 is calculated based on the rotation speed of the rotor 42 of the motor/generator 4.
 ここで、モータ・ジェネレータ4の内部の各部位の飽和温度をT1とする。また、飽和温度T1とは別に、各部位の材質から決定される温度上限閾値Tlim1が予め設定される。温度上限閾値Tlim1は、例えばステータコイル44に関しては、被膜の融点などに設定され、それ以上の温度となると絶縁を保証出来なくなるような温度に設定される。また、永久磁石47に関しては、例えば熱減磁が発生する温度に設定される。 Here, the saturation temperature of each part inside the motor/generator 4 is set to T1. In addition to the saturation temperature T1, a temperature upper limit threshold Tlim1 determined from the material of each part is set in advance. The temperature upper limit threshold value Tlim1 is set to, for example, the melting point of the coating for the stator coil 44, and is set to a temperature at which insulation cannot be guaranteed at temperatures higher than that. The permanent magnet 47 is set to a temperature at which thermal demagnetization occurs, for example.
 モータ・ジェネレータ4の内部の各部位における飽和温度T1を算出するには、図2に示すような熱回路網モデルにおいて熱容量の要素を全て無視すれば良い。これは、熱容量は温度変化の過渡応答に対してのみ影響する要素であるためである。このことは熱回路方程式上で熱容量に関する項が温度の時間微分に比例することから明らかである。従って、熱抵抗、発熱量、および、モータ表面温度400の情報から各部位の飽和温度T1を算出する。 To calculate the saturation temperature T1 in each part inside the motor/generator 4, it is sufficient to ignore all the elements of the heat capacity in the thermal network model as shown in FIG. This is because the heat capacity is an element that only affects the transient response of temperature changes. This is clear from the fact that the heat capacity term in the heat circuit equation is proportional to the time derivative of temperature. Therefore, the saturation temperature T1 of each part is calculated from the information on the heat resistance, the heat generation amount, and the motor surface temperature 400.
 上記のステップS6では、ステップS3で算出された飽和温度T1を用いて、制御部6は、温度上限閾値Tlim1と飽和温度T1との差異が最大となる部位を特定する。さらに、制御部6は、特定した部位の温度が、現在の温度から温度上限閾値Tlim1になるまでの所要時間t1を算出する。所要時間t1は、熱回路網モデルに基づいて算出される。このとき、モデル構成によっては、熱回路網モデルの一部のみから、所要時間t1を算出できる可能性がある。従って、その場合には、熱回路網モデルの一部から所要時間t1を算出しても良い。以上の方法により、所要時間t1を算出した後、制御部6は、車載ECUに対して、算出した所要時間t1の情報を出力する。 In step S6 described above, the control unit 6 uses the saturation temperature T1 calculated in step S3 to identify the part where the difference between the temperature upper limit threshold Tlim1 and the saturation temperature T1 is maximum. Further, the control unit 6 calculates the time t1 required for the temperature of the specified portion to reach the temperature upper limit threshold Tlim1 from the current temperature. The required time t1 is calculated based on the thermal network model. At this time, depending on the model configuration, there is a possibility that the required time t1 can be calculated from only a part of the thermal network model. Therefore, in that case, the required time t1 may be calculated from a part of the thermal circuit network model. After calculating the required time t1 by the above method, the control unit 6 outputs information on the calculated required time t1 to the vehicle-mounted ECU.
 さらに、制御部6は、インバータ2に対し、トルク要求値に従うトルクを出力するための電流指令値を送信する。インバータ2は、電流指令値に基づいて、スイッチング素子3をスイッチングさせ、モータ・ジェネレータ4のステータコイル44に電流を通電する。 Further, the control unit 6 transmits to the inverter 2 the current command value for outputting the torque according to the torque request value. The inverter 2 switches the switching element 3 based on the current command value, and supplies a current to the stator coil 44 of the motor/generator 4.
 次に、本実施の形態1に係る制御装置の効果について説明する。上述したように、本実施の形態1に係る制御装置は、電流指令値に基づく電流を、モータ・ジェネレータ4に通電することができる所要時間t1を演算する。このようにして、通電可能な所要時間t1を予め把握する事が出来ると、上位の車載ECUにおいても、モータ・ジェネレータ4を動作させたい所望の時間の間の通電が可能か否かを判定する事が出来る。また、通電することが可能と判定された場合は、制御部6は、そのまま、通電すれば良い。一方、通電不可と判定された場合は、制御部6は、温度が最も厳しくなる特定の部位において、温度上限閾値Tlim1に至るまでの所要時間t1の間だけ通電し、その後、通電を停止するなどといった制御を行うことができる。 Next, the effect of the control device according to the first embodiment will be described. As described above, the control device according to the first embodiment calculates the time t1 required for supplying the current based on the current command value to the motor generator 4. In this way, if the required time t1 during which the power can be supplied can be grasped in advance, the host vehicle-mounted ECU also determines whether or not the power can be supplied during the desired time when the motor/generator 4 is desired to operate. I can do things. Further, when it is determined that the power can be supplied, the control unit 6 may supply the power as it is. On the other hand, when it is determined that the energization is impossible, the control unit 6 energizes the specific portion where the temperature becomes the most severe for a time t1 required to reach the temperature upper limit threshold Tlim1 and then stops the energization. Such control can be performed.
 一方、従来手法は、温度センサにてモータの代表部位をモニタし、予め設定された温度に至るまでの時間を算出するものであった。この場合、モータの温度限界動作を実現することができるのは、モータの代表部位がモータ内部にて最も温度の厳しくなる部位である場合に限られる。さらに、次のような問題も発生する。例えばモータの代表部位をステータコイルとした場合を考える。このとき、モータ動作中において最も温度の厳しくなる部位が、ロータ内の永久磁石であるとする。この場合に、ステータコイルのみの温度をモニタしていると、永久磁石の温度が限界を超えてしまい、モータが高温となることにより、特性低下を招いてしまう可能性がある。 On the other hand, the conventional method was to monitor the representative part of the motor with a temperature sensor and calculate the time to reach the preset temperature. In this case, the temperature limit operation of the motor can be realized only when the representative portion of the motor is the portion where the temperature becomes the severest inside the motor. Furthermore, the following problems also occur. Consider, for example, a case where a representative portion of a motor is a stator coil. At this time, it is assumed that the portion where the temperature becomes the most severe during motor operation is the permanent magnet in the rotor. In this case, if only the temperature of the stator coil is monitored, the temperature of the permanent magnet exceeds the limit, and the temperature of the motor becomes high, which may lead to deterioration in characteristics.
 一方、本実施の形態1では、モータ・ジェネレータ4の内部温度分布を予測し、予測した内部温度分布に基づいて、最も温度の厳しくなる部位を特定することが可能となっている。また、制御部6は、特定した部位が、温度上限閾値Tlim1が示す温度限界に達するまでの所要時間t1を算出する。このように、通電可能な時間として、所要時間t1を算出することで、モータ・ジェネレータ4が本来可能とする温度限界に達するまでの時間の間、モータ・ジェネレータ4を動作させることができる。これにより、従来よりもトルクの出力の拡大を図ることが出来る。さらに、当該動作を実現し、所望のトルクを出力することができる時間を、随時、上位の車載ECUに伝達することにより、上位の車載ECUにおいても、モータ・ジェネレータ4に求める動作の実現が未来において可能か否かを判定する事が可能となる。 On the other hand, in the first embodiment, it is possible to predict the internal temperature distribution of the motor/generator 4 and specify the part where the temperature becomes the severest based on the predicted internal temperature distribution. In addition, the control unit 6 calculates the time t1 required for the specified portion to reach the temperature limit indicated by the temperature upper limit threshold Tlim1. In this way, by calculating the required time t1 as the time during which power can be supplied, the motor/generator 4 can be operated during the time until the temperature limit which the motor/generator 4 originally allows is reached. As a result, the torque output can be increased as compared with the conventional case. Furthermore, the time required to realize the operation and output the desired torque is transmitted to the higher-level in-vehicle ECU at any time, so that the higher-level in-vehicle ECU can achieve the operation required for the motor generator 4 in the future. It is possible to determine whether or not it is possible in.
 また、本実施の形態1では、制御部6は、飽和温度T1を、モータ・ジェネレータ4のロータ42の回転数に基づいて算出する。このように、モータ・ジェネレータ4の内部温度モデル内の発熱量として、回転数を用いる事で、回転数あるいはその2乗に比例する鉄損などを考慮することが出来る。また、回転数の変化に対応したモータ・ジェネレータ4の内部温度分布の計算が可能となり、その結果、回転数に応じてトルクの出力の拡大を実現することが出来る。 In the first embodiment, the control unit 6 calculates the saturation temperature T1 based on the rotation speed of the rotor 42 of the motor/generator 4. As described above, by using the rotation speed as the heat generation amount in the internal temperature model of the motor/generator 4, it is possible to consider the iron loss or the like proportional to the rotation speed or the square thereof. Further, it becomes possible to calculate the internal temperature distribution of the motor/generator 4 corresponding to the change of the rotation speed, and as a result, it is possible to realize the expansion of the torque output according to the rotation speed.
 また、本実施の形態1においては、制御部6が、トルク要求値に基づいて電流指令値を算出し、所要時間t1の間、ステータコイル44に対して、電流指令値に基づく電流I1を通電させる。このように、モータ・ジェネレータ4の動作に際し、実際にモータ・ジェネレータ4へ電流を通電することにより、従来に対して、トルクの出力の拡大を実現することができる。 In the first embodiment, the control unit 6 calculates the current command value based on the torque request value and supplies the stator coil 44 with the current I1 based on the current command value during the required time t1. Let In this way, when the motor/generator 4 operates, by actually supplying the current to the motor/generator 4, it is possible to realize the expansion of the torque output as compared with the conventional case.
 また、本実施の形態1においては、所要時間t1が算出される特定された部位として、モータ・ジェネレータ4の内部の各部位に対して算出された飽和温度T1のうち、飽和温度T1と温度上限閾値Tlim1との差異が最大となる部位を選択して特定する。これにより、モータ・ジェネレータ4の内部温度分布のうち、最も温度が厳しくなる部位の情報を用いて、モータ・ジェネレータ4を制御することができ、モータ・ジェネレータ4の温度限界動作を実現することができる。 In the first embodiment, the saturation temperature T1 and the temperature upper limit among the saturation temperatures T1 calculated for the respective parts inside the motor/generator 4 are specified as the specified parts for calculating the required time t1. The part having the maximum difference from the threshold value Tlim1 is selected and specified. As a result, it is possible to control the motor generator 4 using the information of the portion where the temperature becomes the strictest in the internal temperature distribution of the motor generator 4, and to realize the temperature limit operation of the motor generator 4. it can.
 実施の形態2.
 図5および図6を用いて、この発明の実施の形態2に係る制御装置について説明する。なお、本実施の形態2に係る制御装置およびモータ・ジェネレータ4の構成については、先に述べた実施の形態1と同様であるため、ここでは、その説明を省略する。
Embodiment 2.
A control device according to Embodiment 2 of the present invention will be described with reference to FIGS. 5 and 6. The configurations of the control device and the motor/generator 4 according to the second embodiment are the same as those of the first embodiment described above, and therefore the description thereof will be omitted here.
 はじめに、本実施の形態2に係る制御装置の動作の概略について、図5を用いて説明する。図5は、本実施の形態2に係る制御装置がモータ・ジェネレータ4を制御する際のモータ・ジェネレータ4の内部温度の推移を示したグラフである。図5において、横軸は時間を示し、縦軸は温度を示す。また、所要時間t1は、モータ・ジェネレータ4の或る部位の温度が初期温度T0の状態で電流I1の通電を開始した場合に、当該或る部位の温度が初期温度T0から温度上限閾値Tlim1に到達するまでの所要時間を示す。また、飽和温度T1は、電流I1を通電し続けた場合における、当該或る部位の最終時刻における温度を示す。また、所要時間t1jは、モータ・ジェネレータ4の或る部位の温度が温度T0jの状態で電流I1jの通電を開始した場合に、当該或る部位の温度が温度T0jから温度上限閾値Tlim1に到達するまでの所要時間を示す。 First, the outline of the operation of the control device according to the second embodiment will be described with reference to FIG. FIG. 5 is a graph showing changes in the internal temperature of the motor/generator 4 when the control device according to the second embodiment controls the motor/generator 4. In FIG. 5, the horizontal axis represents time and the vertical axis represents temperature. Further, the required time t1 is such that when the current I1 is started to be supplied while the temperature of a certain portion of the motor/generator 4 is the initial temperature T0, the temperature of the certain portion changes from the initial temperature T0 to the temperature upper limit threshold Tlim1. Indicates the time required to reach it. Further, the saturation temperature T1 indicates the temperature at the final time of the certain part when the current I1 is continuously supplied. Further, the required time t1j reaches the temperature upper limit threshold value Tlim1 from the temperature T0j when the current I1j starts to be supplied when the temperature of a certain part of the motor/generator 4 is the temperature T0j. Indicates the time required until.
 本実施の形態2において、温度Tlim1に至るまでの所要時間t1を算出し、所要時間t1の間だけ、電流I1を通電するまでの処理については、実施の形態1と同様である。本実施の形態2においては、所要時間t1が経過する前の時刻において、車載ECUからの指示により、モータ・ジェネレータ4の動作が変更された場合の処理が追加されている点が、実施の形態1と異なる。以下、例を挙げて説明する。例えば、所要時間t1が経過する前の時刻において、車載ECUから受渡されたトルク要求値が増加したとする。当該時刻におけるモータ・ジェネレータ4の内部の部位の温度をT0jとする。なお、ここで、jは自然数とし、トルク要求値が変更された回数を示す。従って、モータ・ジェネレータ4の通電を開始してから、はじめて、トルク要求値が変更された温度は、温度T01と定義される。また、モータ・ジェネレータ4の通電を開始してからトルク要求値の変更が2回目の時点の温度は、温度T02と定義される。 In the second embodiment, the process of calculating the time t1 required to reach the temperature Tlim1 and energizing the current I1 only during the time t1 is the same as in the first embodiment. In the second embodiment, the processing is added when the operation of the motor/generator 4 is changed by an instruction from the vehicle-mounted ECU at the time before the required time t1 elapses. Different from 1. An example will be described below. For example, it is assumed that the torque request value delivered from the vehicle-mounted ECU has increased at a time before the required time t1 has elapsed. The temperature of the internal portion of the motor/generator 4 at that time is T0j. Here, j is a natural number and indicates the number of times the required torque value has been changed. Therefore, the temperature at which the torque request value is changed for the first time after the energization of the motor/generator 4 is started is defined as the temperature T01. The temperature at the time when the torque request value is changed for the second time after the energization of the motor/generator 4 is started is defined as the temperature T02.
 トルク要求値が増加した時点で、制御部6は、当該トルク要求値に従うトルクが出力可能か否かを再度判定する。出力不可と判定した場合は、制御部6は、車載ECUに、トルク出力不可の信号を送信する。一方、出力可と判定した場合、上記実施の形態1と同様に、制御部6は、モータ・ジェネレータ4の内部温度分布の算出を開始する。なお、トルク要求値の変更に伴って電流値が変わるため、制御部6は、発熱量も再度計算し直す。この時のモータ・ジェネレータ4に通電する電流を、電流I1jとする。発熱量の計算方法については実施の形態1と同様とし、制御部6は、銅損、鉄損などを算出する。 When the torque request value increases, the control unit 6 determines again whether the torque according to the torque request value can be output. When it is determined that the output is impossible, the control unit 6 transmits a torque output impossible signal to the vehicle-mounted ECU. On the other hand, when it is determined that the output is possible, the control unit 6 starts calculation of the internal temperature distribution of the motor/generator 4, as in the first embodiment. Since the current value changes with the change in the torque request value, the control unit 6 also recalculates the heat generation amount. The current supplied to the motor/generator 4 at this time is referred to as a current I1j. The calorific value calculation method is the same as in the first embodiment, and the control unit 6 calculates copper loss, iron loss, and the like.
 制御部6は、当該発熱量を用いて、実施の形態1と同様の手順で、モータ・ジェネレータ4の内部温度分布を計算し、飽和温度T1を求める。また、制御部6は、飽和温度T1と、予め設定されている温度上限閾値Tlim1とを比較し、飽和温度T1が温度上限閾値Tlim1以上の部位を特定する。その後、トルク要求値が変わった時刻を基準とし、制御部6は、当該部位において、温度上限閾値Tlim1に至るまでの所要時間t1jを算出する。以上の動作をフローチャートとして図6に示す。 The control unit 6 calculates the internal temperature distribution of the motor/generator 4 and calculates the saturation temperature T1 in the same procedure as in the first embodiment using the generated heat value. Further, the control unit 6 compares the saturation temperature T1 with a preset temperature upper limit threshold Tlim1 to identify a portion where the saturation temperature T1 is equal to or higher than the temperature upper limit threshold Tlim1. After that, the control unit 6 calculates the time t1j required to reach the temperature upper limit threshold value Tlim1 at the relevant portion, based on the time when the torque request value changes. The above operation is shown as a flowchart in FIG.
 図6において、ステップS1からステップS7までの処理は、図3に示すステップS1からステップS7の処理と同じであるため、ここでは、その説明を省略する。 In FIG. 6, the processing from step S1 to step S7 is the same as the processing from step S1 to step S7 shown in FIG. 3, and therefore the description thereof is omitted here.
 ステップS18では、図3のステップS2と同様に、制御部6は、インバータ2に対して、モータ・ジェネレータ4のステータコイル44に電流を通電するよう電流指令値を出力する。 In step S18, as in step S2 of FIG. 3, the control unit 6 outputs a current command value to the inverter 2 so that the stator coil 44 of the motor/generator 4 is energized with current.
 ステップS19では、制御部6が、通電開始から所要時間t1が経過したか否かを判定する。所要時間t1が経過していた場合は、図6の処理を終了する。一方、所要時間t1が経過していない場合は、ステップS20に進む。 In step S19, the control unit 6 determines whether the required time t1 has elapsed from the start of energization. If the required time t1 has elapsed, the processing of FIG. 6 ends. On the other hand, if the required time t1 has not elapsed, the process proceeds to step S20.
 ステップS20では、制御部6が、車載ECUから新たに受け取ったトルク要求値が、ステップS1で受け取ったトルク要求値よりも増加したか否かを判定する。判定の結果、トルク要求値が増加していなかった場合は、ステップS18の処理に戻る。一方、トルク要求値が増加していた場合は、ステップS21に進む。 In step S20, the control unit 6 determines whether or not the torque request value newly received from the vehicle-mounted ECU is larger than the torque request value received in step S1. If the result of determination is that the torque request value has not increased, processing returns to step S18. On the other hand, if the torque request value has increased, the process proceeds to step S21.
 ステップS21では、車載ECUから新たに受け取ったトルク要求値に従うトルクの出力が可能かを判定する。出力不可と判定した場合は、ステップS22に進む。一方、出力可と判定した場合は、ステップS23に進む。 In step S21, it is determined whether the torque can be output according to the torque request value newly received from the vehicle-mounted ECU. If it is determined that the output is impossible, the process proceeds to step S22. On the other hand, if it is determined that the output is possible, the process proceeds to step S23.
 ステップS22では、制御部6は、車載ECUに、トルク出力不可の信号を出力する。その後、図6の処理を終了する。 In step S22, the control unit 6 outputs a torque output disable signal to the vehicle-mounted ECU. Then, the process of FIG. 6 is completed.
 ステップS23では、ステップS2と同様の手順で、制御部6は、トルク要求値に基づいて、インバータ2に対する電流指令値を算出して更新する。 In step S23, the control unit 6 calculates and updates the current command value for the inverter 2 based on the torque request value in the same procedure as in step S2.
 次に、ステップS24では、ステップS3と同様の手順で、制御部6は、熱回路網モデルを用いて、モータ・ジェネレータ4の各部位の飽和温度T1を算出する。 Next, in step S24, the control unit 6 calculates the saturation temperature T1 of each part of the motor/generator 4 using the thermal network model in the same procedure as in step S3.
 ステップS25では、ステップS6と同様の手順で、制御部6は、飽和温度T1と温度上限閾値Tlimとの差異が最大となる部位を特定する。 In step S25, the control unit 6 identifies the part where the difference between the saturation temperature T1 and the temperature upper limit threshold Tlim is the maximum, in the same procedure as in step S6.
 ステップS26では、ステップS7と同様の手順で、制御部6は、トルク要求値に従うトルクを出力し続ける場合を想定し、その場合に、ステップS25で特定された当該部位が、温度Tlim1に到達するまでの所要時間t1jを算出する。算出後、ステップS18の処理に戻る。 In step S26, it is assumed that the control unit 6 continues to output the torque according to the torque request value in the same procedure as in step S7. In that case, the part specified in step S25 reaches the temperature Tlim1. The required time t1j up to is calculated. After the calculation, the process returns to step S18.
 なお、図6のステップS18からステップS26までの工程は、上記のように、上位の車載ECUからの指令に基づき、トルク要求値が変化する際に、その都度、実施されるものである。従って、上記の説明では、トルク要求値が変化する回数を1回として説明したが、更にトルク指令値が変化する度に、制御部6は、それに従い、繰り返し、発熱量を算出し、各部位の飽和温度T1を算出する。また、この工程は、インバータ2が電流を通電しているかに関わらず実施される。従って、トルク発生中に上位の車載ECUからのトルク要求値が変化し、通電電流を変更する際にも実施される。 The steps S18 to S26 of FIG. 6 are executed each time the torque request value changes based on the command from the host ECU, as described above. Therefore, in the above description, the number of times the required torque value has changed has been described as one. However, each time the torque command value further changes, the control unit 6 repeats the calculation of the amount of heat generation according to the change, and The saturation temperature T1 of is calculated. In addition, this step is performed regardless of whether the inverter 2 is carrying a current. Therefore, the torque request value from the higher-level vehicle-mounted ECU changes during torque generation, and this is also performed when changing the energization current.
 なお、本実施の形態2では、トルク要求値が増加した場合について説明したが、これに限るものではなく、トルク要求値が低下した際にも、制御部6は、随時、所要時間t1jを算出し、上位の車載ECUに対し、その情報を伝達する。 In the second embodiment, the case where the torque request value increases has been described. However, the present invention is not limited to this, and the control unit 6 calculates the required time t1j at any time even when the torque request value decreases. Then, the information is transmitted to the higher-level vehicle-mounted ECU.
 本実施の形態2の効果について記す。実施の形態1では上位の車載ECUからの指令を一度受けた際のモータ限界動作実現方法としては適しているものの、動作途中に状態が変化した際の対応については不十分である。本実施の形態2では、モータ・ジェネレータ4の動作状態が変わっても、制御部6が、モータ・ジェネレータ4の温度分布を随時計算することで、常にモータの限界動作を実現することが出来る。 Describe the effects of the second embodiment. Although the first embodiment is suitable as a motor limit operation realizing method when a command from the host vehicle-mounted ECU is once received, it is insufficient to deal with a change in state during operation. In the second embodiment, even if the operating state of the motor/generator 4 changes, the control unit 6 always calculates the temperature distribution of the motor/generator 4, so that the limit operation of the motor can always be realized.
 以上のように、本実施の形態2においては、図6のフローチャートに示されるように、実施の形態1と同様に、ステップS1~S7の処理を行うので、上記の実施の形態1と同様の効果を得ることができる。 As described above, in the second embodiment, as shown in the flowchart of FIG. 6, the processes of steps S1 to S7 are performed as in the first embodiment, and thus the same as in the first embodiment. The effect can be obtained.
 さらに、本実施の形態2においては、所要時間t1が経過するまでのいずれかの時刻において、モータ・ジェネレータ4に対するトルク要求値が変更された場合にも対応可能である。すなわち、そのような場合に、制御部6は、変更されたトルク要求値に基づいて電流指令値を更新する。さらに、制御部6は、更新した電流指令値に基づく電流I1jをステータコイル44の各相のコイルに通電させた場合におけるモータ・ジェネレータ4の各部位のうちの少なくとも特定された部位の温度が、温度上限閾値Tlim1に到達するまでの所要時間t1jを内部温度分布に基づいて算出する。これにより、モータ・ジェネレータ4の内部温度分布をいったん予測した後に、モータ・ジェネレータ4の運転状態が変わった際にも、適宜、温度分布予測を更新することで対応を可能とする。 Further, in the second embodiment, it is possible to deal with the case where the torque request value for the motor/generator 4 is changed at any time until the required time t1 elapses. That is, in such a case, the control unit 6 updates the current command value based on the changed torque request value. Further, the control unit 6 determines that the temperature of at least the specified portion of the respective portions of the motor generator 4 when the current I1j based on the updated current command value is applied to the coils of the respective phases of the stator coil 44, The time t1j required to reach the temperature upper limit threshold Tlim1 is calculated based on the internal temperature distribution. As a result, even after the internal temperature distribution of the motor/generator 4 is once predicted, even when the operating state of the motor/generator 4 changes, it is possible to deal with it by appropriately updating the temperature distribution prediction.
 実施の形態3.
 図7を用いて、この発明の実施の形態3に係る制御装置について述べる。なお、本実施の形態3に係る制御装置およびモータ・ジェネレータ4の構成については、先に述べた実施の形態1と同様であるため、ここでは、その説明を省略する。
Embodiment 3.
A control device according to the third embodiment of the present invention will be described with reference to FIG. The configurations of the control device and the motor/generator 4 according to the third embodiment are the same as those of the first embodiment described above, and therefore the description thereof is omitted here.
 上述した実施の形態1および実施の形態2では、温度上限閾値Tlimを、各部位ごとに、1つ設定するようにしていたが、本実施の形態3では、各部位ごとに、それぞれ、複数個設定することとする。すなわち、温度上限閾値Tlimを、例えばステータコイル44に適用する場合を考える。ステータコイル44の温度上限閾値Tlimを、コイル被膜の融点付近と設定すると、温度上限閾値Tlim1は、温度上限値Tlimの90%に設定するなどが挙げられる。このようにして、Kを2以上の自然数とし、各部位ごとに、K個の温度上限閾値Tlim1、Tlim2,・・・,Tlimk,Tlimk+1,・・・,TlimKを設定する。なお、ここで、Kおよびkは、自然数である。 In the first and second embodiments described above, one temperature upper limit threshold Tlim is set for each part, but in the third embodiment, a plurality of temperature upper limit thresholds Tlim are set for each part. It will be set. That is, consider the case where the temperature upper limit threshold Tlim is applied to the stator coil 44, for example. When the temperature upper limit threshold Tlim of the stator coil 44 is set near the melting point of the coil coating, the temperature upper limit threshold Tlim1 may be set to 90% of the temperature upper limit Tlim. In this way, K is a natural number of 2 or more, and K temperature upper limit thresholds Tlim1, Tlim2,..., Tlimk, Tlimk+1,..., TlimK are set for each part. Here, K and k are natural numbers.
 本実施の形態3に係る制御装置の動作について、図7を用いて説明する。図7は、本実施の形態3に係る制御装置がモータ・ジェネレータ4を制御する際のモータ・ジェネレータ4の内部温度の推移を示したグラフである。図7において、横軸は時間を示し、縦軸は温度を示す。 The operation of the control device according to the third embodiment will be described with reference to FIG. FIG. 7 is a graph showing changes in the internal temperature of the motor/generator 4 when the control device according to the third embodiment controls the motor/generator 4. In FIG. 7, the horizontal axis represents time and the vertical axis represents temperature.
 図7では、K=2とした場合を例に挙げて説明している。第1の温度上限閾値をTlim1とし、第2の温度上限閾値をTlim2とする。第2の温度上限閾値Tlim2の値は、第1の温度上限閾値Tlim1よりも大きい。 In FIG. 7, the case where K=2 is described as an example. The first temperature upper limit threshold is Tlim1 and the second temperature upper limit threshold is Tlim2. The value of the second temperature upper limit threshold Tlim2 is larger than the first temperature upper limit threshold Tlim1.
 本実施の形態3においては、まず、実施の形態1と同様の動作にて、制御部6は、モータ・ジェネレータ4の各部位の温度が、第1の温度上限閾値Tlim1に至るまでの所要時間t1を算出し、ステータコイル44に電流I1を通電する。その後、ステータコイル44の温度がTlim1に至った時に、制御部6は、温度上限閾値Tlimkに到達した旨の信号を、上位の車載ECUに送信する。 In the third embodiment, first, in the same operation as in the first embodiment, control unit 6 takes time required for the temperature of each part of motor generator 4 to reach first temperature upper limit threshold value Tlim1. t1 is calculated, and the current I1 is applied to the stator coil 44. After that, when the temperature of the stator coil 44 reaches Tlim1, the control unit 6 transmits a signal indicating that the temperature upper limit threshold Tlimk has been reached to the host vehicle-mounted ECU.
 次に、制御部6は、新たな温度上限閾値Tlim2を設定し、モータ・ジェネレータ4の各部位の温度が、新たな温度上限閾値Tlim2に至るまで電流を通電する際の所要時間t2を算出する。このとき、所要時間t2を算出する際に通電する電流値を第2の電流I2とする。第2の電流I2は、上位の車載ECUより指令されるトルク要求値に基づき、実施の形態1の動作と同様に設定される。但し、第2の電流I2は、それまでに通電していた電流I1よりも小さい値に設定される。制御部6は、算出した第2の所要時間t2を、上位の車載ECUに情報として伝達する。 Next, the control unit 6 sets a new temperature upper limit threshold value Tlim2, and calculates a time t2 required for supplying a current until the temperature of each part of the motor/generator 4 reaches the new temperature upper limit threshold value Tlim2. .. At this time, the current value to be applied when calculating the required time t2 is the second current I2. The second current I2 is set in the same manner as the operation of the first embodiment based on the torque request value instructed by the host vehicle ECU. However, the second current I2 is set to a value smaller than the current I1 that has been flowing until then. The control unit 6 transmits the calculated second required time t2 to the higher-level vehicle-mounted ECU as information.
 このように、本実施の形態3によれば、温度上限閾値Tlimkを飽和温度T1よりも小さい値に設定しておき、ステータコイル44に電流Ikを通電させて、モータ・ジェネレータ4の内部の部位の温度が温度Tlimkに到達した後に、制御部6は、改めて設定された第2の温度上限閾値Tlim(k+1)に到達するまでの第2の所要時間t(k+1)を算出することとなる。ここで、第2の温度上限閾値Tlim(k+1)を飽和温度T1として設定すれば、飽和温度T1に至るまでの温度上昇の度合いを制御部6にて制御することが可能となる。例えば上位の車載ECUから、トルク要求値が伝達された際に、長時間、モータ・ジェネレータ4の出力状態を持続させることが出来、更に、その所要時間の間、高出力を維持し続けることが可能となる。 As described above, according to the third embodiment, the temperature upper limit threshold value Tlimk is set to a value smaller than the saturation temperature T1, the current Ik is passed through the stator coil 44, and the internal portion of the motor/generator 4 is supplied. After the temperature reaches the temperature Tlimk, the control unit 6 calculates the second required time t(k+1) until the second temperature upper limit threshold Tlim(k+1) set again is reached. Here, if the second temperature upper limit threshold value Tlim(k+1) is set as the saturation temperature T1, the control unit 6 can control the degree of temperature rise until reaching the saturation temperature T1. For example, when the torque request value is transmitted from the host vehicle-mounted ECU, the output state of the motor/generator 4 can be maintained for a long time, and further, the high output can be maintained for the required time. It will be possible.
 なお、温度上限閾値Tlimkに対する第2の温度上限閾値Tlim(k+1)の上げ幅は、モータ・ジェネレータ4の特性または用途に合わせて適宜設定すればよい。また、隣接する温度上限閾値の上げ幅は、すべて同じでもよく、異なっていてもよい。すなわち、温度上限閾値Tlim1に対する温度上限閾値Tlim2の上げ幅と、任意のkにおける温度上限閾値Tlimkに対する第2の温度上限閾値Tlim(k+1)の上げ幅とは、同じであっても、異なっていてもよい。 The increase range of the second temperature upper limit threshold value Tlim(k+1) with respect to the temperature upper limit threshold value Tlimk may be set as appropriate according to the characteristics or application of the motor/generator 4. Further, the increments of the adjacent temperature upper limit threshold values may be the same or different. That is, the increase amount of the temperature upper limit threshold value Tlim2 with respect to the temperature upper limit threshold value Tlim1 and the increase amount of the second temperature upper limit threshold value Tlim(k+1) with respect to the temperature upper limit threshold value Tlimk at any k may be the same or different. ..
 また、電流Ikに対する電流(k+1)の下げ幅は、モータ・ジェネレータ4の特性または用途に合わせて適宜設定すればよい。また、隣接する電流の下げ幅は、すべて同じでもよく、異なっていてもよい。すなわち、電流I1に対する電流I2の下げ幅と、任意のkにおける電流Ikに対する電流I(k+1)の下げ幅とは、同じであっても、異なっていてもよい。 Further, the reduction range of the current (k+1) with respect to the current Ik may be set as appropriate according to the characteristics or application of the motor/generator 4. Further, the widths of the adjacent currents may be all the same or different. That is, the reduction width of the current I2 with respect to the current I1 and the reduction width of the current I(k+1) with respect to the current Ik at an arbitrary k may be the same or different.
 他の動作については、実施の形態1と同様である。 Other operations are the same as in the first embodiment.
 以上のように、本実施の形態3においては、実施の形態1と同様に、図3のステップS1~S8の処理を行うので、上記の実施の形態1と同様の効果を得ることができる。 As described above, in the third embodiment, the processes of steps S1 to S8 in FIG. 3 are performed as in the first embodiment, and therefore the same effects as those in the first embodiment can be obtained.
 さらに、本実施の形態3においては、所要時間tkの間、ステータコイル44に電流Ikを通電させて、特定された部位の温度が温度上限閾値Tlimkに到達したときに、制御部6が、特定された部位に対して、温度上限閾値Tlimkよりも大きい温度上限閾値Tlim(k+1)を新たに設定する。そして、制御部6は、電流Ikより小さい値の電流I(k+1)をステータコイル44に通電させた場合における特定された部位の温度が、温度上限閾値Tlimkから温度上限閾値Tlim(k+1)に達するまでの所要時間t(k+1)を、内部温度分布に基づいて算出する。このように、制御部6は、設定した温度上限閾値にモータ・ジェネレータ4の内部温度が到達した後に、新たに設定した別の温度上限閾値に対して、モータ・ジェネレータ4の制御を行う。これにより、徐々に、モータ・ジェネレータ4の動作を限界温度に近づける事が可能となる。或いは、モータ・ジェネレータ4の内部温度が限界温度に至った際に、モータ・ジェネレータ4の動作を停止し、温度保護を行うことが可能となる。 Further, in the third embodiment, when the current Ik is passed through the stator coil 44 for the required time tk and the temperature of the specified portion reaches the temperature upper limit threshold value Tlimk, the control unit 6 determines the specified value. The temperature upper limit threshold value Tlim(k+1) larger than the temperature upper limit threshold value Tlimk is newly set for the determined portion. Then, the control unit 6 causes the temperature of the specified portion when the current I(k+1) having a value smaller than the current Ik is applied to the stator coil 44 to reach the temperature upper limit threshold Tlim(k+1) from the temperature upper limit threshold Tlimk. The required time t(k+1) up to is calculated based on the internal temperature distribution. Thus, after the internal temperature of the motor/generator 4 reaches the set temperature upper limit threshold, the control unit 6 controls the motor/generator 4 for another newly set temperature upper limit threshold. As a result, the operation of the motor/generator 4 can be gradually brought close to the limit temperature. Alternatively, when the internal temperature of the motor/generator 4 reaches the limit temperature, the operation of the motor/generator 4 can be stopped and the temperature can be protected.
 なお、上記の実施の形態1~3において、モータ・ジェネレータ4の構成は、永久磁石47を含むロータ42に限るわけではない。すなわち、界磁巻線を含むロータであってもよい。その場合には、制御部6が、熱回路網モデルの要素の1つとして、界磁巻線の温度を算出する。 Note that, in the above first to third embodiments, the configuration of the motor/generator 4 is not limited to the rotor 42 including the permanent magnet 47. That is, it may be a rotor including a field winding. In that case, the control unit 6 calculates the temperature of the field winding as one of the elements of the thermal network model.
 また、上記の実施の形態1~3において、制御部6に情報を送信する温度センサまたは熱流束センサの数は1個に限らず、複数個ずつ配置しても良い。さらには、複数個ずつ配置された温度センサまたは熱流束センサのうちの少なくともいずれか1つによる検出温度を、制御部6に送信して、モータ・ジェネレータ4の内部の温度分布の算出に活用しても良い。 Also, in the above-described first to third embodiments, the number of temperature sensors or heat flux sensors that transmit information to the control unit 6 is not limited to one, and a plurality of temperature sensors or heat flux sensors may be arranged. Further, the temperature detected by at least one of the temperature sensor and the heat flux sensor arranged in plurals is transmitted to the control unit 6 and utilized for calculating the temperature distribution inside the motor generator 4. May be.
 また、上記の実施の形態1~3では、モータ・ジェネレータ4の内部の温度分布のみを用いた制御方法について述べたが、これに限るわけではなく、インバータ2または図示しないコンバータと組み合わせた方法であっても良い。例えば、インバータ2内のスイッチング素子3の情報を制御部6へ引き渡した制御でも良い。 Further, in the above-described first to third embodiments, the control method using only the temperature distribution inside the motor/generator 4 has been described, but the present invention is not limited to this, and a method in combination with the inverter 2 or a converter (not shown) may be used. You can have it. For example, control may be performed in which information on the switching element 3 in the inverter 2 is passed to the control unit 6.
 また、上記の実施の形態1~3では、モータ・ジェネレータ4は、駆動状態を想定した記載となっているが、これに限る訳ではなく、モータ・ジェネレータ4が回生状態の場合にも同様の事が言える。 Further, in the above-described first to third embodiments, the motor/generator 4 is described assuming a driving state, but the present invention is not limited to this, and the same applies when the motor/generator 4 is in a regenerative state. I can say things.
 ここで、上記の実施の形態1~3における制御部6のハードウェア構成について簡単に説明する。上述した実施の形態1~3に係る制御装置における制御部6の各機能は、処理回路によって実現される。各機能を実現する処理回路は、専用のハードウェアであってもよく、メモリに格納されるプログラムを実行するプロセッサであってもよい。 Here, the hardware configuration of the control unit 6 in the above first to third embodiments will be briefly described. Each function of the control unit 6 in the control device according to the first to third embodiments described above is realized by a processing circuit. The processing circuit that implements each function may be dedicated hardware or a processor that executes a program stored in the memory.
 処理回路が専用のハードウェアである場合、処理回路は、例えば、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ASIC(Application Specific Integrated Circuit)、FPGA(Field Programmable Gate Array)、またはこれらを組み合わせたものが該当する。制御部6の各機能それぞれを個別の処理回路で実現してもよいし、各機能をまとめて1つの処理回路で実現してもよい。 When the processing circuit is dedicated hardware, the processing circuit is, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC (Application Specific Integrated Circuit), or an FPGA (Field Programmable Gate Array). , Or a combination of these. Each function of the control unit 6 may be realized by an individual processing circuit, or each function may be collectively realized by one processing circuit.
 一方、処理回路がプロセッサの場合、制御部6の各機能は、ソフトウェア、ファームウェア、またはソフトウェアとファームウェアとの組み合わせにより実現される。ソフトウェアおよびファームウェアは、プログラムとして記述され、メモリに格納される。プロセッサは、メモリに記憶されたプログラムを読み出して実行することにより、各機能を実現する。すなわち、制御部6は、処理回路により実行されるときに、制御部6が実行する各ステップが結果的に実行されることになるプログラムを格納するためのメモリを備える。 On the other hand, when the processing circuit is a processor, each function of the control unit 6 is realized by software, firmware, or a combination of software and firmware. Software and firmware are described as programs and stored in memory. The processor realizes each function by reading and executing the program stored in the memory. That is, the control unit 6 includes a memory for storing a program that, when executed by the processing circuit, results in that each step executed by the control unit 6 is executed.
 これらのプログラムは、上述した各部の手順あるいは方法をコンピュータに実行させるものであるともいえる。ここで、メモリとは、例えば、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリ、EPROM(Erasable Programmable Read Only Memory)、EEPROM(Electrically Erasable and Programmable Read Only Memory)等の、不揮発性または揮発性の半導体メモリが該当する。また、磁気ディスク、フレキシブルディスク、光ディスク、コンパクトディスク、ミニディスク、DVD等も、メモリに該当する。 It can be said that these programs cause a computer to execute the procedure or method of each unit described above. Here, the memory is, for example, a RAM (Random Access Memory), a ROM (Read Only Memory), a flash memory, an EPROM (Erasable Programmable Read Only Memory, etc.), an EEPROM (Electrically Organized Memory), or an EEPROM (Electrically Dirty Memory). Alternatively, a volatile semiconductor memory is applicable. Further, a magnetic disk, a flexible disk, an optical disk, a compact disk, a mini disk, a DVD, etc. also correspond to the memory.
 なお、上述した各部の機能について、一部を専用のハードウェアで実現し、一部をソフトウェアまたはファームウェアで実現するようにしてもよい。 The functions of each unit described above may be partially implemented by dedicated hardware and partially implemented by software or firmware.
 このように、処理回路は、ハードウェア、ソフトウェア、ファームウェア、またはこれらの組み合わせによって、上述した各部の機能を実現することができる。 In this way, the processing circuit can realize the function of each unit described above by hardware, software, firmware, or a combination thereof.
 1 直流電源、2 インバータ、3 スイッチング素子、4 モータ・ジェネレータ、5 センサ、6 制御部、41 ステータ、42 ロータ、43 ステータコア、44 ステータコイル、45 シャフト、46 ロータコア、47 永久磁石。 1 DC power supply, 2 inverters, 3 switching elements, 4 motor generators, 5 sensors, 6 control units, 41 stators, 42 rotors, 43 stator cores, 44 stator coils, 45 shafts, 46 rotor cores, 47 permanent magnets.

Claims (8)

  1.  ステータとロータとからなるモータを制御する制御部を備え、
     前記制御部は、
     前記モータの動作を継続し続けた場合における前記モータの内部に設けられた各部位の飽和温度を、前記モータの動作開始時の前記各部位の初期温度と前記モータの温度モデルとに基づいて算出し、
     前記飽和温度と予め設定された温度上限閾値とに基づいて、前記各部位の中から1つの部位を特定し、
     前記モータの動作を継続し続けた場合に、前記モータの動作開始時から、特定された前記部位の温度が前記温度上限閾値に到達するまでの所要時間を、前記温度モデルに基づいて算出し、
     前記所要時間の間、前記モータに電流を通電させる、
     制御装置。
    A control unit for controlling a motor including a stator and a rotor is provided,
    The control unit is
    The saturation temperature of each part provided inside the motor when the operation of the motor is continued is calculated based on the initial temperature of each part at the start of the operation of the motor and the temperature model of the motor. Then
    Based on the saturation temperature and a preset temperature upper limit threshold value, one of the parts is specified,
    When the operation of the motor is continued, from the start of the operation of the motor, the time required for the temperature of the identified part to reach the temperature upper limit threshold is calculated based on the temperature model,
    Applying current to the motor during the required time,
    Control device.
  2.  前記飽和温度は、前記初期温度と、前記温度モデルと、前記ロータの回転数とに基づいて算出される、
     請求項1に記載の制御装置。
    The saturation temperature is calculated based on the initial temperature, the temperature model, and the rotation speed of the rotor,
    The control device according to claim 1.
  3.  前記制御部は、
     前記モータの前記内部に設けられた前記各部位に対して算出された前記飽和温度のうち、前記温度上限閾値との差異が最大となる飽和温度に対応する部位を、前記特定された前記部位として特定する、
     請求項1または2に記載の制御装置。
    The control unit is
    Of the saturation temperatures calculated for the respective parts provided inside the motor, a part corresponding to the saturation temperature at which the difference from the temperature upper limit threshold is maximum is set as the specified part. Identify,
    The control device according to claim 1.
  4.  前記ステータは、ステータコイルを有し、
     前記制御部は、
     外部から入力される前記モータに対するトルク要求値に基づいて電流指令値を算出し、前記所要時間の間、前記ステータコイルに対して、前記電流指令値に基づく前記電流を通電させる、
     請求項1から3までのいずれか1項に記載の制御装置。
    The stator has a stator coil,
    The control unit is
    A current command value is calculated based on a torque request value for the motor input from the outside, and the stator coil is energized with the current based on the current command value during the required time.
    The control device according to any one of claims 1 to 3.
  5.  前記所要時間が経過する前の時刻において、前記モータに対するトルク要求値が変更された場合に、
     前記制御部は、
     前記時刻において、前記変更されたトルク要求値に基づいて前記電流指令値を更新し、
     前記ステータコイルに対して、更新した前記電流指令値に基づく電流を通電させた場合における前記特定された部位の温度が前記温度上限閾値に到達するまでの所要時間を前記温度モデルに基づいて算出する、
     請求項4に記載の制御装置。
    At the time before the required time elapses, when the torque request value for the motor is changed,
    The control unit is
    At the time, updating the current command value based on the changed torque request value,
    The time required for the temperature of the specified portion to reach the temperature upper limit threshold when a current based on the updated current command value is applied to the stator coil is calculated based on the temperature model. ,
    The control device according to claim 4.
  6.  kを自然数とし、
     前記所要時間の間、前記ステータコイルに対して通電させる電流値を電流Ikとしたとき、
     前記ステータコイルに前記電流Ikを通電させて、前記特定された部位の前記温度が前記温度上限閾値Tlimkに到達したときに、
     前記制御部は、
     前記特定された部位に対して、前記温度上限閾値Tlimkよりも大きい第2の温度上限閾値Tlim(k+1)を設定し、
     前記電流Ikより小さい第2の電流I(k+1)を前記ステータコイルに通電させた場合における前記特定された部位の温度が、前記温度上限閾値Tlimkから前記第2の温度上限閾値Tlim(k+1)に達するまでの第2の所要時間t(k+1)を、前記温度モデルに基づいて算出する、
     請求項4に記載の制御装置。
    k is a natural number,
    When the current value to be applied to the stator coil during the required time is the current Ik,
    When the current Ik is passed through the stator coil and the temperature of the specified portion reaches the temperature upper limit threshold Tlimk,
    The control unit is
    A second temperature upper limit threshold value Tlim(k+1) larger than the temperature upper limit threshold value Tlimk is set for the specified portion,
    The temperature of the specified portion when the second current I(k+1) smaller than the current Ik is applied to the stator coil is changed from the temperature upper limit threshold Tlimk to the second temperature upper limit threshold Tlim(k+1). A second required time t(k+1) until reaching is calculated based on the temperature model,
    The control device according to claim 4.
  7.  前記ロータは磁石を有し、
     前記モータの内部に設けられた各部位は、前記ステータコイルおよび前記磁石を含む、
     請求項4に記載の制御装置。
    The rotor has a magnet,
    Each portion provided inside the motor includes the stator coil and the magnet,
    The control device according to claim 4.
  8.  前記ロータは界磁巻線を有し、
     前記モータの内部に設けられた各部位は、前記ステータコイルおよび前記界磁巻線を含む、請求項4に記載の制御装置。
    The rotor has a field winding,
    The control device according to claim 4, wherein each portion provided inside the motor includes the stator coil and the field winding.
PCT/JP2018/047919 2018-12-26 2018-12-26 Control device WO2020136765A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019528778A JP6697794B1 (en) 2018-12-26 2018-12-26 Control device
PCT/JP2018/047919 WO2020136765A1 (en) 2018-12-26 2018-12-26 Control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/047919 WO2020136765A1 (en) 2018-12-26 2018-12-26 Control device

Publications (1)

Publication Number Publication Date
WO2020136765A1 true WO2020136765A1 (en) 2020-07-02

Family

ID=70775990

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/047919 WO2020136765A1 (en) 2018-12-26 2018-12-26 Control device

Country Status (2)

Country Link
JP (1) JP6697794B1 (en)
WO (1) WO2020136765A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112865668A (en) * 2021-01-15 2021-05-28 联合汽车电子有限公司 Method and system for online calculation of bridge temperature and control of bridge
EP4290760A1 (en) * 2022-06-10 2023-12-13 Toyota Jidosha Kabushiki Kaisha Device and method for estimating internal temperature of electric motor and control device for electric motor
WO2024116296A1 (en) * 2022-11-29 2024-06-06 ファナック株式会社 Control device for controlling cooling device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014036475A (en) * 2012-08-08 2014-02-24 Hitachi Automotive Systems Ltd Electric power train system
JP2014110678A (en) * 2012-11-30 2014-06-12 Fujitsu General Ltd Air conditioner
JP2015116021A (en) * 2013-12-11 2015-06-22 日立オートモティブシステムズ株式会社 Control device for permanent magnet synchronous motor

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005319822A (en) * 2004-05-06 2005-11-17 Favess Co Ltd Power steering device
JP4910634B2 (en) * 2006-10-27 2012-04-04 日産自動車株式会社 Motor temperature protection device and motor temperature protection method
JP2012100435A (en) * 2010-11-02 2012-05-24 Toyota Motor Corp Rotating electric machine control device
JP6129260B2 (en) * 2015-09-11 2017-05-17 三菱電機株式会社 Energizing device, electric motor control device, energizing method
JP6683116B2 (en) * 2016-12-12 2020-04-15 株式会社デンソー Motor control device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014036475A (en) * 2012-08-08 2014-02-24 Hitachi Automotive Systems Ltd Electric power train system
JP2014110678A (en) * 2012-11-30 2014-06-12 Fujitsu General Ltd Air conditioner
JP2015116021A (en) * 2013-12-11 2015-06-22 日立オートモティブシステムズ株式会社 Control device for permanent magnet synchronous motor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112865668A (en) * 2021-01-15 2021-05-28 联合汽车电子有限公司 Method and system for online calculation of bridge temperature and control of bridge
CN112865668B (en) * 2021-01-15 2023-03-03 联合汽车电子有限公司 Bridge temperature online calculation and bridge control method and system
EP4290760A1 (en) * 2022-06-10 2023-12-13 Toyota Jidosha Kabushiki Kaisha Device and method for estimating internal temperature of electric motor and control device for electric motor
WO2024116296A1 (en) * 2022-11-29 2024-06-06 ファナック株式会社 Control device for controlling cooling device

Also Published As

Publication number Publication date
JPWO2020136765A1 (en) 2021-02-15
JP6697794B1 (en) 2020-05-27

Similar Documents

Publication Publication Date Title
EP2192684B1 (en) Variable magnetic flux drive system
JP6697794B1 (en) Control device
CN107889547B (en) Magnetization state control method and magnetization state control device
JP2013532940A (en) Method and apparatus for controlling separately excited synchronous machine
US9331554B2 (en) System and method for controlling motor
JP2008011670A (en) Inverter system
CN108092597B (en) Method and system for controlling wound rotor synchronous motor
US9048766B2 (en) Method and apparatus for monitoring and controlling a synchronous electric machine
JP5329801B2 (en) Variable magnetic flux drive system
JP5622198B2 (en) Synchronous start control device for generator motor
JP6740114B2 (en) Motor system
JP5127377B2 (en) Permanent magnet drive system
US20210391819A1 (en) Method for continuous condition monitoring of an electric motor
JP4924066B2 (en) Motor control device and motor control method
JP4946118B2 (en) Rotating machine control device and rotating machine control method
JP2008187861A (en) Motor control device, motor control method, and drive control device for vehicle
JP5849468B2 (en) Electric motor control device
JP2012055032A (en) Motor controller, motor control system, and motor control program
JP2023047854A (en) Electric motor control device
CN115230483A (en) Motor control device and vehicle
Sarikhani et al. Inter-turn fault detection in PM synchronous machines by physics-based EMF estimation
JP2021072766A (en) Cooling control device
Ullah et al. Irreversible Demagnetization Fault Prognosis in a Permanent Magnet type Machines
JP5225046B2 (en) Variable magnetic flux motor drive system
US11563400B2 (en) Iron loss reduction control apparatus and method for motor permanent magnet overtemperature protection

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019528778

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18944414

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18944414

Country of ref document: EP

Kind code of ref document: A1