WO2020135423A1 - 生物涂层和植入物 - Google Patents

生物涂层和植入物 Download PDF

Info

Publication number
WO2020135423A1
WO2020135423A1 PCT/CN2019/127936 CN2019127936W WO2020135423A1 WO 2020135423 A1 WO2020135423 A1 WO 2020135423A1 CN 2019127936 W CN2019127936 W CN 2019127936W WO 2020135423 A1 WO2020135423 A1 WO 2020135423A1
Authority
WO
WIPO (PCT)
Prior art keywords
coating
layer
bio
surface layer
biological coating
Prior art date
Application number
PCT/CN2019/127936
Other languages
English (en)
French (fr)
Inventor
辛晨
卢凌霄
常小龙
刘翔
乐承筠
Original Assignee
上海微创医疗器械(集团)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海微创医疗器械(集团)有限公司 filed Critical 上海微创医疗器械(集团)有限公司
Priority to US17/418,155 priority Critical patent/US20220054716A1/en
Priority to KR1020217020339A priority patent/KR20210096653A/ko
Priority to EP19905352.1A priority patent/EP3903741B1/en
Priority to JP2021538400A priority patent/JP2022516542A/ja
Publication of WO2020135423A1 publication Critical patent/WO2020135423A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/56Porous materials, e.g. foams or sponges
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/28Bones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30767Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30767Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
    • A61F2/30907Nets or sleeves applied to surface of prostheses or in cement
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/3094Designing or manufacturing processes
    • A61F2/30942Designing or manufacturing processes for designing or making customized prostheses, e.g. using templates, CT or NMR scans, finite-element analysis or CAD-CAM techniques
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/02Inorganic materials
    • A61L27/04Metals or alloys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/28Materials for coating prostheses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/28Materials for coating prostheses
    • A61L27/34Macromolecular materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30767Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
    • A61F2002/30769Special external or bone-contacting surface, e.g. coating for improving bone ingrowth madreporic
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30767Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
    • A61F2002/3092Special external or bone-contacting surface, e.g. coating for improving bone ingrowth having an open-celled or open-pored structure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30767Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
    • A61F2002/3093Special external or bone-contacting surface, e.g. coating for improving bone ingrowth for promoting ingrowth of bone tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/3094Designing or manufacturing processes
    • A61F2002/30971Laminates, i.e. layered products
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/3094Designing or manufacturing processes
    • A61F2002/30985Designing or manufacturing processes using three dimensional printing [3DP]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2210/00Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2210/0076Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof multilayered, e.g. laminated structures
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2420/00Materials or methods for coatings medical devices
    • A61L2420/08Coatings comprising two or more layers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/02Materials or treatment for tissue regeneration for reconstruction of bones; weight-bearing implants

Definitions

  • the invention relates to the technical field of medical devices, in particular to a biological coating and an implant.
  • the bio-coating of traditional implants is often produced by processes such as titanium bead sintering, plasma spraying, and diamond sandblasting. These processes make it difficult to change the porosity of the biocoating in a controlled manner, and it is difficult to ensure the connectivity of the pores and easily cause stress shielding. Further, adhesives are often used to connect the bio-coating layers and between the bio-coating layer and the substrate, and the connection stability is poor, thus affecting the bone ingrowth effect and the mechanical properties of the bio-coating and the implant. In addition, these processes are relatively complex, with long production cycles and high costs.
  • a 3D printed gradient aperture porous metal bone tissue scaffold is disclosed.
  • the bracket has a hexahedral structure, which is composed of components A, B, and C closely arranged, wherein component A is arranged in a matrix on the outermost layer of the hexahedral structure, component B is arrayed on the middle layer of the hexahedral structure, and component C is arrayed on The innermost layer of the hexahedral structure.
  • the aperture of component A is larger than that of component B, and the aperture of component B is larger than the aperture of component C.
  • the bracket structure is still relatively simple, because the components A, B, and C are all hexahedral structures, and the arrangement of the components A, B, and C in the bracket are all regular and orderly. Since the trabecular bone has an irregular porous network structure connecting pores, the scaffold structure is far away from the trabecular bone structure, so the long-term stability is poor and the effect of bone ingrowth is limited.
  • the purpose of the present invention is to provide a biological coating and an implant to solve the problems of poor long-term stability and limited bone ingrowth effect of existing biological coatings and implants.
  • the present invention provides a biological coating, including a surface layer, the surface layer includes a plurality of first monomers connected in a disordered manner, and between the plurality of first monomers and A plurality of first through holes are formed inside the plurality of first cells.
  • the biological coating further includes at least one intermediate layer, the surface layer is disposed at the outermost side of the biological coating, and the surface layer and the at least one intermediate layer extend from the biological coating
  • the direction from the outer side of the layer to the inner side of the bio-coating layer is sequentially arranged, and the porosity of the bio-coating layer gradually decreases from the outer side of the bio-coating layer to the inner side of the bio-coating layer.
  • the porosity of the bio-coating gradually decreases from the outer side of the bio-coating to the inner side of the bio-coating.
  • the porosity of the intermediate layer and the surface layer may be uniform in each layer Unchanged and gradually decreasing in the direction from the outside to the inside of the biological coating in different layers; it may also be that the porosities of the intermediate layer and the surface layer follow the The direction from the outer side to the inner side of the bio-coating gradually becomes smaller, and gradually decreases in the direction from the outer side to the inner side of the bio-coating between different layers; it may also be that the porosity in the entire bio-coating Continuous gradient change from the outside of the biological coating to the inside of the biological coating.
  • the intermediate layer includes a plurality of second cells connected in a regular manner, and a plurality of second through holes are formed between the plurality of second cells and inside the plurality of second cells.
  • the intermediate layer includes a plurality of second cells connected in a disordered manner, and a plurality of second through holes are formed between the plurality of second cells and inside the plurality of second cells .
  • the structure of the first monomer in the surface layer and the second monomer in the intermediate layer are different.
  • the first monomer has an N-hedron structure, the N ⁇ 10, the second monomer has an M-hedron structure, and the M ⁇ 10.
  • the first monomer has one of a diamond dodecahedron structure, an icosahedral structure, and a dodecahedron structure
  • the second monomer has a diamond structure, a honeycomb structure, a tetrahedral structure, or a cube One of structure, octahedral structure.
  • the second monomer has a diamond structure, and the diamond structure is formed by four second connecting rods connected to each other, wherein one end of the four second connecting rods are connected to each other, and four The other ends of the second connecting rods are separated from each other, one end of the four second connecting rods connected to each other is located at the center point of the regular tetrahedron, and the other ends of the four second connecting rods are respectively located at the positive The four vertices of the tetrahedron.
  • the number of the at least one intermediate layer is at least two, and there are multiple types of the second monomer.
  • the first monomer is formed by connecting a plurality of first connecting rods
  • the second monomer is formed by connecting a plurality of second connecting rods
  • the rod diameter of the first connecting rod may be smaller
  • the rod diameter of the second connecting rod is small, and the rod diameter of the first connecting rod in the surface layer is equal, and the rod diameter of the second connecting rod in the intermediate layer is equal, and/or
  • the arrangement of the first connecting rods in the surface layer may be looser than the arrangement of the second connecting rods in the intermediate layer, and the arrangement of the first connecting rods in the surface layer is equal and dense
  • the arrangement of the second connecting rods in the intermediate layer is equal in density; or, the rod diameter of the first connecting rod in the surface layer extends from the outside of the biological coating to the The direction of the inner side gradually becomes larger, and the rod diameter of the second connecting rod in the intermediate layer gradually becomes larger from the outer side of the biological coating to the inner side of the biological coating, in the surface layer
  • the rod diameter of the first connecting rod is smaller than the rod diameter of
  • the present invention also provides an implant including a base layer and the above-mentioned bio-coating layer, the bio-coating layer is disposed on the base layer, and the surface layer of the bio-coating layer is disposed on the outermost side of the implant .
  • the surface layer is provided on the outermost side of the biological coating, the surface layer includes a plurality of first monomers connected in a disordered manner, between the plurality of first monomers, and a plurality of the A plurality of first through holes are formed inside the first cell. That is, since the plurality of first monomers in the surface layer are connected in a disordered manner, the plurality of first through holes in the surface layer may be in a disordered state, thereby facilitating the growth of corresponding bone tissue cells into the surface layer To further improve bone ingrowth effect and long-term stability.
  • the biological coating further includes at least one intermediate layer, and the surface layer and the at least one intermediate layer are sequentially arranged along the direction from the outside of the biological coating to the inside of the biological coating, the The porosity of the biocoat gradually decreases in the direction from the outside of the biocoat to the inside of the biocoat.
  • the surface layer of the bio-coating layer can have a good bone growth effect and long-term stability
  • the intermediate layer of the bio-coating layer can have good mechanical properties
  • the overall stability of the bio-coating layer is good.
  • the plurality of second monomers in the intermediate layer are connected in a regular manner, the plurality of second through holes in the intermediate layer may be in an ordered state, so that the intermediate layer and all The bio-coating has good mechanical properties.
  • the first through-hole in the first monomer connected in the disordered manner and the second connected in the disordered manner The structure of the second through hole in the monomer is very close to the natural three-dimensional structure and physiology of real cancellous bone, which can further improve the microstructure and biomechanical properties of the biological coating.
  • the porosity and mechanical properties in the surface layer and the intermediate layer are also different.
  • This embodiment can avoid the problem that the connecting rod is easily broken due to too small rod diameter and poor arrangement.
  • this embodiment can also avoid the problem that the powder is difficult to remove due to the large diameter of the connecting rod and the dense arrangement.
  • the porosity of the intermediate layer and the surface layer changes continuously along the direction from the outer side of the bio-coating layer to the inner side of the bio-coating layer, it is not easy to appear obvious Such as porosity, rod diameter, sparse arrangement, etc.) faults caused by discontinuities.
  • the mechanical properties of the intermediate layer are better, the bone ingrowth effect of the surface layer is better, and the biological coating has better stability due to the better transition between the intermediate layer and the surface layer.
  • FIG. 1 is a schematic structural diagram of a biological coating in Example 1 of the present invention.
  • FIG. 2 is a partially enlarged schematic view of the biological coating in FIG. 1;
  • FIG. 3 is a schematic diagram of the structure of the rhombic dodecahedron in the first embodiment of the present invention.
  • Example 4 is a schematic diagram of the change of the porosity of the bio-coating in Example 1 of the present invention.
  • FIG. 5 is a schematic diagram of the change of the porosity of the biological coating in an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of the change of the porosity of the biological coating in still another embodiment of the present invention.
  • FIG. 7 is a schematic structural view of an implant in Embodiment 1 of the present invention.
  • Example 8 is a schematic structural diagram of a biological coating in Example 2 of the present invention.
  • FIG. 9 is a partially enlarged schematic view of the biological coating in FIG. 8.
  • Example 10 is a schematic structural view of an implant in Example 2 of the present invention.
  • Example 11 is a schematic structural view of a biological coating in Example 3 of the present invention.
  • FIG. 12 is a partially enlarged schematic view of the biological coating in FIG. 11;
  • FIG. 13 is a schematic structural view of a diamond structure in Embodiment 3 of the present invention.
  • Example 14 is a schematic structural view of an implant in Example 3 of the present invention.
  • Example 15 is a schematic structural view of a biological coating in Example 4 of the present invention.
  • FIG. 16 is a partially enlarged schematic view of the biological coating in FIG. 15;
  • Example 17 is a schematic structural view of an implant in Example 4 of the present invention.
  • Example 18 is a schematic structural view of a biological coating in Example 5 of the present invention.
  • FIG. 19 is a partially enlarged schematic view of the biological coating in FIG. 18;
  • Example 5 is a schematic structural view of an implant in Example 5 of the present invention.
  • FIG. 21 is a schematic diagram of the structure of an icosahedron in Embodiment 6 of the present invention.
  • the present invention provides a biological coating, the biological coating includes a surface layer, the surface layer includes a plurality of monomers connected in a disordered manner, between the plurality of monomers and within the monomers Multiple through holes are formed. Because multiple monomers in the surface layer are connected in a disordered manner, multiple through holes in the surface layer can be in a disordered state, which can facilitate the growth of corresponding bone tissue cells into the surface layer, thereby improving bone growth Effect and long-term stability.
  • the present invention also provides an implant including a base layer and a biological coating layer disposed on the base layer. Since the plurality of through holes in the surface layer of the biological coating layer can be in a disordered state, the bone ingrowth effect and long-term stability of the implant can be improved.
  • FIG. 1 is a schematic structural diagram of a bio-coating 100 in Embodiment 1 of the present invention
  • FIG. 2 is a partially enlarged schematic view of part A of the bio-coating 100 in FIG. 1.
  • the biological coating 100 includes a surface layer 110 and an intermediate layer 120.
  • the surface layer 110 is disposed on the intermediate layer 120.
  • the surface layer 110 is disposed on the outermost layer of the biological coating 100.
  • the porosity of the surface layer 110 is greater than the porosity of the intermediate layer 120.
  • the surface layer 110 includes a plurality of first monomers connected in a disordered manner.
  • a plurality of first through holes are formed between the plurality of first cells and inside the first cell.
  • FIG. 3 is a schematic structural diagram of a rhombic dodecahedron in Embodiment 1 of the present invention.
  • the first unit is a diamond-shaped dodecahedron connected by a plurality of first connecting rods 140, so a plurality of first through holes are formed inside.
  • the first through hole may be formed by connecting two adjacent first cells to each other.
  • the plurality of first monomers in the surface layer 110 are connected in a disordered manner, the plurality of first through holes in the surface layer 110 may be in a disordered state, thereby facilitating the growth of corresponding bone tissue cells into the surface In layer 110, the bone ingrowth effect and long-term stability are further improved.
  • the pore diameter of the first through hole is 100-1000 ⁇ m, and the porosity of the surface layer 110 is 50-80%.
  • the biological coating 100 can have better bone ingrowth effect and long-term stability, and at the same time, the surface layer 110 can have a higher roughness and friction coefficient, and the biological coating 100 can have a good short-term stability.
  • the intermediate layer 120 includes a plurality of second cells connected in a regular manner, and a plurality of second through holes are formed between the plurality of second cells and inside the plurality of second cells.
  • the second unit is a rhombic dodecahedron connected by a plurality of second connecting rods, so a plurality of second through holes are formed inside.
  • the second through hole may be formed by connecting two adjacent second monomers to each other.
  • the plurality of second monomers in the intermediate layer 120 are connected in a regular manner, the plurality of second through holes in the intermediate layer 120 may be in an ordered state, so that the intermediate layer 120 and the organism The coating 100 has better mechanical properties.
  • the pore diameter of the second through hole is 100 ⁇ m-1000 ⁇ m, and the porosity of the intermediate layer 120 is 10-60%.
  • the total thickness of the bio-coating 100 is 0.5-5.0 mm, and the bio-coating 100 has a high porosity.
  • the biological coating 100 can be designed by computer software and integrally formed by 3D printing. In this way, the porosity of the surface layer 110 and the intermediate layer 120 can be changed in a controllable manner, so that between the plurality of first through holes and the plurality of second through holes in the biological coating 100 The connectivity between and between the plurality of first through holes and the plurality of second through holes is good.
  • FIG. 4 is a schematic diagram of the change of the porosity of the bio-coating 100 in Embodiment 1 of the present invention.
  • the porosity of the intermediate layer 120 is less than the porosity of the surface layer 110, and the porosity in the intermediate layer 120 and the surface layer 110 is uniform, that is, the porosity is only between the intermediate layer 120 and the surface layer 110 Changes between.
  • the porosity of the surface layer 110 is relatively large, which can provide sufficient growth space for tissue cells, which is beneficial to the transportation of nutrients and the discharge of metabolic waste, thereby having a better bone growth effect.
  • the porosity of the intermediate layer 120 is relatively small, which can provide better mechanical properties.
  • the porosity can be changed by the change in the rod diameter of the first connecting rod 140 and the second connecting rod and/or the change in the arrangement of the density.
  • the rod diameter of the first connecting rod 140 is smaller than the rod diameter of the second connecting rod, and the rod diameter of the first connecting rod 140 in the surface layer 110 is the same, and the intermediate layer 120
  • the rod diameters of the second connecting rods are equal, and/or the arrangement of the first connecting rods 140 in the surface layer 110 may be looser than the arrangement of the second connecting rods in the middle layer 120, and the The arrangement of the first connecting rods 140 in the surface layer 110 is equal in density, and the arrangement of the second connecting rods in the intermediate layer 120 is equal in density.
  • the change of the porosity of the bio-coating layer 100 may be different from this embodiment.
  • FIG. 5 is a schematic diagram of changes in the porosity of the bio-coating 100 in an embodiment of the present invention.
  • the porosity of the intermediate layer 120 is smaller than the porosity of the surface layer 110, and the porosity in the intermediate layer 120 and the surface layer 110 gradually decreases from the outside to the inside in each layer, wherein, the The side of the surface layer 110 far away from the middle layer 120 is the outside of the biological coating 100, and the side of the middle layer 120 far away from the surface layer 110 is the inside of the biological coating 100.
  • the porosity of the surface layer 110 is relatively large, which can provide sufficient growth space for tissue cells, which is beneficial to the transportation of nutrients and the discharge of metabolic waste, thereby having a better bone growth effect.
  • the porosity of the intermediate layer 120 is relatively small, which can provide better mechanical properties.
  • the rod diameter of the first connecting rod 140 in the surface layer 110 gradually increases from the outside of the biological coating 100 to the inside of the biological coating 100, and the rod of the second connecting rod in the intermediate layer 120 The diameter gradually increases in the direction from the outside of the bio-coating 100 to the inside of the bio-coating 100, and the overall diameter of the first connecting rod 140 in the surface layer 110 is larger than that of the second connection in the intermediate layer 120
  • the rod diameter of the rod is small; and/or the arrangement of the first connecting rods 140 in the surface layer 110 gradually becomes denser from the outer side of the biological coating 100 to the inner side of the biological coating 100, the intermediate layer 120
  • the arrangement of the second connecting rods gradually becomes denser in the direction from the outer side of the biological coating 100 to the inner side of the biological coating 100, and the overall arrangement of the first connecting rods 140 in the surface layer 110 is lower than that of the middle
  • the arrangement of the second connecting rods in layer 120 is
  • FIG. 6 is a schematic diagram of changes in the porosity of the bio-coating 100 in still another embodiment of the present invention.
  • the porosity of the intermediate layer 120 is smaller than the porosity of the surface layer 110, and the porosity of the bio-coating layer 100 gradually decreases from the outside to the inside.
  • the porosity in the bio-coating 100 changes continuously in the direction from outside to inside. Continuous gradient change means that the porosity changes linearly.
  • the layer-to-layer junction is prone to fracture due to stress concentration, and continuous gradient changes will not cause obvious stress concentration. Lead to faults.
  • the mechanical properties of the intermediate layer 120 are better and the bone ingrowth effect of the surface layer 110 is better.
  • the biological coating 100 can have better stability.
  • the rod diameters of the first connecting rod 140 and the second connecting rod in the biological coating 100 gradually become larger in the direction from the outside of the biological coating 100 to the inside of the biological coating 100, and/or The arrangement of the first connecting rod 140 and the second connecting rod in the biological coating 100 gradually becomes denser from the outside of the biological coating 100 to the inside of the biological coating 100.
  • the number of the intermediate layers 120 is at least two.
  • the surface layer 110 and the plurality of intermediate layers 120 are sequentially arranged from the outside of the bio-coating 100 to the inside of the bio-coating 100.
  • the porosity between the layers in the bio-coating layer 100 gradually decreases from the outside to the inside, and the porosity in each of the intermediate layer 120 and the surface layer 110 is uniform.
  • the porosity of each of the one or more intermediate layers 120 gradually decreases from outside to inside, and/or the porosity of the surface layer 110 extends from outside to inside The direction gradually becomes smaller.
  • the porosity of each of the plurality of intermediate layers 120 is less than the porosity of the surface layer 110, and the porosity of the bio-coating layer 100 gradually decreases from the outside to the inside.
  • the biological coating 100 has a bone-like trabecular structure.
  • FIG. 7 is a schematic structural diagram of an implant in Embodiment 1 of the present invention.
  • the implant includes a base layer 200 and the bio-coating 100 in the first embodiment above, wherein the intermediate layer 120 in the bio-coating is disposed on the base layer 200, and the surface in the bio-coating Layer 110 is provided on the outermost side of the implant.
  • the base layer 200 may also be a porous coating layer, and the porosity of the base layer 200 is smaller than the porosity of the intermediate layer 120.
  • the base layer 200 may be integrally formed by 3D printing.
  • the whole implant can be integrally formed by 3D printing.
  • This embodiment provides a biological coating 100.
  • the difference between the bio-coating 100 in this embodiment and the bio-coating 100 in Embodiment 1 is that the plurality of second monomers in the intermediate layer 120 are connected in a disordered manner.
  • FIG. 8 is a schematic structural diagram of a bio-coating 100 in Embodiment 2 of the present invention
  • FIG. 9 is a partially enlarged schematic view of part B of the bio-coating 100 in FIG. 8.
  • the biological coating 100 includes a surface layer 110 and an intermediate layer 120.
  • the surface layer 110 is disposed on the intermediate layer 120, and the surface layer 110 is disposed on the outermost side of the biological coating 100.
  • the porosity of the surface layer 110 is greater than the porosity of the intermediate layer 120, and the intermediate layer 120 includes a plurality of second monomers connected in a disordered manner.
  • the connectivity between the plurality of first through-holes, between the plurality of second through-holes, and between the plurality of first through-holes and the plurality of second through-holes in the biocoating 100 affects the blood vessels in the biocoating 100 It has an effect, that is, low connectivity is easy to cause the new bone to be unable to connect with each other, which makes the integration and continuity of the new bone insufficient.
  • the plurality of second monomers in the intermediate layer 120 are connected in a regular manner, which can ensure that the biological coating has good porosity and connectivity, the structure of the biological coating and the structure of real cancellous bone have Large gap.
  • the structure of natural cancellous bone is complex, its pore size is normally distributed, and pores with different pore sizes have different biological functions.
  • the structure of the first through hole in the first monomer connected in a disordered manner and the second through hole in the second monomer connected in a disordered manner is very similar to the natural three-dimensional structure and physiology of real cancellous bone It is close, so the microstructure and biomechanical properties of the bio-coating 100 can be further improved.
  • the porosity can be changed by the change in the rod diameter of the first connecting rod 140 and the second connecting rod and/or the change in the arrangement of the density.
  • the porosity of the intermediate layer 120 and the surface layer 110 may be uniform within each layer and vary from layer to layer, or may gradually decrease in the direction from outside to inside within each layer, or The entire biological coating 100 gradually becomes smaller from the outside to the inside.
  • FIG. 10 is a schematic structural diagram of an implant in Embodiment 2 of the present invention.
  • the implant includes a base layer 200 and the bio-coating 100 in the second embodiment above, wherein the intermediate layer 120 in the bio-coating is disposed on the base layer 200, and the surface in the bio-coating Layer 110 is provided on the outermost side of the implant.
  • the base layer 200 may also be a porous coating layer, and the porosity of the base layer 200 is smaller than the porosity of the intermediate layer 120.
  • the base layer 200 may be integrally formed by 3D printing.
  • the whole implant can be integrally formed by 3D printing.
  • This embodiment provides a biological coating 100.
  • the difference between the bio-coating 100 in this embodiment and the bio-coating 100 in Embodiment 1 is that the second monomer has a diamond structure.
  • FIG. 11 is a schematic structural diagram of a bio-coating 100 in Embodiment 3 of the present invention
  • FIG. 12 is a partially enlarged schematic view of part C of the bio-coating 100 in FIG. 11.
  • the biological coating 100 includes a surface layer 110 and an intermediate layer 120.
  • the surface layer 110 is disposed on the intermediate layer 120, and the surface layer 110 is disposed on the outermost side of the biological coating 100.
  • the porosity of the surface layer 110 is greater than the porosity of the intermediate layer 120, and the intermediate layer 120 includes a plurality of second monomers connected in a regular manner.
  • the second monomer has a diamond structure connected by a plurality of second connecting rods.
  • FIG. 13 is a schematic structural diagram of a diamond structure in Embodiment 3 of the present invention.
  • the diamond structure is formed by four second connecting rods 150 connected to each other. One end of the four second connecting rods 150 is connected to each other, and the other ends of the four second connecting rods 150 are separated from each other. One end of the four second connecting rods 150 connected to each other is located at the center point of the regular tetrahedron, and the other ends of the four second connecting rods 150 are respectively located at the four vertices of the regular tetrahedron.
  • the first monomer in the surface layer 110 has a diamond dodecahedron structure
  • the second monomer in the intermediate layer 120 has a diamond structure. Therefore, the monomer structures in the surface layer 110 and the intermediate layer 120 are different, so that the porosity and mechanical properties of the surface layer 110 and the intermediate layer 120 can also be changed.
  • the bio-coating 100 in this embodiment can be avoided The problem that the first connecting rod 140 and the second connecting rod 150 are easily broken due to the excessively small rod diameter and the poor arrangement.
  • the bio-coating 100 in this embodiment can also avoid the problem that the powder is difficult to remove due to the excessively large rod diameter and the dense arrangement.
  • the porosity may be further changed by changing the rod diameter of the first connecting rod 140 and the second connecting rod 150 and/or by changing the density and density.
  • This embodiment can be combined with the use of different monomers in the surface layer 110 and the intermediate layer 120 to affect the porosity and the changes in the rod diameter and/or density arrangement of the first connecting rod 140 and the second connecting rod 150.
  • the porosity has an effect, so that the advantages of the two ways of adjusting the porosity can be combined, so that the stability of the biological coating 100 and the effect of bone ingrowth are better.
  • the porosity of the intermediate layer 120 and the surface layer 110 may be uniform in each layer and only change from layer to layer, or may gradually decrease in the direction from outside to inside in each layer Alternatively, the entire biological coating 100 may gradually become smaller from the outside to the inside.
  • FIG. 14 is a schematic structural diagram of an implant in Embodiment 3 of the present invention.
  • the implant includes a base layer 200 and the bio-coating 100 in Embodiment 3 above, wherein the intermediate layer 120 in the bio-coating is disposed on the base layer 200, and the bio-coating
  • the surface layer 110 is disposed on the outermost side of the biological coating 100.
  • the base layer 200 may also be a porous coating layer, and the porosity of the base layer 200 is smaller than the porosity of the intermediate layer 120.
  • the base layer 200 may be integrally formed by 3D printing.
  • the whole implant can be integrally formed by 3D printing.
  • This embodiment provides a biological coating 100.
  • the difference between the bio-coating 100 in this embodiment and the bio-coating 100 in Embodiment 1 is that a plurality of second monomers in the intermediate layer 120 are connected in a disordered manner, and the second monomers have diamonds structure.
  • FIG. 15 is a schematic structural diagram of a bio-coating 100 in Embodiment 4 of the present invention
  • FIG. 16 is a partially enlarged schematic view of part D of the bio-coating 100 in FIG.
  • the biological coating 100 includes a surface layer 110 and an intermediate layer 120.
  • the surface layer 110 is disposed on the intermediate layer 120, and the surface layer 110 is disposed on the outermost side of the biological coating 100.
  • the porosity of the surface layer 110 is greater than the porosity of the intermediate layer 120, and the intermediate layer 120 includes a plurality of second monomers connected in a disordered manner.
  • the second monomer has a diamond structure connected by a plurality of second connecting rods.
  • the diamond structure is formed by four second connecting rods connected to each other. Wherein, one end of the four second connecting rods is connected to each other, and the other ends of the four second connecting rods are separated from each other. One end of the four connecting rods connected to each other is located at the center point of the tetrahedron, and the other ends of the four second connecting rods are located at the four vertices of the tetrahedron, respectively.
  • the first monomer in the surface layer 110 has a diamond dodecahedron structure
  • the second monomer in the intermediate layer 120 has a diamond structure. Therefore, the monomer structures in the surface layer 110 and the intermediate layer 120 are different, so that the porosity and mechanical properties of the surface layer 110 and the intermediate layer 120 can also be changed.
  • the bio-coating 100 in this embodiment can be avoided The problem that the diameter of the rod is too small and the first connecting rod 140 and the second connecting rod are easily broken due to the sparse arrangement.
  • the bio-coating 100 in this embodiment can also avoid the problem that the powder is difficult to remove due to the excessively large rod diameter and the dense arrangement.
  • the porosity may be further changed by changing the diameters of the first connecting rod 140 and the second connecting rod and/or by changing the density and density.
  • This embodiment can combine the manner in which the porosity is affected by using different monomers in the surface layer 110 and the intermediate layer 120 and the change in the rod diameter and/or the density arrangement through the first connecting rod 140 and the second connecting rod.
  • the way of influencing the porosity can combine the advantages of these two ways of adjusting the porosity, so that the stability of the biological coating 100 and the effect of bone ingrowth are better.
  • the structure of natural cancellous bone is complex, the pore size is normally distributed, and pores with different pore sizes have different biological functions. Therefore, the structure of the first through hole in the first monomer connected in a disordered manner and the second through hole in the second monomer connected in a disordered manner is different from the natural three-dimensional structure of the actual cancellous bone and The physiology is very close, so the microstructure and biomechanical properties of the bio-coating 100 can be further improved.
  • the porosity of the intermediate layer 120 and the surface layer 110 may be uniform in each layer and vary from layer to layer, or may gradually decrease in the direction from the outside to the inside in each layer.
  • FIG. 17 is a schematic structural diagram of an implant in Embodiment 4 of the present invention.
  • the implant includes a base layer 200 and the bio-coating 100 in the fourth embodiment described above, the intermediate layer 120 in the bio-coating is disposed on the base layer 200, and the surface in the bio-coating Layer 110 is provided on the outermost side of the implant.
  • the base layer 200 may also be a porous coating layer, and the porosity of the base layer 200 is smaller than the porosity of the intermediate layer 120.
  • the base layer 200 may be integrally formed by 3D printing.
  • the whole implant can be integrally formed by 3D printing.
  • This embodiment provides a biological coating 100.
  • the difference between the bio-coating 100 in this embodiment and the bio-coating 100 in Embodiment 1 is that a plurality of second monomers in the intermediate layer 120 are connected in a disordered manner, and the second monomers have The diamond structure and the overall porosity of the bio-coating 100 vary continuously from outside to inside.
  • FIG. 18 is a schematic structural diagram of a bio-coating 100 in Embodiment 5 of the present invention
  • FIG. 19 is a partially enlarged schematic view of part E of the bio-coating 100 in FIG. 18.
  • the biological coating 100 includes a surface layer 110 and an intermediate layer 120.
  • the surface layer 110 is disposed on the intermediate layer 120, and the surface layer 110 is disposed on the outermost side of the biological coating 100.
  • the porosity of the surface layer 110 is greater than the porosity of the intermediate layer 120, and the intermediate layer 120 includes a plurality of second monomers connected in a disordered manner.
  • the second monomer has a diamond structure connected by a plurality of second connecting rods.
  • the diamond structure is formed by four second connecting rods connected to each other. Wherein, one end of the four second connecting rods is connected to each other, the other ends of the four second connecting rods are separated from each other, and one end of the four second connecting rods connected to each other is located in the center of the tetrahedron At the point, the other ends of the four second connecting rods are respectively located at the four vertices of the tetrahedron.
  • the first monomer in the surface layer 110 has a diamond dodecahedron structure
  • the second monomer in the intermediate layer 120 has a diamond structure. Therefore, the monomer structures in the surface layer 110 and the intermediate layer 120 are different, so that the porosity and mechanical properties of the surface layer 110 and the intermediate layer 120 can also be changed.
  • the bio-coating 100 in this embodiment can be avoided The problem that the diameter of the rod is too small and the first connecting rod 140 and the second connecting rod are easily broken due to the sparse arrangement.
  • the bio-coating 100 in this embodiment can also avoid the problem that the powder is difficult to remove due to the excessively large rod diameter and the dense arrangement.
  • the porosity may be further changed by changing the diameters of the first connecting rod 140 and the second connecting rod and/or by changing the density and density.
  • This embodiment can be combined with the way in which different monomers are used in the surface layer 110 and the intermediate layer 120 to affect the porosity and the change in the rod diameter and/or the density arrangement of the first connecting rod 140 and the second connecting rod.
  • the way of affecting the porosity so that the advantages of the porosity can be adjusted by combining these two ways, so that the stability of the biological coating 100 and the effect of bone ingrowth are better.
  • the structure of natural cancellous bone is complex, the pore size is normally distributed, and pores with different pore sizes have different biological functions. Therefore, the structure of the first through hole in the first monomer connected in a disordered manner and the second through hole in the second monomer connected in a disordered manner is different from the natural three-dimensional structure of the actual cancellous bone and The physiology is very close, so the microstructure and biomechanical properties of the bio-coating 100 can be further improved.
  • the porosity of the intermediate layer 120 is smaller than the porosity of the surface layer 110, and the porosity of the bio-coating layer 100 gradually decreases from the outside to the inside. That is to say, the porosity in the intermediate layer 120 and the surface layer 110 changes continuously from the outside to the inside, and no obvious properties (such as porosity, rod diameter, sparse arrangement, etc.) will result in discontinuities caused by discontinuities.
  • the mechanical properties of the intermediate layer 120 are better, the bone ingrowth effect of the surface layer 110 is better, and there is a better transition between the intermediate layer 120 and the surface layer 110, which can make the biological coating 100 have better stability.
  • FIG. 20 is a schematic structural diagram of an implant in Embodiment 5 of the present invention.
  • the implant includes a base layer 200 and the bio-coating 100 in Embodiment 5 above, wherein the intermediate layer 120 in the bio-coating is disposed on the base layer 200, and the bio-coating The surface layer 110 is provided on the outermost side of the implant.
  • the base layer 200 may also be a porous coating layer, and the porosity of the base layer 200 is less than the porosity of the intermediate layer 120.
  • the base layer 200 may be integrally formed by 3D printing.
  • the whole implant can be integrally formed by 3D printing.
  • the second monomer in the middle layer all has a diamond structure, wherein a plurality of the diamond structures in the third embodiment are connected in a regular manner.
  • a plurality of the diamond structures are connected in a disordered manner.
  • a diamond structure connected in a regular manner is formed by four interconnected second connecting rods, wherein one end of the four second connecting rods is connected to each other, and the other ends of the four second connecting rods are separated from each other
  • One end of the four second connecting rods connected to each other is located at the center point of the regular tetrahedron, and the other ends of the four second connecting rods are respectively located at the four vertices of the regular tetrahedron.
  • the angle between the second connecting rod and the second connecting rod has changed, and the length of the second connecting rod has also changed. That is to say, the diamond structure connected in a disordered manner actually has no regular tetrahedral structure but a deformed tetrahedral structure.
  • the diamond structure is the optimal solution for the structure of the second monomer as the intermediate layer.
  • the second monomer of the intermediate layer may also have other structures, which is not limited by the present invention.
  • the biological coating 100 includes a surface layer 110 and an intermediate layer 120.
  • the surface layer 110 is disposed on the intermediate layer 120.
  • the surface layer 110 is disposed on the outermost side of the biological coating 100.
  • the porosity of the surface layer 110 is greater than the porosity of the intermediate layer 120.
  • the surface layer 110 includes a plurality of first cells connected in a disordered manner, and a plurality of first through holes are formed between the plurality of first cells and inside the first cells.
  • the first monomer may have an N-hedron structure, and N ⁇ 10.
  • the first monomer may have one of a rhombic dodecahedral structure, an icosahedral structure, and a dodecahedral structure (soccerene structure).
  • the structure of the icosahedron can be referred to FIG. 21, which is a schematic diagram of the structure of the icosahedron in Embodiment 6 of the present invention.
  • the intermediate layer 120 includes a plurality of second cells connected in a regular manner, and a plurality of second through holes are formed between the plurality of second cells and inside the second cell.
  • the second monomer may have an M-hedron structure, and M ⁇ 10.
  • the second monomer may have one of a tetrahedral structure, a cubic structure, and an octahedral structure.
  • the second monomer may also have one of diamond structure or honeycomb structure.
  • the second monomers can also be arranged in a disordered manner.
  • the implant includes a base layer 200 and the bio-coating layer 100 in the sixth embodiment above, wherein the intermediate layer 120 in the bio-coating layer is disposed on the base layer 200, and the surface in the bio-coating layer Layer 110 is provided on the outermost side of the implant.
  • the base layer 200 may also be a porous coating layer, and the porosity of the base layer 200 is smaller than the porosity of the intermediate layer 120.
  • the base layer 200 may be integrally formed by 3D printing.
  • the whole implant can be integrally formed by 3D printing.
  • This embodiment provides a biological coating 100.
  • the biological coating 100 includes only the surface layer 110.
  • the surface layer 110 includes a plurality of first cells connected in a disordered manner, and a plurality of first through holes are formed between the plurality of first cells and inside the first cells.
  • the first monomer may have a K-hedron structure, and K ⁇ 4.
  • the first monomer may have one of a rhombic dodecahedral structure, an icosahedral structure, a dodecahedral structure (soccerene structure), a tetrahedral structure, a cubic structure, and an octahedral structure.
  • the first monomer may also have one of a diamond structure or a honeycomb structure.
  • the implant includes a base layer 200 and the bio-coating 100 in the seventh embodiment.
  • the base layer 200 may also be a porous coating layer, and the porosity of the base layer 200 is less than the porosity of the surface layer 110.
  • the base layer 200 may be integrally formed by 3D printing.
  • the whole implant can be integrally formed by 3D printing.
  • the surface layer 110 is disposed on the outermost side of the bio-coating layer 100.
  • the surface layer 110 includes a plurality of first monomers connected in a disordered manner, and a plurality of the first monomers A plurality of first through holes are formed between the first cell and the first cell. That is, since the plurality of first monomers in the surface layer 110 are connected in a disordered manner, the plurality of first through holes in the surface layer 110 may be in a disordered state, thereby facilitating the growth of corresponding bone tissue cells into the surface In layer 110, the bone ingrowth effect and long-term stability are further improved.
  • the biological coating 100 further includes at least one intermediate layer 120.
  • the surface layer 110 and the at least one intermediate layer 120 extend from the outer side of the biological coating 100 to the biological coating 100.
  • the direction of the inner side is sequentially set, and the porosity of the bio-coating layer 100 gradually decreases from the outside of the bio-coating layer 100 to the inside of the bio-coating layer 100.
  • the surface layer 110 of the bio-coating 100 may have better bone ingrowth effect and long-term stability
  • the intermediate layer 120 of the bio-coating 100 may have better short-term stability, the bio-coating 100 The overall stability is good.
  • the plurality of second cells in the intermediate layer 120 are connected in a regular manner, the plurality of second through holes in the intermediate layer 120 may be in an ordered state, so that the intermediate layer 120 And the biological coating 100 has better mechanical properties.
  • the first through hole in the first monomer connected in the disordered manner and the second monomer connected in the disordered manner The structure of the second through hole in the body is very close to the natural three-dimensional structure and physiology of the actual cancellous bone, so that the microstructure and biomechanical properties of the biocoating 100 can be further improved.
  • the bio-coating in the above embodiment can avoid the problem that the first connecting rod 140 and the second connecting rod are easily broken due to the excessively small rod diameter and the excessive arrangement.
  • the bio-coating in the above embodiment can also avoid the problem that the powders caused by the first connecting rod 140 and the second connecting rod are too large and the arrangement is too dense to remove the powder.
  • the porosity of the intermediate layer 120 and the surface layer 110 changes continuously in the direction from the outside of the bio-coating 100 to the inside of the bio-coating 100, it is unlikely to appear obvious Of faults caused by discontinuities in properties (such as porosity, rod diameter, sparse arrangement, etc.).
  • the mechanical properties of the intermediate layer 120 are better, the bone ingrowth effect of the surface layer 110 is better, and the bio-coating layer 100 can have better quality due to the better transition between the intermediate layer 120 and the surface layer 110 stability.
  • the biological coating 100 may be integrally formed by 3D printing. In this way, the porosity of the surface layer 110 and the intermediate layer 120 can be changed in a controlled manner. Therefore, the connectivity between the plurality of first through holes, between the plurality of second through holes, and between the plurality of first through holes and the plurality of second through holes in the biological coating 100 is good.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Transplantation (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Epidemiology (AREA)
  • Dermatology (AREA)
  • Medicinal Chemistry (AREA)
  • Cardiology (AREA)
  • Vascular Medicine (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Prostheses (AREA)
  • Materials For Medical Uses (AREA)

Abstract

一种生物涂层(100),包括一表面层(110),表面层(110)包括多个以无序的方式连接的第一单体,多个第一单体之间以及多个第一单体内部形成有多个第一通孔。由于表面层(110)设置在生物涂层(100)的最外侧,且表面层(110)包括多个以无序的方式连接的第一单体,多个第一单体之间以及多个第一单体内部形成有多个第一通孔,即表面层(110)中的多个第一单体以无序的方式连接,因此,表面层(110)中的多个第一通孔可处于无序状态,从而可便于相应的骨组织细胞长入表面层(110)中,进而改善骨长入效果和长期稳定性。

Description

生物涂层和植入物 技术领域
本发明涉及医疗器械技术领域,特别涉及一种生物涂层和植入物。
背景技术
传统植入物的生物涂层往往采用钛珠烧结法、等离子喷涂法、金刚砂喷砂法等工艺制作。这些工艺难以使生物涂层的孔隙率以可控的方式变化,且难以保证孔的连通性而容易产生应力遮挡。进一步地,各层生物涂层之间、生物涂层与基体之间多采用粘结剂连接,连接稳定性差,因而影响骨长入效果和生物涂层和植入物的力学性能。此外,这些工艺相对复杂、生产周期长、成本较高。
在现有技术中披露了一种3D打印梯度孔径多孔金属骨组织支架。该支架具有六面体结构,由组件A、组件B、组件C紧密排列组成,其中,组件A以矩阵的方式排列于六面体结构的最外层,组件B阵列于六面体结构的中间层,组件C阵列于六面体结构的最内层。组件A的孔径大于组件B,组件B的孔径大于组件C的孔径。但是,该支架结构仍较为单一,因为组件A、组件B和组件C均为六面体结构,且支架中组件A、组件B和组件C的排列均规则有序。由于骨小梁具有连通孔隙的不规则多孔网状结构,该支架结构与骨小梁结构相差甚远,因此,长期稳定性差且骨长入效果有限。
发明内容
本发明的目的在于提供一种生物涂层和植入物,以解决现有的生物涂层和植入物的长期稳定性差、骨长入效果有限的问题。
为解决上述技术问题,本发明提供一种生物涂层,包括一表面层,所述表面层包括多个以无序的方式连接的第一单体,多个所述第一单体之间以及多个所述第一单体的内部形成有多个第一通孔。
可选地,所述生物涂层还包括至少一层中间层,所述表面层设置在所述生物涂层的最外侧,所述表面层和所述至少一层中间层沿从所述生物涂层的 外侧到所述生物涂层的内侧的方向依次设置,所述生物涂层的孔隙率沿从所述生物涂层的外侧到所述生物涂层的内侧的方向逐渐变小。
所述生物涂层的孔隙率沿从所述生物涂层的外侧到所述生物涂层的内侧的方向逐渐变小既可以是所述中间层和所述表面层的孔隙率在各层内均一不变且在不同层中沿从所述生物涂层的外侧到内侧的方向逐渐变小的情况;也可以是,所述中间层和所述表面层的孔隙率在各层内沿从所述生物涂层的外侧到内侧的方向逐渐变小,且在不同层之间沿从所述生物涂层的外侧到内侧的方向逐渐变小的情况;还可以是,整个生物涂层中的孔隙率从所述生物涂层的外侧到所述生物涂层的内侧连续梯度变化的情况。
可选地,所述中间层包括多个以规则方式连接的第二单体,多个所述第二单体之间以及多个所述第二单体内部形成有多个第二通孔。
可选地,所述中间层包括多个以无序方式连接的第二单体,多个所述第二单体之间以及多个所述第二单体内部形成有多个第二通孔。
可选地,所述表面层中的第一单体与所述中间层中的第二单体的结构不相同。
可选地,所述第一单体具有N面体结构,所述N≥10,所述第二单体具有M面体结构,所述M<10。
可选地,所述第一单体具有菱形十二面体结构、二十面体结构、三十二面体结构中的一种,所述第二单体具有钻石结构、蜂窝结构、四面体结构、立方体结构、八面体结构中的一种。
可选地,所述第二单体具有钻石结构,所述钻石结构由四个相互连接的第二连接杆形成,其中,四个所述第二连接杆的一端相互连接在一起,四个所述第二连接杆的另一端相互分离,四个所述第二连接杆相互连接在一起的一端位于正四面体的中心点处,四个所述第二连接杆的另一端分别位于所述正四面体的四个顶点处。
可选地,所述至少一层中间层的数量为至少两个,所述第二单体的种类为多种。
可选地,所述第一单体由多个第一连接杆连接而成,所述第二单体由多 个第二连接杆连接而成;所述第一连接杆的杆径可较所述第二连接杆的杆径小,且所述表面层中的所述第一连接杆的杆径相等,所述中间层中的所述第二连接杆的杆径相等,和/或所述表面层中的所述第一连接杆的排列可较所述中间层中的所述第二连接杆的排列疏,且所述表面层中的所述第一连接杆的排列疏密相等,所述中间层中的所述第二连接杆的排列疏密相等;或者,所述表面层中的所述第一连接杆的杆径沿从所述生物涂层的外侧到所述生物涂层的内侧的方向逐渐变大,所述中间层中的所述第二连接杆的杆径沿从所述生物涂层的外侧到所述生物涂层的内侧的方向逐渐变大,所述表面层中的所述第一连接杆的杆径整体较所述中间层中的所述第二连接杆的杆径小,和/或所述表面层中的所述第一连接杆的排列沿从所述生物涂层的外侧到生物涂层的内侧的方向逐渐变密,所述中间层中的所述第二连接杆的排列沿从所述生物涂层的外侧到所述生物涂层的内侧的方向逐渐变密,所述表面层中的所述第一连接杆的排列整体较所述中间层中的所述第二连接杆的排列疏;或者,所述生物涂层中的所述第一连接杆和所述第二连接杆的杆径整体沿所述生物涂层的外侧到所述生物涂层的内侧的方向逐渐变大,和/或所述生物涂层中的所述第一连接杆和所述第二连接杆的排列整体沿所述生物涂层的外侧到生物涂层的内侧的方向逐渐变密。
本发明还提供一种植入物,包括基底层以及上述的生物涂层,所述生物涂层设置在所述基底层上,所述生物涂层的表面层设置在所述植入物的最外侧。
本发明提供的一种生物涂层和植入物,具有以下有益效果:
首先,所述表面层设置在所述生物涂层的最外侧,所述表面层包括多个以无序方式连接的第一单体,多个所述第一单体之间以及多个所述第一单体内部形成有多个第一通孔。即,由于所述表面层中的多个第一单体以无序方式连接,表面层中的多个第一通孔可处于无序状态,从而可便于相应的骨组织细胞长入表面层中,进而改善骨长入效果和长期稳定性。
其次,所述生物涂层还包括至少一层中间层,所述表面层和所述至少一层中间层沿所述生物涂层的外侧到所述生物涂层的内侧的方向依次设置,所 述生物涂层的孔隙率沿所述生物涂层的外侧到所述生物涂层的内侧的方向逐渐变小。如此,所述生物涂层的表面层可具有较好的骨长入效果和长期稳定性,所述生物涂层的中间层可具有良好的力学性能,所述生物涂层整体的稳定性好。
在一个实施例中,由于所述中间层中的多个第二单体以规则方式连接,因此中间层中的多个第二通孔可处于有序状态,从而可使得所述中间层以及所述生物涂层具有较好的力学性能。
在另一实施例中,由于第一单体和第二单体均以无序方式连接,因此以无序方式连接的第一单体中的第一通孔和以无序方式连接的第二单体中的第二通孔的结构与真实的松质骨的自然三维结构和生理十分接近,从而可进一步改善生物涂层的微结构和生物力学性能。
在又一实施例中,由于表面层中的第一单体与中间层中的第二单体结构不同,因此,表面层和中间层中的孔隙率和力学性能也不同。相较于仅通过第一单体中的第一连接杆以及第二单体中的第二连接杆的杆径变化和/或疏密排列变化而使孔隙率发生变化的生物涂层而言,该实施例可避免由杆径过小以及排列过疏引起的连接杆容易断裂的问题。此外,该实施例也可避免由连接杆的杆径过大以及排列过密引起的粉末难清除的问题。
在其他实施例中,由于所述中间层和所述表面层的孔隙率沿所述生物涂层的外侧到所述生物涂层的内侧的方向连续梯度变化,因此,不易出现明显的由性质(如孔隙率、杆径、稀疏排列等)间断导致的断层。如此,使得中间层的力学性能更好,表面层的骨长入效果较好,并且由于中间层和表面层之间具有较好的过渡而可使生物涂层具有更好的稳定性。
附图说明
图1是本发明实施例一中的生物涂层的结构示意图;
图2是图1中的生物涂层的局部放大示意图;
图3是本发明实施例一中的菱形十二面体的结构示意图;
图4是本发明实施例一中的生物涂层的孔隙率的变化示意图;
图5是本发明一种实施例中的生物涂层的孔隙率的变化示意图;
图6是本发明再一种实施例中的生物涂层的孔隙率的变化示意图;
图7是本发明实施例一中的植入物的结构示意图;
图8是本发明实施例二中的生物涂层的结构示意图;
图9是图8中的生物涂层的局部放大示意图;
图10是本发明实施例二中的植入物的结构示意图;
图11是本发明实施例三中的生物涂层的结构示意图;
图12是图11中的生物涂层的局部放大示意图;
图13是本发明实施例三中的钻石结构体的结构示意图;
图14是本发明实施例三中的植入物的结构示意图;
图15是本发明实施例四中的生物涂层的结构示意图;
图16是图15中的生物涂层的局部放大示意图;
图17是本发明实施例四中的植入物的结构示意图;
图18是本发明实施例五中的生物涂层的结构示意图;
图19是图18中的生物涂层的局部放大示意图;
图20是本发明实施例五中的植入物的结构示意图;
图21是本发明实施例六中的二十面体的结构示意图。
附图标记说明:
100-生物涂层;110-表面层;120-中间层;140-第一连接杆;150-第二连接杆;
200-基底层。
具体实施方式
本发明提供一种生物涂层,所述生物涂层包括一表面层,所述表面层包括多个以无序的方式连接的单体,多个所述单体之间以及所述单体内部形成有多个通孔。由于表面层中的多个单体以无序的方式连接,因此表面层中的多个通孔可处于无序状态,从而可便于相应的骨组织细胞长入表面层中,进而改善骨长入效果和长期稳定性。
相应地,本发明还提供一种植入物,所述植入物包括基底层以及设置在所述基底层上的生物涂层。由于所述生物涂层的表面层中的多个通孔可处于无序状态,因此,可改善所述植入物的骨长入效果和长期稳定性。
以下结合附图和具体实施例对本发明提出的生物涂层和植入物作进一步详细说明。根据下面的说明和权利要求书,本发明的优点和特征将更清楚。需说明的是,附图均采用非常简化的形式且均使用非精准的比例,仅用以方便、明晰地辅助说明本发明实施例的目的。
实施例一
本实施例提供一种生物涂层100。参考图1和图2,图1是本发明实施例一中的生物涂层100的结构示意图,图2是图1中的生物涂层100的A部分的局部放大示意图。所述生物涂层100包括表面层110和中间层120。所述表面层110设置在所述中间层120上,所述表面层110设置在所述生物涂层100的最外层,所述表面层110的孔隙率大于所述中间层120的孔隙率。
所述表面层110包括多个以无序的方式连接的第一单体。多个所述第一单体之间以及所述第一单体的内部形成有多个第一通孔。参考图3,图3是本发明实施例一中的菱形十二面体的结构示意图。在本实施例中,所述第一单体为由多个第一连接杆140连接而成的菱形十二面体,因此其内部形成有多个第一通孔。第一通孔也可以由相邻的两个第一单体相互连接而形成。
由于所述表面层110中的多个第一单体以无序的方式连接,因此表面层110中的多个第一通孔可处于无序状态,从而可便于相应的骨组织细胞长入表面层110中,进而改善骨长入效果和长期稳定性。
其中,所述第一通孔的孔径为100-1000μm,所述表面层110的孔隙率为50-80%。如此,可使得生物涂层100具有较好的骨长入效果和长期稳定性,同时可使表面层110具有较高的粗糙度和摩擦系数,以及可使得所述生物涂层100具有良好的短期稳定性。
所述中间层120包括多个以规则的方式连接的第二单体,多个所述第二单体之间以及多个所述第二单体内部形成有多个第二通孔。在本实施例中,所述第二单体为由多个第二连接杆连接而成的菱形十二面体,因此其内部形 成有多个第二通孔。第二通孔也可以由相邻的两个第二单体相互连接而形成。
由于所述中间层120中的多个第二单体以规则的方式连接,因此中间层120中的多个第二通孔可处于有序状态,从而可使得所述中间层120以及所述生物涂层100具有较好的力学性能。
其中,所述第二通孔的孔径为100μm-1000μm,所述中间层120的孔隙率为10-60%。
本实施例中,所述生物涂层100的总厚度为0.5-5.0mm,且所述生物涂层100具有高孔隙率。所述生物涂层100可采用计算机软件设计并通过3D打印的方式一体成型。如此,可使所述表面层110和所述中间层120的孔隙率以可控的方式变化,从而使得所述生物涂层100中的多个第一通孔之间、多个第二通孔之间以及多个第一通孔与多个第二通孔之间的连通性较好。
参考图4,图4是本发明实施例一中的生物涂层100的孔隙率的变化示意图。所述中间层120的孔隙率小于所述表面层110的孔隙率,且所述中间层120和所述表面层110中的孔隙率是均一的,即孔隙率仅在中间层120与表面层110之间发生变化。表面层110的孔隙率相对较大,能够为组织细胞提供充足的长入空间,有利于营养物质的运输和代谢废物的排出,从而具有更好的骨长入效果。中间层120的孔隙率相对较小,能够提供更好的力学性能。
其中,可通过第一连接杆140和第二连接杆的杆径变化和/或疏密排列变化使孔隙率发生变化。具体的,所述第一连接杆140的杆径较所述第二连接杆的杆径小,且所述表面层110中的所述第一连接杆140的杆径相等,所述中间层120中的所述第二连接杆的杆径相等,和/或所述表面层110中所述第一连接杆140的排列可较中间层120中所述第二连接杆的排列疏,且所述表面层110中所述第一连接杆140的排列疏密相等,所述中间层120中所述第二连接杆的排列疏密相等。
在其他的实施例中,所述生物涂层100的孔隙率的变化可与本实施例不相同。
参考图5,图5是本发明一种实施例中的生物涂层100的孔隙率的变化示意图。所述中间层120的孔隙率小于所述表面层110的孔隙率,且所述中间 层120和所述表面层110中的孔隙率在各层中从外到内逐渐变小,其中,所述表面层110远离中间层120的一侧为生物涂层100的外侧,所述中间层120远离表面层110的一侧为生物涂层100的内侧。表面层110的孔隙率相对较大,能够为组织细胞提供充足的长入空间,有利于营养物质的运输和代谢废物的排出,从而具有更好的骨长入效果。中间层120的孔隙率相对较小,能够提供更好的力学性能。所述表面层110中所述第一连接杆140的杆径沿生物涂层100的外侧到生物涂层100的内侧的方向逐渐变大,所述中间层120中所述第二连接杆的杆径沿生物涂层100的外侧到生物涂层100的内侧的方向逐渐变大,所述表面层110中所述第一连接杆140的杆径整体较所述中间层120中所述第二连接杆的杆径小;和/或所述表面层110中的所述第一连接杆140的排列沿生物涂层100的外侧到生物涂层100的内侧的方向逐渐变密,所述中间层120中的所述第二连接杆的排列沿生物涂层100的外侧到生物涂层100的内侧的方向逐渐变密,所述表面层110中所述第一连接杆140的排列整体较所述中间层120中所述第二连接杆的排列疏。
参考图6,图6是本发明再一种实施例中的生物涂层100的孔隙率的变化示意图。所述中间层120的孔隙率小于所述表面层110的孔隙率,且所述生物涂层100的孔隙率整体从外侧到内侧逐渐变小。较佳地,生物涂层100中的孔隙率沿外侧到内侧的方向连续梯度变化。连续梯度变化是指孔隙率呈线性变化。相比于孔隙率呈跳跃式梯度变化(例如仅在各层内呈逐渐变小),使得层与层结合处容易产生由应力集中而导致的断裂,连续梯度变化不会出现明显的应力集中而导致断层。因此,中间层120的力学性能更好且表面层110的骨长入效果较好。此外,由于中间层120和表面层110之间具有较好的过渡,可使生物涂层100具有更好的稳定性。所述生物涂层100中的所述第一连接杆140和所述第二连接杆的杆径整体沿生物涂层100的外侧到生物涂层100的内侧的方向逐渐变大,和/或所述生物涂层100中的所述第一连接杆140和所述第二连接杆的排列整体沿从生物涂层100的外侧到生物涂层100的内侧的方向逐渐变密。
在一个实施例中,所述中间层120的数量为至少两个。所述表面层110 和多个所述中间层120从所述生物涂层100的外侧到所述生物涂层100的内侧依次设置。生物涂层100中的各层之间的孔隙率沿从外侧到内侧的方向逐渐变小,且每个所述中间层120和所述表面层110中的孔隙率是均一的。
在另一个实施例中,一个或者多个所述中间层120中的每一个的孔隙率沿从外侧到内侧的方向逐渐变小,和/或所述表面层110的孔隙率沿从外侧到内侧的方向逐渐变小。
在再一个实施例中,多个所述中间层120中的每一个的孔隙率小于所述表面层110的孔隙率,且所述生物涂层100的孔隙率整体从外侧到内侧逐渐变小。
上述实施例中,所述生物涂层100具有仿骨小梁结构。
本实施例还提供一种植入物。参考图7,图7是本发明实施例一中的植入物的结构示意图。所述植入物包括基底层200和上述实施例一中的生物涂层100,其中,所述生物涂层中的中间层120设置在所述基底层200上,所述生物涂层中的表面层110设置在所述植入物的最外侧。其中,所述基底层200也可为多孔涂层,并且所述基底层200的孔隙率小于所述中间层120的孔隙率。
所述基底层200可采用3D打印的方式一体成型。所述植入物整体可采用3D打印的方式一体成型。
实施例二
本实施例提供一种生物涂层100。本实施例中的生物涂层100与实施例一中的生物涂层100的区别在于,所述中间层120中的多个第二单体以无序的方式连接。
参考图8和图9,图8是本发明实施例二中的生物涂层100的结构示意图,图9是图8中的生物涂层100的B部分的局部放大示意图。所述生物涂层100包括表面层110和中间层120。所述表面层110设置在所述中间层120上,所述表面层110设置在所述生物涂层100的最外侧。所述表面层110的孔隙率 大于所述中间层120的孔隙率,所述中间层120包括多个以无序的方式连接的第二单体。
生物涂层100中的多个第一通孔之间、多个第二通孔之间以及多个第一通孔与多个第二通孔之间的连通性对生物涂层100内的血管化有影响,即低连通性易导致新生骨之间无法互相连接而使得新生骨的整合性和连续性不足。虽然,所述中间层120中的多个第二单体以规则的方式连接,能够保证生物涂层具有良好的孔隙率和连通性,但是生物涂层的结构与真实松质骨的结构还有较大差距。天然松质骨的结构复杂,其孔径呈正态分布,且不同孔径的孔具有不同的生物学功能。以无序的方式连接的第一单体中的第一通孔和以无序的方式连接的第二单体中的第二通孔的结构与真实的松质骨的自然三维结构和生理十分接近,因此可进一步改善生物涂层100的微结构和生物力学性能。
其中,可通过第一连接杆140和第二连接杆的杆径变化和/或疏密排列变化使孔隙率发生变化。所述中间层120和所述表面层110的孔隙率可以在各层内保持均一的且在层与层之间发生变化,也可以在各层内沿外侧到内侧的方向逐渐变小,也可以整个生物涂层100从外侧到内侧逐渐变小。
本实施例还提供一种植入物。参考图10,图10是本发明实施例二中的植入物的结构示意图。所述植入物包括基底层200和上述实施例二中的生物涂层100,其中,所述生物涂层中的中间层120设置在所述基底层200上,所述生物涂层中的表面层110设置在所述植入物的最外侧。其中,所述基底层200也可为多孔涂层,并且所述基底层200的孔隙率小于所述中间层120的孔隙率。
所述基底层200可采用3D打印的方式一体成型。所述植入物整体可采用3D打印的方式一体成型。
实施例三
本实施例提供一种生物涂层100。本实施例中的生物涂层100与实施例一 中的生物涂层100的区别在于,所述第二单体具有钻石结构。
参考图11和图12,图11是本发明实施例三中的生物涂层100的结构示意图,图12是图11中的生物涂层100的C部分的局部放大示意图。所述生物涂层100包括表面层110和中间层120。所述表面层110设置在所述中间层120上,所述表面层110设置在所述生物涂层100的最外侧。所述表面层110的孔隙率大于所述中间层120的孔隙率,所述中间层120包括多个以规则的方式连接的第二单体。所述第二单体具有由多个第二连接杆连接而成的钻石结构。
参考图13,图13是本发明实施例三中的钻石结构体的结构示意图。所述钻石结构由四个相互连接的第二连接杆150形成。其中,四个所述第二连接杆150的一端相互连接在一起,四个所述第二连接杆150的另一端相互分离。四个所述第二连接杆150相互连接在一起的一端位于正四面体的中心点处,四个所述第二连接杆150的另一端分别位于所述正四面体的四个顶点处。
本实施例中,所述表面层110中的第一单体具有菱形十二面体结构,所述中间层120中的第二单体具有钻石结构。因此,表面层110和中间层120中的单体结构不同,使得表面层110和中间层120的孔隙率和力学性能也可发生变化。相较于仅通过第一连接杆140和第二连接杆150的杆径变化和/或疏密排列变化使孔隙率发生变化的生物涂层而言,本实施例中的生物涂层100可避免杆径过小以及排列过疏引起的第一连接杆140和第二连接杆150容易断裂的问题。此外,本实施例中的生物涂层100也可避免杆径过大以及排列过密引起的粉末难清除的问题。
优选地,本实施例还可进一步通过第一连接杆140和第二连接杆150的杆径变化和/或疏密排列变化使孔隙率发生变化。本实施例可结合通过在表面层110和中间层120采用不同单体而对孔隙率产生影响和通过第一连接杆140和第二连接杆150的杆径变化和/或疏密排列变化而对孔隙率产生影响,从而可结合这两种调整孔隙率的方式的优点,使得生物涂层100的稳定性和骨长入效果更好。
其中,所述中间层120和所述表面层110的孔隙率可以在各层内保持均 一且仅在层与层之间发生变化,也可以在各层内沿从外侧到内侧的方向逐渐变小,也可以整个生物涂层100从外侧到内测逐渐变小。
本实施例还提供一种植入物。参考图14,图14是本发明实施例三中的植入物的结构示意图。所述植入物包括基底层200和上述实施例三中的生物涂层100,其中,所述生物涂层中的所述中间层120设置在所述基底层200上,所述生物涂层的表面层110设置在所述生物涂层100的最外侧。其中,所述基底层200也可为多孔涂层,并且所述基底层200的孔隙率小于所述中间层120的孔隙率。
所述基底层200可采用3D打印的方式一体成型。所述植入物整体可采用3D打印的方式一体成型。
实施例四
本实施例提供一种生物涂层100。本实施例中的生物涂层100与实施例一中的生物涂层100的区别在于,所述中间层120中多个第二单体以无序的方式连接,所述第二单体具有钻石结构。
参考图15和图16,图15是本发明实施例四中的生物涂层100的结构示意图,图16是图15中的生物涂层100的D部分的局部放大示意图。所述生物涂层100包括表面层110和中间层120。所述表面层110设置在所述中间层120上,所述表面层110设置在所述生物涂层100的最外侧。所述表面层110的孔隙率大于所述中间层120的孔隙率,所述中间层120包括多个以无序的方式连接的第二单体。所述第二单体具有由多个第二连接杆连接而成的钻石结构。
与实施例三相同,所述钻石结构由四个相互连接的第二连接杆形成。其中,四个所述第二连接杆的一端相互连接在一起,四个所述第二连接杆的另一端相互分离。四个所述第二连接杆相互连接在一起的一端位于四面体的中心点处,四个所述第二连接杆的另一端分别位于所述四面体的四个顶点处。
本实施例中,所述表面层110中的第一单体具有菱形十二面体结构,所述中间层120中的第二单体具有钻石结构。因此,表面层110和中间层120 中的单体结构不同,使得表面层110和中间层120的孔隙率和力学性能也可发生变化。相较于仅通过第一连接杆140和第二连接杆的杆径变化和/或疏密排列变化使孔隙率发生变化的生物涂层100而言,本实施例中的生物涂层100可避免杆径过小以及排列过疏引起的第一连接杆140和第二连接杆容易断裂的问题。此外,本实施例中的生物涂层100也可避免杆径过大以及排列过密引起的粉末难清除的问题。
优选地,本实施例还可进一步通过第一连接杆140和第二连接杆的杆径变化和/或疏密排列变化使孔隙率发生变化。本实施例可结合通过在表面层110和中间层120中采用不同单体而对孔隙率产生影响的方式和通过第一连接杆140和第二连接杆的杆径变化和/或疏密排列变化而对孔隙率产生影响的方式,从而可结合这两种调整孔隙率的方式的优点,使得生物涂层100的稳定性和骨长入效果更好。
此外,天然松质骨结构复杂,孔径呈正态分布,且不同孔径的孔具有不同的生物学功能。因此,以无序的方式连接的第一单体中的第一通孔和以无序的方式连接的第二单体中的第二通孔的结构与真实的松质骨的自然三维结构和生理十分接近,因此可进一步改善生物涂层100的微结构和生物力学性能。
其中,所述中间层120和所述表面层110的孔隙率可以在各层内保持均一且在层与层之间发生变化,也可以在各层内沿从外侧到内侧的方向逐渐变小。
本实施例还提供一种植入物。参考图17,图17是本发明实施例四中的植入物的结构示意图。所述植入物包括基底层200和上述实施例四中的生物涂层100,所述生物涂层中的所述中间层120设置在所述基底层200上,所述生物涂层中的表面层110设置在所述植入物的最外侧。其中,所述基底层200也可为多孔涂层,并且所述基底层200的孔隙率小于所述中间层120的孔隙率。
所述基底层200可采用3D打印的方式一体成型。所述植入物整体可采用 3D打印的方式一体成型。
实施例五
本实施例提供一种生物涂层100。本实施例中的生物涂层100与实施例一中的生物涂层100的区别在于,所述中间层120中的多个第二单体以无序的方式连接,所述第二单体具有钻石结构且所述生物涂层100的孔隙率整体从外侧到内侧连续梯度变化。
参考图18和图19,图18是本发明实施例五中的生物涂层100的结构示意图,图19是图18中的生物涂层100的E部分的局部放大示意图。所述生物涂层100包括表面层110和中间层120。所述表面层110设置在所述中间层120上,所述表面层110设置在所述生物涂层100的最外侧。所述表面层110的孔隙率大于所述中间层120的孔隙率,所述中间层120包括多个以无序的方式连接的第二单体。所述第二单体具有由多个第二连接杆连接而成的钻石结构。
与实施四例相同,所述钻石结构由四个相互连接的第二连接杆形成。其中,四个所述第二连接杆的一端相互连接在一起,四个所述第二连接杆的另一端相互分离,四个所述第二连接杆相互连接在一起的一端位于四面体的中心点处,四个所述第二连接杆的另一端分别位于所述四面体的四个顶点处。
本实施例中,所述表面层110中的第一单体具有菱形十二面体结构,所述中间层120中的第二单体具有钻石结构。因此,表面层110和中间层120中的单体结构不同,使得表面层110和中间层120的孔隙率和力学性能也可发生变化。相较于仅通过第一连接杆140和第二连接杆的杆径变化和/或疏密排列变化使孔隙率发生变化的生物涂层100而言,本实施例中的生物涂层100可避免杆径过小以及排列过疏引起的第一连接杆140和第二连接杆容易断裂的问题。此外,本实施例中的生物涂层100也可避免杆径过大以及排列过密引起的粉末难清除的问题。
优选地,本实施例还可进一步通过第一连接杆140和第二连接杆的杆径变化和/或疏密排列变化使孔隙率发生变化。本实施例可结合通过在表面层110 和中间层120采用不同单体而对孔隙率产生影响的方式和通过第一连接杆140和第二连接杆的杆径变化和/或疏密排列变化而对孔隙率产生影响的方式,从而可结合这两种方式调整孔隙率的优点,使得生物涂层100的稳定性和骨长入效果更好。
此外,天然松质骨结构复杂,孔径呈正态分布,且不同孔径的孔具有不同的生物学功能。因此,以无序的方式连接的第一单体中的第一通孔和以无序的方式连接的第二单体中的第二通孔的结构与真实的松质骨的自然三维结构和生理十分接近,因此可进一步改善生物涂层100的微结构和生物力学性能。
其中,所述中间层120的孔隙率小于所述表面层110的孔隙率,且所述生物涂层100的孔隙率整体从外侧到内侧逐渐变小。也就是说,中间层120和表面层110中的孔隙率由外侧到内侧连续梯度变化,不会出现明显的性质(如孔隙率、杆径、稀疏排列等)间断而导致的断层,如此,使得中间层120的力学性能更好,表面层110的骨长入效果较好,并且中间层120和表面层110之间具有较好的过渡,可使生物涂层100具有更好的稳定性。
本实施例还提供一种植入物。参考图20,图20是本发明实施例五中的植入物的结构示意图。所述植入物包括基底层200和上述实施例五中的生物涂层100,其中,所述生物涂层中的所述中间层120设置在所述基底层200上,所述生物涂层中的表面层110设置在所述植入物的最外侧。其中,所述基底层200也可为多孔涂层,并且所述基底层200的孔隙率小于所述中间层120的孔隙率。
所述基底层200可采用3D打印的方式一体成型。所述植入物整体可采用3D打印的方式一体成型。
在实施例三、四、五中,中间层的第二单体皆具有钻石结构,其中,实施例三中的多个所述钻石结构以规则的方式连接,实施例四和实施例五中的多个所述钻石结构以无序的方式连接。以规则的方式连接的钻石结构由四个 相互连接的第二连接杆形成,其中,四个所述第二连接杆的一端相互连接在一起,四个所述第二连接杆的另一端相互分离,四个所述第二连接杆相互连接在一起的一端位于正四面体的中心点处,四个所述第二连接杆的另一端分别位于所述正四面体的四个顶点处。以无序的方式连接的多个钻石结构,其第二连接杆和第二连接杆之间的角度产生了变化,第二连接杆的长短也产生了变化。也就是说,以无序方式连接的钻石结构实际上已经不具有正四面体结构,而具有变形的四面体结构。
由于正四面体的四个面均为三角形,其结构关系非常稳固,因此能够提供非常好的力学性能。此外,由于四面体结构的每个点上只连接四根第二连接杆,而四根第二连接杆是使立体结构在空间中稳定所需要的最少杆数,因此在相同的空间下使四根第二连接杆间的孔隙较大的同时可兼顾较好的力学稳定性。当调整第二连接杆的粗细以调整孔隙率时,在使得中间层具有较大孔隙率的同时,可避免杆径过小或排列过疏引起的易断裂的问题,或者在使中间层具有较好的力学性能的同时,可避免杆径过大和排列过密引起的粉末难以去除的问题。因此,钻石结构是作为中间层的第二单体的结构的最优方案。但在本发明的其他实施例中,中间层的第二单体也可以具有其他结构,本发明对此不作限制。
实施例六
本实施例提供一种生物涂层100。所述生物涂层100包括表面层110和中间层120。所述表面层110设置在所述中间层120上,所述表面层110设置在所述生物涂层100的最外侧,所述表面层110的孔隙率大于所述中间层120的孔隙率。
所述表面层110包括多个以无序的方式连接的第一单体,多个所述第一单体之间以及所述第一单体的内部形成有多个第一通孔。
所述第一单体可以具有N面体结构,所述N≥10。例如,所述第一单体可具有菱形十二面体结构、二十面体结构、三十二面体结构(足球烯结构)中的一种。所述二十面体结构可参考图21,图21是本发明实施例六中的二十 面体结构的示意图。
所述中间层120包括多个以规则的方式连接的第二单体,多个所述第二单体之间以及所述第二单体的内部形成有多个第二通孔。
所述第二单体可以具有M面体结构,所述M<10。例如,所述第二单体可具有四面体结构、立方体结构、八面体结构中的一种。
其中,所述第二单体还可具有钻石结构或者蜂窝结构中的一种。
在其他的实施例中,所述第二单体还可以以无序的方式排列。
本实施例还提供一种植入物。所述植入物包括基底层200和上述实施例六中的生物涂层100,其中,所述生物涂层中的中间层120设置在所述基底层200上,所述生物涂层中的表面层110设置在所述植入物的最外侧。其中,所述基底层200也可为多孔涂层,并且所述基底层200的孔隙率小于所述中间层120的孔隙率。
所述基底层200可采用3D打印的方式一体成型。所述植入物整体可采用3D打印的方式一体成型。
实施例七
本实施例提供一种生物涂层100。所述生物涂层100仅包括表面层110。
所述表面层110包括多个以无序的方式连接的第一单体,多个所述第一单体之间以及所述第一单体的内部形成有多个第一通孔。
所述第一单体可以具有K面体结构,所述K≥4。例如,所述第一单体可具有菱形十二面体结构、二十面体结构、三十二面体结构(足球烯结构)、四面体结构、立方体结构、八面体结构中的一种。
其中,所述第一单体还可具有钻石结构或者蜂窝结构中的一种。
本实施例还提供一种植入物。所述植入物包括基底层200和上述实施例七中的生物涂层100。其中,所述基底层200也可为多孔涂层,并且所述基底层200的孔隙率小于所述表面层110的孔隙率。
所述基底层200可采用3D打印的方式一体成型。所述植入物整体可采用3D打印的方式一体成型。
上述实施例中,所述表面层110设置在所述生物涂层100的最外侧,所述表面层110包括多个以无序方式连接的第一单体,多个所述第一单体之间以及所述第一单体内部形成有多个第一通孔。即,由于所述表面层110中的多个第一单体以无序方式连接,表面层110中的多个第一通孔可处于无序状态,从而可便于相应的骨组织细胞长入表面层110中,进而改善骨长入效果和长期稳定性。
上述实施例中,生物涂层100还包括至少一层中间层120,所述表面层110和所述至少一层中间层120沿从所述生物涂层100的外侧到所述生物涂层100的内侧的方向依次设置,所述生物涂层100的孔隙率沿所述生物涂层100的外侧到所述生物涂层100的内侧的方向逐渐变小。如此,所述生物涂层100的表面层110可具有较好的骨长入效果和长期稳定性,所述生物涂层100的中间层120可具有较好短期稳定性,所述生物涂层100整体的稳定性好。
上述实施例中,由于所述中间层120中的多个第二单体以规则方式连接,因此中间层120中的多个第二通孔可处于有序状态,从而可使得所述中间层120以及所述生物涂层100具有较好的力学性能。
上述实施例中,由于第一单体和第二单体均以无序方式连接,因此以无序方式连接的第一单体中的第一通孔和以无序的方式连接的第二单体中的第二通孔的结构与真实的松质骨的自然三维结构和生理十分接近,从而可进一步改善生物涂层100的微结构和生物力学性能。
上述实施例中,由于表面层110中的第一单体与中间层120中的第二单体结构不同,因此,表面层110和中间层120中的孔隙率和力学性能也不同。相较于仅通过第一单体的第一连接杆140和第二单体的第二连接杆150的杆径变化和/或疏密排列变化而使孔隙率发生变化的生物涂层100而言,上述实施例中的生物涂层可避免由杆径过小以及排列过疏引起的第一连接杆140和第二连接杆容易断裂的问题。此外,上述实施例中的生物涂层也可避免由第 一连接杆140和第二连接杆的杆径过大以及排列过密引起的粉末难清除的问题。
上述实施例中,由于所述中间层120和所述表面层110的孔隙率沿从所述生物涂层100的外侧到所述生物涂层100的内侧的方向连续梯度变化,因此,不易出现明显的由性质(如孔隙率、杆径、稀疏排列等)间断导致的断层。如此,使得中间层120的力学性能更好,表面层110的骨长入效果较好,并且由于中间层120和表面层110之间具有较好的过渡而可使生物涂层100具有更好的稳定性。
上述实施例中,生物涂层100可采用3D打印的方式一体成型。如此,可使得表面层110和中间层120的孔隙率以可控的方式变化。因此,生物涂层100中的多个第一通孔之间、多个第二通孔之间以及多个第一通孔与多个第二通孔之间的连通性较好。
上述描述仅是对本发明较佳实施例的描述,并非对本发明范围的任何限定,本发明领域的普通技术人员根据上述揭示内容做的任何变更、修饰,均属于权利要求书的保护范围。

Claims (14)

  1. 一种生物涂层,其特征在于,包括表面层,所述表面层包括多个以无序的方式连接的第一单体,多个所述第一单体之间以及多个所述第一单体的内部形成有多个第一通孔。
  2. 如权利要求1所述的生物涂层,其特征在于,还包括至少一层中间层,所述表面层设置于所述生物涂层的最外侧,所述表面层和所述至少一层中间层沿所述生物涂层的外侧到所述生物涂层的内侧的方向依次设置,所述生物涂层的孔隙率沿所述生物涂层的外侧到所述生物涂层的内侧的方向逐渐变小。
  3. 如权利要求2所述的生物涂层,其特征在于,所述至少一层中间层包括多个以规则方式连接的第二单体,多个所述第二单体之间以及多个所述第二单体的内部形成有多个第二通孔。
  4. 如权利要求2所述的生物涂层,其特征在于,所述至少一层中间层包括多个以无序方式连接的第二单体,多个所述第二单体之间以及多个所述第二单体的内部形成有多个第二通孔。
  5. 如权利要求3或4所述的生物涂层,其特征在于,所述表面层中的第一单体与所述至少一层中间层中的第二单体的结构不相同。
  6. 如权利要求5所述的生物涂层,其特征在于,所述第一单体具有N面体结构,所述N≥10,所述第二单体具有M面体结构,所述M<10。
  7. 如权利要求5所述的生物涂层,其特征在于,所述第一单体具有菱形十二面体结构、二十面体结构、三十二面体结构中的一种,所述第二单体具有钻石结构、蜂窝结构、四面体结构、立方体结构、八面体结构中的一种。
  8. 如权利要求5所述的生物涂层,其特征在于,所述第二单体具有钻石结构,所述钻石结构由四个相互连接的第二连接杆形成,其中,四个所述第二连接杆的一端相互连接在一起,四个所述第二连接杆的另一端相互分离,四个所述第二连接杆相互连接在一起的一端位于正四面体的中心点处,四个 所述第二连接杆的另一端分别位于所述正四面体的四个顶点上。
  9. 如权利要求3或4所述的生物涂层,其特征在于,所述至少一层中间层的数量为至少两个,所述第二单体的种类为多种。
  10. 如权利要求3或4所述的生物涂层,其特征在于,所述中间层和所述表面层的孔隙率,在各层内均一不变且在不同层中沿所述生物涂层的外侧到所述生物涂层的内侧的方向逐渐变小;或者,所述中间层和所述表面层的孔隙率,在各层内沿所述生物涂层的外侧到所述生物涂层的内侧的方向逐渐变小,在不同层中沿所述生物涂层的外侧到内侧的方向逐渐变小;或者,所述生物涂层的孔隙率从所述生物涂层的外侧到所述生物涂层的内侧连续梯度变化。
  11. 如权利要求3或4所述的生物涂层,其特征在于,所述第一单体由多个第一连接杆连接而成,所述第二单体由多个第二连接杆连接而成;
    所述第一连接杆的杆径较所述第二连接杆的杆径小,且所述表面层中的所述第一连接杆的杆径相等,所述中间层中的所述第二连接杆的杆径相等,和/或所述表面层中的所述第一连接杆的排列较所述中间层中的所述第二连接杆的排列疏,且所述表面层中的所述第一连接杆的排列疏密相等,所述中间层中的所述第二连接杆的排列疏密相等;或者,
    所述表面层中的所述第一连接杆的杆径沿所述生物涂层的外侧到所述生物涂层的内侧的方向逐渐变大,所述中间层中的所述第二连接杆的杆径沿所述生物涂层的外侧到所述生物涂层的内侧的方向逐渐变大,所述表面层中的所述第一连接杆的杆径整体较所述中间层中的所述第二连接杆的杆径小,和/或所述表面层中的所述第一连接杆的排列沿所述生物涂层的外侧到所述生物涂层的内侧的方向逐渐变密,所述中间层中的所述第二连接杆的排列沿所述生物涂层的外侧到所述生物涂层的内侧逐渐变密,所述表面层中的所述第一连接杆的排列整体较所述中间层中的所述第二连接杆的排列疏;或者,
    所述生物涂层中的所述第一连接杆和所述第二连接杆的杆径整体沿所述生物涂层的外侧到所述生物涂层的内侧的方向逐渐变大,和/或所述生物涂层中的所述第一连接杆和所述第二连接杆的排列整体沿所述生物涂层的外侧到 所述生物涂层的内侧的方向逐渐变密。
  12. 如权利要求1-11中任何一项所述的生物涂层,其特征在于,采用计算机软件设计并通过3D打印的方式一体成型。
  13. 一种植入物,其特征在于,包括基底层以及如权利要求1至11任一项所述的生物涂层,所述生物涂层设置在所述基底层上,所述生物涂层的表面层设置在所述植入物的最外侧。
  14. 如权利要求13所述的植入物,其特征在于,所述植入物整体通过3D打印的方式一体成型。
PCT/CN2019/127936 2018-12-29 2019-12-24 生物涂层和植入物 WO2020135423A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/418,155 US20220054716A1 (en) 2018-12-29 2019-12-24 Bio-coating and implant
KR1020217020339A KR20210096653A (ko) 2018-12-29 2019-12-24 바이오 코팅 및 임플란트
EP19905352.1A EP3903741B1 (en) 2018-12-29 2019-12-24 Bio-coating and implant
JP2021538400A JP2022516542A (ja) 2018-12-29 2019-12-24 生物活性コーティングおよびインプラント

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811642573.9A CN111388156B (zh) 2018-12-29 2018-12-29 生物涂层和植入物
CN201811642573.9 2018-12-29

Publications (1)

Publication Number Publication Date
WO2020135423A1 true WO2020135423A1 (zh) 2020-07-02

Family

ID=71126941

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/127936 WO2020135423A1 (zh) 2018-12-29 2019-12-24 生物涂层和植入物

Country Status (6)

Country Link
US (1) US20220054716A1 (zh)
EP (1) EP3903741B1 (zh)
JP (1) JP2022516542A (zh)
KR (1) KR20210096653A (zh)
CN (1) CN111388156B (zh)
WO (1) WO2020135423A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113413253A (zh) * 2021-07-09 2021-09-21 上海珥智医疗科技有限公司 义鼻

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105233347A (zh) * 2015-10-30 2016-01-13 吉林大学 一种3d打印梯度孔径医用多孔金属骨组织支架
CN204971711U (zh) * 2015-05-31 2016-01-20 西安赛隆金属材料有限责任公司 一种高强度小孔径金属骨小梁
CN205126948U (zh) * 2015-10-30 2016-04-06 吉林大学 一种3d打印梯度孔径医用多孔金属骨组织支架
CN105877874A (zh) * 2016-04-06 2016-08-24 四川大学 仿生设计类骨多孔骨制品及其制备方法和用途
CN107441552A (zh) * 2017-08-28 2017-12-08 中国科学院上海硅酸盐研究所 一种仿生莲藕结构的生物活性支架及其制备方法和应用
WO2018054502A1 (en) * 2016-09-26 2018-03-29 Siemens Industry Software Nv Design of lattice structures for additive manufacturing
CN108992705A (zh) * 2018-09-28 2018-12-14 山东建筑大学 Mg/TiO2-HA梯度多孔涂层的可再生镁基骨骼材料的制备方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4542539A (en) * 1982-03-12 1985-09-24 Artech Corp. Surgical implant having a graded porous coating
DE60300277T2 (de) * 2002-11-08 2006-01-12 Howmedica Osteonics Corp. Lasererzeugte poröse Oberfläche
ES2546329T3 (es) * 2003-07-24 2015-09-22 Tecomet Inc. Espumas no aleatorias ensambladas
EP1961433A1 (en) * 2007-02-20 2008-08-27 National University of Ireland Galway Porous substrates for implantation
US8383187B2 (en) * 2009-02-19 2013-02-26 Depuy Products, Inc. Rough porous constructs
CN101574541B (zh) * 2009-06-11 2012-12-05 同济大学 一种高强度肋骨梯度多孔支架的制备方法
CA2771384A1 (en) * 2009-08-19 2011-02-24 Smith & Nephew, Inc. Porous implant structures
CN102686250B (zh) * 2009-11-12 2014-09-17 史密夫和内修有限公司 受控随机化的多孔结构及其制造方法
CN103462729B (zh) * 2012-06-07 2016-06-01 中南大学 一种多级[微米/纳米]孔结构的仿生人工骨的制备方法
CN103751852B (zh) * 2014-01-24 2015-06-17 天津理工大学 一种三维人工随机多孔结构组织工程支架的制备方法
CN104887351A (zh) * 2015-05-31 2015-09-09 西安赛隆金属材料有限责任公司 一种高强度小孔径金属骨小梁及其制备方法
EP3606473A4 (en) * 2017-04-01 2020-12-30 HD Lifesciences LLC FLUID INTERFACE SYSTEM FOR IMPLANTS
CN207605043U (zh) * 2017-06-07 2018-07-13 中国人民解放军总医院 一种用于骨折或骨缺损的骨植入体
CN207590799U (zh) * 2017-06-22 2018-07-10 宁波创导三维医疗科技有限公司 鼻填充物
CN107647942A (zh) * 2017-11-02 2018-02-02 广州华钛三维材料制造有限公司 一种金属骨小梁及包含所述金属骨小梁的骨骼植入物

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204971711U (zh) * 2015-05-31 2016-01-20 西安赛隆金属材料有限责任公司 一种高强度小孔径金属骨小梁
CN105233347A (zh) * 2015-10-30 2016-01-13 吉林大学 一种3d打印梯度孔径医用多孔金属骨组织支架
CN205126948U (zh) * 2015-10-30 2016-04-06 吉林大学 一种3d打印梯度孔径医用多孔金属骨组织支架
CN105877874A (zh) * 2016-04-06 2016-08-24 四川大学 仿生设计类骨多孔骨制品及其制备方法和用途
WO2018054502A1 (en) * 2016-09-26 2018-03-29 Siemens Industry Software Nv Design of lattice structures for additive manufacturing
CN107441552A (zh) * 2017-08-28 2017-12-08 中国科学院上海硅酸盐研究所 一种仿生莲藕结构的生物活性支架及其制备方法和应用
CN108992705A (zh) * 2018-09-28 2018-12-14 山东建筑大学 Mg/TiO2-HA梯度多孔涂层的可再生镁基骨骼材料的制备方法

Also Published As

Publication number Publication date
EP3903741B1 (en) 2023-07-19
EP3903741A4 (en) 2022-03-02
EP3903741C0 (en) 2023-07-19
KR20210096653A (ko) 2021-08-05
JP2022516542A (ja) 2022-02-28
CN111388156B (zh) 2021-09-10
EP3903741A1 (en) 2021-11-03
CN111388156A (zh) 2020-07-10
US20220054716A1 (en) 2022-02-24

Similar Documents

Publication Publication Date Title
CN204971711U (zh) 一种高强度小孔径金属骨小梁
AU2019393104B2 (en) Bone trabecula structure and prosthesis using same and manufacturing method therefor
US20180280140A1 (en) Anisotropic Biocompatible Lattice Structure
JP2020515350A (ja) インプラント用流体インターフェースシステム
CN201631425U (zh) 生物型组合股骨柄
WO2020135423A1 (zh) 生物涂层和植入物
CN104055594B (zh) 具有多孔支架式结构的牙种植体
CN205515049U (zh) 融合器
CN105903084A (zh) 一种具有抗菌功能涂层的3d打印多孔支架及其制备方法
CN109758267A (zh) 一种骨修复用多孔支架及其制备方法
CN109223213A (zh) 适用于牙种植的多孔结构钛种植体
WO2024131065A1 (zh) 一种表面多孔的髋臼杯假体分区设计及成型方法
BR112020007004A2 (pt) dispositivo de eluição de fármaco implantável compreendendo uma estrutura microporosa
CN117017577A (zh) 一种具有完整晶格界面的径向梯度多孔结构、制备方法及应用
CN210056344U (zh) 一种多孔钽棒
CN110037832A (zh) 一种骨修复用复合单元结构多孔支架及加工方法
CN111714253A (zh) 一种基于十四面体的多孔骨诱导结构
CN116807693A (zh) 一种3d打印晶格结构
CN113231644A (zh) 一种Ti-6Al-4V合金点阵材料微结构及其设计方法和应用
TWI527558B (zh) Bone support device
CN112168429A (zh) 一种仿海胆刺形连续梯度变化的生物支架及其应用
CN111603276A (zh) 一种定制尺骨假体
CN104398327A (zh) 一种骨骼连接固定用带多孔表面的锁定螺钉
CN114053485B (zh) 一种用于生物支架的单胞结构及其应用
CN215130921U (zh) 一种个性化分体式髋臼假体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19905352

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021538400

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20217020339

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2019905352

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2019905352

Country of ref document: EP

Effective date: 20210729