WO2020134970A1 - 驱动电路、显示面板驱动装置和显示装置 - Google Patents

驱动电路、显示面板驱动装置和显示装置 Download PDF

Info

Publication number
WO2020134970A1
WO2020134970A1 PCT/CN2019/123639 CN2019123639W WO2020134970A1 WO 2020134970 A1 WO2020134970 A1 WO 2020134970A1 CN 2019123639 W CN2019123639 W CN 2019123639W WO 2020134970 A1 WO2020134970 A1 WO 2020134970A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
driving
gamma
power supply
output
Prior art date
Application number
PCT/CN2019/123639
Other languages
English (en)
French (fr)
Inventor
赵文勤
陈伟
Original Assignee
惠科股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 惠科股份有限公司 filed Critical 惠科股份有限公司
Publication of WO2020134970A1 publication Critical patent/WO2020134970A1/zh

Links

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3607Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals for displaying colours or for displaying grey scales with a specific pixel layout, e.g. using sub-pixels
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0271Adjustment of the gradation levels within the range of the gradation scale, e.g. by redistribution or clipping
    • G09G2320/0276Adjustment of the gradation levels within the range of the gradation scale, e.g. by redistribution or clipping for the purpose of adaptation to the characteristics of a display device, i.e. gamma correction

Definitions

  • the present application relates to the technical field of display panels, and in particular, to a driving circuit, a display panel driving device, and a display device.
  • a driving circuit proposed by the present application is configured to provide an analog gray-scale voltage signal to a display panel.
  • the display panel includes a plurality of pixel units.
  • the plurality of pixel units are divided into M first pixel units and N second units.
  • a pixel unit, the first pixel unit and the second pixel unit are alternately arranged in the row direction and the column direction in sequence, and the driving circuit includes:
  • the first gamma voltage generating circuit is configured to output the first driving voltage group
  • the second gamma voltage generating circuit is set to output the second driving voltage group
  • a source driving circuit configured to convert the first driving voltage group into a plurality of analog gray-scale voltage signals having a voltage value greater than a reference voltage value to correspondingly output to the M first pixel units, and to drive the second driving
  • the voltage group is converted into a plurality of analog gray-scale voltage signals whose voltage values are less than the reference voltage value, and correspondingly output to the N second pixel units;
  • the reference voltage value is a voltage value set to drive the normal display operation of the first pixel unit and the second pixel unit.
  • the present application also proposes a display panel driving device including a gate driving circuit and a driving circuit as described above, the driving circuit being configured to provide an analog grayscale voltage signal to a display panel, the display panel including A plurality of pixel units, the plurality of pixel units are divided into M first pixel units and N second pixel units, and the first pixel units and the second pixel units are sequentially arranged alternately in the row direction and the column direction ,
  • the drive circuit includes:
  • the first gamma voltage generating circuit is configured to output the first driving voltage group
  • the second gamma voltage generating circuit is set to output the second driving voltage group
  • a source driving circuit configured to convert the first driving voltage group into a plurality of analog gray-scale voltage signals having a voltage value greater than a reference voltage value to correspondingly output to the M first pixel units, and to drive the second driving
  • the voltage group is converted into a plurality of analog gray-scale voltage signals whose voltage values are less than the reference voltage value, and correspondingly output to the N second pixel units;
  • the reference voltage value is a voltage value set to drive the normal display operation of the first pixel unit and the second pixel unit.
  • the present application also proposes a display device including a display panel and a display panel driving device.
  • the display panel driving device includes a gate driving circuit and a driving circuit.
  • the driving circuit is configured to provide an analog grayscale voltage signal to a display.
  • a panel the display panel includes a plurality of pixel units, the plurality of pixel units are divided into M first pixel units and N second pixel units, the first pixel units and the second pixel units are in a row direction
  • the column direction and the column direction are alternately arranged in sequence
  • the driving circuit includes:
  • the first gamma voltage generating circuit is configured to output the first driving voltage group
  • a second gamma voltage generating circuit configured to output a second driving voltage group
  • a source driving circuit configured to convert the first driving voltage group into a plurality of analog gray-scale voltage signals having a voltage value greater than a reference voltage value to correspondingly output to the M first pixel units, and to drive the second driving
  • the voltage group is converted into a plurality of analog gray-scale voltage signals whose voltage values are less than the reference voltage value, and correspondingly output to the N second pixel units;
  • the reference voltage value is a voltage value set to drive the normal display operation of the first pixel unit and the second pixel unit.
  • the technical solution of the present application constitutes a driving circuit by using a first gamma voltage generating circuit, a second gamma voltage generating circuit, and a source driving circuit.
  • the driving circuit is configured to output an analog gray-scale voltage signal to the pixel unit inside the display panel.
  • the pixel units are divided into M first pixel units and N second pixel units, and are interleaved, and the source driving circuit is configured to convert the first driving voltage group output by the first gamma voltage generating circuit into a plurality of analog gray levels
  • the voltage signal is output to the M first pixel units, the driving voltage values corresponding to the multiple analog gray-scale voltage signals are greater than the reference voltage value, the source driving circuit also converts the second driving voltage group output by the second gamma voltage generating circuit into A plurality of analog gray-scale voltage signals are output to the N second pixel units, and the driving voltage value corresponding to the plurality of analog gray-scale voltage signals is less than the reference voltage value, so as to achieve the mixing of the first pixel unit and the second pixel unit to achieve chroma enhancement
  • the purpose of the viewing angle is to solve the problem that the display screen will be white when the viewing angle of side viewing or squinting is too large.
  • FIG. 1 is a schematic block diagram of an embodiment of a driving circuit of this application
  • FIG. 2 is a schematic diagram of pixel unit distribution in an embodiment of a driving circuit of the present application
  • FIG. 3 is a schematic diagram of a circuit structure of a first gamma voltage generating circuit according to an embodiment of a driving circuit of the present application;
  • FIG. 4 is a schematic diagram of a circuit structure of a second gamma voltage generating circuit according to an embodiment of the driving circuit of the present application;
  • FIG. 5 is a schematic diagram of a circuit structure of a first gamma voltage generating circuit according to another embodiment of the driving circuit of the present application;
  • FIG. 6 is a schematic diagram of a circuit structure of a second gamma voltage generating circuit according to another embodiment of the driving circuit of the present application.
  • FIG. 7 is a schematic block diagram of another embodiment of the driving circuit of the present application.
  • a driving circuit proposed in this application is configured to provide an analog gray-scale voltage signal to a display panel.
  • FIG. 1 is a schematic block diagram of an embodiment of a driving circuit of the present application
  • FIG. 2 is a schematic view of pixel unit distribution in an embodiment of a driving circuit of the present application.
  • the display panel 200 includes a plurality of pixels Unit, the multiple pixel units are divided into M first pixel units Pixel 1 and N second pixel units Pixel 2, the first pixel unit Pixel 1 and the second pixel unit Pixel 2 are sequentially arranged alternately in the row direction and the column direction
  • the driving circuit includes:
  • the first gamma voltage generating circuit 10 is configured to output a first driving voltage group
  • the second gamma voltage generating circuit 20 is configured to output a second driving voltage group
  • the source driving circuit 30 is configured to convert the first driving voltage group into a plurality of analog gray-scale voltage signals having a voltage value greater than a reference voltage value and correspondingly output to the M first pixel units Pixel 1, and convert the second driving voltage group into a plurality of analog gray-scale voltage signals having a voltage value less than the reference voltage value, and correspondingly output to the N second pixel units Pixel 2;
  • the reference voltage value is set to drive the first pixel unit Pixel 1 and the second pixel unit Pixel 2 Normally display the working voltage value.
  • the display panel 200 includes but is not limited to a liquid crystal display panel, an organic light emitting diode display panel, a field emission display panel, a plasma display panel, and a curved panel.
  • the liquid crystal panel includes a thin film transistor liquid crystal display panel, TN ( Twisted Nematic (twisted nematic) panel, VA (Vertical Alignment) panel, IPS (In-Plane Switching, plane switching, etc.
  • the pixel unit of the display panel 200 is divided into a first pixel unit Pixel 1 and a second pixel unit Pixel 2, and the first pixel unit Pixel 1 and the second pixel unit Pixel 2 are interleaved, and the output of the first gamma voltage generating circuit 10 is set to drive the first pixel unit Pixel
  • the driving voltage of 1 is converted into an analog gray-scale voltage signal by the source driving circuit 30 and output to the corresponding first pixel unit Pixel 1
  • the driving voltage output by the first gamma voltage generating circuit 10 is greater than the reference voltage set to drive the pixel unit to work normally
  • the second gamma voltage output is set to drive the second pixel unit Pixel
  • the driving voltage of 2 is converted into an analog gray-scale voltage signal by the source driving circuit 30 and output to the corresponding second pixel unit Pixel 2.
  • the driving voltage output by the second gamma voltage generating circuit 20 is greater than the reference voltage set to drive the normal operation of the pixel unit, the adjacent first pixel unit Pixel 1 and the second pixel unit Pixel 2 Working under an analog gray-scale voltage signal corresponding to different levels of driving voltages, so as to mix the first pixel unit Pixel 1 and the second pixel unit Pixel 2 to achieve the purpose of improving the chromaticity and viewing angle.
  • the first gamma voltage generating circuit 10 may be composed of a voltage-dividing resistor string or a gamma chip.
  • the second gamma voltage generating circuit 20 may also be composed of a voltage-dividing resistor string or a gamma chip.
  • the first Each driving voltage generated by the gamma voltage generating circuit 10 is larger than the corresponding reference voltage, and each driving voltage generated by the second gamma voltage generating circuit 20 is smaller than the corresponding reference voltage.
  • the first driving voltage group and the second The specific size of the driving voltage group can be adjusted according to specific needs.
  • the first driving voltage group and the second driving voltage group can be adjusted by changing the size of the input power supply or changing the resistance of the voltage-dividing resistor string, and no specific limitation is made here.
  • both M and N are greater than 0, the first pixel unit Pixel 1 and the second pixel unit Pixel
  • the number of 2 can be designed according to the size of the display panel 200, which is not specifically limited here.
  • the source driving circuit 30 is configured to convert, select and output the voltage groups output by the first gamma voltage generating circuit 10 and the second gamma voltage generating circuit 20 to the corresponding pixel unit, the number of which can be designed as one, the first The gamma voltage generating circuit 10 and the second gamma voltage generating circuit 20 both output the driving voltage to the source driving circuit 30, or may be designed as two, the first gamma voltage generating circuit 10 and the second gamma voltage generating circuit 20 They are respectively connected to a source driving circuit 30, the specific number can be designed according to the actual situation, and no specific limitation is made here.
  • the first pixel unit Pixel 1 and/or the second pixel unit Pixel 2 is a pixel or sub-pixel.
  • the first pixel unit Pixel 1 can be composed of three sub-pixels of red, blue and green, that is, three sub-pixels to form a whole
  • the source driving circuit 30 outputs an analog gray-scale voltage signal to the three sub-pixels to work simultaneously
  • the second pixel unit Pixel 2 is also composed of three sub-pixels of red, blue and green
  • the first pixel unit Pixel 1 and the second pixel unit Pixel 2 are mixed to improve the chroma viewing angle.
  • first pixel unit Pixel 1 and the second pixel unit Pixel 2 can also be a single sub-pixel, namely the first pixel unit Pixel 1 can be a red pixel, the second pixel unit Pixel 2 is a green pixel, and then the adjacent blue pixel is the first pixel unit Pixel 1, so as to achieve more detailed color mixing, the first pixel unit Pixel 1 and the second pixel unit Pixel 2 can be designed according to specific conditions, and no specific limitation is made here.
  • FIG. 3 is a schematic diagram of a circuit structure of a first gamma voltage generating circuit according to an embodiment of the driving circuit of the present application
  • FIG. 4 is a second gamma voltage generating circuit according to an embodiment of the driving circuit of the present application.
  • a schematic diagram of the circuit structure of the first gamma voltage generating circuit 10 includes a first DC power supply VCC1 and a first resistor network string, the first DC power supply VCC1 outputs the first through the first resistor network string Driving voltage group;
  • the second gamma voltage generating circuit 20 includes a second DC power supply VCC2 and a second resistor network string, and the second DC power supply VCC2 outputs the second driving voltage set via the second resistor network string.
  • the gamma voltage generating circuit usually includes two parts, including a resistor network string and a voltage dividing resistor string inside the source driving circuit 30. Since the voltage dividing resistor string inside the source driving chip has been fixed during design, generally Without adjustment, the first DC power supply VCC1 and the second DC power supply VCC2 can be output by the timing controller.
  • the first resistor network string includes a plurality of voltage-dividing resistors, such as resistors R0 ⁇ R14 and multiple resistors inside the source driving circuit 30 R
  • the second resistor network string includes a plurality of voltage dividing resistors, such as resistors r0 ⁇ r14 and a plurality of resistors r in the source driving circuit 30, and the first DC power supply VCC1 generates driving voltages of different voltage levels through the first resistor network
  • the drive voltage of this voltage level is greater than the reference voltage of the pixel unit's normal operation.
  • the second DC power supply VCC2 generates a drive voltage of a different voltage level through the second resistor network.
  • the drive voltage of this voltage level is less than the reference voltage of the pixel unit's normal operation. This is achieved by increasing the first DC power supply VCC1 or reducing the voltage value of the second DC power supply VCC2, or adjusting the resistance value of the first resistor network string and the second resistor network string to achieve the voltage change.
  • FIG. 5 is a schematic diagram of a circuit structure of a first gamma voltage generating circuit of another embodiment of the driving circuit of the present application
  • FIG. 6 is a second gamma voltage of another embodiment of the driving circuit of the present application.
  • the first gamma voltage generating circuit 10 includes a first gamma chip U1 and a first DC power supply VCC1.
  • the first DC power supply VCC1 passes through the first The gamma chip U1 outputs the first driving voltage group;
  • the second gamma voltage generating circuit 20 includes a second gamma chip U2 and a second DC power supply VCC2, and the second DC power supply VCC2 outputs the second driving voltage set via the second gamma chip U2.
  • the first gamma voltage generating circuit 10 is composed of a first DC power supply VCC1 and a first gamma chip U1
  • the second gamma chip U2 is composed of a second DC power supply VCC2 and a second gamma chip U2
  • the first DC power supply VCC1 and the second DC power supply VCC2 can be provided by the timing controller.
  • the first gamma chip U1 and the second gamma chip U2 respectively integrate a codeable gamma resistor network string, and can be performed through the IIC bus Adjustment, gamma chip adjustment is easier and more accurate.
  • the voltage value of the first DC power supply VCC1 is greater than the voltage value of the second DC power supply VCC2.
  • the first gamma voltage generating circuit 10 and the second gamma voltage generating circuit 20 may use the same gamma chip and change the corresponding DC power supply, that is, increase the voltage value of the first DC power supply VCC1
  • a higher-level driving voltage group can be output, and the voltage value of the second DC power supply VCC2 can be lowered, thereby outputting a lower-level driving voltage group.
  • the voltage value of the first DC power supply VCC1 is equal to the voltage value of the second DC power supply VCC2 and the equivalent resistance value of the first resistance network string is less than the second resistance network The equivalent resistance value of the string, or the voltage value of the first DC power supply is greater than the voltage value of the second DC power supply.
  • the resistor R0 in FIG. 3 can be reduced, and the resistance R0 to The equivalent resistance of the resistor R14 decreases, and the voltage from the resistor R0 to the resistor R14 becomes larger, thereby outputting a higher-level driving voltage group.
  • the resistor r0 in FIG. 3 can be reduced, and the resistance R0 to The equivalent resistance of the resistor R14 decreases, and the voltage from the resistor R0 to the resistor R14 becomes larger, thereby outputting a higher-level driving voltage group.
  • the source driving circuit 30 includes a first source driving circuit (not shown) and a second source driving circuit (not shown);
  • the first source driving circuit is connected in series between the first gamma voltage generating circuit 10 and the M first pixel units Pixel 1;
  • the second source driving circuit is connected in series between the second gamma voltage generating circuit 20 and the N second pixel units Pixel 2.
  • the source driving circuit 30 includes two, which are respectively connected in series between the gamma voltage generating circuit and the display panel 200.
  • the first source driving circuit outputs the first output from the first gamma voltage generating circuit 10
  • the voltage group is converted into an analog gray-scale voltage signal and output to the M first pixel units Pixel 1.
  • the second source driving circuit converts the second voltage group output by the second gamma voltage generating circuit 20 into an analog gray-scale voltage signal and outputs it to N first pixel units Pixel 1.
  • the driving voltage output by the first gamma voltage generating circuit 10 and the driving voltage output by the second gamma voltage generating circuit 20 are kept separate, simplifying the internal structure of the source driving circuit 30 and simplifying the circuit structure of the display panel 200.
  • FIG. 7 is a schematic block diagram of another embodiment of the driving circuit of the present application.
  • the source driving circuit 30 includes:
  • the gamma voltage selector 31 is configured to correspondingly select and output the first driving voltage group and/or the second driving voltage group;
  • the digital-to-analog conversion circuit 32 is configured to perform digital-to-analog conversion on the voltage signal output by the gamma voltage selector 31 and output an analog gray-scale voltage signal;
  • the power amplifier 33 is configured to perform power amplification on the analog gray-scale voltage signal output by the digital-to-analog conversion circuit 32 and correspondingly output to the corresponding pixel unit.
  • the gamma voltage selector 31 is set to select an appropriate driving voltage for the corresponding pixel unit to work.
  • the source driving circuit 30 may be one or two. When the source driving circuit 30 is one, the gamma voltage selector 31 needs At the same time, the first driving voltage group and the second voltage group are selected and output to the digital-analog conversion circuit 32 and then output to the corresponding first pixel unit Pixel 1 and the second pixel unit Pixel In 2, when there are two source drive circuits 30, the gamma voltage selectors 31 in the two source drive circuits 30 work separately, and the gamma voltage selector 31 in the first source drive circuit 30 selects the first A gamma voltage group, the gamma voltage selector 31 in the second source driving voltage selects the second gamma voltage group, and performs digital-to-analog conversion on the voltage signal through the respective digital-analog conversion circuit 32 and the power amplifier 33 The power is amplified and output to the corresponding first pixel unit Pixel 1 and the second pixel unit Pixel 2.
  • the present application also proposes a display panel driving device.
  • the display panel driving device includes a gate driving circuit 40 and a driving circuit as described above.
  • the driving device of the panel 200 adopts all the technical solutions of all the above-mentioned embodiments, so it has at least all the technical effects brought by the technical solutions of the above-mentioned embodiments, which will not be repeated here.
  • the driving circuit is configured to output an analog gray-scale voltage signal to each pixel unit of the display panel 200
  • the gate driving circuit 40 is configured to enable the pixel unit array to be turned on row by row, and is driven under the control of the timing controller The circuit cooperates to realize that the data signal of the opening row is input into the corresponding pixel.
  • the present application also proposes a display device including the display panel driving device of the display panel 200 as described above.
  • the specific structure of the display panel driving device refers to the above-mentioned embodiments. Since this display device uses all of the above-mentioned embodiments The technical solution therefore has at least all the technical effects brought by the technical solutions of the above embodiments, which will not be repeated here.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Liquid Crystal Display Device Control (AREA)

Abstract

一种驱动电路、显示面板驱动装置和显示装置,其中,驱动电路包括第一伽马电压产生电路(10)、第二伽马电压产生电路(20)和源极驱动电路(30),设置在显示面板(200)内部的源极驱动电路(30)设置为将第一驱动电压组转换为电压值大于基准电压值的多个模拟灰阶电压信号并对应输出至M个第一像素单元(1),以及将第二驱动电压组转换为电压值小于基准电压值的多个模拟灰阶电压信号并对应输出至N个第二像素单元(2)。

Description

驱动电路、显示面板驱动装置和显示装置
相关申请的交叉引用
本申请要求2018年12月24日申请的,申请号为201811587918.5,名称为“驱动电路、显示面板驱动装置和显示装置”的中国专利申请的优先权,在此将其全文引入作为参考。
技术领域
本申请涉及显示面板技术领域,特别涉及一种驱动电路、显示面板驱动装置和显示装置。
背景技术
这里的陈述仅提供与本申请有关的背景信息,而不必然地构成现有技术。
随着液晶显示领域的发展,更高的画质已经成为各大显示厂商的主要指标,色度可视角作为画质的一个重要指标是各家面板厂努力的一个重要的方向,然而,当侧看或者斜视的视角过大时,显示屏会呈现画面偏白的现象。
发明内容
本申请提出的一种驱动电路,设置为提供模拟灰阶电压信号至显示面板,所述显示面板包括多个像素单元,多个所述像素单元分为M个第一像素单元和N个第二像素单元,所述第一像素单元和所述第二像素单元在行方向和列方向均依次交错设置,所述驱动电路包括:
第一伽马电压产生电路,设置为输出第一驱动电压组;
第二伽马电压产生电路,设置为输出第二驱动电压组;
源极驱动电路,设置为将所述第一驱动电压组转换为电压值大于基准电压值的多个模拟灰阶电压信号对应输出至M个所述第一像素单元,以及将所述第二驱动电压组转换为电压值小于所述基准电压值的多个模拟灰阶电压信号对应输出至N个所述第二像素单元;
所述基准电压值为设置为驱动所述第一像素单元和所述第二像素单元正常显示工作的电压值。
本申请还提出一种显示面板驱动装置,该显示面板驱动装置包括栅极驱动电路和如上所述的驱动电路,所述驱动电路设置为提供模拟灰阶电压信号至显示面板,所述显示面板包括多个像素单元,多个所述像素单元分为M个第一像素单元和N个第二像素单元,所述第一像素单元和所述第二像素单元在行方向和列方向均依次交错设置,所述驱动电路包括:
第一伽马电压产生电路,设置为输出第一驱动电压组;
第二伽马电压产生电路,设置为输出第二驱动电压组;
源极驱动电路,设置为将所述第一驱动电压组转换为电压值大于基准电压值的多个模拟灰阶电压信号对应输出至M个所述第一像素单元,以及将所述第二驱动电压组转换为电压值小于所述基准电压值的多个模拟灰阶电压信号对应输出至N个所述第二像素单元;
所述基准电压值为设置为驱动所述第一像素单元和所述第二像素单元正常显示工作的电压值。
本申请还提出一种显示装置,该显示装置包括显示面板和显示面板驱动装置,所述显示面板驱动装置包括栅极驱动电路和驱动电路,所述驱动电路设置为提供模拟灰阶电压信号至显示面板,所述显示面板包括多个像素单元,多个所述像素单元分为M个第一像素单元和N个第二像素单元,所述第一像素单元和所述第二像素单元在行方向和列方向均依次交错设置,所述驱动电路包括:
第一伽马电压产生电路,设置为输出第一驱动电压组;
第二伽马电压产生电路,设置为输出第二驱动电压组;以及
源极驱动电路,设置为将所述第一驱动电压组转换为电压值大于基准电压值的多个模拟灰阶电压信号对应输出至M个所述第一像素单元,以及将所述第二驱动电压组转换为电压值小于所述基准电压值的多个模拟灰阶电压信号对应输出至N个所述第二像素单元;
所述基准电压值为设置为驱动所述第一像素单元和所述第二像素单元正常显示工作的电压值。
本申请技术方案通过采用第一伽马电压产生电路、第二伽马电压产生电路、源极驱动电路组成了驱动电路,驱动电路设置为输出模拟灰阶电压信号至显示面板内部的像素单元中,像素单元分为M个第一像素单元和N个第二像素单元,并且交错设置,源极驱动电路设置为将第一伽马电压产生电路输出的第一驱动电压组转换为多个模拟灰阶电压信号输出至M个第一像素单元,多个模拟灰阶电压信号对应的驱动电压值大于基准电压值,源极驱动电路还将第二伽马电压产生电路输出的第二驱动电压组转换为多个模拟灰阶电压信号输出至N个第二像素单元,多个模拟灰阶电压信号对应的驱动电压值小于基准电压值,从而达到第一像素单元和第二像素单元混合达到提升色度可视角的目的,进而解决当侧看或者斜视的视角过大时,显示屏会画面偏白的问题。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图示出的结构获得其他的附图。
图1为本申请驱动电路一实施例的模块示意图;
图2为本申请驱动电路一实施例中像素单元分布示意图;
图3为本申请驱动电路一实施例的第一伽马电压产生电路的电路结构示意图;
图4为本申请驱动电路一实施例的第二伽马电压产生电路的电路结构示意图;
图5为本申请驱动电路另一实施例的第一伽马电压产生电路的电路结构示意图;
图6为本申请驱动电路另一实施例的第二伽马电压产生电路的电路结构示意图;
图7为本申请驱动电路又一实施例的模块示意图。
本申请目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请的一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
需要说明,在本申请中涉及“第一”、“第二”等的描述仅设置为描述目的,而不能理解为指示或暗示其相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。另外,全文中出现的“和/或”的含义为:包括三个并列的方案,以“A/B”为例,包括A方案,或B方案,或A和B同时满足的方案,另外,各个实施例之间的技术方案可以相互结合,但是必须是以本领域普通技术人员能够实现为基础,当技术方案的结合出现相互矛盾或无法实现时应当认为这种技术方案的结合不存在,也不在本申请要求的保护范围之内。
本申请提出的一种驱动电路,设置为提供模拟灰阶电压信号至显示面板。
如图1所示和图2所示,图1为本申请驱动电路一实施例的模块示意图,图2为本申请驱动电路一实施例中像素单元分布示意图,所述显示面板200包括多个像素单元,多个所述像素单元分为M个第一像素单元Pixel 1和N个第二像素单元Pixel 2,所述第一像素单元Pixel 1和所述第二像素单元Pixel 2在行方向和列方向均依次交错设置,所述驱动电路包括:
第一伽马电压产生电路10,设置为输出第一驱动电压组;
第二伽马电压产生电路20,设置为输出第二驱动电压组;
源极驱动电路30,设置为将所述第一驱动电压组转换为电压值大于基准电压值的多个模拟灰阶电压信号对应输出至M个所述第一像素单元Pixel 1,以及将所述第二驱动电压组转换为电压值小于所述基准电压值的多个模拟灰阶电压信号对应输出至N个所述第二像素单元Pixel 2;
所述基准电压值为设置为驱动所述第一像素单元Pixel 1和所述第二像素单元Pixel 2正常显示工作的电压值。
本实施例中,所述显示面板200包括但不限于液晶显示面板、有机发光二极管显示面板、场发射显示面板、等离子显示面板、曲面型面板,所述液晶面板包括薄膜晶体管液晶显示面板、TN(Twisted Nematic,扭曲向列型)面板、VA(Vertical Alignment,垂直配向技术)类面板、IPS(In-Plane Switching,平面转换)面板等。
本实施例中,将显示面板200的像素单元分为第一像素单元Pixel 1和第二像素单元Pixel 2,并且第一像素单元Pixel 1和第二像素单元Pixel 2交错设置,第一伽马电压产生电路10输出设置为驱动第一像素单元Pixel 1的驱动电压并经源极驱动电路30转换为模拟灰阶电压信号输出至对应的第一像素单元Pixel 1,并且第一伽马电压产生电路10输出的驱动电压大于设置为驱动像素单元正常工作的基准电压,第二伽马电压输出设置为驱动第二像素单元Pixel 2的驱动电压并经源极驱动电路30转换为模拟灰阶电压信号输出至对应的第二像素单元Pixel 2,第二伽马电压产生电路20输出的驱动电压大于设置为驱动像素单元正常工作的基准电压,相邻的第一像素单元Pixel 1和第二像素单元Pixel 2在不同等级驱动电压对应的模拟灰阶电压信号下工作,从而将第一像素单元Pixel 1和第二像素单元Pixel 2混合达到提升色度可视角的目的。
本实施例中,第一伽马电压产生电路10可由分压电阻串构成或者伽马芯片组成,同理第二伽马电压产生电路20也可由分压电阻串构成或者伽马芯片组成,第一伽马电压产生电路10产生的每一驱动电压均比对应的基准电压大,第二伽马电压产生电路20产生的每一驱动电压均比对应的基准电压小,第一驱动电压组和第二驱动电压组的具体大小可根据具体需求进行调整,第一驱动电压组和第二驱动电压组通过改变输入电源大小,或者改变分压电阻串的阻值进行调整,在此不做具体限制。
本实施例中,M和N均大于0,第一像素单元Pixel 1和第二像素单元Pixel 2的个数可根据显示面板200的尺寸进行设计,在此不做具体限制。
源极驱动电路30设置为将第一伽马电压产生电路10和第二伽马电压产生电路20输出的电压组进行转换、选择并输出至对应的像素单元,其数量可设计成一个,第一伽马电压产生电路10和第二伽马电压产生电路20均输出驱动电压至源极驱动电路30,也可以设计成两个,第一伽马电压产生电路10和第二伽马电压产生电路20分别与一源极驱动电路30连接,具体个数可根据实际情况进行设计,在此不作具体限制。
在一可选实施例中,所述第一像素单元Pixel 1和/或所述第二像素单元Pixel 2为像素或者子像素。
本实施例中,第一像素单元Pixel 1可由红蓝绿三个子像素组成,即将三个子像素组成一个整体,源极驱动电路30输出模拟灰阶电压信号至三个子像素同时工作,第二像素单元Pixel 2同样由红蓝绿三个子像素组成,第一像素单元Pixel 1和第二像素单元Pixel 2进行混色以提高色度可视角。
同理,第一像素单元Pixel 1和第二像素单元Pixel 2还可分别为单一的子像素,即第一像素单元Pixel 1可为红像素,第二像素单元Pixel 2为绿像素,然后相邻的蓝像素为第一像素单元Pixel 1,从而实现更细化的混色,第一像素单元Pixel 1和第二像素单元Pixel 2可根据具体情况进行设计,在此不做具体限制。
如图3和图4所示,图3为本申请驱动电路一实施例的第一伽马电压产生电路的电路结构示意图,图4为本申请驱动电路一实施例的第二伽马电压产生电路的电路结构示意图,所述第一伽马电压产生电路10包括第一直流电源VCC1和第一电阻网络串,所述第一直流电源VCC1经所述第一电阻网络串输出所述第一驱动电压组;
所述第二伽马电压产生电路20包括第二直流电源VCC2和第二电阻网络串,所述第二直流电源VCC2经所述第二电阻网络串输出所述第二驱动电压组。
需要说明的是,伽马电压产生电路通常包括两部分,包括电阻网络串和源极驱动电路30内部的分压电阻串,由于源极驱动芯片内部的分压电阻串在设计时已经固定,一般不做调整,第一直流电源VCC1和第二直流电源VCC2可由时序控制器输出,第一电阻网络串包括多个分压电阻,例如电阻R0~R14和源极驱动电路30内部的多个电阻R,第二电阻网络串包括多个分压电阻,例如电阻r0~r14和源极驱动电路30内部的多个电阻r,第一直流电源VCC1经过第一电阻网络产生不同电压等级的驱动电压,该电压等级的驱动电压大于像素单元正常工作的基准电压,第二直流电源VCC2经过第二电阻网络产生不同电压等级的驱动电压,该电压等级的驱动电压小于像素单元正常工作的基准电压,可通过提高第一直流电源VCC1或者降低第二直流电源VCC2的电压值来实现,或者调整第一电阻网络串好第二电阻网络串的电阻阻值实现电压的变化。
如图5和图6所示,图5为本申请驱动电路另一实施例的第一伽马电压产生电路的电路结构示意图,图6为本申请驱动电路另一实施例的第二伽马电压产生电路的电路结构示意图,本实施例中,所述第一伽马电压产生电路10包括第一伽马芯片U1和第一直流电源VCC1,所述第一直流电源VCC1经所述第一伽马芯片U1输出所述第一驱动电压组;
所述第二伽马电压产生电路20包括第二伽马芯片U2和第二直流电源VCC2,所述第二直流电源VCC2经所述第二伽马芯片U2输出所述第二驱动电压组。
本实施例中,第一伽马电压产生电路10由第一直流电源VCC1和第一伽马芯片U1组成,第二伽马芯片U2由第二直流电源VCC2和第二伽马芯片U2组成,第一直流电源VCC1和第二直流电源VCC2可由时序控制器提供,第一伽马芯片U1和第二伽马芯片U2内部分别集成了可编码的伽马电阻网络串,并且可通过IIC总线进行调整,伽马芯片调整更加简便并且精度更高。
在一可选实施例中,所述第一直流电源VCC1的电压值大于所述第二直流电源VCC2的电压值。
本实施例中,第一伽马电压产生电路10和第二伽马电压产生电路20可采用相同的伽马芯片,而将对应的直流电源进行变化,即将第一直流电源VCC1的电压值提高,从而可输出较高等级的驱动电压组,将第二直流电源VCC2的电压值降低,从而输出较低等级的驱动压组。
在一可选实施例中,所述第一直流电源VCC1的电压值等于所述第二直流电源VCC2的电压值且所述第一电阻网络串的等效电阻值小于所述第二电阻网络串的等效电阻值,或所述第一直流电源的电压值大于所述第二直流电源的电压值。
本实施例中,根据欧姆定律,电压不变的情况下,电阻越小,电流越大,因此不同分压电阻的电压越大,例如可将图3中电阻R0的阻值降低,电阻R0至电阻R14的等效电阻降低,电阻R0至电阻R14的电压变大,从而输出较高等级的驱动电压组,同理,将图4中的电阻r0变大,电阻r0至电阻r14的等效电阻变大,电阻r0至电阻r14的电压变小,从而输出较低等级的驱动压组,或者第一伽马电压产生电路10和第二伽马电压产生电路20采用相同的电阻网络串,而将对应的直流电源进行变化,即将第一直流电源VCC1的电压值提高,从而可输出较高等级的驱动电压组,将第二直流电源VCC2的电压值降低,从而输出较低等级的驱动压组。
在一可选实施例中,所述源极驱动电路30包括第一源极驱动电路(图未示出)和第二源极驱动电路(图未示出);
所述第一源极驱动电路串接在所述第一伽马电压产生电路10和M个所述第一像素单元Pixel 1之间;
所述第二源极驱动电路串接在所述第二伽马电压产生电路20和N个所述第二像素单元Pixel 2之间。
本实施例中,源极驱动电路30包括两个,并分别串接在伽马电压产生电路和显示面板200之间,第一源极驱动电路将第一伽马电压产生电路10输出的第一电压组转换为模拟灰阶电压信号输出至M个第一像素单元Pixel 1,第二源极驱动电路将第二伽马电压产生电路20输出的第二电压组转换为模拟灰阶电压信号输出至N个第一像素单元Pixel 1,第一伽马电压产生电路10输出的驱动电压与第二伽马电压产生电路20输出的驱动电压保持分离,简化源极驱动电路30内部结构以及简化显示面板200的线路结构。
如图7所示,图7为本申请驱动电路又一实施例的模块示意图,本实施例中,所述源极驱动电路30包括:
伽马电压选择器31,设置为对所述第一驱动电压组和/或所述第二驱动电压组进行对应选择并输出;
数模转换电路32,设置为对所述伽马电压选择器31输出的电压信号进行数模转换并输出模拟灰阶电压信号;
功率放大器33,设置为对所述数模转换电路32输出的模拟灰阶电压信号进行功率放大,并对应输出至对应的像素单元。
伽马电压选择器31设置为选择合适的驱动电压以供对应的像素单元工作,源极驱动电路30可为一个和两个,在源极驱动电路30为一个时,伽马电压选择器31需要同时对第一驱动电压组和第二电压组进行选择并输出至数模转换电路32进而输出至对应的第一像素单元Pixel 1和第二像素单元Pixel 2中,当源极驱动电路30为两个时,两个源极驱动电路30中的伽马电压选择器31则分别工作,第一源极驱动电路30中的伽马电压选择器31选择第一伽马电压组,第二源极驱动电压中的伽马电压选择器31选择第二伽马电压组,并分别通过各自的数模转换电路32和功率放大器33对电压信号进行数模转换和功率放大,并分别输出至对应的第一像素单元Pixel 1和第二像素单元Pixel 2。
如图1所示,本申请还提出一种显示面板驱动装置,该显示面板驱动装置包括栅极驱动电路40和如上所述的驱动电路,该驱动电路的具体结构参照上述实施例,由于本显示面板200驱动装置采用了上述所有实施例的全部技术方案,因此至少具有上述实施例的技术方案所带来的所有技术效果,在此不再一一赘述。
本实施例中,驱动电路设置为输出模拟灰阶电压信号至显示面板200的各个像素单元中,栅极驱动电路40设置为实现像素单元阵列逐行开启,并在时序控制器的控制下与驱动电路配合,实现开启行的数据信号输入至相应的像素中。
本申请还提出一种显示装置,该显示装置包括显示面板200如上所述的显示面板驱动装置,该显示面板驱动装置的具体结构参照上述实施例,由于本显示装置采用了上述所有实施例的全部技术方案,因此至少具有上述实施例的技术方案所带来的所有技术效果,在此不再一一赘述。
以上所述仅为本申请的可选实施例,并非因此限制本申请的专利范围,凡是在本申请的发明构思下,利用本申请说明书及附图内容所作的等效结构变换,或直接/间接运用在其他相关的技术领域均包括在本申请的专利保护范围内。

Claims (17)

  1. 一种驱动电路,设置为提供模拟灰阶电压信号至显示面板,其中,所述显示面板包括多个像素单元,多个所述像素单元分为M个第一像素单元和N个第二像素单元,所述第一像素单元和所述第二像素单元在行方向和列方向均依次交错设置,所述驱动电路包括:
    第一伽马电压产生电路,设置为输出第一驱动电压组;
    第二伽马电压产生电路,设置为输出第二驱动电压组;以及
    源极驱动电路,设置为将所述第一驱动电压组转换为电压值大于基准电压值的多个模拟灰阶电压信号对应输出至M个所述第一像素单元,以及将所述第二驱动电压组转换为电压值小于所述基准电压值的多个模拟灰阶电压信号对应输出至N个所述第二像素单元;
    所述基准电压值为设置为驱动所述第一像素单元和所述第二像素单元正常显示工作的电压值。
  2. 如权利要求1所述的驱动电路,其中,所述第一像素单元和/或所述第二像素单元为像素,所述第一像素单元和/或所述第二像素单元包括红像素、绿像素和蓝像素。
  3. 如权利要求1所述的驱动电路,其中,所述第一像素单元和/或所述第二像素单元为子像素,所述子像素为红像素、绿像素和蓝像素其中一种。
  4. 如权利要求1所述的源极驱动电路,其中,所述第一伽马电压产生电路包括第一直流电源和第一电阻网络串,所述第一直流电源经所述第一电阻网络串输出所述第一驱动电压组;
    所述第二伽马电压产生电路包括第二直流电源和第二电阻网络串,所述第二直流电源经所述第二电阻网络串输出所述第二驱动电压组。
  5. 如权利要求4所述的源极驱动电路,其中,所述第一电阻网络串和所述第二电阻网络串均包括多个串联连接的分压电阻。
  6. 如权利要求1所述的驱动电路,其中,所述第一伽马电压产生电路包括第一伽马芯片和第一直流电源,所述第一直流电源经所述第一伽马芯片输出所述第一驱动电压组;
    所述第二伽马电压产生电路包括第二伽马芯片和第二直流电源,所述第二直流电源经所述第二伽马芯片输出所述第二驱动电压组。
  7. 如权利要求6所述的驱动电路,其中,所述第一直流电源的电压值大于所述第二直流电源的电压值。
  8. 如权利要求7所述的驱动电路,其中,所述第一伽马芯片和所述第二伽马芯片分别与时序控制器电性连接,所述时序控制器,设置为为所述第一伽马芯片提供第一直流电源,以及为所述第二伽马芯片提供第二直流电源。
  9. 如权利要求4所述的驱动电路,其中,所述第一直流电源的电压值等于所述第二直流电源的电压值且所述第一电阻网络串的等效电阻值小于所述第二电阻网络串的等效电阻值。
  10. 如权利要求4所述的驱动电路,其中,所述第一直流电源的电压值大于所述第二直流电源的电压值。
  11. 如权利要求1所述的驱动电路,其中,所述源极驱动电路包括第一源极驱动电路和第二源极驱动电路;
    所述第一源极驱动电路串接在所述第一伽马电压产生电路和M个所述第一像素单元之间;
    所述第二源极驱动电路串接在所述第二伽马电压产生电路和N个所述第二像素单元之间。
  12. 如权利要求1所述的驱动电路,其中,所述源极驱动电路包括:
    伽马电压选择器,设置为对所述第一驱动电压组和/或所述第二驱动电压组进行对应选择并输出;
    数模转换电路,设置为对所述伽马电压选择器输出的电压信号进行数模转换并输出模拟灰阶电压信号;以及
    功率放大器,设置为对所述数模转换电路输出的模拟灰阶电压信号进行功率放大,并对应输出至对应的像素单元。
  13. 一种显示面板驱动装置,其中,包括栅极驱动电路和驱动电路,所述驱动电路设置为提供模拟灰阶电压信号至显示面板,所述显示面板包括多个像素单元,多个所述像素单元分为M个第一像素单元和N个第二像素单元,所述第一像素单元和所述第二像素单元在行方向和列方向均依次交错设置,所述驱动电路包括:
    第一伽马电压产生电路,设置为输出第一驱动电压组;
    第二伽马电压产生电路,设置为输出第二驱动电压组;以及
    源极驱动电路,设置为将所述第一驱动电压组转换为电压值大于基准电压值的多个模拟灰阶电压信号对应输出至M个所述第一像素单元,以及将所述第二驱动电压组转换为电压值小于所述基准电压值的多个模拟灰阶电压信号对应输出至N个所述第二像素单元;
    所述基准电压值为设置为驱动所述第一像素单元和所述第二像素单元正常显示工作的电压值。
  14. 如权利要求13所述的显示面板驱动装置,其中,所述第一伽马电压产生电路包括第一直流电源和第一电阻网络串,所述第一直流电源经所述第一电阻网络串输出所述第一驱动电压组;
    所述第二伽马电压产生电路包括第二直流电源和第二电阻网络串,所述第二直流电源经所述第二电阻网络串输出所述第二驱动电压组。
  15. 如权利要求13所述的显示面板驱动装置,其中,所述第一伽马电压产生电路包括第一伽马芯片和第一直流电源,所述第一直流电源经所述第一伽马芯片输出所述第一驱动电压组;
    所述第二伽马电压产生电路包括第二伽马芯片和第二直流电源,所述第二直流电源经所述第二伽马芯片输出所述第二驱动电压组。
  16. 如权利要求13所述的显示面板驱动装置,其中,所述源极驱动电路包括:
    伽马电压选择器,设置为对所述第一驱动电压组和/或所述第二驱动电压组进行对应选择并输出;
    数模转换电路,设置为对所述伽马电压选择器输出的电压信号进行数模转换并输出模拟灰阶电压信号;以及
    功率放大器,设置为对所述数模转换电路输出的模拟灰阶电压信号进行功率放大,并对应输出至对应的像素单元。
  17. 一种显示装置,其中,包括显示面板和显示面板驱动装置,所述显示面板驱动装置包括栅极驱动电路和驱动电路,所述驱动电路设置为提供模拟灰阶电压信号至显示面板,所述显示面板包括多个像素单元,多个所述像素单元分为M个第一像素单元和N个第二像素单元,所述第一像素单元和所述第二像素单元在行方向和列方向均依次交错设置,所述驱动电路包括:
    第一伽马电压产生电路,设置为输出第一驱动电压组;
    第二伽马电压产生电路,设置为输出第二驱动电压组;以及
    源极驱动电路,设置为将所述第一驱动电压组转换为电压值大于基准电压值的多个模拟灰阶电压信号对应输出至M个所述第一像素单元,以及将所述第二驱动电压组转换为电压值小于所述基准电压值的多个模拟灰阶电压信号对应输出至N个所述第二像素单元;
    所述基准电压值为设置为驱动所述第一像素单元和所述第二像素单元正常显示工作的电压值。
PCT/CN2019/123639 2018-12-24 2019-12-06 驱动电路、显示面板驱动装置和显示装置 WO2020134970A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811587918.5 2018-12-24
CN201811587918.5A CN109584826A (zh) 2018-12-24 2018-12-24 驱动电路、显示面板驱动装置和显示装置

Publications (1)

Publication Number Publication Date
WO2020134970A1 true WO2020134970A1 (zh) 2020-07-02

Family

ID=65931637

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/123639 WO2020134970A1 (zh) 2018-12-24 2019-12-06 驱动电路、显示面板驱动装置和显示装置

Country Status (2)

Country Link
CN (1) CN109584826A (zh)
WO (1) WO2020134970A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109584826A (zh) * 2018-12-24 2019-04-05 惠科股份有限公司 驱动电路、显示面板驱动装置和显示装置
CN111899696B (zh) * 2019-05-05 2022-03-15 咸阳彩虹光电科技有限公司 一种像素矩阵驱动方法、装置及显示器
CN110556077B (zh) * 2019-09-26 2021-01-26 京东方科技集团股份有限公司 电压输出电路、驱动电路、显示面板及显示装置
CN110867168B (zh) * 2019-10-15 2022-04-26 昆山龙腾光电股份有限公司 伽马电压调整电路、调整方法及显示装置
CN113939862B (zh) * 2020-03-27 2023-12-08 京东方科技集团股份有限公司 显示面板及其驱动方法
CN113470586B (zh) * 2021-05-31 2022-03-22 惠科股份有限公司 显示面板的驱动电路、驱动方法和调试方法
CN115631713A (zh) * 2022-11-09 2023-01-20 武汉天马微电子有限公司 一种驱动模块及其驱动方法、显示面板和显示装置
CN116469354B (zh) * 2023-04-27 2024-06-25 惠科股份有限公司 伽马电路、显示面板的驱动电路及显示面板

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160267876A1 (en) * 2015-03-13 2016-09-15 Samsung Display Co., Ltd. Data compensation device and display device including the same
CN107481689A (zh) * 2017-08-25 2017-12-15 惠科股份有限公司 图像处理装置及其处理方法
CN107529049A (zh) * 2017-08-28 2017-12-29 惠科股份有限公司 显示装置图像处理方法、图像处理结构及显示装置
CN107633824A (zh) * 2016-07-18 2018-01-26 三星电子株式会社 显示装置及其控制方法
CN107945758A (zh) * 2017-12-31 2018-04-20 深圳市华星光电半导体显示技术有限公司 一种显示面板的驱动方法及显示装置
CN109064962A (zh) * 2018-08-31 2018-12-21 重庆惠科金渝光电科技有限公司 一种显示面板及其图像控制装置和方法
CN109584826A (zh) * 2018-12-24 2019-04-05 惠科股份有限公司 驱动电路、显示面板驱动装置和显示装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109064994B (zh) * 2018-11-07 2021-07-06 惠科股份有限公司 显示装置及其驱动方法和驱动组件

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160267876A1 (en) * 2015-03-13 2016-09-15 Samsung Display Co., Ltd. Data compensation device and display device including the same
CN107633824A (zh) * 2016-07-18 2018-01-26 三星电子株式会社 显示装置及其控制方法
CN107481689A (zh) * 2017-08-25 2017-12-15 惠科股份有限公司 图像处理装置及其处理方法
CN107529049A (zh) * 2017-08-28 2017-12-29 惠科股份有限公司 显示装置图像处理方法、图像处理结构及显示装置
CN107945758A (zh) * 2017-12-31 2018-04-20 深圳市华星光电半导体显示技术有限公司 一种显示面板的驱动方法及显示装置
CN109064962A (zh) * 2018-08-31 2018-12-21 重庆惠科金渝光电科技有限公司 一种显示面板及其图像控制装置和方法
CN109584826A (zh) * 2018-12-24 2019-04-05 惠科股份有限公司 驱动电路、显示面板驱动装置和显示装置

Also Published As

Publication number Publication date
CN109584826A (zh) 2019-04-05

Similar Documents

Publication Publication Date Title
WO2020134970A1 (zh) 驱动电路、显示面板驱动装置和显示装置
WO2020051994A1 (zh) 显示面板的驱动方法、装置以及显示设备
WO2020062556A1 (zh) 伽马电压调节电路及显示装置
WO2014056239A1 (zh) 液晶显示装置及其驱动电路
WO2017101176A1 (zh) 液晶显示装置
WO2018176561A1 (zh) 一种液晶面板驱动电路及液晶显示装置
WO2015180218A1 (zh) 柔性拼接显示装置
WO2016173006A1 (zh) 一种液晶面板及其驱动方法
WO2017024621A1 (zh) 一种液晶显示器及其控制方法
WO2019132216A1 (en) Electroluminescent display device and method for driving the same
WO2020155257A1 (zh) 显示面板的驱动方法、装置及设备
WO2020093494A1 (zh) 显示面板的驱动电路及其方法,以及显示装置
WO2020135109A1 (zh) 显示面板的驱动方法及其驱动装置、显示装置
WO2020135075A1 (zh) 显示器及其显示面板的驱动装置、方法
WO2020155254A1 (zh) 显示面板的驱动方法及显示设备
WO2017193438A1 (zh) 一种图像显示方法及显示装置
WO2020056839A1 (zh) 显示装置和液晶显示器
WO2020135074A1 (zh) 显示面板及其控制方法、控制装置、控制设备
WO2020024530A1 (zh) 驱动装置、显示装置及液晶显示器
WO2020119557A1 (zh) 显示驱动方法和显示装置
EP3494572A1 (en) Led display module and display apparatus
WO2015168934A1 (zh) 一种液晶显示面板及液晶显示装置
WO2017020333A1 (zh) 一种液晶显示器及其控制方法
WO2017177492A1 (zh) 显示面板的检测装置
WO2020062665A1 (zh) 显示装置的亮度控制方法、装置及液晶显示器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19902425

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 03.11.2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19902425

Country of ref document: EP

Kind code of ref document: A1