WO2020134888A1 - 电阻检测***和方法 - Google Patents

电阻检测***和方法 Download PDF

Info

Publication number
WO2020134888A1
WO2020134888A1 PCT/CN2019/122476 CN2019122476W WO2020134888A1 WO 2020134888 A1 WO2020134888 A1 WO 2020134888A1 CN 2019122476 W CN2019122476 W CN 2019122476W WO 2020134888 A1 WO2020134888 A1 WO 2020134888A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
heater
resistance
unit
detection system
Prior art date
Application number
PCT/CN2019/122476
Other languages
English (en)
French (fr)
Inventor
陈斌
林晓航
欧阳杰
毛虹懿
廖振龙
林永辉
吴扬
Original Assignee
深圳御烟实业有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳御烟实业有限公司 filed Critical 深圳御烟实业有限公司
Publication of WO2020134888A1 publication Critical patent/WO2020134888A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F47/00Smokers' requisites not otherwise provided for

Definitions

  • the invention relates to a resistance detection system and a resistance detection method for heaters.
  • Low-temperature heating smoke is also called heating non-burning smoke, which is more common in the form of cigarettes, but unlike traditional cigarettes that produce smoke by burning, low-temperature heating smoke designed with the idea of "heating does not burn” can make the tobacco leaves just heat enough The degree of smell is emitted without igniting the tobacco leaves, which greatly reduces the harmful substances in first-hand smoke and second-hand smoke.
  • PCT/EP2010/006598 discloses a smoking system
  • the heater includes a plurality of conductive traces on an electrically insulating substrate, the electrically insulating substrate is rigid and arranged to be inserted into the aerosol-forming liner
  • the conductive traces have a temperature coefficient of resistance characteristic that enables the plurality of conductive traces to be used as both a resistance heater and a temperature sensor.
  • the consistency of the heater is not high enough, so that the resistance temperature coefficient characteristics of each heater are different, which makes it difficult to control the temperature during the use of the heater.
  • the temperature detection unit includes at least one non-contact temperature sensor for detecting the temperature of the heater
  • a resistance measuring unit electrically connected to the heater to measure its resistance value
  • the control unit is respectively connected to the temperature detection unit and the resistance measurement unit, the heater is heated by the power supply, and when the temperature detection unit detects that the heater reaches a preset temperature, it records The resistance value of the heater at this temperature.
  • the resistance measuring unit is integrated in a control board electrically connected to the heater.
  • control board includes a storage unit, and the control unit writes the resistance value when the heater reaches a preset temperature into the storage unit.
  • control unit includes a first control subunit and a second control subunit, the first control subunit and the second control subunit are communicatively connected, and the first control The sub-unit is integrated in the control board, the second control sub-unit is communicatively connected to the temperature detection unit; the temperature detection unit detects that the heater reaches a preset temperature, the second control sub-unit sends A signal is sent to the first control subunit, which records the resistance value of the heater at this temperature.
  • the power supply is electrically connected to the control board, and the control board, the heater, and the power supply constitute at least a part of a finished or semi-finished product of the electric heating appliance.
  • the temperature detection unit includes at least two temperature sensors for measuring the temperature of the same position or area of the heater.
  • the temperature detection unit includes at least two temperature sensors for measuring the temperature of different positions or areas of the heater.
  • the temperature detection unit includes at least two temperature sensors, and the preset temperature is at least one of an average temperature, a maximum temperature, and a minimum temperature detected by each temperature sensor.
  • the temperature detection unit includes at least two temperature sensors, and if the temperature difference detected by the two temperature sensors is less than a threshold, the resistance value of the heater at this temperature is recorded ; Otherwise, it means that the detection error, re-test.
  • the temperature sensor is an infrared temperature sensor, and the temperature change range of the heater is within the range of the infrared temperature sensor.
  • the heater is disposed at the optimal measurement position of the infrared temperature sensor.
  • a fixing unit for fixing the heater is further included.
  • it further includes a position adjustment unit connected to the fixing unit and/or the temperature detection unit to adjust the relative position of the heater and the temperature sensor.
  • the preset temperature includes at least a first preset temperature and a second preset temperature
  • the control unit records the first resistance value of the heater corresponding to this temperature and The second resistance value.
  • the temperature detection unit detects the temperature of the heater in real time
  • the resistance measurement unit detects the resistance value of the heater in real time
  • the control unit records the resistance of the heater Relationship with temperature
  • the number of the temperature detection unit and the resistance measurement unit in the resistance detection system are both greater than two.
  • the heater is a plug-in heater for inserting an aerosol-generating product to heat the aerosol-generating substance therein to generate an aerosol.
  • the heater is a cylindrical heater, which is used to contain and heat the aerosol-forming product.
  • the invention also provides a resistance detection method, including the following steps:
  • the present invention measures the resistance value when the heater reaches a preset temperature, and uses this target resistance value for subsequent heating control. If the electric heating appliance with a finished product or a semi-finished product is directly used for the above detection, the measurement process and the target value writing process are synchronized, the operation is simple and fast, and it is easy to realize large-scale industrial production.
  • FIG. 1 is a schematic structural diagram of a resistance detection system of the present invention
  • the “aerosol-generating substance” referred to in the embodiments of the present invention refers to a smoke-generating substance, which is a substance that can generate odor and/or nicotine and/or smoke after being heated or burned, that is, a substance that can be atomized, that is, smoke material.
  • Smoke material can be solid, semi-solid and liquid. Solid smoke materials are often processed into flakes due to considerations such as breathability, assembly, and production. Therefore, they are also commonly referred to as flakes, and filamentous flakes are also referred to as flake filaments.
  • the tobacco materials discussed in the embodiments of the present invention may be natural or synthetic cigarette liquid, cigarette oil, tobacco gum, tobacco paste, cut tobacco, tobacco leaves, etc.
  • the artificial tobacco material contains glycerin, propylene glycol, and nicotine.
  • the tobacco liquid is a liquid
  • the tobacco oil is oily
  • the tobacco gum is a gel
  • the tobacco paste is a paste
  • the tobacco shreds include natural or artificial or extracted tobacco shreds
  • the tobacco leaves Including natural or artificial or extract processed tobacco leaves.
  • Tobacco material can be heated in the form of being sealed by other substances, such as stored in a package that can be degraded by heat, such as microcapsules. After heating, the required volatile substances are derived from the degraded or porous sealed package.
  • the tobacco material described in the embodiments of the present invention may or may not contain nicotine.
  • the tobacco material containing nicotine may include at least one of natural tobacco leaf products, tobacco liquid, tobacco oil, tobacco gum, tobacco paste, tobacco shreds, tobacco leaves, etc. made from nicotine as a raw material.
  • the liquid smoke is water-like, the smoke oil is oil-like, the smoke gum is gel-like, and the tobacco paste is paste-like.
  • the cut tobacco includes natural or artificial or extract-processed cut tobacco, and the tobacco leaf includes natural or artificial or extract-processed cut tobacco. tobacco leaf.
  • Tobacco materials that do not contain nicotine mainly contain aroma substances, such as spices, which can be atomized to simulate the smoking process and to quit smoking.
  • the flavorant includes peppermint oil.
  • the tobacco material may also include other additives, such as glycerin and/or propylene glycol.
  • the “aerosol-forming product” described in the embodiment of the present invention refers to a product containing smoke material, which can generate an aerosol by heating, such as smoke or mist, such as cigarettes, cartridges, or cigarettes, and is preferably a disposable product.
  • the aerosol-forming product itself cannot provide electrical energy.
  • the plug-in heater is configured to be inserted into the interior of the low-temperature heating smoke for heating. It is the most common heater form in the technical field of heating non-burning smoke, and has a certain strength and small volume.
  • the cylindrical heater is configured to contain low-temperature heating smoke and externally heat it.
  • the temperature control of the heater is usually based on the temperature coefficient of resistance.
  • the relationship between the resistance of the conductor and the temperature is basically linear.
  • the conductive traces are usually distributed in thin lines on a small heater volume, and local differences will have a greater impact on the resistance characteristics.
  • the actual heater prepared is affected by various factors such as the materials and processes used. The resistance value and resistance temperature coefficient are difficult to achieve good consistency. If the fixed resistance temperature coefficient characteristic is used for temperature control directly, it will inevitably lead to inaccurate heating temperature control and directly affect the taste.
  • FIG. 1 shows the structure of the resistance detection system according to an embodiment of the present invention, which mainly includes a temperature detection unit 100, a power supply 200, a resistance measurement unit 300, and a control unit 400,
  • the resistance of 500 (not shown in the figure, see FIG. 4) is detected.
  • the heater 500 is preferably a plug-in heater, and its structure and function will be introduced separately. Since the resistance value of the heater 500 continues to increase or decrease as the temperature increases, when the heater 500 is powered, the resistance value of the heater 500 also increases or decreases to a target value when it reaches a preset temperature.
  • the temperature detection unit 100 detects the temperature value, and the resistance measurement unit 300 detects the resistance value.
  • the resistance detection system of the present invention acquires the target value and records it while detecting the heater temperature and resistance at the same time, and uses it for subsequent heating control.
  • the temperature detection unit 100 is a core component for detecting the actual heating temperature of the heater 500, and includes at least one temperature sensor 110.
  • the resistance detection system can start to work. For example, when the temperature of the heater 500 continues to rise when energized, the temperature sensor 110 can detect its actual heating temperature; because the heater 500 is actually inserted into the low-temperature heating smoke for heating, the temperature detection of this structure The detection result of the unit 100 is close to the temperature condition of the heater 500 in a real use situation.
  • the power supply 200 is used to supply electric energy to the heater 500; the power supply method such as current, voltage, and pulse frequency may be different from the actual electric heating appliance, or it may simulate the actual electric heating appliance. In order to achieve an effect closer to the real situation; the form of the power supply 200 can be various, for example, the resistance value of the heater 500 of the finished or semi-finished product is directly detected, and the heater 500 can be directly used to supply power to the heater 500 if the subject is detected For a single heater 500, it can be directly connected to the external power supply 200.
  • the resistance measuring unit 300 shows that it is electrically connected to the heater 500, measures the voltage and current values connected to the heater 500, and converts to obtain a resistance value. The closer the voltage and current values are to the actual value, the measured The closer the obtained resistance value is to the accuracy. Since the resistance value of the heater 500 continuously increases or decreases as the temperature increases, when the heater 500 is powered, the resistance value of the heater 500 also increases or decreases to a target value when it reaches a preset temperature.
  • the control unit 400 is connected to the temperature detection unit 100 and the resistance measurement unit 300 respectively.
  • the heater 500 is heated by the power supply 200. Since the heater 500 is placed in the temperature detection On the unit 100, the temperature detected by the temperature sensor 110 also increases accordingly. If the temperature detection hysteresis or detection error of the temperature sensor 110 is not considered, the temperature detected by the temperature sensor 110 is the actual temperature on the surface of the heater 500 If the temperature detection lag or detection error of the temperature sensor 110 is considered, it can be corrected or compensated by a software algorithm.
  • the temperature detection unit 100 detects that the heater 500 reaches a preset temperature
  • the resistance measurement unit 300 is called The resistance value detected at this time, and the resistance value of the heater 500 at this temperature is recorded.
  • This resistance value can be used as a target value for subsequent heating control.
  • the optimal heating temperature for heating a non-burning smoke is 300°C
  • the resistance value of the heater 500 continuously increases with increasing temperature.
  • the resistance value is R.
  • the resistance value of the heater 500 is increased to R, it indicates that the optimal heating temperature has been reached, reduce the power, or stop the power supply;
  • the resistance value of the heater 500 is lower than R, it means that the optimal heating temperature has not been reached and the power supply is continued.
  • the temperature detection unit 100 includes at least two temperature sensors 110 for measuring the temperature of the heater 500 at the same location or area.
  • the position or area refers to the detection range of the temperature detection unit 100 on the surface of the object to be measured. Only in this detection range will the infrared signal be absorbed by the temperature detection unit 100 to be converted into an electrical signal.
  • the same position is located on the same plane perpendicular to the length extension direction of the heater 500, and the same area is located in a height range that is the length extension direction of the heater 500.
  • the temperature of the heater 500 at the same position or area should be The temperature sensors 110 arranged in this way can be used for calibration between each other.
  • the temperature detection unit 100 includes at least two temperature sensors 110 for measuring the temperature of different positions or areas of the heater 500.
  • the heater 500 may be arranged in a line along the longitudinal extension direction, or may be arranged in a spiral shape.
  • the temperature of different positions or areas of the heater 500 should be somewhat different.
  • Multiple temperature sensors 110 provided in this way can more accurately reflect the temperature distribution on the heater 500 and can be used for more accurate heating temperature Control to achieve better smoke taste and smoking taste.
  • the shape of the cavity 110 is adapted to the heater 500.
  • the heater 500 has a long rod shape or a needle shape, and the size of the cavity 110 is slightly larger than that of the heater 500, so that the heater 500 can be inserted without an excessive gap.
  • the heater 500 has other shapes, for example, a sheet shape, etc., and the shape of the cavity 110 should also be adapted to it.
  • the preset temperature includes at least a first preset temperature and a second preset temperature, for example, an optimal heating temperature for heating unburned smoke is 300°C-330 °C
  • the resistance value of the heater 500 continues to increase as the temperature increases
  • the first preset temperature can be set to 300 °C
  • the second preset temperature can be set to 330 °C
  • the control unit 400 records and The first resistance value and the second resistance value of the heater 500 corresponding to this temperature.
  • the first resistance value when the heater 500 is heated to 300°C is R1
  • the second resistance value when the heater 500 is heated to 330°C is R2, obviously R1 ⁇ R2.
  • the measurement When the resistance value of the heater 500 rises to R1, it means that the optimal heating temperature range has been reached, and the power supply continues or the power supply is reduced, so that the temperature continues to rise; when the resistance value of the heater 500 rises to R2, it means that The upper temperature limit has been reached, the power is reduced or the power supply is stopped, so that the temperature is reduced; when the resistance value of the heater 500 is reduced to R1, it indicates that the optimal temperature lower limit has been reached, and the power supply is started or the power supply is increased.
  • the method for maintaining the optimal heating temperature is similar, and the resistance of the heater 500 is still between R1 and R2, Only in the specific control, when the resistance is reduced to R2, it is necessary to reduce the power or stop the power supply. When the resistance is increased to R1, it is necessary to start the power supply or increase the power supply.
  • a heating control process for heating non-burning smoke requires more target values and more precise temperature control
  • you can set more preset temperatures T1, T2, T3, T4..., and these The resistance values R1, R2, R3, R4, etc. corresponding to the preset temperature constitute a set of discrete temperature-resistance relationships of the heater 500, and any one or two of them can be selected in the manner of the foregoing embodiment.
  • Implement temperature control
  • the temperature detection unit 100 detects the temperature of the heater 500 in real time
  • the resistance measurement unit 300 detects the resistance value of the heater 500 in real time, thus forming a linear temperature resistance of the heater 500 Relationship
  • the control unit 400 records the relationship between the resistance of the heater 500 and the temperature, the heating temperature can be determined according to the resistance value of the heater 500 at any time, to achieve more flexible and diverse control.
  • At least two temperature sensors 110 are provided in the cavity 110 of the temperature detection unit 100, and the temperature values detected by these different temperature sensors 110 are used in combination or selectively to obtain The temperature value of the heater 500 is more accurate. For example, there are two or more temperature sensors 110 detecting the temperature of the same position or area of the heater 500 at the same time. If all of these temperature sensors 110 are well aligned, the detected temperatures should be substantially equal and not too large There is a deviation, but the situation will not be so ideal every time during the detection process, so by using the average temperature method, the error caused by this situation can be reduced to a controllable range.
  • each type of heated non-burning smoke has its own suitable heating temperature. If the heating temperature is too high, the heated tobacco products will exhibit excessive thermal cracking, which will not only release more harmful substances, but also affect the smoking taste. . On the contrary, if the heating temperature is too low, it is not enough to release enough inhaled ingredients, such as aroma components and saline, etc., which affects the smoking experience. Therefore, detecting the maximum temperature and the minimum temperature of the heater 500 can be used as an important reference for subsequent control. Of course, the average temperature, the highest temperature, and the lowest temperature can also be used in combination. For example, the highest value and the lowest value are removed from all the detected temperatures, and the rest is averaged.
  • the temperature detected by each temperature sensor 110 can be selected and used according to the actual heater 500 type and temperature distribution characteristics.
  • the above-mentioned detection temperature use method is only exemplary, and does not include all the examples in the specific use process, as long as there is no contradiction between the use of these detection temperatures alone or in combination, they should be considered as the scope of the description.
  • At least two temperature sensors 110 are provided in the cavity 110. If two of the temperature sensors 110 detect temperature values at different positions of the heater 500, there will be a substantially fixed temperature difference between the two, if The two temperature sensors 110 detect the temperature value at the same position of the heater 500, and the detected temperature should be substantially equal.
  • the temperature difference detected by the heater 500 is also generally fixed, so a threshold can be determined according to the actual situation, if the temperature difference detected by the two temperature sensors 110 is less than this The threshold value indicates that the detection is correct, and the resistance value of the heater 500 is recorded at this temperature; otherwise, it indicates that the detection is wrong and re-detection.
  • the resistance detection system includes more than two temperature detection units 100 and more than two resistance measurement units 300, which may share the same control unit 400, or may be connected separately
  • One control unit 400 forms a situation in which multiple sets of detection subsystems are parallel. This arrangement can realize the simultaneous connection of multiple heaters 500 and realize batch detection of multiple heaters 500.
  • the temperature sensor 110 is an infrared temperature sensor, and its sensitive element is not in contact with the measured object heater 500, and is a non-contact temperature sensor, also known as infrared Thermometer.
  • This temperature sensor can be used to measure the surface temperature of moving objects, small targets and objects with small heat capacity or rapid temperature changes (transient), and can also be used to measure the temperature distribution of the temperature field.
  • the temperature change range of the heater is within the range of the infrared temperature sensor, and the range is the temperature measurement range. When selecting the infrared temperature sensor, you must pay attention to its range. Only when the appropriate range is selected measuring. In addition, pay attention to the type and size of the sensor to achieve accurate temperature measurement.
  • the distance coefficient of infrared temperature sensor D: S is an important parameter of the infrared probe, that is, the distance D between the thermometer probe and the target and the measured The ratio of the target diameter S.
  • the appropriate distance range between a probe and the target can be determined; at the same time, the size of the sensor can not be too large or too small, especially for a fixed focal length thermometer, the focus of the optical system The spot is the smallest spot, and the spot will increase near and far from the focal position.
  • the size of the sensor should be selected according to the size of the heater 500 to avoid the situation where the measurement spot is larger than the size of the sensor.
  • the optical resolution, wavelength range, response time, signal processing function, etc. must also be determined.
  • the material of the object to be measured determines the wavelength range during measurement.
  • special consideration needs to be given to temperature, atmosphere, pollution and The influence of interference and other factors on the performance index to determine the correction method to increase the measurement accuracy.
  • the heater 500 is set at the optimal measurement position of the infrared temperature sensor 110, for example, an infrared temperature sensor with an optical auxiliary positioning unit is used, and the optimal measurement position is most preferably its minimum spot position
  • the measured target size should be larger than the spot size at the focal point to achieve the most accurate measurement of the surface temperature of the heater 500.
  • the temperature detection unit 100 detects the temperature of the cylindrical heater, for example, directly measuring the temperature of the outer wall of the cylindrical heater, or aligning the temperature detection unit 100 with the cylindrical heater The inner wall can complete the temperature detection in the containing cavity.
  • the voltage and current values connected to the cylindrical heater are measured, and the resistance value is converted, and the closer the voltage and current values are to the actual values, the closer the measured resistance values are to the accuracy.
  • the specific resistance measurement process and the working process of the control unit 400 are the same as those in the foregoing embodiment, and will not be repeated here.
  • the resistance detection system of the present invention further includes a fixing unit 510 for fixing the heater 500 so that the distance d between the temperature detection unit 100 and the temperature detection unit 100 cannot be shifted at random, ensuring accurate and accurate measurement stable.
  • the resistance detection system further includes a position adjustment unit (not shown in the figure), connected to the fixing unit 510 and/or the temperature detection unit 100, and adjusting the temperature of the heater 500 and the temperature sensor 110 The relative position, in particular, the distance d between the heater 500 and the temperature sensor 110 is adjusted to the focal length of the temperature sensor 110 so that the heater 500 is located at the optimal measurement position of the temperature sensor 110.
  • the invention also provides a resistance detection method, reflecting the working process of the foregoing resistance detection system, including the following steps:
  • the resistance detection method of this embodiment detects an independent heater 500 that is not connected to a control board.
  • the resistance detection system includes a temperature detection unit 100, a power supply 200, a resistance measurement unit 300, and a control unit 400. The detailed process is as follows:
  • Fix the heater 500 for example, use the fixing unit 510 to limit the distance d between the heater 500 and the temperature detection unit 100 to an appropriate range, preferably the heater 500 is located exactly at the minimum spot of the infrared temperature sensor 110
  • the lead of 500 is connected to the positive and negative poles of the input port of the power supply 200, and the resistance measurement unit 300 retrieves the power supply data of the power supply 200 to the heater 500. Therefore, the detection of the heater 500 by the resistance measurement unit 300 also forms a complete loop.
  • the temperature detection unit 100 detects that the temperature of the heater 500 reaches a preset temperature, it sends a signal to the control unit 400, and the control unit 400 immediately retrieves the resistance value measured by the resistance measurement unit 300 and records it.
  • the resistance detection system further includes a flash memory, and the detected resistance value is directly written into the flash memory.
  • the power supply mode can be adjusted, such as adjusting the power or stopping the power supply or stopping the power supply.
  • the resistance detection method of this embodiment the detection object is a semi-finished electric heating appliance
  • the semi-finished electric heating appliance is a heater 500 connected to a control board 600
  • the resistance detection system includes a temperature detection unit 100, resistance measurement The unit 300, the control unit 400, the power supply 200, and the resistance measuring unit 300 are integrated in a control board 600 electrically connected to the heater 500.
  • the semi-finished electric heating appliance for example, use the fixing unit 510 to limit the distance d between the heater 500 and the temperature detection unit 100 to an appropriate range, preferably the heater 500 is located exactly at the smallest spot of the infrared temperature sensor 110.
  • the control board 600 and the control unit 400 are connected through a serial port 610 such as USB.
  • the resistance measurement unit 300 retrieves the power supply data to the heater 500. Therefore, the resistance measurement unit The detection of the heater 500 by 300 also forms a complete loop.
  • the temperature detection unit 100 detects that the temperature of the heater 500 reaches a preset temperature, it sends a signal to the control unit 400, and the control unit 400 immediately retrieves the resistance value measured by the resistance measurement unit 300 and records it.
  • the control board 600 includes a storage unit (not shown in the figure), and the control unit 400 writes the resistance value of the heater 500 at a preset temperature into the storage unit.
  • the stored resistance value can be directly used for the temperature control parameters of the smoking set in the subsequent use process.
  • the power supply mode can be adjusted, such as adjusting the power or stopping the power supply or stopping the power supply.
  • the detection object is a finished electric heating appliance, which includes a heater 500, a control board 600, a battery 200, a housing 700, and the like.
  • the resistance detection system includes a temperature detection unit 100, a resistance measurement unit 300, a control unit 400, and a power supply 200.
  • the resistance measurement unit 300 is integrated in a control board 600 electrically connected to the heater 500, and the power supply 200 is directly heated by the finished product.
  • the control unit 400 includes a first control subunit and a second control subunit, the first control subunit and the second control subunit are communicatively connected, and the first control subunit is integrated in In the control board 600, the second control subunit is communicatively connected to the temperature detection unit 100.
  • Fix the heater 500 for example, use the fixing unit 510 to limit the distance d between the heater 500 and the temperature detection unit 100 to an appropriate range, preferably the heater 500 is located exactly at the minimum spot of the infrared temperature sensor 110, and further makes There is no obstruction between the heater 500 and the infrared temperature sensor 110.
  • the lead of the control board 600 of the finished electric heating appliance has been connected to the positive and negative poles of the input port of the power supply 200.
  • the control board 600 and the control unit 400 are connected through a serial port 610 such as USB.
  • the resistance measurement unit 300 retrieves the power supply data to the heater 500. Therefore, the detection of the heater 500 by the resistance measuring unit 300 also forms a complete loop.
  • the second control subunit sends a signal to the first control subunit, and the first control subunit records the temperature at this temperature.
  • the resistance value of the heater 500 is described.
  • the control board 600 includes a storage unit, and the control unit 400 writes the resistance value when the heater 500 reaches a preset temperature into the storage unit.
  • the stored resistance value can be used directly for the temperature control parameters of the smoking set during subsequent use.
  • the power supply mode can be adjusted, such as adjusting the power or stopping the power supply or stopping the power supply.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Control Of Resistance Heating (AREA)

Abstract

一种加热器(500)的电阻检测***与方法,电阻检测***包括温度探测单元(100)、电源(200)、电阻测量单元(300)、控制单元(400),由于加热器(500)的电阻值随温度的升高而持续变大或者持续变小,对加热器(500)供电的情况下加热器(500)到达预设温度时加热器(500)的电阻值也升高或者降低到一个目标值,电阻检测***在同时检测加热器(500)温度和电阻的情况下获取目标值并予以记录,可用于后续的加热控制。使得一个控制单元(400)同时连接多个温度探测单元(100)和电阻测量单元(300),能实现对加热器(500)的批量检测。

Description

电阻检测***和方法 技术领域
本发明涉及用于加热器的电阻检测***和电阻检测方法。
背景技术
低温加热烟又称加热不燃烧烟,以卷烟形式比较多见,但与传统的燃烧产生烟气的卷烟不同,以“加热不燃烧”为思路设计的低温加热烟,能使烟叶刚好加热到足以散发出味道的程度而不点燃烟叶,使一手烟和二手烟中的有害物质大幅减少。PCT/EP2010/006598公开了一种发烟***,加热器包括在电绝缘衬底上的多个导电轨迹,所述电绝缘衬底是刚性的,并且布置成***到所述形成浮质的衬底中,导电轨迹具有这样的电阻温度系数特征,所述电阻温度系数特征使得所述多个导电轨迹能够既用作电阻加热器又用作温度传感器。在实际的生产过程中,加热器的一致性不够高,使得每个加热器的电阻温度系数特征具有差别,给加热器使用过程中的温度控制带来困难。
技术问题
基于此,为解决加热器的温度控制问题,确有必要提供一种加热器的电阻检测***和电阻检测方法。
技术解决方案
本发明实施例提供的电阻检测***,包括:
温度探测单元,包括用于检测加热器温度的至少一个非接触式的温度传感器;
电源,用于将电能供给到所述加热器;
电阻测量单元,与所述加热器电连接以测量其电阻值;
控制单元,分别与所述温度探测单元和所述电阻测量单元信号连接,所述加热器在所述电源的供电下升温,当所述温度探测单元检测到所述加热器达到预设温度,记录在此温度下所述加热器的电阻值。
在本发明的另一个实施例中,所述电阻测量单元集成于与所述加热器电连接的控制板内。
在本发明的另一个实施例中,所述控制板内包括存储单元,所述控制单元将所述加热器达到预设温度下的电阻值写入所述存储单元。
在本发明的另一个实施例中,所述控制单元包括第一控制子单元和第二控制子单元,所述第一控制子单元和所述第二控制子单元通信连接,所述第一控制子单元集成于所述控制板内,所述第二控制子单元与所述温度探测单元通信连接;所述温度探测单元检测到所述加热器达到预设温度,所述第二控制子单元发送信号至所述第一控制子单元,所述第一控制子单元记录在此温度下所述加热器的电阻值。
在本发明的另一个实施例中,所述电源与所述控制板电连接,所述控制板、所述加热器和所述电源构成电加热器具的成品或者半成品的至少一部分。
在本发明的另一个实施例中,所述温度探测单元中包括用于测量所述加热器同一位置或者区域温度的至少两个温度传感器。
在本发明的另一个实施例中,所述温度探测单元中包括用于测量所述加热器不同位置或者区域温度的至少两个温度传感器。
在本发明的另一个实施例中,所述温度探测单元包括至少两个温度传感器,所述预设温度为各温度传感器检测到的平均温度、最高温度、最低温度中的至少一种。
在本发明的另一个实施例中,所述温度探测单元包括至少两个温度传感器,如果其中两个温度传感器检测到的温度差值小于阈值,记录在此温度下所述式加热器的电阻值;否则,说明检测错误,重新检测。
在本发明的另一个实施例中,所述温度传感器为红外温度传感器,所述加热器的温度变化范围位于所述红外温度传感器的量程范围内。
在本发明的另一个实施例中,所述加热器设置在所述红外温度传感器的最佳测量位置。
在本发明的另一个实施例中,还包括用于固定所述加热器的固定单元。
在本发明的另一个实施例中,还包括位置调节单元,与所述固定单元和/所述温度探测单元连接,调整所述加热器与所述温度传感器的相对位置。
在本发明的另一个实施例中,所述预设温度至少包括第一预设温度和第二预设温度,所述控制单元分别记录与此温度对应的所述加热器的第一电阻值和第二电阻值。
在本发明的另一个实施例中,所述温度探测单元实时检测所述加热器的温度,所述电阻测量单元实时检测所述加热器的电阻值,所述控制单元记录所述加热器的电阻与温度之间的关系。
在本发明的另一个实施例中,所述电阻检测***中所述温度探测单元和所述电阻测量单元的数量均大于两个。
在本发明的另一个实施例中,所述加热器为***式加热器,用于***气溶胶生成制品以加热其中的气溶胶生成物质产生气溶胶。
在本发明的另一个实施例中,所述加热器为筒状加热器,用于容纳气溶胶生成制品并对其进行加热。
本发明还提供一种电阻检测方法,包括如下步骤:
S1、固定加热器与温度探测单元之间的距离,使得所述加热器位于所述温度探测单元内设置的至少一个温度传感器的检测范围内;
S2、将电能供给到加热器,使其升温,检测所述加热器的温度和电阻值;
S3、当所述加热器达到预设温度,记录在此温度下所述加热器的电阻值。
有益效果
相对于使用同样的电阻温度系数特征,本发明通过测量加热器达到预设温度时的电阻值,并将此目标电阻值用于后续的加热控制。如果直接使用成品或者半成品的电加热器具进行上述检测,测量过程和目标值写入过程同步,操作简单快速,容易实现大批量的工业化生产。
附图说明
[根据细则91更正 18.12.2019] 
图1为本发明电阻检测***的结构示意图;
[根据细则91更正 18.12.2019] 
图2为本发明实施例1中的电阻检测***工作的示意图;

[根据细则91更正 18.12.2019] 
图3为本发明实施例2中的电阻检测***工作的示意图;
[根据细则91更正 18.12.2019] 
图4为本发明实施例3中的电阻检测***工作的示意图;
[根据细则91更正 18.12.2019] 
[根据细则91更正 18.12.2019] 
[根据细则91更正 18.12.2019] 
[根据细则91更正 18.12.2019] 
[根据细则91更正 18.12.2019] 
本发明的实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
需要说明的是,当元件被称为“固定于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。相反,当元件被称作“直接在”另一元件“上”时,不存在中间元件。本文所使用的术语“垂直的”、“水平的”、“左”、“右”以及类似的表述只是为了说明的目的。实施例附图中各种不同对象按便于列举说明的比例绘制,而非按实际组件的比例绘制。
本发明实施例所称“气溶胶生成物质”指发烟物质,是经加热或燃烧可以产生气味和/或尼古丁和/或烟气的物质,即可被雾化的物质,即烟料。烟料可以是固态、半固态和液态。固态烟料因为透气性、组装和制作等方面的考虑,经常加工成薄片状,因此又俗称为薄片,丝状薄片也称为薄片丝。本发明实施例所讨论的烟料可为天然的或人工合成的烟液、烟油、烟胶、烟膏、烟丝、烟叶等,例如,人工合成的烟料含有甘油、丙二醇和烟碱等。所述烟液为液体,所述烟油为油状,所述烟胶为凝胶状,所述烟膏为膏状,所述烟丝包括天然的或人造的或萃取加工过的烟丝,所述烟叶包括天然的或人造的或萃取加工过的烟叶。烟料可以在被其它物质封存的形式下被加热,如保存在可遇热降解的包装中,例如微胶囊中,加热后所需挥发性物质从降解或有孔隙的封存包装中导出。
本发明实施例所述的烟料可以含有烟碱,也可以不含有烟碱。含有烟碱的烟料可以包括天然烟叶制品,以烟碱为原料制成的烟液、烟油、烟胶、烟膏、烟丝、烟叶等中的至少一种。烟液为水状,烟油为油状,烟胶为凝胶状,烟膏为膏状,烟丝包括天然的或人造的或萃取加工过的烟丝,烟叶包括天然的或人造的或萃取加工过的烟叶。不含有烟碱的烟料主要含有香味物质,例如香料,即可被雾化以起到模拟吸烟过程又起到戒烟等目的。在一实施例中,所述香料包括薄荷油。所述烟料还可包括其他添加剂,例如甘油和/或丙二醇。
本发明实施例所述的“气溶胶生成制品”指包含烟料,能够通过加热产生气溶胶,例如烟气或雾气的产品,例如香烟、烟弹或烟支,优选为一次性使用的制品。所述气溶胶生成制品本身不能够提供电能。
***式加热器被配置为***低温加热烟内部进行加热,是加热不燃烧烟技术领域比较最常见的加热器形态,本身具有一定强度且体积小。筒状加热器被配置为容纳低温加热烟,对其进行外部加热。
现有技术中通常基于电阻温度系数来实现加热器的温度控制,较好情况下,导体的电阻与温度之间的关系是基本线性的。但是导电轨迹在较小的加热器体积上通常呈细线分布,局部的差异都会对电阻特性具有较大影响,实际制备得到的加热器,由于使用的材料、工艺等各方面因素的影响,初始电阻值和电阻温度系数均难以做到一致性很好,如果直接使用固定的电阻温度系数特征进行温度控制将势必导致加热温度控制的不准确,并直接影响口感。
本发明实施例提供一种电阻检测***,图1示出了本发明实施例电阻检测***的结构,主要包括温度探测单元100、电源200、电阻测量单元300、控制单元400,用于对加热器500(图中未示出,参见图4)的电阻进行检测,所述加热器500优选为***式加热器,现分别就其结构和功能予以介绍。由于加热器500的电阻值随温度的升高而持续变大或者持续变小,对加热器500供电的情况下加热器500到达预设温度时其电阻值也升高或者降低到一个目标值,温度探测单元100检测器温度值,电阻测量单元300检测电阻值,本发明电阻检测***在同时检测加热器温度和电阻的情况下获取该目标值并予以记录,用于后续的加热控制。
温度探测单元100是用于检测所述加热器500实际发热温度的核心部件,包括至少一个温度传感器110,当所述加热器500固定并使得至少一个温度传感器110对准所述加热器500时,电阻检测***即可开始工作。例如,所述加热器500在通电的情况下温度持续升高,温度传感器110即可检测其实际发热温度;由于加热器500实际使用时也是***低温加热烟内部进行加热,此种结构的温度探测单元100的检测结果接近真实使用情形下加热器500的温度状况。
电源200,结合图1可知,用于将电能供给到所述加热器500;电流、电压、脉冲频率等供电方式可以与实际的电加热器具不一样,也可以模拟实际的电加热器具的供电方式以达到更接近真实状况的效果;电源200的形式可以多样,例如,直接检测成品或者半成品的加热器500的电阻值,可以直接使用成品或者半成品的电源200对加热器500进行供电,如果检测对象时单个的加热器500,直接将其连接至外接电源200即可。
电阻测量单元300,结合图1可知,与所述加热器500电连接,测量接入所述加热器500的电压和电流值,换算得到电阻值,该电压和电流值越接近实际值其所测量得到的电阻值越接近准确。由于加热器500的电阻值随温度的升高而持续变大或者持续变小,对加热器500供电的情况下加热器500到达预设温度时其电阻值也升高或者降低到一个目标值。
控制单元400,结合图1可知,分别与所述温度探测单元100和所述电阻测量单元300信号连接,所述加热器500在所述电源200的供电下升温,由于加热器500置于温度探测单元100上,温度传感器110检测到的温度也随之升高,如果不考虑温度传感器110的温度检测滞后或者检测误差,温度传感器110检测到的温度即为与所述加热器500表面的实际温度,如果考虑温度传感器110的温度检测滞后或者检测误差,可以通过软件算法对其进行修正或者补偿,当所述温度探测单元100检测到所述加热器500达到预设温度,调取电阻测量单元300此时检测到的电阻值,并记录在此温度下所述加热器500的电阻值。此电阻值即可以用于后续加热控制的目标值,例如,一款加热不燃烧烟的最适加热温度为300℃,加热器500的电阻值随温度的升高而持续变大,所述加热器500加热至300℃时的电阻值为R,则实际使用和控制过程中,测量所述加热器500的电阻值升高到R时说明已经到达最适加热温度,降低功率或者停止供电;测量所述加热器500的电阻值低于R时说明还没有已经到达最适加热温度,继续供电。
在本发明电阻检测***的另一实施例中,所述温度探测单元100中包括用于测量所述加热器500同一位置或者区域温度的至少两个温度传感器110。该位置或者区域指温度探测单元100在被测对象表面的检测范围,只有在这个检测范围红外信号才会被温度探测单元100吸收以转换为电信号。例如同一位置位于与所述加热器500的长度延伸方向垂直的同一平面,同一区域位于与所述加热器500的长度延伸方向的高度范围,所述加热器500在该同一位置或者区域的温度应该基本相等,多个此种方式设置的温度传感器110可以用于相互之间的校准。类似的,所述温度探测单元100中包括用于测量所述加热器500不同位置或者区域温度的至少两个温度传感器110。沿所述加热器500的长度延伸方向一字排列,也可以呈螺旋形排列。所述加热器500不同位置或者区域的温度应该存在一定差异,多个此种方式设置的温度传感器110可更准确的反应出所述加热器500上的温度分布,可以用于更准确的加热温度控制,实现更好的出烟口感和吸味。
在本发明电阻检测***的另一实施例中,所述腔体110的形状与所述加热器500相适配。参见图2,所述加热器500为长条形的棒状或者针状,腔体110的尺寸略大于所述加热器500,便于所述加热器500***有不会存在过大的间隙。当然,所述加热器500为其他形状,例如,片状等,腔体110的形状也应该与其适配。
在本发明电阻检测***的另一实施例中,所述预设温度至少包括第一预设温度和第二预设温度,例如,一款加热不燃烧烟的最适加热温度为300℃~330℃,加热器500的电阻值随温度的升高而持续变大,第一预设温度即可以定为300℃,第二预设温度即可以定为330℃,所述控制单元400分别记录与此温度对应的所述加热器500的第一电阻值和第二电阻值。所述加热器500加热至300℃时的第一电阻值为R1,所述加热器500加热至330℃时的第二电阻值为R2,很明显R1<R2,实际使用和控制过程中,测量所述加热器500的电阻值升高到R1时说明已经到达最适加热温度区间,继续供电或者降低功率供电,使得温度继续升高;测量所述加热器500的电阻值升高到R2时说明已经到达温度上限,降低功率或者停止供电,使得温度降低;测量所述加热器500的电阻值降低到R1时说明已经到达最适温度下限,开始供电或者提高功率供电。当然,如果加热器500的电阻值随温度的升高而持续变小,则R1>R2,维持最适加热温度的办法类似,依然是使得所述加热器500的电阻在R1和R2之间,只是在具体控制时电阻降低至R2时需要降低功率或者停止供电,等待电阻升高至R1时需要开始供电或者提高功率供电。
优选的,如果一款加热不燃烧烟的加热控制过程中需要更多的目标值,以更加精准的温度控制,可以设置更多的预设温度T1、T2、T3、T4……,以及与这些预设温度对应的电阻值R1、R2、R3、R4……,构成所述加热器500的一组离散的温度电阻关系,任意选择其中的一个或者两个均可以使用前述实施例中的方式予以实施温度控制。
优选的,所述温度探测单元100实时检测所述加热器500的温度,所述电阻测量单元300实时检测所述加热器500的电阻值,这样就构成所述加热器500的线型的温度电阻关系,所述控制单元400记录所述加热器500的电阻与温度之间的关系,可以根据所述加热器500任意时刻的电阻值确定其加热温度,实现更加灵活多样的控制。
在本发明电阻检测***的另一实施例中,温度探测单元100的腔体110内设置至少两个温度传感器110,将这些不同温度传感器110检测得到的温度值组合使用或者选择性使用,以得到更加准确的所述加热器500的温度值。例如,同时有两个或者两个以上的温度传感器110检测所述加热器500同一位置或者区域的温度,如果这些温度传感器110全部对准良好,检测到的温度应该基本相等,不会出现太大偏差,但是检测过程中时情况不会每次都如此理想,因此通过使用平均温度的方式,可以将此种情形带来的误差降低可控范围。
再例如,每一款加热不燃烧烟都有其适合的加热温度,如果加热温度过高,被加热的烟草制品会出现过度的热裂解,不仅会释放出更多的有害物质,还影响吸烟口感。相反,如果加热温度过低,又不足以释放出足够的被吸食成分,例如香味成分和盐碱等,影响吸烟体验。因此检测所述加热器500的最高温度、最低温度可以作为后续控制的重要参考。当然,平均温度、最高温度、最低温度也可以组合使用,例如所有检测到的温度中去掉最高值和最低值,剩下的取平均值。可以根据实际的加热器500的类型和温度分布特点,将各温度传感器110检测到的温度,选取适合的组合方式予以使用。上述检测温度的使用方式只是示例性的,没有包括具体使用过程中的全部实例,只要这些检测温度的单独使用或者组合使用不存在矛盾,都应当认为是本说明书记载的范围。
优选的,所述腔体110内设置至少两个温度传感器110,如果其中两个温度传感器110检测所述加热器500不同位置的温度值,两者之间会存在一个大体固定的温差值,如果两个温度传感器110检测所述加热器500同一位置的温度值,检测到的温度应该基本相等。当其中两个温度传感器110的位置固定,其检测所述加热器500的温度差值也大体固定,因此可以根据实际情况确定一个阈值,如果其中两个温度传感器110检测到的温度差值小于此阈值,说明检测正确,记录在此温度下所述加热器500的电阻值;否则,说明检测错误,重新检测。
在本发明电阻检测***的另一实施例中,所述电阻检测***包括大于两个的温度探测单元100和大于两个的电阻测量单元300,其可以共用同一个控制单元400,也可以分别连接一个控制单元400,这样就形成了多组检测子***并行的情形,此种设置可以实现同时连接多个加热器500,实现对多个加热器500的批量检测。
在本发明电阻检测***的另一实施例中,所述温度传感器110为红外温度传感器,它的敏感元件与被测对象加热器500之间互不接触,是非接触式温度传感器,也称为红外测温仪。这种温度传感器可用来测量运动物体、小目标和热容量小或温度变化迅速(瞬变)对象的表面温度,也可用于测量温度场的温度分布。本实施例中,加热器的温度变化范围位于所述红外温度传感器的量程范围内,量程也就是测温范围,选择红外温度传感器时一定要注意到它的量程,只有选择了适合的量程才能进行测量。另外,要注意传感器的类型和尺寸以实现温度的准确测量,例如,红外温度传感器的距离系数D:S是红外探头的一个重要参数,即测温仪探头到目标之间的距离D与被测目标直径S之比。在被测目标尺寸确定的情况下,可以确定一个探头到目标之间的合适距离范围;同时传感器的尺寸不能选择过大也不能太小,特别是对于固定焦距的测温仪,在光学***焦点处为光斑最小位置,近于和远于焦点位置光斑都会增大,要根据加热器500的尺寸选择传感器的尺寸,避免测量光斑大于传感器的尺寸的情况出现。选择红外温度传感器时,还要确定光学分辨率、确定波长范围、确定响应时间、信号处理功能等,例如被测物体的材料确定测量时的波长范围,另外,需要特别考虑温度、气氛、污染和干扰等因素对性能指标的影响,以确定修正方法增加测量精度。优选的,在使用电阻检测***时,加热器500设置在所述红外温度传感器110的最佳测量位置,例如使用具有光学辅助定位单元的红外温度传感器,最佳测量位置最优选为其最小光斑位置,为了能在接近和远离焦点的距离上准确测温,被测目标尺寸应大于焦点处光斑尺寸,实现的对加热器500表面温度的最精准测量。
在本发明电阻检测***的另一实施例中,温度探测单元100对筒状加热器进行温度检测,例如直接测量筒状加热器的外壁温度,或者将温度探测单元100对准筒状加热器的内壁,即可完成对容纳腔中温度的检测。同时测量接入所述筒状加热器的电压和电流值,换算得到电阻值,该电压和电流值越接近实际值其所测量得到的电阻值越接近准确。具体的电阻测量过程和控制单元400的工作过程与前述实施例相同,在此不再赘述。
在本发明电阻检测***的另一实施例中,还包括用于固定所述加热器500的固定单元510,使其与温度探测单元100之间的距离d不能随便偏移,保证测量的准确和稳定。优选的,所述电阻检测***还包括位置调节单元(图中未示出),与所述固定单元510和/所述温度探测单元100连接,调整所述加热器500与所述温度传感器110的相对位置,特别是将加热器500与温度传感器110之前的距离d调整到温度传感器110的焦距上,使得加热器500位于温度传感器110的最佳测量位置。本发明还提供一种电阻检测方法,反应前述电阻检测***的工作过程,包括如下步骤:
S1、固定加热器与温度探测单元之间的距离,使得所述加热器位于所述温度探测单元内设置的至少一个温度传感器的检测范围内;
S2、将电能供给到加热器,使其升温,检测所述加热器的温度和电阻值;
S3、当所述加热器达到预设温度,记录在此温度下所述加热器的电阻值。
实施例1
参见图1和图2,本实施例的电阻检测方法,检测对象为未连接控制板的独立的加热器500,电阻检测***包括温度探测单元100、电源200、电阻测量单元300、控制单元400,详细过程如下:
1)将加热器500固定,例如使用固定单元510将加热器500与温度探测单元100之间的距离d限定在合适范围,优选为加热器500正好位于红外温度传感器110的最小光斑处将加热器500的引线与电源200输入端口的正负极连接,电阻测量单元300调取电源200对加热器500的供电数据,因此,电阻测量单元300对加热器500的的检测也形成完整回路。
2)启动开关,将电能供给到加热器500,使其升温,温度探测单元100和电阻测量单元300同时启动工作,检测所述加热器500的温度和电阻值。
3)当温度探测单元100检测到加热器500的温度达到预设温度,向控制单元400发送信号,控制单元400立刻调取电阻测量单元300测量的电阻值并予以记录。优选的,电阻检测***还包括flash存储器,检测得到的电阻值直接写入flash存储器。
4)后续装机时,将此电阻值写入烟具的控制板,用于烟具在后续使用过程中的温控参数。后续使用过程中,只要加热器500的电阻值达到上述温控参数,即表明加热器500已经到达了需要的目标温度,即可调整供电方式,例如调整功率或者停止供电或者停止供电。
实施例2
参见图1和图3,本实施例的电阻检测方法,检测对象为半成品电加热器具,该半成品电加热器具为连接有控制板600的加热器500,电阻检测***包括温度探测单元100、电阻测量单元300、控制单元400、电源200,所述电阻测量单元300集成于与所述加热器500电连接的控制板600内。
详细过程如下:
1)将半成品电加热器具固定,例如使用固定单元510将加热器500与温度探测单元100之间的距离d限定在合适范围,优选为加热器500正好位于红外温度传感器110的最小光斑处。将控制板600的引线与电源200输入端口的正负极连接,控制板600与控制单元400通过USB等串口610连接,电阻测量单元300调取对加热器500的供电数据,因此,电阻测量单元300对加热器500的的检测也形成完整回路。
2)启动控制板600上的开关620,将电能供给到加热器500,使其升温,温度探测单元100和电阻测量单元300同时启动工作,检测所述加热器500的温度和电阻值。
3)当温度探测单元100检测到加热器500的温度达到预设温度,向控制单元400发送信号,控制单元400立刻调取电阻测量单元300测量的电阻值并予以记录。优选的,所述控制板600内包括存储单元(图中未示出),所述控制单元400将所述加热器500达到预设温度下的电阻值写入所述存储单元。
4)后续装机时,将电池连接上控制板600,加上壳体,存储的电阻值可以直接用于烟具在后续使用过程中的温控参数。后续使用过程中,只要加热器500的电阻值达到上述温控参数,即表明加热器500已经到达了需要的目标温度,即可调整供电方式,例如调整功率或者停止供电或者停止供电。
实施例3
参见图1和图4,本实施例的电阻检测方法,检测对象为成品电加热器具,该成品电加热器具包括加热器500、控制板600、电池200、壳体700等。电阻检测***包括温度探测单元100、电阻测量单元300、控制单元400、电源200,所述电阻测量单元300集成于与所述加热器500电连接的控制板600内,电源200直接使用成品电加热器具的电池200,所述控制单元400包括第一控制子单元和第二控制子单元,所述第一控制子单元和所述第二控制子单元通信连接,所述第一控制子单元集成于所述控制板600内,所述第二控制子单元与所述温度探测单元100通信连接。
详细过程如下:
1)将加热器500固定,例如使用固定单元510将加热器500与温度探测单元100之间的距离d限定在合适范围,优选为加热器500正好位于红外温度传感器110的最小光斑处,另外使得加热器500与红外温度传感器110之间无遮挡。成品电加热器具的控制板600引线已经与电源200输入端口的正负极连接,将控制板600与控制单元400通过USB等串口610连接,电阻测量单元300调取对加热器500的供电数据,因此,电阻测量单元300对加热器500的检测也形成完整回路。
2)启动控制板600上的开关620,将电能供给到加热器500,使其升温,温度探测单元100和电阻测量单元300同时启动工作,检测所述加热器500的温度和电阻值。
3)当温度探测单元100检测到所述加热器500达到预设温度,所述第二控制子单元发送信号至所述第一控制子单元,所述第一控制子单元记录在此温度下所述加热器500的电阻值。优选的,所述控制板600内包括存储单元,所述控制单元400将所述加热器500达到预设温度下的电阻值写入所述存储单元。
4)存储的电阻值可以直接用于烟具在后续使用过程中的温控参数。后续使用过程中,只要加热器500的电阻值达到上述温控参数,即表明加热器500已经到达了需要的目标温度,即可调整供电方式,例如调整功率或者停止供电或者停止供电。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (19)

  1. 一种电阻检测***,其特征在于,包括:
    温度探测单元,包括用于检测加热器温度的至少一个非接触式的温度传感器;
    电源,用于将电能供给到所述加热器;
    电阻测量单元,与所述加热器电连接以测量其电阻值;
    控制单元,分别与所述温度探测单元和所述电阻测量单元信号连接,所述加热器在所述电源的供电下升温,当所述温度探测单元检测到所述加热器达到预设温度,记录在此温度下所述加热器的电阻值。
  2. 根据权利要求1所述的电阻检测***,其特征在于,所述电阻测量单元集成于与所述加热器电连接的控制板内。
  3. 根据权利要求2所述的电阻检测***,其特征在于,所述控制板内包括存储单元,所述控制单元将所述加热器达到预设温度下的电阻值写入所述存储单元。
  4. 根据权利要求3所述的电阻检测***,其特征在于,所述控制单元包括第一控制子单元和第二控制子单元,所述第一控制子单元和所述第二控制子单元通信连接,所述第一控制子单元集成于所述控制板内,所述第二控制子单元与所述温度探测单元通信连接;所述温度探测单元检测到所述加热器达到预设温度,所述第二控制子单元发送信号至所述第一控制子单元,所述第一控制子单元记录在此温度下所述加热器的电阻值。
  5. 根据权利要求4所述的电阻检测***,其特征在于,所述电源与所述控制板电连接,所述控制板、所述加热器和所述电源构成电加热器具的成品或者半成品的至少一部分。
  6. 根据权利要求1所述的电阻检测***,其特征在于,所述温度探测单元中包括用于测量所述加热器同一位置或者区域温度的至少两个温度传感器。
  7. 根据权利要求1所述的电阻检测***,其特征在于,所述温度探测单元中包括用于测量所述加热器不同位置或者区域温度的至少两个温度传感器。
  8. 根据权利要求1所述的电阻检测***,其特征在于,所述温度探测单元包括至少两个温度传感器,所述预设温度为各温度传感器检测到的平均温度、最高温度、最低温度中的至少一种。
  9. 根据权利要求1所述的电阻检测***,其特征在于,所述温度探测单元包括至少两个温度传感器,如果其中两个温度传感器检测到的温度差值小于阈值,记录在此温度下所述式加热器的电阻值;否则,说明检测错误,重新检测。
  10. 根据权利要求1所述的电阻检测***,其特征在于,所述温度传感器为红外温度传感器,所述加热器的温度变化范围位于所述红外温度传感器的量程范围内。
  11. 根据权利要求10所述的电阻检测***,其特征在于,所述加热器设置在所述红外温度传感器的最佳测量位置。
  12. 根据权利要求1所述的电阻检测***,其特征在于,还包括用于固定所述加热器的固定单元。
  13. 根据权利要求12所述的电阻检测***,其特征在于,还包括位置调节单元,与所述固定单元和/所述温度探测单元连接,调整所述加热器与所述温度传感器的相对位置。
  14. 根据权利要求1所述的电阻检测***,其特征在于,所述预设温度至少包括第一预设温度和第二预设温度,所述控制单元分别记录与此温度对应的所述加热器的第一电阻值和第二电阻值。
  15. 根据权利要求1所述的电阻检测***,其特征在于,所述温度探测单元实时检测所述加热器的温度,所述电阻测量单元实时检测所述加热器的电阻值,所述控制单元记录所述加热器的电阻与温度之间的关系。
  16. 根据权利要求1所述的电阻检测***,其特征在于,所述电阻检测***中所述温度探测单元和所述电阻测量单元的数量均大于两个。
  17. 根据权利要求1所述的电阻检测***,其特征在于,所述加热器为***式加热器,用于***气溶胶生成制品以加热其中的气溶胶生成物质产生气溶胶。
  18. 根据权利要求1所述的电阻检测***,其特征在于,所述加热器为筒状加热器,用于容纳气溶胶生成制品并对其进行加热。
  19. 一种电阻检测方法,其特征在于,包括如下步骤:
    S1、固定加热器与温度探测单元之间的距离,使得所述加热器位于所述温度探测单元内设置的至少一个温度传感器的检测范围内;
    S2、将电能供给到加热器,使其升温,检测所述加热器的温度和电阻值;
    S3、当所述加热器达到预设温度,记录在此温度下所述加热器的电阻值。
PCT/CN2019/122476 2018-12-24 2019-12-02 电阻检测***和方法 WO2020134888A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811583949.3 2018-12-24
CN201811583949.3A CN111351985B (zh) 2018-12-24 2018-12-24 电阻检测***和方法

Publications (1)

Publication Number Publication Date
WO2020134888A1 true WO2020134888A1 (zh) 2020-07-02

Family

ID=71129680

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/122476 WO2020134888A1 (zh) 2018-12-24 2019-12-02 电阻检测***和方法

Country Status (2)

Country Link
CN (2) CN111351985B (zh)
WO (1) WO2020134888A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112056637A (zh) * 2020-09-27 2020-12-11 云南中烟工业有限责任公司 一种电子烟发热体电阻温度系数的测试装置及其使用方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111838756A (zh) * 2019-04-30 2020-10-30 上海新型烟草制品研究院有限公司 气雾产生装置及其温度调整方法、***、设备、存储介质
CN113455706A (zh) * 2021-08-23 2021-10-01 湖南中烟工业有限责任公司 一种烟具加热器校准***及其校准方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170231280A1 (en) * 2016-02-12 2017-08-17 Mark Anton Programmable electronic inhalation device
CN206650418U (zh) * 2017-04-20 2017-11-17 深圳市卓力能电子有限公司 一种智能电子烟
CN206714080U (zh) * 2017-03-22 2017-12-08 颐中(青岛)实业有限公司 一种可适配多种发热丝的温控电子烟
CN206760774U (zh) * 2017-03-22 2017-12-19 东莞市哈维电子科技有限公司 电子吸烟器的温度控制装置
CN208030261U (zh) * 2014-12-29 2018-11-02 惠州市吉瑞科技有限公司深圳分公司 电子烟控制电路以及电子烟
CN109043675A (zh) * 2018-09-28 2018-12-21 钟桥云 一种电加热不燃烧烟具及其温控装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4994780A (en) * 1988-05-02 1991-02-19 Fluid Components, Inc. Heated extended resistance temperature sensor, apparatus for sensing and method of making same
DE4312289A1 (de) * 1993-04-15 1994-10-20 Rev Regelgeraete Entwicklungs Verfahren und Schaltungsanordnung zur Temperaturregelung einer Widerstandsheizung
CN1548934A (zh) * 2003-05-07 2004-11-24 刘正洪 温度传感器其温度检测电路及方法
US7332692B2 (en) * 2005-05-06 2008-02-19 Illinois Tool Works Inc. Redundant control circuit for hot melt adhesive assembly heater circuits and temperature sensors
RU2621468C1 (ru) * 2012-09-11 2017-06-06 Филип Моррис Продактс С.А. Устройство и способ для управления электрическим нагревателем для ограничения температуры
JP2015114265A (ja) * 2013-12-13 2015-06-22 キヤノン株式会社 マイクロ流体デバイス及びその測定温度の補正方法
CN106771619B (zh) * 2016-12-26 2020-02-14 上海集成电路研发中心有限公司 一种高精度温控电阻测试***
EP3618648B1 (en) * 2017-05-03 2021-06-30 Philip Morris Products S.A. A system and method for temperature control in an electrically heated aerosol-generating device
CN207163586U (zh) * 2017-08-21 2018-03-30 国网北京市电力公司 电缆接头温度监测装置
CN108185525A (zh) * 2017-12-27 2018-06-22 深圳市新宜康电子技术有限公司 薄片式加热不燃烧装置
CN108241003B (zh) * 2018-01-25 2020-03-20 深圳市赛尔美电子科技有限公司 一种非恒温式加热电子烟具一致性检测方法及***
CN108731843B (zh) * 2018-03-06 2020-09-01 深圳市舜宝科技有限公司 电子烟加热温度检测装置及其方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN208030261U (zh) * 2014-12-29 2018-11-02 惠州市吉瑞科技有限公司深圳分公司 电子烟控制电路以及电子烟
US20170231280A1 (en) * 2016-02-12 2017-08-17 Mark Anton Programmable electronic inhalation device
CN206714080U (zh) * 2017-03-22 2017-12-08 颐中(青岛)实业有限公司 一种可适配多种发热丝的温控电子烟
CN206760774U (zh) * 2017-03-22 2017-12-19 东莞市哈维电子科技有限公司 电子吸烟器的温度控制装置
CN206650418U (zh) * 2017-04-20 2017-11-17 深圳市卓力能电子有限公司 一种智能电子烟
CN109043675A (zh) * 2018-09-28 2018-12-21 钟桥云 一种电加热不燃烧烟具及其温控装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112056637A (zh) * 2020-09-27 2020-12-11 云南中烟工业有限责任公司 一种电子烟发热体电阻温度系数的测试装置及其使用方法

Also Published As

Publication number Publication date
CN111351985B (zh) 2022-02-11
CN114355042A (zh) 2022-04-15
CN111351985A (zh) 2020-06-30

Similar Documents

Publication Publication Date Title
US9792678B2 (en) Imaging for quality control in an electronic cigarette
RU2738556C2 (ru) Устройство для генерирования аэрозоля с нагревателем
WO2020134888A1 (zh) 电阻检测***和方法
CN105027016B (zh) 用于控制电加热器以限制温度的装置及方法
KR102183093B1 (ko) 온도를 가변적으로 제어할 수 있는 방법 및 장치
EP3883411B1 (en) Aerosol generating device and operation method thereof
KR20150097820A (ko) 가열된 에어로졸 발생 기기 및 일정한 성상을 가지는 에어로졸을 발생하기 위한 방법
CN112672653A (zh) 气溶胶生成装置和包括气溶胶生成装置的气溶胶生成***
CN112535325A (zh) 一种电子烟的加热控制方法及电子烟
CN112535324B (zh) 一种电子烟的加热监测方法及电子烟
WO2021103289A1 (zh) 一种电子烟及其加热控制方法
KR102412117B1 (ko) 에어로졸 생성 장치 및 그 동작 방법
US20230404166A1 (en) Aerosol generating device and operating method thereof
CN112021677A (zh) 发热装置及加热不燃烧电子烟烟具
CN113133549A (zh) 加热不燃烧烟具
KR102337231B1 (ko) 에어로졸 생성 장치 및 제어 방법
CN212368333U (zh) 发热装置及加热不燃烧电子烟烟具
WO2023072078A1 (zh) 气溶胶生成装置及其控制方法
US20230069561A1 (en) Heater for aerosol-forming substrate comprising a positive temperature coefficient thermistor
JP7390483B2 (ja) 電極を含むエアロゾル生成装置
KR102277888B1 (ko) 에어로졸 발생 장치 및 그의 제어 방법
KR20240093946A (ko) 에어로졸 생성 장치 및 그 제어 방법
KR20230001927A (ko) 에어로졸 생성 장치 및 에어로졸 생성 장치의 히터온도 제어 방법
JP2023540715A (ja) エアロゾル生成装置及びその動作方法
CN115590259A (zh) 一种电子烟防干烧装置及其方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19901907

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19901907

Country of ref document: EP

Kind code of ref document: A1