WO2020134474A1 - 移动终端 - Google Patents

移动终端 Download PDF

Info

Publication number
WO2020134474A1
WO2020134474A1 PCT/CN2019/113366 CN2019113366W WO2020134474A1 WO 2020134474 A1 WO2020134474 A1 WO 2020134474A1 CN 2019113366 W CN2019113366 W CN 2019113366W WO 2020134474 A1 WO2020134474 A1 WO 2020134474A1
Authority
WO
WIPO (PCT)
Prior art keywords
mobile terminal
vivaldi antenna
line
side wall
dielectric plate
Prior art date
Application number
PCT/CN2019/113366
Other languages
English (en)
French (fr)
Inventor
赵伟
邾志民
雍征东
夏晓岳
王超
Original Assignee
瑞声声学科技(深圳)有限公司
瑞声科技(南京)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 瑞声声学科技(深圳)有限公司, 瑞声科技(南京)有限公司 filed Critical 瑞声声学科技(深圳)有限公司
Publication of WO2020134474A1 publication Critical patent/WO2020134474A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/08Radiating ends of two-conductor microwave transmission lines, e.g. of coaxial lines, of microstrip lines
    • H01Q13/085Slot-line radiating ends
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • H01Q1/243Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use with built-in antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/42Housings not intimately mechanically associated with radiating elements, e.g. radome
    • H01Q1/422Housings not intimately mechanically associated with radiating elements, e.g. radome comprising two or more layers of dielectric material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/20Non-resonant leaky-waveguide or transmission-line antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/206Microstrip transmission line antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/08Arrays of individually energised antenna units similarly polarised and spaced apart the units being spaced along or adjacent to a rectilinear path
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/0421Substantially flat resonant element parallel to ground plane, e.g. patch antenna with a shorting wall or a shorting pin at one end of the element
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/02Constructional features of telephone sets
    • H04M1/0202Portable telephone sets, e.g. cordless phones, mobile phones or bar type handsets
    • H04M1/026Details of the structure or mounting of specific components
    • H04M1/0266Details of the structure or mounting of specific components for a display module assembly
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/02Constructional features of telephone sets
    • H04M1/0202Portable telephone sets, e.g. cordless phones, mobile phones or bar type handsets
    • H04M1/026Details of the structure or mounting of specific components

Definitions

  • the invention relates to an antenna, in particular to a mobile terminal used in the field of communication electronic products.
  • the rich bandwidth resources of the millimeter wave band provide a guarantee for the high-speed transmission rate, but due to the severe space loss of electromagnetic waves in this band, the wireless communication system using the millimeter wave band needs to adopt a phased array architecture.
  • the phase shifter makes the phase of each array element distributed according to a certain rule, thereby forming a high-gain beam, and changes the phase shift to make the beam scan within a certain spatial range.
  • the frequency bands required for 5G millimeter wave are 28GHz and 39GHz, and the future millimeter wave band of WIFI will reach 60GHz, it is difficult for ordinary broadband antennas to be so wide, and Vivaldi can cover the above frequency bands to meet the bandwidth requirements and is an excellent mobile phone millimeter Wave antenna solution.
  • the technical problem to be solved by the present invention is to provide a mobile terminal that can simultaneously cover 28 GHz, 39 GHz, and 60 GHz, and all have good coverage efficiency.
  • the present invention provides a mobile terminal, including a Vivaldi antenna system provided in the mobile terminal, the Vivaldi antenna system includes two pairs of Vivaldi antenna arrays, one of which has an opening of the Vivaldi antenna array The direction is along the length direction of the mobile terminal, and the opening direction of another pair of the Vivaldi antenna array is along the thickness direction of the mobile terminal, and each pair of the Vivaldi antenna array includes two Vivaldi antenna arrays with opposite opening directions.
  • the Vivaldi antenna array works in the 5G millimeter wave band.
  • the mobile terminal includes a first surface and a second surface opposite to each other along the thickness direction of the mobile terminal and a side wall surface connecting the first surface and the second surface
  • the side wall surface includes two A first side wall surface disposed oppositely and two second side wall surfaces disposed oppositely and connected to the two first side wall surfaces respectively, the first side wall surface extending along the width direction of the mobile terminal, the second The side wall surface extends along the length direction of the mobile terminal, and the two Vivaldi antenna arrays are respectively attached to the two second side wall surfaces and the opening directions are respectively directed to the first surface and the second surface, and the other two Vivaldi antenna arrays are respectively attached to the first surface and the second surface, and the opening directions are respectively directed to the two first sidewall surfaces.
  • each of the Vivaldi antenna arrays includes multiple Vivaldi antennas arranged in a linear array.
  • the Vivaldi antenna includes a dielectric plate and a radiating portion attached to the dielectric plate, the radiating portion includes a first gradient arm attached to a surface of the dielectric plate and another attached to the dielectric plate A second gradient arm on a surface, the second gradient arm and the first gradient arm are mirror-symmetrical, and an orthographic projection of the first gradient arm and the second gradient arm toward the dielectric plate cooperates to form a horn Shaped opening.
  • the first gradation arm includes a first gradation line that cooperates to form the opening, a second gradation line spaced from the first gradation line, and a connection between the first gradation line and the second gradation line A first connecting line
  • the first gradual changing arm further includes at least two first grid grooves extending from the first connecting line to the first grading changing line
  • the second grading arm includes A third gradient line, a fourth gradient line spaced from the third gradient line, and a second connection line connecting the third gradient line and the fourth gradient line
  • the second gradient arm further includes at least two A second grid groove extending from the second connection line to the third gradient line.
  • the Vivaldi antenna further includes a feeder section attached to the dielectric plate, the feeder section includes a microstrip line attached to one surface of the dielectric plate and another attached to the dielectric plate A ground plane of the surface, an orthographic projection of the microstrip line toward the surface where the ground plane is located falls within the ground plane, and one of the microstrip line and the ground plane is connected to the first gradient arm , The other is connected to the second gradient arm.
  • the feeder section includes a microstrip line attached to one surface of the dielectric plate and another attached to the dielectric plate A ground plane of the surface, an orthographic projection of the microstrip line toward the surface where the ground plane is located falls within the ground plane, and one of the microstrip line and the ground plane is connected to the first gradient arm , The other is connected to the second gradient arm.
  • the dielectric plate of the Vivaldi antenna attached to the second side wall surface is opposite to the second side wall surface, and the dielectric plate of the Vivaldi antenna attached to the first surface is opposite to the first The surface is opposite, and the dielectric plate of the Vivaldi antenna attached to the second surface is opposite to the second surface.
  • the surface where the microstrip line is located is close to the external space of the mobile terminal, and the surface where the ground plane is located is close to the internal space of the mobile terminal.
  • the Vivaldi antenna array of the present invention uses a linear array instead of a planar array.
  • the space occupied by the millimeter wave array in the mobile phone is narrowed, which simplifies the design difficulty, test difficulty, and beam management complexity.
  • the 1 ⁇ 4 linear array has a wide beam width and uniformity in the non-scanning direction, it can achieve good spatial coverage efficiency;
  • the Vivaldi antenna can cover 5GHz millimeter wave bands such as 28GHz and 39GHz, and also covers 60GHz Millimeter wave WIFI frequency band, multi-band common one antenna saves space; the Vivaldi antenna has good coverage efficiency performance at 28GHz, 39GHz and 60GHz.
  • FIG. 1 is a schematic perspective view of a perspective structure of a Vivaldi antenna provided by the present invention
  • FIG. 2 is a schematic perspective structural view of the Vivaldi antenna provided by the present invention at another angle;
  • FIG. 3 is a schematic view of the three-dimensional structure of the Vivaldi antenna provided by the present invention after removing the dielectric plate;
  • FIG. 4 is a schematic diagram of a stereo structure of a mobile terminal provided by the present invention.
  • FIG. 5 is a schematic perspective structural view of the mobile terminal shown in FIG. 4 from another angle;
  • FIG. 6 is a schematic diagram of a three-dimensional structure of a Vivaldi antenna array of a mobile terminal provided by the present invention.
  • 7(a) is a radiation pattern of the first Vivaldi antenna array with a phase shift of 0° when the mobile terminal provided by the present invention is in the 28 GHz frequency band;
  • 7(b) is a radiation pattern of the second Vivaldi antenna array with a phase shift of 0° when the mobile terminal provided by the present invention is in the 28 GHz frequency band;
  • 7(c) is a radiation pattern of the third Vivaldi antenna array with a phase shift of 0° when the mobile terminal provided by the present invention is in the 28 GHz frequency band;
  • 7(d) is a radiation pattern of the fourth Vivaldi antenna array with a phase shift of 0° when the mobile terminal provided by the present invention is in the 28 GHz frequency band;
  • FIG. 8(a) is a radiation pattern of the first Vivaldi antenna array with a phase shift of 0° when the mobile terminal provided by the present invention is in the 39 GHz frequency band;
  • 8(b) is a radiation pattern of the second Vivaldi antenna array with a phase shift of 0° when the mobile terminal provided by the present invention is in the 39 GHz frequency band;
  • 8(c) is a radiation pattern of the third Vivaldi antenna array with a phase shift of 0° when the mobile terminal provided by the present invention is in the 39 GHz frequency band;
  • 9(a) is a radiation pattern of the first Vivaldi antenna array with a phase shift of 0° when the mobile terminal provided by the present invention is in the 60 GHz frequency band;
  • 9(b) is a radiation pattern of the second Vivaldi antenna array with a phase shift of 0° when the mobile terminal provided by the present invention is in the 60 GHz frequency band;
  • 9(c) is a radiation pattern of the third Vivaldi antenna array with a phase shift of 0° when the mobile terminal provided by the present invention is in the 60 GHz frequency band;
  • 9(d) is a radiation pattern of the fourth Vivaldi antenna array with a phase shift of 0° when the mobile terminal provided by the present invention is in the 60 GHz frequency band;
  • 11 is a graph of the coverage efficiency of the mobile terminal at 39 GHz provided by the present invention.
  • FIG. 12 is a graph of coverage efficiency of a mobile terminal provided by the present invention at 60 GHz.
  • the present invention provides a mobile terminal 1000.
  • the mobile terminal 1000 may be a mobile phone, an IPAD, etc. Taking a mobile phone as an example for description.
  • the mobile terminal 1000 includes a Vivaldi antenna system 100 provided in the mobile terminal 1000, and the Vivaldi antenna system 100 includes two pairs of Vivaldi antenna arrays 10, wherein a pair of the Vivaldi antenna arrays 10 moves along the opening direction In the length direction of the terminal 1000, the opening direction of another pair of the Vivaldi antenna array 10 is along the thickness direction of the mobile terminal 1000, and each pair of the Vivaldi antenna array 10 includes two Vivaldi antenna arrays 10 with opposite opening directions.
  • the Vivaldi antenna array 10 works with a 5G millimeter wave frequency band.
  • the mobile terminal 1000 includes a first surface A and a second surface B opposite to each other along the thickness direction of the mobile terminal 1000, and a side wall surface C connecting the first surface A and the second surface B.
  • the side wall surface C includes two oppositely arranged first side wall surfaces C1 and two oppositely arranged second side wall surfaces C2 respectively connected to the two first side wall surfaces C1.
  • the first side wall surface C1 is along
  • the mobile terminal 1000 extends in the width direction
  • the second side wall surface C2 extends in the longitudinal direction of the mobile terminal 1000.
  • the two Vivaldi antenna arrays 10 are respectively mounted on the two second side wall surfaces C2 and the opening directions are respectively directed to the first surface A and the second surface B, and the other two Vivaldi antenna arrays 10 are respectively mounted on the The opening directions of the first surface A and the second surface B are respectively directed to the two first side wall surfaces C1.
  • the space occupied by the millimeter wave array in the mobile phone is narrowed, simplifying the design difficulty, test difficulty, and beam management.
  • each of the Vivaldi antenna array 10 includes a plurality of Vivaldi antennas 1 arranged in a linear array.
  • each Vivaldi antenna array 10 is composed of four Vivaldi antennas 1, of course, in other embodiments, the Vivaldi antenna array 10 may be composed of 3, 5 or 6 etc. Describe the Vivaldi antenna 1 composition.
  • the Vivaldi antenna 1 includes a dielectric plate 11, a radiating portion 12 attached to the dielectric plate 11, and a power feeding portion 13 attached to the dielectric plate 11.
  • the dielectric plate 11 has a rectangular shape, and the size of the dielectric plate 11 is 5.2 mm ⁇ 6.8 mm ⁇ 0.254 mm.
  • the radiation portion 12 includes a first gradual changing arm 121 attached to one surface of the dielectric plate 11 and a second gradual changing arm 122 attached to the other surface of the dielectric plate 11.
  • the second gradual change arm 122 and the first gradual change arm 121 are mirror-symmetrical, and the front projection of the first gradual change arm 121 and the second gradual change arm 122 toward the dielectric plate 11 cooperate to form a trumpet-shaped opening 14 .
  • the first gradient arm 121 includes a first gradient line 1211 that cooperates to form the opening, a second gradient line 1213 spaced from the first gradient line 1211, and connects the first gradient line 1211 and the The first connection line of the second gradation line 1213 and at least two first grid grooves 1212 extending from the first connection line to the first gradation line 1211.
  • the second gradient arm 122 includes a third gradient line 1221 that cooperates to form the opening 14, a fourth gradient line 1223 spaced from the third gradient line 1221, and connects the third gradient line 1221 and the fourth The second connection line of the gradient line 1223 and at least two second grid grooves 1222 extending from the second connection line to the third gradient line 1221.
  • the feeder 13 includes a microstrip line 131 attached to one surface of the dielectric plate 11 and a ground plane 132 attached to the other surface of the dielectric plate 11.
  • the microstrip line 131 faces the ground plane
  • the orthographic projection of the surface where 132 is located falls within the ground plane 132, one of the microstrip line 131 and the ground plane 132 is connected to the first gradient arm 121, and the other is connected to the second gradient
  • the arm 122 is connected.
  • the dielectric plate 11 of the Vivaldi antenna 1 attached to the second side wall surface C2 is opposite to the second side wall surface C2, and the medium of the Vivaldi antenna 1 attached to the first surface A
  • the board 11 is opposed to the first surface A
  • the dielectric plate 11 of the Vivaldi antenna 1 attached to the second surface B is opposed to the second surface B.
  • the surface where the microstrip line 131 is located is close to the external space of the mobile terminal 1000, and the surface where the ground plane 132 is located is close to the internal space of the mobile terminal 1000.
  • FIG. 7(a) to FIG. 7(d), FIG. 8(a) to FIG. 8(d) and FIG. 9(a) to FIG. 9(d) together, it can be seen that the mobile terminal 1000 uses four The Vivaldi antenna array 10 realizes full space coverage.
  • the Vivaldi antenna array 10 of the present invention uses a linear array instead of a planar array, on the one hand, narrows the space occupied by the millimeter wave array in the mobile phone, simplifies the design difficulty, test difficulty, and beam management complexity
  • the Vivaldi antenna 1 can cover 5 GHz millimeter wave bands such as 28 GHz and 39 GHz, and also cover In addition to the 60GHz millimeter wave WIFI frequency band, a common antenna for multiple frequency bands saves space; the Vivaldi antenna 1 has good coverage efficiency performance at 28GHz, 39GHz and 60GHz.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Waveguide Aerials (AREA)

Abstract

本发明提供了一种移动终端,其包括设于所述移动终端内的Vivaldi天线***,所述Vivaldi天线***包括两对Vivaldi天线阵列,其中一对所述Vivaldi天线阵列的开口方向沿所述移动终端的长度方向,另一对所述Vivaldi天线阵列的开口方向沿所述移动终端的厚度方向,且每对所述Vivaldi天线阵列包括两个开口方向相反的Vivaldi天线阵列,所述Vivaldi天线阵列工作于5G毫米波频段。与相关技术相比,本发明提供的移动终端在非扫描方向上波束宽带宽且均匀,因而能实现良好的空间覆盖效率。

Description

移动终端 技术领域
本发明涉及一种天线,尤其涉及一种运用在通讯电子产品领域的移动终端。
背景技术
5G作为全球业界的研发焦点,发展5G技术制定5G标准已经成为业界共识。国际电信联盟 ITU 在 2015 年 6 月召开的 ITU-RWP5D 第 22 次会议上明确了 5G 的三个主要应用场景:增强型移动宽带、大规模机器通信、高可靠低延时通信。这3个应用场景分别对应着不同的关键指标,其中增强型移动带宽场景下用户峰值速度为20Gbps,最低用户体验速率为100Mbps。毫米波独有的高载频、大带宽特性是实现5G超高数据传输速率的主要手段。
毫米波频段丰富的带宽资源为高速传输速率提供了保障,但是由于该频段电磁波剧烈的空间损耗,利用毫米波频段的无线通信***需要采用相控阵的架构。通过移相器使得各个阵元的相位按一定规律分布,从而形成高增益波束,并且通过相移的改变使得波束在一定空间范围内扫描。
5G毫米波要求的频段是28GHz和39GHz,而未来的WIFI的毫米波频段将达到60GHz,普通的宽带天线难以做这么宽,而Vivaldi可以覆盖以上频段,满足带宽要求,是一种优秀的手机毫米波天线解决方案。
技术问题
本发明要解决的技术问题是提供一种可同时覆盖28GHz、39GHz及60GHz且均具有良好的覆盖效率的功能的移动终端。
技术解决方案
为解决上述技术问题,本发明提供了一种移动终端,包括设于所述移动终端内的Vivaldi天线***,所述Vivaldi天线***包括两对Vivaldi天线阵列,其中一对所述Vivaldi天线阵列的开口方向沿所述移动终端的长度方向,另一对所述Vivaldi天线阵列的开口方向沿所述移动终端的厚度方向,且每对所述Vivaldi天线阵列包括两个开口方向相反的Vivaldi天线阵列,所述Vivaldi天线阵列工作于5G毫米波频段。
优选的,所述移动终端包括沿所述移动终端的厚度方向相对设置的第一表面和第二表面及连接所述第一表面和所述第二表面的侧壁面,所述侧壁面包括两条相对设置的第一侧壁面及两条相对设置且分别与两条所述第一侧壁面连接的第二侧壁面,所述第一侧壁面沿所述移动终端的宽度方向延伸,所述第二侧壁面沿所述移动终端的长度方向延伸,两所述Vivaldi天线阵列分别贴设于两所述第二侧壁面且开口方向分别朝向所述第一表面和所述第二表面,另两所述Vivaldi天线阵列分别贴设于所述第一表面和所述第二表面且开口方向分别朝向两所述第一侧壁面。
优选的,每个所述Vivaldi天线阵列包括多个呈线性阵列排布的Vivaldi天线。
优选的,所述Vivaldi天线包括介质板以及贴设于所述介质板的辐射部,所述辐射部包括贴设于所述介质板一表面的第一渐变臂以及贴设于所述介质板另一表面的第二渐变臂,所述第二渐变臂与所述第一渐变臂呈镜像对称,且所述第一渐变臂和所述第二渐变臂向所述介质板的正投影配合形成喇叭状开口。
优选的,所述第一渐变臂包括配合形成所述开口的第一渐变线、与所述第一渐变线间隔的第二渐变线以及连接所述第一渐变线和所述第二渐变线的第一连接线,所述第一渐变臂还包括至少两个自所述第一连接线向所述第一渐变线延伸的第一栅槽,所述第二渐变臂包括配合形成所述开口的第三渐变线、与所述第三渐变线间隔的第四渐变线以及连接所述第三渐变线和所述第四渐变线的第二连接线,所述第二渐变臂还包括至少两个自所述第二连接线向所述第三渐变线延伸的第二栅槽。
优选的,所述Vivaldi天线还包括贴设于所述介质板的馈电部,所述馈电部包括贴设于所述介质板一表面的微带线和贴设于所述介质板另一表面的接地面,所述微带线向所述接地面所在表面的正投影落于所述接地面内,所述微带线和所述接地面中的一者与所述第一渐变臂连接,另一者与所述第二渐变臂连接。
优选的,贴设于所述第二侧壁面的Vivaldi天线的所述介质板与所述第二侧壁面相对,贴设于所述第一表面的Vivaldi天线的所述介质板与所述第一表面相对,贴设于所述第二表面的Vivaldi天线的所述介质板与所述第二表面相对。
优选的,所述微带线所在的表面靠近所述移动终端的外部空间,所述接地面所在的表面靠近所述移动终端的内部空间。
有益效果
与相关技术相比,本发明的所述Vivaldi天线阵列采用线阵而非平面阵列,一方面将毫米波阵列在手机中占有的空间变窄,简化了设计难度,测试难度以及波束管理的复杂度,另一方面由于1×4线阵在非扫描方向上波束宽带宽且均匀,因而能实现良好的空间覆盖效率;所述Vivaldi天线可以覆盖28GHz、39GHz等5G毫米波频段,同时也覆盖了60GHz毫米波WIFI频段,多频段公用一个天线节省空间;所述Vivaldi天线在28GHz、39GHz及60GHz都具有良好的覆盖效率的性能。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图,其中:
图1为本发明提供的Vivaldi天线一个角度的立体结构示意图;
图2为本发明提供的Vivaldi天线另一个角度的立体结构示意图;
图3为本发明提供的Vivaldi天线除去介质板后的立体结构示意图;
图4为本发明提供的移动终端的立体结构示意图;
图5为图4所示的移动终端的另一个角度的立体结构示意图;
图6为本发明提供的移动终端的Vivaldi天线阵列的立体结构示意图;
图7(a)为本发明提供的移动终端在28GHz频段时,第一Vivaldi天线阵列在相移为0°的辐射方向图;
图7(b)为本发明提供的移动终端在28GHz频段时,第二Vivaldi天线阵列在相移为0°的辐射方向图;
图7(c)为本发明提供的移动终端在28GHz频段时,第三Vivaldi天线阵列在相移为0°的辐射方向图;
图7(d)为本发明提供的移动终端在28GHz频段时,第四Vivaldi天线阵列在相移为0°的辐射方向图;
图8(a)为本发明提供的移动终端在39GHz频段时,第一Vivaldi天线阵列的相移为0°的辐射方向图;
图8(b)为本发明提供的移动终端在39GHz频段时,第二Vivaldi天线阵列的相移为0°的辐射方向图;
图8(c)为本发明提供的移动终端在39GHz频段时,第三Vivaldi天线阵列的相移为0°的辐射方向图;
图8(d)为本发明提供的移动终端在39GHz频段时,第四Vivaldi天线阵列的相移为0°的辐射方向图;
图9(a)为本发明提供的移动终端在60GHz频段时,第一Vivaldi天线阵列的相移为0°的辐射方向图;
图9(b)为本发明提供的移动终端在60GHz频段时,第二Vivaldi天线阵列的相移为0°的辐射方向图;
图9(c)为本发明提供的移动终端在60GHz频段时,第三Vivaldi天线阵列的相移为0°的辐射方向图;
图9(d)为本发明提供的移动终端在60GHz频段时,第四Vivaldi天线阵列的相移为0°的辐射方向图;
图10为本发明提供的移动终端在28GHz的覆盖效率曲线图;
图11为本发明提供的移动终端在39GHz的覆盖效率曲线图;
图12为本发明提供的移动终端在60GHz的覆盖效率曲线图。
本发明的实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
请结合参阅图1至图6,本发明提供了一种移动终端1000,所述移动终端1000可以为手机、IPAD等,以手机为例说明。所述移动终端1000包括设于所述移动终端1000内的Vivaldi天线***100,所述Vivaldi天线***100包括两对Vivaldi天线阵列10,其中一对所述Vivaldi天线阵列10的开口方向沿所述移动终端1000的长度方向,另一对所述Vivaldi天线阵列10的开口方向沿所述移动终端1000的厚度方向,且每对所述Vivaldi天线阵列10包括两个开口方向相反的Vivaldi天线阵列10。其中,所述Vivaldi天线阵列10工作与5G毫米波频段。
具体的,所述移动终端1000包括沿所述移动终端1000的厚度方向相对设置的第一表面A和第二表面B及连接所述第一表面A和所述第二表面B的侧壁面C。
所述侧壁面C包括两条相对设置的第一侧壁面C1及两条相对设置且分别与两条所述第一侧壁面C1连接的第二侧壁面C2,所述第一侧壁面C1沿所述移动终端1000的宽度方向延伸,所述第二侧壁面C2沿所述移动终端1000的长度方向延伸。
两所述Vivaldi天线阵列10分别贴设于两所述第二侧壁面C2且开口方向分别朝向所述第一表面A和所述第二表面B,另两所述Vivaldi天线阵列10分别贴设于所述第一表面A和所述第二表面B且开口方向分别朝向两所述第一侧壁面C1。
通过在所述移动终端1000中贴设上述采用线阵而非平面阵列的Vivaldi天线阵列10,一方面将毫米波阵列在手机中占有的空间变窄,简化了设计难度、测试难度以及波束管理的复杂度,另一方面由于1×4线阵在非扫描方向上波束宽带宽且均匀,因而能实现良好的空间覆盖效率。
进一步的,每个所述Vivaldi天线阵列10包括多个呈线性阵列排布的Vivaldi天线1。在本实施方式中,每个所述Vivaldi天线阵列10由四个所述Vivaldi天线1组成,当然,在其他实施方式中,所述Vivaldi天线阵列10可以由3个、5个或6个等所述Vivaldi天线1组成。
所述Vivaldi天线1包括介质板11、贴设于所述介质板11的辐射部12以及贴设于所述介质板11的馈电部13。
在本实施方式中,所述介质板11呈矩形,且所述介质板11的尺寸为5.2mm×6.8mm×0.254mm。
所述辐射部12包括贴设于所述介质板11一表面的第一渐变臂121以及贴设于所述介质板11另一表面的第二渐变臂122。所述第二渐变臂122与所述第一渐变臂121呈镜像对称,且所述第一渐变臂121和所述第二渐变臂122向所述介质板11的正投影配合形成喇叭状开口14。
具体的,所述第一渐变臂121包括配合形成所述开口的第一渐变线1211、与所述第一渐变线1211间隔的第二渐变线1213、连接所述第一渐变线1211和所述第二渐变线1213的第一连接线及至少两个自所述第一连接线向所述第一渐变线1211延伸的第一栅槽1212。
所述第二渐变臂122包括配合形成所述开口14的第三渐变线1221、与所述第三渐变线1221间隔的第四渐变线1223、连接所述第三渐变线1221和所述第四渐变线1223的第二连接线及至少两个自所述第二连接线向所述第三渐变线1221延伸的第二栅槽1222。
所述馈电部13包括贴设于所述介质板11一表面的微带线131和贴设于所述介质板11另一表面的接地面132,所述微带线131向所述接地面132所在表面的正投影落于所述接地面132内,所述微带线131和所述接地面132中的一者与所述第一渐变臂121连接,另一者与所述第二渐变臂122连接。
具体的,贴设于所述第二侧壁面C2的Vivaldi天线1的所述介质板11与所述第二侧壁面C2相对,贴设于所述第一表面A的Vivaldi天线1的所述介质板11与所述第一表面A相对,贴设于所述第二表面B的Vivaldi天线1的所述介质板11与所述第二表面B相对。
所述微带线131所在的表面靠近所述移动终端1000的外部空间,所述接地面132所在的表面靠近所述移动终端1000的内部空间。
请结合参阅图7(a)~图7(d)、图8(a)~图8(d)及图9(a)~图9(d),可见所述移动终端1000通过运用四个所述Vivaldi天线阵列10实现了全空间的覆盖。
请结合参阅图10~图12,可见,运用所述Vivaldi天线阵列10的所述移动终端1000的频率覆盖效率高。
与相关技术相比,本发明的所述Vivaldi天线阵列10采用线阵而非平面阵列,一方面将毫米波阵列在手机中占有的空间变窄,简化了设计难度,测试难度以及波束管理的复杂度,另一方面由于1×4线阵在非扫描方向上波束宽带宽且均匀,因而能实现良好的空间覆盖效率;所述Vivaldi天线1可以覆盖28GHz、39GHz等5G毫米波频段,同时也覆盖了60GHz毫米波WIFI频段,多频段公用一个天线节省空间;所述Vivaldi天线1在28GHz、39GHz及60GHz都具有良好的覆盖效率的性能。
以上所述的仅是本发明的实施方式,在此应当指出,对于本领域的普通技术人员来说,在不脱离本发明创造构思的前提下,还可以做出改进,但这些均属于本发明的保护范围。

Claims (8)

  1. 一种移动终端,包括设于所述移动终端内的Vivaldi天线***,其特征在于,所述Vivaldi天线***包括两对Vivaldi天线阵列,其中一对所述Vivaldi天线阵列的开口方向沿所述移动终端的长度方向,另一对所述Vivaldi天线阵列的开口方向沿所述移动终端的厚度方向,且每对所述Vivaldi天线阵列包括两个开口方向相反的Vivaldi天线阵列,所述Vivaldi天线阵列工作于5G毫米波频段。
  2. 根据权利要求1所述的移动终端,其特征在于,所述移动终端包括沿所述移动终端的厚度方向相对设置的第一表面和第二表面及连接所述第一表面和所述第二表面的侧壁面,所述侧壁面包括两条相对设置的第一侧壁面及两条相对设置且分别与两条所述第一侧壁面连接的第二侧壁面,所述第一侧壁面沿所述移动终端的宽度方向延伸,所述第二侧壁面沿所述移动终端的长度方向延伸,两所述Vivaldi天线阵列分别贴设于两所述第二侧壁面且开口方向分别朝向所述第一表面和所述第二表面,另两所述Vivaldi天线阵列分别贴设于所述第一表面和所述第二表面且开口方向分别朝向两所述第一侧壁面。
  3. 根据权利要求1所述的移动终端,其特征在于,每个所述Vivaldi天线阵列包括多个呈线性阵列排布的Vivaldi天线。
  4. 根据权利要求3所述的移动终端,其特征在于,所述Vivaldi天线包括介质板以及贴设于所述介质板的辐射部,所述辐射部包括贴设于所述介质板一表面的第一渐变臂以及贴设于所述介质板另一表面的第二渐变臂,所述第二渐变臂与所述第一渐变臂呈镜像对称,且所述第一渐变臂和所述第二渐变臂向所述介质板的正投影配合形成喇叭状开口。
  5. 根据权利要求4所述的移动终端,其特征在于,所述第一渐变臂包括配合形成所述开口的第一渐变线、与所述第一渐变线间隔的第二渐变线以及连接所述第一渐变线和所述第二渐变线的第一连接线,所述第一渐变臂还包括至少两个自所述第一连接线向所述第一渐变线延伸的第一栅槽,所述第二渐变臂包括配合形成所述开口的第三渐变线、与所述第三渐变线间隔的第四渐变线以及连接所述第三渐变线和所述第四渐变线的第二连接线,所述第二渐变臂还包括至少两个自所述第二连接线向所述第三渐变线延伸的第二栅槽。
  6. 根据权利要求4所述的移动终端,其特征在于,所述Vivaldi天线还包括贴设于所述介质板的馈电部,所述馈电部包括贴设于所述介质板一表面的微带线和贴设于所述介质板另一表面的接地面,所述微带线向所述接地面所在表面的正投影落于所述接地面内,所述微带线和所述接地面中的一者与所述第一渐变臂连接,另一者与所述第二渐变臂连接。
  7. 根据权利要求6所述的移动终端,其特征在于,贴设于所述第二侧壁面的Vivaldi天线的所述介质板与所述第二侧壁面相对,贴设于所述第一表面的Vivaldi天线的所述介质板与所述第一表面相对,贴设于所述第二表面的Vivaldi天线的所述介质板与所述第二表面相对。
  8. 根据权利要求7所述的移动终端,其特征在于,所述微带线所在的表面靠近所述移动终端的外部空间,所述接地面所在的表面靠近所述移动终端的内部空间。
PCT/CN2019/113366 2018-12-28 2019-10-25 移动终端 WO2020134474A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811627448.0A CN109786938B (zh) 2018-12-28 2018-12-28 移动终端
CN201811627448.0 2018-12-28

Publications (1)

Publication Number Publication Date
WO2020134474A1 true WO2020134474A1 (zh) 2020-07-02

Family

ID=66498901

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/113366 WO2020134474A1 (zh) 2018-12-28 2019-10-25 移动终端

Country Status (3)

Country Link
US (1) US11024976B2 (zh)
CN (1) CN109786938B (zh)
WO (1) WO2020134474A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115020981A (zh) * 2022-06-24 2022-09-06 华南理工大学 一种应用于5g通信的阵列天线

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109786938B (zh) * 2018-12-28 2021-11-09 瑞声科技(南京)有限公司 移动终端
CN110783709A (zh) * 2019-10-25 2020-02-11 天津大学 基于槽校正结构加载的对拓Vivaldi天线
CN113410639B (zh) * 2021-05-25 2023-02-21 西安理工大学 一种Vivaldi天线

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104280719A (zh) * 2014-10-30 2015-01-14 厦门大学 混合极化双通道探地雷达***
CN104659482A (zh) * 2015-03-09 2015-05-27 西北工业大学 一种方向图对称的vivaldi天线阵列
CN107317101A (zh) * 2017-05-23 2017-11-03 南京邮电大学 一种基于寄生贴片加载技术的对踵Vivaldi天线
CN109786938A (zh) * 2018-12-28 2019-05-21 瑞声科技(南京)有限公司 移动终端

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3682371B2 (ja) * 1998-05-14 2005-08-10 株式会社リコー テーパードスロットアンテナおよびアンテナアレイ
CN104937853B (zh) * 2013-02-26 2018-09-14 英特尔公司 用于室内应用的毫米波视距mimo通信***
CN204497365U (zh) * 2015-02-11 2015-07-22 比亚迪股份有限公司 一种天线装置及移动终端
US10516201B2 (en) * 2016-04-11 2019-12-24 Samsung Electronics Co., Ltd. Wireless communication system including polarization-agile phased-array antenna
CN206558680U (zh) * 2016-07-29 2017-10-13 中国人民武装警察部队工程大学 电阻加载的小型化侧馈对趾Vivaldi天线
CN106129611A (zh) * 2016-08-08 2016-11-16 哈尔滨工业大学 一种对踵型宽频带Vivaldi天线
KR102471197B1 (ko) * 2016-08-25 2022-11-28 삼성전자 주식회사 안테나 장치 및 이를 포함하는 전자 장치
CN206022610U (zh) * 2016-08-31 2017-03-15 南京长峰航天电子科技有限公司 一种小型化Vivaldi天线
CN107645049A (zh) * 2017-08-16 2018-01-30 电子科技大学 一种超宽带平面相控阵天线及其波束扫描方法
CN108199130A (zh) * 2017-12-13 2018-06-22 瑞声科技(南京)有限公司 一种天线***和移动终端
CN108448229A (zh) * 2018-01-25 2018-08-24 瑞声科技(南京)有限公司 天线***及通讯终端
CN108376828B (zh) * 2018-01-25 2021-01-12 瑞声科技(南京)有限公司 天线***及移动终端
CN108493584B (zh) * 2018-04-26 2020-01-14 Oppo广东移动通信有限公司 壳体组件、天线组件及电子设备
CN108539378B (zh) * 2018-05-03 2021-02-26 Oppo广东移动通信有限公司 天线组件、壳体组件及电子设备
CN109066068B (zh) * 2018-07-24 2021-03-02 Oppo广东移动通信有限公司 天线组件及电子设备
CN108808214B (zh) * 2018-08-12 2020-07-07 瑞声科技(南京)有限公司 天线***及移动终端
CN109088160B (zh) * 2018-08-12 2020-11-20 瑞声科技(南京)有限公司 天线***及移动终端

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104280719A (zh) * 2014-10-30 2015-01-14 厦门大学 混合极化双通道探地雷达***
CN104659482A (zh) * 2015-03-09 2015-05-27 西北工业大学 一种方向图对称的vivaldi天线阵列
CN107317101A (zh) * 2017-05-23 2017-11-03 南京邮电大学 一种基于寄生贴片加载技术的对踵Vivaldi天线
CN109786938A (zh) * 2018-12-28 2019-05-21 瑞声科技(南京)有限公司 移动终端

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
OJAROUDIPARCHIN, NASER ET AL.: "Design of Vivaldi Antenna Array with End-Fire Beam Steering Function for 5G Mobile Terminals", 2015 23RD TELECOMMUNICATIONS FORUM TELFOR (TELFOR), 26 November 2015 (2015-11-26), XP032842247, DOI: 20191213182656Y *
STANLEY, MANOJ ET AL.: "A Capacitive Coupled Patch Antenna Array With High Gain and Wide Coverage for 5G Smartphone Applications", IEEE ACCESS (VOLUME: 6), 1 August 2018 (2018-08-01), XP011691749, DOI: 20191213182540Y *
ZHANG, LIMIN ET AL.: "The Design of 5G Mobile Terminal Based on Vivaldi Antenna Array", CHINA COMPUTER & COMMUNICATION, 31 July 2017 (2017-07-31), DOI: 20191213182906Y *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115020981A (zh) * 2022-06-24 2022-09-06 华南理工大学 一种应用于5g通信的阵列天线

Also Published As

Publication number Publication date
US11024976B2 (en) 2021-06-01
CN109786938B (zh) 2021-11-09
CN109786938A (zh) 2019-05-21
US20200212583A1 (en) 2020-07-02

Similar Documents

Publication Publication Date Title
EP3888186B1 (en) Ridge gap waveguide and multilayer antenna array including the same
US10978783B2 (en) Antenna system and mobile terminal
US11387568B2 (en) Millimeter-wave antenna array element, array antenna, and communications product
WO2020034681A1 (zh) 天线模组及移动终端
WO2020134474A1 (zh) 移动终端
WO2020134471A1 (zh) 毫米波阵列天线模组和移动终端
US10522919B2 (en) Surface integrated waveguide antenna and a transceiver including a surface integrated waveguide antenna array
WO2020029661A1 (zh) 毫米波阵列天线及移动终端
US10819016B2 (en) Antenna system and mobile terminal
WO2020134476A1 (zh) 封装天线***及移动终端
WO2020134473A1 (zh) 封装天线***及移动终端
Kathuria et al. Dual-band printed slot antenna for the 5G wireless communication network
CN109616766B (zh) 天线***及通讯终端
US20200212542A1 (en) Antenna system and mobile terminal
WO2020024676A1 (zh) 毫米波阵列天线架构
CN109742538B (zh) 一种移动终端毫米波相控阵磁偶极子天线及其天线阵列
WO2021013010A1 (zh) 天线单元和电子设备
CN210074157U (zh) 一种毫米波微带平板天线
US10819023B2 (en) Antenna system and communication terminal
Vosoogh et al. A multi-layer gap waveguide array antenna suitable for manufactured by die-sink EDM
CN109560388B (zh) 基于基片集成波导喇叭的毫米波宽带圆极化天线
CN109687124A (zh) 一种用于移动终端的毫米波相控阵天线装置及其实现方法
CN209056615U (zh) 用于移动终端的毫米波无源多波束阵列装置
CN209169390U (zh) 一种移动终端毫米波相控阵磁偶极子天线及其天线阵列
WO2020034683A1 (zh) 天线单元及天线***

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19903818

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19903818

Country of ref document: EP

Kind code of ref document: A1