WO2020134103A1 - 空调缺氟判断方法及控制方法 - Google Patents

空调缺氟判断方法及控制方法 Download PDF

Info

Publication number
WO2020134103A1
WO2020134103A1 PCT/CN2019/100045 CN2019100045W WO2020134103A1 WO 2020134103 A1 WO2020134103 A1 WO 2020134103A1 CN 2019100045 W CN2019100045 W CN 2019100045W WO 2020134103 A1 WO2020134103 A1 WO 2020134103A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
air conditioner
air outlet
temperature difference
fluoride
Prior art date
Application number
PCT/CN2019/100045
Other languages
English (en)
French (fr)
Inventor
杨坤
马韵华
葛龙岭
雷晏瑶
孙超
熊长友
高志洋
随亚宾
曹志高
刘守宇
Original Assignee
青岛海尔空调电子有限公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔空调电子有限公司, 海尔智家股份有限公司 filed Critical 青岛海尔空调电子有限公司
Priority to US16/961,786 priority Critical patent/US11585560B2/en
Publication of WO2020134103A1 publication Critical patent/WO2020134103A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/32Responding to malfunctions or emergencies
    • F24F11/38Failure diagnosis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • F24F11/84Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers using valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/52Indication arrangements, e.g. displays
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2140/00Control inputs relating to system states
    • F24F2140/20Heat-exchange fluid temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/24Low amount of refrigerant in the system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2513Expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator
    • F25B2700/21171Temperatures of an evaporator of the fluid cooled by the evaporator

Definitions

  • the invention relates to the technical field of air conditioners, in particular to a method and a control method for determining fluoride deficiency in air conditioners.
  • Freon is usually used as the heat exchange medium in the air conditioning system.
  • the indoor heat can be transferred to the outdoor, or the outdoor heat to the indoor, so as to create a comfortable living environment for the user.
  • the freon in the pipeline may leak to varying degrees, resulting in a decrease in the cooling or heating effect of the air conditioner, or even the shutdown of the air conditioner. Therefore, it is very important for air-conditioning users to know the amount of Freon in the air-conditioning system in time.
  • the air conditioner is deficient in fluorine. For example, you can observe whether the indoor temperature has reached the target temperature set by the user after the air conditioner has operated for a certain period of time or through a thermometer. If the indoor temperature does not reach the target temperature after a long enough time, it indicates that the air conditioning has a poor cooling effect.
  • the air conditioner may lack fluoride; or, after the air conditioner has been running for a period of time, disassemble the indoor unit casing and observe whether the thin tubes of the evaporator are evenly covered with condensed water.
  • the method of judging whether the fluoride is lacking by observing the condensed water also requires the air-conditioning to operate for a long time before the judgment, and the air-conditioning needs to be disassembled
  • the indoor unit is inconvenient to operate; by detecting the difference between the air temperature at the air inlet and the air outlet, the detection result is greatly affected by the indoor temperature, and the judgment result is prone to deviation; when the lack of fluoride in the air conditioner is monitored by the pressure switch, only After the pressure switch is turned off, the user can know that the system is short of fluoride. That is to say, before the pressure switch is turned off, the air conditioner has been running in a state of fluoride for a long time, which will shorten the life of the air conditioner and increase energy consumption. Property damage.
  • the first aspect of the present invention provides An air conditioner control method, the air conditioner includes a first air outlet, a second air outlet and an expansion valve, the air conditioner control method includes:
  • the step of "adjusting the opening degree of the expansion valve according to the comparison result" specifically includes: if the temperature difference is greater than the preset temperature difference threshold, the expansion valve Increase the preset opening.
  • the air conditioner control method further includes: after the expansion valve reaches the maximum opening degree, controlling the air conditioner to enter a fluorine-deficient protection state.
  • the step of “controlling the air conditioner to enter a fluoride-deficient protection state” specifically includes: controlling the air conditioner to stop and/or alarm.
  • the air-conditioning control method further includes: before obtaining the air outlet temperature at the first air outlet and the second air outlet, the air conditioner is turned on to continuously run a preset time.
  • the air conditioner is an embedded air conditioner.
  • the first air outlet is opposite to the second air outlet;
  • the first air outlet is adjacent to the second air outlet.
  • the air conditioning control method provided by the present invention detects the temperature of the air outlet at different air outlets of the same air conditioner, and obtains the temperature difference value through the measured air outlet temperature, and then compares the temperature difference value with the preset temperature difference threshold , Adjust the opening degree of the expansion valve according to the comparison result, so that when the obtained temperature difference has a large deviation from the preset temperature difference threshold, that is, when the air conditioning system is in a fluoride-deficient state, first adjust the opening degree of the expansion valve automatically Fluorine flow is compensated to enhance the cooling or heating efficiency of the air conditioning system, and to achieve adaptive adjustment of the air conditioner, so as to ensure the cooling or heating efficiency of the system even when the system is lightly deficient in fluorine, thereby effectively reducing energy consumption.
  • the air conditioner is controlled to enter a fluoride-deficient protection state, specifically controlling the air conditioner to stop and/or alarm to remind the user that the air-conditioning system is seriously deficient in fluoride , And turn off the air conditioner automatically or manually by the user to avoid the continuous operation of the air conditioner in the state of lack of fluoride, thereby avoiding wasting electric energy.
  • the measured air outlet temperature can be made more accurate and avoid The interference of other factors on the temperature of the outlet air is prevented to prevent the phenomenon that the air conditioning system misjudges the state of fluoride deficiency.
  • a second aspect of the present invention also provides a method for determining fluoride deficiency in an air conditioner.
  • the air conditioner includes a first air outlet and a second air outlet.
  • the method for determining fluoride deficiency in an air conditioner includes:
  • the step of “determining the state of lack of fluoride in the air conditioner according to the comparison result” specifically includes: if the temperature difference is greater than the preset temperature difference threshold, determining the Air conditioners lack fluoride.
  • the air conditioner fluoride deficiency determination method further includes: turning on the air conditioner before acquiring the air outlet temperatures at the first air outlet and the second air outlet Continue to run for a preset time.
  • the method for determining the lack of fluoride in an air conditioner provided by the present invention is to detect the temperature of the air outlet at different air outlets of the same air conditioner and obtain the temperature difference, and then compare the temperature difference with the preset temperature difference threshold, according to the comparison result
  • the present invention can effectively avoid the temperature difference between the room temperature and the temperature difference by detecting the temperature at the different air outlet.
  • the influence of the value makes the judgment result of the fluorine-deficient state more accurate, and at the same time, it also facilitates the installation of temperature detection components.
  • the air conditioner is started to continue to operate for a preset time, and the temperature detection is performed after the air conditioning system is stable, thereby reducing the temperature difference between other factors The interference makes the judgment result more accurate.
  • FIG. 1 is a first embodiment of the air-conditioning control method of the present invention
  • FIG. 3 is a third embodiment of the air-conditioning control method of the present invention.
  • FIG. 5 is a second embodiment of the method for determining the lack of fluoride in an air conditioner of the present invention.
  • connection should be understood in a broad sense, for example, it can be a fixed connection or a Disassembly connection, or integral connection; it can be mechanical connection or electrical connection; it can be directly connected, or it can be indirectly connected through an intermediate medium, or it can be the connection between two components.
  • connection should be understood in a broad sense, for example, it can be a fixed connection or a Disassembly connection, or integral connection; it can be mechanical connection or electrical connection; it can be directly connected, or it can be indirectly connected through an intermediate medium, or it can be the connection between two components.
  • the present invention provides a method and a control method for determining the lack of fluoride in air conditioners. It simplifies the process of determining the lack of fluoride in the air conditioner, improves the accuracy of the judgment result, and adaptively adjusts the operating state of the air conditioner under the state of fluoride deficiency, thereby saving energy consumption.
  • FIG. 1 is the first embodiment of the air-conditioning control method of the present invention
  • FIG. 2 is the second embodiment of the air-conditioning control method of the present invention
  • FIG. 5 is a second embodiment of a method for determining a lack of fluoride in an air conditioner of the present invention.
  • the air conditioner provided in the following embodiments includes an indoor unit, an outdoor unit, and a pipe connecting the indoor unit and the outdoor unit and forming a refrigerant circulation path.
  • An expansion valve is connected to the pipe to adjust the flow rate of the refrigerant.
  • Freon is used as the refrigerant, and the subsequent description is referred to as "fluorine" for short.
  • the air conditioner indoor unit adopts an embedded air conditioner, and the embedded air conditioner has multiple air outlets, for example, four air outlets.
  • the heat exchanger coil of the embedded air conditioner is wound to form a structure similar to a square spring, and each coil of the coil is used as a heat exchange unit, each heat exchange unit is formed with four corners, and the four corners will divide each coil
  • the tube is divided into four sections, so that the heat exchanger coil is divided into a first heat exchange zone, a second heat exchange zone, a third heat exchange zone, and a fourth heat exchange zone (not shown).
  • the cooling capacity gradually decreases
  • the heat exchange performance gradually decreases.
  • the first The heat exchange efficiency of the heat exchange zone is about 90%
  • the heat exchange efficiency of the second heat exchange zone is 70%
  • the heat exchange efficiency of the third heat exchange zone is 50%
  • the fourth exchange The heat exchange efficiency of the hot zone is 30%, which shows that the temperature of the four outlets corresponding to the heat exchange zone will have a certain temperature difference.
  • the flow rate of fluorine can be controlled by adjusting the opening of the expansion valve, which can make the temperature of the four outlets close to the temperature difference is small, but in the absence of fluorine , The temperature difference of the four air outlets will change greatly.
  • the present invention is based on the above principle, by detecting the air outlet temperature at different air outlets, to obtain the temperature difference, and the temperature difference is normal operation
  • the preset temperature difference thresholds under the state are compared, and then the degree of fluoride deficiency of the air conditioner is judged, and the subsequent adjustment operation is performed according to the judgment result.
  • the air-conditioning control method in this embodiment includes:
  • the air outlet temperature at the first air outlet and the second air outlet and calculate the temperature difference.
  • the initial side of the heat exchanger tube corresponds to the first air outlet
  • the subsequent air outlets are the second air outlet, the third air outlet, and the fourth air outlet in turn, that is, the first One air outlet is adjacent to the fourth air outlet.
  • the first air outlet is defined as the first air outlet
  • the fourth air outlet is defined as the second air outlet, then the first air outlet and the second air outlet are adjacent to each other.
  • first air outlet is defined as the first air outlet and the third air outlet is defined as the second air outlet, then the first air outlet is opposite to the second air outlet.
  • first air outlet is opposite to the second air outlet.
  • Temperature sensors are respectively arranged at the first air outlet and the second air outlet to detect the air outlet temperature corresponding to the air outlet, the air outlet temperature of the first air outlet is defined as T 1 , and the air outlet temperature of the second air outlet is defined For T 2 , the temperature difference
  • the temperature difference here takes a positive number.
  • the preset temperature difference threshold is defined as T 0 , and the definition of this value can refer to the temperature difference obtained by the air conditioner when the amount of fluorine is sufficient.
  • the expansion valve is increased by the preset opening degree, for example, the expansion valve can be opened for 10 steps to increase the fluorine flow in the pipeline Large to improve the cooling efficiency of the air conditioner.
  • the opening of the expansion valve increases by 10 steps, repeat steps S10-S12 until the expansion valve opens to a certain number of steps, and
  • the air conditioner can continue to operate with the expansion valve opening at this time, without adjusting the expansion valve, indicating that at this time The air conditioner is not short of fluoride.
  • the air conditioner control method provided by the present invention detects the temperature of the air outlet at different air outlets of the same air conditioner, and obtains the temperature difference value through the measured air outlet temperature, and then compares the temperature difference value with the preset temperature difference threshold , Adjust the opening degree of the expansion valve according to the comparison result, so that when the obtained temperature difference has a large deviation from the preset temperature difference threshold, that is, when the air conditioning system is in a fluoride-deficient state, first adjust the opening degree of the expansion valve automatically Fluorine flow is compensated to enhance the cooling or heating efficiency of the air conditioning system, and to achieve adaptive adjustment of the air conditioner, so as to ensure the cooling or heating efficiency of the system even when the system is lightly deficient in fluorine, thereby effectively reducing energy consumption.
  • the air-conditioning control method in this embodiment includes:
  • the method for obtaining the wind temperature is the same as the step in step S10, and of course, the wind temperature can also be obtained by other temperature measurement methods.
  • T 1 and T 2 the temperature difference
  • the preset temperature difference threshold is defined as T 0 .
  • the expansion valve Adjusts the opening degree of the expansion valve according to the comparison result. Specifically, if
  • control the air conditioner to enter a state of lack of fluorine protection can specifically be: control the air conditioner to stop the air conditioner from running in a fluoride-deficient state; or, the air conditioner can be controlled to emit a buzzer alarm to inform the user that the air conditioner is deficient in fluoride, and the user can manually turn off the air conditioner; or , Can send an alarm to inform the user that the air conditioner is in a state of severe fluoride deficiency, and automatically control the air conditioner to shut down.
  • the temperature detection in order to improve the accuracy of the temperature detection result, the temperature detection will be started after the air conditioner is turned on for a certain period of time.
  • the air-conditioning control method in this embodiment includes:
  • the air conditioner starts to operate continuously for a preset time. For example, after the user powers on and sets the target temperature, keep the air conditioner running for 5 minutes. During the 5 minutes of the air conditioner operation, the refrigerant fluorine can be in a stable flow state in the air conditioning duct. The air has been discharged, the evaporator sucks in the air at room temperature, and the temperature of the air outlet at each air outlet is also kept basically constant.
  • the method of acquiring the wind temperature is the same as the step in step S10, and of course, the wind temperature can also be acquired by other temperature measurement methods.
  • T 1 and T 2 the temperature difference
  • the preset temperature difference threshold is defined as T 0 .
  • the expansion valve adjusts the opening degree of the expansion valve. Specifically, if
  • control the air conditioner to enter a state of lack of fluorine protection can specifically be: control the air conditioner to stop the air conditioner from running in a fluoride-deficient state; or, the air conditioner can be controlled to emit a buzzer alarm to inform the user that the air conditioner is deficient in fluoride, and the user can manually turn off the air conditioner; or , Can send an alarm to inform the user that the air conditioner is in a state of severe fluoride deficiency, and automatically control the air conditioner to shut down.
  • the temperature measurement can be performed under the condition that the air conditioning system runs stably by starting the air conditioner to continue to operate for a preset time.
  • the wind temperature is more accurate, avoiding the interference of other factors on the outlet temperature, and preventing the phenomenon that the air conditioning system misjudges the state of fluoride deficiency.
  • the second aspect of the present invention also provides a method for determining the lack of fluoride in an air conditioner.
  • the method for determining the lack of fluoride in an air conditioner obtains the temperature difference by detecting the air outlet temperature at different air outlets Compare the temperature difference between the temperature difference threshold and the temperature difference threshold that exists in the normal operating state, and determine the degree of fluoride deficiency of the air conditioner according to the comparison result to provide a basis for the subsequent operation of the air conditioner.
  • the method for determining the lack of fluoride in an air conditioner in this embodiment includes:
  • T10 Obtain the air outlet temperature at the first air outlet and the second air outlet, and calculate the temperature difference.
  • the air outlet temperature of the first air outlet is defined as T 1
  • the air outlet temperature of the second air outlet is defined as T 2
  • can be obtained.
  • the preset temperature difference threshold is defined as T 0 .
  • the comparison results can have the following types:
  • the method for determining the lack of fluoride in an air conditioner provided by the present invention is to detect the temperature of the air outlet at different air outlets of the same air conditioner and obtain the temperature difference, and then compare the temperature difference with the preset temperature difference threshold, according to the comparison result
  • the present invention can effectively avoid the temperature difference between the room temperature and the temperature difference by detecting the temperature at the different air outlet.
  • the influence of the value makes the judgment result of the fluorine-deficient state more accurate, and at the same time, it also facilitates the installation of temperature detection components.
  • the temperature detection in order to improve the accuracy of the fluoride deficiency judgment result, the temperature detection will be started after the air conditioner is turned on for a certain period of time.
  • the method for detecting fluoride deficiency in an air conditioner provided by this embodiment includes:
  • the air conditioner starts to operate continuously for a preset time. For example, keep running for 5 minutes.
  • T21 Obtain the air outlet temperature at the first air outlet and the second air outlet, and calculate the temperature difference.
  • the air outlet temperature of the first air outlet is defined as T 1
  • the air outlet temperature of the second air outlet is defined as T 2
  • can be obtained.
  • T 1 and T 2 are obtained by temperature sensors.
  • the temperature difference threshold is defined as T 0 .
  • the comparison results can have the following types:
  • the air conditioner is continuously operated for a preset time after the air conditioner is operated for a preset time, and then the temperature detection is performed after the air conditioner system runs stably, so that Reduce the interference of other factors on the temperature difference, making the judgment results more accurate.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Thermal Sciences (AREA)
  • Human Computer Interaction (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

本发明属于空调技术领域,旨在解决现有空调无法方便准确地判断空调的缺氟状态,以及无法根据缺氟程度适应性调整空调运行状态的问题。为此,本发明提供了一种空调缺氟判断方法及控制方法,空调控制方法包括:获取第一出风口和第二出风口处的出风温度,并计算温度差值;比较温度差值和预设温差阈值;根据比较结果,调整膨胀阀的开度。本发明提供的空调控制方法,能够依据温度比较结果来自动调整膨胀阀的开度,对氟流量进行补偿,以增强空调***的制冷或制热效率,实现空调的自适应调整,从而在***缺氟情况较轻的状态下仍然保证***的制冷或制热效率,有效降低能耗。本发明的空调缺氟判断方法,判断结果准确度更高,且更容易实现。

Description

空调缺氟判断方法及控制方法 技术领域
本发明涉及空调技术领域,具体涉及一种空调缺氟判断方法及控制方法。
背景技术
空调***通常采用氟利昂作为换热媒介。氟利昂在空调管道内流通的过程中,可以将室内的热量输送至室外,或将室外的热量输送至室内,从而为用户营造舒适的生活环境。受多种因素的影响,空调在长时间使用后,管道内的氟利昂可能发生不同程度的泄露,导致空调制冷或制热效果下降,甚至会导致空调停机。因此,如何能及时获知空调***内的氟利昂存量,对空调用户来说非常重要。
现有技术中判断空调是否缺氟有多种方法。例如,可以在空调运行一定时间后通过人体感受或者通过温度计观察室内温度是否达到了用户设定的目标温度,如果运行足够长的时间后室内温度仍未达到目标温度,则表明空调制冷效果差,空调可能缺氟;或者,可以在空调运行一段时间后,拆开室内机外壳并观察蒸发器的细管上是否均匀布满冷凝水,如果部分管段或全管段均没有冷凝水附着,则表明空调可能缺氟;再或者,通过检测室内机进风口与出风口的出风温度差来判断空调***是否缺氟,如果进风口与出风口的出风温度差小于正常工作状态下的最小温度差,则表明空调可能缺氟;又或者,可通过配置压力开关来监控空调***是否缺氟等等。
现有的空调缺氟判断方法均存在一些问题。例如,通过人体感受或通过温度计测量室内温度的方法需要在空调运行较长时间后才能进行缺氟状态判断,此时空调已经运行了一定时间,如果开始时空调即运行在缺氟状态下,用户并不能及时发现,这样会对空调***造成损害,并且会增大空调耗电量;通过观察冷凝水来判断是否缺氟的方法也需要空调运行较长时间后才能进行判断,且需要拆装空调室内机,操作不方便;通过检测进风口与出风口的出风温度差的方法,检测结果受室内温 度影响较大,判断结果容易出现偏差;当通过压力开关来监控空调缺氟情况时,只有在压力开关断开后用户才能获知***缺氟,也就是说,在压力开关断开之前,空调有很长一段时间运行在缺氟状态下,这样会缩短空调寿命,增大耗能,给用户财产造成损失。
相应地,本领域需要一种新的空调缺氟判断方法及控制方法来解决上述问题。
发明内容
为了解决现有技术中的上述问题,即为了解决现有空调无法方便准确地判断空调的缺氟状态,以及无法根据缺氟程度适应性调整空调运行状态的问题,本发明的第一方面提供了一种空调控制方法,该空调包括第一出风口、第二出风口和膨胀阀,该空调控制方法包括:
获取所述第一出风口和所述第二出风口处的出风温度,并计算温度差值;比较所述温度差值和预设温差阈值;根据比较结果,调整所述膨胀阀的开度。
在上述空调控制方法的优选技术方案中,“根据比较结果,调整所述膨胀阀的开度”的步骤具体包括:若所述温度差值大于所述预设温差阈值,则将所述膨胀阀增大预设开度。
在上述空调控制方法的优选技术方案中,所述空调控制方法还包括:当所述膨胀阀达到最大开度后,控制所述空调进入缺氟保护状态。
在上述空调控制方法的优选技术方案中,“控制所述空调进入缺氟保护状态”的步骤具体包括:控制所述空调停机和/或报警。
在上述空调控制方法的优选技术方案中,所述空调控制方法还包括:在获取所述第一出风口和所述第二出风口处的出风温度之前,使所述空调开机持续运行预设时间。
在上述空调控制方法的优选技术方案中,所述空调为嵌入式空调机。
在上述空调控制方法的优选技术方案中,所述第一出风口与所述第二出风口相背;或者
所述第一出风口与所述第二出风口相临。
本发明提供的空调控制方法,通过检测同一个空调机的不同出风口处的出风温度,并通过测得的出风温度获得温度差值,然后将该温度差值与预设温差阈值进行比较,根据比较结果调整膨胀阀的开度,从而在获得的温度差值与预设温差阈值有较大偏差时,即空调***处于缺氟状态下时,首先通过自动调整膨胀阀的开度来对氟流量进行补偿,以增强空调***的制冷或制热效率,实现空调的自适应调整,从而在***缺氟情况较轻的状态下仍然保证***的制冷或制热效率,从而有效降低能耗。
进一步地,在空调进行自适应调整的过程中,膨胀阀的开度达到最大开度后,控制空调进入缺氟保护状态,具体为控制空调停机和/或报警,以提醒用户空调***严重缺氟,并自动或通过用户手动关闭空调,避免空调在缺氟状态下持续运行,从而避免浪费电能。
进一步地,在获取不同出风口处的出风温度之前,通过使空调开机持续运行预设时间,在空调***稳定运行的情况下再进行温度测量,能够使测得的出风温度更准确,避免了其他因素对出风温度的干扰,防止出现空调***对缺氟状态误判的现象。
本发明的第二方面还提供了一种空调缺氟判断方法,该空调包括第一出风口和第二出风口,该空调缺氟判断方法包括:
获取所述第一出风口和所述第二出风口处的出风温度,并计算温度差值;比较所述温度差值和预设温差阈值;根据比较结果,判断所述空调的缺氟状态。
在上述空调缺氟判断方法的优选技术方案中,“根据比较结果,判断所述空调的缺氟状态”的步骤具体包括:若所述温度差值大于所述预设温差阈值,则判断所述空调缺氟。
在上述空调缺氟判断方法的优选技术方案中,所述空调缺氟判断方法还包括:在获取所述第一出风口和所述第二出风口处的出风温度之前,使所述空调开机持续运行预设时间。
本发明提供的空调缺氟判断方法,由于是通过检测同一个空调机的不同出风口处的出风温度并获得温度差值,然后将该温度差值与预设温差阈值进行比较,根据比较结果来判断空调的缺氟状态,相比于现有技术中通过检测进风口与出风口处的温度差值的技术方案,本发明 的检测不同出风口处的温度能够有效避免变化的室温对温度差值的影响,使得缺氟状态的判断结果更准确,同时还能方便温度检测部件的安装。
进一步地,在获取第一出风口和第二出风口处的出风温度之前,使空调开机持续运行预设时间,在空调***稳定运行后再进行温度检测,从而能够减少其他因素对温度差值的干扰,使得判断结果更准确。
附图说明
下面参照附图来描述本发明的优选实施方式。附图中:
图1为本发明的空调控制方法的第一种实施方式;
图2为本发明的空调控制方法的第二种实施方式;
图3为本发明的空调控制方法的第三种实施方式;
图4为本发明的空调缺氟判断方法的第一种实施方式;
图5为本发明的空调缺氟判断方法的第二种实施方式。
具体实施方式
下面参照附图来描述本发明的优选实施方式。
本领域技术人员应当理解的是,这些实施方式仅仅用于解释本发明的技术原理,并非旨在限制本发明的保护范围。例如,虽然下述的实施方式是结合空调制冷过程来解释说明的,但是,这并不是限制性的,本发明的技术方案同样适用于空调制热过程。
另外,为了更好地说明本发明,在下文的具体实施方式中给出了众多的具体细节。本领域技术人员应当理解,没有某些具体细节,本发明同样可以实施。在一些实例中,对于本领域技术人员熟知的空调运行原理及内部结构未作详细描述,以便于凸显本发明的主旨。此外,术语“第一”、“第二”、“第三”和“第四”仅用于描述目的,而不能理解为指示或暗示相对重要性。
还需要说明的是,在本发明的描述中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接 相连,可以是两个元件内部的连通。对于本领域技术人员而言,可根据具体情况理解上述术语在本发明中的具体含义。
基于背景技术指出的现有空调无法方便准确地判断空调的缺氟状态,以及无法根据缺氟程度适应性调整空调运行状态的问题,本发明提供了一种空调缺氟判断方法及控制方法,旨在简化空调缺氟的判断过程,提高判断结果的准确度,并在缺氟状态下适应性地调整空调的运行状态,从而节省能源消耗。
参照图1-5,图1为本发明的空调控制方法的第一种实施方式;图2为本发明的空调控制方法的第二种实施方式;图3为本发明的空调控制方法的第三种实施方式;图4为本发明的空调缺氟判断方法的第一种实施方式;图5为本发明的空调缺氟判断方法的第二种实施方式。
下面实施例中提供的空调包括室内机、室外机,以及连接室内机和室外机并形成冷媒循环通路的管道,管道上连接有膨胀阀,用于调整冷媒的流量。冷媒采用氟利昂,后续的描述简称“氟”。空调室内机采用嵌入式空调机,该嵌入式空调机具有多个出风口,例如具有4个出风口。该嵌入式空调机的换热器盘管绕制形成类似方形弹簧的结构,将每圈盘管作为一个换热单元,每个换热单元均形成有四个拐角,四个拐角将每圈盘管分成四段,从而将换热器盘管划分为第一换热区、第二换热区、第三换热区和第四换热区(未图示)。以每个换热单元为例,盘管中的氟在其流动方向上,携带的冷量逐渐减少,换热性能逐渐降低,假设换热效率以百分之二十的数值递减,则第一换热区的换热效率大约为百分之九十,第二换热区的换热效率为百分之七十,第三换热区的换热效率为百分之五十,第四换热区的换热效率为百分之三十,这表明与换热区对应的4个出风口的出风温度就会有一定的温度差。在实际应用过程中,当氟量充足时,通过调整膨胀阀的开度来控制氟的流量,能够使4个出风口的出风温度接近,温度差值较小,但在缺氟的情形下,4个出风口的温度差值则会发生较大的变化,本发明即是基于上述原理,通过检测不同的出风口处的出风温度,获得温度差值,将该温度差值与正常运行状态下的预设温差阈值进行比较,进而判断空调的缺氟程度,以及依据判断结果进行后续的调整操作。
参照1所示,本实施例中的空调控制方法包括:
S10、获取第一出风口和第二出风口处的出风温度,并计算温度差值。具体地,在氟流通的方向上,换热器管道的起始侧对应第一个出风口,后续出风口依次为第二个出风口、第三个出风口和第四个出风口,即第一个出风口和第四个出风口相邻。将第一个出风口定义为第一出风口,第四个出风口定义为第二出风口,则第一出风口与第二出风口彼此相临。
替代性地,将第一个出风口定义为第一出风口,将第三个出风口定义为第二出风口,则第一出风口与第二出风口相背。当然还可以自行定义为其他形式。
在第一出风口和第二出风口处分别配置温度传感器,以检测对应出风口的出风温度,将第一出风口的出风温度定义为T 1,将第二出风口的出风温度定义为T 2,则可获得温度差值|T 1-T 2|。此处的温度差值取正数。
S11、比较温度差值和预设温差阈值。具体地,预设温差阈值定义为T 0,该值的定义可以参照空调在足量氟的情形下检测获得的温度差值。
S12、根据比较结果,调整膨胀阀的开度。具体地,可能出现以下几种比较结果:
若温度差值大于预设温差阈值,即|T 1-T 2|>T 0,则将膨胀阀增大预设开度,例如可将膨胀阀开阀10步,使管道中的氟流量增大,以提高空调的制冷效率。当膨胀阀的开度增大10步后,重复步骤S10-S12,直至膨胀阀开阀到一定步数后,出现|T 1-T 2|≤T 0的情况,表示此时的制冷效率已经可以满足用户需求,则可以控制空调在此状态下持续运行。制热情况同理。
若温度差值小于或等于预设温差阈值,即|T 1-T 2|≤T 0,则空调可以以此时的膨胀阀开度持续运行,不需要对膨胀阀进行调整,表明此时的空调并不缺氟。
本发明提供的空调控制方法,通过检测同一个空调机的不同出风口处的出风温度,并通过测得的出风温度获得温度差值,然后将该温度差值与预设温差阈值进行比较,根据比较结果调整膨胀阀的开度,从而在获得的温度差值与预设温差阈值有较大偏差时,即空调***处于 缺氟状态下时,首先通过自动调整膨胀阀的开度来对氟流量进行补偿,以增强空调***的制冷或制热效率,实现空调的自适应调整,从而在***缺氟情况较轻的状态下仍然保证***的制冷或制热效率,从而有效降低能耗。
在一些优选的实施例中,当膨胀阀的开度持续增大,直至开度最大时,可能仍然未能出现|T 1-T 2|≤T 0的情况,表明空调缺氟严重,此时空调应该采取相应的措施来避免空调在严重缺氟状态下运行。具体地,参照图2,本实施例中的空调控制方法包括:
S20、获取第一出风口和第二出风口处的出风温度,并计算温度差值。具体地,获取出风温度的方法与步骤S10中的步骤相同,当然也可以通过其他温度测量方法来获取出风温度。将获取的第一出风口的出风温度定义为T 1,将第二出风口的出风温度定义为T 2,则可获得温度差值|T 1-T 2|。
S21、比较温度差值和预设温差阈值。预设温差阈值定义为T 0
S22、根据比较结果,调整膨胀阀的开度。具体地,若|T 1-T 2|>T 0,则将膨胀阀增大预设开度,例如可将膨胀阀开阀10步,使管道中的氟流量增大。
S23、重复步骤S20-S22。
S24、当膨胀阀达到最大开度后,控制空调进入缺氟保护状态。控制空调进入缺氟保护状态具体可以为:控制空调停机,以防止空调在缺氟状态下运行;或者,可以控制空调发出蜂鸣声报警,以告知用户空调缺氟,用户可以手动关闭空调;或者,可以在发出报警告知用户空调处于严重缺氟的状态的同时,自动控制空调停机。
本领域技术人员可以理解的是,在空调进行自适应调整的过程中,膨胀阀的开度达到最大开度后,通过控制空调进入缺氟保护状态,即通过控制空调停机和/或报警,能够提醒用户空调***严重缺氟,并自动或通过用户手动关闭空调,避免空调在缺氟状态下持续运行,从而避免浪费电能。
在一些优选的实施例中,为提高温度检测结果的准确性,会在空调开机后运行一定时间再开始温度检测。参照图3,本实施例中的空调控制方法包括:
S30、空调开机持续运行预设时间。例如,在用户开机并设定好目标温度后,保持空调持续运行5分钟,在空调运行的这5分钟中,冷媒氟在空调管道中已可以处于平稳流通的状态,空调送风通道中原有的空气已被排出,蒸发器吸入的是室温状态下的空气,各出风口的出风温度也基本保持恒定。
S31、获取第一出风口和第二出风口处的出风温度,并计算温度差值。具体地,获取出风温度的方法与步骤S10中的步骤相同,当然也可以通过其他的温度测量方式获取出风温度。将获取的第一出风口的出风温度定义为T 1,将第二出风口的出风温度定义为T 2,则可获得温度差值|T 1-T 2|。
S32、比较温度差值和预设温差阈值。预设温差阈值定义为T 0
S33、根据比较结果,调整膨胀阀的开度。具体地,若|T 1-T 2|>T 0,则将膨胀阀增大预设开度,例如可将膨胀阀开阀10步,使管道中的氟流量增大。
S34、重复步骤S31-S33。
S35、当膨胀阀达到最大开度后,控制空调进入缺氟保护状态。控制空调进入缺氟保护状态具体可以为:控制空调停机,以防止空调在缺氟状态下运行;或者,可以控制空调发出蜂鸣声报警,以告知用户空调缺氟,用户可以手动关闭空调;或者,可以在发出报警告知用户空调处于严重缺氟的状态的同时,自动控制空调停机。
需要说明的是,上述的实施例仅仅是示例性的,上述实施例中出现的数值也均是示例性的,本领域技术人员可以理解的是,在没有某些步骤或改变某些数值取值范围的情况下,本发明的实施例仍然可以实现。
本领域技术人员可以理解的是,在获取不同出风口处的出风温度之前,通过使空调开机持续运行预设时间,在空调***稳定运行的 情况下再进行温度测量,能够使测得的出风温度更准确,避免了其他因素对出风温度的干扰,防止出现空调***对缺氟状态误判的现象。
在前述空调***的基础上,本发明的第二方面还提供了一种空调缺氟判断方法,该空调缺氟判断方法通过检测不同的出风口处的出风温度,获得温度差值,将获得的温度差值与正常运行状态下存在的温差阈值进行比较,并根据比较结果来判断空调的缺氟程度,为后续空调的运行提供依据。
具体地,参照图4,本实施例中的空调缺氟判断方法包括:
T10、获取第一出风口和第二出风口处的出风温度,并计算温度差值。其中,第一出风口的出风温度定义为T 1,第二出风口的出风温度定义为T 2,则可获得温度差值|T 1-T 2|。
T11、比较温度差值和预设温差阈值。预设温差阈值定义为T 0
T12、根据比较结果,判断空调的缺氟状态。比较结果可以有以下几种:
若|T 1-T 2|>T 0,则表示空调缺氟,需要加氟或者增大膨胀阀的开度;
若|T 1-T 2|≤T 0,则表示空调不缺氟,空调可按照该状态持续运行,直至室内温度达到用户设定的目标温度。
本发明提供的空调缺氟判断方法,由于是通过检测同一个空调机的不同出风口处的出风温度并获得温度差值,然后将该温度差值与预设温差阈值进行比较,根据比较结果来判断空调的缺氟状态,相比于现有技术中通过检测进风口与出风口处的温度差值的技术方案,本发明的检测不同出风口处的温度能够有效避免变化的室温对温度差值的影响,使得缺氟状态的判断结果更准确,同时还能方便温度检测部件的安装。
在一些优选的实施例中,为提高缺氟判断结果的准确度,会在空调开机后运行一定时间后再开始温度检测。参照图5,本实施例提供的空调缺氟检测方法包括:
T20、空调开机持续运行预设时间。例如持续运行5分钟。
T21、获取第一出风口和第二出风口处的出风温度,并计算温度差值。其中,第一出风口的出风温度定义为T 1,第二出风口的出风温度定义为T 2,则可获得温度差值|T 1-T 2|。T 1和T 2通过温度传感器获取。
T22、比较温度差值和预设温差阈值。设温差阈值定义为T 0
T23、根据比较结果,判断空调的缺氟状态。具体地,比较结果可以有以下几种:
若|T 1-T 2|>T 0,则表示空调缺氟,需要加氟或者增大膨胀阀开度;
若|T 1-T 2|≤T 0,则表示空调不缺氟,空调可按照该状态持续运行,直至室内温度达到用户设定的目标温度。
本领域技术人员可以理解的是,在获取第一出风口和第二出风口处的出风温度之前,通过使空调开机持续运行预设时间,在空调***稳定运行后再进行温度检测,从而能够减少其他因素对温度差值的干扰,使得判断结果更准确。
至此,已经结合附图所示的优选实施方式描述了本发明的技术方案,但是,本领域技术人员容易理解的是,本发明的保护范围显然不局限于这些具体实施方式。在不偏离本发明的原理的前提下,本领域技术人员可以对相关技术特征作出等同的更改或替换,这些更改或替换之后的技术方案都将落入本发明的保护范围之内。

Claims (10)

  1. 一种空调控制方法,所述空调包括第一出风口、第二出风口和膨胀阀,其特征在于,所述空调控制方法包括:
    获取所述第一出风口和所述第二出风口处的出风温度,并计算温度差值;
    比较所述温度差值和预设温差阈值;
    根据比较结果,调整所述膨胀阀的开度。
  2. 根据权利要求1所述的空调控制方法,其特征在于,“根据比较结果,调整所述膨胀阀的开度”的步骤具体包括:
    若所述温度差值大于所述预设温差阈值,则将所述膨胀阀增大预设开度。
  3. 根据权利要求2所述的空调控制方法,其特征在于,所述空调控制方法还包括:
    当所述膨胀阀达到最大开度后,控制所述空调进入缺氟保护状态。
  4. 根据权利要求3所述的空调控制方法,其特征在于,“控制所述空调进入缺氟保护状态”的步骤具体包括:
    控制所述空调停机和/或报警。
  5. 根据权利要求1所述的空调控制方法,其特征在于,所述空调控制方法还包括:
    在获取所述第一出风口和所述第二出风口处的出风温度之前,使所述空调开机持续运行预设时间。
  6. 根据权利要求1-5中任一项所述的空调控制方法,其特征在于,所述空调为嵌入式空调机。
  7. 根据权利要求6所述的空调控制方法,其特征在于,所述第一出 风口与所述第二出风口相背;或者
    所述第一出风口与所述第二出风口相临。
  8. 一种空调缺氟判断方法,所述空调包括第一出风口和第二出风口,其特征在于,所述空调缺氟判断方法包括:
    获取所述第一出风口和所述第二出风口处的出风温度,并计算温度差值;
    比较所述温度差值和预设温差阈值;
    根据比较结果,判断所述空调的缺氟状态。
  9. 根据权利要求8所述的空调缺氟判断方法,其特征在于,“根据比较结果,判断所述空调的缺氟状态”的步骤具体包括:
    若所述温度差值大于所述预设温差阈值,则判断所述空调缺氟。
  10. 根据权利要求9所述的空调缺氟判断方法,其特征在于,所述空调缺氟判断方法还包括:
    在获取所述第一出风口和所述第二出风口处的出风温度之前,使所述空调开机持续运行预设时间。
PCT/CN2019/100045 2018-12-26 2019-08-09 空调缺氟判断方法及控制方法 WO2020134103A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/961,786 US11585560B2 (en) 2018-12-26 2019-08-09 Method of judging lack-of-freon in air conditioner, and air conditioner control method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811603281.4A CN111365824B (zh) 2018-12-26 2018-12-26 空调缺氟判断方法及控制方法
CN201811603281.4 2018-12-26

Publications (1)

Publication Number Publication Date
WO2020134103A1 true WO2020134103A1 (zh) 2020-07-02

Family

ID=71126230

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/100045 WO2020134103A1 (zh) 2018-12-26 2019-08-09 空调缺氟判断方法及控制方法

Country Status (3)

Country Link
US (1) US11585560B2 (zh)
CN (1) CN111365824B (zh)
WO (1) WO2020134103A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112325461A (zh) * 2020-10-29 2021-02-05 珠海格力电器股份有限公司 一种空调器控制方法及空调器
CN113339985B (zh) * 2021-05-27 2022-11-18 青岛海尔空调器有限总公司 用于空调电子膨胀阀的控制方法及控制装置、空调器
CN115111710B (zh) * 2022-06-23 2024-06-18 北京小米移动软件有限公司 空调控制方法、装置、介质及芯片
CN115111707B (zh) * 2022-06-23 2024-06-18 北京小米移动软件有限公司 空调缺氟检测方法、装置、介质及芯片

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100069403A (ko) * 2008-12-16 2010-06-24 엘지전자 주식회사 공기조화기 및 그 제어 방법
CN104819547A (zh) * 2015-05-15 2015-08-05 珠海格力电器股份有限公司 一种变频空调***开机时的缺氟检测及保护方法和***
CN108592328A (zh) * 2018-04-27 2018-09-28 广东美的制冷设备有限公司 空调器出风温度的控制方法以及空调器

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101526259A (zh) * 2009-03-31 2009-09-09 宁波海诚电器有限公司 空调缺氟的检测及保护方法
CN102374614B (zh) * 2011-10-10 2015-08-12 曙光信息产业(北京)有限公司 制冷设备的控制方法和装置、以及制冷***
CN106352470B (zh) * 2016-08-12 2019-05-31 青岛海尔空调器有限总公司 一种用于空调的控制方法、装置及空调
CN106288196B (zh) * 2016-08-17 2018-11-23 珠海格力电器股份有限公司 一种空调缺冷媒保护的控制装置、控制方法及空调***
CN106322680B (zh) * 2016-09-07 2018-08-07 珠海格力电器股份有限公司 一种空调报警装置及方法
JP2018096560A (ja) * 2016-12-08 2018-06-21 パナソニックIpマネジメント株式会社 熱伝達ユニットおよび二元温水生成装置
CN207147010U (zh) * 2017-09-04 2018-03-27 四川长虹空调有限公司 检测变频制冷设备是否缺少冷媒的***
CN107655144B (zh) * 2017-09-30 2021-02-02 河南城建学院 家用空调辅助检测***

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100069403A (ko) * 2008-12-16 2010-06-24 엘지전자 주식회사 공기조화기 및 그 제어 방법
CN104819547A (zh) * 2015-05-15 2015-08-05 珠海格力电器股份有限公司 一种变频空调***开机时的缺氟检测及保护方法和***
CN108592328A (zh) * 2018-04-27 2018-09-28 广东美的制冷设备有限公司 空调器出风温度的控制方法以及空调器

Also Published As

Publication number Publication date
US11585560B2 (en) 2023-02-21
US20210063044A1 (en) 2021-03-04
CN111365824A (zh) 2020-07-03
CN111365824B (zh) 2021-09-24

Similar Documents

Publication Publication Date Title
WO2020134103A1 (zh) 空调缺氟判断方法及控制方法
WO2020228549A1 (zh) 变频空调的控制方法
CN107289599B (zh) 一种检测空调冷媒泄露量的装置和方法
CN104990222B (zh) 空调控制方法及装置
WO2017026310A1 (ja) 空気調和装置及びその運転方法
CN108870633B (zh) 空调***的控制方法和装置
WO2018233147A1 (zh) 新风机及其的控制方法和装置
WO2019109959A1 (zh) 空调装置及用于判断其运行状态是否正常的方法
WO2021135680A1 (zh) 空调外风机的转速控制方法
CN109539380B (zh) 一种热泵热水器压缩机频率控制方法
CN110595004B (zh) 一种空调降噪控制方法、控制***及空调器
CN102778006A (zh) 获取多联机空调***压力参数的方法及装置
US12007134B2 (en) Avoiding coil freeze in HVAC systems
CN105318491B (zh) 空调器的控制方法及装置
CN107894045B (zh) 空调***的节流控制方法、装置与空调器
CN110822676B (zh) 控制方法、控制装置、空调器和计算机可读存储介质
WO2017202198A1 (zh) 多联机***及其制热节流元件的控制方法
KR20150060472A (ko) 중앙냉방 시스템 및 그의 제어방법
JP2011247524A (ja) 冷凍装置
CN110715395B (zh) 一种空调冷媒泄露检测方法、装置及空调
WO2022222940A1 (zh) 空调机组及其除霜控制方法
CN108758970A (zh) 一种排气感温包的异常状态检测方法及压缩机保护方法
CN109489126A (zh) 一种一体式节能空调器及其控制方法
WO2019034124A1 (zh) 自动调温空调器控制方法及空调器
CN107894071A (zh) 空调***调节方法和空调***

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19906110

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19906110

Country of ref document: EP

Kind code of ref document: A1