WO2020133778A1 - 一种液化石油气气瓶疲劳试验***及其试验方法 - Google Patents

一种液化石油气气瓶疲劳试验***及其试验方法 Download PDF

Info

Publication number
WO2020133778A1
WO2020133778A1 PCT/CN2019/080792 CN2019080792W WO2020133778A1 WO 2020133778 A1 WO2020133778 A1 WO 2020133778A1 CN 2019080792 W CN2019080792 W CN 2019080792W WO 2020133778 A1 WO2020133778 A1 WO 2020133778A1
Authority
WO
WIPO (PCT)
Prior art keywords
solenoid valve
pressure
compressor
controller
pressure sensor
Prior art date
Application number
PCT/CN2019/080792
Other languages
English (en)
French (fr)
Inventor
由宏新
刘召
袁鹏
王强
贾松青
Original Assignee
大连理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大连理工大学 filed Critical 大连理工大学
Publication of WO2020133778A1 publication Critical patent/WO2020133778A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/32Investigating strength properties of solid materials by application of mechanical stress by applying repeated or pulsating forces
    • G01N3/36Investigating strength properties of solid materials by application of mechanical stress by applying repeated or pulsating forces generated by pneumatic or hydraulic means

Definitions

  • the invention relates to a liquefied petroleum gas cylinder fatigue test system and a test method thereof, belonging to the technical field of fatigue testing of liquefied petroleum gas cylinders.
  • gas cylinders As an important container for fuel gas, which is used frequently in daily life, gas cylinders have different requirements. While satisfying its pressure conditions, strength conditions and other characteristics, we must also pay attention to safety issues. This includes not only the consideration of the flammable and explosive characteristics of the fuel, but also the frequent repeated use of gas cylinders, and the potential safety hazards caused by the repeated gas filling and discharging. Therefore, it is necessary to introduce the fatigue test for the safety inspection of the gas cylinder, and there is a relatively reliable and intuitive measurement data for the test piece to withstand the periodic gas. Therefore, the fatigue test is introduced to test the gas cylinder, so as to simulate the daily reuse of the gas cylinder, determine the service life of the gas cylinder, and ensure the safety of the person and property is very important.
  • Patent CN102798570A high-pressure fatigue testing machine introduces a high-pressure fatigue testing machine for high-pressure gas cylinder fatigue testing, including hydraulic system, cooling cycle system, electrical control system, display system, and booster cylinder.
  • the patent uses hydraulic oil as the test medium to perform fatigue tests on gas cylinders under high pressure.
  • the boosting process uses a booster to boost pressure. This patent cannot complete the fatigue test using liquefied gas as the medium.
  • the patent 200820083900.7 hydrogen environment fatigue test system for hydrogen storage container introduces a hydrogen environment fatigue test system for hydrogen storage container.
  • the patent uses a control platform to complete the cycle.
  • the test medium is pure gaseous medium and cannot adapt to the fatigue test requirements of liquefied gas.
  • the pressure relief depends only on the low-pressure storage tank, and it is very likely that the pressure will not be smoothly relieved. Thermal effect, which poses a great hidden danger to the testing of flammable and explosive gases.
  • the gas cylinder is introduced into the fatigue test to test the gas cylinder, so as to simulate the daily repeated use of the gas cylinder, determine the service life of the gas cylinder, and ensure the safety of people and property is very important.
  • Patent CN102798570A high-pressure fatigue testing machine.
  • This patent uses hydraulic oil as the test medium to perform fatigue testing on gas cylinders under high pressure.
  • the boosting process uses a booster to boost pressure.
  • This patent cannot complete the fatigue test using liquefied gas as the medium.
  • the patent uses a control platform to complete the cycle.
  • the test medium is pure gaseous medium and cannot adapt to the fatigue test requirements of liquefied gas. Pressure; and does not take into account the thermal effect of the gas compression and expansion process, which has a great hidden danger to the test of flammable and explosive gases.
  • the present invention provides a liquefied petroleum gas cylinder fatigue test system and test method.
  • the test system not only reuses the test gas, but also realizes the inflation and deflation through automatic control, which can simulate the fatigue test of the test piece under the working environment.
  • the technical scheme adopted by the present invention is: a fatigue test system for liquefied petroleum gas cylinders.
  • the test system includes a high-pressure storage tank, a first compressor and a controller, and the test system further includes a low-pressure buffer tank and a second compressor.
  • the storage tank is provided with a first pressure sensor, a liquid level gauge, a charging and discharging solenoid valve and a safety valve.
  • the high-pressure storage tank is connected by a pipeline through a heat exchanger, a one-way valve, a first compressor and a first filter.
  • Two low-pressure buffer tanks for pressure sensors.
  • the low-pressure buffer tank is connected to the test piece with the third pressure sensor through the third solenoid valve.
  • the test piece is connected to the high-pressure storage tank through the first solenoid valve.
  • the pipeline between the solenoid valves is connected to the pipeline between the third solenoid valve and the test piece through the second solenoid valve, the second compressor, and the second filter;
  • the controller uses a PLC controller, and the three pressures Sensors, four solenoid valves and two compressor control relays are electrically connected to the controller.
  • the controller uses S7-300 (CPU314C) PLC controller.
  • the controller opens the charging and discharging solenoid valve at the same time, the test medium is filled into the high-pressure storage tank, when the first pressure sensor and the liquid level gauge reach the set upper limit, the charging and discharging solenoid valve is closed;
  • the controller opens the first solenoid valve, the high-pressure medium flows into the test piece, and when the third pressure sensor reaches the set upper limit value, the first solenoid valve closes to maintain the pressure;
  • the third solenoid valve opens, and when the second pressure sensor has the same value as the third pressure sensor, the third solenoid valve closes, and at the same time the second solenoid valve and the second compressor quickly Turn on
  • this test system includes a high-pressure storage tank, a first compressor, a second compressor, a low-pressure buffer tank and a controller.
  • the high-pressure storage tank passes through a heat exchanger, a check valve, a first compressor and
  • the first filter is connected to the low-pressure buffer tank
  • the low-pressure buffer tank is connected to the test piece through the third solenoid valve
  • the test piece is connected to the high-pressure storage tank through the first solenoid valve
  • the second solenoid valve, the second compressor, and the third solenoid valve are connected in parallel
  • the controller adopts PLC controller, and the pressure sensor, solenoid valve and compressor control relay are electrically connected to the controller.
  • the test system not only reuses the test gas, but also realizes the inflation and deflation through automatic control, which can simulate the fatigue test of the test piece under the working environment.
  • Figure 1 is a working principle diagram of a fatigue test system for liquefied petroleum gas cylinders.
  • Figure 2 is a schematic diagram of the controller.
  • liquid level gauge 2. first pressure sensor, 2a, second pressure sensor, 2b, third pressure sensor, 3. charging and discharging solenoid valve, 4. safety valve, 5, heat exchanger, 6.
  • Check valve 7, first compressor, 7a, second compressor, 8, first filter, 8a, second filter, 9, first solenoid valve, 9a, second solenoid valve, 9b, third Solenoid valve, 10, high-pressure storage tank, 11, low-pressure buffer tank, 12, test piece, 13, controller.
  • FIG. 1 shows a schematic diagram of a fatigue test system for LPG gas cylinders.
  • This liquefied petroleum gas cylinder fatigue test system includes a high-pressure storage tank 10, a first compressor 7, a controller 13, a low-pressure buffer tank 11, and a second compressor 7a.
  • the high-pressure storage tank 10 is provided with a first pressure sensor 2, a charging and discharging solenoid valve 3, and a safety valve 4.
  • the high-pressure storage tank 10 adopts a pipeline to pass through the heat exchanger 5, the one-way valve 6, the first compressor 7, and the first filtration
  • the device 8 is connected to a low-pressure buffer tank 11 provided with a second pressure sensor 2a.
  • the low-pressure buffer tank 11 is connected to a test piece 12 provided with a third pressure sensor 2b through a third solenoid valve 9b.
  • Valve 9 is connected to high-pressure storage tank 10.
  • a pipeline is connected between the low-pressure buffer tank 11 and the third solenoid valve 9b via the second solenoid valve 9a, the second compressor 7a, and the second filter 8a to the pipe between the third solenoid valve 9b and the test piece 12.
  • the controller 13 uses a PLC controller, and three pressure sensors, four solenoid valves, and two compressor control relays are electrically connected to the controller 13.
  • Figure 2 shows the working principle of the controller using S7-300 (CPU314C) PLC controller.
  • the input parameters are the pressure signals of the first pressure sensor 2, the second pressure sensor 2a, and the third pressure sensor 2b.
  • the output signals control the charging and discharging solenoid valve 3, the first solenoid valve 9, and the second solenoid valve 9a .
  • the third solenoid valve 9b, the compressor 7 and the second compressor 7a work to cyclically control the entire process of the fatigue test of the liquefied petroleum gas cylinder.
  • the controller 13 simultaneously opens the charging and discharging solenoid valve 3, the test medium is filled into the high-pressure storage tank 10, when the first pressure sensor 2 reaches the set upper limit value (4.0MPa), liquid level When the gauge 1 reaches the set liquid level, the charging and discharging solenoid valve 3 is closed;
  • the controller 13 opens the first solenoid valve 9, the high-pressure medium flows into the test piece 12, and when the third pressure sensor 2b reaches the set upper limit value (3.2MPa), the first solenoid valve 9 is closed to maintain the pressure;
  • the third solenoid valve 9b opens, and when the second pressure sensor 2a and the third pressure sensor 2b have the same value, the third solenoid valve 9b closes, while the second solenoid valve 9a and The second compressor 7a is quickly turned on;
  • the first compressor and the heat exchanger start to maintain the running state, and the actions of all solenoid valves and compressors are controlled by the controller according to the signal provided by the pressure sensor.
  • the system automatically shuts down. If an overpressure occurs in the high-pressure storage tank 10, the safety valve 4 will open to release the pressure.
  • This test system not only reuses the test gas, but also realizes the inflation and deflation through automatic control, which can simulate the fatigue test of the test piece under the working environment.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

一种液化石油气气瓶疲劳试验***及其试验方法,属于液化气瓶的疲劳试验技术领域。这种试验***包括高压储罐、第一压缩机、第二压缩机、低压缓冲罐和控制器,高压储罐经换热器、单向阀、第一压缩机和第一过滤器连接低压缓冲罐,低压缓冲罐经第三电磁阀连接试件,试件经第一电磁阀连接高压储罐;第二电磁阀、第二压缩机与第三电磁阀并联连接;控制器采用PLC控制器,压力传感器、电磁阀和压缩机的控制继电器与控制器电连接。该试验***不仅重复利用测试气体,而且通过自动控制实现充放气,可以模拟试件在工作环境下的疲劳试验。

Description

一种液化石油气气瓶疲劳试验***及其试验方法 技术领域
本发明涉及一种液化石油气气瓶疲劳试验***及其试验方法,属于液化石油气气瓶的疲劳试验技术领域。
背景技术
随着科技的发展,人们对资源的需求不断加大,而且相应对资源利用的方式在不断改善。气体燃料作为高效的能源,越来越普遍的应用在生活当中,于是对气体燃料的存储、运输及使用提出了不同的要求。尤其是日常生活生产中对液化石油气(LPG)的频繁使用,相应要考虑其气瓶安全。
气瓶作为燃料气体的日常频繁使用的重要容器,有不同的要求。在满足其压力条件,强度条件等特点的同时,也要重视安全问题。其中不仅包含对燃料易燃易爆特性的考虑,也需要对气瓶频繁重复使用,气体反复充放对气瓶安全造成的安全隐患。因此对气瓶安全性检验必不可少的需要引入疲劳试验,对试件承受周期性气体作用有一个可以相对比较可靠的直观衡量数据。所以引入疲劳试验对气瓶进行测试,从而模拟日常对气瓶重复使用,确定气瓶的使用寿命,保证对人身及财产的安全十分重要。
专利CN102798570A的高压疲劳试验机,介绍了一种用于高压气瓶疲劳试验的高压疲劳试验机,包括液压***、冷却循环***、电气控制***、显示***、以及增压缸。该专利采用液压油作为试验介质,在高压下对气瓶进行疲劳测试。增压过程采用增压器进行增压。此专利无法完成以液化气体为介质的疲劳试验。
专利200820083900.7的储氢容器氢环境疲劳试验***,介绍了一种储氢容器氢环境疲劳试验***。该专利采用控制平台完成循环,试验介质为纯气态介质,无法适应液化气体的疲劳试验要求;泄压仅仅靠低压储罐,极有可能无法顺利泄压;且未考虑到气体压缩膨胀过程中的热效应,这对易燃易爆气体的测试产生很大隐患。
技术问题
气瓶作为燃料气体的日常频繁使用的重要容器,引入疲劳试验对气瓶进行测试,从而模拟日常对气瓶重复使用,确定气瓶的使用寿命,保证对人身及财产的安全十分重要。
专利CN102798570A的高压疲劳试验机,该专利采用液压油作为试验介质,在高压下对气瓶进行疲劳测试。增压过程采用增压器进行增压。此专利无法完成以液化气体为介质的疲劳试验。专利200820083900.7的储氢容器氢环境疲劳试验***,该专利采用控制平台完成循环,试验介质为纯气态介质,无法适应液化气体的疲劳试验要求;泄压仅仅靠低压储罐,极有可能无法顺利泄压;且未考虑到气体压缩膨胀过程中的热效应,这对易燃易爆气体的测试产生很大隐患。
技术解决方案
为了克服现有技术中存在的问题,本发明提供一种液化石油气气瓶疲劳试验***及其试验方法。该试验***不仅重复利用测试气体,而且通过自动控制实现充放气,可以模拟试件在工作环境下的疲劳试验。
本发明采用的技术方案是:一种液化石油气气瓶疲劳试验***,试验***包括高压储罐、第一压缩机和控制器,试验***还包括低压缓冲罐和第二压缩机,所述高压储罐上设有第一压力传感器、液位计、充放电磁阀和安全阀,高压储罐采用管道依次经换热器、单向阀、第一压缩机和第一过滤器连接设有第二压力传感器的低压缓冲罐,低压缓冲罐采用管道经第三电磁阀连接设有第三压力传感器的试件,试件采用管道经第一电磁阀连接高压储罐;在低压缓冲罐与第三电磁阀之间采用管道经第二电磁阀、第二压缩机和第二过滤器连接在第三电磁阀与试件之间的管道上;所述控制器采用PLC控制器,所述三个压力传感器、四个电磁阀和两个压缩机的控制继电器与控制器电连接。
所述控制器采用S7-300(CPU314C)PLC控制器。
一种液化石油气气瓶疲劳试验***的工作方法:
a、首先启动第一压缩机,控制器同时开启充放电磁阀,试验介质充入高压储罐,当第一压力传感器及液位计达到设定的上限值时,充放电磁阀关闭;
b、控制器开启第一电磁阀,高压介质流入试件中,当第三压力传感器达到设定的上限值时,第一电磁阀关闭,进行保压;
c、当保压达到设定时间后,第三电磁阀开启,当第二压力传感器与第三压力传感器值相同时,第三电磁阀关闭,与此同时第二电磁阀和第二压缩机迅速开启;
d、待第三压力传感器达到设定下限值,第二电磁阀和第二压缩机关闭;
e、重复b、c、d步骤,完成试件设定的测试次数,或者试件出现失效情形,试验***自动关闭。
有益效果
本发明的有益效果是:这种试验***包括高压储罐、第一压缩机、第二压缩机、低压缓冲罐和控制器,高压储罐经换热器、单向阀、第一压缩机和第一过滤器连接低压缓冲罐,低压缓冲罐经第三电磁阀连接试件,试件经第一电磁阀连接高压储罐;第二电磁阀、第二压缩机与第三电磁阀并联连接;控制器采用PLC控制器,压力传感器、电磁阀和压缩机的控制继电器与控制器电连接。该试验***不仅重复利用测试气体,而且通过自动控制实现充放气,可以模拟试件在工作环境下的疲劳试验。
附图说明
图1是一种液化石油气气瓶疲劳试验***的工作原理图。
图2是控制器的原理图。
图中:1、液位计,2、第一压力传感器,2a、第二压力传感器,2b、第三压力传感器,3、充放电磁阀,4、安全阀,5、换热器,6、单向阀,7、第一压缩机,7a、第二压缩机,8、第一过滤器,8a、第二过滤器,9、第一电磁阀,9a、第二电磁阀,9b、第三电磁阀,10、高压储罐,11、低压缓冲罐,12、试件,13、控制器。
本发明的最佳实施方式
图1示出了一种液化石油气气瓶疲劳试验***原理图。这种液化石油气气瓶疲劳试验***包括高压储罐10、第一压缩机7、控制器13、低压缓冲罐11和第二压缩机7a。高压储罐10上设有第一压力传感器2、充放电磁阀3和安全阀4,高压储罐10采用管道依次经换热器5、单向阀6、第一压缩机7和第一过滤器8连接设有第二压力传感器2a的低压缓冲罐11,低压缓冲罐11采用管道经第三电磁阀9b连接设有第三压力传感器2b的试件12,试件12采用管道经第一电磁阀9连接高压储罐10。在低压缓冲罐11与第三电磁阀9b之间采用管道经第二电磁阀9a、第二压缩机7a和第二过滤器8a连接在第三电磁阀9b与试件12之间的管道上。控制器13采用PLC控制器,三个压力传感器、四个电磁阀和两个压缩机的控制继电器与控制器13电连接。
图2示出了控制器采用S7-300(CPU314C)PLC控制器的工作原理图。输入参数为第一压力传感器2、第二压力传感器2a和第三压力传感器2b的压力信号,经CPU314C运算处理后,输出信号控制充放电磁阀3、第一电磁阀9、第二电磁阀9a、第三电磁阀9b、压缩机7和第二压缩机7a工作,循环控制液化石油气气瓶疲劳试验的全过程。
这种液化石油气气瓶疲劳试验***的工作方法:
a、首先启动第一压缩机7,控制器13同时开启充放电磁阀3,试验介质充入高压储罐10,当第一压力传感器2达到设定的上限值(4.0MPa)、液位计1达到设定液位值时,充放电磁阀3关闭;
b、控制器13开启第一电磁阀9,高压介质流入试件12中,当第三压力传感器2b达到设定的上限值(3.2MPa)时,第一电磁阀9关闭,进行保压;
c、当保压达到设定时间后,第三电磁阀9b开启,当第二压力传感器2a与第三压力传感器2b值相同时,第三电磁阀9b关闭,与此同时第二电磁阀9a和第二压缩机7a迅速开启;
d、待第三压力传感器2b达到设定下限值(0.1MPa),第二电磁阀9a和第二压缩机7a关闭;
e、重复b、c、d步骤,完成试件12设定的测试次数,或者试件12出现失效情形,试验***自动关闭。
在上述的整个试验过程中,第一压缩机和换热器始络保持运行状态,所有电磁阀和压缩机的动作均由控制器依据压力传感器提供的信号进行控制。当试件完成设定的测试次数或者试件出现失效情形,***自动关闭。若高压储罐10发生超压,则安全阀4会开启,进行泄压。
本发明的实施方式
本发明的实施方式同本发明的最佳实施方式。
工业实用性
这种试验***不仅重复利用测试气体,而且通过自动控制实现充放气,可以模拟试件在工作环境下的疲劳试验。
序列表自由内容
无。

Claims (3)

  1. 一种液化石油气气瓶疲劳试验***,试验***包括高压储罐(10)、第一压缩机(7)和控制器(13),其特征是:试验***还包括低压缓冲罐(11)和第二压缩机(7a),所述高压储罐(10)上设有第一压力传感器(2)、充放电磁阀(3)和安全阀(4),高压储罐(10)采用管道依次经换热器(5)、单向阀(6)、第一压缩机(7)和第一过滤器(8)连接设有第二压力传感器(2a)的低压缓冲罐(11),低压缓冲罐(11)采用管道经第三电磁阀(9b)连接设有第三压力传感器(2b)的试件(12),试件(12)采用管道经第一电磁阀(9)连接高压储罐(10);在低压缓冲罐(11)与第三电磁阀(9b)之间采用管道经第二电磁阀(9a)、第二压缩机(7a)和第二过滤器(8a)连接在第三电磁阀(9b)与试件(12)之间的管道上;所述控制器(13)采用PLC控制器,所述三个压力传感器、四个电磁阀和两个压缩机的控制继电器与控制器(13)电连接。
  2. 根据权利要求1所述的液化石油气气瓶疲劳试验***,其特征是:所述控制器(13)采用S7-300(CPU314C)PLC控制器。
  3. 根据权利要求1所述的一种液化石油气气瓶疲劳试验***的工作方法,其特征是:
    a、首先启动第一压缩机(7),控制器(13)同时开启充放电磁阀(3),试验介质充入高压储罐(10),当第一压力传感器(2)达到设定的上限值时,充放电磁阀(3)关闭;
    b、控制器(13)开启第一电磁阀(9),高压介质流入试件(12)中,当第三压力传感器(2b)达到设定的上限值时,第一电磁阀(9)关闭,进行保压;
    c、当保压达到设定时间后,第三电磁阀(9b)开启,当第二压力传感器(2a)与第三压力传感器(2b)值相同时,第三电磁阀(9b)关闭,与此同时第二电磁阀(9a)和第二压缩机(7a)迅速开启;
    d、待第三压力传感器(2b)达到设定下限值,第二电磁阀(9a)和第二压缩机(7a)关闭;
    e、重复b、c、d步骤,完成试件(12)设定的测试次数,或者试件(12)出现失效情形,试验***自动关闭。
PCT/CN2019/080792 2018-12-23 2019-04-01 一种液化石油气气瓶疲劳试验***及其试验方法 WO2020133778A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811576792.1A CN109781559A (zh) 2018-12-23 2018-12-23 一种液化石油气气瓶疲劳试验***及其试验方法
CN201811576792.1 2018-12-23

Publications (1)

Publication Number Publication Date
WO2020133778A1 true WO2020133778A1 (zh) 2020-07-02

Family

ID=66498068

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/080792 WO2020133778A1 (zh) 2018-12-23 2019-04-01 一种液化石油气气瓶疲劳试验***及其试验方法

Country Status (2)

Country Link
CN (1) CN109781559A (zh)
WO (1) WO2020133778A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115452596A (zh) * 2022-10-06 2022-12-09 中国矿业大学 一种液态co2冷浸致裂煤体模拟试验***及方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113252462B (zh) * 2021-06-07 2021-10-01 潍柴动力股份有限公司 一种检测气瓶的方法、***以及一种可读存储介质
CN113504124A (zh) * 2021-07-11 2021-10-15 飞荣达科技(江苏)有限公司 一种液冷板***性能测试装置及方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101403669A (zh) * 2008-11-12 2009-04-08 同济大学 全自动高压容器气体循环充放疲劳测试***
CN102346119A (zh) * 2010-08-04 2012-02-08 北京航天试验技术研究所 一种高压复合材料储气瓶充放气试验装置
CN104697861A (zh) * 2015-03-12 2015-06-10 浙江大学 一种低能耗的多级自增压高压容器气体循环试验***

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1587972A (zh) * 2004-08-03 2005-03-02 大连理工大学 一种压力容器液压疲劳试验***
CN201159693Y (zh) * 2008-03-06 2008-12-03 浙江大学 一种储氢容器氢环境疲劳试验***
CN207036574U (zh) * 2017-08-09 2018-02-23 赤峰市特种设备检验所 一种液化石油气瓶疲劳试验装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101403669A (zh) * 2008-11-12 2009-04-08 同济大学 全自动高压容器气体循环充放疲劳测试***
CN102346119A (zh) * 2010-08-04 2012-02-08 北京航天试验技术研究所 一种高压复合材料储气瓶充放气试验装置
CN104697861A (zh) * 2015-03-12 2015-06-10 浙江大学 一种低能耗的多级自增压高压容器气体循环试验***

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115452596A (zh) * 2022-10-06 2022-12-09 中国矿业大学 一种液态co2冷浸致裂煤体模拟试验***及方法
CN115452596B (zh) * 2022-10-06 2023-09-22 中国矿业大学 一种液态co2冷浸致裂煤体模拟试验***及方法

Also Published As

Publication number Publication date
CN109781559A (zh) 2019-05-21

Similar Documents

Publication Publication Date Title
WO2020133778A1 (zh) 一种液化石油气气瓶疲劳试验***及其试验方法
CN104697861B (zh) 一种低能耗的多级自增压高压容器气体循环试验***
CN109470431B (zh) 一种高压储氢气瓶的充放气循环试验***
CN109632539A (zh) 一种液化石油气气瓶疲劳试验***及其工作方法
CN103511829A (zh) 全自动超高压氢环境材料试验机吹洗置换及充氢***
CN208887871U (zh) 一种飞机***气密试验装置
CN110702528A (zh) 一种超高压氢气试压***
CN103178277A (zh) 气体全自动置换***及方法
CN103913279A (zh) 利用氦气与空气混合测试油冷器密封性的方法及设备
CN111678551B (zh) 一种燃料电池车载高压储氢瓶充放氢性能检测方法
US11603965B2 (en) Gaseous fueling system
CN203688152U (zh) 一种新型气体减压器检验装置
CN111982407A (zh) 一种用于氢能源汽车的气密检测***
CN112325148A (zh) 一种加氢站用车载气瓶初始压力测量装置及方法
CN108362489A (zh) 一种通用性强的安全阀校验装置
CN202691597U (zh) 一种余气处理装置
CN203099336U (zh) 天然气钢瓶空气压力回收装置
CN202110046U (zh) 汽车减震器贮液缸试漏***
CN202661239U (zh) 液化石油气钢瓶气密性自动检测装置
CN114279651A (zh) 一种利用隔膜压缩机气密测试***及运行方法
CN219915230U (zh) 一种cng压力循环试验***
CN108152156B (zh) 一种高压氢气安全膜片压力脉冲试验***和方法
CN203488978U (zh) 全自动超高压氢环境材料试验机吹洗置换及充氢***
CN209894426U (zh) 自动气密测试***
CN209182170U (zh) 一种全自动高压氢气瓶氢气循环试验***

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19901569

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19901569

Country of ref document: EP

Kind code of ref document: A1