WO2020133478A1 - 新型光纤 - Google Patents

新型光纤 Download PDF

Info

Publication number
WO2020133478A1
WO2020133478A1 PCT/CN2018/125787 CN2018125787W WO2020133478A1 WO 2020133478 A1 WO2020133478 A1 WO 2020133478A1 CN 2018125787 W CN2018125787 W CN 2018125787W WO 2020133478 A1 WO2020133478 A1 WO 2020133478A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
refractive index
mode
optical fiber
transition
Prior art date
Application number
PCT/CN2018/125787
Other languages
English (en)
French (fr)
Inventor
曹珊珊
蒋新力
***
沈一春
王震
苏海燕
徐海涛
Original Assignee
中天科技光纤有限公司
江苏中天科技股份有限公司
中天科技精密材料有限公司
江东科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中天科技光纤有限公司, 江苏中天科技股份有限公司, 中天科技精密材料有限公司, 江东科技有限公司 filed Critical 中天科技光纤有限公司
Priority to EP18900575.4A priority Critical patent/EP3904925A4/en
Priority to PCT/CN2018/125787 priority patent/WO2020133478A1/zh
Publication of WO2020133478A1 publication Critical patent/WO2020133478A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/028Optical fibres with cladding with or without a coating with core or cladding having graded refractive index
    • G02B6/0288Multimode fibre, e.g. graded index core for compensating modal dispersion
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/028Optical fibres with cladding with or without a coating with core or cladding having graded refractive index
    • G02B6/0283Graded index region external to the central core segment, e.g. sloping layer or triangular or trapezoidal layer
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/036Optical fibres with cladding with or without a coating core or cladding comprising multiple layers
    • G02B6/03616Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference
    • G02B6/03638Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 3 layers only
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/036Optical fibres with cladding with or without a coating core or cladding comprising multiple layers
    • G02B6/03616Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference
    • G02B6/03661Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 4 layers only
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/036Optical fibres with cladding with or without a coating core or cladding comprising multiple layers
    • G02B6/03616Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference
    • G02B6/03688Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 5 or more layers

Definitions

  • the present invention relates to the field of optical fiber technology, and particularly refers to a new type of optical fiber for data centers.
  • Single-mode fiber and multi-mode fiber are mainly two different types of fibers due to their significantly different modes and numbers. They are also used in different scenarios. In data center usage scenarios, multi-mode fiber and single-mode fiber exist at the same time. Compared with multimode fiber, single-mode fiber has obvious price advantages, but the price of single-mode transceiver is much higher than that of multimode fiber. According to comprehensive calculation, when the transmission distance is less than 100-150m, multimode transmission is still a cost The most effective solution.
  • the technical solution provided by the present invention is: a new type of optical fiber, including a single-mode core, a multi-mode layer and an outer cladding arranged coaxially in order from inside to outside.
  • the single-mode core is located at the center of the fiber and has an upper step Refractive index
  • the multi-mode layer surrounds the single-mode fiber core, and has a refractive index of ⁇ profile distribution
  • a plurality of transition layers are provided inside the multi-mode layer and/or outside the multi-mode layer, the The transition layer is disposed coaxially with the single-mode fiber core or the outer cladding layer, and the transition layer is in close contact with the multimode layer, and its refractive index is equal to the refractive index of the contact portion of the multimode layer.
  • the transition layer when the transition layer is between the single-mode core and the multi-mode layer, it is a first transition layer.
  • the relative refractive index ⁇ 0 of the first transition layer Between 0.5% and 2.0%, the width W 0 of one side of the first transition layer is between 1 ⁇ m and 4 ⁇ m; when the transition layer is between the multimode layer and the outer cladding layer, it is the second The transition layer, compared with pure silica, the relative refractive index ⁇ 5 of the second transition layer is between -0.4% and 0.15%, and the width W 5 of one side of the second transition layer is between 1 ⁇ m and 7 ⁇ m between.
  • the single-mode core is a germanium-doped silica glass
  • the radius r 1 is between 3 ⁇ m and 5 ⁇ m
  • the relative refractive index ⁇ 2 of the multi-mode layer is between the relative refractive index ⁇ 0 of the first transition layer and the relative refractive index ⁇ 5 of the second transition layer, with an ⁇ profile distribution, so
  • the radius r 2 of the multi-mode layer is between 15 ⁇ m and 35 ⁇ m, and ⁇ is between 1.8 and 2.5.
  • the radius r 3 of the novel optical fiber is between 62 ⁇ m and 63 ⁇ m.
  • the under-doped layer includes a multi-layer structure arranged coaxially, wherein the main under-doped layer having a lower step refractive index is the main, and the other is the auxiliary under-doped layer.
  • the under-doped layer includes a main under-doped layer and an auxiliary under-doped layer, wherein
  • a recessed layer with a lower step refractive index is included between the multimode layer and the outer cladding layer, and the relative refractive index ⁇ 6 of the recessed layer is lower than the relative refractive index ⁇ 5 of the second transition layer,
  • the unilateral width W 6 of the recessed layer is between 2 ⁇ m and 45 ⁇ m, the relative refractive index ⁇ 6 is between -0.05% and -0.4%, and the outer cladding layer is pure silica glass.
  • the recessed layer includes a multi-layer structure arranged coaxially, wherein the main recessed layer with a lower step refractive index is the main, and the other is the auxiliary recessed layer.
  • the recessed layer includes a main recessed layer and an auxiliary recessed layer, wherein
  • the single-layer width of the main depression layer is W 06 between 2 ⁇ m and 6 ⁇ m, and the relative refractive index ⁇ 06 is between -0.2% and -0.4%;
  • the single-layer width of the auxiliary recessed layer is W 16 between 2 ⁇ m and 45 ⁇ m, and the relative refractive index ⁇ 16 is between -0.05% and -0.2%.
  • a novel optical fiber provided by the present invention includes a single-mode core, a multi-mode layer and an outer cladding arranged coaxially from inside to outside.
  • the single-mode core is located at the center of the optical fiber and has Upper step index
  • the multi-mode layer surrounds the single-mode core and has a refractive index with an ⁇ profile distribution; a number of transition layers are provided inside the multi-mode layer and/or outside the multi-mode layer
  • the transition layer is arranged coaxially with the single-mode core or the outer cladding layer, and the transition layer is in close contact with the multi-mode layer, and its refractive index is equal to the refractive index of the contact portion of the multi-mode layer.
  • the novel optical fiber of the present invention has both single-mode transmission and multi-mode transmission, which greatly simplifies the management of optical cables, reduces the cost of upgrading transceivers in the future, and sets the transition layer to make the optical fiber have good low-loss characteristics.
  • Another design contains an under-doped layer or a recessed layer to make the optical fiber have better bending resistance.
  • FIG. 1 is a refractive index distribution diagram of a novel optical fiber in the first embodiment of the present invention.
  • FIG. 2 is a refractive index distribution diagram of a novel optical fiber in a second embodiment of the present invention.
  • FIG. 3 is a refractive index distribution diagram of a novel optical fiber in a third embodiment of the present invention.
  • FIG. 4 is a refractive index distribution diagram of a novel optical fiber in a fourth embodiment of the present invention.
  • FIG. 5 is a refractive index distribution diagram of a novel optical fiber in a fifth embodiment of the present invention.
  • FIG. 6 is a refractive index distribution diagram of a novel optical fiber in a sixth embodiment of the present invention.
  • FIG. 7 is a refractive index distribution diagram of a novel optical fiber in a seventh embodiment of the present invention.
  • FIG. 8 is a refractive index distribution diagram of a novel optical fiber in an eighth embodiment of the present invention.
  • FIG. 9 is a schematic diagram of the cross-sectional structure of the novel optical fiber shown in FIG. 8.
  • the novel optical fiber provided by the present invention is a mixture of single-mode optical fiber and multi-mode optical fiber, which can realize single-mode transmission and multi-mode transmission, which can greatly simplify optical cable management and reduce future transceiver upgrade costs.
  • the novel optical fiber includes a single-mode core, a multi-mode layer and an outer cladding arranged coaxially in order from the inside to the outside.
  • the single-mode core is located at the center of the optical fiber and has an upper step refractive index.
  • a plurality of transition layers are provided inside the multi-mode layer and/or outside the multi-mode layer, the transition layer and the single-mode core Or the outer cladding layer is arranged coaxially, and the transition layer is close to the multimode layer, and its refractive index is equal to the refractive index of the contact portion of the multimode layer.
  • the transition layer, between the single-mode core and the multi-mode layer, is also called a first transition layer.
  • the relative refractive index ⁇ 0 of the first transition layer is 0.5%
  • the one-sided width W 0 of the first transition layer is between 1 ⁇ m and 4 ⁇ m; its relative refractive index ⁇ 0 is lower than the relative refractive index ⁇ 1 of the single-mode core, and
  • the refractive index of the contact portion of the multi-mode layer (that is, the inside of the multi-mode layer) is equal, which reduces the difference.
  • the viscosity of the transition layer precursor during prefabrication is also between the viscosity of the single-mode core and the multi-mode layer. Achieve uniform drawing of the multilayer sandwich structure, reduce the stress rise caused by the viscosity mismatch during the drawing process, and the problem of large attenuation, so that the new optical fiber has lower loss characteristics.
  • the transition layer, between the multimode layer and the outer cladding layer, is also called a second transition layer.
  • the relative refractive index ⁇ 5 of the second transition layer is -0.4% to Between 0.15%, the width W 5 of one side of the second transition layer is between 1 ⁇ m and 7 ⁇ m, and the relative refractive index ⁇ 5 is in contact with the multi-mode layer (ie, the outer side of the multi-mode layer) Equal, also ensure that the multi-mode layer has lower loss characteristics, and reduce the difficulty of forming.
  • the multi-mode layer whose relative refractive index ⁇ 2 is between the relative refractive index ⁇ 0 of the first transition layer and the relative refractive index ⁇ 5 of the second transition layer, has an ⁇ profile distribution, the multi-mode layer
  • the radius r 2 is between 15 ⁇ m and 35 ⁇ m, and ⁇ is between 1.8 and 2.5.
  • the radius r 3 of the novel optical fiber is between 62 ⁇ m and 63 ⁇ m.
  • the outer cladding is pure silica glass.
  • a down-doped layer with a lower step index is included between the single-mode core and the multi-mode layer, and the relative refractive index ⁇ 4 of the under-doped layer is lower than that of the first transition layer
  • the under-doped layer includes a multi-layer structure arranged coaxially, wherein the main under-doped layer having a lower step refractive index is the other, and the other is the auxiliary under-doped layer.
  • a depression layer with a lower step refractive index is included between the multimode layer and the outer cladding layer, and the relative refractive index ⁇ 6 of the depression layer is lower than that of the second transition layer ⁇ 5 , the width W 6 of one side of the depressed layer is between 2 ⁇ m and 45 ⁇ m, the relative refractive index ⁇ 6 is between -0.05% and -0.4%, and the outer cladding layer is pure silica glass.
  • the recessed layer includes a multi-layer structure arranged coaxially, wherein the main recessed layer having a lower step refractive index is the other, and the other is the auxiliary recessed layer.
  • the recessed layer includes a main recessed layer and an auxiliary recessed layer, wherein the width of the single layer of the main recessed layer is W 06 between 2 ⁇ m and 6 ⁇ m, and the relative refractive index ⁇ 06 is -0.2% to -0.4%
  • the width of the single layer of the auxiliary depression layer is W 16 between 2 ⁇ m and 45 ⁇ m, and the relative refractive index ⁇ 16 is between -0.05% and -0.2%.
  • the novel optical fiber includes a coaxial single-mode core, a first transition layer, a multi-mode layer, and an outer cladding, which are located in the center of the optical fiber and have an upper Step index, the multi-mode layer surrounds the outer side of the transition layer, and has a refractive index of ⁇ profile distribution, wherein the radius r 1 of the single-mode core is 4 ⁇ m, and the relative refractive index ⁇ 1 is 1.25%;
  • a transition layer is a step refractive index, the width W 0 on one side is 2 ⁇ m, the relative refractive index ⁇ 0 is 1.0%;
  • the radius r 2 of the multimode layer is 18 ⁇ m, ⁇ is 1.8;
  • the outer cladding is pure silica glass, new type
  • the fiber radius r 3 is 62 ⁇ m.
  • the main characteristics of the new optical fiber are as follows, the mode field (@1300nm) diameter of the single-mode core is 9.8 ⁇ m, and the fiber cut-off wavelength is 1210nm; the full-injection bandwidth of the multimode layer is 500MHz ⁇ km at 850nm and 2500MHz ⁇ km at 1310nm. .
  • the novel optical fiber includes a coaxial single-mode core, a first transition layer, a multi-mode layer, a second transition layer, and an outer cladding layer, and the single-mode core is located on the optical fiber.
  • Center and has an upper step refractive index
  • the multi-mode layer is interposed between the first transition layer and the second transition layer, and has a refractive index of ⁇ profile distribution, wherein the radius r of the single-mode core 1 is 3.8 ⁇ m, the relative refractive index ⁇ 1 is 1.65%;
  • the first transition layer is a step refractive index, the width W 0 on one side is 2 ⁇ m, the relative refractive index ⁇ 0 is 1.3%;
  • the radius r 2 of the multimode layer is 20.5 ⁇ m, ⁇ is 1.97;
  • the second transition layer is a step refractive index, the width W 5 on one side is 6 ⁇ m, the relative refractive index ⁇ 5 is -0.2%;
  • the outer cladding is pure
  • the main characteristics of the new optical fiber are as follows.
  • the mode field diameter of the single-mode core is 9.1 ⁇ m and the cut-off wavelength of the fiber is 1300 nm; the full-injection bandwidth of the multimode layer is 1300 MHz ⁇ km at 850 nm and 1300 MHz ⁇ km at 1310 nm.
  • the novel optical fiber includes a coaxial single-mode core, an under-doped layer, a first transition layer, a multi-mode layer, and an outer cladding, and the single-mode core is located at the center of the optical fiber.
  • the multi-mode layer surrounds the outer side of the transition layer, and has a refractive index of ⁇ profile distribution, wherein the radius r 1 of the single-mode core is 4 ⁇ m, and the relative refractive index ⁇ 1 is 2.1%; the unilateral width W 4 of the under-doped layer is 2 ⁇ m and the relative refractive index ⁇ 4 is 1.78%; the first transition layer is a step refractive index, the unilateral width W 0 is 4 ⁇ m and the relative refractive index ⁇ 0 is 1.8% ;
  • the radius r 2 of the multimode layer is 30 ⁇ m, ⁇ is 2.05; the outer cladding is pure silica glass, and the radius r 3 of the new optical fiber is 63 ⁇ m.
  • the main characteristics of the new optical fiber are as follows.
  • the mode field diameter of the single-mode core is 8.9 ⁇ m at 1310 nm and the cut-off wavelength of the fiber is 1250 nm; the full-injection bandwidth of the multimode layer is 4500 MHz ⁇ km at 850 nm and 600 MHz ⁇ km at 1310 nm.
  • the macrobending loss of the new optical fiber with a bending radius of 15 mm around 10 turns is 0.067 dB at 850 nm, and 0.002 dB at a wavelength of 1310 nm.
  • the novel optical fiber includes a coaxial single-mode core, an under-doped layer, a first transition layer, a multi-mode layer, a second transition layer, and an outer cladding layer arranged in sequence from inside to outside.
  • the fiber core is located in the center of the optical fiber and has an upper step refractive index.
  • the multimode layer is interposed between the first transition layer and the second transition layer and has a refractive index with an ⁇ profile distribution, in which a single-mode fiber
  • the radius r 1 of the core is 3.4 ⁇ m, the relative refractive index ⁇ 1 is 1.2%; the width W 4 of one side of the under-doped layer is 1 ⁇ m, the relative refractive index ⁇ 4 is 0.7%; the first transition layer is the step refractive index, single The side width W 0 is 3 ⁇ m, the relative refractive index ⁇ 0 is 0.8%; the radius r 2 of the multimode layer is 30 ⁇ m, and the ⁇ is 2.1; the second transition layer is a stepped refractive index, and the single side width W 5 is 4 ⁇ m, relative refraction The rate ⁇ 5 is -0.2%; the outer cladding is pure silica glass, and the new fiber radius r 3 is 62.3 ⁇ m.
  • the main characteristics of the new optical fiber are as follows.
  • the mode field diameter of the single-mode core is 8.8 ⁇ m at a wavelength of 1310 nm, and the cut-off wavelength is 1290 nm.
  • the full injection bandwidth of the multi-mode layer is 2500MHz ⁇ km at a wavelength of 850nm and 500MHz ⁇ km at a wavelength of 1310nm.
  • the macrobending loss of the new optical fiber with a bending radius of 15mm around 10 turns is 0.067dB at 850nm, and the fiber attenuation at 1310nm is about 0.002dB/km.
  • the novel optical fiber includes a single-mode fiber core, a first transition layer, a multi-mode layer, a second transition layer, a recessed layer, and an outer cladding layer arranged coaxially from inside to outside.
  • the single-mode fiber The core is located in the center of the optical fiber and has an upper step refractive index.
  • the multimode layer is interposed between the first transition layer and the second transition layer and has a refractive index with an ⁇ profile distribution, in which a single-mode core
  • the radius r 1 is 5 ⁇ m, the relative refractive index ⁇ 1 is 1.9%
  • the first transition layer is a step refractive index, the width W 0 on one side is 4.5 ⁇ m, the relative refractive index ⁇ 0 is 1.5%
  • the radius r of the multimode layer 2 is 34.5 ⁇ m, ⁇ is 2.2
  • the second transition layer is a step refractive index, the unilateral width W 5 is 6 ⁇ m, and the relative refractive index ⁇ 5 is 0
  • the unilateral width W 6 of the recessed layer is between 10 ⁇ m,
  • the relative refractive index ⁇ 6 is -0.4%
  • the outer cladding is pure silica glass
  • the new fiber radius r 3 is 63 ⁇ m.
  • the main characteristics of the new optical fiber are as follows.
  • the novel optical fiber includes a single-mode core, a first transition layer, a multi-mode layer, a second transition layer, a recessed layer, and an outer cladding coaxially arranged from the inside to the outside.
  • the single-mode fiber The core is located in the center of the optical fiber and has an upper step refractive index.
  • the multimode layer is interposed between the first transition layer and the second transition layer and has a refractive index with an ⁇ profile distribution, in which a single-mode core
  • the radius r 1 is 3 ⁇ m, the relative refractive index ⁇ 1 is 1.3%
  • the first transition layer is a step refractive index, the width W 0 on one side is 1.5 ⁇ m, the relative refractive index ⁇ 0 is 1%
  • the radius r of the multimode layer 2 is 28 ⁇ m, ⁇ is 2.15
  • the second transition layer is a step refractive index, one side width W 5 is 5.5 ⁇ m, the relative refractive index ⁇ 5 is -0.05%
  • the single side width W 6 of the recessed layer is 10 ⁇ m
  • the relative refractive index ⁇ 6 is -0.35%
  • the outer cladding is pure silica glass, and the new fiber radius r 3 is 62.5 ⁇ m.
  • the novel optical fiber includes a coaxial single-mode core, an auxiliary under-doped layer, a main under-doped layer, a first transition layer, a multi-mode layer, a second transition layer, and a depression Layer and outer cladding
  • the single-mode core is located in the center of the optical fiber, and has an upper step refractive index, with a refractive index of ⁇ profile distribution, wherein the radius r 1 of the single-mode core is 5 ⁇ m, and the relative refractive index ⁇ 1 is 1.9 %
  • the monolayer width of the auxiliary under-doped layer is 1 ⁇ m for W 14 and the relative refractive index ⁇ 14 is 1.45%
  • the monolayer width of the main under-doped layer is 2 ⁇ m for W 04 and the relative refractive index ⁇ 04 is 1.3%
  • the first transition layer is a step refractive index, the width W 0 on one side is 4.5 ⁇ m, the relative refractive index ⁇ 0 is 1.5%
  • the main characteristics of the new optical fiber are as follows.
  • the macrobending loss with a bending radius of 15 mm around 10 turns is 0.054 dB at a wavelength of 850 nm and 0.001 dB at a wavelength of 1310 nm.
  • the novel optical fiber includes a coaxial single-mode core, a first transition layer, a multi-mode layer, a second transition layer, a main depression layer, an auxiliary depression layer, and an outer cladding layer, which are arranged coaxially from inside to outside.
  • the single-mode core is located in the center of the optical fiber and has an upper step refractive index with a refractive index of ⁇ profile distribution, wherein the radius r 1 of the single-mode core is 5 ⁇ m, and the relative refractive index ⁇ 1 is 1.9%;
  • the single-layer width of the layer is 1 ⁇ m for W 14 and the relative refractive index ⁇ 14 is 1.45%;
  • the single-layer width of the main under-doped layer is 2 ⁇ m for W 04 and the relative refractive index ⁇ 04 is 1.3%;
  • the first transition layer is Step refractive index, unilateral width W 0 is 4.5 ⁇ m, relative refractive index ⁇ 0 is 1.5%;
  • radius r 2 of multimode layer is 35 ⁇ m, ⁇ is 2.2;
  • second transition layer is step refractive index, unilateral width W 5 is 6 ⁇ m, the relative refractive index ⁇ 5 is -0.05%;
  • the single-layer width of the main depression layer is W 06 is 3
  • the mode field diameter of the single-mode core of the novel optical fiber of the present invention is 8.9-9.2 ⁇ m
  • the cut-off wavelength of the optical fiber is 1250-1300 nm.
  • the full injection bandwidth of the multi-mode layer is 500 to 4500 MHz ⁇ km at a wavelength of 850 nm, and 400 to 2500 MHz ⁇ km at a wavelength of 1310 nm.
  • the macrobending loss of a fiber with a bending radius of 15 mm around 10 turns is 0.048 to 0.67 dB at 850 nm, and 0.001 to 0.02 dB at a wavelength of 1310 nm.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Glass Compositions (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

一种新型光纤,由内到外依次包括同轴设置的单模纤芯、多模层及外包层,单模纤芯位于光纤中心,且具有上阶跃折射率,多模层包围于单模纤芯外,且具有α轮廓分布的折射率;多模层内侧和/或多模层外侧设有若干过渡层,过渡层与单模纤芯或所述外包层同轴设置,且过渡层紧贴多模层,其折射率与多模层接触部分的折射率相等。该新型光纤兼具单模传输和多模传输,大大简化数据中心光缆管理、降低未来收发器升级成本,且通过设置过渡层使得光纤具备良好的低损耗特性。另设计含有下掺层或凹陷层使得光纤具有较好的抗弯曲性能。

Description

新型光纤 技术领域
本发明涉及光纤技术领域,特别是指一种数据中心用的新型光纤。
背景技术
本部分旨在为权利要求书中陈述的本发明的实施方式提供背景或上下文。此处的描述不因为包括在本部分中就承认是现有技术。
单模光纤、多模光纤主要由于模式、数量的显著不同,是两种不同的光纤,也应用在不同的场景中,在数据中心的使用场景中,多模光纤和单模光纤同时存在。单模光纤与多模光纤相比,价格存在明显优势,但是单模收发器比多模收发器价格又高出不少,综合测算,在传输距离小于100-150m时,多模传输依然是成本效益最佳的解决方案。
但是随着数据中心建设量、规模的增大,***带宽高、到达距离长,在数据中心中更长距离的传输还是需要依靠单模光纤来完成,因此在一个数据中心中就存在单模、多模光纤的混合使用,在对接时就需要专门的处理。如果有一种光纤,既能够实现单模传输,又能够实现多模传输,将能够大大简化光缆管理、降低未来收发器升级成本。
发明内容
鉴于以上内容,有必要提供一种改进的新型光纤,其兼具单模和多模传输。
本发明提供的技术方案为:一种新型光纤,由内到外依次包括同轴设置的单模纤芯、多模层及外包层,所述单模纤芯位于光纤中心,且具有上阶跃折射率,所述多模层包围于所述单模纤芯外,且具有α轮廓分布的折射率;所述多模层内侧和/或所述多模层外侧设有若干 过渡层,所述过渡层与所述单模纤芯或所述外包层同轴设置,且所述过渡层紧贴所述多模层,其折射率与所述多模层接触部分的折射率相等。
进一步地,当所述过渡层介于所述单模纤芯和所述多模层之间为第一过渡层,与纯二氧化硅相比,所述第一过渡层的相对折射率δ 0为0.5%至2.0%之间,所述第一过渡层的单侧宽度W 0为1μm至4μm之间;当所述过渡层介于所述多模层和所述外包层之间为第二过渡层,与纯二氧化硅相比,所述第二过渡层的相对折射率δ 5为-0.4%至0.15%之间,所述第二过渡层的单侧宽度W 5为1μm至7μm之间。
进一步地,所述单模纤芯为掺锗的二氧化硅玻璃,其半径r 1为3μm至5μm之间,相对折射率δ 1高于所述第一过渡层的相对折射率δ 0,δ 10=0.25%~0.4%。
进一步地,所述多模层的相对折射率δ 2介于所述第一过渡层的相对折射率δ 0和所述第二过渡层的相对折射率δ 5之间,呈α轮廓分布,所述多模层的半径r 2为15μm至35μm之间,α为1.8至2.5之间。
进一步地,所述新型光纤的半径r 3为62μm至63μm之间。
进一步地,所述单模纤芯与所述多模层之间包括下阶跃折射率的下掺层,所述下掺层的相对折射率δ 4低于所述第一过渡层的相对折射率δ 0,所述下掺层的单侧宽度W 4为0.5μm至5μm之间,且δ 40=-0.05%~-0.35%。
进一步地,所述下掺层包括同轴设置的多层结构,其中具有较低阶跃折射率的为主下掺层,其他为辅下掺层。
进一步地,所述下掺层包括主下掺层和一辅下掺层,其中
所述主下掺层的单层宽度为W 04为1μm至4μm之间,且δ 040=-0.1%~-0.35%;
所述辅下掺层的单层宽度为W 14为0.5μm至4μm之间,且δ 140=-0.05%~-0.2%。
进一步地,所述多模层与所述外包层之间包括下阶跃折射率的凹 陷层,所述凹陷层的相对折射率δ 6低于所述第二过渡层的相对折射率δ 5,所述凹陷层的单侧宽度W 6为2μm至45μm之间,相对折射率δ 6为-0.05%至-0.4%之间,所述外包层为纯二氧化硅玻璃。
进一步地,所述凹陷层包括同轴设置的多层结构,其中具有较低阶跃折射率的为主凹陷层,其他为辅凹陷层。
进一步地,所述凹陷层包括主凹陷层和一辅凹陷层,其中
所述主凹陷层的单层宽度为W 06为2μm至6μm之间,且相对折射率δ 06为-0.2%至-0.4%之间;
所述辅凹陷层的单层宽度为W 16为2μm至45μm之间,且相对折射率δ 16为-0.05%至-0.2%之间。
与现有技术相比,本发明提供的一种新型光纤,由内到外依次包括同轴设置的单模纤芯、多模层及外包层,所述单模纤芯位于光纤中心,且具有上阶跃折射率,所述多模层包围于所述单模纤芯外,且具有α轮廓分布的折射率;所述多模层内侧和/或所述多模层外侧设有若干过渡层,所述过渡层与所述单模纤芯或所述外包层同轴设置,且所述过渡层紧贴所述多模层,其折射率与所述多模层接触部分的折射率相等。本发明的新型光纤兼具单模传输和多模传输,大大简化光缆管理、降低未来收发器升级成本,且通过设置过渡层使得光纤具备良好的低损耗特性。另设计含有下掺层或凹陷层使得光纤具有较好的抗弯曲性能。
附图说明
下面结合附图和具体实施方式对本发明作进一步详细的说明。
图1为本发明第一实施方式中新型光纤的折射率分布图。
图2为本发明第二实施方式中新型光纤的折射率分布图。
图3为本发明第三实施方式中新型光纤的折射率分布图。
图4为本发明第四实施方式中新型光纤的折射率分布图。
图5为本发明第五实施方式中新型光纤的折射率分布图。
图6为本发明第六实施方式中新型光纤的折射率分布图。
图7为本发明第七实施方式中新型光纤的折射率分布图。
图8为本发明第八实施方式中新型光纤的折射率分布图。
图9为图8所示新型光纤的截面结构示意图。
附图标记说明:
无。
如下具体实施方式将结合上述附图进一步说明本发明实施例。
具体实施方式
为了能够更清楚地理解本发明实施例的上述目的、特征和优点,下面结合附图和具体实施方式对本发明进行详细描述。需要说明的是,在不冲突的情况下,本申请的实施方式中的特征可以相互组合。
在下面的描述中阐述了很多具体细节以便于充分理解本发明实施例,所描述的实施方式仅是本发明一部分实施方式,而不是全部的实施方式。基于本发明中的实施方式,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施方式,都属于本发明实施例保护的范围。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明实施例的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施方式的目的,不是旨在于限制本发明实施例。
本发明提供的一种新型光纤,混合有单模光纤和多模光纤,能够实现单模传输,又能够实现多模传输,将能够大大简化光缆管理、降低未来收发器升级成本。所述新型光纤由内到外依次包括同轴设置的单模纤芯、多模层及外包层,所述单模纤芯位于光纤中心,且具有上阶跃折射率,所述多模层包围于所述单模纤芯外,且具有α轮廓分布的折射率;所述多模层内侧和/或所述多模层外侧设有若干过渡层, 所述过渡层与所述单模纤芯或所述外包层同轴设置,且所述过渡层紧贴所述多模层,其折射率与所述多模层接触部分的折射率相等。
其中,
过渡层,介于所述单模纤芯和所述多模层之间,也称第一过渡层,与纯二氧化硅相比,所述第一过渡层的相对折射率δ 0为0.5%至2.0%之间,所述第一过渡层的单侧宽度W 0为1μm至4μm之间;其相对折射率δ 0低于所述单模纤芯的相对折射率δ 1,且与所述多模层接触部分(即所述多模层内侧)的折射率相等,减小差异性,同时预制时过渡层前驱体的粘度也介于单模纤芯和多模层的粘度之间,能够实现多层夹心结构的均匀拉制,减小拉丝过程中由于粘度不匹配造成的应力上升,衰减大的问题,使得新型光纤具有较低的损耗特性。
过渡层,介于所述多模层和所述外包层之间,也称第二过渡层,与纯二氧化硅相比,所述第二过渡层的相对折射率δ 5为-0.4%至0.15%之间,所述第二过渡层的单侧宽度W 5为1μm至7μm之间,其相对折射率δ 5与所述多模层接触部分(即所述多模层外侧)的折射率相等,同样确保多模层具有较低的损耗特性,且降低成型难度。
单模纤芯,为掺锗的二氧化硅玻璃,其半径r 1为3μm至5μm之间,相对折射率δ 1高于所述第一过渡层的相对折射率δ 0,δ 10=0.25%~0.4%。
多模层,其相对折射率δ 2介于所述第一过渡层的相对折射率δ 0和所述第二过渡层的相对折射率δ 5之间,呈α轮廓分布,所述多模层的半径r 2为15μm至35μm之间,α为1.8至2.5之间。
所述新型光纤的半径r 3为62μm至63μm之间。
外包层,为纯二氧化硅玻璃。
在具体实施方式中,所述单模纤芯与所述多模层之间包括下阶跃折射率的下掺层,所述下掺层的相对折射率δ 4低于所述第一过渡层的相对折射率δ 0,所述下掺层的单侧宽度W 4为0.5μm至5μm之间,且δ 40=-0.05%~-0.35%。在具体实施方式中,所述下掺层包括同轴设置的多层结构,其中具有较低阶跃折射率的为主下掺层,其他 为辅下掺层。例如,所述下掺层包括主下掺层和一辅下掺层,其中所述主下掺层的单层宽度为W 04为1μm至4μm之间,且δ 040=-0.1%~-0.35%;所述辅下掺层的单层宽度为W 14为0.5μm至4μm之间,且δ 140=-0.05%~-0.2%。
在具体实施方式中,所述多模层与所述外包层之间包括下阶跃折射率的凹陷层,所述凹陷层的相对折射率δ 6低于所述第二过渡层的相对折射率δ 5,所述凹陷层的单侧宽度W 6为2μm至45μm之间,相对折射率δ 6为-0.05%至-0.4%之间,所述外包层为纯二氧化硅玻璃。在具体实施方式中,所述凹陷层包括同轴设置的多层结构,其中具有较低阶跃折射率的为主凹陷层,其他为辅凹陷层。例如,所述凹陷层包括主凹陷层和一辅凹陷层,其中所述主凹陷层的单层宽度为W 06为2μm至6μm之间,且相对折射率δ 06为-0.2%至-0.4%之间;所述辅凹陷层的单层宽度为W 16为2μm至45μm之间,且相对折射率δ 16为-0.05%至-0.2%之间。
以下为详细说明本发明,进行举例说明。
实施例1
如图1所示,所述新型光纤由内到外依次包括同轴设置的单模纤芯、第一过渡层、多模层及外包层,所述单模纤芯位于光纤中心,且具有上阶跃折射率,所述多模层包围于所述过渡层的外侧,且具有α轮廓分布的折射率,其中单模纤芯的半径r 1为4μm,相对折射率δ 1为1.25%;第一过渡层为阶跃折射率,单侧宽度W 0为2μm,相对折射率δ 0为1.0%;多模层的半径r 2为18μm,α为1.8;外包层为纯二氧化硅玻璃,新型光纤半径r 3为62μm。新型光纤的主要特性如下,单模纤芯的模场(@1300nm)直径为9.8μm,光纤截止波长为1210nm;多模层满注入带宽在850nm波长为500MHz·km,在1310nm波长为2500MHz·km。
实施例2
如图2所示,所述新型光纤由内到外依次包括同轴设置的单模纤芯、第一过渡层、多模层、第二过渡层及外包层,所述单模纤芯位于光纤中心,且具有上阶跃折射率,所述多模层介于所述第一过渡层和所述第二过渡层之间,且具有α轮廓分布的折射率,其中单模纤芯的半径r 1为3.8μm,相对折射率δ 1为1.65%;第一过渡层为阶跃折射率,单侧宽度W 0为2μm,相对折射率δ 0为1.3%;多模层的半径r 2为20.5μm,α为1.97;第二过渡层为阶跃折射率,单侧宽度W 5为6μm,相对折射率δ 5为-0.2%;外包层为纯二氧化硅玻璃,新型光纤半径r 3为62.5μm。新型光纤的主要特性如下,单模纤芯的模场直径为9.1μm,光纤截止波长为1300nm;多模层满注入带宽在850nm波长为1300MHz·km,在1310nm波长为1300MHz·km。
实施例3
如图3所示,所述新型光纤由内到外依次包括同轴设置的单模纤芯、下掺层、第一过渡层、多模层及外包层,所述单模纤芯位于光纤中心,且具有上阶跃折射率,所述多模层包围于所述过渡层的外侧,且具有α轮廓分布的折射率,其中单模纤芯的半径r 1为4μm,相对折射率δ 1为2.1%;下掺层的单侧宽度W 4为2μm,相对折射率δ 4为1.78%;第一过渡层为阶跃折射率,单侧宽度W 0为4μm,相对折射率δ 0为1.8%;多模层的半径r 2为30μm,α为2.05;外包层为纯二氧化硅玻璃,新型光纤半径r 3为63μm。新型光纤的主要特性如下,单模纤芯的模场直径在1310nm波长下为8.9μm,光纤截止波长为1250nm;多模层满注入带宽在850nm波长为4500MHz·km,在1310nm波长为600MHz·km。新型光纤绕10圈弯曲半径为15mm的宏弯损耗在850nm处为0.067dB,在1310nm波长处为0.002dB。
实施例4
如图4所示,所述新型光纤由内到外依次包括同轴设置的单模纤 芯、下掺层、第一过渡层、多模层、第二过渡层及外包层,所述单模纤芯位于光纤中心,且具有上阶跃折射率,所述多模层介于所述第一过渡层和所述第二过渡层之间,且具有α轮廓分布的折射率,其中单模纤芯的半径r 1为3.4μm,相对折射率δ 1为1.2%;下掺层的单侧宽度W 4为1μm,相对折射率δ 4为0.7%;第一过渡层为阶跃折射率,单侧宽度W 0为3μm,相对折射率δ 0为0.8%;多模层的半径r 2为30μm,α为2.1;第二过渡层为阶跃折射率,单侧宽度W 5为4μm,相对折射率δ 5为-0.2%;外包层为纯二氧化硅玻璃,新型光纤半径r 3为62.3μm。新型光纤的主要特性如下,单模纤芯的模场直径在1310nm波长下为8.8μm,截止波长为1290nm。多模层满注入带宽在850nm波长为2500MHz·km,在1310nm波长为500MHz·km。新型光纤绕10圈弯曲半径为15mm的宏弯损耗在850nm处为0.067dB,在1310nm处光纤衰减约为0.002dB/km。
实施例5
如图5所示,所述新型光纤由内到外依次包括同轴设置的单模纤芯、第一过渡层、多模层、第二过渡层、凹陷层及外包层,所述单模纤芯位于光纤中心,且具有上阶跃折射率,所述多模层介于所述第一过渡层和所述第二过渡层之间,且具有α轮廓分布的折射率,其中单模纤芯的半径r 1为5μm,相对折射率δ 1为1.9%;第一过渡层为阶跃折射率,单侧宽度W 0为4.5μm,相对折射率δ 0为1.5%;多模层的半径r 2为34.5μm,α为2.2;第二过渡层为阶跃折射率,单侧宽度W 5为6μm,相对折射率δ 5为0;所述凹陷层的单侧宽度W 6为10μm之间,相对折射率δ 6为-0.4%;外包层为纯二氧化硅玻璃,新型光纤半径r 3为63μm。新型光纤的主要特性如下,多模层满注入带宽在850nm波长处为600MHz·km,在1310nm波长处为350MHz·km。
实施例6
如图6所示,所述新型光纤由内到外依次包括同轴设置的单模纤 芯、第一过渡层、多模层、第二过渡层、凹陷层及外包层,所述单模纤芯位于光纤中心,且具有上阶跃折射率,所述多模层介于所述第一过渡层和所述第二过渡层之间,且具有α轮廓分布的折射率,其中单模纤芯的半径r 1为3μm,相对折射率δ 1为1.3%;第一过渡层为阶跃折射率,单侧宽度W 0为1.5μm,相对折射率δ 0为1%;多模层的半径r 2为28μm,α为2.15;第二过渡层为阶跃折射率,单侧宽度W 5为5.5μm,相对折射率δ 5为-0.05%;所述凹陷层的单侧宽度W 6为10μm之间,相对折射率δ 6为-0.35%;外包层为纯二氧化硅玻璃,新型光纤半径r 3为62.5μm。
实施例7
如图7所示,所述新型光纤由内到外依次包括同轴设置的单模纤芯、辅下掺层、主下掺层、第一过渡层、多模层、第二过渡层、凹陷层及外包层,所述单模纤芯位于光纤中心,且具有上阶跃折射率,具有α轮廓分布的折射率,其中单模纤芯的半径r 1为5μm,相对折射率δ 1为1.9%;辅下掺层的单层宽度为W 14为1μm,且相对折射率δ 14为1.45%;主下掺层的单层宽度为W 04为2μm,且相对折射率δ 04为1.3%;第一过渡层为阶跃折射率,单侧宽度W 0为4.5μm,相对折射率δ 0为1.5%;多模层的半径r 2为35μm,α为2.2;第二过渡层为阶跃折射率,单侧宽度W 5为6μm,相对折射率δ 5为0;所述凹陷层的单侧宽度W 6为10μm之间,相对折射率δ 6为-0.3%;外包层为纯二氧化硅玻璃,新型光纤半径r 3为62.8μm。新型光纤的主要特性如下,绕10圈弯曲半径为15mm的宏弯损耗在850nm波长处为0.054dB,在1310nm波长处为0.001dB。
实施例8
如图8所示,所述新型光纤由内到外依次包括同轴设置的单模纤芯、第一过渡层、多模层、第二过渡层、主凹陷层、辅凹陷层及外包层,所述单模纤芯位于光纤中心,且具有上阶跃折射率,具有α轮廓 分布的折射率,其中单模纤芯的半径r 1为5μm,相对折射率δ 1为1.9%;辅下掺层的单层宽度为W 14为1μm,且相对折射率δ 14为1.45%;主下掺层的单层宽度为W 04为2μm,且相对折射率δ 04为1.3%;第一过渡层为阶跃折射率,单侧宽度W 0为4.5μm,相对折射率δ 0为1.5%;多模层的半径r 2为35μm,α为2.2;第二过渡层为阶跃折射率,单侧宽度W 5为6μm,相对折射率δ 5为-0.05%;主凹陷层的单层宽度为W 06为3μm,且相对折射率δ 06为-0.35%;辅凹陷层的单层宽度为W 16为3μm之间,且相对折射率δ 16为-0.2%;外包层为纯二氧化硅玻璃,新型光纤半径r 3为62.8μm。新型光纤的主要特性如下,绕10圈弯曲半径为15mm的宏弯损耗在850nm处为0.048dB,在1310nm处为0.001dB。
以上实施例表明,本发明的新型光纤的单模纤芯的模场直径为8.9~9.2μm,光纤截止波长为1250-1300nm。多模层满注入带宽在850nm波长为500~4500MHz·km,在1310nm波长处为400~2500MHz·km。光纤绕10圈弯曲半径为15mm的宏弯损耗在850nm处为0.048~0.67dB,在1310nm波长处为0.001~0.02dB。
以上实施方式仅用以说明本发明实施例的技术方案而非限制,尽管参照以上较佳实施方式对本发明实施例进行了详细说明,本领域的普通技术人员应当理解,可以对本发明实施例的技术方案进行修改或等同替换都不应脱离本发明实施例的技术方案的精神和范围。

Claims (11)

  1. 一种新型光纤,其特征在于:由内到外依次包括同轴设置的单模纤芯、多模层及外包层,所述单模纤芯位于光纤中心,且具有上阶跃折射率,所述多模层包围于所述单模纤芯外,且具有α轮廓分布的折射率;所述多模层内侧和/或所述多模层外侧设有若干过渡层,所述过渡层与所述单模纤芯或所述外包层同轴设置,且所述过渡层紧贴所述多模层,其折射率与所述多模层接触部分的折射率相等。
  2. 根据权利要求1所述的新型光纤,其特征在于:当所述过渡层介于所述单模纤芯和所述多模层之间为第一过渡层,与纯二氧化硅相比,所述第一过渡层的相对折射率δ 0为0.5%至2.0%之间,所述第一过渡层的单侧宽度W 0为1μm至4μm之间;当所述过渡层介于所述多模层和所述外包层之间为第二过渡层,与纯二氧化硅相比,所述第二过渡层的相对折射率δ 5为-0.4%至0.15%之间,所述第二过渡层的单侧宽度W 5为1μm至7μm之间。
  3. 根据权利要求2所述的新型光纤,其特征在于:所述单模纤芯为掺锗的二氧化硅玻璃,其半径r 1为3μm至5μm之间,相对折射率δ 1高于所述第一过渡层的相对折射率δ 0,δ 10=0.25%~0.4%。
  4. 根据权利要求2所述的新型光纤,其特征在于:所述多模层的相对折射率δ 2介于所述第一过渡层的相对折射率δ 0和所述第二过渡层的相对折射率δ 5之间,呈α轮廓分布,所述多模层的半径r 2为15μm至35μm之间,α为1.8至2.5之间。
  5. 根据权利要求2所述的新型光纤,其特征在于:所述新型光纤的半径r 3为62μm至63μm之间。
  6. 根据权利要求3-5中任一项所述的新型光纤,其特征在于:所述单模纤芯与所述多模层之间包括下阶跃折射率的下掺层,所述下掺层的相对折射率δ 4低于所述第一过渡层的相对折射率δ 0,所述下掺层的单侧宽度W 4为0.5μm至5μm之间,且δ 40=-0.05%~-0.35%。
  7. 根据权利要求6所述的新型光纤,其特征在于:所述下掺层包 括同轴设置的多层结构,其中具有较低阶跃折射率的为主下掺层,其他为辅下掺层。
  8. 根据权利要求6所述的新型光纤,其特征在于:所述下掺层包括主下掺层和一辅下掺层,其中
    所述主下掺层的单层宽度为W 04为1μm至4μm之间,且δ 040=-0.1%~-0.35%;
    所述辅下掺层的单层宽度为W 14为0.5μm至4μm之间,且δ 140=-0.05%~-0.2%。
  9. 根据权利要求3-5中任一项所述的新型光纤,其特征在于:所述多模层与所述外包层之间包括下阶跃折射率的凹陷层,所述凹陷层的相对折射率δ 6低于所述第二过渡层的相对折射率δ 5,所述凹陷层的单侧宽度W 6为2μm至45μm之间,相对折射率δ 6为-0.05%至-0.4%之间,所述外包层为纯二氧化硅玻璃。
  10. 根据权利要求9所述的新型光纤,其特征在于:所述凹陷层包括同轴设置的多层结构,其中具有较低阶跃折射率的为主凹陷层,其他为辅凹陷层。
  11. 根据权利要求9所述的新型光纤,其特征在于:所述凹陷层包括主凹陷层和一辅凹陷层,其中
    所述主凹陷层的单层宽度为W 06为2μm至6μm之间,且相对折射率δ 06为-0.2%至-0.4%之间;
    所述辅凹陷层的单层宽度为W 16为2μm至45μm之间,且相对折射率δ 16为-0.05%至-0.2%之间。
PCT/CN2018/125787 2018-12-29 2018-12-29 新型光纤 WO2020133478A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP18900575.4A EP3904925A4 (en) 2018-12-29 2018-12-29 NOVEL OPTICAL FIBER
PCT/CN2018/125787 WO2020133478A1 (zh) 2018-12-29 2018-12-29 新型光纤

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/125787 WO2020133478A1 (zh) 2018-12-29 2018-12-29 新型光纤

Publications (1)

Publication Number Publication Date
WO2020133478A1 true WO2020133478A1 (zh) 2020-07-02

Family

ID=71128242

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/125787 WO2020133478A1 (zh) 2018-12-29 2018-12-29 新型光纤

Country Status (2)

Country Link
EP (1) EP3904925A4 (zh)
WO (1) WO2020133478A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5913005A (en) * 1997-01-29 1999-06-15 Sumitomo Electric Industries, Ltd. Single-mode optical fiber
CN1514262A (zh) * 2003-07-15 2004-07-21 长飞光纤光缆有限公司 与正色散和正色散斜率单模光纤匹配使用的色散补偿传输光纤及用途
CN103149630A (zh) * 2013-03-06 2013-06-12 长飞光纤光缆有限公司 一种低衰减单模光纤
CN105204110A (zh) * 2015-10-31 2015-12-30 长飞光纤光缆股份有限公司 一种具有较低差分模群时延的少模光纤
CN105511015A (zh) * 2016-01-28 2016-04-20 国网江西省电力公司信息通信分公司 一种少模光纤

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8971682B2 (en) * 2012-03-01 2015-03-03 Corning Incorporated Few mode optical fibers
US9042692B2 (en) * 2013-08-27 2015-05-26 Corning Cable Systems Llc Universal optical fibers for optical fiber connectors

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5913005A (en) * 1997-01-29 1999-06-15 Sumitomo Electric Industries, Ltd. Single-mode optical fiber
CN1514262A (zh) * 2003-07-15 2004-07-21 长飞光纤光缆有限公司 与正色散和正色散斜率单模光纤匹配使用的色散补偿传输光纤及用途
CN103149630A (zh) * 2013-03-06 2013-06-12 长飞光纤光缆有限公司 一种低衰减单模光纤
CN105204110A (zh) * 2015-10-31 2015-12-30 长飞光纤光缆股份有限公司 一种具有较低差分模群时延的少模光纤
CN105511015A (zh) * 2016-01-28 2016-04-20 国网江西省电力公司信息通信分公司 一种少模光纤

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3904925A4 *

Also Published As

Publication number Publication date
EP3904925A4 (en) 2022-08-03
EP3904925A1 (en) 2021-11-03

Similar Documents

Publication Publication Date Title
Nakajima et al. Hole-assisted fiber design for small bending and splice losses
US8737793B2 (en) Multi-core optical fiber and method of manufacturing the same
CN106575013A (zh) 多芯光纤、光缆及光连接器
US20240027678A1 (en) Multicore optical fiber and design method
JP2013092801A (ja) マルチコアファイバ
WO2013177996A1 (zh) 一种渐变折射率抗弯曲多模光纤
JPS6252508A (ja) 光フアイバ
US11561340B2 (en) Multi-core optical fiber and multi-core optical fiber cable
US20220120962A1 (en) Multi-core optical fiber and multi-core optical fiber cable
US20210356657A1 (en) Optical fiber
US20190162899A1 (en) Few-mode optical fiber
US20190278020A1 (en) Optical fiber, colored optical fiber, and optical transmission system
WO2021189891A1 (zh) 一种多芯多模光纤
CN111474626A (zh) 一种多芯光纤
US12007601B2 (en) Multi-core optical fiber and multi-core optical fiber cable
WO2021015186A1 (ja) マルチコア光ファイバ及び設計方法
US20200333528A1 (en) Optical fiber, coated optical fiber, and optical transmission system
WO2020133478A1 (zh) 新型光纤
US20230185017A1 (en) Multi-core optical fiber and multi-core optical fiber cable
CN111381312A (zh) 新型光纤
CN209460449U (zh) 新型光纤
CN101169497A (zh) 全波非零色散平坦单模光纤
CN104345383A (zh) 弯曲不敏感的宽带色散平坦单模光纤
CN108983350B (zh) 一种小芯径渐变折射率光纤
CN104345382A (zh) 弯曲不敏感的宽带色散优化单模光纤

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18900575

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018900575

Country of ref document: EP

Effective date: 20210729