WO2020133416A1 - 离子橡胶弹性体及其制备方法、离电子式电子皮肤 - Google Patents

离子橡胶弹性体及其制备方法、离电子式电子皮肤 Download PDF

Info

Publication number
WO2020133416A1
WO2020133416A1 PCT/CN2018/125646 CN2018125646W WO2020133416A1 WO 2020133416 A1 WO2020133416 A1 WO 2020133416A1 CN 2018125646 W CN2018125646 W CN 2018125646W WO 2020133416 A1 WO2020133416 A1 WO 2020133416A1
Authority
WO
WIPO (PCT)
Prior art keywords
ionic
rubber
rubber elastomer
nano
liquid
Prior art date
Application number
PCT/CN2018/125646
Other languages
English (en)
French (fr)
Inventor
常煜
彭涛
李森
王连建
Original Assignee
钛深科技(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 钛深科技(深圳)有限公司 filed Critical 钛深科技(深圳)有限公司
Priority to PCT/CN2018/125646 priority Critical patent/WO2020133416A1/zh
Publication of WO2020133416A1 publication Critical patent/WO2020133416A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/24Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying capacitance
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L19/00Compositions of rubbers not provided for in groups C08L7/00 - C08L17/00
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L7/00Compositions of natural rubber
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/16Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying resistance

Definitions

  • the invention belongs to the technical field of sensors, and particularly relates to an ionic rubber elastomer and a preparation method thereof, and an ionized electronic skin.
  • Existing artificial mechanical prostheses can already simulate the appearance of the original limbs and a variety of mechanical functions, and when the skin prosthesis is added to the mechanical prosthesis, it can restore the various external perception capabilities of the prosthesis and give the user's life Bring tangible help.
  • robots similar in appearance to humans or animals are expected to develop in leaps and bounds in areas such as housekeeping services, companionship, pet companionship, and public display, and their related markets will gradually expand.
  • the skin's perception function to the intelligent robot, so that the robot can feel the external pressure, vibration and other signals through the skin.
  • it can assist the robot to control the movement through tactile intelligence, such as grabbing, tapping, stroking, etc.; on the other hand, making the intelligent
  • the robot imitates the function of humans or animals one step further.
  • the robot can respond to external stimuli to better serve human beings and protect itself; In addition, it also provides a new way of human-computer interaction.
  • Electronic skin is an electronic device that simulates the shape and function of human skin. That is, the external pressure and vibration stimuli felt by the bionic skin will be transmitted and analyzed through electronic signals to determine the size and position of the stimulus. More and more topics of concern. Humans sense external stimuli, including temperature and pressure, through sensory cells in the skin. The tactile sensation of the skin is provided by mechanically sensitive receptors that exist in different thickness layers of the skin. These mechanical receptors will provide humans with information about the surrounding environment pressure, roughness, hardness, vibration and so on.
  • Mechanical receptors can be divided into different categories according to their structure and function: Merkel contact discs that are sensitive to local stress at the surface of the skin; Ruffini terminators that produce signals for tensile strain and are located in the deep skin; for low-frequency dynamic excitation sources Messner bodies with uniform response sensitivity and toroidal bodies with selective response to high-frequency stimuli and ultra-high sensitivity with very small deformations of less than 10 nm.
  • the four receptors convert the received pressure and vibration signals into electrical signals and transmit them to the brain through nerves.
  • the brain is analyzed to obtain the position and size of pressure and vibration to obtain information including the shape, texture, and hardness of the object.
  • Electronic skin is to simulate the functions of various receptors in human skin through artificial electronic devices. According to the different measurement principles, the flexible pressure sensors in electronic skin are mainly divided into piezoresistive, parallel plate capacitive, piezoelectric and triboelectric. Their structures and principles are shown in Figure 1.
  • Ionized pressure sensor is a new pressure sensing technology based on the principle of interface electric double layer capacitance.
  • This pressure sensor uses materials rich in freely movable anions and cations, such as high-boiling-point solutions of electrolytes, ionic liquids, polyelectrolytes, and ionic liquid gels.
  • electrolytes such as electrolytes, ionic liquids, polyelectrolytes, and ionic liquid gels.
  • This electric double layer is a nano-scale capacitor structure formed by ion arrangement.
  • the interface capacitance is mainly positively related to the contact area between the electrode and the ionic material, and the interface capacitance pressure sensor is based on this. Under the action of pressure, the contact area between the ionic material and the electrode increases , The sensor capacitance also increases accordingly, as shown in Figure 2.
  • the interface capacitive pressure sensing mechanism is a brand-new sensing mechanism different from the existing resistive, capacitive and piezoelectric sensing.
  • interface capacitive pressure sensors Because the value of the interface capacitance can reach hundreds of nF or even uF level, compared with the parallel plate capacitive sensor of dozens of pF, its sensitivity is increased by more than 1000 times, and it has strong anti-interference ability to human body and environmental capacitance noise.
  • interface capacitive pressure sensors Compared with piezoresistive pressure sensors, interface capacitive pressure sensors have better linear response in a certain pressure range.
  • ionic materials can be prepared into solutions, inks, and slurries In other forms, it can be more conveniently prepared into a ionic material layer by various processing methods such as dip coating, blade coating, inkjet, printing and so on.
  • the interface capacitive pressure sensor can detect static pressure while having a fast mechanical response speed. Therefore, the electronic skin prepared by the ionizing mechanism will have more excellent performance.
  • the invention provides an ionic rubber elastomer and a preparation method thereof, and an ionized electronic skin to solve the problems of low sensitivity, complicated structure, complicated process and poor compatibility with the mechanical structure of the existing electronic skin.
  • an ionic rubber elastomer is provided.
  • the total weight of the ionic rubber elastomer is 100%.
  • the ionic rubber elastomer includes the following raw materials in the following weight percentages: Components:
  • Liquid ionic materials 1% ⁇ 80%
  • Nano powder material 0.1% ⁇ 50%
  • a method for preparing an ionic rubber elastomer including the following steps:
  • the precursor material is deposited on the substrate and cured to obtain an ionic rubber elastomer.
  • an ionized electronic skin including a flexible circuit board provided with interdigital electrodes, and an ionic rubber covering the surface of the interdigital electrodes of the flexible circuit board, wherein the ionic rubber includes The first surface of the flexible printed circuit interdigitated electrode and the second surface facing away from the flexible printed circuit interdigitated electrode, the first surface is a rough surface, and the material of the ionic rubber is the present invention The ionic rubber elastomer described in the examples.
  • the ionic rubber elastomer provided by the invention is added with a nano-powder material, and the surface of the nano-powder material has polar groups, such as hydroxyl groups, so that the highly polar liquid ionic material is adsorbed on the nano-powder due to the similarity of polarity Body material surface.
  • the liquid ionic material supported on the surface of the nano-powder material achieves uniform dispersion within the rubber material by virtue of the high surface area of the nano-powder material.
  • the liquid ionic materials on the surface of the nano-powder material also contact each other, forming an ion conduction channel, so that the whole rubber is obtained High ion conductivity.
  • the liquid ionic material will separate phases in the rubber precursor during the dispersion process to form an emulsion, and the separate emulsion particles are not connected to each other. Therefore, an ion conduction channel cannot be formed, making the overall rubber ion conduction poor.
  • the addition of the nano-powder material makes the liquid ionic material and the rubber matrix material that are difficult to mix functionally compound, and obtains high ionic conductivity, which is manifested by the hundreds of thousands-fold increase in the capacitance per unit area of the rubber.
  • the preparation method of the ionic rubber elastomer provided by the present invention only needs to provide the rubber material precursor and its curing agent, liquid ionic material, solid nano material, and additives according to the formula of the ionic rubber elastomer, and the raw materials are mixed and processed on the substrate It can be obtained by curing, and the operation method is simple and easy.
  • the ionized electronic skin provided by the present invention uses the ionized rubber of the ionized rubber elastomer material of the present invention as the functional structure based on the working mechanism of the ionized type, so it has a high sensitivity and fast response speed of the ionized pressure sensor , Strong anti-interference ability, good response linearity, detectable static pressure and other advantages.
  • the ion rubber covering the ion rubber elastomer material is used to cover the surface of the interdigitated electrode. Due to the high flexibility of the ion rubber, the ionized electronic skin can be easily applied to the surface of the mechanical structure to improve Compatibility with mechanical structure.
  • the ionized electronic skin provided by the present invention can use mature flexible printed circuit technology to prepare a large-area and high-density large-array electronic skin, and can be reliably connected with existing control, reading and power supply circuits .
  • FIG. 1 is a schematic diagram of the working principle of the flexible pressure sensor provided by the prior art
  • FIG. 2 is a schematic diagram of an ionized flexible pressure sensing technology provided by the prior art and its equivalent circuit
  • FIG. 3 is a schematic diagram of an ionized electronic skin provided by an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a flexible electrode array provided by an embodiment of the present invention.
  • FIG. 5 is a graph of a sensor sensitivity test result provided by Embodiment 1 of the present invention.
  • first and second are used for description purposes only, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of technical features indicated.
  • the features defined as “first” and “second” may explicitly or implicitly include one or more of the features.
  • the meaning of “plurality” is two or more, unless otherwise specifically limited.
  • a first aspect of the embodiments of the present invention provides an ionic rubber elastomer. Based on the total weight of the ionic rubber elastomer as 100%, the ionic rubber elastomer includes the following raw material components in the following weight percentages:
  • Liquid ionic materials 1% ⁇ 80%
  • Nano powder material 0.1% ⁇ 50%
  • the ionic rubber elastomer provided in the embodiment of the present invention is added with a nano-powder material, and the surface of the nano-powder material has polar groups, such as hydroxyl groups, so that the highly polar liquid ionic material is adsorbed on Nano powder material surface.
  • the liquid ionic material supported on the surface of the nano-powder material achieves uniform dispersion within the rubber material by virtue of the high surface area of the nano-powder material (the nano-powder material has a high specific surface area characteristic and can be used in rubber Evenly dispersed in the matrix material).
  • the liquid ionic materials on the surface of the nano-powder material also contact each other, forming an ion conduction channel, so that the whole rubber is obtained High ion conductivity.
  • the liquid ionic material will separate phases in the rubber precursor during the dispersion process to form an emulsion, and the separate emulsion particles are not connected to each other. Therefore, an ion conduction channel cannot be formed, making the overall rubber ion conduction poor.
  • the addition of the nano-powder material makes the liquid ionic material and the rubber matrix material that are difficult to mix functionally compound, and obtains high ionic conductivity, which is manifested by the hundreds of thousands-fold increase in the capacitance per unit area of the rubber.
  • the rubber matrix material serves as one of the matrix components of the ionic rubber elastomer, functions as a matrix for structural support among the entire ionic rubber, and provides high flexibility.
  • the rubber matrix material is selected from thermosetting rubber materials.
  • the rubber matrix material is selected from at least one of thermosetting rubber materials selected from thermosetting nitrile rubbers, thermosetting silicone rubbers, thermosetting styrene-butadiene rubbers, thermosetting acrylate rubbers, and thermosetting natural rubbers Species.
  • the preferred rubber matrix material has excellent mechanical properties, and the precursor is in a liquid or viscous flow state at normal temperature or when properly heated, and is easily uniformly blended with the nano powder material and the liquid ionic material. Further preferred is a rubber matrix material whose rubber precursor is liquid at normal temperature.
  • the weight percentage content of the rubber matrix material is 1% to 95%, specifically 1%, 5%, 10%, 15% , 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%.
  • the liquid ionic material is used as a matrix functional material to give the ionic rubber elastomer excellent ion conduction performance, thereby providing functional guarantee for preparing an ionized electronic skin using the ionic rubber elastomer.
  • the liquid ionic material is selected from at least one of ionic liquid, ionic liquid solution, and solid electrolyte solution, and the solvent in the ionic liquid solution, solid electrolyte solution is in the ionic rubber elastomer Reserved.
  • the ionic liquid is an ionic compound that is liquid at a temperature of 10°C to 35°C.
  • the ionic liquid solution may be selected from at least one of imidazole-based ionic liquids, quaternary ammonium salt-based ionic liquids, pyridine-based ionic liquids, pyrrole-based ionic liquids, piperidine-based ionic liquids, and pyrrolidine-based ionic liquids.
  • imidazole-based ionic liquids quaternary ammonium salt-based ionic liquids
  • pyridine-based ionic liquids pyrrole-based ionic liquids
  • piperidine-based ionic liquids pyrrolidine-based ionic liquids
  • the ionic liquid solution is selected from non-toxic and low-toxic ionic liquids with high ionic conductivity at normal temperature, such as pyrrolidine-based ionic liquids and quaternary ammonium-based ionic liquids.
  • the ionic liquid high-boiling organic solution is a solution formed by dissolving the ionic liquid in a high-boiling high-polar organic solvent, and the high-boiling high-polar organic solvent has a boiling point of not less than 200°C, and the molecular structure contains hydroxyl groups, An organic solvent of at least one of an amine group, an ester group, an amide group, and a carboxyl group.
  • the high-boiling point and high-polarity organic solvent has a high boiling point and is not easily volatilized, and due to the large polarity of the solvent, it can effectively dissolve the ionic compounds with high polarity.
  • the ionic liquid in the ionic liquid solution, is selected from imidazole ionic liquids, quaternary ammonium salt ionic liquids, pyridine ionic liquids, pyrrole ionic liquids, piperidine ionic liquids, and pyrrolidines At least one of ionic liquids;
  • the high boiling point and high polarity organic solvent is selected from dibutyl phthalate, tributyl citrate, nitromethylpyrrolidone, dimethyl sulfoxide, glycerol, ethylene glycol At least one.
  • the solid electrolyte high-boiling organic solution is a solution formed by a solid ionic compound in a high-boiling high-polar organic solvent at a temperature of 10°C to 35°C, and the high-boiling high-polar organic solvent has a boiling point of An organic solvent that is lower than 200°C and contains at least one of hydroxyl group, amine group, ester group, amide group, and carboxyl group in the molecular structure.
  • the high-boiling point and high-polarity organic solvent has a high boiling point and is not easily volatilized, and due to the large polarity of the solvent, it can effectively dissolve the ionic compounds with high polarity.
  • the ionic compound in the solid electrolyte solution, is selected from at least one of a small molecule electrolyte and a polymer electrolyte; the high boiling point and highly polar organic solvent is selected from dibutyl phthalate , At least one of tributyl citrate, nitromethylpyrrolidone, dimethyl sulfoxide, glycerin, ethylene glycol.
  • the weight percentage content of the liquid ionic material is 1% to 80%, specifically 1%, 5%, 10%, 15% , 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%.
  • the addition of the nano-powder material can promote the functional compounding of the liquid ionic material and the rubber matrix material that are difficult to mix.
  • the surface of the nano-powder material has polar groups, such as hydroxyl groups.
  • polar groups such as hydroxyl groups.
  • liquid ionic materials will be adsorbed on the surface of the nano-powder material due to the similarity of polarity, so as to cooperate with the solid nano-powder material in stirring and dispersing During the process, it is evenly dispersed inside the rubber material.
  • the liquid ionic materials on the surface of the powder also contact each other, forming an ion conduction channel, so that the overall rubber obtains high ion conduction Sex.
  • the liquid ionic material will separate phases in the rubber precursor during the dispersion process to form an emulsion, and the separate emulsion particles are not connected to each other, so The ion conduction channel cannot be formed, making the overall rubber ion conduction poor.
  • the nano-powder material is solid nano-particles with a size below 1000 nm.
  • the nanopowder material may be solid nanoparticles, solid nanowires, solid nanotubes or two-dimensional nanomaterials.
  • the scale indicates the particle size; when the nano-powder material is nanotube, the scale indicates the diameter of the nanotube; when the nano-powder material When it is a linear material, the scale means the diameter of the linear material; when the nano-powder material is a two-dimensional nano material, the scale means the longest diagonal of the two-dimensional nano material.
  • the nano-powder material may select one form of nano-materials, or two or more types of nano-materials.
  • the nanopowder material is selected from zero-dimensional silica nanoparticles, silica nanowire materials, silica nanotubes, two-dimensional nanosilica, titanium dioxide nanowire materials, titanium dioxide nanotubes , At least one of two-dimensional nano titanium dioxide, nano calcium carbonate particles, nano aluminum oxide particles.
  • the preferred nano powder material is compounded with the rubber matrix material and the liquid ionic material, the dispersion uniformity of the liquid ion material in the rubber matrix material can be significantly improved, and the cost is low.
  • the weight percentage content of the nano-powder material is 1% to 50%, specifically 1%, 5%, 10%, 15 %, 20%, 25%, 30%, 35%, 40%, 45%, 50%.
  • one or more additives may be added to the ionic rubber elastomer according to actual conditions to improve the performance of the ionic rubber elastomer.
  • the additive is at least one selected from defoamers, leveling agents, and rubber anti-aging agents, but is not limited thereto.
  • the defoamer and the leveling agent are used to improve the processability in the preparation process, and the rubber anti-aging agent is used to improve the anti-aging properties of the ionic rubber elastomer, thereby improving the ionic rubber The service life of the elastomer.
  • the weight percentage content of the additive is 0% to 30%, specifically 0, 1%, 5%, 10%, 15% , 20%, 25%, 30%.
  • the ionic rubber elastomer described in the examples of the present invention can be prepared by the following method.
  • a second aspect of the embodiments of the present invention provides a method for preparing an ionic rubber elastomer, including the following steps:
  • the preparation method of the ionic rubber elastomer provided by the embodiment of the present invention only needs to provide the rubber material precursor and its curing agent, liquid ionic material, solid nano material, and additives according to the formula of the ionic rubber elastomer. It can be obtained by curing treatment on the substrate, and the operation method is simple and easy.
  • the raw material formula of the ionic rubber elastomer and its preferred situation are as described above, and in order to save space, it will not be repeated here.
  • the rubber matrix material corresponds to the content of the rubber material precursor.
  • step S02 a conventional mixing method is used to mix and process the rubber material precursor and its curing agent, liquid ionic material, solid nano material, and additives to obtain a slurry-like precursor material.
  • depositing the precursor material on the substrate may be performed by conventional methods, including but not limited to pouring, printing, coating, and hot pressing.
  • the substrate may be a conventional substrate or a mold. Further, the deposited precursor material is cured to obtain an ionic rubber elastomer.
  • a substrate with a preset rough surface is used as a substrate for preparing an ionic rubber elastomer, and the precursor material is deposited on The preset rough surface of the substrate is cured to obtain an ionic rubber elastomer with a preset rough surface.
  • a third aspect of an embodiment of the present invention provides an ionized electronic skin, including a flexible circuit board provided with interdigitated electrodes, and ionic rubber covering the surface of the interdigitated electrodes of the flexible circuit board,
  • the ionic rubber includes a first surface attached to the flexible printed circuit finger electrode and a second surface facing away from the flexible printed circuit finger electrode, the first surface is a rough surface, and the The material of the ionic rubber is the ionic rubber elastomer of the present invention.
  • the ionized electronic skin provided by the embodiment of the present invention uses the ionized rubber of the ionized rubber elastomer material of the embodiment of the present invention as the functional structure, and therefore has a high sensitivity of the ionized pressure sensor , Fast response speed, strong anti-interference ability, good response linearity, detectable static pressure and other advantages.
  • the ionized electronic skin can be easily applied to the surface of the mechanical structure, improving compatibility with the mechanical structure.
  • the ionized electronic skin provided by the embodiment of the present invention can use mature flexible printed circuit technology, a large area and high density large array of electronic skin, and can be reliably connected with existing control, reading, and power supply circuits .
  • the flexible circuit board provided with interdigitated electrodes can be prepared by a conventional method. Generally, a conventional photolithography etching method or a method of printing a conductive material is used to prepare an interdigitated electrode to form a flexible circuit board.
  • the flexible circuit board is a flexible circuit board having interdigitated electrodes on one side. In some embodiments, the flexible circuit board is a flexible circuit board having interdigital electrodes on both sides. In some embodiments, the flexible circuit board is a flexible circuit board having multiple interdigitated electrodes.
  • the ionized electronic skin further includes an ion rubber covering the surface of the interdigitated electrode of the flexible circuit board, and the material of the ion rubber is the ion rubber elastomer according to the embodiment of the present invention.
  • the ionic rubber includes a first surface attached to the flexible printed circuit finger electrode and a second surface facing away from the flexible printed circuit finger electrode, the first surface being a rough surface.
  • the contact area between the ionic rubber and the interdigitated electrode will increase accordingly, because the interface capacitance of the sensor is positively related to the contact area between the ionic material and the electronic electrode
  • the overall capacitance detected by the sensor (or other electrical parameters influenced by the capacitance, such as voltage division, current, impedance, phase angle, resonance frequency, etc.) will increase accordingly, thus pushing back the pressure.
  • the ionized electronic skin increases the contact area between the ionic rubber and the interdigitated electrode under pressure, thereby increasing the size of the interface electric double layer capacitor.
  • the two ends of the interdigitated electrode are connected to the capacitance, voltage, and current detection system, and the change in the capacitance of the electric double layer at the interface caused by the pressure will be reflected in the value of the system's test capacitance, voltage, or current.
  • the detection capacitance, voltage or current values are in a one-to-one relationship, so the pressure at the current test capacitance, voltage or current values can be reversed.
  • the deionized electronic skin according to the embodiment of the present invention may be set as a single-point deionized electronic skin, or as a multi-point deionized electronic skin, or as an arrayed deionized electronic skin.
  • a flexible electrode array with 256 dots per square centimeter of electronic skin is similar to the structure of a single dot electronic skin.
  • a large area can be obtained by covering the surface of the array flexible electrode array with the required area of ionic rubber High-density large array off-electronic electronic skin.
  • a preparation method of ionized electronic skin includes the following steps:
  • ionic rubber elastomer precursor and curing agent are added at a mass ratio of 10:1, and bistrifluoromethylsulfonimide is added to the silicone elastomer precursor mass ratio of 1:1 Lithium dioctyl phthalate solution, in which lithium bistrifluoromethanesulfonimide is dissolved in dioctyl phthalate in advance to form a 5% mass fraction solution, and the gas phase with a specific surface area of 300 m 2 /g is added Nano-silica, the mass of which accounts for 10% of the silicone elastomer precursor.
  • Electrode preparation An interdigitated electrode structure was prepared on a polyimide copper-clad plate using a conventional photolithography etching process, where the interdigitated electrode line width and line spacing were both 250 microns and the electrode diameter was 3 mm.
  • Example 1 The sensor prepared in Example 1 was measured with a capacitance meter, and the capacitance value of the sensor under different pressures was measured, tested three times, and the average value was taken. The result is shown in Figure 5, and its sensitivity is about 0.03nF/kPa.
  • a preparation method of ionized electronic skin includes the following steps:
  • ionic rubber elastomer adding 1-butyl-1-methylpyrrolidine bis(trifluoromethanesulfonyl)imide to powdered nitrile rubber, and nitrile rubber and 1-butyl-1-methylpyrrole
  • the mass ratio of alkane bis(trifluoromethanesulfonyl)imide is 2:1; adding active nano calcium carbonate with a particle size of 50nm, its mass accounts for 20% of the powdered nitrile rubber, and 0.1% of the powdered nitrile rubber is added
  • Electrode preparation An interdigitated electrode structure was prepared on a polyimide copper-clad plate using a conventional photolithography etching process, where the interdigitated electrode line width and line spacing were both 250 microns and the electrode diameter was 3 mm.
  • the ionic rubber elastomer is cut into 3 mm diameter discs, and the rough side is placed on the surface of the interdigitated electrode, and the electrode and the ionic rubber are encapsulated in two thermoplastic polyurethane films by hot pressing. And cut the encapsulated polyurethane film.
  • a preparation method of ionized electronic skin includes the following steps:
  • Preparation of ionic rubber elastomer add 1-ethyl-3-methylimidazole bis(trifluoromethanesulfonyl)imide to natural rubber at a ratio of 1:1 by mass, and add nanometer titanium dioxide powder with a particle size of 50nm The mass of the nano titanium dioxide powder accounts for 15% of the natural rubber. Add a leveling agent that accounts for 0.1% of the natural rubber mass and a defoamer of 0.3%. Use mechanical agitation at 60 rpm and 150°C. 1 Hours, pre-mix all the components, then add 1.5% by weight of natural rubber as sulfur as a vulcanizing agent, and use a three-roller to mix all the materials evenly.
  • a 500 mesh sandblasted stainless steel plate was used as the template, and a flat plate vulcanizing machine was used for vulcanization at 140°C for 4 hours. After the vulcanization was completed, the natural rubber was peeled from the stainless steel template to obtain an ionic rubber elastomer film with a rough structure on one side.
  • Electrode preparation An interdigitated electrode structure was prepared on a polyimide copper-clad plate using a conventional photolithography etching process, where the interdigitated electrode line width and line spacing were both 250 microns and the electrode diameter was 3 mm.
  • the ionic rubber elastomer is cut into 3 mm diameter discs, and the rough side is placed on the surface of the interdigitated electrode, and the electrode and the ionic rubber are encapsulated in two thermoplastic polyurethane films by hot pressing. And cut the encapsulated polyurethane film.
  • a preparation method of ionized electronic skin includes the following steps:
  • ionic rubber elastomer Sylgard 184 PDMS silicone elastomer precursor and curing agent are added at a mass ratio of 10:1, and bistrifluoromethylsulfonimide is added at a mass ratio of 1:1 with the silicone elastomer precursor Lithium dioctyl phthalate solution, in which lithium bistrifluoromethanesulfonimide is dissolved in dioctyl phthalate in advance to form a 5% mass fraction solution, without adding nano powder material.
  • Electrode preparation An interdigitated electrode structure was prepared on a polyimide copper-clad plate using a conventional photolithography etching process, where the interdigitated electrode line width and line spacing were both 250 microns and the electrode diameter was 3 mm.
  • the sensitivity of the comparative example is less than 1/1000 of the former.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

一种离子橡胶弹性体,以所述离子橡胶弹性体的总重量为100%计,包括:橡胶基体材料10%~95%;液态离子材料1%~80%;纳米粉体材料0.1%~50%;添加剂0%~30%。所述离子橡胶弹性体,添加有纳米粉体材料,所述纳米粉体材料具有高比表面积特性,能够在橡胶基体材料中均匀分散;同时由于所述纳米粉体材料表面含有羟基,极性强,因此与液态离子材料具有较好的相容性,所述液态离子材料能够包覆在纳米粉体表面,并通过纳米粉体材料的负载实现液态离子材料在橡胶基体材料中的均匀分散,使得原先难以混合的液态离子材料和橡胶基体材料功能性复合,获得高离子导通性和高单位面积电容。

Description

离子橡胶弹性体及其制备方法、离电子式电子皮肤 技术领域
本发明属于传感器技术领域,尤其涉及一种离子橡胶弹性体及其制备方法,以及一种离电子式电子皮肤。
背景技术
皮肤在人和外界交互的过程中担任着极其重要的角色。通过皮肤的多种感知能力,人们可以感触到针尖的刺痛,可以感受到火焰、冰块的刺激,也可以轻易区分玻璃、织物和橡胶的表面。但是对于皮肤组织受损或者截肢人员,其皮肤的感受功能遭到破坏,他们的生活质量会大大降低。现有的人造机械义肢已经可以很好的模拟原先肢体的外表和多种机械功能,而当给机械义肢添加皮肤的感知功能后,就能够恢复义肢的多种外界感知能力,给使用者的生活带来切实的帮助。随着智能机器人和人工智能的发展,外形上与人或动物相似的机器人预期将在家政服务、伴侣陪护、宠物陪伴、公共展示等领域获得跨越式的发展,其相关市场也将逐步扩大。将皮肤的感知功能赋予智能机器人,使机器人可以通过皮肤感受到外界的压力、振动等信号,一方面可以通过触觉智能协助机器人进行动作控制,比如抓取、拍打、抚摸等;另一方面使得智能机器人对人或动物的功能模仿更进一步,机器人可以对外界的刺激做出反应,更好的服务人类和保护自己;此外还提供了一种全新的人机交互方式,在智能机器人现有的视觉智能、听觉智能的基础上,添加了触觉智能,使人和机器人的交流更加全面便捷。除此之外,具备压力、拉力、温度等感知能力的柔弹性可穿戴传感器近年也获得较大发展。在心率、脉搏、呼吸监测领域,和手势、肢体动作识别领域上,智能可穿戴电子发展迅速。以上这些应用都建立在高性能柔弹性压力、振动、拉力、温度传感器的基础上。因此,从理论、材料、工艺和应用上发展这类传感器,以获得更高的灵敏度、分辨率、响应速度等,和更高的制备效率、更低的成本、更多的应用场景,将始终是推动这些应用落实的基础和推进相关产业发展的动力。
在这样的社会和产业背景下,电子皮肤这个概念应运而生。电子皮肤是模拟人类皮肤外形和功能的电子器件,即将仿生皮肤所感受到的外部压力、振动等刺激,通过电子信号的方式进行传递和分析,从而确定刺激的大小、位置等信息,是近年来得到越来越多关注的课题。人通过皮肤内的感官细胞来感受外界刺激,包括温度、压力等。皮肤的触觉感受由存在于皮肤不同厚度层中的机械敏感性受体提供,这些机械性受体将为人类提供周围环境压力,粗糙度,硬度,振动等信息。机械性受体根据其结构和功能可分为不同类别:对局部应力敏感位于皮肤表层的梅克尔触盘;对拉伸应变产生信号位于深层皮肤的鲁菲尼终器;对低频动态激励源具有均匀响应灵敏度的梅斯纳小体和对高频刺激有选择性响应并对小于10nm极微小形变具有超高灵敏度的环层小体。四种感受器将接受到的压力、振动信号转变为电信号并通过神经传递到大脑,大脑经过分析,得到压力、振动的位置和大小,从而获得包括物体形状,纹路,硬度等信息。而电子皮肤就是通过人造的电子器件,去模拟人皮肤中各种感受器的功能。根据测量原理的不同,电子皮肤中的柔性压力传感器主要分为压阻式、平行板电容式、压电和摩擦电式,其结构和原理如图1所示。
离电子式压力传感器是一种基于界面双电层电容原理的新型压力传感技术。这种压力传感器使用了富含可自由移动的阴阳离子的材料,比如电解质的高沸点溶液、离子液体、聚电解质、离子液体凝胶等。在这种离子材料上施加电压,这时离子材料中的正、负离子就会在电场的作用下迅速向两极运动,并分别在两个电极的表面形成紧密电荷层,即双电层。这种双电层是一种由离子排布形成的纳米级电容结构,由于正负离子之间的距离极短,其单位面积电容是传统平行板电容的1000倍以上。对于同种离子材料来说,界面电容主要与电极和离子材料之间的接触面积呈正相关关系,而界面电容式压力传感器则依据这一点,在压力作用下,离子材料与电极之间接触面积增加,传感器电容也相应增加,如图2所示。界面电容式压力传感机理是一种不同于现有的电阻式、电容式和压电式传感的一种全新的传感机理。由于界面电容的值可达到几百nF甚至uF级别,相比于几十pF的平行板电容式传感器,其灵敏度提高了1000倍以上,而且对人体及环境电容噪声有很强的抗干扰能力。相比于压阻式压力传感器,界面电容式压力传感器在一定压力范围内具有较好的线性响应度,相比如石墨烯、碳纳米管等导电材料,离子材料可以制备成溶液、油墨、浆料等形式,可更加方便的通过浸涂、刮涂、喷墨、印刷等多种加工方式制备成离子材料层。相比如压电式和摩擦电式压力传感器,界面电容式压力传感器在具备了快速的机械响应速度的同时,可以对静态压力进行检测。因此,采用离电子式机理制备的电子皮肤将具有更加优异的性能。
技术问题
本发明提供了一种一种离子橡胶弹性体及其制备方法、以及一种离电子式电子皮肤,以解决现有的电子皮肤灵敏度低、结构复杂、工艺复杂以及与机械结构兼容性差的问题。
技术解决方案
本发明是这样实现的,第一方面,提供了一种离子橡胶弹性体,以所述离子橡胶弹性体的总重量为100%计,所述离子橡胶弹性体包括如下重量百分含量的下列原料组分:
橡胶基体材料        10%~95%;
液态离子材料        1%~80%;
纳米粉体材料        0.1%~50%;
添加剂              0%~30%。
第二方面,提供了一种离子橡胶弹性体的制备方法,包括以下步骤:
按照本发明所述离子橡胶弹性体的配方称取各组分;
将橡胶材料前驱体及其固化剂、液态离子材料、固态纳米材料、添加剂混合处理,获得浆状的前驱体材料;
将所述前驱体材料沉积在基板上,固化处理,得到离子橡胶弹性体。
第三方面,提供了一种离电子式电子皮肤,包括设置有叉指电极的柔性电路板,以及覆盖在所述柔性电路板的叉指电极表面的离子橡胶,其中,所述离子橡胶包括与所述柔性印制电路叉指电极贴合的第一表面和背离所述柔性印制电路叉指电极的第二表面,所述第一表面为粗糙表面,且所述离子橡胶的材料为本发明实施例所述离子橡胶弹性体。
有益效果
本发明提供的离子橡胶弹性体,添加有纳米粉体材料,所述纳米粉体材料表面具有极性基团,比如羟基,使得高极性的液态离子材料由于极性相似原因,吸附在纳米粉体材料表面。负载在所述纳米粉体材料表面的液态离子材料,借助所述纳米粉体材料的高表面积,实现在在橡胶材料内部的均匀分散。当所述纳米粉体材料含量高于逾渗阈值时,由于纳米粉体材料之间的互相接触,使得纳米粉体材料表面的液态离子材料也互相接触,形成离子导通通道,使得整体橡胶获得高离子导通性。而不添加纳米粉体材料时,由于液态离子材料与橡胶基体之间极性相差较大,液态离子材料在分散过程中会在橡胶前驱体中分相,形成乳液,单独乳液颗粒互不相连,因此无法形成离子导通通道,使得整体橡胶离子导通性很差。因此,纳米粉体材料的加入使得原先难以混合的液态离子材料和橡胶基体材料功能性复合,获得高离子导通性,表现为橡胶的单位面积电容成百上千倍的增加。
本发明提供的离子橡胶弹性体的制备方法,只需按照离子橡胶弹性体的配方提供橡胶材料前驱体及其固化剂、液态离子材料、固态纳米材料、添加剂,将各原料混合处理后在基板上固化处理即可得到,操作方法简单易行。
本发明提供的离电子式电子皮肤,一方面,基于离电子式的工作机理,采用本发明离子橡胶弹性体材料的离子橡胶作为功能结构,因此具备离电子式压力传感器的灵敏度高、响应速度快、抗干扰能力强、响应线性好、可检测静态压力等优点。另一方面,采用将上述离子橡胶弹性体材料的离子橡胶覆盖在叉指电极表面,由于离子橡胶的高柔弹性,因此,所述离电子式电子皮肤可以轻易的贴敷在机械结构表面,提高与机械结构的兼容性。此外,本发明提供的离电子式电子皮肤,可以使用成熟的柔性印制电路技术,从而制备大面积高密度的大阵列电子皮肤,并可以与现有的控制、读取、供电电路进行可靠连接。
附图说明
图1是现有技术提供的柔性压力传感的工作原理示意图;
图2是现有技术提供的离电子式柔性压力传感技术原理示意图及其等效电路;
图3是本发明实施例提供的离电子式电子皮肤示意图;
图4是本发明实施例提供的柔性电极阵列示意图;
图5是本发明实施例1提供的传感器灵敏度测试结果图。
本发明的实施方式
为了使本发明要解决的技术问题、技术方案及有益效果更加清楚明白,以下结合实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
在本发明的描述中,需要理解的是,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本发明的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
本发明实施例第一方面提供一种离子橡胶弹性体,以所述离子橡胶弹性体的总重量为100%计,所述离子橡胶弹性体包括如下重量百分含量的下列原料组分:
橡胶基体材料        10%~95%;
液态离子材料        1%~80%;
纳米粉体材料        0.1%~50%;
添加剂              0%~30%。
本发明实施例提供的离子橡胶弹性体,添加有纳米粉体材料,所述纳米粉体材料表面具有极性基团,比如羟基,使得高极性的液态离子材料由于极性相似原因,吸附在纳米粉体材料表面。负载在所述纳米粉体材料表面的液态离子材料,借助所述纳米粉体材料的高表面积,实现在在橡胶材料内部的均匀分散(所述纳米粉体材料具有高比表面积特性,能够在橡胶基体材料中均匀分散)。当所述纳米粉体材料含量高于逾渗阈值时,由于纳米粉体材料之间的互相接触,使得纳米粉体材料表面的液态离子材料也互相接触,形成离子导通通道,使得整体橡胶获得高离子导通性。而不添加纳米粉体材料时,由于液态离子材料与橡胶基体之间极性相差较大,液态离子材料在分散过程中会在橡胶前驱体中分相,形成乳液,单独乳液颗粒互不相连,因此无法形成离子导通通道,使得整体橡胶离子导通性很差。因此,纳米粉体材料的加入使得原先难以混合的液态离子材料和橡胶基体材料功能性复合,获得高离子导通性,表现为橡胶的单位面积电容成百上千倍的增加。
具体的,所述橡胶基体材料作为离子橡胶弹性体的基体组分之一,在整个离子橡胶当中充当结构支撑的基体作用,并且提供高柔弹性。优选的,所述橡胶基体材料选自热固性橡胶材料。
在一些实施例中,所述橡胶基体材料选自热固性橡胶材料选自热固性丁腈橡胶类、热固性有机硅橡胶类、热固性丁苯橡胶类、热固性丙烯酸酯橡胶类、热固性天然橡胶类中的至少一种。优选的橡胶基体材料力学性能优良,且前驱体常温下或适当加热情况下呈液态或粘流态,容易与纳米粉体材料和液态离子材料进行均匀共混。进一步优选橡胶前驱体在常温下呈液态的橡胶基体材料。
本发明实施例中,以离子橡胶弹性体的总重量为100%计,所述橡胶基体材料的重量百分含量为1%~95%,具体可为1%、5%、10%、15%、20%、25%、30%、35%、40%、45%、50%、55%、60%、65%、70%、75%、80%、85%、90%、95%。
本发明实施例中,所述液态离子材料作为基体功能材料,赋予所述离子橡胶弹性体优异的离子导通性能,从而为采用离子橡胶弹性体制备离电子式电子皮肤提供了功能保障。在一些实施例中,所述液态离子材料选自离子液体、离子液体溶液、固态电解质溶液中的至少一种,且所述离子液体溶液、固态电解质溶液中的溶剂在所述离子橡胶弹性体中保留。
具体的,所述离子液体为在温度为10℃~35℃条件下呈液态的离子化合物。在一些实施例中,所述离子液体溶液可选自咪唑类离子液体、季铵盐类离子液体、吡啶类离子液体、吡咯类离子液体、哌啶类离子液体、吡咯烷类离子液体中的至少一种,当然,不限于此。在优选实施例中,所述离子液体溶液选自在常温下具备高离子电导率的无毒低毒类离子液体,比如吡咯烷类离子液体、季铵盐类离子液体。
所述离子液体高沸点有机溶液为离子液体溶解在高沸点高极性有机溶剂中形成的溶液,且所述高沸点高极性有机溶剂为沸点不低于200℃、且分子结构中含有羟基、胺基、酯基、酰胺基、羧基中的至少一种的有机溶剂。此时,所述高沸点高极性有机溶剂沸点高,不易挥发,且由于溶剂极性较大,能够很好地将本身极性较大的离子化合物有效溶解。在一些实施例中,所述离子液体溶液中,所述离子液体选自咪唑类离子液体、季铵盐类离子液体、吡啶类离子液体、吡咯类离子液体、哌啶类离子液体、吡咯烷类离子液体中的至少一种;所述高沸点高极性有机溶剂选自邻苯二甲酸二丁酯、柠檬酸三丁酯、氮甲基吡咯烷酮、二甲亚砜、甘油、乙二醇中的至少一种。
所述固态电解质高沸点有机溶液为在温度为10℃~35℃条件下呈固态的离子化合物在高沸点高极性有机溶剂中形成的溶液,且所述高沸点高极性有机溶剂为沸点不低于200℃、且分子结构中含有羟基、胺基、酯基、酰胺基、羧基中的至少一种的有机溶剂。此时,所述高沸点高极性有机溶剂沸点高,不易挥发,且由于溶剂极性较大,能够很好地将本身极性较大的离子化合物有效溶解。在一些实施例中,所述固态电解质溶液中,所述离子化合物选自小分子电解质、聚合物电解质中的至少一种;所述高沸点高极性有机溶剂选自邻苯二甲酸二丁酯、柠檬酸三丁酯、氮甲基吡咯烷酮、二甲亚砜、甘油、乙二醇中的至少一种。
本发明实施例中,以离子橡胶弹性体的总重量为100%计,所述液态离子材料的重量百分含量为1%~80%,具体可为1%、5%、10%、15%、20%、25%、30%、35%、40%、45%、50%、55%、60%、65%、70%、75%、80%。
本发明实施例中,所述纳米粉体材料的添加,可以促进原本难以混合的液态离子材料和橡胶基体材料实现功能性复合。所述纳米粉体材料表面具有极性基团,比如羟基。在纳米粉体材料、液态离子材料、橡胶液态前驱体的共混体系中,液态离子材料由于极性相似原因,会吸附在纳米粉体材料表面,从而协同固态的纳米粉体材料,在搅拌分散过程中均匀的分散在橡胶材料内部。当纳米粉体材料含量高于逾渗阈值时,由于纳米粉体材料之间的互相接触,使得粉体表面的液态离子材料也互相接触,形成离子导通通道,使得整体橡胶获得高离子导通性。而不添加纳米粉体材料,由于液态离子材料与橡胶基体之间极性相差较大,液态离子材料在分散过程中会在橡胶前驱体中分相,形成乳液,单独乳液颗粒互不相连,因此无法形成离子导通通道,使得整体橡胶离子导通性很差。
优选的,所述纳米粉体材料为尺度在1000nm以下的固态纳米颗粒。所述纳米粉体材料粒径越小,由于比表面积越大,理论逾渗阈值也就越低,所需加入的纳米粉体的重量比也就越小,对橡胶力学性能的影响越小。若所述纳米粉体材料尺度超过1000nm,则对得到的离子橡胶弹性体的力学性能影响较大。所述纳米粉体材料可以为固态纳米颗粒,也可以为固态纳米线,还可以为固态纳米管、二维纳米材料。此处,当所述纳米粉体材料为颗粒状时,尺度即表示颗粒粒径;当所述纳米粉体材料为纳米管时,尺度即表示纳米管的管径;当所述纳米粉体材料为线料时,尺度即表示线料的直径;当所述纳米粉体材料为二维纳米材料时,尺度即表示二维纳米材料的最长对角线。当然,应当理解,所述纳米粉体材料可以选择一种形态的纳米材料,也可以选择两种或两种以上形态的纳米材料。
在一些实施例中,所述纳米粉体材料选自零维二氧化硅纳米颗粒、二氧化硅纳米线料、二氧化硅纳米管、二维纳米二氧化硅、二氧化钛纳米线料、二氧化钛纳米管、二维纳米二氧化钛、纳米碳酸钙颗粒、纳米氧化铝颗粒中的至少一种。优选的纳米粉体材料与橡胶基体材料、液态离子材料复合时,能够明显提高液态离子材料在橡胶基体材料中的分散均匀性,且成本低廉。
本发明实施例中,以离子橡胶弹性体的总重量为100%计,所述纳米粉体材料的重量百分含量为1%~50%,具体可为1%、5%、10%、15%、20%、25%、30%、35%、40%、45%、50%。
本发明实施例中,还可以根据实际情况在离子橡胶弹性体中添加一种或多种添加剂,来提高离子橡胶弹性体的性能。具体的,所述添加剂选自消泡剂、流平剂、橡胶抗老剂中的至少一种,但不限于此。其中,所述消泡剂、所述流平剂用于提高制备过程中的可加工性,所述橡胶抗老剂用于提高所述离子橡胶弹性体的抗老化性能,进而提高所述离子橡胶弹性体的使用寿命。
本发明实施例中,以离子橡胶弹性体的总重量为100%计,所述添加剂的重量百分含量为0%~30%,具体可为0、1%、5%、10%、15%、20%、25%、30%。
本发明实施例所述离子橡胶弹性体可以通过下述方法制备获得。
本发明实施例第二方面提供一种离子橡胶弹性体的制备方法,包括以下步骤:
S01.按照本发明所述离子橡胶弹性体的配方称取各组分;
S02.将橡胶材料前驱体及其固化剂、液态离子材料、固态纳米材料、添加剂混合处理,获得浆状的前驱体材料;
S03.将所述前驱体材料沉积在基板上,固化处理,得到离子橡胶弹性体。
本发明实施例提供的离子橡胶弹性体的制备方法,只需按照离子橡胶弹性体的配方提供橡胶材料前驱体及其固化剂、液态离子材料、固态纳米材料、添加剂,将各原料混合处理后在基板上固化处理即可得到,操作方法简单易行。
具体的,上述步骤S01中,所述离子橡胶弹性体的原料配方及其优选情形如上文所述,为了节约篇幅,此处不再赘述。其中,所述橡胶基体材料对应折算成橡胶材料前驱体的含量。
上述步骤S02中,采用常规的混合方式,将橡胶材料前驱体及其固化剂、液态离子材料、固态纳米材料、添加剂混合处理,获得浆状的前驱体材料。
上述步骤S03中,将所述前驱体材料沉积在基板上,可以采用常规方法进行,包括但不限于浇筑、印刷、涂布、热压。所述基板可以为常规的基板,也可以为模具。进一步的,将沉积后的前驱体材料进行固化处理,得到离子橡胶弹性体。
在一些实施例中,为了获得表面具有粗糙结构的离子橡胶弹性体,从而满足不同的使用需求,采用具有预设粗糙表面的基板作为制备离子橡胶弹性体的基板,将所述前驱体材料沉积在所述基板的预设粗糙表面上,固化处理,得到具有预设粗糙表面的离子橡胶弹性体。
如图3所示,本发明实施例第三方面提供一种离电子式电子皮肤,包括设置有叉指电极的柔性电路板,以及覆盖在所述柔性电路板的叉指电极表面的离子橡胶,其中,所述离子橡胶包括与所述柔性印制电路叉指电极贴合的第一表面和背离所述柔性印制电路叉指电极的第二表面,所述第一表面为粗糙表面,且所述离子橡胶的材料为本发明所述离子橡胶弹性体。
本发明实施例提供的离电子式电子皮肤,一方面,基于离电子式的工作机理,采用本发明实施例离子橡胶弹性体材料的离子橡胶作为功能结构,因此具备离电子式压力传感器的灵敏度高、响应速度快、抗干扰能力强、响应线性好、可检测静态压力等优点。另一方面,由于离子橡胶的高柔弹性,因此,所述离电子式电子皮肤可以轻易的贴敷在机械结构表面,提高与机械结构的兼容性。此外,本发明实施例提供的离电子式电子皮肤,可以使用成熟的柔性印制电路技术,大面积高密度的大阵列电子皮肤,并可以与现有的控制、读取、供电电路进行可靠连接。
本发明实施例中,所述设置有叉指电极的柔性电路板可以采用常规方法制备获得。通常的,采用常规的光刻腐蚀法或者通过印刷导电材料的方法制备叉指电极形成柔性电路板。在一些实施例中,所述柔性电路板为单面具有叉指电极的柔性电路板。在一些实施例中,所述柔性电路板为双面具有叉指电极的柔性电路板。在一些实施例中,所述柔性电路板为具有多层叉指电极的柔性电路板。
所述离电子式电子皮肤还包括覆盖在所述柔性电路板的叉指电极表面的离子橡胶,且所述离子橡胶的材料为本发明实施例所述离子橡胶弹性体。具体的,所述离子橡胶包括与所述柔性印制电路叉指电极贴合的第一表面和背离所述柔性印制电路叉指电极的第二表面,所述第一表面为粗糙表面。当压力作用在离子橡胶上时,由于离子橡胶的粗糙表面,离子橡胶与叉指电极之间的接触面积会相应增加,由于传感器的界面电容与离子材料和电子电极之间的接触面积呈正相关关系,传感器所检测到的整体电容(或者其他由电容影响的电学参数,比如分压、电流、阻抗、相位角、谐振频率等)会相应增加,从而反推出压力大小。通过设置粗糙表面,使得所述离电子式电子皮肤在压力作用下,离子橡胶与叉指电极之间的接触面积增加,从而增加了界面双电层电容的大小。进一步的,叉指电极的两端连接到电容、电压、电流检测***,而压力导致的界面双电层电容大小的改变,将会反映到***测试电容、电压或电流的值,而压力大小与检测电容、电压或电流的值是一一对应的关系,因此可由当前测试电容、电压或电流值反推处压力大小。
本发明实施例所述离电子式电子皮肤可以设置成单点式离电子式电子皮肤,也可以设置成多点式的离电子式电子皮肤,还可以设置成阵列式的离电子式电子皮肤。如图4所示为一个单位平方厘米256点的电子皮肤的柔性电极阵列,与单点式电子皮肤结构类似,在阵列式柔性电极阵列表面覆盖上所需面积的离子橡胶,即可获得大面积高密度大阵列离电子式电子皮肤。
下面结合具体实施例进行说明。
实施例1
一种离电子式电子皮肤的制备方法,包括以下步骤:
离子橡胶弹性体制备:将Sylgard 184 PDMS 有机硅弹性体前驱体与固化剂按照10:1质量比添加,加入与有机硅弹性体前驱体质量比1:1的双三氟甲基磺酰亚胺锂的邻苯二甲酸二辛酯溶液,其中双三氟甲基磺酰亚胺锂事先溶解在邻苯二甲酸二辛酯中形成5%质量分数的溶液,加入比表面积300m 2/g的气相纳米二氧化硅,其质量占有机硅弹性体前驱体的10%,加入占有机硅弹性体前驱体0.1%的流平剂,0.3%的消泡剂,使用机械搅拌在500转/分钟下搅拌1小时,使所有组分预混合,然后使用离心式搅拌机在5000转/分钟下搅拌5分钟,使所组分充分混合,获得离子橡胶前驱体浆料。将100支1000根的涤纶纤维布贴合在玻璃基材表面,将离子橡胶前驱体均匀涂抹在纤维布表面,然后加盖另一块玻璃板,使纤维布与玻璃板之间距离保持在0.5mm。烘箱中80℃加热30分钟,取出后将固化的离子橡胶从纤维布上剥离下来,获得一面具有粗糙结构的离子橡胶弹性体薄膜。
电极制备:使用传统的光刻腐蚀工艺在聚酰亚胺覆铜板上制备出叉指电极结构,其中叉指电极线宽与线间距均为250微米,电极直径3毫米。
传感器制备:将离子橡胶弹性体切割成3毫米直径,并将粗糙一面放置在叉指电极表面,并通过热压的方式,将电极和离子橡胶整体封装在两片热塑性聚氨酯薄膜之中,并切割封装好的聚氨酯薄膜。
用电容表测量实施例1制备的传感器,测定不同压强下传感器的电容值,测试三次,取平均值。结果如图5所示,其灵敏度约为0.03nF/kPa。
实施例2
一种离电子式电子皮肤的制备方法,包括以下步骤:
离子橡胶弹性体制备:在粉末丁腈橡胶中加入1-丁基-1-甲基吡咯烷双(三氟甲磺酰)亚胺,且丁腈橡胶与1-丁基-1-甲基吡咯烷双(三氟甲磺酰)亚胺的质量比为2:1;加入粒径为50nm的活性纳米碳酸钙,其质量占粉末丁腈橡胶的20%,加入占粉末丁腈橡胶0.1%的流平剂,0.3%的消泡剂,使用机械搅拌在60转/分钟、150℃的条件下搅拌1小时,使所有组分预混合,然后加入占粉末丁腈橡胶1.5%质量比的过氧化二异丙苯作为硫化剂,使用三辊机使所有物料混合均匀。使用500目喷砂不锈钢板作为模板,并使用平板硫化机,在180℃的条件下硫化4小时,硫化完成后将丁腈橡胶从不锈钢模板上剥离,获得一面具有粗糙结构的离子橡胶弹性体薄膜。
电极制备:使用传统的光刻腐蚀工艺在聚酰亚胺覆铜板上制备出叉指电极结构,其中叉指电极线宽与线间距均为250微米,电极直径3毫米。
传感器制备:将离子橡胶弹性体切割成3毫米直径圆片,并将粗糙一面放置在叉指电极表面,并通过热压的方式,将电极和离子橡胶整体封装在两片热塑性聚氨酯薄膜之中,并切割封装好的聚氨酯薄膜。
实施例3
一种离电子式电子皮肤的制备方法,包括以下步骤:
离子橡胶弹性体制备:按质量比为1:1的比例,在天然橡胶中加入1-乙基-3-甲基咪唑双(三氟甲磺酰)亚胺,加入粒径50nm的纳米二氧化钛粉体,纳米二氧化钛粉体的质量占天然橡胶的15%,加入占天然橡胶质量0.1%的流平剂,0.3%的消泡剂,使用机械搅拌在60转/分钟、150℃的条件下搅拌1小时,使所有组分预混合,然后加入占天然橡胶胶1.5%质量比的硫磺作为硫化剂,使用三辊机使所有物料混合均匀。使用500目喷砂不锈钢板作为模板,并使用平板硫化机,在140℃的条件下硫化4小时,硫化完成后将天然橡胶从不锈钢模板上剥离,获得一面具有粗糙结构的离子橡胶弹性体薄膜。
电极制备:使用传统的光刻腐蚀工艺在聚酰亚胺覆铜板上制备出叉指电极结构,其中叉指电极线宽与线间距均为250微米,电极直径3毫米。
传感器制备:将离子橡胶弹性体切割成3毫米直径圆片,并将粗糙一面放置在叉指电极表面,并通过热压的方式,将电极和离子橡胶整体封装在两片热塑性聚氨酯薄膜之中,并切割封装好的聚氨酯薄膜。
对比例
一种离电子式电子皮肤的制备方法,包括以下步骤:
离子橡胶弹性体制备:将Sylgard 184 PDMS 有机硅弹性体前驱体与固化剂按照10:1质量比添加,加入与有机硅弹性体前驱体质量比1:1的双三氟甲基磺酰亚胺锂的邻苯二甲酸二辛酯溶液,其中双三氟甲基磺酰亚胺锂事先溶解在邻苯二甲酸二辛酯中形成5%质量分数的溶液,不加入纳米粉体材料。加入占有机硅弹性体前驱体0.1%的流平剂,0.3%的消泡剂,使用机械搅拌在500转/分钟下搅拌1小时,使所有组分预混合,然后使用离心式搅拌机在5000转/分钟下搅拌5分钟,使所组分充分混合,获得离子橡胶前驱体浆料。将100支1000根的涤纶纤维布贴合在玻璃基材表面,将离子橡胶前驱体均匀涂抹在纤维布表面,然后加盖另一块玻璃板,使纤维布与玻璃板之间距离保持在0.5mm。烘箱中80℃加热30分钟,取出后将固化的离子橡胶从纤维布上剥离下来,获得一面具有粗糙结构的离子橡胶弹性体薄膜。
电极制备:使用传统的光刻腐蚀工艺在聚酰亚胺覆铜板上制备出叉指电极结构,其中叉指电极线宽与线间距均为250微米,电极直径3毫米。
传感器制备:将离子橡胶弹性体切割成3毫米直径,并将粗糙一面放置在叉指电极表面,并通过热压的方式,将电极和离子橡胶整体封装在两片热塑性聚氨酯薄膜之中,并切割封装好的聚氨酯薄膜。
采用与实施例1相同的条件,用电容表测量对比例制备的传感器,测定不同压强下传感器的电容值,其灵敏度约为0.023pF/kPa。与加入纳米二氧化硅的实施例1相比,对比例的灵敏度小于前者1/1000。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (11)

  1. 一种离子橡胶弹性体,其特征在于,以所述离子橡胶弹性体的总重量为100%计,所述离子橡胶弹性体包括如下重量百分含量的下列原料组分:
    橡胶基体材料        10%~95%;
    液态离子材料        1%~80%;
    纳米粉体材料    0.1%~50%;
    添加剂              0%~30%。
  2. 如权利要求1所述的离子橡胶弹性体,其特征在于,所述橡胶基体材料选自热固性橡胶材料。
  3. 如权利要求2所述的离子橡胶弹性体,其特征在于,所述橡胶基体材料选自热固性丁腈橡胶类、热固性有机硅橡胶类、热固性丁苯橡胶类、热固性丙烯酸酯橡胶类、热固性天然橡胶类中的至少一种。
  4. 如权利要求1所述的离子橡胶弹性体,其特征在于,所述纳米粉体材料为尺度在1000nm以下的固态纳米材料。
  5. 如权利要求4所述的离子橡胶弹性体,其特征在于,所述纳米粉体材料选自零维二氧化硅纳米颗粒、二氧化硅纳米线料、二氧化硅纳米管、二维纳米二氧化硅、二氧化钛纳米线料、二氧化钛纳米管、二维纳米二氧化钛、纳米碳酸钙颗粒、纳米氧化铝颗粒中的至少一种。
  6. 如权利要求1至5任一项所述的离子橡胶弹性体,其特征在于,所述液态离子材料选自离子液体、离子液体高沸点有机溶液、固态电解质高沸点有机溶液中的至少一种,其中,
    所述离子液体为在温度为10℃~35℃条件下呈液态的离子化合物;
    所述离子液体高沸点有机溶液为离子液体溶解在高沸点高极性有机溶剂中形成的溶液,且所述高沸点高极性有机溶剂为沸点不低于200℃、且分子结构中含有羟基、胺基、酯基、酰胺基、羧基中的至少一种的有机溶剂;
    所述固态电解质高沸点有机溶液为在温度为10℃~35℃条件下呈固态的离子化合物在高沸点高极性有机溶剂中形成的溶液,且所述高沸点高极性有机溶剂为沸点不低于200℃、且分子结构中含有羟基、胺基、酯基、酰胺基、羧基中的至少一种的有机溶剂。
  7. 如权利要求6所述的离子橡胶弹性体,其特征在于,所述离子液体选自咪唑类离子液体、季铵盐类离子液体、吡啶类离子液体、吡咯类离子液体、哌啶类离子液体、吡咯烷类离子液体中的至少一种;和/或
    所述离子液体溶液中,所述离子液体选自咪唑类离子液体、季铵盐类离子液体、吡啶类离子液体、吡咯类离子液体、哌啶类离子液体、吡咯烷类离子液体中的至少一种;所述高沸点高极性有机溶剂选自邻苯二甲酸二丁酯、柠檬酸三丁酯、氮甲基吡咯烷酮、二甲亚砜、甘油、乙二醇中的至少一种;和/或
    所述固态电解质溶液中,所述离子化合物选自三氟甲磺酸锂、六氟磷酸锂、聚苯磺酸钠中的至少一种;所述高沸点高极性有机溶剂选自邻苯二甲酸二丁酯、柠檬酸三丁酯、氮甲基吡咯烷酮、二甲亚砜、甘油、乙二醇中的至少一种。
  8. 如权利要求至1至5任一项所述的离子橡胶弹性体,其特征在于,所述添加剂选自消泡剂、流平剂、橡胶抗老剂中的至少一种。
  9. 一种离子橡胶弹性体的制备方法,其特征在于,包括以下步骤:
    按照权利要求1至8任一项所述离子橡胶弹性体的配方称取各组分;
    将橡胶材料前驱体及其固化剂、液态离子材料、固态纳米材料、添加剂混合处理,获得浆状的前驱体材料;
    将所述前驱体材料沉积在基板上,固化处理,得到离子橡胶弹性体。
  10. 如权利要求至9所述的离子橡胶弹性体的制备方法,其特征在于,所述基板为具有预设粗糙表面的基板,且将所述前驱体材料沉积在基板上的步骤中,将所述前驱体材料沉积在所述基板的预设粗糙表面上,固化处理,得到具有预设粗糙表面的离子橡胶弹性体。
  11. 一种离电子式电子皮肤,其特征在于,包括设置有叉指电极的柔性电路板,以及覆盖在所述柔性电路板的叉指电极表面的离子橡胶,其中,所述离子橡胶包括与所述柔性印制电路叉指电极贴合的第一表面和背离所述柔性印制电路叉指电极的第二表面,所述第一表面为粗糙表面,且所述离子橡胶的材料为权利要求1至8任一项所述离子橡胶弹性体。
PCT/CN2018/125646 2018-12-29 2018-12-29 离子橡胶弹性体及其制备方法、离电子式电子皮肤 WO2020133416A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/125646 WO2020133416A1 (zh) 2018-12-29 2018-12-29 离子橡胶弹性体及其制备方法、离电子式电子皮肤

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/125646 WO2020133416A1 (zh) 2018-12-29 2018-12-29 离子橡胶弹性体及其制备方法、离电子式电子皮肤

Publications (1)

Publication Number Publication Date
WO2020133416A1 true WO2020133416A1 (zh) 2020-07-02

Family

ID=71128477

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/125646 WO2020133416A1 (zh) 2018-12-29 2018-12-29 离子橡胶弹性体及其制备方法、离电子式电子皮肤

Country Status (1)

Country Link
WO (1) WO2020133416A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112472033A (zh) * 2020-12-11 2021-03-12 西安建筑科技大学 多层离子皮肤手指关节运动角度测量***和方法
CN114184308A (zh) * 2021-11-30 2022-03-15 西安电子科技大学 基于激光雕刻的一体化全柔性离电式传感器及制备方法
CN114360761A (zh) * 2022-01-24 2022-04-15 郑州大学 基于可拉伸半导体的多功能传感电子皮肤及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102656222A (zh) * 2009-10-15 2012-09-05 株式会社普利司通 轮胎胎面用橡胶组合物及充气轮胎
CN105924981A (zh) * 2016-06-30 2016-09-07 合肥工业大学 一种含双键咪唑基离子液体修饰炭黑/硅橡胶复合力敏导电材料及其配制方法
CN106484201A (zh) * 2015-08-31 2017-03-08 崇实大学校产学协力团 触觉传感器和用于制造其的方法
CN108440891A (zh) * 2018-03-29 2018-08-24 北京大学深圳研究生院 一种导电弹性体复合材料及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102656222A (zh) * 2009-10-15 2012-09-05 株式会社普利司通 轮胎胎面用橡胶组合物及充气轮胎
CN106484201A (zh) * 2015-08-31 2017-03-08 崇实大学校产学协力团 触觉传感器和用于制造其的方法
CN105924981A (zh) * 2016-06-30 2016-09-07 合肥工业大学 一种含双键咪唑基离子液体修饰炭黑/硅橡胶复合力敏导电材料及其配制方法
CN108440891A (zh) * 2018-03-29 2018-08-24 北京大学深圳研究生院 一种导电弹性体复合材料及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
RUBBER PROFESSIONAL COMMITTEE OF CHINA CHEMICAL SOCIETY: "[Precipitation Silica]", RUBBER ADDITIVES MANUAL, 30 April 2000 (2000-04-30), pages 445 - 448, XP009521801, ISBN: 7-5025-2715-X *
ZHANG XU-MIN; LIU PENG-ZHANG; MA WEN-LIANG; BIE MENG-YAO; LIANG WEI; WANG QI; JIA HONG-BING; XU ZHAO-DONG: "Interaction between ionic liquid and silica and its effect on properties of modified silica/natural rubber", CHINA SYNTHETIC RUBBER INDUSTRY, vol. 39, no. 5, 15 September 2016 (2016-09-15), pages 404 - 409, XP009521800, ISSN: 1000-1255 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112472033A (zh) * 2020-12-11 2021-03-12 西安建筑科技大学 多层离子皮肤手指关节运动角度测量***和方法
CN112472033B (zh) * 2020-12-11 2024-04-05 西安建筑科技大学 多层离子皮肤手指关节运动角度测量***和方法
CN114184308A (zh) * 2021-11-30 2022-03-15 西安电子科技大学 基于激光雕刻的一体化全柔性离电式传感器及制备方法
CN114360761A (zh) * 2022-01-24 2022-04-15 郑州大学 基于可拉伸半导体的多功能传感电子皮肤及其制备方法
CN114360761B (zh) * 2022-01-24 2022-12-09 郑州大学 基于可拉伸半导体的多功能传感电子皮肤及其制备方法

Similar Documents

Publication Publication Date Title
CN110358297B (zh) 离子橡胶弹性体及其制备方法、离电子式电子皮肤
He et al. Wearable strain sensors based on a porous polydimethylsiloxane hybrid with carbon nanotubes and graphene
Yue et al. 3D hybrid porous Mxene-sponge network and its application in piezoresistive sensor
WO2020113807A1 (zh) 一种用于制备柔性压阻式传感器的多孔导电浆料及其制备方法和应用
Jiang et al. Ultrawide sensing range and highly sensitive flexible pressure sensor based on a percolative thin film with a knoll-like microstructured surface
Lin et al. Biocompatible multifunctional e-skins with excellent self-healing ability enabled by clean and scalable fabrication
US10119045B2 (en) Electroconductive silver paste
WO2020133416A1 (zh) 离子橡胶弹性体及其制备方法、离电子式电子皮肤
JP2017168437A (ja) 伸縮性導体形成用ペースト、伸縮性導体シートおよび生体情報計測用プローブ
US11552240B2 (en) Machines and processes for producing polymer films and films produced thereby
CN108288513A (zh) 一种基于分形结构银微粒的柔性和可拉伸导体及其制备方法
Pan et al. Silver-coated poly (dimethylsiloxane) beads for soft, stretchable, and thermally stable conductive elastomer composites
Li et al. Ultrastretchable high-conductivity mxene-based organohydrogels for human health monitoring and machine-learning-assisted recognition
CN112924060B (zh) 一种柔性压力传感器及其制备方法
WO2022252021A1 (zh) 一种柔性温度传感器阵列及其制备方法
Huang et al. Resistive pressure sensor for high-sensitivity e-skin based on porous sponge dip-coated CB/MWCNTs/SR conductive composites
Chen et al. Unsymmetrical alveolate PMMA/MWCNT film as a piezoresistive E-skin with four-dimensional resolution and application for detecting motion direction and airflow rate
Guo et al. Skin-inspired self-healing semiconductive touch panel based on novel transparent stretchable hydrogels
Song et al. Graphene-based flexible sensors for respiratory and airflow monitoring
CN111765995A (zh) 一种自驱动抗菌型柔性电子皮肤及其制备方法
Li et al. Hierarchically Structured MXene Nanosheets on Carbon Sponges with a Synergistic Effect of Electrostatic Adsorption and Capillary Action for Highly Sensitive Pressure Sensors
Zhang et al. Simultaneous Evaporation and Foaming for Batch Coaxial Extrusion of Liquid Metal/Polydimethylsiloxane Porous Fibrous TENG
CN106867161B (zh) 一种硅橡胶-碳海绵复合材料及其制备方法和应用
Maiti et al. Tuning the Electromechanical Response of P (VDF-TrFE)/ZnSnO3-Based Binary Piezoelectric Composites for Biomechanical Energy-Harvesting and Self-Powered Mechanosensing
Sun et al. Magnetic Self-Assembled Pearl Necklace-like Microstructure for Improving the Performance of a Flexible Strain Sensor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18945057

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 04/10/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 18945057

Country of ref document: EP

Kind code of ref document: A1