WO2020133390A1 - 一种天线*** - Google Patents

一种天线*** Download PDF

Info

Publication number
WO2020133390A1
WO2020133390A1 PCT/CN2018/125508 CN2018125508W WO2020133390A1 WO 2020133390 A1 WO2020133390 A1 WO 2020133390A1 CN 2018125508 W CN2018125508 W CN 2018125508W WO 2020133390 A1 WO2020133390 A1 WO 2020133390A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna system
feeder
antenna
millimeter wave
base material
Prior art date
Application number
PCT/CN2018/125508
Other languages
English (en)
French (fr)
Inventor
陈友春
黄源烽
戴有祥
Original Assignee
瑞声科技(新加坡)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 瑞声科技(新加坡)有限公司 filed Critical 瑞声科技(新加坡)有限公司
Priority to PCT/CN2018/125508 priority Critical patent/WO2020133390A1/zh
Publication of WO2020133390A1 publication Critical patent/WO2020133390A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support

Definitions

  • the invention relates to the field of communication electronic products, in particular to an antenna system, a communication terminal and a base station.
  • the current communication technology has developed to the fifth generation (5G), which requires a higher data transmission rate.
  • 5G fifth generation
  • the spectrum of the 5G network will be expanded to the millimeter wave range. Therefore, the requirements for millimeter wave antennas with RF operating above 20 GHz may be higher.
  • Millimeter wave antennas are usually configured in an array, in which multiple identical antenna elements are used, and high gain is usually achieved due to the increase in free space path loss in the high-frequency millimeter wave band.
  • the line of sight line-of-sight
  • the communication link may be interrupted. Therefore, it is important that the millimeter wave antenna can control the entire radiation pattern to maintain the line of sight (line of sight).
  • the unique high carrier frequency and large bandwidth characteristics of the millimeter wave antenna are the main means to achieve 5G ultra-high data transmission rate. Therefore, the rich bandwidth resources of the millimeter wave frequency band provide a guarantee for the high speed transmission rate.
  • the wireless communication antenna system using the millimeter wave frequency band needs to adopt a phased array architecture.
  • the phase shifter makes the phase of each array element distributed according to a certain rule, thereby forming a high-gain beam, and changes the phase shift to make the beam scan within a certain spatial range.
  • the communication link is easily interrupted. If the frequency band bandwidth covered by the beam range is limited, the reliability of the antenna system will be affected.
  • the purpose of the present invention is to provide an antenna system with strong and stable communication signals, good reliability, and wide frequency range, aiming to solve the technical problem of poor reliability of existing antenna systems.
  • An antenna system includes a system ground unit and a millimeter wave antenna unit.
  • the system ground unit includes a receiving hole penetrating therethrough, and the millimeter wave antenna unit is embedded and fixed in the receiving hole
  • the millimeter wave antenna unit includes a radiator, a first base material layer, a second base material layer, a feeder, a third base material layer and a ground layer stacked in this order, and a gap band is provided on the feeder
  • the feed port, the slit band has an opening that penetrates to one side of the feed body, the feed port is disposed adjacent to the opening, the ground layer is electrically connected to the system ground unit,
  • the radiator and the feeder form a coupling.
  • the feeding body is a capacitive feeding patch.
  • the feeder is fixed to the third substrate layer.
  • the feeder is formed on the surface of the third substrate layer by etching.
  • the radiator is a patch, and the radiator is formed on the first substrate layer by etching.
  • first base material layer and the third base material layer have the same material, and the second base material layer and the first base material layer are oriented perpendicular to the third base material layer, respectively The orthographic projection of the third substrate layer completely coincides with the third substrate layer.
  • the power feeding body is square, and the slit band is disposed away from the central axis of the power feeding body.
  • the receiving holes include N
  • the millimeter wave antenna units include N
  • the N millimeter wave antenna units are distributed in a matrix to form a phased array antenna system.
  • a communication terminal includes an antenna system.
  • a base station includes an antenna system.
  • the antenna system of the present invention is designed as one or more millimeter-wave antenna units, thereby forming a high-gain beam, and by changing the phase shift, the beam is scanned in a larger space to maintain the transmitter and reception of the antenna system
  • the line-of-sight communication between the devices is uninterrupted, which makes the communication terminal or base station using the antenna system have strong and stable communication signals, good reliability, and wide frequency band coverage.
  • FIG. 1 is a schematic top view of an antenna system according to Embodiment 1 of the present invention.
  • FIG. 2 is a schematic perspective view of an antenna system according to Embodiment 1 of the present invention.
  • FIG. 3 is a schematic perspective view of a millimeter wave antenna unit according to Embodiment 1 of the present invention.
  • Embodiment 4 is an exploded view of a millimeter wave antenna unit according to Embodiment 1 of the present invention.
  • FIG. 5 is a schematic top view of an antenna system according to Embodiment 2 of the present invention.
  • FIG. 6 is a perspective schematic diagram of an antenna system according to Embodiment 2 of the present invention.
  • FIG. 7 is a schematic top view of an antenna system according to Embodiment 3 of the present invention.
  • FIG. 8 is a perspective schematic view of an antenna system according to Embodiment 3 of the present invention.
  • Embodiment 9 is a reflection coefficient diagram of a millimeter wave antenna unit in Embodiment 1 of the present invention.
  • an antenna system includes a system ground unit 10 and a millimeter wave antenna unit 20.
  • the system ground unit 10 includes a receiving hole 101 penetrating therethrough, and the millimeter wave antenna unit 20 is embedded Fixed in the receiving hole 101, the millimeter wave antenna unit 20 includes a radiator 201, a first substrate layer 202, a second substrate layer 203, a feeder 204, and a third substrate layer 205 stacked in this order
  • the ground layer 206, a slit band 2041 and a feeding port 2042 are provided on the feeding body 204, the slit band 2041 has an opening 2041a penetrating to one side of the feeding body 204, the feeding The port 2042 is disposed adjacent to the opening 2041a, the ground layer 206 is electrically connected to the system ground unit 10, the radiator 201 and the feeder 204 are spaced apart and form a coupling.
  • the feeding port 2042 may be specifically a probe penetrating the third substrate layer 205, passing through the third substrate layer 205, and connected to a feeding network or an external power source.
  • the radiator 201 and the feeder 204 form a coupling, so that the energy of the feeder 204 is coupled to the radiator 201, so that the radiator 201 forms radiation and works In the millimeter band wave 28GHz.
  • the radiator 201 is not connected to the ground layer 206; the radiator 201 is also not directly electrically connected to the feeder 204, and only forms a coupling with the feeder 204.
  • the feeding body 204 is a capacitive feeding patch.
  • the feeder 204 is fixed to the third substrate layer 205. More preferably, the feeder 204 is formed on the surface of the third substrate layer 205 by etching.
  • the radiator 201 is a patch, and the radiator 201 is formed on the first substrate layer 202 by etching.
  • the first substrate layer 202 and the third substrate layer 205 have the same material, and the second substrate layer 203 and the first substrate layer 202 are perpendicular to the first substrate layer
  • the orthographic projection of the three substrate layers 205 toward the third substrate layer 205 completely coincides with the third substrate layer 205.
  • the receiving hole 101 includes one, and the millimeter wave antenna unit 20 includes one.
  • FIG. 9 shows a graph of the reflection coefficient S11 of the single millimeter wave antenna unit 20.
  • the millimeter wave antenna units 20 include four and form a 2 ⁇ 2 matrix distribution.
  • the millimeter wave antenna elements 20 are respectively a first element 20a, a second element 20b, a third element 20c, and a fourth element 20d, arranged in a 2 ⁇ 2 matrix layout.
  • This small-sized phased array antenna structure is suitable for smart terminals in 5G networks, such as mobile phones and tablet computers.
  • the phased array can perform beamforming and beam scanning at different ⁇ angles on any Phi plane, that is, the beam scanning is almost omnidirectional. This is achieved by introducing appropriate phase shifts to the four corresponding millimeter wave antenna elements 20.
  • the 2 ⁇ 2 rectangular phased array antenna can perform beam scanning on any Phi plane, thereby enabling the array antenna to achieve omnidirectional radiation.
  • a 2 ⁇ 2 rectangular phased array antenna can maintain a gain of more than 7dBi in a wide scan angle exceeding 100 degrees.
  • the millimeter wave antenna units 20 include 64 and form an 8 ⁇ 8 matrix distribution.
  • this larger-sized phased array antenna structure is suitable for small cellular equipment in 5G networks, such as small base stations.
  • the phased array can perform beamforming and beam scanning at different ⁇ angles on any Phi plane, that is, the beam scanning is almost omnidirectional. This is achieved by introducing an appropriate phase shift to the 64 corresponding millimeter wave antenna elements 20.
  • the 8 ⁇ 8 rectangular phased array antenna can perform beam scanning in any Phi plane, thereby enabling the array antenna to achieve omnidirectional radiation.
  • the 8 ⁇ 8 rectangular phased array antenna can maintain a gain of more than 15dBi in a wide scan angle exceeding 100 degrees.
  • the number of the millimeter wave antenna units 20 is not limited to one, four, sixty-four, etc., and may be formed in a matrix distribution for other numbers. It is also possible to form a larger-sized phased array antenna system to achieve the desired total gain of the antenna system.
  • the present invention also provides a communication terminal, which includes the above-mentioned antenna system provided by the present invention.
  • the present invention also provides a base station, which includes the above-mentioned antenna system provided by the present invention.
  • the antenna system of the present invention is designed as one or more millimeter-wave antenna units, thereby forming a high-gain beam, and by changing the phase shift, the beam is scanned in a larger spatial range to maintain the use of the antenna
  • the line-of-sight communication between the transmitter and the receiver of the system is uninterrupted, which makes the communication terminal or base station using the antenna system have strong and stable communication signals, good reliability, and wide frequency band coverage.

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

本发明提供了一种天线***、通讯终端和基站,其中天线***包括***地单元和毫米波天线单元,所述***地单元包括贯穿其上的收容孔,所述毫米波天线单元嵌设固定于所述收容孔内,所述毫米波天线单元包括依次层叠设置的辐射体、第一基材层、第二基材层、馈电体、第三基材层和接地层,所述馈电体上设置有缝隙带和馈电端口,所述缝隙带具有一贯通至所述馈电体其中一个侧边的开口,所述馈电端口邻近所述开口设置,所述接地层与所述***地单元电连接,所述辐射体与所述馈电体形成耦合。本发明的天线***可实现全向辐射,并且具有超过100度的扫描角。

Description

一种天线*** 技术领域
本发明涉及通讯电子产品领域,尤其涉及一种天线***、通讯终端和基站。
背景技术
现在的通信技术已发展到第五代(5G),需要更高的数据传输速率,为了满足这一要求,5G网络的频谱将扩展到毫米波范围。因此,对射频工作在20GHz以上的毫米波天线的要求可能更高。毫米波天线通常以阵列形式配置,其中采用多个相同的天线元件,通常由于高频毫米波段中自由空间路径损耗的增加而达到高增益。同样在毫米波频率下,如果发射机和接收机之间不保持视线(视距),通信链路可能中断。因此,毫米波天线能够控制整个辐射图案以保持视线(视距)是很重要的。而且,毫米波天线独有的高载频、大带宽特性是实现 5G 超高数据传输速率的主要手段,因此,毫米波频段丰富的带宽资源为高速传输速率提供了保障。
然而,毫米波由于该频段电磁波剧烈的空间损耗,利用毫米波频段的无线通信天线***需要采用相控阵的架构。通过移相器使得各个阵元的相位按一定规律分布,从而形成高增益波束,并且通过相移的改变使得波束在一定空间范围内扫描。但在毫米波频段下, 如果天线***发射机和接收机之间不能保持视距通信, 通信链路就容易中断,若其波束范围内覆盖的频段带宽有限则会影响天线***的可靠性。
技术问题
本发明的目的在于提供一种通讯信号强且稳定,可靠性好,频段范围广的天线***,旨在解决现有天线***可靠性差的技术问题。
技术解决方案
本发明的技术方案如下:一种天线***,包括***地单元和毫米波天线单元,所述***地单元包括贯穿其上的收容孔,所述毫米波天线单元嵌设固定于所述收容孔内,所述毫米波天线单元包括依次层叠设置的辐射体、第一基材层、第二基材层、馈电体、第三基材层和接地层,所述馈电体上设置有缝隙带和馈电端口,所述缝隙带具有一贯通至所述馈电体其中一个侧边的开口,所述馈电端口邻近所述开口设置,所述接地层与所述***地单元电连接,所述辐射体与所述馈电体形成耦合。
进一步地,所述馈电体为电容式馈电贴片。
更进一步地,所述馈电体固定于所述第三基材层。
更进一步地,所述馈电体通过蚀刻方式形成于所述第三基材层的表面。
进一步地,所述辐射体为贴片,所述辐射体通过蚀刻方式形成于所述第一基材层。
进一步地,所述第一基材层与所述第三基材层的材质相同,所述第二基材层和所述第一基材层分别沿垂直于所述第三基材层方向向所述第三基材层的正投影完全与所述第三基材层重合。
进一步地,所述馈电体为方形,所述缝隙带偏离所述馈电体的中轴线设置。
进一步地,所述收容孔包括N个,所述毫米波天线单元包括N个,N个所述毫米波天线单元呈矩阵分布形成相控阵天线***。
一种通讯终端,包括天线***。
一种基站,包括天线***。
有益效果
本发明的天线***设计为一个或多个毫米波天线单元,从而形成高增益波束,并且通过相移的改变使得波束在较大的空间范围内扫描,以保持运用该天线***的发射机和接收机之间的视距通信不间断,进而使得运用该天线***的通讯终端或基站通讯信号强且稳定,可靠性好,频段覆盖范围广。
附图说明
图1为本发明实施例1天线***的俯视示意图。
图2为本发明实施例1天线***的立体示意图。
图3为本发明实施例1毫米波天线单元的立体示意图。
图4为本发明实施例1毫米波天线单元的***视图。
图5为本发明实施例2天线***的俯视示意图。
图6为本发明实施例2天线***的立体示意图。
图7为本发明实施例3天线***的俯视示意图。
图8为本发明实施例3天线***的立体示意图。
图9为本发明实施例1中毫米波天线单元的反射系数图。
图10为本发明实施例1中毫米波天线单元在直角坐标系中,在Phi=0°平面和Phi=90°平面内,28GHz的方向图。
图11为本发明实施例1中毫米波天线单元在极坐标系中,在Phi=0°平面和Phi=90°平面内,28GHz的方向图。
图12为本发明实施例2中天线***在直角坐标系中,在Phi=0°平面内,28GHz的波束扫描方向图。
图13为本发明实施例2中天线***在极坐标系中,在Phi=0°平面内,28GHz的波束扫描方向图。
图14为本发明实施例2中天线***在直角坐标系中,在Phi=90°平面内,28GHz的波束扫描方向图。
图15为本发明实施例2中天线***在极坐标系中,在Phi=90°平面内,28GHz的波束扫描方向图。
图16为本发明实施例2中天线***在直角坐标系中,在Phi=45°平面内,28GHz的波束扫描方向图。
图17为本发明实施例2中天线***在极坐标系中,在Phi=45°平面内,28GHz的波束扫描方向图。
图18为本发明实施例2中天线***在直角坐标系中,在Phi=315°平面内,28GHz的波束扫描方向图。
图19为本发明实施例2中天线***在极坐标系中,在Phi=315°平面内,28GHz的波束扫描方向图。
图20为本发明实施例2中天线***在Phi=0°、Phi=45°、Phi=90°、Phi=315°平面内,28GHz的天线总增益图。
图21为本发明实施例3中天线***在直角坐标系中,在Phi=0°平面内,28GHz的波束扫描方向图。
图22为本发明实施例3中天线***在直角坐标系中,在Phi=90°平面内,28GHz的波束扫描方向图。
图23为本发明实施例3中天线***在直角坐标系中,在Phi=45°平面内,28GHz的波束扫描方向图。
图24为本发明实施例3中天线***在直角坐标系中,在Phi=315°平面内,28GHz的波束扫描方向图。
图25为本发明实施例3中天线***在Phi=0°、Phi=45°、Phi=90°、Phi=315°平面内,28GHz的天线总增益图。
在附图中,各附图标记表示:
10、***地单元;20、毫米波天线单元;20a、第一单元;20b、第二单元;20c、第三单元;20d、第四单元;101、收容孔;201、辐射体;202、第一基材层;203、第二基材层;204、馈电体;205、第三基材层;206、接地层;2041、缝隙带;2042、馈电端口;2041a、开口。
本发明的实施方式
实施例1:
如图1-图4所示,一种天线***,包括***地单元10和毫米波天线单元20,所述***地单元10包括贯穿其上的收容孔101,所述毫米波天线单元20嵌设固定于所述收容孔101内,所述毫米波天线单元20包括依次层叠设置的辐射体201、第一基材层202、第二基材层203、馈电体204、第三基材层205和接地层206,所述馈电体204上设置有缝隙带2041和馈电端口2042,所述缝隙带2041具有一贯通至所述馈电体204其中一个侧边的开口2041a,所述馈电端口2042邻近所述开口2041a设置,所述接地层206与所述***地单元10电连接,所述辐射体201与所述馈电体204间隔设置并形成耦合。本实施例中,所述辐射体201、第一基材层202、第二基材层203、馈电体204、第三基材层205和接地层206依次垂直叠设形成堆叠结构。
本实施例中,所述馈电端口2042可具体为贯穿所述第三基材层205的探针,穿过所述第三基材层205后与馈电网络或外部电源连接。
本实施例中,所述辐射体201与所述馈电体204形成耦合,实现将所述馈电体204的能量耦合至所述辐射体201,从而使所述辐射体201形成辐射,并工作在毫米段波28GHz。
也就是说,所述辐射体201不与所述接地层206连接;所述辐射体201也不与所述馈电体204直接电连接,仅与所述馈电体204形成耦合。
本实施例中,所述馈电体204为电容式馈电贴片。
本实施例中,所述馈电体204固定于所述第三基材层205。更优的,所述馈电体204通过蚀刻方式形成于所述第三基材层205的表面。
本实施例中,所述辐射体201为贴片,所述辐射体201通过蚀刻方式形成于所述第一基材层202。
本实施例中,所述第一基材层202与所述第三基材层205的材质相同,所述第二基材层203和所述第一基材层202分别沿垂直于所述第三基材层205方向向所述第三基材层205的正投影完全与所述第三基材层205重合。
本实施例中,所述收容孔101包括1个,所述毫米波天线单元20包括1个。
图9显示了单个所述毫米波天线单元20的反射系数S11的曲线图。在图9所示的图中,可以看到在28GHz处产生谐振。图10和图11中分别给出了Phi=0°(XZ平面)和Phi=90°(YZ平面)两个不同平面上的方向图。从图10和图11所示的曲线可以看出,所述毫米波天线单元20在Phi=0°和Phi=90°平面上具有一致的方向图(图10中,分别代表Phi=0°和Phi=90°两个不同平面上的曲线I和曲线Ⅱ完全重合),所述毫米波天线单元20可实现全向辐射。
实施例2:
本实施例与实施例1的不同之处在于:所述毫米波天线单元20包括4个并形成2×2矩阵分布。
如图5和图6所示,这毫米波天线单元20分别为第一单元20a、第二单元20b、第三单元20c和第四单元20d,排列成2×2矩阵布局。这种较小尺寸的相控阵天线结构适用于5G网络中的智能终端,如手机和平板电脑。在这种2×2矩形相控阵布局中,相控阵在任何Phi平面上都能够在不同的θ角进行波束形成和波束扫描,即波束扫描几乎是全方位的。这是通过对四个相应的毫米波天线单元20引入适当的相移来实现的。
图12-图19显示了28GHz的模拟结果,显示了2×2(4单元)矩形相控阵天线在Phi=0°(XZ平面)、Phi=45°、Phi=90°(YZ平面)和Phi=315°平面上的波束扫描方向图。
图12显示了在Phi=0°平面内,从θ=-54°到θ=54°的扫描范围内,主波束增益均可达到7dBi。从图13中可以看到类似的观测结果。图14显示了在Phi=90°平面内,从θ=-54°到θ=54°的扫描范围内,主波束增益均可达到7dBi。从图15可以看到类似的观测结果。图16显示了在Phi=45°平面内,从θ=-60°到θ=60°的扫描范围内,主波束增益均可达到7dBi。从图17可以看到类似的观测结果。图18显示了在Phi=315°平面内,从θ=-54°到θ=54°的扫描范围内,主波束增益均可达到7dBi。从图19可以看到类似的观测结果。
图20显示的天线总增益分别是Phi=0°(对应图中的曲线1)、Phi=45°(对应图中的曲线3)、Phi=90°(对应图中的曲线2)和Phi=315°(对应图中的曲线4)平面上波束扫描的合成增益。从图20可以看出,2×2矩形相控阵天线能够在任何一个Phi平面进行波束扫描,从而使得阵列天线实现全向辐射。在每个Phi平面,2×2矩形相控阵天线能在超过100度的宽扫描角中,保持7dBi以上的增益。
实施例3:
本实施例与实施例1的不同之处在于:所述毫米波天线单元20包括64个并形成8×8矩阵分布。
如图7和图8所示,这种较大尺寸的相控阵天线结构适用于5G网络中的小型蜂窝设备,如小型基站。在这种8×8矩形相控阵布局中,相控阵在任何Phi平面上都能够在不同的θ角进行波束形成和波束扫描,即波束扫描几乎是全方位的。这是通过对64个相应的毫米波天线单元20引入适当的相移来实现的。
图21-24给出了28GHz的模拟结果,显示了8×8(64单元)矩形相控阵天线在Phi=0°(XZ平面)、Phi=45°、Phi=90°(YZ平面)和Phi=315°平面上的波束扫描方向图。
图21显示在Phi=0°平面内,从θ=-42°到θ=42°的扫描范围内,主波束增益均可达到15dBi。图22显示了在Phi=90°平面内,从θ=-42°到θ=42°的扫描范围内,主波束增益均可达到15dBi。图23显示了在Phi=45°平面内,从θ=-63°到θ=63°的扫描范围内,主波束增益均可达到15dBi。图24显示了在Phi=315°平面内,从θ=-60°到θ=60°的扫描范围内,主波束增益均可达到15dBi。
图25显示的天线总增益分别是Phi=0°(对应图中的曲线1)、Phi=45°(对应图中的曲线3)、Phi=90°(对应图中的曲线2)和Phi=315°(对应图中的曲线4)平面上波束扫描的合成增益。从图25可以看出8×8矩形相控阵天线能够在任何一个Phi平面进行波束扫描,从而使得阵列天线实现全向辐射。在每个Phi平面,8×8矩形相控阵天线能在超过100度的宽扫描角中,保持15dBi以上的增益。需要说明的是,本发明的天线***中,所述毫米波天线单元20的数量并不限于一个、四个、六十四个等,还可为其它数量形成矩阵分布即可。还可以形成更大尺寸的相控阵天线***,以达到所需的天线***总增益。
本发明还提供一种通讯终端,其包括本发明提供的上述的天线***。
本发明还提供一种基站,其包括本发明提供的上述的天线***。与相关技术相比,本发明的天线***设计为一个或多个毫米波天线单元,从而形成高增益波束,并且通过相移的改变使得波束在较大的空间范围内扫描,以保持运用该天线***的发射机和接收机之间的视距通信不间断,进而使得运用该天线***的通讯终端或基站通讯信号强且稳定,可靠性好,频段覆盖范围广。
以上所述的仅是本发明的实施方式,在此应当指出,对于本领域的普通技术人员来说,在不脱离本发明创造构思的前提下,还可以做出改进,但这些均属于本发明的保护范围。

Claims (10)

  1. 一种天线***,其特征在于,包括***地单元(10)和毫米波天线单元(20),所述***地单元(10)包括贯穿其上的收容孔(101),所述毫米波天线单元(20)嵌设固定于所述收容孔(101)内,所述毫米波天线单元(20)包括依次层叠设置的辐射体(201)、第一基材层(202)、第二基材层(203)、馈电体(204)、第三基材层(205)和接地层(206),所述馈电体(204)上设置有缝隙带(2041)和馈电端口(2042),所述缝隙带(2041)具有一贯通至所述馈电体(204)其中一个侧边的开口(2041a),所述馈电端口(2042)邻近所述开口(2041a)设置,所述接地层(206)与所述***地单元(10)电连接,所述辐射体(201)与所述馈电体(204)形成耦合。
  2. 根据权利要求1所述的天线***,其特征在于:所述馈电体(204)为电容式馈电贴片。
  3. 根据权利要求2所述的天线***,其特征在于:所述馈电体(204)固定于所述第三基材层(205)。
  4. 根据权利要求3所述的天线***,其特征在于:所述馈电体(204)通过蚀刻方式形成于所述第三基材层(205)的表面。
  5. 根据权利要求1所述的天线***,其特征在于:所述辐射体(201)为贴片,所述辐射体(201)通过蚀刻方式形成于所述第一基材层(202)。
  6. 根据权利要求1所述的天线***,其特征在于:所述第一基材层(202)与所述第三基材层(205)的材质相同,所述第二基材层(203)和所述第一基材层(202)分别沿垂直于所述第三基材层(205)方向向所述第三基材层(205)的正投影完全与所述第三基材层(205)重合。
  7. 根据权利要求1所述的天线***,其特征在于:所述馈电体(204)为方形,所述缝隙带(2041)偏离所述馈电体(204)的中轴线设置。
  8. 根据权利要求1所述的天线***,其特征在于:所述收容孔(101)包括N个,所述毫米波天线单元(20)包括N个,N个所述毫米波天线单元(20)呈矩阵分布形成相控阵天线***。
  9. 一种通讯终端,其特征在于:其包括如权利要求1-8任意一项所述的天线***。
  10. 一种基站,其特征在于:其包括如权利要求1-8任意一项所述的天线***。
PCT/CN2018/125508 2018-12-29 2018-12-29 一种天线*** WO2020133390A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/125508 WO2020133390A1 (zh) 2018-12-29 2018-12-29 一种天线***

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/125508 WO2020133390A1 (zh) 2018-12-29 2018-12-29 一种天线***

Publications (1)

Publication Number Publication Date
WO2020133390A1 true WO2020133390A1 (zh) 2020-07-02

Family

ID=71125869

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/125508 WO2020133390A1 (zh) 2018-12-29 2018-12-29 一种天线***

Country Status (1)

Country Link
WO (1) WO2020133390A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107910656A (zh) * 2017-11-06 2018-04-13 湖南大学 一种天线
CN108346855A (zh) * 2018-03-02 2018-07-31 深圳市信维通信股份有限公司 一种毫米波天线单体
CN108879114A (zh) * 2017-05-16 2018-11-23 华为技术有限公司 集成天线封装结构和终端

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108879114A (zh) * 2017-05-16 2018-11-23 华为技术有限公司 集成天线封装结构和终端
CN107910656A (zh) * 2017-11-06 2018-04-13 湖南大学 一种天线
CN108346855A (zh) * 2018-03-02 2018-07-31 深圳市信维通信股份有限公司 一种毫米波天线单体

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CHEN DEXIN; GE JUNXIANG: "High gain and high isolation MIMO antennas for millimeter-wave application", JOURNAL OF NANJING UNIVERSITY OF POSTS AND TELECOMMUNICATIONS (NATURAL SCIENCE EDITION), vol. 36, no. 1, 29 February 2016 (2016-02-29), pages 84 - 88, XP009521805, DOI: 10.14132/j.cnki.1673-5439.2016.01.013 *

Similar Documents

Publication Publication Date Title
US11973280B2 (en) Antenna element and terminal device
US10854994B2 (en) Broadband phased array antenna system with hybrid radiating elements
JP6981475B2 (ja) アンテナ、アンテナの構成方法及び無線通信装置
JP7239743B2 (ja) アンテナユニット及び端末機器
US10978811B2 (en) Slot antenna arrays for millimeter-wave communication systems
US9112260B2 (en) Microstrip antenna
US7256750B1 (en) E-plane omni-directional antenna
WO2021236921A1 (en) Dual-band cross-polarized 5g mm-wave phased array antenna
WO2021104191A1 (zh) 天线单元及电子设备
CN109560379B (zh) 天线***及通讯终端
CN111129704B (zh) 一种天线单元和电子设备
WO2021083214A1 (zh) 天线单元及电子设备
US9013360B1 (en) Continuous band antenna (CBA) with switchable quadrant beams and selectable polarization
US10148014B2 (en) Highly isolated monopole antenna system
CN110828987A (zh) 一种天线单元及电子设备
CN113594687A (zh) 天线模组及电子设备
WO2021083213A1 (zh) 天线单元及电子设备
WO2021083212A1 (zh) 天线单元及电子设备
WO2021083219A1 (zh) 天线单元及电子设备
US10804609B1 (en) Circular polarization antenna array
US10992044B2 (en) Antenna system, communication terminal and base station
CN111615775B (zh) 垂直极化天线和终端设备
WO2020133390A1 (zh) 一种天线***
CN110600858A (zh) 一种天线单元及终端设备
US20230163462A1 (en) Antenna device with improved radiation directivity

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18944250

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18944250

Country of ref document: EP

Kind code of ref document: A1