WO2020132974A1 - 指纹识别装置和电子设备 - Google Patents

指纹识别装置和电子设备 Download PDF

Info

Publication number
WO2020132974A1
WO2020132974A1 PCT/CN2018/124007 CN2018124007W WO2020132974A1 WO 2020132974 A1 WO2020132974 A1 WO 2020132974A1 CN 2018124007 W CN2018124007 W CN 2018124007W WO 2020132974 A1 WO2020132974 A1 WO 2020132974A1
Authority
WO
WIPO (PCT)
Prior art keywords
micro
telecentric lens
lens array
fingerprint
microlens
Prior art date
Application number
PCT/CN2018/124007
Other languages
English (en)
French (fr)
Inventor
蒋鹏
Original Assignee
深圳市汇顶科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市汇顶科技股份有限公司 filed Critical 深圳市汇顶科技股份有限公司
Priority to CN201880003112.9A priority Critical patent/CN109791612B/zh
Priority to PCT/CN2018/124007 priority patent/WO2020132974A1/zh
Priority to CN201920290641.3U priority patent/CN209640876U/zh
Priority to PCT/CN2019/077370 priority patent/WO2020133703A1/zh
Priority to CN201980000384.8A priority patent/CN110337655B/zh
Publication of WO2020132974A1 publication Critical patent/WO2020132974A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/13Sensors therefor
    • G06V40/1318Sensors therefor using electro-optical elements or layers, e.g. electroluminescent sensing
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration

Definitions

  • the present application relates to the technical field of fingerprint identification, and in particular to a fingerprint identification device and electronic equipment.
  • the first one is based on periodic micro-hole array under-screen optical fingerprint recognition technology, this scheme has large light energy loss and long sensor exposure time; the other is based on micro-lens under-screen optical fingerprint recognition technology, this scheme The fingerprint distortion of the fingerprint recognition device is relatively large.
  • the embodiments of the present application provide a fingerprint identification device and an electronic device. Compared with the solution of the periodic through-hole array, the light loss in the vertical direction can be avoided, and the exposure time of the fingerprint sensor can be reduced. Compared with the micro lens solution, the fingerprint recognition device can also reduce the imaging distortion of the entire system. Therefore, the fingerprint recognition device of the embodiment of the present application greatly improves the imaging quality and contrast of fingerprint recognition.
  • a fingerprint recognition device including: a micro-telecentric lens array group for receiving an optical signal formed by reflection from a human finger; a fingerprint sensor provided under the micro-telecentric lens array group for Yu performs imaging based on the optical signal passing through the micro-telecentric lens array group.
  • the micro-telecentric lens array group includes: a dual-telecentric lens array for receiving the optical signal in a vertical direction; an object-side telecentric lens array, the object-side telecentric The lens array is arranged below the dual-telecentric lens array, and is used for collimating and focusing the optical signal transmitted from the dual-telecentric lens array, and transmitting the optical signal to the fingerprint sensor.
  • the dual-telecentric lens array includes a plurality of dual-telecentric lens units, and the dual-telecentric lens unit includes a first microlens, a second microlens, and the first microlens A first microaperture stop between the lens and the second microlens; and/or the object-side telecentric lens array includes a plurality of object-side telecentric lens units, and the object-side telecentric lens unit includes a third A microlens and a second microaperture stop disposed under the third microlens.
  • the first microaperture stop is disposed at a confocal plane of the first microlens and the second microlens, and/or the second microaperture stop is disposed At the image side focal plane of the third microlens.
  • the focal length of the first microlens and the focal length of the second microlens may be the same or different.
  • the diameter range of the first micro-aperture diaphragm is 20 ⁇ m to 1 ⁇ m, and the thickness range of the first micro-aperture diaphragm is 100 nm to 100 ⁇ m; and/or the second micro-aperture
  • the diameter of the diaphragm is 500 nm to 20 ⁇ m, and the thickness of the second micro-aperture diaphragm is 100 nm to 100 ⁇ m.
  • the thickness of the first micro-aperture diaphragm and/or the second micro-aperture diaphragm may be 500 nm.
  • the first micro-aperture stop includes a contra-top bi-conical hole, and a cone angle of the contra-top bi-conical hole and an angle of convergence of the edge light of the first micro lens It is the same, and/or the second micro-aperture stop includes a single-cone hole, and the angle of the cone angle of the single-cone hole is the same as the angle at which the edge rays passing through the third microlens converge.
  • the micro-telecentric lens array group includes spherical microlenses and/or aspheric microlenses.
  • the radius of curvature of the spherical microlenses in the micro-telecentric lens array group is 5 ⁇ m to 100 ⁇ m.
  • the focal length of the aspherical microlenses in the micro-telecentric lens array group is 5 ⁇ m to 2000 ⁇ m.
  • the distance between the dual telecentric lens array and the object-side telecentric lens array is less than or equal to 200 ⁇ m.
  • one pixel unit of the fingerprint sensor corresponds to at least one micro-telecentric lens group in the micro-telecentric lens array group, for example, if a micro-telecentric lens group includes a double telecentric For a lens unit and an object-side telecentric lens unit, one pixel of the fingerprint sensor corresponds to one or more micro-telecentric lens groups composed of a double telecentric lens unit and an object-side telecentric lens unit.
  • the object-side telecentric lens units in the object-side telecentric lens array may correspond one-to-one with the pixel units of the fingerprint sensor.
  • the dual-telecentric lens array and the object-side telecentric lens array may or may not correspond to each other.
  • a bi-telecentric lens unit can correspond to one or more object-side telecentric lens units, or an object-side telecentric lens unit can also correspond to multiple bi-telecentric lens units.
  • the device further includes: a filter plate, disposed above the fingerprint sensor, for filtering the optical signal formed by the reflection of the human finger.
  • the fingerprint identification device when the fingerprint identification device is applied to an electronic device with a display screen, the fingerprint identification device is fixed below the display screen, and there is a gap with the display screen.
  • the electronic device further includes a middle frame, and the fingerprint identification device is fixed on the middle frame.
  • a foam layer is provided below the display screen, and the foam layer has an opening at the installation position of the fingerprint identification device, so that the fingerprint identification device can receive The light signal transmitted by the display screen and formed by reflection of a human finger.
  • the arrangement manner of the micro-telecentric lens array group is a square or a hexagon.
  • microlenses in the micro-telecentric lens array group and the micro-aperture stop in the micro-telecentric lens array group and/or in the micro-telecentric lens array group are filled with any combination of the following transparent media: air, glass, and plastic.
  • air may be filled between the first microlens and the first microaperture stop
  • glass may be filled between the first microaperture stop and the second microlens.
  • the material of the microlenses in the micro-telecentric lens array group is glass or plastic, and/or the microlenses in the micro-telecentric lens array group are processed through a micro-nano process or pressed The mold process is realized.
  • the micro-aperture diaphragm in the micro-telecentric lens array group is manufactured through a micro-nano processing technology or a nano-printing technology.
  • an electronic device including a display screen and the fingerprint identification device in the first aspect or any possible implementation manner of the first aspect, and the fingerprint identification device is disposed below the display screen .
  • the electronic device further includes a middle frame, and the fingerprint identification device is fixed on the middle frame.
  • the distance between the fingerprint identification device and the display screen may be greater than or equal to 600 ⁇ m.
  • a foam layer is provided below the display screen, and the foam layer has an opening at the installation position of the fingerprint identification device, so that the fingerprint identification device can receive The light signal transmitted by the display screen and formed by reflection of a human finger.
  • the fingerprint recognition device can also reduce the imaging distortion of the entire system. The fingerprint recognition device can achieve higher imaging quality and contrast.
  • FIG. 1 shows a schematic block diagram of an application scenario of an embodiment of the present application.
  • FIG. 2 is a schematic block diagram of a fingerprint identification device according to an embodiment of the present application.
  • Fig. 3 shows an imaging principle diagram of an object-side telecentric lens.
  • FIG. 4 shows an imaging principle diagram of an image-side telecentric lens.
  • Fig. 5 shows an imaging principle diagram of a double telecentric lens.
  • FIG. 6 is a schematic block diagram of a micro-telecentric lens array group in an embodiment of the present application.
  • FIG. 7 shows a schematic structural diagram of a fingerprint identification device according to an embodiment of the present application.
  • FIG. 8 is an assembly structure diagram of a fingerprint identification device according to an embodiment of the present application.
  • FIG. 9 is a schematic block diagram of an electronic device according to an embodiment of the present application.
  • the fingerprint identification device provided in the embodiments of the present application can be applied to smart phones, tablet computers, and other mobile terminals or other terminal devices with display screens; more specifically, in the above terminal devices, the fingerprint identification device It may be specifically an optical fingerprint device, which may be disposed in a partial area or all areas below the display screen to form an under-display optical fingerprint system.
  • the terminal device 100 includes a display screen 120 and a fingerprint recognition device 130, wherein the fingerprint recognition device 130 is disposed below the display screen 120 Local area.
  • the fingerprint recognition device 130 may include a sensing array having a plurality of optical sensing units, wherein the sensing array may also be a fingerprint sensor.
  • the area where the sensing array is located or its optical sensing area is the fingerprint detection area 103 of the fingerprint identification device 130. As shown in FIG. 1, the fingerprint detection area 103 is located in the display area 102 of the display screen 120.
  • the terminal device 100 adopting the above structure does not need a special reserved space on the front of it to set fingerprint keys (such as the Home key).
  • the display screen 120 may be a display screen with a self-luminous display unit, such as an organic light-emitting diode (Organic Light-Emitting Diode, OLED) display screen or a micro light-emitting diode (Micro-LED) display screen .
  • the display screen 120 may be specifically a touch display screen, which can not only display images, but also detect a user's touch or pressing operation, thereby providing a human-computer interaction interface for the user.
  • the terminal device 100 may include a touch controller, and the touch controller may specifically be a touch panel, which may be provided on the surface of the display screen 120, or may be partially integrated or integrated as a whole Into the display screen 120 to form the touch display screen.
  • the fingerprint recognition device 130 may use the display unit (ie, OLED light source) of the OLED display screen 120 located in the fingerprint detection area 103 as an excitation light source for optical fingerprint detection.
  • the fingerprint identification device 130 may also use an internal light source or an external light source to provide an optical signal for fingerprint detection.
  • the fingerprint identification device 130 may be applicable to non-self-luminous display screens, such as liquid crystal display screens or other passive light-emitting display screens.
  • the fingerprint recognition device 130 may further include an excitation light source for optical fingerprint detection, the excitation light source It may be specifically an infrared light source or a light source with a specific wavelength and invisible light, which may be provided under the backlight module of the liquid crystal display or the edge area under the protective cover of the terminal device 100, and the fingerprint identification device 130 is arranged under the backlight module, and the backlight module allows the fingerprint detection light to pass through the liquid crystal panel and the backlight module through openings or other optical design of the film layers such as the diffusion sheet, the brightness enhancement sheet, the reflection sheet, etc. Reach the induction array of the fingerprint identification device 130.
  • the excitation light source It may be specifically an infrared light source or a light source with a specific wavelength and invisible light, which may be provided under the backlight module of the liquid crystal display or the edge area under the protective cover of the terminal device 100, and the fingerprint identification device 130 is arranged under the backlight module, and the backlight module allows the fingerprint detection light to pass through the liquid crystal panel and the backlight module through openings
  • the sensing array of the fingerprint recognition device 130 may specifically be a photodetector array, which includes a plurality of photodetectors distributed in an array, and the photodetectors may be used as the optical sensing unit as described above .
  • the sensing array of the fingerprint recognition device 130 may specifically be a photodetector array, which includes a plurality of photodetectors distributed in an array, and the photodetectors may be used as the optical sensing unit as described above .
  • the sensing array of the fingerprint recognition device 130 may specifically be a photodetector array, which includes a plurality of photodetectors distributed in an array, and the photodetectors may be used as the optical sensing unit as described above .
  • the fingerprint recognition device 130 may also be disposed in the entire area below the display screen 120, thereby extending the fingerprint detection area 103 to the entire display area 102 of the entire display screen 120, to achieve Full-screen fingerprint recognition.
  • the terminal device 100 may further include a transparent protective cover 110, and the cover 110 may be a glass cover or a sapphire cover, which is disposed above the display screen 120 and Cover the front of the terminal device 100. Therefore, in the embodiment of the present application, the so-called finger pressing on the display screen 120 actually means pressing on the cover plate 110 above the display screen 120 or covering the surface of the protective layer of the cover plate 110.
  • the fingerprint recognition device 130 may include a light detection part 134 and an optical component 132, the light detection part 134 includes the sensing array and is electrically connected to the sensing array
  • the connected reading circuit and other auxiliary circuits can be fabricated on a chip through a semiconductor process; that is, the light detection portion 134 can be fabricated on an optical imaging chip or an image sensor chip.
  • the optical component 132 may be disposed above the sensing array of the light detection portion 134, and the optical component 132 may include a filter layer, a light guide layer, and other optical elements; the filter layer may be used for The ambient light penetrating the finger is filtered out, and the light guide layer is mainly used to guide (eg, optically collimate or converge) the reflected light reflected from the finger surface to the sensing array for optical detection.
  • the light emitted by the display screen 120 is reflected on the surface of the finger to be detected above the display screen 120, and the reflected light reflected from the finger is optically collimated or concentrated by the micro-hole array or the lens unit, and then further After being filtered by the filter layer, the optical detection portion 134 receives the reflected light, and the optical detection portion 134 can further detect the received reflected light, thereby acquiring a fingerprint image of the finger to realize fingerprint recognition.
  • the position of the filter layer of the optical component 132 is not limited to below the light guide layer; for example, in an alternative
  • the filter layer may also be disposed between the light guide layer and the display screen 120, that is, above the light guide layer; or, the optical component 132 may include two filter layers, The two are respectively arranged above and below the light guide layer.
  • the filter layer may also be integrated into the light guide layer, or may even be omitted, which is not limited in this application.
  • the optical component 132 and the light detection part 134 can be packaged in the same optical fingerprint chip. It may also be installed inside the fingerprint recognition device as a relatively independent component from the optical detection portion 134, that is, the optical component 132 is disposed outside the chip where the light detection portion 134 is located, such as attaching the optical component 132 Above the chip, or integrate some elements of the optical assembly 132 into the above chip. There are various implementation solutions for the light guide layer of the optical component 132.
  • the light guide layer of the optical component 132 is specifically an optical path modulator or an optical path collimator made of semiconductor silicon wafers or other substrates (such as silicon oxide or nitride), which has Multiple optical path modulation units or collimation units.
  • the optical path modulation unit or collimation unit may be specifically a through hole having a high aspect ratio. Therefore, the multiple collimation units or lens units may constitute a through hole array.
  • the light incident on the optical path modulation unit or the collimating unit can pass through and be received by the optical sensing unit below it, and each optical sensing unit can basically receive the light passing above it.
  • the light guide layer may also include an optical lens (Lens) layer having one or more optical lens units, such as a lens group composed of one or more aspherical microlenses.
  • an optical lens (Lens) layer having one or more optical lens units, such as a lens group composed of one or more aspherical microlenses.
  • the sensor array of the light detection part 134 may specifically include only a single sensor array, or a dual sensor array (Dual Array) or multiple sensor arrays (Multiple Array) with two or more sensor arrays arranged side by side ) Architecture.
  • the optical component 132 may use a single light guide layer to simultaneously cover the two or more sensing arrays; alternatively, the optical component 132 may also include two or more light guide layers arranged side by side, such as two or more optical path modulators or optical path collimators, or two or more optical lens layers, the two or more light guide layers arranged side by side
  • the light layers are respectively arranged above the two or more sensor arrays, and are used to guide or concentrate the related reflected light to the sensor arrays below it.
  • the display screen 120 may also use a non-self-luminous display screen, such as a backlit liquid crystal display screen; in this case, the fingerprint recognition device 130 cannot use the display screen 120
  • the display unit is used as an excitation light source. Therefore, it is necessary to integrate an excitation light source inside the fingerprint recognition device 130 or set an excitation light source outside to realize optical fingerprint detection.
  • the detection principle is consistent with the content described above.
  • the fingerprint recognition device is taken as an example of an off-screen optical fingerprint recognition device
  • the fingerprint recognition device of the terminal device 100 may also use ultrasonic waves Fingerprint recognition devices or other types of fingerprint recognition devices instead. This application does not specifically limit the type and specific structure of the fingerprint recognition device, as long as the above fingerprint recognition device can meet the performance requirements for fingerprint recognition inside the display screen of the terminal device.
  • the fingerprint identification device 130 may use a periodic micro-hole array to transmit light to the sensing array. In this scheme, the light energy loss is large and the sensor exposure time is long.
  • the fingerprint recognition device 130 may use a micro lens to transmit light to the sensing array, and since an ordinary lens is used, during the imaging process, when the object distance changes, the size of the resulting image Changes will occur accordingly, which may result in lenses with the same focal length, corresponding to different object distances, having different magnifications.
  • ordinary lenses have a certain depth of field. When the measured object is not within the depth of field of the lens, the image will become blurred and cannot be clearly focused. As a result, the fingerprint recognition accuracy is not high.
  • the embodiments of the present application provide a new fingerprint recognition device, which can be disposed under the display screen.
  • the fingerprint recognition device 200 may include a micro-telecentric lens array group 210 and a fingerprint sensor 220, and the micro-telecentric lens array group 210 may be disposed above the fingerprint sensor 220.
  • the micro-telecentric lens array 210 is used to receive an optical signal formed by reflection of a human finger and in a vertical direction, and then collimate and focus the optical signal.
  • the fingerprint sensor 220 is used for imaging based on the optical signal passing through the micro-telecentric lens array group 210.
  • the so-called telecentric lens is essentially a combination of an ordinary lens and a small hole imaging principle. It can be within a certain object distance range, so that the resulting image magnification will not change, does not change with the depth of field, and there is no parallax. Applying it to fingerprint recognition technology can improve the accuracy of fingerprint recognition.
  • telecentric lenses can be divided into object-side telecentric lenses, image-side telecentric lenses, and dual telecentric lenses.
  • object-side telecentric lenses image-side telecentric lenses
  • dual telecentric lenses The principles of various telecentric lenses will be described below with reference to FIGS. 3 to 5.
  • Figure 3 shows the imaging principle of an object-side telecentric lens.
  • an aperture stop is placed at the focal plane of the image side of the ordinary lens.
  • the role of this aperture stop is to allow only parallel incident object rays (such as Ray 1 and Ray 2) to reach the image plane for imaging. From the geometric relationship, it can be seen that there is no relationship between near and far. That is to say, the object is at infinity.
  • Fig. 4 shows the imaging principle of an image-side telecentric lens.
  • an aperture stop is placed at the object-side focal plane of the ordinary lens so that the image-side chief rays (such as ray 1 and ray 2) are parallel to the optical axis, and the magnification and image distance of the image-side telecentric lens Irrelevant.
  • Fig. 5 shows the imaging principle of a double telecentric lens.
  • the dual telecentric lens combines the advantages of an object-side telecentric lens and an image-side telecentric lens. It is composed of two groups of lenses (such as lens 1 and lens 2).
  • the confocal surface of the two groups of lenses is equipped with an aperture stop, so that the main rays (such as ray 1 and ray 2) are both on the object side and the image side and the optical axis parallel.
  • the telecentric lens after the array miniaturization constitutes the micro telecentric lens array group 210 in the fingerprint identification device 200 provided by the embodiment of the present application.
  • the micro-telecentric lens array group can be a combination of various arrayed and miniaturized telecentric lens units.
  • the micro-telecentric lens array group 210 may include a dual-telecentric lens array 211 and an object-side telecentric lens array 212, and the object-side telecentric lens array 212 may be disposed on the dual-telecentric lens array 211 below, where the dual telecentric lens array 211 mainly receives the optical signal formed by the reflection of the human finger and receives the optical signal at a small angle in the vertical direction; and the object-side telecentric lens array 212 is used to The optical signal transmitted from the dual telecentric lens array 211 is collimated and focused, and the sensing array of the fingerprint sensor 220 can receive the optical signal transmitted from the object-side telecentric lens array 212 and perform imaging based on the optical signal.
  • the dual telecentric lens array 211 and the object-side telecentric lens array 212 are also miniaturized telecentric lenses.
  • the bi-telecentric lens array 211 may be composed of a plurality of bi-telecentric lens units, and as shown in FIG. 5, one bi-telecentric lens unit is composed of two microlenses and a micro-aperture stop, where the micro The aperture stop may be provided between two microlenses.
  • the object-side telecentric lens array 212 may be composed of multiple object-side telecentric lens units, and as shown in FIG.
  • an object-side telecentric lens is composed of a microlens and a micro-aperture diaphragm, where the The micro-aperture stop may be provided on the side where the micro lens forms an image.
  • the microlens array 1, microaperture diaphragm array 1, microlens array 2, microlens array 3, and micro The aperture diaphragm array 2 can reach the fingerprint sensor.
  • the microlens array 1, the microaperture diaphragm array 1 and the microlens array 2 constitute a dual telecentric lens array 211
  • the microlens array 3 and the microaperture diaphragm array 2 constitute an object-side telecentric lens array 212.
  • the micro-telecentric lens array group 210 may only be provided with a micro-aperture diaphragm array under the double-telecentric lens array. That is to say, after passing through the display screen, the optical signal formed by the reflection of the finger can pass through the microlens array 1, the microaperture diaphragm array 1, the microlens array 2 or the microlens array 3, and The micro-aperture diaphragm array 2 reaches the fingerprint sensor.
  • the micro-lens array 1, the micro-aperture diaphragm array 1 and the micro-lens array 2 constitute a dual telecentric lens array 211
  • the dual telecentric lens array is used to receive an optical signal formed by fingerprint reflection in the vertical direction
  • the stop array 2 is used to condense the light transmitted by the double telecentric lens array and transmit it to the fingerprint sensor.
  • the micro-telecentric lens array group is mainly composed of a micro lens array and a micro aperture diaphragm array. As for how it is implemented in combination with the three telecentric lenses in FIGS. 3 to 5, it is not specifically limited here.
  • air, glass, plastic, or any other transparent material is used to fill the microlens and the microaperture diaphragm and/or the microlens and the microlens, or the above-mentioned various Any combination of transparent materials.
  • transparent materials for example, between microlens array 1 and microaperture diaphragm array 1 in FIG. 7, between microaperture diaphragm array 1 and microlens array 2, microlens array 2 and microlens array 3, microlens array 3
  • the filling with the micro-aperture diaphragm array 2 may be the same or different.
  • all may be air, glass, or plastic.
  • the filling between the microlens and the microaperture stop may be different from that between the microlens and the microlens.
  • the microlens and the microaperture stop may be filled with air, and the microlens and the microlens may be filled with glass, which is not limited in this application.
  • the microlenses in the embodiments of the present application may be implemented by a micro-nano processing technology or a compression molding process, and the micro-aperture diaphragms in the embodiments of the present application may be manufactured by a micro-nano processing technology or a nano-printing technology, and then may Realize the miniaturization of telecentric lens array.
  • a dual telecentric lens unit is composed of two micro lenses and a micro aperture stop
  • an object-side telecentric lens unit is composed of a micro lens and a micro aperture stop.
  • the micro-aperture stop in the dual telecentric lens unit can be set at the confocal plane of the two micro lenses. That is to say, the focal points of the two microlenses coincide, and an aperture stop is inserted at the focal point to constitute a bi-telecentric lens unit.
  • the micro-aperture stop in the object-side telecentric lens unit is set at the image-side focal plane of the micro lens.
  • the focal lengths of the two microlenses in the bi-telecentric lens unit may be the same or different.
  • the two microlenses may be symmetric with respect to the confocal plane, that is, symmetric with respect to the micro-aperture stop. If the focal lengths of the two microlenses are different, the two microlenses may be asymmetric with respect to the confocal plane. In other words, the two microlenses are no longer symmetrical about the micro-aperture stop.
  • the micro-aperture diaphragm in the dual telecentric lens unit and the micro-aperture diaphragm in the object-side telecentric lens unit may have a certain thickness, then the micro-aperture diaphragm may be a cylindrical hole, It may not be a cylindrical hole.
  • the micro-aperture stop in the double-telecentric lens unit may be a contra-double-tapered hole, and the micro-aperture stop in the object-side telecentric lens array may be a single-cone hole.
  • both the top double-cone hole and the single-cone hole may be conical or triangular, which is not limited herein.
  • the embodiment of the present application does not specifically limit the thickness of the micro-aperture diaphragm, as long as it is smaller than the distance between the micro-aperture diaphragm and the microlens.
  • one micro-telecentric lens group in the micro-telecentric lens array group may correspond to one pixel unit of the fingerprint sensor.
  • the one micro-telecentric lens group may include a double telecentric lens unit and an object-side telecentric lens unit.
  • the object-side telecentric lens units in the object-side telecentric lens array may correspond to the pixel units of the fingerprint sensor in a one-to-one correspondence.
  • the dual-telecentric lens array and the object-side telecentric lens array may or may not correspond to each other.
  • one bi-telecentric lens unit may correspond to one or more object-side telecentric lens units, or one object-side telecentric lens unit may also correspond to multiple bi-telecentric lens units.
  • one micro-telecentric lens group in the micro-telecentric lens array group may correspond to multiple pixel units of the fingerprint sensor.
  • one object-side telecentric lens in the object-side telecentric lens array may correspond to four pixel units.
  • the pixel density of the fingerprint sensor can be doubled or higher, or the pixel unit of the fingerprint sensor has a shorter cycle than the telecentric lens unit.
  • a single pixel period needs to be related to the resolution requirements of the object.
  • a fingerprint recognition device installed under the display screen can set the pixel period of the telecentric lens to be along the plane X/Y direction of the display screen
  • Each sampling rate is 25 ⁇ m.
  • the fingerprint identification device adopts a telecentric lens to collect fingerprints on the area above the telecentric lens, and focus the light in the vertical area above to the pixel unit of the fingerprint sensor. And by miniaturizing and arraying telecentric lenses, fingerprint imaging within a certain distance can be achieved. Compared with the solution of the periodic via array, the light loss in the vertical direction can be avoided, and the exposure time of the fingerprint sensor can be reduced. Compared with the micro lens solution, the fingerprint recognition device can also reduce the imaging distortion of the entire system, and the fingerprint recognition device can achieve higher imaging quality and contrast.
  • the diameter of the micro-aperture diaphragm may range from 20 ⁇ m to 1 ⁇ m, and the thickness of the micro-aperture diaphragm may range from 100 nm to 100 ⁇ m, for example, The thickness may be 500 nm.
  • the diameter of its micro-aperture diaphragm ranges from 500 nm to 20 ⁇ m, and the thickness of its micro-aperture diaphragm can range from 100 nm to 100 ⁇ m.
  • the surface type of each microlens in the telecentric lens may be spherical or aspherical, that is, in a telecentric lens group composed of a double telecentric lens unit and an object-side telecentric lens unit
  • the surface type of the microlenses may be all spherical or aspherical, or one of them may be spherical or aspherical.
  • the radius of curvature of the spherical microlens may be some value between 5 ⁇ m and 100 ⁇ m.
  • the radius of curvature of the aspherical microlens changes with the central axis.
  • the focal length range of the aspherical microlens may be a certain value between 5 m and 2000 m, specifically, a certain value between 5 m and 500 m.
  • the distance between the dual telecentric lens array and the object-side telecentric lens array may be less than or equal to 200 ⁇ m.
  • it may be between 1 ⁇ m and 200 ⁇ m.
  • the distance between the dual telecentric lens array and the object-side telecentric lens array can be set to less than 50 ⁇ m.
  • the material of the micro-telecentric lens array group may be glass, plastic, or other transparent materials.
  • the arrangement mode of the micro-telecentric lens array group may be a square, such as a square or a rectangle, a hexagon, or any other form, which is not limited in the embodiments of the present application.
  • the fingerprint recognition device 200 of the embodiment of the present application may further include a filter, which is used to filter the optical signal reflected by the finger.
  • the filter can be located between the lower part of the display screen and the fingerprint sensor, for example, it can be arranged between the fingerprint sensor and the micro-telecentric lens array group.
  • the position of the filter is not limited to the micro-telecentric lens array group, but can also be set between the micro-telecentric lens array group and the display screen, that is, the micro-telecentric lens array group Above; or, may include two layers of filters, both of which are arranged above and below the micro-telecentric lens array group, respectively.
  • the filter can also be arranged inside the micro-telecentric lens array group, for example, between the dual-telecentric lens array and the object-side telecentric lens array, or even omitted. There are no restrictions on the application.
  • the filter can be used to reduce the undesired background light in the fingerprint sensing, so as to improve the optical sensitivity of the fingerprint sensor to the received light.
  • the filter can specifically be used to filter out the wavelength of ambient light, for example, near infrared light and part of red light. For another example, blue light or part of blue light.
  • human fingers absorb most of the energy of light with a wavelength below 580 nm. If one or more optical filters or optical filter coatings can be designed to filter light with a wavelength from 580 nm to infrared, the ambient light pair can be greatly reduced The impact of optical detection in fingerprint sensing.
  • the filter may be an infrared cut-off optical filter.
  • FIG. 8 shows a schematic structural diagram of a fingerprint identification device provided by an embodiment of the present application.
  • the fingerprint recognition device is applied to an electronic device (for example, a smart phone), as shown in FIG. 8, the lower surface of the protective cover 310 is attached to the upper surface of the display screen 320, and the fingerprint recognition device 330 may be fixedly disposed on the display Below the screen 320, the lower surface of the fingerprint recognition device 330 is soldered and fixed to the flexible circuit board 350. And there is a gap 390 between the fingerprint recognition device 330 and the display screen 320.
  • the fingerprint identification device 330 may be fixedly connected to a device easily removable inside the terminal device to be installed below the display screen 320, for example, the fingerprint identification device 330 may be installed on the middle frame 370
  • the lower surface, the middle frame 370 can serve as a fixing frame between the fingerprint recognition device 330 and the display screen 320, and the upper surface of the middle frame 370 can be attached to the edge portion of the lower surface of the display screen 320 through foam adhesive 360 Together.
  • the middle frame 370 is disposed between the display screen 320 and the back cover and is used to carry various internal components.
  • the internal components include but are not limited to batteries, motherboards, cameras, cables, various sensors, microphones, earpieces, etc. And other parts.
  • the fingerprint recognition device 330 and the display screen 320 are completely decoupled, which prevents damage to the display screen 320 when the fingerprint recognition device 330 is installed or removed.
  • the fingerprint recognition device 330 may also be installed between the display screen 320 and the middle frame 370 with a gap therebetween.
  • the fingerprint recognition device 330 may be installed on the upper surface of the middle frame 370.
  • the fingerprint identification device and the battery can coincide in the thickness direction of the electronic device, so that the placement of the fingerprint identification device is no longer limited.
  • the distance between the fingerprint recognition device 330 and the display screen 320 may be greater than or equal to 600 ⁇ m.
  • the safety distance between the fingerprint identification device 330 and the display screen 320 is satisfied, and no device loss will be caused due to vibration or falling.
  • the middle frame 370 can be specifically made of metal or alloy material, or even made of plastic material. In this case, the middle frame 370 can even be integrally formed with the frame of the electronic device.
  • the so-called integrated molding is the internal middle frame and the frame Is a whole.
  • the frame can be just a metal welt, or a metal-like coating can be applied to the middle frame.
  • the middle frame 370 may also be a composite middle frame. Taking a mobile phone as an example, the middle frame 370 includes an inner middle frame 1 and an outer middle frame 2, the inner middle frame 1 is used to carry mobile phone parts, and the outer middle frame 2 is inside.
  • the outer edge of the outer middle frame 2 is provided with a mobile phone button, and the inner middle frame 1 and the outer middle frame 2 are integrated into one. Because the middle frame of the mobile phone is designed as the inner middle frame and the outer middle frame, the inner and outer middle frames are integrated into a whole. When the mobile phone is impacted, the outer middle frame is first worn. Because there are only buttons on the outer middle frame, it is simple and convenient to replace the outer middle frame. Low cost; furthermore, an elastic material can be provided between the inner and outer middle frames. Since the inner and outer middle frames are relatively fixed under the compression of the elastic layer, the elastic layer can reduce the inner center when the outer middle frame is under impact The impact of the box.
  • a layer of foam can be provided under the display screen 320, and a sealed environment can be formed between the display screen 320 and the fingerprint recognition device 330, so as to meet the requirements of shading and dust prevention.
  • the foam layer can be opened at the installation position of the fingerprint recognition device 330, so that the fingerprint recognition device 330 can receive the optical signal transmitted through the display screen 320.
  • the finger When the finger is placed above the illuminated display screen 320, the finger will reflect the light emitted by the display screen 320, and this reflected light will penetrate the display screen.
  • the fingerprint is a diffuse reflector whose reflected light exists in all directions. Using a specific light path, the fingerprint sensor only receives light in the vertical direction, and the fingerprint can be solved by an algorithm.
  • An embodiment of the present application further provides an electronic device.
  • the electronic device includes the fingerprint identification device and the display screen in the foregoing various embodiments, and the fingerprint identification device is located below the display screen. Further, the electronic device further includes a middle frame, and the fingerprint identification device may be fixed on the middle frame.
  • FIG. 9 is a schematic block diagram of an electronic device 400 provided according to an embodiment of the present application.
  • the electronic device 400 shown in FIG. 9 includes: a radio frequency (Radio Frequency) circuit 410, a memory 420, other input devices 430, a display screen 440, a sensor 450, an audio circuit 460, an I/O subsystem 470, a processor 480, And power supply 490 and other components.
  • a radio frequency (Radio Frequency) circuit 410 included in FIG. 7
  • the structure of the electronic device shown in FIG. 7 does not constitute a limitation on the electronic device, and may include more or fewer components than the illustration, or combine some components, or split some components , Or different component arrangements.
  • the display screen 440 belongs to a user interface (User Interface, UI), and the electronic device 400 may include a user interface that is less than that illustrated or less.
  • UI User Interface
  • the RF circuit 410 can be used for receiving and sending signals during receiving and sending information or during a call.
  • the RF circuit includes, but is not limited to, an antenna, at least one amplifier, a transceiver, a coupler, a low noise amplifier (LNA), a duplexer, and the like.
  • the RF circuit 410 can also communicate with other devices through a wireless communication network.
  • the memory 420 may be used to store software programs and modules.
  • the processor 480 executes various functional applications and data processing of the electronic device 400 by running the software programs and modules stored in the memory 420.
  • the memory 420 may mainly include a storage program area and a storage data area, wherein the storage program area may store an operating system, application programs required by at least one function (such as a sound playback function, an image playback function, etc.), etc.; the storage data area may store The data created by the use of the electronic device 400 (such as audio data, phone book, etc.) and the like.
  • the memory 420 may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one magnetic disk storage device, a flash memory device, or other volatile solid-state storage devices.
  • the other input device 430 may be used to receive input digital or character information, and generate signal input related to user settings and function control of the electronic device 400.
  • other input devices 430 may include but are not limited to physical keyboards, function keys (such as volume control buttons, switch buttons, etc.), trackballs, mice, joysticks, and light mice (light mice are touch sensitive that do not display visual output Surface, or an extension of a touch-sensitive surface formed by a screen, etc.).
  • the other input device 430 is connected to the other input device controller 471 of the I/O subsystem 470, and performs signal interaction with the processor 480 under the control of the other device input controller 471.
  • the display screen 440 may be used to display information input by the user or information provided to the user and various menus of the electronic device 400, and may also accept user input.
  • the specific display screen 440 may be a touch screen, and may include a display panel 441 and a touch panel 442.
  • the touch panel 442 can cover the display panel 441, and the user can according to the content displayed on the display panel 441 (the display content includes but is not limited to, a soft keyboard, a virtual mouse, a virtual key, an icon, etc.) Operate on or near the control panel 442, after detecting the operation on or near it, the touch panel 442 transmits it to the processor 480 through the I/O subsystem 470 to determine the user input, and then the processor 480 passes the I according to the user input
  • the /O subsystem 470 provides corresponding visual output on the display panel 441.
  • the touch panel 442 and the display panel 441 are implemented as two independent components to realize the input and input functions of the electronic device 400, in some embodiments, the touch panel 442 and the display panel 441 may be Integrate to realize the input and output functions of the electronic device 400.
  • the electronic device 400 may further include at least one sensor 450.
  • the sensor 450 may be a fingerprint sensor located under or within the display screen 440, that is, the fingerprint identification device in the embodiment of the present application.
  • the audio circuit 460, the speaker 461, and the microphone 462 may provide an audio interface between the user and the electronic device 400.
  • the audio circuit 460 can convert the received audio data converted signal to the speaker 461, which converts the speaker 461 into a sound signal output; on the other hand, the microphone 462 converts the collected sound signal into a signal, which is received by the audio circuit 460 Convert to audio data, and then output the audio data to the RF circuit 410 to send to another mobile phone, for example, or output the audio data to the memory 420 for further processing.
  • the I/O subsystem 470 is used to control input and output external devices, and may include other device input controllers 471, sensor controllers 472, and display controllers 473.
  • one or more other input control device controllers 471 receive signals from other input devices 430 and/or send signals to other input devices 430, which may include physical buttons (press buttons, rocker buttons, etc.) , Dial, slide switch, joystick, click wheel, light mouse (light mouse is a touch-sensitive surface that does not display visual output, or an extension of the touch-sensitive surface formed by the screen). It is worth noting that the other input control device controller 471 can be connected to any one or more of the above devices.
  • the display controller 473 in the I/O subsystem 470 receives signals from the display screen 440 and/or sends signals to the display screen 440. After the display screen 440 detects the user input, the display controller 473 converts the detected user input into interaction with the user interface object displayed on the display screen 440, that is, realizes human-computer interaction.
  • the sensor controller 472 may receive signals from one or more sensors 440 and/or send signals to one or more sensors 440.
  • the processor 480 is the control center of the electronic device 400, and uses various interfaces and lines to connect various parts of the entire electronic device, by running or executing the software programs and/or modules stored in the memory 420, and calling the stored in the memory 420
  • the data performs various functions of the electronic device 400 and processes the data, thereby monitoring the electronic device as a whole.
  • the processor 480 may include one or more processing units; preferably, the processor 480 may integrate an application processor and a modem processor, where the application processor mainly processes an operating system, a user interface, and application programs, etc.
  • the modem processor mainly handles wireless communication. It can be understood that the foregoing modem processor may not be integrated into the processor 480.
  • the processor 480 may be used to execute various steps in the method embodiments of the present application.
  • the electronic device 400 further includes a power supply 490 (such as a battery) that supplies power to various components.
  • a power supply 490 (such as a battery) that supplies power to various components.
  • the power supply can be logically connected to the processor 480 through a power management system, so as to realize functions such as charging, discharging, and power consumption management through the power management system.
  • the electronic device 400 may further include a camera, a Bluetooth module, etc., which will not be repeated here.
  • circuits, branches, and units may be implemented in other ways.
  • the branch described above is schematic.
  • the division of the unit is only a logical function division. In actual implementation, there may be other divisions.
  • multiple units or components may be combined or integrated into A branch, or some features can be ignored, or not implemented.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it may be stored in a computer-readable storage medium.
  • the technical solution of the present application essentially or part of the contribution to the existing technology or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to enable a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in the embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program code .

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • Multimedia (AREA)
  • Theoretical Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Image Input (AREA)

Abstract

本申请实施例提供了一种指纹识别装置和电子设备,该指纹识别装置包括:微远心镜头阵列组,用于接收经由人体手指反射形成的光信号;指纹传感器,设置于所述微远心镜头阵列组的下方,用于基于穿过所述微远心镜头阵列组的所述光信号进行成像。本申请实施例的指纹识别装置和电子设备,相对于周期性通孔阵列的方案来说,可以避免垂直方向的光损失,进而可以减少指纹传感器的曝光时间。相对于微透镜的方案,该指纹识别装置也能让整个***的成像畸变减小。该指纹识别装置能够使成像质量和对比度得到提高。

Description

指纹识别装置和电子设备 技术领域
本申请涉及指纹识别技术领域,尤其涉及一种指纹识别装置和电子设备。
背景技术
已公开的屏下光学指纹识别装置技术主要有两种。第一种是基于周期性微孔阵列的屏下光学指纹识别技术,这种方案光能量损失大,且传感器曝光时间长;另一种是基于微透镜的屏下光学指纹识别技术,这种方案的指纹识别装置的成像畸变较大。
发明内容
有鉴于此,本申请实施例提供了一种指纹识别装置和电子设备,相对于周期性通孔阵列的方案来说,可以避免垂直方向的光损失,进而可以减少指纹传感器的曝光时间。相对于微透镜的方案,该指纹识别装置也能让整个***的成像畸变减小。因此,本申请实施例的指纹识别装置,使得指纹识别的成像质量和对比度得到了很大的提高。
第一方面,提供了一种指纹识别装置,包括:微远心镜头阵列组,用于接收经由人体手指反射形成的光信号;指纹传感器,设置于所述微远心镜头阵列组的下方,用于基于穿过所述微远心镜头阵列组的所述光信号进行成像。
在一种可能的实现方式中,所述微远心镜头阵列组包括:双远心镜头阵列,用于接收在垂直方向的所述光信号;物方远心镜头阵列,所述物方远心镜头阵列设置于所述双远心镜头阵列的下方,用于对从所述双远心镜头阵列传输下来的光信号进行准直和聚焦,并将所述光信号传输到所述指纹传感器。
在一种可能的实现方式中,所述双远心镜头阵列包括多个双远心镜头单元,所述双远心镜头单元包括第一微透镜、第二微透镜以及设置在所述第一微透镜和所述第二微透镜之间的第一微孔径光阑;和/或所述物方远心镜头阵列包括多个物方远心镜头单元,所述物方远心镜头单元包括第三微 透镜和设置于所述第三微透镜下方的第二微孔径光阑。
在一种可能的实现方式中,所述第一微孔径光阑设置于所述第一微透镜和所述第二微透镜的共焦面处,和/或所述第二微孔径光阑设置于所述第三微透镜的像方焦平面处。
可选地,所述第一微透镜的焦距和所述第二微透镜的焦距可以相同或不同。
在一种可能的实现方式中,所述第一微孔径光阑的直径范围为20μm~1μm,所述第一微孔径光阑的厚度范围为100nm~100μm;和/或所述第二微孔径光阑的直径范围为500nm~20μm,所述第二微孔径光阑的厚度范围为100nm~100μm。
可选地,该第一微孔径光阑和/或该第二微孔径光阑的厚度可以为500nm。
在一种可能的实现方式中,所述第一微孔径光阑包括对顶双锥形孔,所述对顶双锥形孔的锥角角度与所述第一微透镜的边缘光线汇聚的角度相同,和/或所述第二微孔径光阑包括单锥形孔,所述单锥形孔的锥角角度与通过所述第三微透镜的边缘光线汇聚的角度相同。
在一种可能的实现方式中,所述微远心镜头阵列组包括球面型微透镜和/或非球面型微透镜。
可选地,所述微远心镜头阵列组中的球面型微透镜的曲率半径范围为5μm~100μm。所述微远心镜头阵列组中的非球面型微透镜的焦距范围为5μm~2000μm。
在一种可能的实现方式中,所述双远心镜头阵列和所述物方远心镜头阵列之间的距离小于或等于200μm。
在一种可能的实现方式中,所述指纹传感器的一个像素单元对应所述微远心镜头阵列组中的至少一个微远心镜头组,例如,若一个微远心镜头组包括一个双远心镜头单元和一个物方远心镜头单元,则指纹传感器的一个像素对应一个或多个由一个双远心镜头单元和一个物方远心镜头单元构成的微远心镜头组。
可选地,物方远心镜头阵列中的物方远心镜头单元可以与指纹传感器的像素单元一一对应。而双远心镜头阵列与物方远心镜头阵列可以一一对应,也可以不一一对应。例如,一个双远心镜头单元可以对应一个或多个 物方远心镜头单元,或者一个物方远心镜头单元也可以对应多个双远心镜头单元。
在一种可能的实现方式中,所述装置还包括:滤波片,设置于所述指纹传感器的上方,用于对由人体手指反射形成的光信号进行过滤。
在一种可能的实现方式中,当所述指纹识别装置应用于具有显示屏的电子设备时,所述指纹识别装置固定于所述显示屏的下方,且与所述显示屏之间存在间隙。
在一种可能的实现方式中,所述电子设备还包括中框,所述指纹识别装置固定于所述中框上。
在一种可能的实现方式中,所述显示屏的下方设置有泡棉层,所述泡棉层在所述指纹识别装置的安装位置具有开孔,以使得所述指纹识别装置能够接收从所述显示屏透过的经由人体手指反射形成的光信号。
在一种可能的实现方式中,所述微远心镜头阵列组的排列方式为正方形或六边形。
在一种可能的实现方式中,所述微远心镜头阵列组中的微透镜与所述微远心镜头阵列组中的微孔径光阑之间和/或所述微远心镜头阵列组中的微透镜与所述微远心镜头阵列组中的微透镜之间通过以下透明介质的任意组合填充:空气、玻璃和塑料。
例如,第一微透镜与第一微孔径光阑之间可以由空气填充,第一微孔径光阑和第二微透镜之间可以由玻璃填充等。
在一种可能的实现方式中,所述微远心镜头阵列组中的微透镜的材料为玻璃或塑料,和/或所述微远心镜头阵列组中的微透镜通过微纳加工工艺或压模工艺实现。
在一种可能的实现方式中,所述微远心镜头阵列组中的微孔径光阑通过微纳加工工艺或纳米印制工艺来制作。
第二方面,提供了一种电子设备,包括显示屏和所述第一方面或第一方面的任一可能的实现方式中的指纹识别装置,并且该指纹识别装置设置于所述显示屏的下方。
在一种可能的实现方式中,所述指纹识别装置与所述显示屏之间存在间隙。
在一种可能的实现方式中,所述电子设备还包括中框,所述指纹识别 装置固定于所述中框上。
可选地,该指纹识别装置与显示屏的距离可以大于或等于600μm。
在一种可能的实现方式中,所述显示屏的下方设置有泡棉层,所述泡棉层在所述指纹识别装置的安装位置具有开孔,以使得所述指纹识别装置能够接收从所述显示屏透过的经由人体手指反射形成的光信号。
通过采用远心镜头,能够对远心镜头上方区域进行指纹采集,并将上方垂直区域的光聚焦到指纹传感器的像素单元。并且通过将远心镜头微型化和阵列化,可以实现在一定距离内的指纹成像。相对于周期性通孔阵列的方案来说,可以避免垂直方向的光损失,进而可以减少指纹传感器的曝光时间。相对于微透镜的方案,该指纹识别装置也能让整个***的成像畸变减小。该指纹识别装置可以达到较高的成像质量以及对比度。
本申请的这些方面或其他方面在以下实施例的描述中会更加简明易懂。
附图说明
图1示出了本申请实施例的应用场景的示意性框图。
图2是本申请实施例的指纹识别装置的示意性框图。
图3示出了物方远心镜头的成像原理图。
图4示出了像方远心镜头的成像原理图。
图5示出了双远心镜头的成像原理图。
图6是本申请实施例中微远心镜头阵列组的示意性框图。
图7示出了本申请实施例的指纹识别装置的结构性示意图。
图8是本申请实施例的指纹识别装置的装配结构图。
图9是本申请实施例的电子设备的示意性框图。
具体实施方式
为了使本领域的人员更好地理解本申请实施例中的技术方案,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅是本申请实施例的一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员所获得的所有其他实施例,都应当属于本申请实施例保护的范围。
一种常见的应用场景,本申请实施例提供的指纹识别装置可以应用在智能手机、平板电脑以及其他具有显示屏的移动终端或者其他终端设备;更具体地,在上述终端设备中,指纹识别装置可以具体为光学指纹装置,其可以设置在显示屏下方的局部区域或者全部区域从而形成屏下(Under-display)光学指纹***。
如图1所示为本申请实施例可以适用的终端设备的结构示意图,所述终端设备100包括显示屏120和指纹识别装置130,其中,所述指纹识别装置130设置在所述显示屏120下方的局部区域。所述指纹识别装置130可以包括具有多个光学感应单元的感应阵列,其中,所述感应阵列也可以是一个指纹传感器。所述感应阵列所在区域或者其光学感应区域为所述指纹识别装置130的指纹检测区域103。如图1所示,所述指纹检测区域103位于所述显示屏120的显示区域102之中,因此,使用者在需要对所述终端设备100进行解锁或者其他指纹验证的时候,只需要将手指按压在位于所述显示屏120的指纹检测区域103,便可以实现指纹输入。由于指纹检测可以在屏内实现,因此采用上述结构的终端设备100无需其正面专门预留空间来设置指纹按键(比如Home键)。
作为一种优选的实施例,所述显示屏120可以采用具有自发光显示单元的显示屏,比如有机发光二极管(Organic Light-Emitting Diode,OLED)显示屏或者微型发光二极管(Micro-LED)显示屏。另外,所述显示屏120可以具体为触控显示屏,其不仅可以进行画面显示,还可以检测用户的触摸或者按压操作,从而为用户提供一个人机交互界面。比如,在一种实施例中,所述终端设备100可以包括触摸控制器,所述触摸控制器可以具体为触控面板,其可以设置在所述显示屏120表面,也可以部分集成或者整体集成到所述显示屏120内部,从而形成所述触控显示屏。以采用OLED显示屏为例,所述指纹识别装置130可以利用所述OLED显示屏120位于所述指纹检测区域103的显示单元(即OLED光源)来作为光学指纹检测的激励光源。
在其他实施例中,所述指纹识别装置130也可以采用内置光源或者外置光源来提供用于进行指纹检测的光信号。在这种情况下,所述指纹识别装置130可以适用于非自发光显示屏,比如液晶显示屏或者其他的被动发光显示屏。以应用在具有背光模组和液晶面板的液晶显示屏为例,为支持 液晶显示屏的屏下指纹检测,所述指纹识别装置130还可以包括用于光学指纹检测的激励光源,所述激励光源可以具体为红外光源或者特定波长非可见光的光源,其可以设置在所述液晶显示屏的背光模组下方或者设置在所述终端设备100的保护盖板下方的边缘区域,而所述指纹识别装置130设置在所述背光模组下方,且所述背光模组通过对扩散片、增亮片、反射片等膜层进行开孔或者其他光学设计以允许指纹检测光穿过液晶面板和背光模组并到达所述指纹识别装置130的感应阵列。
并且,所述指纹识别装置130的感应阵列具体可以为光探测器(Photo detector)阵列,其包括多个呈阵列式分布的光探测器,所述光探测器可以作为如上所述的光学感应单元。当手指按压在所述指纹检测区域103时,所述指纹检测区域103的显示单元发出的光线在手指表面的指纹发生反射并形成反射光,其中所述手指指纹的脊和谷的反射光是不同的,反射光从所述显示屏120透过并被所述光探测器阵列所接收并转换为相应的电信号,即指纹检测信号;基于所述指纹检测信号便可以获得指纹图像数据,并且可以进一步进行指纹匹配验证,从而在所述终端设备100实现光学指纹识别功能。
在其他替代实施例中,所述指纹识别装置130也可以设置在所述显示屏120下方的整个区域,从而将所述指纹检测区域103扩展到整个所述显示屏120的整个显示区域102,实现全屏指纹识别。
应当理解的是,在具体实现上,所述终端设备100还可以包括透明保护盖板110,所述盖板110可以为玻璃盖板或者蓝宝石盖板,其设置于所述显示屏120的上方并覆盖所述终端设备100的正面。因此,本申请实施例中,所谓的手指按压在所述显示屏120实际上是指按压在所述显示屏120上方的盖板110或者覆盖所述盖板110的保护层表面。
作为一种可选的实现方式,如图1所示,所述指纹识别装置130可以包括光检测部分134和光学组件132,所述光检测部分134包括所述感应阵列以及与所述感应阵列电连接的读取电路及其他辅助电路,其可以在通过半导体工艺制作在一个芯片(Die);即所述光检测部分134可以制作在光学成像芯片或者图像传感芯片。
所述光学组件132可以设置在所述光检测部分134的感应阵列的上方,所述光学组件132可以包括滤光层(Filter)、导光层以及其他光学元 件;所述滤光层可以用于滤除穿透手指的环境光,而所述导光层主要用于将从手指表面反射回来的反射光导引(比如光学准直或者汇聚)至所述感应阵列进行光学检测。
所述显示屏120发出的光线在所述显示屏120上方的待检测手指表面发生反射,从手指反射回来的反射光经所述微孔阵列或者所述透镜单元进行光学准直或者汇聚之后,进一步经过滤光层的滤波后被所述光学检测部分134接收,所述光学检测部分134可以进一步对接收到的该反射光进行检测,从而获取到所述手指的指纹图像以实现指纹识别。
应当理解,上述指纹识别装置130仅是一种示例性的结构,在具体实现上,该光学组件132的滤光层的位置并不局限在所述导光层的下方;比如,在一种替代实施例中,该滤光层也可以设置在所述导光层和所述显示屏120之间,即位于所述导光层上方;或者,所述光学组件132可以包括两层滤光层,二者分别设置在所述导光层的上方和下方。在其他替代实施例中,该滤光层也可以集成到所述导光层内部,甚至也可以省略掉,本申请对此不做限制。
在具体实现上,所述光学组件132可以与所述光检测部分134封装在同一个光学指纹芯片。也可以是作为与光学检测部分134相对独立的部件安装在指纹识别装置内部,即是将所述光学组件132设置在所述光检测部分134所在的芯片外部,比如将所述光学组件132贴合在所述芯片上方,或者将所述光学组件132的部分元件集成在上述芯片之中。其中,所述光学组件132的导光层有多种实现方案。
在一种实施例中,所述光学组件132的导光层具体为在半导体硅片或者其他基材(比如硅氧化物或氮化物)制作而成的光路调制器或者光路准直器,其具有多个光路调制单元或者准直单元,具体地,所述光路调制单元或者准直单元可以具体为具有高深宽比的通孔,因此所述多个准直单元或者透镜单元可以构成通孔阵列。在从手指反射回来的反射光中,入射到所述光路调制单元或者准直单元的光线可以穿过并被其下方的光学感应单元接收,每一个光学感应单元基本上能够接收到其上方的通孔导引过来的指纹纹路的反射光,从而所述感应阵列便可以检测出手指的指纹图像。
在其他替代实施例中,所述导光层也可以包括光学透镜(Lens)层,其具有一个或多个光学透镜单元,比如一个或多个非球面型微透镜组成的 透镜组。从手指反射回来的反射光经所述光学透镜单元进行光路准直或者汇聚之后,并被其下方的光学感应单元接收,据此,所述感应阵列可以检测出手指的指纹图像。
另一方面,所述光检测部分134的感应阵列可以具体只包括单一的感应阵列,也可以采用具有两个或以上并排设置的感应阵列的双感应阵列(Dual Array)或多感应阵列(Multiple Array)的架构。当所述光检测部分134采用双感应阵列或者多感应阵列架构时,所述光学组件132可以采用单独一个导光层同时覆盖所述两个或以上的感应阵列;可替代地,所述光学组件132也可以包括两个或以上并排设置的导光层,比如两个或以上的光路调制器或光路准直器,或者两个或以上的光学透镜层,所述两个或以上并排设置的导光层分别对应设置在所述两个或以上的感应阵列的上方,用于将相关反射光导引或者汇聚到其下方的感应阵列。
在其他替代实现方式中,所述显示屏120也可以采用非自发光的显示屏,比如采用背光的液晶显示屏;在这种情况下,所述指纹识别装置130便无法采用所述显示屏120的显示单元作为激励光源,因此需要在所述指纹识别装置130内部集成激励光源或者在其外部设置激励光源来实现光学指纹检测,其检测原理与上面描述内容是一致的。
应当理解,虽然在图1所示的实施例中以所述指纹识别装置为屏下光学指纹识别装置为例,但是,在其他实施例中,所述终端设备100的指纹识别装置也可以采用超声波指纹识别装置或者其他类型的指纹识别装置代替。本申请对指纹识别装置的类型和具体结构不作特殊限制,只要上述指纹识别装置可以满足在终端设备的显示屏内部进行指纹识别的性能要求便可。
在一种实现方式中,指纹识别装置130可以采用周期性微孔阵列将光线传输到感应阵列上,这种方案光能量损失大,传感器曝光时间长。
在另一种实现方式中,指纹识别装置130可以采用微透镜将光线传输到感应阵列上,并且由于采用的是普通的透镜,在成像过程中,当物距发生变化时,其所成图像大小会相应的发生变化,可能会导致同一个焦距的镜头,对应不同的物距,将会有不同的放大倍率。另外,普通镜头都存在一定范围的景深,当被测物体不在镜头的景深范围内时图像就会变得模糊,无法清晰聚焦。从而导致指纹识别精度不高。
为了解决上述各种问题,本申请实施例提供了一种新的指纹识别装置,该指纹识别装置可以设置在显示屏下方。具体地,如图2所示,该指纹识别装置200可以包括微远心镜头阵列组210和指纹传感器220,所述微远心镜头阵列组210可以设置在所述指纹传感器220的上方。所述微远心镜头阵列210用于接收由人体手指反射形成的并且在垂直方向的光信号,进而对该光信号进行准直和聚焦。所述指纹传感器220用于基于穿过所述微远心镜头阵列组210的所述光信号进行成像。
为了便于理解,首先对远心镜头做一个简单的介绍。
所谓远心镜头,实质为普通镜头与小孔成像原理的结合。其可以在一定的物距范围内,使得到的图像放大倍率不会变化,不随景深变化而变化,并且无视差,将其应用于指纹识别技术中,可以提高指纹识别的精度。
通常,远心镜头又可以分为物方远心镜头、像方远心镜头和双远心镜头。下面结合图3至图5来说明各种远心镜头的原理。
图3示出了物方远心镜头的成像原理。如图3所示,在普通透镜的像方焦平面处放置个孔径光阑,这个孔径光阑的作用是只让平行入射的物方光线(如光线1和光线2)可以到达像平面成像,从几何关系可以看出这时像没有近大远小的关系了。也就是说,相当于物体在无穷远处。
图4示出了像方远心镜头的成像原理。如图4所示,在普通透镜的物方焦平面处放置个孔径光阑,使像方主光线(如光线1和光线2)平行于光轴,像方远心镜头的放大倍数与像距无关。
图5示出了双远心镜头的成像原理。如图5所示,双远心镜头兼于物方远心镜头和像方远心镜头的优点。由两组透镜(如透镜1和透镜2)构成,两组透镜的共焦面处装有孔径光阑,使其主光线(如光线1和光线2)在物方和像方均与光轴平行。
由于单个远心镜头进行成像,通常需要比较大的成像面,因此整个透镜组会比较厚。但是将远心镜头阵列化微型化之后,就可以对一定距离的物体成像,从而可以应用于指纹识别技术中。而阵列化微型化之后的远心镜头即构成本申请实施例提供的指纹识别装置200中的微远心镜头阵列组210。
微远心镜头阵列组,顾名思义,可以是各种阵列化微型化的远心镜头 单元的组合。例如,如图6所示,该微远心镜头阵列组210可以包括双远心镜头阵列211和物方远心镜头阵列212,该物方远心镜头阵列212可以设置在双远心镜头阵列211的下方,其中,该双远心镜头阵列211主要接收由人体手指反射形成的光信号,并且接收的是垂直方向小角度的光信号;而该物方远心镜头阵列212则用来对从该双远心镜头阵列211传输下来的光信号进行准直和聚焦,而指纹传感器220的感应阵列则可以接收物方远心镜头阵列212传输下来的光信号,并基于该光信号进行成像。
在本申请实施例中,双远心镜头阵列211和物方远心镜头阵列212同样是微型化之后的远心镜头。该双远心镜头阵列211可以由多个双远心镜头单元构成的,并且由图5所示,一个双远心镜头单元是由两个微透镜以及一个微孔径光阑组成,其中,该微孔径光阑可以设置在两个微透镜之间。该物方远心镜头阵列212可以由多个物方远心镜头单元构成的,并且由图3所示,一个物方远心镜头则是由一个微透镜和一个微孔径光阑组成,其中该微孔径光阑可以设置在微透镜成像的一方。也就是说,由手指反射形成的光信号在透过显示屏之后,需要依次经过如图7所示的微透镜阵列1、微孔径光阑阵列1、微透镜阵列2、微透镜阵列3以及微孔径光阑阵列2,才能到达指纹传感器。其中,微透镜阵列1、微孔径光阑阵列1以及微透镜阵列2构成双远心镜头阵列211,而微透镜阵列3和微孔径光阑阵列2则构成物方远心镜头阵列212。
可替代地,该微远心镜头阵列组210也可以只在双远心镜头阵列的下方设置一个微孔径光阑阵列。也就是说,由手指反射形成的光信号在透过显示屏之后,可以依次经过如图7所示的微透镜阵列1、微孔径光阑阵列1、微透镜阵列2或微透镜阵列3、以及微孔径光阑阵列2,再到达指纹传感器。其中,微透镜阵列1、微孔径光阑阵列1以及微透镜阵列2构成双远心镜头阵列211,该双远心镜头阵列用于接收垂直方向的由指纹反射形成的光信号,而微孔径光阑阵列2则用来将由双远心镜头阵列传输下来的光汇聚,并传输到指纹传感器。
应理解,在本申请实施例提出的由微远心镜头阵列组和指纹传感器构成的指纹识别装置中,该微远心镜头阵列组主要是由微透镜阵列和微孔径光阑阵列构成的。至于是如何结合图3至图5中的三种远心镜头实现的,在此不作具体限定。
可选地,在本申请实施例中,微透镜与微孔径光阑之间和/或微透镜与微透镜之间通过空气、玻璃、塑料或其他任何透明材质填充,或者也可以是上述各种透明材质的任意组合。例如,图7中的微透镜阵列1和微孔径光阑阵列1之间、微孔径光阑阵列1和微透镜阵列2之间、微透镜阵列2和微透镜阵列3之间、微透镜阵列3和微孔径光阑阵列2之间的填充可以是相同的也可以是不同的。例如,可以都为空气、玻璃或者塑料等。或者也可以是微透镜和微孔径光阑之间与微透镜和微透镜之间的填充不同。例如,微透镜和微孔径光阑之间可以是空气填充,而微透镜和微透镜之间可以是玻璃填充,本申请对此不构成限定。
可选地,本申请实施例中的微透镜可以采用微纳加工工艺或者压模工艺实现,而本申请实施例中的微孔径光阑可以通过微纳加工工艺或者纳米印刷工艺来制作,进而可以实现将远心镜头微型化阵列化。
本领域技术人员理解,一个双远心镜头单元由两个微透镜和一个微孔径光阑组成,一个物方远心镜头单元则由一个微透镜和一个微孔径光阑组成。并且可以将双远心镜头单元中的微孔径光阑设置在两个微透镜的共焦面处。也就是说,该两个微透镜的焦点重合,在焦点重合处***孔径光阑,就构成了双远心镜头单元。将物方远心镜头单元中的微孔径光阑设置在微透镜的像方焦平面处。双远心镜头单元中的两个微透镜的焦距可以相同,也可以不同,若相同,该两个微透镜可以相对于共焦面对称,即相对于微孔径光阑对称。若两个微透镜的焦距不同,该两个微透镜相对于共焦面可以不对称。换句话说,两个微透镜不再以微孔径光阑为中心对称。
可选地,在本申请实施例中,双远心镜头单元中的微孔径光阑以及物方远心镜头单元中的微孔径光阑可以具有一定厚度,那么微孔径光阑可以是圆柱孔,也可以不是圆柱孔。例如,双远心镜头单元中的微孔径光阑可以是对顶双锥形孔,物方远心镜头阵列中的微孔径光阑可以是单锥形孔。并且该对顶双锥形孔和单锥形孔的锥角角度可以是与透过其上方的微透镜的边缘光线的所汇聚的角度相同。应理解,无论是对顶双锥形孔还是单锥形孔可以是圆锥形,也可以是三角形,此处不作限定。
另外,本申请实施例对微孔径光阑的厚度也不作具体限定,只要小于微孔径光阑与微透镜之间的距离即可。
可选地,在本申请实施例中,可以将微远心镜头阵列组中的一个微远 心镜头组对应指纹传感器的一个像素单元。其中,该一个微远心镜头组可以包括一个双远心镜头单元和一个物方远心镜头单元。具体地,物方远心镜头阵列中的物方远心镜头单元可以与指纹传感器的像素单元一一对应。而双远心镜头阵列与物方远心镜头阵列可以一一对应,也可以不一一对应。例如,一个双远心镜头单元可以对应一个或多个物方远心镜头单元,或者一个物方远心镜头单元也可以对应多个双远心镜头单元。
可替代地,可以将微远心镜头阵列组中的一个微远心镜头组对应指纹传感器的多个像素单元。例如,可以将物方远心镜头阵列中的一个物方远心镜头对应四个像素单元。换句话说,指纹传感器的像素密度可以提高一倍或更高,或者指纹传感器的像素单元比远心镜头单元的周期更小。
对于阵列化的远心镜头,单个像素周期需与物体的分辨率需求相关,例如设置于显示屏下的指纹识别装置,可以将远心镜头的像素周期设置为沿显示屏的平面X/Y方向各为25μm采样率。
本申请实施例提供的指纹识别装置,采用远心镜头,能够对远心镜头上方区域进行指纹采集,并将上方垂直区域的光聚焦到指纹传感器的像素单元。并且通过将远心镜头微型化和阵列化,可以实现在一定距离内的指纹成像。相对于周期性通孔阵列的方案来说,可以避免垂直方向的光损失,进而可以减少指纹传感器的曝光时间。相对于微透镜的方案,该指纹识别装置也能让整个***的成像畸变减小,该指纹识别装置可以达到较高的成像质量以及对比度。
可选地,在本申请实施例中,对于双远心镜头来说,其微孔径光阑的直径范围可以在20μm~1μm,而该微孔径光阑的厚度范围可以在100nm~100μm,例如其厚度可以为500nm。对于物方远心镜头来说,其微孔径光阑的直径范围至500nm~20μm,而其微孔径光阑的厚度范围可以在100nm~100μm。可选地,远心镜头中的各个微透镜的面型可以是球面或者非球面的,也就是说,由一个双远心镜头单元和一个物方远心镜头单元构成的远心镜头组中的微透镜的面型可以全部是球面型或者非球面型,或者也可以是其中之一为球面型或者非球面型。可选地,球面型微透镜的曲率半径可以是5μm~100μm之间的某个数值。而非球面型微透镜的曲率半径是随着中心轴而变化的。可选地,非球面型微透镜的焦距范围可以是5μm~2000μm之间的某个数值,具体地,可以是5μm~500μm之间的某个数 值。
可选地,双远心镜头阵列和物方远心镜头阵列之间的距离可以小于或等于200μm。例如,可以在1μm~200μm。具体地,可以将双远心镜头阵列和物方远心镜头阵列之间的距离设置为小于50μm。
可选地,在本申请实施例中,微远心镜头阵列组的材质可以是玻璃的,也可以是塑料的,还可以是其他透明质材料。另外,该微远心镜头阵列组的排列方式可以是方形,例如正方形或长方形,也可以是六方形,还可以是其他任意形式,本申请实施例对此不构成限定。
可选地,如图7所示,本申请实施例的指纹识别装置200还可以包括滤波片,用于对手指反射的光信号进行过滤。该滤波片可以在显示屏下方和指纹传感器之间,例如,可以设置在指纹传感器与微远心镜头阵列组之间。应理解,在具体实现上,该滤波片的位置并不局限在微远心镜头阵列组的下方,也可以设置在微远心镜头阵列组和显示屏之间,即位于微远心镜头阵列组的上方;或者,可以包括两层滤波片,二者分别设置在微远心镜头阵列组的上方和下方。在其他可替代的实施例中,该滤波片也可以设置在微远心镜头阵列组内部,例如,设置在双远心镜头阵列和物方远心镜头阵列之间,甚至也可以省略掉,本申请对此不作限制。
应理解,滤波片可以用来减少指纹感应中的不期望的背景光,以提高指纹传感器对接收到的光的光学感应。该滤波片具体可以用于过滤掉环境光波长,例如,近红外光和部分的红光等。又例如,蓝光或者部分蓝光。例如,人类手指吸收波长低于580nm的光的能量中的大部分,如果一个或多个光学过滤器或光学过滤涂层可以设计为过滤波长从580nm至红外的光,则可以大大减少环境光对指纹感应中的光学检测的影响。
可选地,该滤波片可以为红外截止光学滤波片。
图8示出了本申请实施例提供的指纹识别装置的示意性结构图。当该指纹识别装置应用于电子设备(例如智能手机)时,如图8所示,保护盖板310的下表面与显示屏320的上表面贴合,该指纹识别装置330可以固定设置在该显示屏320的下方,该指纹识别装置330的下表面与柔性电路板350进行焊接固定。并且该指纹识别装置330与该显示屏320之间存在间隙390。作为一种可选地实现方式,该指纹识别装置330可以通过固定连接在终端设备内部容易拆卸的器件上来实现安装在该显示屏320的下方, 例如可以将指纹识别装置330安装在中框370的下表面,该中框370可以作为该指纹识别装置330与该显示屏320之间的固定架,该中框370的上表面可以与该显示屏320的下表面边缘部分通过泡棉背胶360贴合。该中框370设置于显示屏320和后盖中间并用于承载内部各种组件的框架,其内部各种组件包括但不限于电池,主板,摄像头,排线,各种感应器,话筒,听筒等等零部件。由此,使得该指纹识别装置330和该显示屏320完全解耦,避免了安装或者拆卸该指纹识别装置330时损坏该显示屏320。
可替代地,该指纹识别装置330也可以安装在显示屏320和中框370之间,并且与显示屏320之间具有间隙。例如,可以将指纹识别装置330安装在中框370的上表面。从而不需避让电子设备内部的各种零部件,例如,该指纹识别装置与电池在电子设备的厚度方向上可以重合,使得指纹识别装置的摆放位置不再受限。
可选地,该指纹识别装置330与显示屏320下方的距离可以大于或等于600μm。满足指纹识别装置330与显示屏320安装的安全距离,不会因振动或者跌落而造成器件损失。
该中框370具体可以由金属或者合金材料制成,甚至可以由塑胶材料制成,这种情况下,该中框370甚至可以和电子设备的边框一体成型,所谓一体成型就是内部中框和边框是一个整体。比如,边框可以只是一个金属贴边,或者可以在中框上面镀一层类似金属的涂料。进一步地,该中框370还可以是复合中框,以手机为例,中框370包括内中框1与外中框2,内中框1用于承载手机零部件,外中框2在内中框1外,外中框2外沿装有手机按键,内中框1与外中框2整合为一体。由于将手机中框设计成内中框与外中框,内外中框整合为一整体,手机受撞击时,首先是外中框磨损,由于外中框上只有按键,更换外中框简单方便,成本低;进一步地,可以在内外中框之间设置有弹性材料,由于内外中框在弹性层弹力的压紧下相对固定,因此,在外中框承受冲击力时弹性层可以减小对内中框的冲击。
可选地,在显示屏320的下方可以设置一层泡棉,在显示屏320下方与指纹识别装置330之间可以形成密闭环境,以此可以达到遮光、防尘的要求。而在指纹识别装置330的安装位置处可以将泡棉层开孔,使得指纹识别装置330能够接收到透过显示屏320的光信号。当手指放于点亮的显 示屏320上方,手指就会反射显示屏320发出的光,此反射光会穿透显示屏。指纹是一个漫反射体,其反射光在各方向都存在。使用特定光路,使指纹传感器只接收垂直方向的光,通过算法可以解算出指纹。
本申请实施例还提供了一种电子设备,该电子设备包括上述各种实施例中的指纹识别装置和显示屏,该指纹识别装置位于显示屏的下方。进一步地,该电子设备还包括中框,该指纹识别装置可以固定于该中框上。
图9是根据本申请实施例提供的电子设备400的示意性框图。图9所示的电子设备400包括:射频(Radio Frequency,RF)电路410、存储器420、其他输入设备430、显示屏440、传感器450、音频电路460、I/O子***470、处理器480、以及电源490等部件。本领域技术人员可以理解,图7中示出的电子设备结构并不构成对电子设备的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者拆分某些部件,或者不同的部件布置。本领领域技术人员可以理解显示屏440属于用户界面(User Interface,UI),且电子设备400可以包括比图示或者更少的用户界面。
下面结合图9对电子设备400的各个构成部件进行具体的介绍:
RF电路410可用于收发信息或通话过程中,信号的接收和发送,特别地,将基站的下行信息接收后,给处理器480处理;另外,将设计上行的数据发送给基站。通常,RF电路包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器(Low Noise Amplifier,LNA)、双工器等。此外,RF电路410还可以通过无线通信与网络和其他设备通信。存储器420可用于存储软件程序以及模块,处理器480通过运行存储在存储器420的软件程序以及模块,从而执行电子设备400的各种功能应用以及数据处理。存储器420可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作***、至少一个功能所需的应用程序(比如声音播放功能、图像播放功能等)等;存储数据区可存储根据电子设备400的使用所创建的数据(比如音频数据、电话本等)等。此外,存储器420可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件。
其他输入设备430可用于接收输入的数字或字符信息,以及产生与电子设备400的用户设置以及功能控制有关的信号输入。具体地,其他输入设备430可包括但不限于物理键盘、功能键(比如音量控制按键、开关按 键等)、轨迹球、鼠标、操作杆、光鼠(光鼠是不显示可视输出的触摸敏感表面,或者是由屏幕形成的触摸敏感表面的延伸)等中的一种或多种。其他输入设备430与I/O子***470的其他输入设备控制器471相连接,在其他设备输入控制器471的控制下与处理器480进行信号交互。
显示屏440可用于显示由用户输入的信息或提供给用户的信息以及电子设备400的各种菜单,还可以接受用户输入。具体的显示屏440可以是触控屏,可包括显示面板441,以及触控面板442。触控面板442可覆盖显示面板441,用户可以根据显示面板441显示的内容(该显示内容包括但不限于,软键盘、虚拟鼠标、虚拟按键、图标等等),在显示面板441上覆盖的触控面板442上或者附近进行操作,触控面板442检测到在其上或附近的操作后,通过I/O子***470传送给处理器480以确定用户输入,随后处理器480根据用户输入通过I/O子***470在显示面板441上提供相应的视觉输出。虽然在图8中,触控面板442与显示面板441是作为两个独立的部件来实现电子设备400的输入和输入功能,但是在某些实施例中,可以将触控面板442与显示面板441集成而实现电子设备400的输入和输出功能。
电子设备400还可包括至少一种传感器450,例如,该传感器450可以是位于显示屏440下或显示屏440内的指纹传感器,也就是本申请实施例中的指纹识别装置。
音频电路460、扬声器461,麦克风462可提供用户与电子设备400之间的音频接口。音频电路460可将接收到的音频数据转换后的信号,传输到扬声器461,由扬声器461转换为声音信号输出;另一方面,麦克风462将收集的声音信号转换为信号,由音频电路460接收后转换为音频数据,再将音频数据输出至RF电路410以发送给比如另一手机,或者将音频数据输出至存储器420以便进一步处理。
I/O子***470用来控制输入输出的外部设备,可以包括其他设备输入控制器471、传感器控制器472、显示控制器473。可选的,一个或多个其他输入控制设备控制器471从其他输入设备430接收信号和/或者向其他输入设备430发送信号,其他输入设备430可以包括物理按钮(按压按钮、摇臂按钮等)、拨号盘、滑动开关、操纵杆、点击滚轮、光鼠(光鼠是不显示可视输出的触摸敏感表面,或者是由屏幕形成的触摸敏感表面的 延伸)。值得说明的是,其他输入控制设备控制器471可以与任一个或者多个上述设备连接。所述I/O子***470中的显示控制器473从显示屏440接收信号和/或者向显示屏440发送信号。显示屏440检测到用户输入后,显示控制器473将检测到的用户输入转换为与显示在显示屏440上的用户界面对象的交互,即实现人机交互。传感器控制器472可以从一个或者多个传感器440接收信号和/或者向一个或者多个传感器440发送信号。
处理器480是电子设备400的控制中心,利用各种接口和线路连接整个电子设备的各个部分,通过运行或执行存储在存储器420内的软件程序和/或模块,以及调用存储在存储器420内的数据,执行电子设备400的各种功能和处理数据,从而对电子设备进行整体监控。可选的,处理器480可包括一个或多个处理单元;优选的,处理器480可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作***、用户界面和应用程序等,调制解调处理器主要处理无线通信。可以理解的是,上述调制解调处理器也可以不集成到处理器480中。该处理器480可以用来执行本申请方法实施例中的各个步骤。
电子设备400还包括给各个部件供电的电源490(比如电池),优选的,电源可以通过电源管理***与处理器480逻辑相连,从而通过电源管理***实现管理充电、放电、以及功耗等功能。
尽管未示出,电子设备400还可以包括摄像头、蓝牙模块等,在此不再赘述。
应理解,说明书通篇中提到的“一个实施例”或“一实施例”意味着与实施例有关的特定特征、结构或特性包括在本申请的至少一个实施例中。因此,在整个说明书各处出现的“在一个实施例中”或“在一实施例中”未必一定指相同的实施例。此外,这些特定的特征、结构或特性可以任意适合的方式结合在一个或多个实施例中。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及电路,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
在本申请所提供的几个实施例中,应该理解到,所揭露的电路、支路和单元,可以通过其它的方式实现。例如,以上所描述的支路是示意性的,例如,该单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到一个支路,或一些特征可以忽略,或不执行。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以该权利要求的保护范围为准。

Claims (24)

  1. 一种指纹识别装置,其特征在于,包括:
    微远心镜头阵列组,用于接收经由人体手指反射形成的光信号;
    指纹传感器,设置于所述微远心镜头阵列组的下方,用于基于穿过所述微远心镜头阵列组的所述光信号进行成像。
  2. 根据权利要求1所述的装置,其特征在于,所述微远心镜头阵列组包括:
    双远心镜头阵列,用于接收在垂直方向的所述光信号;
    物方远心镜头阵列,所述物方远心镜头阵列设置于所述双远心镜头阵列的下方,用于对从所述双远心镜头阵列传输下来的光信号进行准直和聚焦,并将所述光信号传输到所述指纹传感器。
  3. 根据权利要求2所述的装置,其特征在于,所述双远心镜头阵列包括多个双远心镜头单元,所述双远心镜头单元包括第一微透镜、第二微透镜以及设置在所述第一微透镜和所述第二微透镜之间的第一微孔径光阑;和/或
    所述物方远心镜头阵列包括多个物方远心镜头单元,所述物方远心镜头单元包括第三微透镜和设置于所述第三微透镜下方的第二微孔径光阑。
  4. 根据权利要求3所述的装置,其特征在于,所述第一微孔径光阑设置于所述第一微透镜和所述第二微透镜的共焦面处,和/或所述第二微孔径光阑设置于所述第三微透镜的像方焦平面处。
  5. 根据权利要求3或4所述的装置,其特征在于,所述第一微透镜和所述第二微透镜的焦距相同或不同。
  6. 根据权利要求3至5中任一项所述的装置,其特征在于,所述第一微孔径光阑的直径范围为20μm~1μm,所述第一微孔径光阑的厚度范围为100nm~100μm;和/或所述第二微孔径光阑的直径范围为500nm~20μm,所述第二微孔径光阑的厚度范围为100nm~100μm。
  7. 根据权利要求3至6中任一项所述的装置,其特征在于,所述第一微孔径光阑包括对顶双锥形孔,所述对顶双锥形孔的锥角角度与所述第一微透镜的边缘光线汇聚的角度相同,和/或所述第二微孔径光阑包括单锥形孔,所述单锥形孔的锥角角度与通过所述第三微透镜的边缘光线汇聚的角度相同。
  8. 根据权利要求2至7中任一项所述的装置,其特征在于,所述双远心镜头阵列和所述物方远心镜头阵列之间的距离小于或等于200μm。
  9. 根据权利要求1至8中任一项所述的装置,其特征在于,所述微远心镜头阵列组中的微透镜与所述微远心镜头阵列组中的微孔径光阑之间和/或所述微远心镜头阵列组中的微透镜与所述微远心镜头阵列组中的微透镜之间通过以下透明介质的任意组合填充:空气、玻璃和塑料。
  10. 根据权利要求1至9中任一项所述的装置,所述微远心镜头阵列组包括球面型微透镜和/或非球面型微透镜。
  11. 根据权利要求1至10中任一项所述的装置,其特征在于,所述微远心镜头阵列组中的球面型微透镜的曲率半径范围为5μm~100μm。
  12. 根据权利要求1至11中任一项所述的装置,其特征在于,所述微远心镜头阵列组中的非球面型微透镜的焦距范围为5μm~2000μm。
  13. 根据权利要求1至12中任一项所述的装置,其特征在于,所述指纹传感器的一个像素单元对应所述微远心镜头阵列组中的至少一个微远心镜头组。
  14. 根据权利要求1至13中任一项所述的装置,其特征在于,所述装置还包括:
    滤波片,设置于所述指纹传感器的上方,用于对由人体手指反射形成的光信号进行过滤。
  15. 根据权利要求1至14中任一项所述的装置,其特征在于,当所述指纹识别装置应用于具有显示屏的电子设备时,所述指纹识别装置固定于所述显示屏的下方,且与所述显示屏之间存在间隙。
  16. 根据权利要求15所述的装置,其特征在于,所述电子设备还包括中框,所述指纹识别装置固定于所述中框上。
  17. 根据权利要求15或16所述的装置,其特征在于,所述显示屏的下方设置有泡棉层,所述泡棉层在所述指纹识别装置的安装位置具有开孔,以使得所述指纹识别装置能够接收从所述显示屏透过的经由人体手指反射形成的光信号。
  18. 根据权利要求1至17中任一项所述的装置,其特征在于,所述微远心镜头阵列组的排列方式为正方形或六边形。
  19. 根据权利要求1至18中任一项所述的装置,其特征在于,所述微 远心镜头阵列组中的微透镜的材料为玻璃或塑料,和/或所述微远心镜头阵列组中的微透镜通过微纳加工工艺或压模工艺实现。
  20. 根据权利要求1至19中任一项所述的装置,其特征在于,所述微远心镜头阵列组中的微孔径光阑通过微纳加工工艺或纳米印制工艺来制作。
  21. 一种电子设备,其特征在于,包括显示屏和如权利要求1至20中任一项所述的指纹识别装置,所述指纹识别装置设置于所述显示屏的下方。
  22. 根据权利要求21所述的电子设备,其特征在于,所述指纹识别装置与所述显示屏之间存在间隙。
  23. 根据权利要求22所述的电子设备,其特征在于,所述电子设备还包括中框,所述指纹识别装置固定于所述中框上。
  24. 根据权利要求21至23中任一项所述的电子设备,其特征在于,所述显示屏的下方设置有泡棉层,所述泡棉层在所述指纹识别装置的安装位置具有开孔,以使得所述指纹识别装置能够接收从所述显示屏透过的经由人体手指反射形成的光信号。
PCT/CN2018/124007 2018-12-26 2018-12-26 指纹识别装置和电子设备 WO2020132974A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201880003112.9A CN109791612B (zh) 2018-12-26 2018-12-26 指纹识别装置和电子设备
PCT/CN2018/124007 WO2020132974A1 (zh) 2018-12-26 2018-12-26 指纹识别装置和电子设备
CN201920290641.3U CN209640876U (zh) 2018-12-26 2019-03-07 指纹识别装置和电子设备
PCT/CN2019/077370 WO2020133703A1 (zh) 2018-12-26 2019-03-07 指纹识别装置和电子设备
CN201980000384.8A CN110337655B (zh) 2018-12-26 2019-03-07 指纹识别装置和电子设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/124007 WO2020132974A1 (zh) 2018-12-26 2018-12-26 指纹识别装置和电子设备

Publications (1)

Publication Number Publication Date
WO2020132974A1 true WO2020132974A1 (zh) 2020-07-02

Family

ID=66500802

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2018/124007 WO2020132974A1 (zh) 2018-12-26 2018-12-26 指纹识别装置和电子设备
PCT/CN2019/077370 WO2020133703A1 (zh) 2018-12-26 2019-03-07 指纹识别装置和电子设备

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/077370 WO2020133703A1 (zh) 2018-12-26 2019-03-07 指纹识别装置和电子设备

Country Status (2)

Country Link
CN (2) CN109791612B (zh)
WO (2) WO2020132974A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111860470A (zh) * 2020-08-27 2020-10-30 宁波舜宇奥来技术有限公司 屏下指纹识别设备与屏下指纹识别方法

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111164611B (zh) * 2019-06-05 2024-04-09 深圳市汇顶科技股份有限公司 屏下生物特征识别装置和电子设备
CN210295117U (zh) * 2019-06-05 2020-04-10 深圳市汇顶科技股份有限公司 指纹芯片和电子设备
CN211956502U (zh) * 2019-06-13 2020-11-17 神盾股份有限公司 屏下式指纹感测模块与电子装置
WO2021007700A1 (zh) * 2019-07-12 2021-01-21 深圳市汇顶科技股份有限公司 指纹检测的装置和电子设备
WO2021035451A1 (zh) 2019-08-23 2021-03-04 深圳市汇顶科技股份有限公司 指纹检测装置、方法和电子设备
CN110418044B (zh) * 2019-07-31 2021-04-23 Oppo广东移动通信有限公司 光学***和电子设备
WO2021036101A1 (zh) * 2019-08-23 2021-03-04 深圳市汇顶科技股份有限公司 指纹识别装置和电子设备
CN110674699A (zh) * 2019-08-30 2020-01-10 华为技术有限公司 一种指纹装置、电子设备及其制造方法
US11668862B2 (en) 2019-08-30 2023-06-06 Boe Technology Group Co., Ltd. Texture image acquiring device, display device, and collimator
KR102610583B1 (ko) 2019-10-18 2023-12-05 선전 구딕스 테크놀로지 컴퍼니, 리미티드 지문 검출 장치 및 전자 장치
CN111837131B (zh) * 2019-10-18 2024-04-26 深圳市汇顶科技股份有限公司 指纹识别装置和电子设备
CN113296276A (zh) * 2020-02-24 2021-08-24 宁波激智科技股份有限公司 一种准直膜及其制备方法
CN211857087U (zh) * 2020-02-24 2020-11-03 宁波激智科技股份有限公司 一种减干涉准直膜
CN112070002A (zh) * 2020-09-07 2020-12-11 京东方科技集团股份有限公司 指纹识别方法、指纹识别结构及显示装置
CN112396965B (zh) * 2020-11-18 2023-04-07 合肥维信诺科技有限公司 一种显示面板和显示装置
US20240027262A1 (en) * 2020-12-18 2024-01-25 3M Innovative Properties Company Optical construction including lens film and mask
CN112882279B (zh) * 2021-03-11 2022-09-09 武汉华星光电技术有限公司 一种液晶显示面板以及显示装置
FR3125920B1 (fr) * 2021-07-27 2023-11-24 St Microelectronics Grenoble 2 Capteur optique
US11830281B2 (en) 2021-08-12 2023-11-28 Samsung Electronics Co., Ltd. Electronic device including a fingerprint sensor
CN115171168A (zh) * 2022-06-24 2022-10-11 华为技术有限公司 电子设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6288779B1 (en) * 1999-03-24 2001-09-11 Intel Corporation Close-up imaging device using a CMOS photosensitive element
CN104656230A (zh) * 2013-11-19 2015-05-27 大立光电股份有限公司 阵列式影像撷取***及指纹辨识装置
CN207557977U (zh) * 2017-12-05 2018-06-29 深圳市为通博科技有限责任公司 光路调制器、指纹识别装置和终端设备
CN108323207A (zh) * 2018-02-06 2018-07-24 深圳市汇顶科技股份有限公司 屏下生物特征识别装置、生物特征识别组件和终端设备

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1141063C (zh) * 1998-06-18 2004-03-10 中国科学院长春光学精密机械研究所 大视场无畸变指纹识别光学***
US6643390B1 (en) * 2000-04-19 2003-11-04 Polaroid Corporation Compact fingerprint identification device
JP2006106979A (ja) * 2004-10-01 2006-04-20 Mitsubishi Electric Corp 指紋画像撮像装置
JP4507806B2 (ja) * 2004-10-01 2010-07-21 三菱電機株式会社 指紋画像撮像装置
EP2287639A3 (en) * 2009-08-17 2012-05-30 Sony Corporation Lens array imaging optics for a line sensor module
CN202306586U (zh) * 2011-11-01 2012-07-04 长春方圆光电技术有限责任公司 浸水指掌纹采集装置
CN203038297U (zh) * 2012-12-07 2013-07-03 浙江凯拓机电有限公司 多光谱指纹识别传感器
US10191188B2 (en) * 2016-03-08 2019-01-29 Microsoft Technology Licensing, Llc Array-based imaging relay
CN106017318A (zh) * 2016-05-13 2016-10-12 西安远心光学***有限公司 视觉测量光学***装置
CN106022324B (zh) * 2016-08-04 2019-04-30 京东方科技集团股份有限公司 一种纹路识别显示装置
WO2018127101A1 (en) * 2017-01-04 2018-07-12 Shenzhen GOODIX Technology Co., Ltd. Improving optical sensing performance of under-screen optical sensor module for on-screen fingerprint sensing
CN107358216B (zh) * 2017-07-20 2020-12-01 京东方科技集团股份有限公司 一种指纹采集模组、显示装置及指纹识别方法
CN107948368A (zh) * 2018-01-12 2018-04-20 信利光电股份有限公司 一种芯片、模组和电子装置
CN108681703B (zh) * 2018-05-14 2022-05-31 京东方科技集团股份有限公司 用于指纹识别的装置、模组、设备及***
CN109074491B (zh) * 2018-08-02 2021-03-19 深圳市汇顶科技股份有限公司 屏下生物特征识别装置和电子设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6288779B1 (en) * 1999-03-24 2001-09-11 Intel Corporation Close-up imaging device using a CMOS photosensitive element
CN104656230A (zh) * 2013-11-19 2015-05-27 大立光电股份有限公司 阵列式影像撷取***及指纹辨识装置
CN207557977U (zh) * 2017-12-05 2018-06-29 深圳市为通博科技有限责任公司 光路调制器、指纹识别装置和终端设备
CN108323207A (zh) * 2018-02-06 2018-07-24 深圳市汇顶科技股份有限公司 屏下生物特征识别装置、生物特征识别组件和终端设备

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111860470A (zh) * 2020-08-27 2020-10-30 宁波舜宇奥来技术有限公司 屏下指纹识别设备与屏下指纹识别方法

Also Published As

Publication number Publication date
CN109791612B (zh) 2023-08-08
CN109791612A (zh) 2019-05-21
CN209640876U (zh) 2019-11-15
WO2020133703A1 (zh) 2020-07-02

Similar Documents

Publication Publication Date Title
WO2020132974A1 (zh) 指纹识别装置和电子设备
US20210142026A1 (en) Display component, display screen, and electronic device
CN110337655B (zh) 指纹识别装置和电子设备
US10963667B2 (en) Under-screen biometric identification apparatus and electronic device
JP6415778B1 (ja) アンダースクリーンバイオメトリクス認証装置および電子機器
US11455823B2 (en) Under-screen fingerprint identification apparatus and electronic device
WO2020118631A1 (zh) 指纹识别装置和电子设备
CN112036374B (zh) 镜头***、指纹识别装置和终端设备
WO2020082369A1 (zh) 屏下生物特征识别装置和电子设备
WO2020220305A1 (zh) 屏下指纹识别装置和电子设备
CN210142329U (zh) 指纹识别装置和电子设备
WO2019178793A1 (zh) 屏下生物特征识别装置和电子设备
CN111931659B (zh) 镜头***、指纹识别装置和终端设备
CN111213080B (zh) 镜头、指纹识别装置和电子设备
WO2021036703A1 (zh) 一种指纹装置、电子设备及其制造方法
CN109564338B (zh) 镜头组、指纹识别装置和电子设备
WO2020243936A1 (zh) 屏下生物特征识别装置和电子设备
EP3591578B1 (en) Under-screen biometric identification apparatus and electronic device
CN210038308U (zh) 镜头、指纹识别装置和电子设备
CN210348513U (zh) 一种应用于屏下指纹识别的光学准直结构及电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18944651

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18944651

Country of ref document: EP

Kind code of ref document: A1