WO2020132898A1 - 血压脉象检测方法及检测装置、检测*** - Google Patents

血压脉象检测方法及检测装置、检测*** Download PDF

Info

Publication number
WO2020132898A1
WO2020132898A1 PCT/CN2018/123624 CN2018123624W WO2020132898A1 WO 2020132898 A1 WO2020132898 A1 WO 2020132898A1 CN 2018123624 W CN2018123624 W CN 2018123624W WO 2020132898 A1 WO2020132898 A1 WO 2020132898A1
Authority
WO
WIPO (PCT)
Prior art keywords
pulse
pressure
blood pressure
air pump
controller
Prior art date
Application number
PCT/CN2018/123624
Other languages
English (en)
French (fr)
Inventor
李铁才
罗宇
Original Assignee
深圳市大富网络技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大富网络技术有限公司 filed Critical 深圳市大富网络技术有限公司
Priority to PCT/CN2018/123624 priority Critical patent/WO2020132898A1/zh
Priority to CN201880041264.8A priority patent/CN111615357A/zh
Publication of WO2020132898A1 publication Critical patent/WO2020132898A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels

Definitions

  • the present application relates to the technical field of blood pressure and pulse detection, and relates to a blood pressure and pulse detection method, a detection device, and a detection system.
  • the inventor of the present application discovered during the long-term research and development process that the existing pulse imager usually obtains the pulse wave during the pressurization process or the decompression process, but the air pump inflation process or the deflation valve deflation process will cause pressure fluctuations to the cuff bladder. , Has a great influence on the details of the pulse wave waveform, resulting in inaccurate pulse wave acquisition.
  • the present application provides a blood pressure and pulse detection method, detection device, and detection system.
  • the blood pressure and pulse detection system includes: a blood pressure and pulse detection device and a terminal, and the blood pressure and pulse detection device includes a cuff, An air pump, a pressure sensor and a controller, the detection method includes: the controller controls the air pump to inflate the cuff airbag; the controller controls the pressure sensor to detect the pressure of the airbag, And comparing the pressure with a preset first pressure threshold; if the pressure is equal to the first pressure threshold, the controller controls the air pump to stop inflation; the controller controls the pressure sensor to detect A plurality of first pulse waves of the human body, and send the plurality of first pulse waves to the terminal.
  • the present invention also provides a blood pressure and pulse detection device, the blood pressure and pulse detection device includes a cuff and a host, the host includes an air pump, a pressure sensor and a controller, the cuff includes a gas channel and In an airbag, the gas channel is connected to the airway interface of the airbag, the controller is coupled to the air pump and the pressure sensor, the gas channel is connected to the air pump, and the controller is used to control The air pump inflates the airbag bag through the gas channel, and the controller is used to control the pressure sensor to detect the pressure of the gas channel and compare the pressure with a preset first pressure threshold; When the pressure is equal to the first pressure threshold, the controller controls the air pump to stop inflation; the controller controls the pressure sensor to detect multiple first pulse waves of the human body A pulse wave is sent to the terminal connected to the blood pressure detection device.
  • the host includes an air pump, a pressure sensor and a controller
  • the cuff includes a gas channel and In an airbag, the gas channel is connected to the airway interface of the
  • the embodiments of the present application provide a blood pressure and pulse detection system.
  • the blood pressure and pulse detection system includes at least a blood pressure and pulse detection device and a terminal.
  • the terminal and the blood pressure and pulse detection device establish a connection, and the blood pressure and pulse detection
  • the detection device is the aforementioned blood pressure and pulse detection device.
  • the blood pressure and pulse detection method of the embodiment of the present application is used in a blood pressure and pulse detection system.
  • the blood pressure and pulse detection system includes a blood pressure and pulse detection device and a terminal.
  • the blood pressure and pulse detection device includes a cuff, an air pump, a pressure sensor and
  • the controller controls the air pump to inflate the cuff airbag; the controller controls the pressure sensor to detect the pressure of the airbag and compare the pressure with the preset first pressure threshold; if the pressure is equal to the When a pressure threshold is reached, the controller controls the air pump to stop inflation; the controller controls the pressure sensor to detect multiple first pulse waves of the human body and send the multiple first pulse waves to the terminal.
  • the controller controls the air pump to stop inflation, so that the pressure sensor detects multiple first pulse waves of the human body at constant pressure, which can avoid the air pump inflation process or the vent valve deflation process.
  • the pressure fluctuation of the cuff airbag can reduce interference with the first pulse wave and improve the accuracy of the first pulse wave.
  • FIG. 1 is a schematic structural diagram of an embodiment of a blood pressure and pulse detection system of the present application
  • FIG. 2 is a schematic diagram of the circuit structure of the embodiment of FIG. 1;
  • FIG. 3 is a schematic flowchart of an embodiment of a blood pressure and pulse detection method according to the present application.
  • FIG. 4 is a schematic flowchart of another embodiment of the blood pressure and pulse detection method of the present application.
  • FIG. 5 is a schematic structural diagram of another embodiment of a blood pressure and pulse detection system of the present application.
  • FIG. 6 is a schematic flowchart of another embodiment of the blood pressure and pulse detection method of the present application.
  • step S606 is a schematic flowchart of step S606 in the embodiment of FIG. 6;
  • FIG. 8 is a specific flowchart of step S704 in the embodiment of FIG. 7;
  • FIG. 9 is a waveform diagram of a pulse detected by the embodiment of FIG. 5;
  • FIG. 10 is another pulse waveform diagram detected by the embodiment of FIG. 5;
  • FIG. 11 is another pulse waveform detected by the embodiment of FIG. 5.
  • FIG. 11 is another pulse waveform detected by the embodiment of FIG. 5.
  • the blood pressure and pulse detection system 101 of this embodiment includes a blood pressure and pulse detection device 102 and a terminal 103 that establishes a connection with the blood pressure and pulse detection device 102.
  • the blood pressure detection device 102 includes a host 11 and a cuff 12.
  • the cuff 12 includes a gas channel 121 and an airbag bag 122.
  • the gas channel 121 is connected to the airway interface of the airbag bag 122.
  • the host 11 includes a controller 111 and pressure The sensor 112 and the air pump 113, the controller 111 is coupled to the air pump 113 and the pressure sensor 112, the gas channel 121 is connected to the air pump 113, the controller 111 is used to control the air pump 113 to inflate the airbag bag 122 through the gas channel 121, the controller 111 is used In order to control the pressure sensor 112 to detect the pressure of the gas channel 121, the controller 111 controls the pressure sensor 112 to detect a plurality of pulse waves of the human body and send the plurality of pulse waves to the terminal 103.
  • the airbag bag 122 is used to contain gas such as air.
  • the gas channel 121 may be a soft rubber tube; in other embodiments, the gas channel 121 may be a pipe of other materials.
  • the terminal 103 may include, for example, a mobile phone, a tablet computer, a notebook computer, a palmtop computer, a personal digital assistant, and a wearable device.
  • the server 104 is an intelligent computer system distributed on a network or cloud.
  • the present application further proposes a blood pressure and pulse detection method for the above blood pressure and pulse detection system.
  • the detection method of this embodiment includes the following steps:
  • Step S301 The controller 111 controls the air pump 113 to inflate the airbag bag 122 of the cuff 12.
  • the air pump driving circuit 115 controls the operation of the air pump 113. At this time, the vent valve 114 is closed, and the air pump 113 inflates the airbag bag 122 through the air passage 121.
  • Step S302 The controller 111 controls the pressure sensor 112 to detect the pressure of the gas channel 121, and compares the pressure with a preset first pressure threshold.
  • the controller 111 controls the pressure sensor 112 to detect the pressure of the gas in the gas channel 121, and sends the pressure of the gas to the controller 111, and the controller 111 compares the pressure with a preset first pressure threshold.
  • Step S303 If the pressure is equal to the first pressure threshold, the controller 111 controls the air pump 113 to stop inflation.
  • the controller 111 determines that the pressure of the gas exceeds the first pressure threshold, the controller 111 controls the air pump 113 to stop working through the air pump drive circuit 115.
  • Step S304 The controller 111 controls the pressure sensor to detect a plurality of first pulse waves of the human body, and sends the plurality of first pulse waves to the terminal 103.
  • the specific method for obtaining the pulse waveform includes: the controller 111 obtains the waveform of the pressure and time of the gaseous medium; the controller 111 extracts the minimum point of the pressure of the gaseous medium in different pulse periods and converts the waveform between the two minimum points The line connecting the two minimum points is subtracted to obtain the pulse waveform.
  • the terminal 103 further processes the first pulse wave and displays the processing result.
  • the controller controls the air pump to stop inflation, so that the pressure sensor is constant Detecting multiple first pulse waves of the human body can avoid pressure fluctuations on the cuff bladder during the air pump inflation process or the deflation valve deflation process, therefore, it can reduce interference with the first pulse wave and can improve the first pulse wave Accuracy.
  • the present application further proposes a blood pressure and pulse detection method according to another embodiment, which is used in the above blood pressure and pulse detection system.
  • the detection method in this embodiment includes the following steps:
  • Step S401 The controller 111 controls the air pump 113 to inflate the airbag bag 122 of the cuff 12.
  • Step S401 is the same as step S301 described above, and will not be repeated here.
  • Step S402 The controller 111 controls the pressure sensor 112 to detect the pressure of the airbag bag 122 to obtain the second pulse wave of the human body.
  • Step S403 The controller 111 extracts the maximum value of the second pulse wave corresponding to each pulse cycle.
  • Step S404 The controller 11 calculates systolic pressure and diastolic pressure as the blood pressure information of the human body according to the maximum value among the maximum values of the second pulse wave.
  • the systolic pressure is the product of the maximum value and the first coefficient
  • the diastolic pressure is the product of the maximum value and the second coefficient
  • Step S405 The controller 111 controls the pressure sensor 112 to detect the pressure of the gas channel 121, and compares the pressure with a preset first pressure threshold.
  • Step S406 If the pressure is equal to the first pressure threshold, the controller 111 controls the air pump 113 to stop inflation.
  • Step S407 The controller 111 controls the pressure sensor to detect a plurality of first pulse waves of the human body, and sends the plurality of first pulse waves to the terminal 103.
  • Steps S405 and S407 are the same as the above steps S302 and S304, and are not repeated here.
  • the terminal 103 further processes the pulse wave and displays the processing result.
  • this embodiment further acquires the second pulse wave of the human body during the pressurization stage to obtain blood pressure data according to the second pulse wave, so as to simultaneously detect the blood pressure data and pulse information.
  • the present application further proposes a blood pressure and pulse detection system of another embodiment.
  • the blood pressure and pulse detection system of this embodiment further includes a server 104, a terminal 103 and a blood pressure and pulse detection device 102 and a server based on the above embodiment.
  • 104 Establish a communication connection.
  • the terminal 103 may establish a connection or a wireless connection with the blood pressure and pulse detection device 102, and the terminal 103 may establish a wireless connection with the server 104.
  • the present application further proposes a blood pressure and pulse detection method according to yet another embodiment.
  • the method for implementing force includes the following steps:
  • Step S601 The controller 111 controls the air pump 113 to inflate the airbag bag 122 of the cuff 12.
  • Step S602 The controller 111 controls the pressure sensor 112 to detect the pressure of the gas channel 121, and compares the pressure with a preset first pressure threshold.
  • Step S603 If the pressure is equal to the first pressure threshold, the controller 111 controls the air pump 113 to stop inflation.
  • Step S604 The controller 111 controls the pressure sensor to detect a plurality of first pulse waves of the human body, and sends the plurality of first pulse waves to the terminal 103.
  • Steps S601-S604 are the same as the above steps S301-S304, and will not be repeated here.
  • Step S605 The terminal 103 forwards multiple first pulse waves to the server 104.
  • Step S606 The server 104 processes multiple first pulse waves to obtain health information according to the analysis result.
  • the server 104 in this embodiment analyzes the first pulse wave forwarded by the terminal 103 to obtain human health information.
  • the terminal 103 can display the health information returned by the server 104 and the first pulse wave detected by the blood pressure and pulse detection device 102.
  • Human health information often requires rich experience data and inference rules, and the server 104 can obtain rich blood pressure and pulse detection data, and has strong data processing capabilities. Therefore, in this embodiment, the server 104 performs the first pulse wave Analysis to obtain human health information can improve the accuracy of the first pulse wave detection and data processing.
  • the terminal 103 of this embodiment displays health information and first pulse wave information, so that the user can timely understand his own health status and reduce the risk of disease.
  • the pulse wave is generated by the movement of the heart and the blood runs along the tube. It is a periodic pressure wave.
  • the pulse wave of the human body contains rich physiological information, such as blood pressure, heart rate and cardiovascular information. Through the analysis of the pulse waveform, cardiovascular health information can be obtained to reduce the occurrence of cardiovascular diseases.
  • the server 104 needs to perform filtering processing on the multiple first pulse waves to remove interference noise.
  • filtering may be implemented by the method as described in FIG. 7, and this embodiment includes the following steps:
  • Step S701 The server 104 acquires the amplitude or period of the first pulse wave.
  • the server 104 may obtain the amplitude of the characteristic point of the first pulse wave, and the characteristic point may include a reflected wave point, a peak point, a trough point, or other extreme point or inflection point of the first pulse wave.
  • Step S702 The server 104 determines whether the amplitude is within a preset amplitude range.
  • Step S703 If the amplitude is within the preset amplitude range, the server 104 determines that the first pulse wave is the third pulse wave, and filters out pulse waves other than the third pulse wave.
  • the server 104 After acquiring multiple pulse waves from the terminal 103, the server 104 needs to perform filtering processing on the multiple first pulse waves to remove interference noise, which can improve the accuracy of health information.
  • the server may also obtain the period of the first pulse wave, and filter out the pulse wave whose period is not within the preset period to obtain the third pulse wave, that is, use the period as the filtering condition.
  • the amplitude and period of the first pulse wave can also be used as the filtering conditions at the same time.
  • the server 104 in this embodiment may perform pulse pattern (waveform) recognition on the third pulse wave through steps S704-S706.
  • the method of this embodiment includes the following steps:
  • Step S704 The server 104 matches the third pulse wave with the preset waveform.
  • the server 104 of this embodiment further performs pulse pattern (waveform) recognition on the third pulse wave.
  • the server 104 of this embodiment stores a preset waveform, and the preset waveform at least includes a Huamai waveform, a pulse-promoting waveform, a Xuanmai waveform, or a Pingmai waveform.
  • the server 104 determines that the third pulse wave forwarded by the terminal 103 matches the preset Hua mai waveform, and then determines that the third pulse wave is Hua mai; the server 104 may further combine the third pulse wave or the first preset waveform with the health The information "Huamai" is transmitted back to the terminal 104.
  • step S704 may be implemented by the method as described in FIG. 8.
  • the method in this embodiment includes the following steps:
  • Step S801 The server 104 obtains the first characteristic information of the third pulse wave and the second characteristic information of the preset waveform, respectively.
  • the characteristic information of this embodiment may include the waveform period and the stagnation point (including extreme point and inflection point) information of the third pulse wave.
  • the waveform stagnation point information includes the number of waveform stagnation points and the time interval between adjacent waveform stagnation points.
  • Step S802 If the difference between the first feature information and the second feature information is less than the preset difference, the server determines that the third pulse wave matches the preset waveform.
  • the pulse image (waveform) of the pulse wave can be recognized by the waveform period of the pulse wave and the waveform stagnation point information.
  • the pulse image (waveform) of the pulse wave can also be identified according to other characteristic information of the pulse wave.
  • the feature information of this embodiment may include information on the waveform period and the stagnation point (including extreme point and inflection point) of the third pulse wave.
  • the waveform stagnation point information includes the number of waveform stagnation points and the time interval between adjacent waveform stagnation points. As shown in FIG. 9, the waveform period of the pulse-promoting pulse differs greatly from the waveform periods of other pulses.
  • the server 104 determines that the difference between the waveform period of the third pulse wave and the preset pulse waveform is less than the preset difference Value, it can be determined that the third pulse wave is a pulse boost; if the server 104 determines that the difference is greater than the preset difference, it is further determined whether the number of waveform extreme points of the third pulse wave is 2 (the default slip The number of extreme points of the waveform of the pulse is 2), and it is judged whether the amplitude of the stagnation point of the second waveform is larger and lower than the position of the stagnation point of the first waveform.
  • the server 104 determines that the number of waveform extreme points of the third pulse wave is equal to 3, it can further determine whether the interval between the first waveform stagnation point and the second waveform stagnation point of the third pulse wave is less than the preset Time (the preset time interval between the stagnation point of the first waveform and the stagnation point of the second waveform), if so, it can be determined that the third pulse wave is a sine pulse, and so on.
  • the pulse image (waveform) of the pulse wave can be recognized by the waveform period of the pulse wave and the waveform stagnation point information.
  • the pulse image (waveform) of the pulse wave can also be identified according to other characteristic information of the pulse wave.
  • the server can filter the acquired stagnation points of the waveform before performing pulse recognition to reduce noise interference.
  • Step S705 The server 104 obtains the preset waveform corresponding to the third pulse wave as the first preset waveform.
  • Step S706 The server 104 obtains health information according to the first preset waveform.
  • the server may also obtain the pulse wave period, and filter out the pulse wave whose period is not within the preset period to obtain the third pulse wave, that is, use the period as the filtering condition.
  • the amplitude and period of the pulse wave can also be used as the filtering conditions at the same time.
  • Pulse diagnosis is one of the four diagnoses of traditional Chinese medicine diagnosis, and it is a unique diagnosis method. It mainly uses the sensation of fingers to analyze the "position, number, shape, potential" and other characteristics of the pulse, so as to judge the functional state of the organs, so as to achieve the purpose of non-invasive diagnosis, and has a positive significance for the diagnosis and treatment of diseases.
  • the existing pulse meter can understand the pulse cutting process and graphically display the pulse wave, so that the user can intuitively understand the pulse wave through the pulse wave, but obtaining health information from the pulse wave requires rich clinical experience. Therefore, non-medical personnel or It is difficult for non-professional medical staff to get accurate health information from the pulse waveform.
  • the server 104 of this embodiment further analyzes the third pulse wave to obtain more specific human health information from the third pulse wave.
  • the health information of this embodiment includes blood pressure in addition to pulse information , Pulse strength, pulse rate, pulse rhythm, and reflected wave enhancement index (AI) reflecting arterial elasticity.
  • the server 104 obtains several pulse waves with the largest pulse wave amplitude in the entire measurement process, such as 3 pulse waves, and obtains the pulse strength of the human body by taking the average value according to the amplitude of the peak point.
  • the server 104 returns the health information obtained above to the terminal 102, and the terminal 102 displays the health information, as shown in FIGS. 10 and 11.
  • the server 104 stores a preset range to determine whether the health information is within the preset range; if it is, the health information display status on the control terminal 103 is normal; if not, the health information display status on the terminal display 103 Is abnormal.
  • the server 104 may also return the third pulse wave or the pulse waveform corresponding to the third pulse wave, the type of the third pulse wave, blood pressure data, etc. to the terminal 103, and the terminal 103 displays the pulse waveform and the type, blood pressure data.
  • the server 104 of this embodiment further obtains the health information of the human blood vessel elasticity according to the reflected wave point and the peak point, for example, if the server 104 determines that the reflected wave point is on the right side of the peak point (as shown in FIG. 10), The obtained health information is that the blood vessel elasticity is good. If the server 104 determines that the reflected wave point is on the left side of the peak point (as shown in FIG. 11), the obtained health information is poor in blood vessel elasticity; the server 104 can also obtain the heart rate data Health information such as bradycardia or tachycardia, irregular heart rate, etc.; the server 104 can also obtain arterial health information according to the AI value, and so on. The terminal 103 may also display these health information.
  • Step S607 The server 104 transmits the health information back to the terminal 102.
  • Step S608 The terminal 102 displays health information.
  • the server 104 may also return the third pulse wave or the pulse waveform corresponding to the third pulse wave, the type of the third pulse wave, blood pressure data, etc. to the terminal 103, and the terminal 103 displays the pulse waveform and the type, blood pressure data.
  • the server 104 analyzes the first pulse wave to obtain human health information, which can improve the accuracy of blood pressure and pulse detection and data processing; and the terminal 103 of this embodiment can display detailed health information without Only the pulse wave allows non-medical personnel to clearly understand their own health status through the health information.
  • the host 11 is provided with an interface 110 for establishing a connection with the terminal 103.
  • the host 11 detects the blood pressure and pulse detection data of the human artery through the cuff 12 and detects the blood pressure and pulse detection through the interface 110
  • the data is sent to the terminal 103, that is, the blood pressure detection device 102 can perform data communication with the terminal 103 through the interface 110 to realize the networking function and improve the user experience; and the terminal 103 supplies power to the blood pressure detection device 102 through the interface 110, so the blood pressure detection device 102
  • the blood pressure detection device 102 There is no need to provide a built-in power supply, reducing the volume and weight of the blood pressure detection device 10, achieving miniaturization, being easy to carry, and meeting the user's measurement needs at any time.
  • the terminal 102 has a USB OTG (USB On-The-Go) function, and the data line 21 may be an OTG data line.
  • USB OTG USB On-The-Go
  • the terminal 20 serves as a master device, and the blood pressure detection device 10 is a slave device.
  • the host 11 of this embodiment may further include a deflation valve 114, an air pump drive circuit 115, a deflation valve drive circuit 116, a digital-to-analog conversion circuit 117, and a converter 118; the pressure sensor 112, the air pump 113, and the deflation valve 114 are respectively
  • the controller 111 is coupled.
  • the controller 111 is used to control the air pump 113 to inflate the airbag bag 122, the air deflation valve 114 to deflate the airbag bag 122, and the pressure sensor 112 to detect the pressure of the gas in the gas passage 121.
  • the gas channel 121 may extend to the host 11, and the gas channel 121 may be connected to the pressure sensor 112, the air pump 113, and the bleed valve 114, respectively.
  • the air pump driving circuit 115 is connected between the air pump 113 and the controller 111 for driving the air pump 113, that is, the controller 111 drives the air pump 113 through the air pump driving circuit 115 to fill the airbag bag 122 with gas.
  • the vent valve drive circuit 116 is connected between the vent valve 114 and the controller 111 for driving the vent valve 114, that is, the controller 111 drives the vent valve 114 through the vent valve drive circuit 116 to deflate the airbag bag 122 gas.
  • the host 11 is provided with a cuff interface, the gas channel 121 of the cuff 12 is detachably connected to the cuff interface, and the gas channel 100 is respectively connected to the pressure sensor 112, the air pump 113, and the vent valve 114 through the cuff interface.
  • the digital-to-analog conversion circuit 117 is connected between the pressure sensor 112 and the controller 111; when the pressure sensor 112 detects the pressure of the gas in the gas channel 121, the pressure sensor 112 is used to convert the pressure of the gas into an analog signal and convert the analog signal It is transmitted to the digital-analog conversion circuit 117; the digital-analog conversion circuit 117 converts the analog signal into a digital signal and sends the digital signal to the controller 111.
  • the interface 110 may include a power supply terminal, which is connected to the air pump drive circuit 115 and the bleed valve drive circuit 116 respectively, for providing the first voltage V1 to the air pump drive circuit 115 and the bleed valve drive circuit 116.
  • the input terminal of the converter 118 is connected to the power supply terminal for converting the first voltage V1 to the second voltage V2; the output terminal of the converter 118 is connected to the controller 111, the pressure sensor 112 and the digital-to-analog conversion circuit 117, respectively, for The controller 111, the pressure sensor 112, and the digital-to-analog conversion circuit 117 are supplied with a second voltage V2, where the second voltage V2 is less than the first voltage V1.
  • the interface 110 further includes a data transmission terminal.
  • the terminal 103 sends a detection instruction to the controller 111 through the data transmission terminal.
  • the blood pressure and pulse detection device 102 detects blood pressure and pulse detection data according to the detection instruction.
  • the airbag bag may include reserved gas.
  • the controller performs pressure detection on the reserved gas through the pressure sensor, and judges whether to start blood pressure and pulse detection according to the pressure detection result; if so, the blood pressure and pulse detection device performs blood pressure and pulse detection. In this way, it is possible to automatically start blood pressure and pulse detection to improve the user's experience.
  • the controller further obtains the pressure detection result and the pressure change amplitude of the second pressure threshold, and when the controller determines that the pressure change amplitude is greater than the preset change amplitude threshold, the controller starts blood pressure and pulse detection. When the controller determines that the pressure change amplitude is less than the preset change amplitude threshold, the controller controls the blood pressure and pulse detection device to enter a sleep state to save power consumption.
  • the blood pressure and pulse detection device uses a closed-loop control to adjust the inflation rate of the gas.
  • the controller controls the air pump to inflate the air bag, and the controller collects the gas through the pressure sensor.
  • the pressure is the first pressure
  • the pressure previously collected by the controller through the pressure sensor is the second pressure; the controller obtains the static pressure of the cuff according to the first pressure and the second pressure.
  • the controller further obtains the compression rate of the gas in the airbag according to the static pressure, and compares the compression rate with the constant rate; when the controller determines that the compression rate is less than the constant rate, the controller controls the speed of the air pump to increase; When the controller determines that the acceleration rate is greater than the constant rate, the controller controls the rotation speed of the air pump to decrease so that the pressurization rate is a constant rate. Therefore, the controller controls the air pump to inflate the air bag, and then controls the air pump to inflate at a constant speed through the gas channel, so as to ensure the accuracy of the pulse wave obtained by the controller.
  • the present application further proposes a blood pressure and pulse condition detection device.
  • the blood pressure and pulse condition detection device of this embodiment is the blood pressure and pulse condition detection device 102 in the foregoing embodiment, and its specific structure and working principle are not described herein.
  • the blood pressure and pulse detection method of the embodiment of the present application is used in a blood pressure and pulse detection system.
  • the blood pressure and pulse detection system includes a blood pressure and pulse detection device and a terminal.
  • the blood pressure and pulse detection device includes a cuff, an air pump, a pressure sensor, and a controller.
  • the detection method includes : The controller controls the air pump to inflate the cuff airbag; the controller controls the pressure sensor to detect the pressure of the airbag and compare the pressure with the preset first pressure threshold; if the pressure is equal to the first pressure threshold, the controller The air pump is controlled to stop inflation; the controller controls the pressure sensor to detect multiple first pulse waves of the human body and send the multiple first pulse waves to the terminal.
  • the controller controls the air pump to stop inflation, so that the pressure sensor detects multiple first pulse waves of the human body at constant pressure, which can avoid the air pump inflation process or the vent valve deflation process.
  • the pressure fluctuation of the cuff airbag can reduce interference with the first pulse wave and improve the accuracy of the first pulse wave.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Cardiology (AREA)
  • Engineering & Computer Science (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Physiology (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Vascular Medicine (AREA)
  • Biomedical Technology (AREA)
  • Physics & Mathematics (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)

Abstract

本申请公开了一种血压脉象检测方法及检测装置、检测***,该检测方法用于血压脉象检测***,该血压脉象检测***包括:血压脉象检测装置及终端,血压脉象检测装置包括袖带、气泵、压力传感器及控制器,该检测方法包括:控制器控制气泵对袖带的气囊袋进行充气;控制器控制压力传感器检测气囊袋的压力,并将压力与预设的第一压力阈值进行比较;若压力等于第一压力阈值时,控制器控制气泵停止充气;控制器控制压力传感器检测人体的多个第一脉搏波,并将多个第一脉搏波发送给所述终端。通过这种方式,能够减少对第一脉搏波的干扰,能够提高第一脉搏波的准确度。

Description

血压脉象检测方法及检测装置、检测*** 【技术领域】
本申请涉及血压脉象检测技术领域,涉及一种血压脉象检测方法及检测装置、检测***。
【背景技术】
现代社会中,由于膳食结构及作息时间不合理、运动不足、抽烟饮酒等危险因素的综作用,慢性心血管疾病发率持续上升,而病患者的年龄却逐步减小,心血管疾病对人类的身体健康产生的威胁也越来大。
本申请的发明人在长期的研发过程中发现,现有脉象仪通常是在加压过程或者减压过程获取脉搏波,但气泵充气过程或者泄气阀放气过程对袖带气囊的会产生压力波动,对脉搏波波形细节的影响很大,导致获取的脉搏波不准确。
【发明内容】
为了解决现有技术的血压计存在的上述问题,本申请提供一种血压脉象检测方法及检测装置、检测***。
为解决上述问题,本申请实施例提供了一种血压脉象检测方法,用于血压脉象检测***,所述血压脉象检测***包括:血压脉象检测装置及终端,所述血压脉象检测装置包括袖带、气泵、压力传感器及控制器,所述检测方法包括:所述控制器控制所述气泵对所述袖带的气囊袋进行充气;所述控制器控制所述压力传感器检测所述气囊袋的压力,并将所述压力与预设的第一压力阈值进行比较;若所述压力等于所述第一压力阈值时,所述控制器控制所述气泵停止充气;所述控制器控制所述压力传感器检测人体的多个第一脉搏波,并将多个所述第一脉搏波发送给所述终端。
为解决上述技术问题,本发还提供了一种血压脉象检测装置,所述血压脉象检测装置包括袖带及主机,所述主机包括气泵、压力传感器及控制器,所述袖带包括气体通道和气囊袋,所述气体通道与所述气囊袋的气路接口连接,所述控制器与所述气泵及所述压力传感器耦接,所述气体通道与所述气泵连接,所述控制器用于控制所述气泵通过所述气体通道对所述气囊袋进行充气,所述控制器用于控制所述压力传感器检测所述气体通道的压力,并将所述压力与预 设的第一压力阈值进行比较;在所述压力等于所述第一压力阈值时,所述控制器控制所述气泵停止充气;所述控制器控制所述压力传感器检测人体的多个第一脉搏波,并将多个所述第一脉搏波发送给与所述血压检测装置连接的终端。
为解决上述问题,本申请实施例提供了一种血压脉象检测***,所述血压脉象检测***至少包括血压脉象检测装置和终端,所述终端和所述血压脉象检测装置建立连接,所述血压脉象检测装置为上述的血压脉象检测装置。
与现有技术相比,本申请实施例血压脉象检测方法,用于血压脉象检测***,该血压脉象检测***包括:血压脉象检测装置及终端,血压脉象检测装置包括袖带、气泵、压力传感器及控制器,该检测方法包括:控制器控制气泵对袖带的气囊袋进行充气;控制器控制压力传感器检测气囊袋的压力,并将压力与预设的第一压力阈值进行比较;若压力等于第一压力阈值时,控制器控制气泵停止充气;控制器控制压力传感器检测人体的多个第一脉搏波,并将多个第一脉搏波发送给所述终端。通过这种方式,在压力等于第一压力阈值时,控制器控制气泵停止充气,使压力传感器在恒压下检测人体的多个第一脉搏波,能够避免气泵充气过程或者泄气阀放气过程对袖带气囊的产生压力波动,因此,能够减少对第一脉搏波的干扰,能够提高第一脉搏波的准确度。
【附图说明】
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请血压脉象检测***一实施例的结构示意图;
图2是图1实施例的电路结构示意图;
图3是本申请血压脉象检测方法一实施例的流程示意图;
图4是本申请血压脉象检测方法另一实施例的流程示意图;
图5是本申请血压脉象检测***另一实施例的结构示意图;
图6是本申请血压脉象检测方法又一实施例的流程示意图;
图7是图6实施例中步骤S606的具体流程示意图;
图8是图7实施例中步骤S704的具体流程示意图;
图9是图5实施例检测的一脉象波形图;
图10是图5实施例检测的另一脉象波形图;
图11是图5实施例检测的又一脉象波形图。
【具体实施方式】
下面结合附图和实施例,对本申请作进一步的详细描述。特别指出的是,以下实施例仅用于说明本申请,但不对本申请的范围进行限定。同样的,以下实施例仅为本申请的部分实施例而非全部实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其它实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”、“第四”等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施例,例如能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、***、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
本申请首先提出一种血压脉象检测***,如图1及图2所示,本实施例血压脉象检测***101包括血压脉象检测装置102及与血压脉象检测装置102建立连接的终端103,其中,如图2所示,血压检测装置102包括主机11和袖带12,袖带12包括气体通道121和气囊袋122,气体通道121和气囊袋122的气路接口连接,主机11包括控制器111、压力传感器112及气泵113,控制器111与气泵113及压力传感器112耦接,气体通道121与气泵113连接,控制器111用于控制气泵113通过气体通道121对气囊袋122进行充气,控制器111用于控制压力传感器112检测气体通道121的压力,并控制器111控制压力传感器112检测人体的多个脉搏波,并将多个脉搏波发送给与终端103。
气囊袋122用于容纳气体,例如空气。其中,气体通道121可以为软胶管;在其他实施例中,气体通道121可以为其他材质管道。
终端103可以包括诸如手机、平板电脑、笔记本电脑、掌上电脑、个人数字助理及可穿戴设备等,服务器104是分布在网络或云端的智能计算机***。
本申请进一步提出一种血压脉象检测方法,用于上述血压脉象检测***,如图3所示,本实施例的检测方法包括以下步骤:
步骤S301:控制器111控制气泵113对袖带12的气囊袋122进行充气。
控制器111在接收到检测指令时通过气泵驱动电路115控制气泵113工作,此时泄气阀114关闭,此时气泵113通过气体通道121对气囊袋122进行充气。
步骤S302:控制器111控制压力传感器112检测气体通道121的压力,并将压力与预设的第一压力阈值进行比较。
控制器111控制压力传感器112检测气体通道121的气体的压力,并将气体的压力发送给控制器111,控制器111将压力与预设的第一压力阈值进行比较。
步骤S303:若压力等于第一压力阈值时,控制器111控制气泵113停止充气。
在控制器111判断到气体的压力超过第一压力阈值时,控制器111通过气泵驱动电路115控制气泵113停止工作。
步骤S304:控制器111控制压力传感器检测人体的多个第一脉搏波,并将多个第一脉搏波发送给终端103。
具体获得脉搏波形的方法包括:控制器111获得气体介质的压力与时间的波形;控制器111提取不同脉搏周期内的气体介质的压力的极小值点,将两个极小值点间的波形减去两个极小值点连接的直线,以得到脉搏波形。
终端103进一步对第一脉搏波进行处理及显示处理结果。
由于气泵113加压过程对气囊袋122的压力叠加了高频的波动,对脉搏波波形细节的影响很大,在压力等于第一压力阈值时,控制器控制气泵停止充气,使压力传感器在恒压下检测人体的多个第一脉搏波,能够避免气泵充气过程或者泄气阀放气过程对袖带气囊的产生压力波动,因此,能够减少对第一脉搏波的干扰,能够提高第一脉搏波的准确度。
本申请进一步提出另一实施例的血压脉象检测方法,用于上述血压脉象检测***,如图4所示,本实施例的检测方法包括以下步骤:
步骤S401:控制器111控制气泵113对袖带12的气囊袋122进行充气。
步骤S401与上述步骤S301相同,这里不赘述。
步骤S402:控制器111控制压力传感器112检测气囊袋122的压力,以获取人体的第二脉搏波。
步骤S403:控制器111提取每个脉搏周期对应的第二脉搏波的极大值。
步骤S404:控制器11根据第二脉搏波的多个极大值中的最大值计算收缩压和舒张压作为人体的血压信息。
其中,收缩压为所述最大值与第一系数的乘积,舒张压为所述最大值与第二系数的乘积。
步骤S405:控制器111控制压力传感器112检测气体通道121的压力,并将压力与预设的第一压力阈值进行比较。
步骤S406:若压力等于第一压力阈值时,控制器111控制气泵113停止充气。
步骤S407:控制器111控制压力传感器检测人体的多个第一脉搏波,并将多个第一脉搏波发送给终端103。
步骤S405及S407与上述步骤S302及S304相同,这里不赘述。
终端103进一步对脉搏波进行处理及显示处理结果。
区别于现有技术,本实施例进一步在加压阶段获取人体的第二脉搏波,以根据第二脉搏波获取血压数据,以同时实现血压数据及脉象信息的检测。
本申请进一步提出另一实施例的血压脉象检测***,如图5所示,本实施例血压脉象检测***在上述实施例的基础上进一步包括服务器104,终端103分别与血压脉象检测装置102及服务器104建立通信连接。本实施例的终端103可以与血压脉象检测装置102建立有连接或者无线连接,终端103可以与服务器104建立无线连接。
本申请进一步提出又一实施例的血压脉象检测方法,如图6所示,本实施力的方法包括以下步骤:
步骤S601:控制器111控制气泵113对袖带12的气囊袋122进行充气。
步骤S602:控制器111控制压力传感器112检测气体通道121的压力,并将压力与预设的第一压力阈值进行比较。
步骤S603:若压力等于第一压力阈值时,控制器111控制气泵113停止充气。
步骤S604:控制器111控制压力传感器检测人体的多个第一脉搏波,并将多个第一脉搏波发送给终端103。
步骤S601-S604与上述步骤S301-S304相同,这里不赘述。
步骤S605:终端103将多个第一脉搏波转发给服务器104。
步骤S606:服务器104对多个第一脉搏波进行处理,以根据分析结果获取健康信息。
本实施例的服务器104对终端103转发的第一脉搏波进行分析,以获取人 体的健康信息,终端103可以显示服务器104回传的健康信息及血压脉象检测装置102检测的第一脉搏波。
因人体健康信息往往需要丰富的经验数据及推理规则得出,而服务器104可以获取丰富的血压脉象检测数据,且具有较强的数据处理能力,因此本实施例通过服务器104对第一脉搏波进行分析,以获取人体的健康信息,能够提高第一脉搏波检测及数据处理的准确度。且本实施例的终端103显示健康信息及第一脉搏波信息,能使用户及时了解自身的健康状况,减少疾病风险。
其中,脉搏波是由心脏的动推血液沿管运行而产生的,它是一种周期性压力波。人体的脉搏波蕴含着丰富的生理信息,如血压、心率及心血管信息等。通过对脉搏波形的分析,能够获取心血管健康信息,以减少心血管疾病的发生。
可选地,为提高健康信息的准确度,服务器104在从终端103获取多个第一脉搏波之后,需要对多个第一脉搏波进行滤波处理,以剔除干扰噪声。
具体地,本实施例可以通过如图7所述的方法实现滤波,本实施例包括以下步骤:
步骤S701:服务器104获取第一脉搏波的幅值或周期。
具体地,服务器104可以获取第一脉搏波的特征点的幅值,该特征点可以包括第一脉搏波的反射波点、波峰点、波谷点或者其它极值点或拐点等。
步骤S702:服务器104判断幅值是否在预设幅值范围内。
步骤S703:若幅值在预设幅值范围内,则服务器104判断第一脉搏波为第三脉搏波,并滤除除第三脉搏波之外的脉搏波。
服务器104在从终端103获取多个脉搏波之后,需要对多个第一脉搏波进行滤波处理,以剔除干扰噪声,能够提高健康信息的准确度。
在另一实施例中,服务器还可以获取第一脉搏波的周期,并将周期不在预设周期内的脉搏波滤除,以获取第三脉搏波,即以周期作为滤波条件。当然,在其它实施例中,还可以将第一脉搏波的幅值及周期同时作为滤波条件。
可选地,不同的脉象表征了人体不同的健康状况,为提高健康信息的准确度,本实施例的服务器104可以通过步骤S704-S706对第三脉搏波进行脉象(波形)识别。本实施例的方法包括以下步骤:
步骤S704:服务器104将第三脉搏波与预设波形进行匹配。
不同的人体,或者同一人体处于不同的健康状态时,产生的脉搏波不同,即脉象不同。中医常见的脉象有多种,如滑脉、促脉、弦脉、平脉、浮脉、沉 脉、迟脉、数脉、虚脉等等,每种脉象的波形存在差异,如图2所示,滑脉、促脉、弦脉及平脉的波形均不同。
不同的脉象表征了人体不同的健康状况,为提高健康信息的准确度,本实施例的服务器104进一步对第三脉搏波进行脉象(波形)识别。
具体地,本实施例的服务器104存储有预设波形,该预设波形至少包括滑脉波形、促脉波形、弦脉波形或平脉波形等。例如,服务器104判断终端103转发的第三脉搏波与预设的滑脉波形匹配,则判断该第三脉搏波为滑脉;服务器104进一步可以将第三脉搏波或第一预设波形及健康信息“滑脉”回传给终端104。
本实施例可以通过如图8所述的方法实现步骤S704,本实施例的方法包括以下步骤:
步骤S801:服务器104分别获取第三脉博波的第一特征信息及预设波形的第二特征信息。
本实施例的特征信息可以包括第三脉博波的波形周期及波形驻点(包括极值点及拐点)信息。其中,波形驻点信息包括波形驻点的数量及相邻波形驻点之间的时间间隔等信息。
步骤S802:若第一特征信息与第二特征信息之间的差值小于预设差值,则服务器判断第三脉博波与预设波形匹配。
本实施例可以通过脉搏波的波形周期及波形驻点信息识别脉博波的脉象(波形)。当然,在其它实施例中,还可以根据脉搏波的其它特征信息识别脉博波的脉象(波形)。
具体地,本实施例的特征信息可以包括第三脉博波的波形周期及波形驻点(包括极值点及拐点)信息。其中,波形驻点信息包括波形驻点的数量及相邻波形驻点之间的时间间隔等信息。如图9所示,促脉的波形周期与其它脉象的波形周期相差较大,若服务器104判断第三脉博波的波形周期与预设的促脉波形的波形周期的差值小于预设差值,则可以判断第三脉博波为促脉;若服务器104判断该差值大于预设差值,则进一步判断第三脉博波的波形极值点的数量是否为2(预设的滑脉的波形极值点的数量为2),且判断第二波形驻点的幅值是否较大并且是否比第一波形驻点位置低,若是,则可以判断第三脉博波为滑脉;若服务器104判断第三脉博波的波形极值点的数量是等于3,则可以进一步判断第三脉博波的第一波形驻点与第二波形驻点之间的间隔时间是否小于预设时间 (预设的弦脉的第一波形驻点与第二波形驻点之间的时间间隔),若是,则可以判断第三脉博波为弦脉,等等。
本实施例可以通过脉搏波的波形周期及波形驻点信息识别脉博波的脉象(波形)。当然,在其它实施例中,还可以根据脉搏波的其它特征信息识别脉博波的脉象(波形)。
当然,服务器在进行脉象识别前可以先对获取的波形驻点进行过滤,以减少噪声干扰。
步骤S705:服务器104获取与第三脉博波对应的预设波形为第一预设波形。
步骤S706:服务器104根据第一预设波形得到健康信息。
当然,在另一实施例中,服务器还可以获取脉搏波的周期,并将周期不在预设周期内的脉搏波滤除,以获取第三脉搏波,即以周期作为滤波条件。当然,在其它实施例中,还可以将脉搏波的幅值及周期同时作为滤波条件。
脉诊是中医诊断学四诊之一,是一种独特的诊断方法。它主要是利用手指的感觉来分析脉搏的“位、数、形、势”等特征,借以判断脏腑的功能状态,从而实现无创诊断的目的,对疾病的诊断和治疗有着积极的意义。
现有的脉象仪虽然可以做到意会切脉过程,将脉搏波图形化并显示,使用户通过脉搏波直观的认识脉象,但从脉象获取健康信息,需要丰富的临床经验,因此非医护人员或非专业医护人员很难从脉象波形中准确的得到健康信息。
为解决上述问题,本实施例的服务器104进一步对第三脉博波进行分析,以从第三脉博波获取更具体的人体健康信息,本实施例的健康信息除了包括脉象信息,还包括血压、脉搏力度、脉率、脉律和反映动脉弹性的反射波增强指数(AI)等信息。
具体地,服务器104获取整个测量过程中脉波幅值最大的几个脉搏波,如3个,并根据波峰点的幅值取均值获取人体的脉搏力度。均值的幅值越大,脉搏力度越大,脉搏力度的大小表征了人体体质的强弱;服务器104还可以从第一脉搏波获取脉率、脉律和AI值等。
服务器104将上述获取的健康信息回传给终端102,终端102显示健康信息,如图10及图11所示。
进一步地,服务器104存储有预设范围,判断上述健康信息是否在预设范 围内;若是,则控制终端103上的健康信息显示状态为正常;若否,则终端显示103上的健康信息显示状态为异常。
服务器104还可将第三脉搏波或者与第三脉搏波对应的脉象波形及第三脉搏波的类型、血压数据等回传给终端103,终端103显示脉象波形及类型、血压数据。
可选地,本实施例的服务器104进一步根据反射波点及波峰点获取人体的血管弹性的健康信息,例如,若服务器104判断反射波点在波峰点的右侧(如图10所示),则获取的健康信息为血管弹性较好,若服务器104判断反射波点在波峰点的左侧(如图11所示),则获取的健康信息血管弹性较差;服务器104还可以根据心率数据获取心率过缓或者过速、心率不齐及等健康信息;服务器104还可以根据AI值获取动脉健康信息,等等。终端103也可显示这些健康信息。
步骤S607:服务器104将健康信息回传给终端102。
步骤S608:终端102显示健康信息。
服务器104还可将第三脉搏波或者与第三脉搏波对应的脉象波形及第三脉搏波的类型、血压数据等回传给终端103,终端103显示脉象波形及类型、血压数据。
本实施例的通过服务器104对第一脉博波进行分析,以获取人体的健康信息,能够提高血压脉象检测及数据处理的准确度;且本实施例的终端103能够显示详细健康信息,而不只是脉搏波,使得非医护人员也能通过该健康信息清楚了解自身的健康状态。
可选地,继续参阅图2,主机11设置有一接口110,该接口110用于与终端103建立连接,主机11通过袖带12检测人体动脉的血压脉象检测数据,并通过接口110将血压脉象检测数据发送给终端103,即血压检测装置102可以通过接口110与终端103进行数据通信,实现联网功能,提高用户的使用体验;且终端103通过接口110向血压检测装置102供电,因此血压检测装置102无需设置内置电源,减小血压检测装置10的体积和重量,实现小型化,方便携带,能够满足用户随时测量的需求。
其中,终端102具有USB OTG(USB On-The-Go)功能,该数据线21可为OTG数据线。在终端20通过数据线21与血压检测装置102连接时,终端20作为主设备,血压检测装置10为从设备。
可选地,本实施例的主机11进一步可以包括泄气阀114、气泵驱动电路115、泄气阀驱动电路116、数模转换电路117以及转换器118;压力传感器112、气泵113和泄气阀114分别与控制器111耦接,控制器111用于控制气泵113对气囊袋122进行充气,控制泄气阀114对气囊袋122进行放气,控制压力传感器112对气体通道121中气体的压力进行检测。
气体通道121可以延伸到主机11,气体通道121可以分别与压力传感器112、气泵113和泄气阀114连接。气泵驱动电路115连接在气泵113和控制器111之间,用于驱动气泵113,即控制器111通过气泵驱动电路115驱动气泵113,以将气体充入气囊袋122。泄气阀驱动电路116连接在泄气阀114和控制器111之间,用于驱动泄气阀114,即控制器111通过泄气阀驱动电路116驱动泄气阀114,以将气囊袋122的气体进行放气。
其中,主机11设置有袖带接口,袖带12的气体通道121与袖带接口可拆卸连接,气体通道100通过袖带接口分别与压力传感器112、气泵113和泄气阀114连接。
数模转换电路117连接在压力传感器112和控制器111之间;在压力传感器112检测到气体通道121中气体的压力时,压力传感器112用于将气体的压力转化为模拟信号,并将模拟信号传输至数模转换电路117;数模转换电路117将模拟信号转化为数字信号,并将数字信号发送给控制器111。
接口110可以包括电源端,电源端分别与气泵驱动电路115和泄气阀驱动电路116连接,用于向气泵驱动电路115和泄气阀驱动电路116提供第一电压V1。转换器118的输入端与电源端连接,用于将第一电压V1转换为第二电压V2;转换器118的输出端分别与控制器111、压力传感器112和数模转换电路117连接,用于向控制器111、压力传感器112和数模转换电路117提供第二电压V2,其中第二电压V2小于第一电压V1。
接口110进一步包括数据传输端,终端103通过数据传输端向控制器111发送检测指令,血压脉象检测装置102根据检测指令检测血压脉象检测数据。
在其他实施例中,气囊袋可以包括预留的气体。控制器通过压力传感器对预留的气体进行压力检测,并根据压力检测结果判断是否启动血压脉象检测;若是,则血压脉象检测装置进行血压脉象检测。通过这种方式,能够实现自动启动血压脉象检测,提高用户的体验效果。
在其他实施例中,控制器进一步获取压力检测结果与第二压力阈值的压力 变化幅度,在控制器判断到压力变化幅度大于预设的变化幅度阈值时,控制器启动血压脉象检测。在控制器判断到压力变化幅度小于预设的变化幅度阈值时,控制器控制血压脉象检测装置进入休眠状态,以节省功耗。
在其他实施例中,在血压脉象检测装置的加压阶段时,血压脉象检测装置采用闭环控制调节气体的充气速度,具体地控制器控制气泵对气囊袋进行充气,控制器通过压力传感器采集气体的压力为第一压力,控制器前一次通过压力传感器采集到的压力为第二压力;控制器根据第一压力和第二压力得到袖带的静压力。
控制器进一步根据静压力获取气囊袋中气体的加压速率,并将加压速率与恒定速率进行比较;在控制器判断到加压速率小于恒定速率时,控制器控制气泵的转速增大;在控制器判断到加速度速率大于恒定速率时,则控制器控制气泵的转速减小,以使得加压速率为恒定速率。因此,控制器控制气泵对气囊袋进行充气,进而控制气泵通过气体通道以恒定速度进行充气,以保证控制器获得脉搏波的准确性。
本申请进一步提出一种血压脉象检测装置,本实施的血压脉象检测装置为上述实施例中的血压脉象检测装置102,其具体结构及工作原理这里不赘述。
本申请实施例的血压脉象检测方法用于血压脉象检测***,该血压脉象检测***包括:血压脉象检测装置及终端,血压脉象检测装置包括袖带、气泵、压力传感器及控制器,该检测方法包括:控制器控制气泵对袖带的气囊袋进行充气;控制器控制压力传感器检测气囊袋的压力,并将压力与预设的第一压力阈值进行比较;若压力等于第一压力阈值时,控制器控制气泵停止充气;控制器控制压力传感器检测人体的多个第一脉搏波,并将多个第一脉搏波发送给所述终端。通过这种方式,在压力等于第一压力阈值时,控制器控制气泵停止充气,使压力传感器在恒压下检测人体的多个第一脉搏波,能够避免气泵充气过程或者泄气阀放气过程对袖带气囊的产生压力波动,因此,能够减少对第一脉搏波的干扰,能够提高第一脉搏波的准确度。
需要说明的是,以上各实施例均属于同一发明构思,各实施例的描述各有侧重,在个别实施例中描述未详尽之处,可参考其他实施例中的描述。
以上对本申请实施例所提供的保护电路和控制***进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想;同时,对于本领域的一般技术 人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。

Claims (14)

  1. 一种血压脉象检测方法,其特征在于,用于血压脉象检测***,所述血压脉象检测***包括:血压脉象检测装置及终端,所述血压脉象检测装置包括袖带及主机,所述袖带包括气体通道和气囊袋,所述主机包括气泵、压力传感器及控制器,所述检测方法包括:
    所述控制器控制所述气泵对所述气囊袋进行充气;
    所述控制器控制所述压力传感器检测所述气体通道的压力,并将所述压力与预设的第一压力阈值进行比较;
    在所述压力等于所述第一压力阈值时,所述控制器控制所述气泵停止充气;
    所述控制器控制所述压力传感器检测人体的多个第一脉搏波,并将多个所述第一脉搏波发送给所述终端。
  2. 根据权利要求1所述的检测方法,其特征在于,所述控制器控制所述气泵停止充气之前,所述检测方法进一步包括:
    所述控制器通过所述压力传感器检测所述气体通道的压力,以获取所述人体的第二脉搏波;
    所述控制器提取每个脉搏周期对应的第二脉搏波的极大值;
    所述控制器根据所述第二脉搏波的多个极大值中的最大值计算收缩压和舒张压作为所述血压信息;其中,所述收缩压为所述最大值与第一系数的乘积,所述舒张压为所述最大值与第二系数的乘积。
  3. 根据权利要求1所述的检测方法,其特征在于,所述血压脉象检测***进一步包括服务器,在所述将多个所述第一脉搏波发送给所述终端的步骤之后,所述检测方法包括:
    所述终端将多个所述第一脉搏波转发给所述服务器;
    所述服务器对多个所述第一脉搏波进行分析,以根据分析结果获取健康信息,并将所述健康信息回传给所述终端;
    所述终端显示所述健康信息。
  4. 根据权利要求2所述的检测方法,其特征在于,所述服务器对多个所述第一脉搏波进行分析的步骤包括:
    所述服务器获取所述第一脉搏波的幅值或周期,并判断所述幅值是否在预设幅值范围内,或者判断所述周期是否在预设周期范围内;
    若是,则所述服务器判断所述第一脉搏波为第三脉搏波,并滤除除所述第三脉搏波之外的所述第一脉搏波。
  5. 根据权利要求4所述的检测方法,其特征在于,在滤除除所述第三脉搏波之外的所述第一脉搏波之后,所述检测方法进一步包括:
    所述服务器判断所述第三脉搏波与预设波形进行匹配;
    若是,则获取与所述第三脉博波对应的预设波形为第一预设波形;
    所述服务器根据所述第一预设波形得到所述健康信息,并将所述健康信息发送给所述终端;
    其中,所述预设波形至少包括滑脉波形、促脉波形、弦脉波形或平脉波形。
  6. 根据权利要求5所述的检测方法,其特征在于,所述服务器将所述第三脉搏波与预设波形进行匹配的步骤包括:
    所述服务器分别获取所述第三脉博波的第一特征信息及所述预设波形的第二特征信息;
    若所述第一特征信息与所述第二特征信息之间的差值小于预设差值,则所述服务器判断所述第三脉博波与所述预设波形匹配。
  7. 根据权利要求4所述的检测方法,其特征在于,在滤除除所述第三脉搏波之外的所述第一脉搏波之后,所述检测方法进一步包括:
    所述服务器获取脉波幅值大于预设脉波幅值的多个所述第三脉搏波;
    所述服务器获取所述多个第三脉搏波的波峰点的幅值的均值为所述人体的脉搏力度。
  8. 根据权利要求7所述的检测方法,其特征在于,在滤除除所述第三脉搏波之外的所述第一脉搏波之后,所述检测方法进一步包括:
    所述服务器获取所述第三脉搏波的反射波点;
    所述服务器根据所述反射波点及所述波峰点获取所述人体的血管弹性的健康信息。
  9. 根据权利要求3所述的检测方法,其特征在于,所述服务器存储有预设范围,所述检测方法进一步包括:
    所述服务器判断所述健康信息是否在所述预设范围内;
    若是,则所述终端显示所述健康信息的状态为正常;
    若否,则所述终端显示所述健康信息的状态为异常。
  10. 一种血压脉象检测装置,其特征在于,所述血压脉象检测装置包括袖带 及主机,所述主机包括气泵、压力传感器及控制器,所述袖带包括气体通道和气囊袋,所述气体通道与所述气囊袋的气路接口连接,所述控制器与所述气泵及所述压力传感器耦接,所述气体通道与所述气泵连接,所述控制器用于控制所述气泵通过所述气体通道对所述气囊袋进行充气,所述控制器用于控制所述压力传感器检测所述气体通道的压力,并将所述压力与预设的第一压力阈值进行比较;在所述压力等于所述第一压力阈值时,所述控制器控制所述气泵停止充气;所述控制器控制所述压力传感器检测人体的多个第一脉搏波,并将多个所述第一脉搏波发送给与所述血压检测装置连接的终端。
  11. 根据权利要求10所述的血压脉象检测装置,其特征在于,所述主机进一步设置有一接口及与所述控制器耦接的泄气阀,所述终端与所述接口连接,用于向所述血压检测装置提供电压;
    在所述血压检测装置对所述人体进行血压检测时,所述袖带与人体动脉接触,所述控制器控制所述气泵对所述气囊袋进行充气,控制所述泄气阀对所述气囊袋进行放气,控制所述压力传感器对所述气体通道中气体的压力进行检测,并通过所述接口将所述血压检测数据发送给所述终端。
  12. 根据权利要求11所述的血压脉象检测装置,其特征在于,所述主机还包括气泵驱动电路和泄气阀驱动电路;所述气泵驱动电路连接在所述气泵和所述控制器之间,用于驱动所述气泵;所述泄气阀驱动电路连接在所述泄气阀和所述控制器之间,用于驱动所述泄气阀;
    所述接口包括电源端,所述电源端分别与所述气泵驱动电路和所述泄气阀驱动电路连接,用于向所述气泵驱动电路和所述泄气阀驱动电路提供所述电压。
  13. 根据权利要求9所述的血压脉象检测装置,其特征在于,所述血压检测数据包括所述脉搏波,所述控制器控制所述气泵对所述气囊袋进行充气,在所述压力传感器检测的压力为预设的第一压力阈值时,所述控制器控制所述气泵停止充气,通过所述压力传感器检测到多个脉搏波,并将多个所述脉搏波发送给终端。
  14. 一种血压脉象检测***,其特征在于,所述血压脉象检测***至少包括血压脉象检测装置和终端,所述终端和所述血压脉象检测装置建立连接,所述血压脉象检测装置为权利要求10-13任意一项所述的血压脉象检测装置。
PCT/CN2018/123624 2018-12-25 2018-12-25 血压脉象检测方法及检测装置、检测*** WO2020132898A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2018/123624 WO2020132898A1 (zh) 2018-12-25 2018-12-25 血压脉象检测方法及检测装置、检测***
CN201880041264.8A CN111615357A (zh) 2018-12-25 2018-12-25 血压脉象检测方法及检测装置、检测***

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/123624 WO2020132898A1 (zh) 2018-12-25 2018-12-25 血压脉象检测方法及检测装置、检测***

Publications (1)

Publication Number Publication Date
WO2020132898A1 true WO2020132898A1 (zh) 2020-07-02

Family

ID=71127327

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/123624 WO2020132898A1 (zh) 2018-12-25 2018-12-25 血压脉象检测方法及检测装置、检测***

Country Status (2)

Country Link
CN (1) CN111615357A (zh)
WO (1) WO2020132898A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112006676B (zh) * 2020-09-11 2022-08-16 江苏禾尔欣医疗科技有限公司 一种心率检测设备及方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1080685A1 (en) * 1999-09-06 2001-03-07 Colin Corporation Blood-pressure measuring apparatus
WO2015143723A1 (zh) * 2014-03-28 2015-10-01 深圳市大富网络技术有限公司 人体健康数据云端处理方法、移动终端和通信***
CN106388789A (zh) * 2016-11-17 2017-02-15 上海中嘉衡泰医疗科技有限公司 一种脉搏波测量装置及方法
CN107049290A (zh) * 2017-04-17 2017-08-18 北京大学 一种动态血压测量方法和***
CN207693558U (zh) * 2017-04-27 2018-08-07 杭州蕙新医疗科技有限公司 一种便携式血压监护仪

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5043707B2 (ja) * 2008-02-12 2012-10-10 テルモ株式会社 血圧測定装置およびその制御方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1080685A1 (en) * 1999-09-06 2001-03-07 Colin Corporation Blood-pressure measuring apparatus
WO2015143723A1 (zh) * 2014-03-28 2015-10-01 深圳市大富网络技术有限公司 人体健康数据云端处理方法、移动终端和通信***
CN106388789A (zh) * 2016-11-17 2017-02-15 上海中嘉衡泰医疗科技有限公司 一种脉搏波测量装置及方法
CN107049290A (zh) * 2017-04-17 2017-08-18 北京大学 一种动态血压测量方法和***
CN207693558U (zh) * 2017-04-27 2018-08-07 杭州蕙新医疗科技有限公司 一种便携式血压监护仪

Also Published As

Publication number Publication date
CN111615357A (zh) 2020-09-01

Similar Documents

Publication Publication Date Title
CN105030195A (zh) 指感施压与微阵列传感的三部九候多信息获取识别装置
CA2326740A1 (en) Method and apparatus for determining cardiac output or total peripheral resistance
WO2020132899A1 (zh) 血压脉象检测***及其检测方法、检测装置
TWI578955B (zh) 脈診訊號測量方法、脈診檢測裝置及脈診訊號測量系統
CN103750832A (zh) 实时无线血压监控***、血压测量装置及血压分析方法
CN112826471B (zh) 血压检测装置、血压检测***及血压监测方法
WO2020132898A1 (zh) 血压脉象检测方法及检测装置、检测***
CN112823738B (zh) 血压检测装置、血压检测***及血压监测方法
CN112826473B (zh) 缺血预适应训练方法、血压检测装置及血压检测***
CN112823739B (zh) 血压检测装置、血压检测***及血压监测方法
WO2020133052A1 (zh) 一种监测用户生命体征的方法和装置
CN112826468B (zh) 血压检测装置、血压检测***及血压监测方法
CN112826474B (zh) 血压检测装置、血压检测***及血压监测方法
CN102283638A (zh) 智能系数匹配的血压测量方法
CN109199349A (zh) 一种心电脉搏监测马桶及其血压获取方法
WO2020132901A1 (zh) 一种血压脉象检测装置及血压脉象检测***
CN112826470A (zh) 血压检测装置、血压检测***及血压监测方法
CN112826453A (zh) 一种血压脉象监测方法及血压脉象监测***
CN112826465B (zh) 信息共享方法、血压检测装置及血压检测***
CN112826472B (zh) 血压检测***及血压检测装置
CN112826476B (zh) 血压检测***及血压检测装置
CN112826469B (zh) 信息共享方法、血压检测装置及血压检测***
WO2019222923A1 (zh) 一种脉象仪及脉象仪***
Jin-ling et al. Design of electronic blood pressure monitoring system based on mobile telemedicine system
WO2020132900A1 (zh) 一种血压脉象检测装置及血压脉象检测***

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18944609

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18944609

Country of ref document: EP

Kind code of ref document: A1