WO2020132794A9 - Method, device and computer readable medium for diversity transmissions - Google Patents

Method, device and computer readable medium for diversity transmissions Download PDF

Info

Publication number
WO2020132794A9
WO2020132794A9 PCT/CN2018/123079 CN2018123079W WO2020132794A9 WO 2020132794 A9 WO2020132794 A9 WO 2020132794A9 CN 2018123079 W CN2018123079 W CN 2018123079W WO 2020132794 A9 WO2020132794 A9 WO 2020132794A9
Authority
WO
WIPO (PCT)
Prior art keywords
data packet
network device
terminal device
information
terminal
Prior art date
Application number
PCT/CN2018/123079
Other languages
French (fr)
Other versions
WO2020132794A1 (en
Inventor
Hua Chao
Yonggang Wang
Li Yang
Haitao Li
Original Assignee
Nokia Shanghai Bell Co., Ltd.
Nokia Solutions And Networks Oy
Nokia Technologies Oy
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nokia Shanghai Bell Co., Ltd., Nokia Solutions And Networks Oy, Nokia Technologies Oy filed Critical Nokia Shanghai Bell Co., Ltd.
Priority to CN201880100465.0A priority Critical patent/CN113302861B/en
Priority to PCT/CN2018/123079 priority patent/WO2020132794A1/en
Publication of WO2020132794A1 publication Critical patent/WO2020132794A1/en
Publication of WO2020132794A9 publication Critical patent/WO2020132794A9/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • H04L1/1671Details of the supervisory signal the supervisory signal being transmitted together with control information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated

Definitions

  • Embodiments of the present disclosure generally relate to communication techniques, and more particularly, to methods, devices and computer readable medium for diversity transmissions.
  • NR New Radio
  • SBT scheduling-based transmission
  • embodiments of the present disclosure relate to a method for diversity transmissions and the corresponding communication devices.
  • embodiments of the present disclosure provide a method.
  • the method comprises: transmitting, from a first network device and to a set of terminal devices, information indicating resource units allocated to the set of terminal devices being served by the first network device.
  • the method also comprises in response to receiving a first data packet from a terminal device, decoding the first data packet in association with the information.
  • the method further comprises determining, based on the decoded first data packet, whether the terminal device belongs to the set of terminal devices.
  • the method also comprises in response to a determination that the terminal device is out of the set of terminal devices, transmitting the decoded first data packet to a second network device serving the terminal device.
  • embodiments of the present disclosure provide a method.
  • the method comprises: receiving, at a terminal device, information indicating resource units allocated to a set of terminal devices from a first network device being a serving network device to the set of terminal devices.
  • the method further comprises encoding a data packet based on the information.
  • the method also comprises determining, based on the information, a target resource unit for transmitting the first data packet.
  • the method further comprises transmitting the encoded data packet.
  • inventions of the disclosure provide a network device.
  • the network device comprises: at least on processor; and a memory coupled to the at least one processor, the memory storing instructions therein, the instructions, when executed by the at least one processor, causing the network device to: transmit, from the network device and to a set of terminal devices, information indicating resource units allocated to the set of terminal devices being served by the network device.
  • the network device is further caused to in response to receiving a first data packet, from a terminal device, decode the first data packet in association with the information.
  • the network device is also caused to determine, based on the decoded first data packet, whether the terminal device belongs to the set of terminal devices.
  • the network device is also caused to in response to a determination that the terminal device is out of the set of terminal devices, transmit the decoded first data packet to a further network device serving the terminal device.
  • inventions of the disclosure provide a terminal device.
  • the terminal device comprises: at least on processor; and a memory coupled to the at least one processor, the memory storing instructions therein, the instructions, when executed by the at least one processor, causing the terminal device to: receive, at a terminal device, information indicating resource units allocated to a set of terminal devices from a first network device being a serving network device to the set of terminal devices.
  • the terminal device is also caused to encode a data packet based on the information.
  • the terminal device is further caused to determine, based on the information, a target resource unit for transmitting the first data packet.
  • the terminal device is also caused to transmit the encoded data packet.
  • inventions of the disclosure provide an apparatus for communication.
  • the apparatus comprises means for transmitting, from a first network device and to a set of terminal devices, information indicating resource units allocated to the set of terminal devices being served by the first network device.
  • the apparatus comprises means for in response to receiving a first data packet from a terminal device, decoding the first data packet in association with the information.
  • the apparatus also comprises means for determining, based on the decoded first data packet, whether the terminal device belongs to the set of terminal devices.
  • the apparatus further comprises means for in response to a determination that the terminal device is out of the set of terminal devices, transmitting the decoded first data packet to a second network device serving the terminal device.
  • inventions of the disclosure provide an apparatus for communication.
  • the apparatus comprises means for receiving, at a terminal device, information indicating resource units allocated to a set of terminal devices from a first network device being a serving network device to the set of terminal devices.
  • the apparatus further comprises means for encoding a data packet based on the information.
  • the apparatus also comprises means for determining, based on the information, a target resource unit for transmitting the first data packet.
  • the apparatus further comprises means for transmitting the encoded data packet.
  • embodiments of the disclosure provide a computer readable medium.
  • the computer readable medium stores instructions thereon, the instructions, when executed by at least one processing unit of a machine, causing the machine to implement the methods according to the first and second aspects.
  • Fig. 1 illustrates a schematic diagram of a communication system according to embodiments of the present disclosure
  • Fig. 2 illustrates a schematic diagram of MA resource structure for 1-stage grant-free transmission
  • Fig. 3 illustrates a schematic diagram of interactions among communication devices according to embodiments of the present disclosure
  • Fig. 4 illustrates a schematic diagram of resource configurations for diversity transmissions according to embodiments of the present disclosure
  • Fig. 5 illustrates a flow chart of a method implemented at a communication device according to embodiments of the present disclosure
  • Fig. 6 illustrates a flow chart of a method implemented at a communication device according to embodiments of the present disclosure.
  • Fig. 7 illustrates a schematic diagram of a device according to embodiments of the present disclosure.
  • the term “communication network” refers to a network following any suitable communication standards, such as Long Term Evolution (LTE) , LTE-Advanced (LTE-A) , Wideband Code Division Multiple Access (WCDMA) , High-Speed Packet Access (HSPA) , and so on.
  • LTE Long Term Evolution
  • LTE-A LTE-Advanced
  • WCDMA Wideband Code Division Multiple Access
  • HSPA High-Speed Packet Access
  • the communications between a terminal device and a network device in the communication network may be performed according to any suitable generation communication protocols, including, but not limited to, the first generation (1G) , the second generation (2G) , 2.5G, 2.75G, the third generation (3G) , the fourth generation (4G) , 4.5G, the future fifth generation (5G) communication protocols, and/or any other protocols either currently known or to be developed in the future.
  • Embodiments of the present disclosure may be applied in various communication systems. Given the rapid development in communications, there will of course also be future type communication technologies and systems with which the present disclosure may be embodied. It should not be seen as limiting the scope of the present disclosure to only the aforementioned system. For the purpose of illustrations, embodiments of the present disclosure will be described with reference to 5G communication system.
  • the term “network device” used herein includes, but not limited to, a base station (BS) , a gateway, a registration management entity, and other suitable device in a communication system.
  • base station or “BS” represents a node B (NodeB or NB) , an evolved NodeB (eNodeB or eNB) , a NR NB (also referred to as a gNB) , a Remote Radio Unit (RRU) , a radio header (RH) , a remote radio head (RRH) , a relay, a low power node such as a femto, a pico, and so forth.
  • NodeB or NB node B
  • eNodeB or eNB evolved NodeB
  • NR NB also referred to as a gNB
  • RRU Remote Radio Unit
  • RH radio header
  • RRH remote radio head
  • relay a low power node such as a femto, a pico
  • terminal device includes, but not limited to, “user equipment (UE) ” and other suitable end device capable of communicating with the network device.
  • the “terminal device” may refer to a terminal, a Mobile Terminal (MT) , a Subscriber Station (SS) , a Portable Subscriber Station, a Mobile Station (MS) , or an Access Terminal (AT) .
  • MT Mobile Terminal
  • SS Subscriber Station
  • MS Mobile Station
  • AT Access Terminal
  • circuitry used herein may refer to one or more or all of the following:
  • circuitry also covers an implementation of merely a hardware circuit or processor (or multiple processors) or portion of a hardware circuit or processor and its (or their) accompanying software and/or firmware.
  • circuitry also covers, for example and if applicable to the particular claim element, a baseband integrated circuit or processor integrated circuit for a mobile device or a similar integrated circuit in server, a cellular network device, or other computing or network device.
  • RACH resource allocation
  • GFT grant-free transmission
  • time-frequency repetition which is also called diversity transmission is proposed to allow the terminal device to transmit more than one copy for the same packet in different MA physical resources.
  • the technology of Successive Interference Cancellation (SIC) across multiple slots is used to remove the copies of already recovered transmissions from collision slots.
  • the 5G NR works in a frequency reuse-1 deployment, i.e. the overall system time-frequency resources are available for each network device.
  • diversity transmission may inevitably worsen the collision status for both the serving cell and neighboring cells.
  • inter-cell interference coordination For terminal devices transmitting uplink data by using scheduling-based transmission, inter-cell interference coordination (ICIC) has been introduced since REL8 to reduce the inter-cell interference by helping a network device to use information from neighboring network devices as input to its own scheduling process.
  • CoMP Coordinated Multi Point
  • REL11 To provide more dynamic coordination between network devices and improve the transmission efficiency for cell edge terminal devices.
  • both ICIC and CoMP are based on the SBT and cannot be reused for GFT because they both work for RRC-connected state terminal devices and cannot work for idle state terminal devices.
  • CoMP requires signaling preparation to exchange control information between one or more neighboring cell and serving cell.
  • the network device in fact has no priori information for any terminal devices. Signaling exchange for a certain terminal device in certain time-frequency resources is not feasible.
  • Fig. 1 illustrates a schematic diagram of a communication system 100 in which embodiments of the present disclosure can be implemented.
  • the communication system 100 which is a part of a communication network, comprises terminal devices 110-1, 110-2, ..., 110-N (collectively referred to as “terminal device (s) 110” where N is an integer number) , network devices 120-1, 120-2, ..., 120-M (collectively referred to as “network device (s) 120” where M is an integer number) , terminal devices 130-1, ...,130-P (collectively referred to as “terminal device (s) 130” where P is an integer number) .
  • the communication system 100 may also comprise other elements which are omitted for the purpose of clarity. It is to be understood that the numbers of terminal devices and network devices shown in Fig. 1 are given for the purpose of illustration without suggesting any limitations.
  • the communication system 100 may include any suitable number of network devices and terminal devices, for example, an operation and management entity 150.
  • the network device 120-1 is the serving network device to the terminal devices 110 and the network device 120-2 is the serving network device to the terminal devices 130.
  • the terminal device 110-1 is at the edge of the coverage of the network device 120-1 and at the edge of the coverage of the network device 120-2.
  • the terminal device 110-1 may communicate with the network device 120-1 and the network device 120-2.
  • the terminal device 130-1 is at the edge of the coverage of the network device 120-1 and at the edge of the coverage of the network device 120-2.
  • the terminal device 130-1 may communicate with the network device 120-1 and the network device 120-2.
  • the terminal device transmits more than one copy for the same packet in different MA physical resources. More than one terminal device may select the same resource unit for transmissions.
  • Fig. 2 shows a schematic diagram of MA resource structure for 1-stage grant-free transmission.
  • the terminal devices 110-1 and 110-2 may use the resource unit 2010 to transmit their data packets.
  • the network device 120-1 may receive the data packet from the terminal devices 110-1 and 110-2 on the same resource unit 2010.
  • the network device 120-2 may also receive the data packet from the terminal device 110-1 and transmit the decoded the data packet to the network device 120-1.
  • the network device 120-1 may decode the data packet from the terminal device 110-2 with the help of the decoded data packet from the network device 120-2.
  • Communications in the communication system 100 may be implemented according to any proper communication protocol (s) , including, but not limited to, cellular communication protocols of the first generation (1G) , the second generation (2G) , the third generation (3G) , the fourth generation (4G) and the fifth generation (5G) and on the like, wireless local network communication protocols such as Institute for Electrical and Electronics Engineers (IEEE) 802.11 and the like, and/or any other protocols currently known or to be developed in the future.
  • s including, but not limited to, cellular communication protocols of the first generation (1G) , the second generation (2G) , the third generation (3G) , the fourth generation (4G) and the fifth generation (5G) and on the like, wireless local network communication protocols such as Institute for Electrical and Electronics Engineers (IEEE) 802.11 and the like, and/or any other protocols currently known or to be developed in the future.
  • IEEE Institute for Electrical and Electronics Engineers
  • the communication may utilize any proper wireless communication technology, including but not limited to: Code Divided Multiple Address (CDMA) , Frequency Divided Multiple Address (FDMA) , Time Divided Multiple Address (TDMA) , Frequency Divided Duplexer (FDD) , Time Divided Duplexer (TDD) , Multiple-Input Multiple-Output (MIMO) , Orthogonal Frequency Divided Multiple Access (OFDMA) and/or any other technologies currently known or to be developed in the future.
  • CDMA Code Divided Multiple Address
  • FDMA Frequency Divided Multiple Address
  • TDMA Time Divided Multiple Address
  • FDD Frequency Divided Duplexer
  • TDD Time Divided Duplexer
  • MIMO Multiple-Input Multiple-Output
  • OFDMA Orthogonal Frequency Divided Multiple Access
  • the network device receives data packet from a terminal device and determines whether the terminal device is served by a neighbor network device. If the terminal device is from the neighbor network device, the network device transmits the decoded data packet back to the neighbor network device.
  • the terminal device determines the resource to be used for transmissions based on the location of the terminal device. In this way, interferences are reduced and the transmission efficiencies are improved. No explicit signaling preparation is needed for inter-cell interference coordination between the target cell and the serving cell.
  • Fig. 3 illustrates a schematic diagram of interactions among communication devices according to embodiments of the present disclosure.
  • a managing platform for example, the operation and management entity 150
  • the network device 120 may pre-configured with the resource configurations. Only as an example, Table 1 below shows neighboring resource configuration. It should be noted that the values and numbers shown in Table 1 are only examples.
  • the operation and management entity 150 may also transmit scrambling codes to the network devices.
  • the operation and management entity 150 may transmit information indicating the scrambling codes used by cells controlled by the network devices, respectively.
  • the network devices may also receive scrambling codes used by the neighboring cells.
  • the common configuration may be configured to network devices in an area.
  • the common configuration may be configured based on a list of cells.
  • the common configuration may be configured based on a Tracking Area Update (TAU) identity and/or a Radio Access Network (RAN) identity.
  • TAU Tracking Area Update
  • RAN Radio Access Network
  • the network device 120-1 transmits 3015 information indicating resource units (RU) allocated to the set of terminal devices 110.
  • the network device 120-1 may transmit indices of RU which are allocated to the set of terminal devices 110, for example, RUs 1-5.
  • the network device 120-1 may broadcast the information periodically.
  • the network device 120-1 may transmit the information to a terminal device after registering with the network device 120-1. It should be noted that embodiments of the present disclosure are not limited in this aspect.
  • the network device 120-1 may configure different resource units to the terminal devices at the cell edge and the terminal devices which are not at the cell edge. As shown in Fig. 4, the set of resource units 4010 may be allocated for the terminal devices which are not at the cell edge and the set of resources 4020 may be allocated for the terminal devices which are at the cell edge. In this way, the terminal device may determine the resource units to be used based on its location, thereby reducing intra-cell interferences.
  • the information may also indicate a time advanced (TA) threshold.
  • TA time advanced
  • the information may also indicate a scrambling code. As mentioned above, different cells may use different scrambling codes.
  • the network device 120-1 may transmit the information indicating which scramble code to be used in the cell.
  • the terminal device 110-1 encodes 3025 the data packet.
  • the terminal device 110-1 may determine the scrambling code from the information and encode the data packet with the scrambling code.
  • the terminal device 110-1 may encode the identity of the network device 120-1 into the data packet.
  • the terminal device 110-1 determines 3030 the target resource unit. In some embodiments, the terminal device 110-1 may determine the location and select the target resource unit based on the location. For example, the terminal device 110-1 may determine its TA and compare with the TA threshold. If its TA is larger than the TA threshold, the terminal device 110-1 may transmit its data packets using the resource units for the cell edge. In this way, performances of the intra-cell communication are improved.
  • the terminal device 110-1 may transmit its encoded data packet twice. For example, if the TA is belong the threshold TA, the terminal device 110-1 may choose two resource units and transmit the encoded data packet on these resource units. If the terminal device 110-1 determines that its location is at the edge of the cell, the terminal device 110-1 may select one resource unit and transmit the encoded data packet on this resource unit.
  • the terminal device 110-1 transmits 3045 the encoded data packet with the target resource unit to the network device 120-1. If the terminal device 110-1 is at the edge of the cell, the network device 120-2 may also receive 3050 the encoded data from the terminal device 110-1.
  • the terminal device 130-1 is served by the network device 120-2.
  • the network device 120-2 may transmit the information of resources allocated to the set of terminal device 130.
  • the terminal device 130-1 may encode the data packet with a further scrambling code determined from the information.
  • the terminal device 130-1 may also select a further target resource unit based on its location and the information.
  • the terminal device 130-1 may transmit the encoded data packet to its serving network device 120-2. If the terminal device 130-1 is at the edge of the cell, the network device 120-1 may also receive 3057 the encoded data from the terminal device 130-1.
  • the network device 120-1 decodes 3060 the received data signal received from the terminal device 110-1, 110-2 and/or the terminal device 130-1. After successful decoding, the network device determines 3065 whether the terminal devices belong to the set of the terminal devices 110. If the data packet is from the terminal device 110-1 which belongs to the set of terminal devices 110, the network device may transmit 3070 an ACK to the terminal device 110-1. In some embodiments, the information may also indicate a terminal device specific HARQ channel. If the terminal device 110-1 is in a radio resource controlling (RRC) -inactive state or in a RRC-connected state, the network device 120-1 may transmit 3070 the ACK to the terminal device 110-1 in the specific HARQ channel. If the terminal device 110-1 is in a RRC-idle state, the network device 120-1 may transmit ACK together with identities of terminal devices in RU-specific HARQ channel.
  • RRC radio resource controlling
  • the network device 120-1 transmits 3075 the decoded data signal to the network device 120-2 which is serving the terminal device 130-1.
  • different resource unis are configured for cell-edge terminal devices in neighbor cells.
  • the network device 120-1 may detect a Cell-ID in the decoded signal, it knows the data packet is from the neighboring cell. The network device 120-1 may transmit the decoded data to the network device 120-2.
  • the network device 120-1 may transmit one or more of the followings to the network device 120-2: the ACK, an identity of the terminal device 130-1, the successful decoded signal of the terminal device 130-1, the index of the resource unit on which the data packet is transmitted.
  • the network device 120-1 may decode the data packet with a set of candidate scrambling codes. The network device 120-1 may determine from which network device the data packet is transmitted based on the scrambling code which successfully decodes the data packet. In some embodiments, the network device 120-1 may transmit any combinations of the followings to the network device 120-2: the ACK, an identity of the terminal device 130-1, the successful decoded signal of the terminal device 130-1, the index of the resource unit on which the data packet is transmitted. In this way, inter-cell interference is avoided by different MA physical resource configurations for cell edge in different cells or by the same MA physical resources for cell edge in different cells with different scrambling code.
  • the network device 120-1 may receive a second decoded data packet from other network device.
  • the data packet from the terminal device 110-1 which is at the cell edge of the network device 120-1 may also be received by the network device 120-2, the network device 120-2 may decode 3080 the data packet from the terminal device 110-1 and transmit 3085 the decoded data signal to the network device 120-1.
  • the network device 120-2 may transmit the index of the resource unit on which the data packet is transmitted.
  • the terminal device 110-1 and 110-2 may use the resource unit 2010 to transmit their data packets.
  • the network device 120-1 may decode the data signal received on the same resource unit 2010 as the terminal device 110-1 used.
  • the network device 120-1 may subtract the decoded data signal which is received from the network device 120-2 from the original data signals received on the resource unit 2010 and may decode 3090 the remained data signal.
  • the information may also indicate a terminal device specific HARQ channel. If the terminal device 110-1 is in a radio resource controlling (RRC) -inactive state or in a RRC-connected state, the network device 120-1 may transmit 3070 the ACK to the terminal device 110-1 in the specific HARQ channel. If the terminal device 110-1 is in a RRC-idle state, the network device 120-1 may transmit ACK together with identities of terminal devices in RU-specific HARQ channel.
  • RRC radio resource controlling
  • Fig. 5 illustrate a flow chart of a method 500 implemented at a network device according to embodiments of the present disclosure.
  • the method 500 can be implemented at any suitable network device. Only for the purpose of illustrations, the method 500 is described to be implemented at the network device 120-1.
  • a managing platform may transmit information regarding neighboring resource configurations to the network device 120-2 and transmit the above information to the network device 120-1 as well.
  • the network device 120 may pre-configured with the resource configurations.
  • the operation and management entity 150 may also transmit scrambling codes to the network devices.
  • the common configuration may be configured to network devices in an area.
  • the common configuration may be configured based on a list of cells.
  • the common configuration may be configured based on a Tracking Area Update (TAU) identity and/or a Radio Access Network (RAN) identity.
  • TAU Tracking Area Update
  • RAN Radio Access Network
  • the network devices in this certain area may know resource configurations and scrambling coded of the neighboring cells.
  • the network device 120-1 transmits 3015 information indicating resource units (RU) allocated to the set of terminal devices 120.
  • the network device 120-1 may transmit indices of RU which are allocated to the set of terminal devices 120, for example, RUs 1-5.
  • the network device 120-1 may broadcast the information periodically.
  • the network device 120-1 may transmit the information to a terminal device after registering with the network device 120-1.
  • the information may also indicate a scrambling code.
  • different network devices may use different scrambling codes.
  • the network device 120-1 may transmit the information indicating which scramble code to be used.
  • the network device 120-1 decodes the received data packets received from the terminal device 110-1 and/or the terminal device 110-2. At block 520, the network device determines whether the terminal devices belong to the set of the terminal devices 110. In some embodiments, the network device 120-1 may determine the identity of the network device 120-2 based on the decoded first data packet.
  • the network device may transmit an ACK to the terminal device 110-1.
  • the information may also indicate a terminal device specific HARQ channel. If the terminal device 110-1 is in a radio resource controlling (RRC) -inactive state or in a RRC-connected state, the network device 120-1 may transmit the ACK to the terminal device 110-1 in the specific HARQ channel. If the terminal device 110-1 is in a RRC-idle state, the network device 120-1 may transmit ACK together with identities of terminal devices in RU-specific HARQ channel.
  • RRC radio resource controlling
  • the network device 120-1 transmits the decoded data packet to the network device 120-2 which is serving the terminal device 130-1.
  • the network device 120-1 may determine the identity of the network devices 120-2 which is serving the terminal device 130-1.
  • different resource unis are configured for cell-edge terminal devices in neighbor cells.
  • the network device 120-1 may detect a Cell-ID in the decoded signal, it knows the data packet is from the neighboring cell.
  • the network device 120-1 may transmit the decoded data to the network device 120-2.
  • the network device 120-1 may transmit one or more of the followings to the network device 120-2: the ACK, an identity of the terminal device 130-1, the successful decoded signal, the index of the resource unit on which the data packet is transmitted.
  • the network device 120-1 may decode the data packet with a set of candidate scrambling codes.
  • the network device 120-1 may determine an identity of a network device from which the data packet is transmitted based on the scrambling code which successfully decodes the data packet.
  • the network device 120-1 may transmit any combinations of the followings to the network device 120-2: the ACK, an identity of the terminal device 130-1, the successful decoded signal, the index of the resource unit on which the data packet is transmitted.
  • the network device 120-1 may receive a second decoded data packet from other network device.
  • the terminal device 110-1 which is at the cell edge of the network device 120-1 may also transmit the data packet to the network device 120-2, the network device 120-2 may decode the data packet and transmit 3085 the decoded data signal to the network device 120-1.
  • the network device 120-2 may transmit the index of the resource unit on which the data packet is transmitted.
  • the network device 120-1 may subtract the decoded data signal which is received from the network device 120-2 from the original data signals received on the resource unit 2010 and may decode 3090 the remained data signal.
  • the network device 120-1 may perform a successive interference cancellation (SIC) decoding on the data packet using the decoded data packet received from the network device 120-2.
  • SIC successive interference cancellation
  • an apparatus for performing the method 500 may comprise respective means for performing the corresponding steps in the method 500.
  • These means may be implemented in any suitable manners. For example, it can be implemented by circuitry or software modules.
  • the apparatus comprises: means for transmitting, from a first network device and to a set of terminal devices, information indicating resource units allocated to the set of terminal devices being served by the first network device; means for in response to receiving a first data packet from a terminal device, decoding the first data packet in association with the information; means for determining, based on the decoded first data packet, whether the terminal device belongs to the set of terminal devices; and means for in response to a determination that the terminal device is out of the set of terminal devices, transmitting the decoded first data packet to a second network device serving the terminal device.
  • the means for decoding the first data packet in association with the information comprises: means for determining a set of candidate scrambling codes; and means for decoding the first data packet with the set of candidate scrambling codes.
  • the means for determining whether the terminal device belongs to the set of terminal devices comprises: means for determining, from the set of candidate scrambling codes, a target scrambling code which decodes the first data packet successfully; means for comparing the target scrambling code with the information; and means for in response to the target scrambling code mismatching with the information, determining that the terminal device is out of the set of terminal devices.
  • the means for transmitting the decoded first data packet to the second network device means for determining an identity of the second network device based on the target scrambling code; and means for transmitting the decoded first data packet to the second network device.
  • the means for transmitting the decoded data packet to the second network device comprises: means for determining an identity of the second network device based on the decoded first data packet; and means for transmitting the decoded first data packet to the second network device.
  • the means for the information indicates at least one of: indices of the resource units, a threshold time advance (TA) , and a scrambling code.
  • TA threshold time advance
  • the apparatus further comprises: means for receiving, from a third network device, a decoded second data packet and an index of a second resource unit on which the decoded second data packet is transmitted; and means for decoding, based on the further decoded data packet, a third data packet received on the second resource unit.
  • the apparatus further comprises: means for obtaining, from a management entity, the information and further information indicating resources units allocated to a further set of terminal devices with a different serving network device; and means for decoding the first data packet based on the information and the further information.
  • Fig. 6 illustrate a flow chart of a method 600 implemented at a terminal device according to embodiments of the present disclosure.
  • the method 600 can be implemented at any suitable network device. Only for the purpose of illustrations, the method 600 is described to be implemented at the terminal device 110-1.
  • the terminal device 110-1 receives information indicating resource units allocated to the set of terminal devices 110 from the network device 120-1 which is the serving the terminal device 110-1.
  • the network device 120-1 may transmit indices of RU which are allocated to the set of terminal devices 120, for example, RUs 1-5.
  • the information may indicate that different resource units are allocated to the terminal devices at the cell edge and the terminal devices which are not at the cell edge.
  • the terminal device 110-2 encodes the data packet based on the information.
  • the terminal device 110-1 may determine the scrambling code from the information and encode the data packet with the scrambling code.
  • the terminal device 110-1 determines the target resource unit. In some embodiments, the terminal device 110-1 may determine the location and select the target resource unit based on the location. For example, the terminal device 110-1 may determine its TA and compare with the TA threshold. If its TA is larger than the TA threshold, the terminal device 110-1 may transmit its data packets using the resource units for the cell edge.
  • an apparatus for performing the method 600 may comprise respective means for performing the corresponding steps in the method 600.
  • These means may be implemented in any suitable manners. For example, it can be implemented by circuitry or software modules.
  • the apparatus comprises: means for receiving, at a terminal device, information indicating resource units allocated to a set of terminal devices from a first network device being a serving network device to the set of terminal devices; means for encoding a data packet based on the information; means for determining, based on the information, a target resource unit for transmitting the first data packet; and means for transmitting the encoded data packet.
  • the means for encoding the first data packet comprises: means for determining a scrambling code based on the information; and means for encoding the first data packet with the scrambling code.
  • the means for encoding the first data packet comprises: means for determining an identity of the first network device; and means for encoding the identity into the first data packet.
  • the means for determining the target resource unit comprises: means for determining a timing advance (TA) of the terminal device; and mean for selecting, based on the TA and the information, the target resource unit from the resource units.
  • TA timing advance
  • the means for transmitting the encoded data packet comprises: means for comparing the TA with a threshold TA; means for in response to the TA being below the terminal device exceeding the threshold TA, selecting at least two target resource units from the resource units; and means for transmitting the encoded data packet on the at least two target resource units.
  • the information indicates at least one of: indices of the resource units, a threshold time advance (TA) , and a scrambling code.
  • TA threshold time advance
  • Fig. 7 is a simplified block diagram of a device 700 that is suitable for implementing embodiments of the present disclosure.
  • the device 700 may be implemented at the registration management entity 730.
  • the device 700 may also be implemented at the terminal devices 110.
  • the device 700 may also be implemented at the network devices 120.
  • the device 700 includes one or more processors 710, one or more memories 720 coupled to the processor (s) 710, one or more transmitters and/or receivers (TX/RX) 740 coupled to the processor 710.
  • the processor 710 may be of any type suitable to the local technical network, and may include one or more of general purpose computers, special purpose computers, microprocessors, digital signal processors (DSPs) and processors based on multicore processor architecture, as non-limiting examples.
  • the device 700 may have multiple processors, such as an application specific integrated circuit chip that is slaved in time to a clock which synchronizes the main processor.
  • the memory 720 may be of any type suitable to the local technical network and may be implemented using any suitable data storage technology, such as a non-transitory computer readable storage medium, semiconductor based memory devices, magnetic memory devices and systems, optical memory devices and systems, fixed memory and removable memory, as non-limiting examples.
  • the memory 720 stores at least a part of a program 730.
  • the TX/RX 740 is for bidirectional communications.
  • the TX/RX 740 has at least one antenna to facilitate communication, though in practice an Access Node mentioned in this application may have several ones.
  • the communication interface may represent any interface that is necessary for communication with other network elements.
  • the program 730 is assumed to include program instructions that, when executed by the associated processor 710, enable the device 700 to operate in accordance with the embodiments of the present disclosure, as discussed herein with reference to Figs. 3 and 6. That is, embodiments of the present disclosure can be implemented by computer software executable by the processor 710 of the device 700, or by hardware, or by a combination of software and hardware.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

A method, device and computer readable medium for diversity transmissions. The network device receives data packet from a terminal device and determines whether the terminal device is served by a neighbor network device. If the terminal device is from the neighbor network device, the network device transmits the decoded data packet back to the neighbor network device. The terminal device determines the resource to be used for transmissions based on the location of the terminal device. In this way, interferences are reduced and the transmission efficiencies are improved.

Description

METHOD, DEVICE AND COMPUTER READABLE MEDIUM FOR DIVERSITY TRANSMISSIONS FIELD
Embodiments of the present disclosure generally relate to communication techniques, and more particularly, to methods, devices and computer readable medium for diversity transmissions.
BACKGROUND
In recent years, different communication technologies have been proposed to improve communication performances, such as, the New Radio (NR) system. In order to improve transmissions efficiency, a technology of grant-free transmissions has been proposed. In NR access technologies, the key characteristics of grant-free based uplink non-orthogonal multiple access (MA) is defined as a transmission from a terminal device does not need the dynamic and explicit scheduling grant from the base station. Different to scheduling-based transmission (SBT) , more than one terminal device may select the same MA physical resources among a resource pool for UL data transmission. Since collisions are inevitable, studies on avoiding collusions are necessary.
SUMMARY
Generally, embodiments of the present disclosure relate to a method for diversity transmissions and the corresponding communication devices.
In a first aspect, embodiments of the present disclosure provide a method. The method comprises: transmitting, from a first network device and to a set of terminal devices, information indicating resource units allocated to the set of terminal devices being served by the first network device. The method also comprises in response to receiving a first data packet from a terminal device, decoding the first data packet in association with the information. The method further comprises determining, based on the decoded first data packet, whether the terminal device belongs to the set of terminal devices. The method also comprises in response to a  determination that the terminal device is out of the set of terminal devices, transmitting the decoded first data packet to a second network device serving the terminal device.
In a second aspect, embodiments of the present disclosure provide a method. The method comprises: receiving, at a terminal device, information indicating resource units allocated to a set of terminal devices from a first network device being a serving network device to the set of terminal devices. The method further comprises encoding a data packet based on the information. The method also comprises determining, based on the information, a target resource unit for transmitting the first data packet. The method further comprises transmitting the encoded data packet.
In a third aspect, embodiments of the disclosure provide a network device. The network device comprises: at least on processor; and a memory coupled to the at least one processor, the memory storing instructions therein, the instructions, when executed by the at least one processor, causing the network device to: transmit, from the network device and to a set of terminal devices, information indicating resource units allocated to the set of terminal devices being served by the network device. The network device is further caused to in response to receiving a first data packet, from a terminal device, decode the first data packet in association with the information. The network device is also caused to determine, based on the decoded first data packet, whether the terminal device belongs to the set of terminal devices. The network device is also caused to in response to a determination that the terminal device is out of the set of terminal devices, transmit the decoded first data packet to a further network device serving the terminal device.
In a fourth aspect, embodiments of the disclosure provide a terminal device. The terminal device comprises: at least on processor; and a memory coupled to the at least one processor, the memory storing instructions therein, the instructions, when executed by the at least one processor, causing the terminal device to: receive, at a terminal device, information indicating resource units allocated to a set of terminal devices from a first network device being a serving network device to the set of terminal devices. The terminal device is also caused to encode a data packet based on the information. The terminal device is further caused to determine, based on the  information, a target resource unit for transmitting the first data packet. The terminal device is also caused to transmit the encoded data packet.
In a fifth aspect, embodiments of the disclosure provide an apparatus for communication. The apparatus comprises means for transmitting, from a first network device and to a set of terminal devices, information indicating resource units allocated to the set of terminal devices being served by the first network device. The apparatus comprises means for in response to receiving a first data packet from a terminal device, decoding the first data packet in association with the information. The apparatus also comprises means for determining, based on the decoded first data packet, whether the terminal device belongs to the set of terminal devices. The apparatus further comprises means for in response to a determination that the terminal device is out of the set of terminal devices, transmitting the decoded first data packet to a second network device serving the terminal device.
In a sixth aspect, embodiments of the disclosure provide an apparatus for communication. The apparatus comprises means for receiving, at a terminal device, information indicating resource units allocated to a set of terminal devices from a first network device being a serving network device to the set of terminal devices. The apparatus further comprises means for encoding a data packet based on the information. The apparatus also comprises means for determining, based on the information, a target resource unit for transmitting the first data packet. The apparatus further comprises means for transmitting the encoded data packet.
In a seventh aspect, embodiments of the disclosure provide a computer readable medium. The computer readable medium stores instructions thereon, the instructions, when executed by at least one processing unit of a machine, causing the machine to implement the methods according to the first and second aspects.
Other features and advantages of the embodiments of the present disclosure will also be apparent from the following description of specific embodiments when read in conjunction with the accompanying drawings, which illustrate, by way of example, the principles of embodiments of the disclosure.
BRIEF DESCRIPTION OF THE DRAWINGS
Embodiments of the disclosure are presented in the sense of examples and  their advantages are explained in greater detail below, with reference to the accompanying drawings, where
Fig. 1 illustrates a schematic diagram of a communication system according to embodiments of the present disclosure;
Fig. 2 illustrates a schematic diagram of MA resource structure for 1-stage grant-free transmission;
Fig. 3 illustrates a schematic diagram of interactions among communication devices according to embodiments of the present disclosure;
Fig. 4 illustrates a schematic diagram of resource configurations for diversity transmissions according to embodiments of the present disclosure;
Fig. 5 illustrates a flow chart of a method implemented at a communication device according to embodiments of the present disclosure;
Fig. 6 illustrates a flow chart of a method implemented at a communication device according to embodiments of the present disclosure; and
Fig. 7 illustrates a schematic diagram of a device according to embodiments of the present disclosure.
Throughout the figures, same or similar reference numbers indicate same or similar elements.
DETAILED DESCRIPTION OF EMBODIMENTS
The subject matter described herein will now be discussed with reference to several example embodiments. It should be understood these embodiments are discussed only for the purpose of enabling those skilled persons in the art to better understand and thus implement the subject matter described herein, rather than suggesting any limitations on the scope of the subject matter.
The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of example embodiments. As used herein, the singular forms “a, ” “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises, ” “comprising, ” “includes” and/or “including, ”  when used herein, specify the presence of stated features, integers, steps, operations, elements and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components and/or groups thereof.
It should also be noted that in some alternative implementations, the functions/acts noted may occur out of the order noted in the figures. For example, two functions or acts shown in succession may in fact be executed concurrently or may sometimes be executed in the reverse order, depending upon the functionality/acts involved.
As used herein, the term “communication network” refers to a network following any suitable communication standards, such as Long Term Evolution (LTE) , LTE-Advanced (LTE-A) , Wideband Code Division Multiple Access (WCDMA) , High-Speed Packet Access (HSPA) , and so on. Furthermore, the communications between a terminal device and a network device in the communication network may be performed according to any suitable generation communication protocols, including, but not limited to, the first generation (1G) , the second generation (2G) , 2.5G, 2.75G, the third generation (3G) , the fourth generation (4G) , 4.5G, the future fifth generation (5G) communication protocols, and/or any other protocols either currently known or to be developed in the future.
Embodiments of the present disclosure may be applied in various communication systems. Given the rapid development in communications, there will of course also be future type communication technologies and systems with which the present disclosure may be embodied. It should not be seen as limiting the scope of the present disclosure to only the aforementioned system. For the purpose of illustrations, embodiments of the present disclosure will be described with reference to 5G communication system.
The term “network device” used herein includes, but not limited to, a base station (BS) , a gateway, a registration management entity, and other suitable device in a communication system. The term “base station” or “BS” represents a node B (NodeB or NB) , an evolved NodeB (eNodeB or eNB) , a NR NB (also referred to as a gNB) , a Remote Radio Unit (RRU) , a radio header (RH) , a remote radio head (RRH) , a relay, a low power node such as a femto, a pico, and so forth.
The term “terminal device” used herein includes, but not limited to, “user equipment (UE) ” and other suitable end device capable of communicating with the network device. By way of example, the “terminal device” may refer to a terminal, a Mobile Terminal (MT) , a Subscriber Station (SS) , a Portable Subscriber Station, a Mobile Station (MS) , or an Access Terminal (AT) .
The term “circuitry” used herein may refer to one or more or all of the following:
(a) hardware-only circuit implementations (such as implementations in only analog and/or digital circuitry) and
(b) combinations of hardware circuits and software, such as (as applicable) :
(i) a combination of analog and/or digital hardware circuit (s) with
software/firmware and
(ii) any portions of hardware processor (s) with software (including digital signal processor (s) ) , software, and memory (ies) that work together to cause an apparatus, such as a mobile phone or server, to perform various functions) and
(c) hardware circuit (s) and or processor (s) , such as a microprocessor (s) or a portion of a microprocessor (s) , that requires software (e.g., firmware) for operation, but the software may not be present when it is not needed for operation. ”
This definition of circuitry applies to all uses of this term in this application, including in any claims. As a further example, as used in this application, the term circuitry also covers an implementation of merely a hardware circuit or processor (or multiple processors) or portion of a hardware circuit or processor and its (or their) accompanying software and/or firmware. The term circuitry also covers, for example and if applicable to the particular claim element, a baseband integrated circuit or processor integrated circuit for a mobile device or a similar integrated circuit in server, a cellular network device, or other computing or network device.
1-stage random access channel (RACH) based grant-free transmission (GFT) schemes have been proposed in 3GPP for mMTC (massive Machine Type Communications) for low latency and small data transmissions. Different to scheduling-based transmission (SBT) , more than one terminal device may select the  same MA physical resources among a resource pool for UL data transmission. Since the collision is inevitable, MA signature is used to detect the collision.
To improve transmission efficiency for 1-stage grant-free transmission, time-frequency repetition which is also called diversity transmission is proposed to allow the terminal device to transmit more than one copy for the same packet in different MA physical resources. In the network device, the technology of Successive Interference Cancellation (SIC) across multiple slots is used to remove the copies of already recovered transmissions from collision slots.
The 5G NR works in a frequency reuse-1 deployment, i.e. the overall system time-frequency resources are available for each network device. For cell edge terminal devices, diversity transmission may inevitably worsen the collision status for both the serving cell and neighboring cells.
In conventional technologies, a straightforward way to avoid collisions is not to deploy the diversity transmissions in the cell edge. However, in such situations, how to improve the transmission efficiency for 1-stage grant-free transmission for cell edge terminal devices has become a problem. Thus, efficiency of transmissions needs to be improved.
For terminal devices transmitting uplink data by using scheduling-based transmission, inter-cell interference coordination (ICIC) has been introduced since REL8 to reduce the inter-cell interference by helping a network device to use information from neighboring network devices as input to its own scheduling process. Coordinated Multi Point (CoMP) transmission has been introduced since REL11 to provide more dynamic coordination between network devices and improve the transmission efficiency for cell edge terminal devices. However, both ICIC and CoMP are based on the SBT and cannot be reused for GFT because they both work for RRC-connected state terminal devices and cannot work for idle state terminal devices.
CoMP requires signaling preparation to exchange control information between one or more neighboring cell and serving cell. In 1-stage GFT, the network device in fact has no priori information for any terminal devices. Signaling exchange for a certain terminal device in certain time-frequency resources is not feasible.
Fig. 1 illustrates a schematic diagram of a communication system 100 in which embodiments of the present disclosure can be implemented. The communication system 100, which is a part of a communication network, comprises terminal devices 110-1, 110-2, ..., 110-N (collectively referred to as “terminal device (s) 110” where N is an integer number) , network devices 120-1, 120-2, ..., 120-M (collectively referred to as “network device (s) 120” where M is an integer number) , terminal devices 130-1, ...,130-P (collectively referred to as “terminal device (s) 130” where P is an integer number) . It should be noted that the communication system 100 may also comprise other elements which are omitted for the purpose of clarity. It is to be understood that the numbers of terminal devices and network devices shown in Fig. 1 are given for the purpose of illustration without suggesting any limitations. The communication system 100 may include any suitable number of network devices and terminal devices, for example, an operation and management entity 150.
By way of examples, the network device 120-1 is the serving network device to the terminal devices 110 and the network device 120-2 is the serving network device to the terminal devices 130. As shown in Fig. 1, the terminal device 110-1 is at the edge of the coverage of the network device 120-1 and at the edge of the coverage of the network device 120-2. The terminal device 110-1 may communicate with the network device 120-1 and the network device 120-2. The terminal device 130-1 is at the edge of the coverage of the network device 120-1 and at the edge of the coverage of the network device 120-2. The terminal device 130-1 may communicate with the network device 120-1 and the network device 120-2.
As mentioned above, in order to improve transmission efficiency, the terminal device transmits more than one copy for the same packet in different MA physical resources. More than one terminal device may select the same resource unit for transmissions. Fig. 2 shows a schematic diagram of MA resource structure for 1-stage grant-free transmission. For example, the terminal devices 110-1 and 110-2 may use the resource unit 2010 to transmit their data packets. The network device 120-1 may receive the data packet from the terminal devices 110-1 and 110-2 on the same resource unit 2010. The network device 120-2 may also receive the data packet from the terminal device 110-1 and transmit the decoded the data packet to the network device 120-1. The network device 120-1 may decode the data packet from the terminal device 110-2 with the help of the decoded data packet from the network  device 120-2.
Communications in the communication system 100 may be implemented according to any proper communication protocol (s) , including, but not limited to, cellular communication protocols of the first generation (1G) , the second generation (2G) , the third generation (3G) , the fourth generation (4G) and the fifth generation (5G) and on the like, wireless local network communication protocols such as Institute for Electrical and Electronics Engineers (IEEE) 802.11 and the like, and/or any other protocols currently known or to be developed in the future. Moreover, the communication may utilize any proper wireless communication technology, including but not limited to: Code Divided Multiple Address (CDMA) , Frequency Divided Multiple Address (FDMA) , Time Divided Multiple Address (TDMA) , Frequency Divided Duplexer (FDD) , Time Divided Duplexer (TDD) , Multiple-Input Multiple-Output (MIMO) , Orthogonal Frequency Divided Multiple Access (OFDMA) and/or any other technologies currently known or to be developed in the future.
According to embodiments of the present disclosure, the network device receives data packet from a terminal device and determines whether the terminal device is served by a neighbor network device. If the terminal device is from the neighbor network device, the network device transmits the decoded data packet back to the neighbor network device. The terminal device determines the resource to be used for transmissions based on the location of the terminal device. In this way, interferences are reduced and the transmission efficiencies are improved. No explicit signaling preparation is needed for inter-cell interference coordination between the target cell and the serving cell.
Fig. 3 illustrates a schematic diagram of interactions among communication devices according to embodiments of the present disclosure. In some embodiments, a managing platform (for example, the operation and management entity 150) may transmit 3005 information regarding neighboring resource configurations to the network device 120-2 (refers to as the second network device) and transmit 3010 the above information to the network device 120-1 (referred to as the first network device) as well. Alternatively, the network device 120 may pre-configured with the resource configurations. Only as an example, Table 1 below shows neighboring resource configuration. It should be noted that the values and numbers shown in Table 1 are  only examples.
Table 1
Figure PCTCN2018123079-appb-000001
In other embodiments, the operation and management entity 150 may also transmit scrambling codes to the network devices. For example, the operation and management entity 150 may transmit information indicating the scrambling codes used by cells controlled by the network devices, respectively. The network devices may also receive scrambling codes used by the neighboring cells. In an example embodiment, the common configuration may be configured to network devices in an area. For example, the common configuration may be configured based on a list of cells. Alternatively or in addition, the common configuration may be configured based on a Tracking Area Update (TAU) identity and/or a Radio Access Network (RAN) identity. The network devices in this certain area may know resource configurations and scrambling coded of the neighboring cells.
The network device 120-1 transmits 3015 information indicating resource units (RU) allocated to the set of terminal devices 110. For example, the network device 120-1 may transmit indices of RU which are allocated to the set of terminal devices 110, for example, RUs 1-5. In some embodiments, the network device 120-1 may broadcast the information periodically. In some embodiments, the network device 120-1 may transmit the information to a terminal device after registering with the network device 120-1. It should be noted that embodiments of the present disclosure are not limited in this aspect.
In some embodiments, the network device 120-1 may configure different resource units to the terminal devices at the cell edge and the terminal devices which  are not at the cell edge. As shown in Fig. 4, the set of resource units 4010 may be allocated for the terminal devices which are not at the cell edge and the set of resources 4020 may be allocated for the terminal devices which are at the cell edge. In this way, the terminal device may determine the resource units to be used based on its location, thereby reducing intra-cell interferences. In some embodiments, the information may also indicate a time advanced (TA) threshold.
In an example embodiment, the information may also indicate a scrambling code. As mentioned above, different cells may use different scrambling codes. The network device 120-1 may transmit the information indicating which scramble code to be used in the cell.
The terminal device 110-1 encodes 3025 the data packet. In some embodiments, the terminal device 110-1 may determine the scrambling code from the information and encode the data packet with the scrambling code. In an example embodiment, the terminal device 110-1 may encode the identity of the network device 120-1 into the data packet.
The terminal device 110-1 determines 3030 the target resource unit. In some embodiments, the terminal device 110-1 may determine the location and select the target resource unit based on the location. For example, the terminal device 110-1 may determine its TA and compare with the TA threshold. If its TA is larger than the TA threshold, the terminal device 110-1 may transmit its data packets using the resource units for the cell edge. In this way, performances of the intra-cell communication are improved.
In some embodiments, if the terminal device 110-1 determines that its location is at the center of the cell, the terminal device 110-1 may transmit its encoded data packet twice. For example, if the TA is belong the threshold TA, the terminal device 110-1 may choose two resource units and transmit the encoded data packet on these resource units. If the terminal device 110-1 determines that its location is at the edge of the cell, the terminal device 110-1 may select one resource unit and transmit the encoded data packet on this resource unit.
The terminal device 110-1 transmits 3045 the encoded data packet with the target resource unit to the network device 120-1. If the terminal device 110-1 is at the edge of the cell, the network device 120-2 may also receive 3050 the encoded data  from the terminal device 110-1.
As mentioned above, the terminal device 130-1 is served by the network device 120-2. The network device 120-2 may transmit the information of resources allocated to the set of terminal device 130. The terminal device 130-1 may encode the data packet with a further scrambling code determined from the information. The terminal device 130-1 may also select a further target resource unit based on its location and the information. The terminal device 130-1 may transmit the encoded data packet to its serving network device 120-2. If the terminal device 130-1 is at the edge of the cell, the network device 120-1 may also receive 3057 the encoded data from the terminal device 130-1.
The network device 120-1 decodes 3060 the received data signal received from the terminal device 110-1, 110-2 and/or the terminal device 130-1. After successful decoding, the network device determines 3065 whether the terminal devices belong to the set of the terminal devices 110. If the data packet is from the terminal device 110-1 which belongs to the set of terminal devices 110, the network device may transmit 3070 an ACK to the terminal device 110-1. In some embodiments, the information may also indicate a terminal device specific HARQ channel. If the terminal device 110-1 is in a radio resource controlling (RRC) -inactive state or in a RRC-connected state, the network device 120-1 may transmit 3070 the ACK to the terminal device 110-1 in the specific HARQ channel. If the terminal device 110-1 is in a RRC-idle state, the network device 120-1 may transmit ACK together with identities of terminal devices in RU-specific HARQ channel.
If the data packet is from the terminal device 130-1 which does not belong to the set of terminal devices 110, the network device 120-1 transmits 3075 the decoded data signal to the network device 120-2 which is serving the terminal device 130-1. In some embodiments, different resource unis are configured for cell-edge terminal devices in neighbor cells. In this situation, the network device 120-1 may detect a Cell-ID in the decoded signal, it knows the data packet is from the neighboring cell. The network device 120-1 may transmit the decoded data to the network device 120-2. In some embodiments, the network device 120-1 may transmit one or more of the followings to the network device 120-2: the ACK, an identity of the terminal device  130-1, the successful decoded signal of the terminal device 130-1, the index of the resource unit on which the data packet is transmitted.
In other embodiments, if the same resources are configured for cell-edge terminal devices in different cells. In this situation, the network device 120-1 may decode the data packet with a set of candidate scrambling codes. The network device 120-1 may determine from which network device the data packet is transmitted based on the scrambling code which successfully decodes the data packet. In some embodiments, the network device 120-1 may transmit any combinations of the followings to the network device 120-2: the ACK, an identity of the terminal device 130-1, the successful decoded signal of the terminal device 130-1, the index of the resource unit on which the data packet is transmitted. In this way, inter-cell interference is avoided by different MA physical resource configurations for cell edge in different cells or by the same MA physical resources for cell edge in different cells with different scrambling code.
In some embodiments, the network device 120-1 may receive a second decoded data packet from other network device. For example, the data packet from the terminal device 110-1 which is at the cell edge of the network device 120-1 may also be received by the network device 120-2, the network device 120-2 may decode 3080 the data packet from the terminal device 110-1 and transmit 3085 the decoded data signal to the network device 120-1. In some embodiments, the network device 120-2 may transmit the index of the resource unit on which the data packet is transmitted. For example, as mentioned above, the terminal device 110-1 and 110-2 may use the resource unit 2010 to transmit their data packets. The network device 120-1 may decode the data signal received on the same resource unit 2010 as the terminal device 110-1 used. The network device 120-1 may subtract the decoded data signal which is received from the network device 120-2 from the original data signals received on the resource unit 2010 and may decode 3090 the remained data signal.
In some embodiments, the information may also indicate a terminal device specific HARQ channel. If the terminal device 110-1 is in a radio resource controlling (RRC) -inactive state or in a RRC-connected state, the network device 120-1 may transmit 3070 the ACK to the terminal device 110-1 in the specific HARQ  channel. If the terminal device 110-1 is in a RRC-idle state, the network device 120-1 may transmit ACK together with identities of terminal devices in RU-specific HARQ channel.
Fig. 5 illustrate a flow chart of a method 500 implemented at a network device according to embodiments of the present disclosure. The method 500 can be implemented at any suitable network device. Only for the purpose of illustrations, the method 500 is described to be implemented at the network device 120-1.
In some embodiments, a managing platform (for example, the operation and management entity 150) may transmit information regarding neighboring resource configurations to the network device 120-2 and transmit the above information to the network device 120-1 as well. Alternatively, the network device 120 may pre-configured with the resource configurations. In other embodiments, the operation and management entity 150 may also transmit scrambling codes to the network devices.
In an example embodiment, the common configuration may be configured to network devices in an area. For example, the common configuration may be configured based on a list of cells. Alternatively or in addition, the common configuration may be configured based on a Tracking Area Update (TAU) identity and/or a Radio Access Network (RAN) identity. The network devices in this certain area may know resource configurations and scrambling coded of the neighboring cells.
At block 510, the network device 120-1 transmits 3015 information indicating resource units (RU) allocated to the set of terminal devices 120. For example, the network device 120-1 may transmit indices of RU which are allocated to the set of terminal devices 120, for example, RUs 1-5. In some embodiments, the network device 120-1 may broadcast the information periodically. In some embodiments, the network device 120-1 may transmit the information to a terminal device after registering with the network device 120-1.
In an example embodiment, the information may also indicate a scrambling code. As mentioned above, different network devices may use different scrambling codes. The network device 120-1 may transmit the information indicating which scramble code to be used.
At block 520, the network device 120-1 decodes the received data packets received from the terminal device 110-1 and/or the terminal device 110-2. At block 520, the network device determines whether the terminal devices belong to the set of the terminal devices 110. In some embodiments, the network device 120-1 may determine the identity of the network device 120-2 based on the decoded first data packet.
If the data packet is from the terminal device 110-1 which belongs to the set of terminal devices 110, the network device may transmit an ACK to the terminal device 110-1. In some embodiments, the information may also indicate a terminal device specific HARQ channel. If the terminal device 110-1 is in a radio resource controlling (RRC) -inactive state or in a RRC-connected state, the network device 120-1 may transmit the ACK to the terminal device 110-1 in the specific HARQ channel. If the terminal device 110-1 is in a RRC-idle state, the network device 120-1 may transmit ACK together with identities of terminal devices in RU-specific HARQ channel.
At block 540, ifthe data packet is from the terminal device 130-1 which does not belong to the set of terminal devices 120, the network device 120-1 transmits the decoded data packet to the network device 120-2 which is serving the terminal device 130-1. In some embodiments, the network device 120-1 may determine the identity of the network devices 120-2 which is serving the terminal device 130-1.
In some embodiments, different resource unis are configured for cell-edge terminal devices in neighbor cells. In this situation, the network device 120-1 may detect a Cell-ID in the decoded signal, it knows the data packet is from the neighboring cell. The network device 120-1 may transmit the decoded data to the network device 120-2. In some embodiments, the network device 120-1 may transmit one or more of the followings to the network device 120-2: the ACK, an identity of the terminal device 130-1, the successful decoded signal, the index of the resource unit on which the data packet is transmitted.
In other embodiments, if the same resources are configured for cell-edge terminal devices in different cells. In this situation, the network device 120-1 may decode the data packet with a set of candidate scrambling codes. The network device 120-1 may determine an identity of a network device from which the data  packet is transmitted based on the scrambling code which successfully decodes the data packet. In some embodiments, the network device 120-1 may transmit any combinations of the followings to the network device 120-2: the ACK, an identity of the terminal device 130-1, the successful decoded signal, the index of the resource unit on which the data packet is transmitted.
In some embodiments, the network device 120-1 may receive a second decoded data packet from other network device. For example, the terminal device 110-1 which is at the cell edge of the network device 120-1 may also transmit the data packet to the network device 120-2, the network device 120-2 may decode the data packet and transmit 3085 the decoded data signal to the network device 120-1. In some embodiments, the network device 120-2 may transmit the index of the resource unit on which the data packet is transmitted. The network device 120-1 may subtract the decoded data signal which is received from the network device 120-2 from the original data signals received on the resource unit 2010 and may decode 3090 the remained data signal. The network device 120-1 may perform a successive interference cancellation (SIC) decoding on the data packet using the decoded data packet received from the network device 120-2.
In some embodiments, an apparatus for performing the method 500 (for example, the network device 120-1) may comprise respective means for performing the corresponding steps in the method 500. These means may be implemented in any suitable manners. For example, it can be implemented by circuitry or software modules.
In some embodiments, the apparatus comprises: means for transmitting, from a first network device and to a set of terminal devices, information indicating resource units allocated to the set of terminal devices being served by the first network device; means for in response to receiving a first data packet from a terminal device, decoding the first data packet in association with the information; means for determining, based on the decoded first data packet, whether the terminal device belongs to the set of terminal devices; and means for in response to a determination that the terminal device is out of the set of terminal devices, transmitting the decoded first data packet to a second network device serving the terminal device.
In some embodiments, the means for decoding the first data packet in  association with the information comprises: means for determining a set of candidate scrambling codes; and means for decoding the first data packet with the set of candidate scrambling codes.
In some embodiments, the means for determining whether the terminal device belongs to the set of terminal devices comprises: means for determining, from the set of candidate scrambling codes, a target scrambling code which decodes the first data packet successfully; means for comparing the target scrambling code with the information; and means for in response to the target scrambling code mismatching with the information, determining that the terminal device is out of the set of terminal devices.
In some embodiments, the means for transmitting the decoded first data packet to the second network device: means for determining an identity of the second network device based on the target scrambling code; and means for transmitting the decoded first data packet to the second network device.
In some embodiments, the means for transmitting the decoded data packet to the second network device comprises: means for determining an identity of the second network device based on the decoded first data packet; and means for transmitting the decoded first data packet to the second network device.
In some embodiments, the means for the information indicates at least one of: indices of the resource units, a threshold time advance (TA) , and a scrambling code.
In some embodiments, the apparatus further comprises: means for receiving, from a third network device, a decoded second data packet and an index of a second resource unit on which the decoded second data packet is transmitted; and means for decoding, based on the further decoded data packet, a third data packet received on the second resource unit.
In some embodiments, the apparatus further comprises: means for obtaining, from a management entity, the information and further information indicating resources units allocated to a further set of terminal devices with a different serving network device; and means for decoding the first data packet based on the information and the further information.
Fig. 6 illustrate a flow chart of a method 600 implemented at a terminal device  according to embodiments of the present disclosure. The method 600 can be implemented at any suitable network device. Only for the purpose of illustrations, the method 600 is described to be implemented at the terminal device 110-1.
At block 610, the terminal device 110-1 receives information indicating resource units allocated to the set of terminal devices 110 from the network device 120-1 which is the serving the terminal device 110-1. For example, the network device 120-1 may transmit indices of RU which are allocated to the set of terminal devices 120, for example, RUs 1-5. In some embodiments, the information may indicate that different resource units are allocated to the terminal devices at the cell edge and the terminal devices which are not at the cell edge.
At block 620, the terminal device 110-2 encodes the data packet based on the information. In some embodiments, the terminal device 110-1 may determine the scrambling code from the information and encode the data packet with the scrambling code.
At block 630, the terminal device 110-1 determines the target resource unit. In some embodiments, the terminal device 110-1 may determine the location and select the target resource unit based on the location. For example, the terminal device 110-1 may determine its TA and compare with the TA threshold. If its TA is larger than the TA threshold, the terminal device 110-1 may transmit its data packets using the resource units for the cell edge.
In some embodiments, an apparatus for performing the method 600 (for example, the terminal device 110-1) may comprise respective means for performing the corresponding steps in the method 600. These means may be implemented in any suitable manners. For example, it can be implemented by circuitry or software modules.
In some embodiments, the apparatus comprises: means for receiving, at a terminal device, information indicating resource units allocated to a set of terminal devices from a first network device being a serving network device to the set of terminal devices; means for encoding a data packet based on the information; means for determining, based on the information, a target resource unit for transmitting the first data packet; and means for transmitting the encoded data packet.
In some embodiments, the means for encoding the first data packet comprises: means for determining a scrambling code based on the information; and means for encoding the first data packet with the scrambling code.
In some embodiments, the means for encoding the first data packet comprises: means for determining an identity of the first network device; and means for encoding the identity into the first data packet.
In some embodiments, the means for determining the target resource unit comprises: means for determining a timing advance (TA) of the terminal device; and mean for selecting, based on the TA and the information, the target resource unit from the resource units.
In some embodiments, the means for transmitting the encoded data packet comprises: means for comparing the TA with a threshold TA; means for in response to the TA being below the terminal device exceeding the threshold TA, selecting at least two target resource units from the resource units; and means for transmitting the encoded data packet on the at least two target resource units.
In some embodiments, the information indicates at least one of: indices of the resource units, a threshold time advance (TA) , and a scrambling code.
Fig. 7 is a simplified block diagram of a device 700 that is suitable for implementing embodiments of the present disclosure. The device 700 may be implemented at the registration management entity 730. The device 700 may also be implemented at the terminal devices 110. The device 700 may also be implemented at the network devices 120. As shown, the device 700 includes one or more processors 710, one or more memories 720 coupled to the processor (s) 710, one or more transmitters and/or receivers (TX/RX) 740 coupled to the processor 710.
The processor 710 may be of any type suitable to the local technical network, and may include one or more of general purpose computers, special purpose computers, microprocessors, digital signal processors (DSPs) and processors based on multicore processor architecture, as non-limiting examples. The device 700 may have multiple processors, such as an application specific integrated circuit chip that is slaved in time to a clock which synchronizes the main processor.
The memory 720 may be of any type suitable to the local technical network  and may be implemented using any suitable data storage technology, such as a non-transitory computer readable storage medium, semiconductor based memory devices, magnetic memory devices and systems, optical memory devices and systems, fixed memory and removable memory, as non-limiting examples.
The memory 720 stores at least a part of a program 730. The TX/RX 740 is for bidirectional communications. The TX/RX 740 has at least one antenna to facilitate communication, though in practice an Access Node mentioned in this application may have several ones. The communication interface may represent any interface that is necessary for communication with other network elements.
The program 730 is assumed to include program instructions that, when executed by the associated processor 710, enable the device 700 to operate in accordance with the embodiments of the present disclosure, as discussed herein with reference to Figs. 3 and 6. That is, embodiments of the present disclosure can be implemented by computer software executable by the processor 710 of the device 700, or by hardware, or by a combination of software and hardware.
While this specification contains many specific implementation details, these should not be construed as limitations on the scope of any disclosure or of what may be claimed, but rather as descriptions of features that may be specific to particular embodiments of particular disclosures. Certain features that are described in this specification in the context of separate embodiments can also be implemented in combination in a single embodiment. Conversely, various features that are described in the context of a single embodiment can also be implemented in multiple embodiments separately or in any suitable sub-combination. Moreover, although features may be described above as acting in certain combinations and even initially claimed as such, one or more features from a claimed combination can in some cases be excised from the combination, and the claimed combination may be directed to a sub-combination or variation of a sub-combination.
Similarly, while operations are depicted in the drawings in a particular order, this should not be understood as requiring that such operations be performed in the particular order shown or in sequential order, or that all illustrated operations be performed, to achieve desirable results. In certain circumstances, multitasking and parallel processing may be advantageous. Moreover, the separation of various  system components in the embodiments described above should not be understood as requiring such separation in all embodiments, and it should be understood that the described program components and systems can generally be integrated together in a single software product or packaged into multiple software products.
Various modifications, adaptations to the foregoing exemplary embodiments of this disclosure may become apparent to those skilled in the relevant arts in view of the foregoing description, when read in conjunction with the accompanying drawings. Any and all modifications will still fall within the scope of the non-limiting and exemplary embodiments of this disclosure. Furthermore, other embodiments of the disclosures set forth herein will come to mind to one skilled in the art to which these embodiments of the disclosure pertain having the benefit of the teachings presented in the foregoing descriptions and the associated drawings.
Therefore, it is to be understood that the embodiments of the disclosure are not to be limited to the specific embodiments disclosed and that modifications and other embodiments are intended to be included within the scope of the appended claims. Although specific terms are used herein, they are used in a generic and descriptive sense only and not for purpose of limitation.

Claims (32)

  1. A network device, comprising:
    at least one processor; and
    a memory coupled to the at least one processor, the memory storing instructions therein, the instructions, when executed by the at least one processor, causing the network device to:
    transmit, from the network device and to a set of terminal devices, information indicating resource units allocated to the set of terminal devices being served by the network device;
    in response to receiving a first data packet from a terminal device, decode the first data packet in association with the information;
    determine, based on the decoded first data packet, whether the terminal device belongs to the set of terminal devices; and
    in response to a determination that the terminal device is out of the set of terminal devices, transmit the decoded first data packet to a further network device serving the terminal device.
  2. The network device of claim 1, wherein the network device is caused to decode the first data packet in association with the information by:
    determining a set of candidate scrambling codes; and
    decoding the first data packet with the set of candidate scrambling codes.
  3. The network device of claim 2, wherein the network device is caused to determine whether the terminal device belongs to the set of terminal devices by:
    determining, from the set of candidate scrambling codes, a target scrambling code which decodes the first data packet successfully;
    comparing the target scrambling code with the information; and
    in response to the target scrambling code mismatching with the information, determining that the terminal device is out of the set of terminal devices.
  4. The network device of claim 3, wherein the network device is caused to transmit the decoded first data packet to the second network device by:
    determining an identity of the second network device based on the target scrambling code; and
    transmitting the decoded first data packet to the second network device.
  5. The network device of claim 1, wherein the network device is caused to transmit the decoded data packet to the second network device by:
    determining an identity of the second network device based on the decoded first data packet; and
    transmitting the decoded first data packet to the second network device.
  6. The network device of claim 1, wherein the information indicates at least one of:
    indices of the resource units,
    a threshold time advance (TA) , and
    a scrambling code.
  7. The network device of claim 1, wherein the network device is further caused to:
    receive, from a third network device, a decoded second data packet and an index of a second resource unit on which the decoded data packet is transmitted; and
    decode, based on the further decoded data packet, a third data packet received on the second resource unit.
  8. The network device of any one of claims 1-7, further comprising:
    obtaining, from an management entity, the information and further information indicating resources units allocated to a further set of terminal devices with a different serving network device; and
    decoding the first data packet based on the information and the further information.
  9. A terminal device, comprising:
    at least one processor; and
    a memory coupled to the at least one processor, the memory storing instructions therein, the instructions, when executed by the at least one processor, causing the terminal device to:
    receive, at a terminal device, information indicating resource units allocated to a set of terminal devices from a first network device being a serving network device to the set of terminal devices;
    encode a data packet based on the information;
    determine, based on the information, a target resource unit for transmitting the first data packet; and
    transmit the encoded data packet.
  10. The terminal device of claim 9, wherein the terminal device is caused to encode the first data packet by:
    determining a scrambling code based on the information; and
    encoding the first data packet with the scrambling code.
  11. The terminal device of claim 9, wherein the terminal device is caused to encode the first data packet by:
    determining an identity of the first network device; and
    encoding the identity into the first data packet.
  12. The terminal device of claim 9, wherein the terminal device is caused to determine the target resource unit by:
    determining a timing advance (TA) of the terminal device; and
    selecting, based on the TA and the information, the target resource unit from the resource units.
  13. The terminal device of claim 12, wherein the terminal device is caused to transmit the encoded data packet by:
    comparing the TA with a threshold TA;
    in response to the TA being below the terminal device exceeding the threshold TA, selecting at least two target resource units from the resource units; and
    transmitting the encoded data packet on the at least two target resource units.
  14. The terminal device of claim 10, wherein the information indicates at least one of:
    indices of the resource units,
    a threshold time advance (TA) , and
    a scrambling code.
  15. A communication method, comprising:
    transmitting, from a first network device and to a set of terminal devices, information indicating resource units allocated to the set of terminal devices being served by the first network device;
    in response to receiving a first data packet from a terminal device, decoding the first data packet in association with the information;
    determining, based on the decoded first data packet, whether the terminal device belongs to the set of terminal devices; and
    in response to a determination that the terminal device is out of the set of terminal devices, transmitting the decoded first data packet to a second network device serving the terminal device.
  16. The method of claim 15, wherein decoding the first data packet in association with the information comprises:
    determining a set of candidate scrambling codes; and
    decoding the first data packet with the set of candidate scrambling codes.
  17. The method of claim 16, wherein determining whether the terminal device belongs to the set of terminal devices comprises:
    determining, from the set of candidate scrambling codes, a target scrambling code which decodes the first data packet successfully;
    comparing the target scrambling code with the information; and
    in response to the target scrambling code mismatching with the information, determining that the terminal device is out of the set of terminal devices.
  18. The method of claim 17, wherein transmitting the decoded first data packet to the second network device:
    determining an identity of the second network device based on the target scrambling code; and
    transmitting the decoded first data packet to the second network device.
  19. The method of claim 15, wherein transmitting the decoded data packet to the second network device comprises:
    determining an identity of the second network device based on the decoded first data packet; and
    transmitting the decoded first data packet to the second network device.
  20. The method of claim 15, wherein the information indicates at least one of:
    indices of the resource units,
    a threshold time advance (TA) , and
    a scrambling code.
  21. The method of claim 15, further comprising:
    receiving, from a third network device, a decoded second data packet and an index of a second resource unit on which the decoded second data packet is transmitted; and
    decoding, based on the further decoded data packet, a third data packet received on the second resource unit.
  22. The method of any one of claims 15-21, further comprising:
    obtaining, from an management entity, the information and further information indicating resources units allocated to a further set of terminal devices with a different serving network device; and
    decoding the first data packet based on the information and the further information.
  23. A communication method, comprising:
    receiving, at a terminal device, information indicating resource units allocated to a set of terminal devices from a first network device being a serving network device to the set of terminal devices;
    encoding a data packet based on the information;
    determining, based on the information, a target resource unit for transmitting the first data packet; and
    transmitting the encoded data packet.
  24. The method of claim 23, wherein encoding the first data packet comprises:
    determining a scrambling code based on the information; and
    encoding the first data packet with the scrambling code.
  25. The method of claim 23, wherein encoding the first data packet comprises:
    determining an identity of the first network device; and
    encoding the identity into the first data packet.
  26. The method of claim 23, wherein determining the target resource unit comprises:
    determining a timing advance (TA) of the terminal device; and
    selecting, based on the TA and the information, the target resource unit from the resource units.
  27. The method of claim 23, wherein transmitting the encoded data packet comprises:
    comparing the TA with a threshold TA;
    in response to the TA being below the terminal device exceeding the threshold TA, selecting at least two target resource units from the resource units; and
    transmitting the encoded data packet on the at least two target resource units.
  28. The method of claim 23, wherein the information indicates at least one of:
    indices of the resource units,
    a threshold time advance (TA) , and
    a scrambling code.
  29. A computer readable medium storing instructions thereon, the instructions, when executed by at least one processing unit of a machine, causing the machine to perform the method according to any one of claims 15-22.
  30. A computer readable medium storing instructions thereon, the instructions, when executed by at least one processing unit of a machine, causing the machine to perform the method according to any one of claims 23-28.
  31. An apparatus for communication, comprising:
    means for transmitting, from a first network device and to a set of terminal devices, information indicating resource units allocated to the set of terminal devices being served by the first network device;
    means for in response to receiving a first data packet from a terminal device, decoding the first data packet in association with the information;
    means for determining, based on the decoded first data packet, whether the terminal device belongs to the set of terminal devices; and
    means for in response to a determination that the terminal device is out of the set of terminal devices, transmitting the decoded first data packet to a second network device serving the terminal device.
  32. An apparatus comprising:
    means for receiving, at a terminal device, information indicating resource units allocated to a set of terminal devices from a first network device being a serving network device to the set of terminal devices;
    means for encoding a data packet based on the information;
    means for determining, based on the information, a target resource unit for transmitting the first data packet; and
    means for transmitting the encoded data packet.
PCT/CN2018/123079 2018-12-24 2018-12-24 Method, device and computer readable medium for diversity transmissions WO2020132794A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880100465.0A CN113302861B (en) 2018-12-24 2018-12-24 Method, apparatus and computer readable medium for diversity transmission
PCT/CN2018/123079 WO2020132794A1 (en) 2018-12-24 2018-12-24 Method, device and computer readable medium for diversity transmissions

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/123079 WO2020132794A1 (en) 2018-12-24 2018-12-24 Method, device and computer readable medium for diversity transmissions

Publications (2)

Publication Number Publication Date
WO2020132794A1 WO2020132794A1 (en) 2020-07-02
WO2020132794A9 true WO2020132794A9 (en) 2021-07-22

Family

ID=71126770

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/123079 WO2020132794A1 (en) 2018-12-24 2018-12-24 Method, device and computer readable medium for diversity transmissions

Country Status (2)

Country Link
CN (1) CN113302861B (en)
WO (1) WO2020132794A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115884137A (en) * 2021-09-26 2023-03-31 中兴通讯股份有限公司 Data transmission method, network equipment, terminal equipment and server equipment

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1326398A1 (en) * 2001-10-09 2003-07-09 Koninklijke Philips Electronics N.V. Packet communication system
NZ590607A (en) * 2008-08-12 2013-11-29 Ericsson Telefon Ab L M Method and arrangement in a communication system
CN102238418B (en) * 2011-07-01 2013-04-10 昆明亿尚科技有限公司 Scrambled/descrambled-data-scattering-based video scrambling system
CN107295674B (en) * 2016-04-01 2021-06-08 华为技术有限公司 Resource allocation method, network equipment and terminal equipment
CN108024375B (en) * 2016-11-04 2020-12-15 华为技术有限公司 Method and device for data transmission
CN108667578B (en) * 2017-03-30 2021-06-29 上海诺基亚贝尔股份有限公司 Communication method and communication device
CN108737042B (en) * 2017-04-18 2021-01-22 上海诺基亚贝尔股份有限公司 Method and apparatus for data transmission in a wireless communication network
CN109039529B (en) * 2017-06-09 2021-01-29 华为技术有限公司 Data transmission method and data transmission device

Also Published As

Publication number Publication date
WO2020132794A1 (en) 2020-07-02
CN113302861A (en) 2021-08-24
CN113302861B (en) 2023-08-08

Similar Documents

Publication Publication Date Title
US11316639B2 (en) Systems and methods for mapping DMRS configuration to phase noise tracking pilot for improved receiver performance
US11991033B2 (en) Systems and methods for phase noise tracking reference signal sequence generation using demodulation reference signals
CN113965238B (en) Method for assisting beam scanning, tracking and recovery
CN109804700B (en) Multi-stage channel reservation signal for directional transmission and reception
JP6837129B2 (en) Terminal equipment, base station equipment, communication methods, and integrated circuits
US11129170B2 (en) Methods and systems for protecting high priority symbols from beam switching
CN111066259B (en) Codebook subset restriction design for MIMO
CN110771207A (en) Receiver beamforming for serving and neighbor cell measurements
JP7259951B2 (en) Network device, terminal and method
WO2020056639A1 (en) Methods, devices and computer readable medium for resource information for early data transmission
WO2020132794A1 (en) Method, device and computer readable medium for diversity transmissions
WO2018233600A1 (en) Flexible radio access network node identifier
WO2020087350A1 (en) Method, device and computer readable medium for communications
CN116018771A (en) Uplink data sending method, device and system
WO2019227316A1 (en) Sounding reference signal transmission in unlicensed spectrum
WO2024092798A1 (en) Flexible physical random access channel operation
CN112970282B (en) Methods, devices and computer readable media for HARQ process configuration
WO2020164017A1 (en) Flexible bandwidth design for physical broadcast channel
EP3346781B1 (en) Terminal device, network device, uplink transmitting method, and uplink receiving method for ofdm signals
CN116647885A (en) Demodulation performance degradation for autonomous reception beam switching by a UE

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18944505

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18944505

Country of ref document: EP

Kind code of ref document: A1