WO2020132762A1 - Mineral flotation process for the recovery of molybdenite and copper sulphates, and particularly the recovery of fines - Google Patents

Mineral flotation process for the recovery of molybdenite and copper sulphates, and particularly the recovery of fines Download PDF

Info

Publication number
WO2020132762A1
WO2020132762A1 PCT/CL2019/050116 CL2019050116W WO2020132762A1 WO 2020132762 A1 WO2020132762 A1 WO 2020132762A1 CL 2019050116 W CL2019050116 W CL 2019050116W WO 2020132762 A1 WO2020132762 A1 WO 2020132762A1
Authority
WO
WIPO (PCT)
Prior art keywords
mineral
flotation
ton
recovery
doses
Prior art date
Application number
PCT/CL2019/050116
Other languages
Spanish (es)
French (fr)
Inventor
Leopoldo Esteban Manuel GUTIÉRREZ BRIONES
Janusz LASKOWSKI
Alejandro Enrique ÁLVAREZ CHAUR
Andrés David RAMÍREZ MADRID
Darko Gerardo ARIAS SALINAS
Original Assignee
Universidad De Concepcion
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=65898291&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2020132762(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Universidad De Concepcion filed Critical Universidad De Concepcion
Publication of WO2020132762A1 publication Critical patent/WO2020132762A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03DFLOTATION; DIFFERENTIAL SEDIMENTATION
    • B03D1/00Flotation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03DFLOTATION; DIFFERENTIAL SEDIMENTATION
    • B03D1/00Flotation
    • B03D1/001Flotation agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03DFLOTATION; DIFFERENTIAL SEDIMENTATION
    • B03D1/00Flotation
    • B03D1/001Flotation agents
    • B03D1/004Organic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03DFLOTATION; DIFFERENTIAL SEDIMENTATION
    • B03D1/00Flotation
    • B03D1/02Froth-flotation processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B34/00Obtaining refractory metals
    • C22B34/30Obtaining chromium, molybdenum or tungsten
    • C22B34/34Obtaining molybdenum

Definitions

  • the technology is oriented to the mining area, more specifically, to the recovery of molybdenum and copper through mineral flotation.
  • the most widely used concentration process worldwide to concentrate sulfide copper and molybdenum minerals is flotation.
  • the process is based on the selective adhesion of bubbles of a certain gas (air, nitrogen) coated with surfactants, to valuable hydrophobic mineral particles, which are collected as a concentrate rich in the element of interest, for example, copper.
  • Selective valuable particle-bubble adhesion occurs as a result of the hydrophobicity of mineral particles, which is understood as the buoyant driving force.
  • hydrophobicity is achieved using chemical reagents called flotation collectors, the most common being xanthates or their derivatives.
  • molybdenite does not lose its hydrophobicity properties, and therefore it floats generating a concentrate rich in molybdenum.
  • This copper and molybdenum mineral recovery technology considers the addition of collecting reagents, surfactants and modifiers.
  • Collectors have the function of inducing hydrophobicity in mineral particles and can be polar (for example, xanthates) or nonpolar (for example, diesel);
  • Surfactants have the function of generating stable and small bubbles to increase the bubble-particle contact area, in addition to stabilizing the flotation foam;
  • the modifiers have the function of controlling the physicochemical conditions of the three-phase system to optimize the efficiency of the flotation process.
  • the technology requires the addition of different inputs which are incorporated into the process in the different streams and unit operations.
  • the feed mineral is mixed with water (i) to generate a mineral pulp, in order to achieve the adequate transport of mineral particles in the plant.
  • the pulp containing mineral particles in suspension is conditioned with a lime modifier (ii) to adjust the pH, with soluble collectors that have the main function of hydrophobizing the copper sulphide particles, and with non-polar collectors insoluble in water, which are added to the pulp not emulsified, or in some less common cases emulsified in water; Surfactants are also added to the pulp water to generate stable bubbles.
  • the collective concentrate is conditioned (iv) with sulfuric acid to improve the buoyancy of molybdenite, with a NaSH modifier to depress the buoyancy of copper sulphides, in addition to non-polar collector, surfactants and in many cases also with antifoams .
  • molybdenite flotation is particularly important in the case of molybdenite flotation.
  • the molybdenite flotation is strongly affected by the loss of hydrophobicity of this mineral when the size decreases.
  • Molybdenite is generally modeled as a lamellar mineral containing hydrophobic faces and hydrophilic edges. These surfaces are determined by the habit of fracture during grinding, since fracture is much more likely to occur across the edges of the particles. Then as the face area / edge area ratio decreases, molybdenite particles become less hydrophobic and therefore buoyancy decreases.
  • OPE polyethylene oxide
  • Rubio also known as polyethylene glycol or polyoxyethylene
  • OPE is a polyether widely used in industry. Among its various uses, it has its application as a flocculating agent or solvent, where it works by flocculating natural or induced hydrophobic solid particles (chalcopyrite, coveline, graphite, talc, etc.), with the particularity of not flocculating hydrophilic particles.
  • flotation reagents are supplied dissolved in the aqueous phase and the process of adsorption of these reagents at the solid / liquid interfaces (collectors ) and liquid / gas (surfactants) occurs from the diffusion of the reagents from the liquid phase to both interfaces. Since these reagents are necessary at the point of collision and particle-bubble bonding, in the conventional process they are brought to this point partially adsorbed on mineral particles and partially on the surface of bubbles.
  • a method of increasing the molybdenite recovery rate in the flotation process includes adding kerosene through an atomizer where it is continuously stirred at high speed, so that the kerosene disperses and atomizes.
  • a peristaltic pump is then used to deliver the kerosene emulsion to a chemical feed point in the flotation cell in a lift mode.
  • the invention relates to the design, application and assembly of a carbon oil atomizer as a collector for molybdenite flotation, where it is desired to increase the recovery rate of the fine fraction and increase the molybdenite flotation efficiency.
  • the microemulsion would improve the contact surface of the collecting agent, greatly shortening the conditioning time of the pulp.
  • the study shows the selective flocculation of hydrophobic particles in carbon flotation by using polyethylene oxide as a flocculating agent.
  • the objective was to form fine carbon flocs to increase the recovery and grade of the final carbon concentrate in the flotation process.
  • the selectivity of the flocculation is improved by the addition of a dispersing agent, where it is possible to reduce the presence of clays and ash in the carbon concentrate by adding sodium hexametaphosphate in the presence of polyethylene oxide.
  • FIG. 1 Current processing of Cu-Mo minerals of porphyric origin by flotation (State of the Art).
  • Figure 2 Flow diagram of the process to improve the recovery of molybdenum and copper.
  • Figure 4 Effect of OPE addition on water / diesel interfacial tension versus OPE dose.
  • Figure 5 Effect of the addition of cations in the presence of OPE to the emulsion, in the recovery of molybdenum.
  • Figure 7 Bubble conditioning system using mechanical cell (A) or flotation column (B).
  • the present technology corresponds to a process to improve the recovery of molybdenum and copper through mineral flotation, which is achieved due to the increase in the recovery of the total content of molybdenite and copper sulfides, and in particular for particle sizes. fines ⁇ 40 pm, and better conditioning of the reagents supplied to the process.
  • this process achieves a greater overall recovery of molybdenum in a range between 7 and 20 percentage points, and copper between 3 and 5 percentage points, with respect to current technology.
  • an emulsion For conditioning the mineral pulp prior to primary flotation, firstly, an emulsion must be prepared by mixing non-polar collector with a 0.01 - 0.1 M solution of cations at a solution / collector ratio ranging from 3 : 1 and 50: 1, in the presence of OPE at doses between 5 - 60 g / ton of dry mineral, of non-polar collector at doses of between 5 - 1000 g / ton of dry mineral and of surfactant at doses of between 5 - 40 g / ton of dry mineral.
  • OPE also acts as an emulsifying agent for the non-polar collector, since it is capable of lowering the water / collector interfacial tension ( Figure 4) by adding small doses of reagent, so the collector must be added to the previously emulsified process in presence of OPE.
  • the emulsification of the non-polar collector allows to increase the contact area between the collector and the hydrophobic mineral, which is related to the action of the OPE to reduce the interfacial water / collector tension. This possibility of increasing the rupture of the collector through the presence of OPE, causes an increase in the adsorption of the collector to the surface of the mineral and a greater specific surface for the same dose.
  • OPE is capable of generating more stable emulsions, smaller droplet size of the collector present in the emulsion and, therefore, a greater specific area of the latter for interaction with the mineral and greater recovery (see Figure 5, where ( a) corresponds to Mo: Emulsion + Ca 2+ + H2O2, 1 g / L; (b) to Mo: Emulsion + Ca 2+ ; (c) to Mo: Emulsion; and (d) to Mo: no emulsion). Additionally, the incorporation of cations such as Ca 2+ to the water used to generate the emulsification of the non-polar collector, generates a synergistic effect on the adhesion between the drops of the non-polar collector and the mineral surfaces through electrostatic interactions with hydrophilic sites. , which results in an increase in recovery ( Figure 5).
  • the non-polar collector which may be of the preferred, but not exclusive, type, diesel, kerosene or other paraffin; the surfactant may be of the preferred, but not exclusive, type, aliphatic alcohol, polyglycol, or some other foaming agent used in mineral flotation; and the cations can be of the calcium type in the form of chloride or sulfate salts.
  • potassium amyl xanthate (AXP) collector must be added at doses between 5-20 g / ton of dry mineral. The pH of the emulsion should be adjusted to 1 1 to ensure the lowest interfacial tension between water / collector ( Figure 4).
  • the mixture of all these reagents is stirred using, preferably, an emulsifying reactor (R1) equipped with a blade stirrer operating at a shear deformation rate that it varies between 2,000 and 10,000 s 1 , for a period of time of between 0.1 - 2 minutes, in order to generate an emulsion of non-polar collector droplets of size that varies between 0.5 - 10 microns.
  • R1 emulsifying reactor
  • hydrogen peroxide is added at a concentration of between 0.1 - 10 g / L of emulsion volume in order to generate the oxidation of AXP on the non-polar collector droplets, which improves recovery copper (Figure 5).
  • A.2.- Once the emulsion is prepared, it is fed to a conditioning tank (a), which allows a conditioning time of 0.5 - 1.5 minutes, where it is mixed with the mineral from the grinding and classification with P80 granulometries between 100 and 300 microns (1).
  • This mineral needs to be conditioned with copper sulfide collectors of the preferred, but not exclusive, type, xanthan, thionocarbamate, dithiophosphate, hydroxamate in doses between 10 - 100 g / ton, with a non-polar collector that may be of the preferred, but not exclusive, type , diesel, kerosene or other paraffin in doses of 10 - 1000 g / ton, with surfactants of the preferred but not exclusive type, aliphatic alcohol or polyglycol in doses of 10 - 50 g / ton, with OPE at a dose of between 10 - 60 g / ton of mineral as hydrophobic fine particle flocculating agent diluted in water at 0.1 - 5%.
  • the pond with the mineral / emulsion mixture (a) must remain agitated at shear deformation speeds of 50 - 100 s 1 so as not to break the flocs of fine hydrophobic particles and keep the particulate material in suspension.
  • the pH should be adjusted between 9 - 1 1 with lime for 1 to 10 minutes.
  • the OPE to be used in all the flotation stages must have a molecular weight between 100,000 -1,000,000 g / mol and a purity of more than 98%, concentrations at which this reagent generates the flocculating effect on fine hydrophobic particles and collector emulsifier. nonpolar.
  • the pulp is fed preferably, but not exclusively, in mechanical or pneumatic cells (M) with a percentage of solids between 20 - 40%, where the primary flotation is carried out (Rougher).
  • M mechanical or pneumatic cells
  • the bubbles injected into this type of cell are previously conditioned in reactor (RA1), illustrated in Figure 7A, where (i) corresponds to the emulsification zone; (ii) to the contact area and bubble conditioning; and (iii) to the conditioned bubbles.
  • a dispersion process of the polar and non-polar collectors of the preferred, but not exclusive, type is generated, xanthan, thionocarbamate, dithiophosphate, hydroxamate in doses between 1 - 10 g / ton, with non-polar collector which may be of the preferred, but not exclusive, type, diesel, kerosene or other paraffin in doses of 1 - 100 g / ton and in the presence of surfactants of the preferred, but not exclusive, type, aliphatic alcohol or polyglycol in doses of 1 - 20 g / ton in water mixing with a blade stirrer at a shear deformation speed that can vary between 2,000 - 10,000 s 1 .
  • the main objective in this area is to produce stable micro-drops with a high surface area, in order to increase the probability of covering the bubbles in the area of contact and bubble conditioning (ii).
  • the area of contact and conditioning of bubbles (ii) aims to generate contact between the bubbles generated through a micro-sparger and the reagents in the form of micro-drops, coming from the area emulsification (i), so as to maximize the number of bubbles covered with collector. Once the bubbles (iii) have been conditioned, they are transferred to the flotation cell.
  • Figure 7B corresponds to another option for bubble conditioning, where a flotation column can be used, where (i) to the emulsification zone; (ii) to the zone of contact and conditioning of bubbles, (iii) to the conditioned bubbles, (iv) to the washing water, (v) to the feed, (vi) to the concentrate and (vii) to the glue.
  • the gas surface velocity (Jg) can vary between 0.5-3 cm / s.
  • Bubble conditioning prior to flotation has positive effects on the particle-bubble adhesion process and, therefore, on the overall efficiency of the process.
  • Another positive aspect has to do with avoiding the adhesion of the hydroxy-complexes of Mg and Ca on the bubbles, which allows improving the flotation, not only of molybdenite, but also of sulphided Cu minerals.
  • Figure 6 shows the results of recovery of copper and molybdenum in rougher flotation with bubbles conditioned with copper collector and diesel non-polar collector, as a function of the pH adjusted with lime, where (a) corresponds to Mo with current technology; (b) a conditioned Mo-bubbles; (c) to Cu with current technology; and (d) to conditioned Cu-bubbles. It is observed that the recovery of molybdenum increases between 23 and 26 percentage points when the bubbles are conditioned with collectors, and between 5 and 6 percentage points of Cu recovery.
  • the process considers a re-grinding stage that allows releasing the mineralogical species of interest that are still occluded in the mineral matrix and, therefore, could not be concentrated in the cleaning (C) and sweeping (S) stage.
  • re-grinding increases the release of the rougher concentrate (2) that feeds the cleaning stage (5), and is where the adjustment of the size required for this same stage (C) is carried out, which requires a size 100% particle size less than 50 microns, which is finer than in the case of primary flotation feed (1).
  • the re-grinding stage basically consists of a re-grinding line, carried out in a vertical or horizontal type ball mill (RM), and a classification line carried out using hydrocyclones (HC). Additionally, this stage has a pulp receiving drawer (CJ) for mixing the streams that will be subjected to sorting and re-grinding.
  • the receiving box (CJ) is fed by the primary concentrate (2), by the discharge from the mill (1 1) and by the scavenger concentrate (8).
  • the mixture (4) of said streams is sent to the hydrocyclone battery (HC), which is where the mineral classification is made according to its cut granulometry, giving rise to two streams: a concentrated suspension (underflow) (10 ) and a diluted suspension (overflow) (5) that feeds the cleaning stage with a grain size of between 70 - 85% -325 #.
  • the concentrated suspension (10) corresponds to the coarse ore and is recirculated to the re-grinding mill (RM).
  • the diluted suspension (5) corresponds to the fine mineral that meets the size of Therefore, this current is the one that advances in the process, being the feeding of the cleaning stage (C).
  • This stage considers a conditioning and cleaning flotation that allows increasing the grade of the concentrate, facilitating compliance with the laws of commercial concentrates, and there may be more than one cleaning stage. The detail of these is described below:
  • the emulsion is prepared, it is fed to a conditioning tank (b), which allows a conditioning time of 0.5 - 1.5 minutes, where it is mixed with the mineral pulp from the re-grinding stage. (5), which comes with a solids percentage of between 20 - 30%.
  • This mineral needs to be conditioned with copper sulfide collectors of the preferred, but not exclusive, type, xanthan, thionocarbamate, dithiophosphate, hydroxamate in doses between 10 - 100 g / ton, with a non-polar collector that may be of the preferred, but not exclusive, type , diesel, kerosene or other paraffin in doses of 10 - 1000 g / ton, with surfactants of the preferred but not exclusive type, aliphatic alcohol or polyglycol in doses of 10 - 50 g / ton, and with OPE at a dose of between 10 - 60 g / ton of mineral as hydrophobic fine particle flocculating agent diluted in water at 0.1 - 5%.
  • the tank with the mineral emulsion / mineral mixture (b) must remain agitated at shear deformation speeds of 50 - 100 s 1 so as not to break the fine particle flocs and keep the particulate material in suspension. .
  • the pH should be adjusted between 9 - 1 1, 8 with lime for 1 to 10 minutes.
  • the OPE to be used in all the flotation stages must have a molecular weight between 100,000 and 1,000,000 g / mol and a purity greater than 98%, concentrations at which this reagent generates the flocculating effect on hydrophobic fine particles and at the same time acts as a non-polar collector emulsifier.
  • the pulp is fed preferably, but not exclusively, in pneumatic cells with a percentage of solids between 20 - 40%, where the cleaning flotation is carried out (C).
  • the use of pneumatic cells has the purpose of favoring the non-rupture of the flocs or agglomerates of fine particles ( ⁇ 20 microns) previously formed in the conditioning.
  • the bubbles injected into this type of cell are preconditioned in reactor (RA2) according to what is described in section A.4.
  • the cleaning flotation generates a grade concentrate between 20 - 35% Cu and 0.5 - 2% Mo, corresponding to the final product of the process (6).
  • the cleaning flotation stage gives rise to a cleaning glue (7), said pulp is recirculated and fed in the scavenger stage (D) to recover the mineral of interest present in it.
  • the recoveries obtained in the cleaning flotation vary between 65 - 75% Cu and 70 - 80% Mo.
  • the operating pH of this stage varies between 10.5 - 1 1, 7, which is adjusted by addition of lime to facilitate depression of pyrite, and thus improve cleaning performance by increasing the grade of the final concentrate.
  • the scavenger float stage (S) allows the inefficiencies that may exist in the cleaning stage (C) to be absorbed, generally associated with the variability of the processed mineral, which can affect recoveries and grades of Cleaner concentrate. If there is more than one cleaning stage, the same number must be generated for this stage.
  • This stage is fed with the tail (7) of the cleaning stage (C) generating a scavenger concentrate (8) and a scavenger tail (9).
  • the scavenger concentrate (8) is sent to the re-circuit drawer to be collected in the reception drawer (CJ), while the tail (9) is sent to discard along with the rougher tail ⁇ 3) as part of the final tailings of the process (12).
  • the stages are described below:
  • step (A.1) D.1 .- Begin with the preparation of a non-polar collector emulsion in an emulsifier reactor (R3) under the same elaboration conditions as in step (A.1).
  • the emulsion is prepared, it is fed to a conditioning tank (g), which allows a conditioning time of 0.5 - 1.5 minutes, where it is mixed with the mineral pulp from the tail of the cleaning (7) which comes with a percentage of solids between 20 - 30%.
  • This mineral needs to be conditioned with copper sulfide collectors of the preferred, but not exclusive, type, xanthan, thionocarbamate, dithiophosphate, hydroxamate in doses between 10 - 100 g / ton, with a non-polar collector that may be of the preferred, but not exclusive, type , diesel, kerosene or other paraffin in doses of 10 - 1000 g / ton, with surfactants of the preferred but not exclusive type, aliphatic alcohol or polyglycol in doses of 10 - 50 g / ton, and with OPE at a dose of between 10 - 60 g / ton of mineral as hydrophobic fine particle flocculating agent diluted in water at 0.1 - 5%.
  • the tank with the emulsion / mineral mixture (g) must remain agitated at shear deformation speeds of 50 - 100 s 1 in order not to break flocs of fine particles and keep the particulate material in suspension.
  • the pH should be adjusted between 9 - 1 1, 5 with lime for 1 to 10 minutes.
  • the OPE to be used in all the flotation stages must have a molecular weight between 100,000 - 1,000,000 g / mol and a purity greater than 98%, concentrations at which this reagent generates the flocculating effect on fine hydrophobic particles and collector emulsifier. nonpolar.
  • the pulp is fed into mechanical or pneumatic cells with a percentage of solids between 20 - 40%, where the scavenger flotation (S) is carried out.
  • the bubbles injected into this type of cell are previously conditioned in the reactor (RA3) according to what is described in section A.4.
  • the scavenger flotation is intended to maximize the recovery of the minerals of interest and avoid losses in the tailings.
  • This stage allows obtaining Cu-Mo concentrates (8) of grades between 5 - 15% Cu and 0.1 - 0.5% Mo.
  • the mass recovery values vary from 5 to 25% and the recoveries of Cu and Mo fluctuate from 90 to 95% and 50 to 90%, respectively.
  • the tail (9) of this stage is sent to discard (12) and the Cu and Mo laws vary between 0.02 - 0.045% and 0.005 - 0.01%, respectively.
  • Table 2 shows the current technology conditions and Table 3 the proposed technology conditions. In all cases the pH was adjusted with lime.
  • Table 4 shows the comparative results of both technologies, where it is observed that the results of the proposal are better in terms of a greater recovery of copper and molybdenum, which brings with it significant economic benefits for the mining business.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

A mineral flotation process is disclosed for increasing the recovery of molybdenite and copper sulphates, and particularly the recovery of fines, which comprises at least the following stages: (A) Primary Conditioning and Flotation; (B) Regrinding; (C) Cleaning Conditioning and Flotation; (D) Scavenger Conditioning and Flotation.

Description

UN PROCESO DE FLOTACIÓN DE MINERALES PARA AUMENTAR LA RECUPERACIÓN DE MOLIBDENITA Y SULFUROS DE COBRE, Y EN A MINERAL FLOATING PROCESS TO INCREASE THE RECOVERY OF MOLYBDENITE AND COPPER SULFIDES, AND IN
PARTICULAR LA RECUPERACIÓN DE FINOS PARTICULAR THE RECOVERY OF FINE
Sector Técnico Technical Sector
La tecnología está orientada al área minera, más específicamente, a la recuperación de molibdeno y cobre a través de la flotación de minerales. The technology is oriented to the mining area, more specifically, to the recovery of molybdenum and copper through mineral flotation.
Técnica Anterior Previous Technique
Chile cuenta con las mayores reservas de cobre en el mundo, donde especies minerales de valor comercial frecuentes son calcopirita (CuFeS2), calcosina (Cu2S), bornita (CusFeS^ y covelina (CuS). La ganga o minerales sin valor más típicos son cuarzo (S1O2) y pirita (FeS2). El cobre una vez extraído y refinado se transforma en la industria manufacturera en productos necesarios para el desarrollo de la humanidad, principalmente usados en la industria de la construcción, eléctrica, telecomunicaciones y desarrollo de tecnologías. Además de cobre, la industria minera chilena recupera molibdeno en la forma de molibdenita (M0S2). Este metal se ha convertido en el subproducto más importante de la minería del cobre en Chile durante las últimas 2 décadas, tomando mucha relevancia por su alto valor comercial. Las características físicas y químicas específicas del molibdeno lo han convertido en un metal base de gran importancia para la fabricación de aleaciones ferrosas con mayor resistencia a la temperatura y corrosión. Chile has the largest copper reserves in the world, where mineral species of frequent commercial value are chalcopyrite (CuFeS2), chalcosine (Cu 2 S), bornite (CusFeS ^ and covelina (CuS). The most typical gangue or worthless minerals They are quartz (S1O2) and pyrite (FeS2). Once extracted and refined, copper is transformed in the manufacturing industry into products necessary for the development of humanity, mainly used in the construction, electrical, telecommunications and technology development industries. In addition to copper, the Chilean mining industry recovers molybdenum in the form of molybdenite (M0S2) .This metal has become the most important by-product of copper mining in Chile during the last 2 decades, taking much relevance due to its high value. The specific physical and chemical characteristics of molybdenum have made it a base metal of great importance for the manufacture of ferrous alloys with greater resistance to temperature and corrosion.
El proceso de concentración más usado a nivel mundial para concentrar minerales sulfurados de cobre y molibdeno es la flotación. El proceso se basa en la adhesión selectiva de burbujas de un gas determinado (aire, nitrógeno) recubiertas por surfactantes, a partículas minerales hidrofóbicas valiosas, las cuales son colectadas como un concentrado rico en el elemento de interés, por ejemplo, cobre. La adhesión selectiva partícula valiosa-burbuja se produce como resultado de la hidrofobicidad de las partículas minerales, la que se entiende como la fuerza impulsora de la flotación. En el caso específico de la flotación de sulfuros de cobre, la hidrofobicidad se logra utilizando reactivos químicos llamados colectores de flotación, siendo los más comunes los xantatos o sus derivados. Estos forman compuestos hidrofóbicos en la superficie de las partículas de los sulfuros de cobre, generando un recubrimiento colector hidrofóbico. En el caso de la flotación de molibdenita, no es necesario utilizar colectores, ya que este mineral presenta hidrofobicidad natural, aunque es práctica común en la industria adicionar colectores no polares como diésel para mejorar su flotabilidad y así aumentar la recuperación de molibdeno. The most widely used concentration process worldwide to concentrate sulfide copper and molybdenum minerals is flotation. The process is based on the selective adhesion of bubbles of a certain gas (air, nitrogen) coated with surfactants, to valuable hydrophobic mineral particles, which are collected as a concentrate rich in the element of interest, for example, copper. Selective valuable particle-bubble adhesion occurs as a result of the hydrophobicity of mineral particles, which is understood as the buoyant driving force. In the specific case of copper sulfide flotation, hydrophobicity is achieved using chemical reagents called flotation collectors, the most common being xanthates or their derivatives. These form hydrophobic compounds on the surface of the copper sulfide particles, generating a hydrophobic collector coating. In the case of molybdenite flotation, it is not necessary to use collectors, since this mineral has natural hydrophobicity, although it is common practice in the industry to add non-polar collectors such as diesel to improve its buoyancy and thus increase the recovery of molybdenum.
Para obtener concentrados de cobre y molibdeno de alta ley, la tecnología actual se basa en un proceso de flotación de 2 etapas (Figura 1 ). En una primera etapa, llamada flotación colectiva, se flotan los sulfuros de cobre y la molibdenita en conjunto obteniéndose un concentrado colectivo con leyes de cobre y molibdeno de 30 - 32 % y 1 - 2%, respectivamente. Luego, en una segunda etapa denominada flotación selectiva Cu-Mo, se depresa la flotación de sulfuros de cobre utilizando un reactivo depresante, el cual destruye el recubrimiento colector existente en la superficie de estos minerales, de tal forma que los sulfuros de cobre pasan a ser hidrofílicos, por lo cual no flotan y reportan en las colas de flotación. Por otro lado, la molibdenita no pierde sus propiedades de hidrofobicidad, y, por lo tanto, flota generando un concentrado rico en molibdeno. Como resultado se obtienen concentrados de cobre y molibdeno de leyes del orden de 30 - 32% calcopirítico y 50 - 55 %, respectivamente. To obtain high-grade copper and molybdenum concentrates, current technology is based on a 2-stage flotation process (Figure 1). In a first stage, called collective flotation, the copper sulphides and molybdenite are floated together, obtaining a collective concentrate with copper and molybdenum grades of 30 - 32% and 1 - 2%, respectively. Then, in a second stage called Cu-Mo selective flotation, the copper sulfide flotation is depressed using a depressant reagent, which destroys the coating collector existing on the surface of these minerals, so that the copper sulphides become hydrophilic, so they do not float and report in the flotation tails. On the other hand, molybdenite does not lose its hydrophobicity properties, and therefore it floats generating a concentrate rich in molybdenum. As a result, copper and molybdenum concentrates of grades of the order of 30 - 32% chalcopyrite and 50 - 55%, respectively, are obtained.
Esta tecnología de recuperación de minerales de cobre y molibdeno considera la adición de reactivos colectores, surfactantes y modificadores. Los colectores tienen la función de inducir hidrofobicidad en partículas minerales y pueden ser polares (por ejemplo, xantatos) o no polares (por ejemplo, diésel); los surfactantes tienen la función de generar burbujas estables y pequeñas para aumentar el área de contacto burbuja-partícula, además de estabilizar la espuma de flotación; los modificadores tienen la función de controlar las condiciones fisicoquímicas del sistema trifásico para optimizar la eficiencia del proceso de flotación. Tal como se muestra en la Figura 1 , la tecnología requiere de la adición de distintos insumos los cuales son incorporados al proceso en las distintas corrientes y operaciones unitarias. This copper and molybdenum mineral recovery technology considers the addition of collecting reagents, surfactants and modifiers. Collectors have the function of inducing hydrophobicity in mineral particles and can be polar (for example, xanthates) or nonpolar (for example, diesel); Surfactants have the function of generating stable and small bubbles to increase the bubble-particle contact area, in addition to stabilizing the flotation foam; the modifiers have the function of controlling the physicochemical conditions of the three-phase system to optimize the efficiency of the flotation process. As shown in Figure 1, the technology requires the addition of different inputs which are incorporated into the process in the different streams and unit operations.
• En primer lugar, el mineral de alimentación es mezclado con agua (i) para generar una pulpa mineral, de tal forma de lograr el adecuado transporte de las partículas minerales en la planta. • Firstly, the feed mineral is mixed with water (i) to generate a mineral pulp, in order to achieve the adequate transport of mineral particles in the plant.
• Posteriormente, la pulpa que contiene partículas minerales en suspensión es acondicionada con un modificador de cal (ii) para ajustar el pH, con colectores solubles que tienen la función principal de hidrofobizar las partículas de sulfuros de cobre, y con colectores no polares insolubles en agua, los cuales se adicionan a la pulpa no emulsificados, o en algunos casos menos comunes emulsificados en agua; también se adicionan surfactantes al agua de la pulpa para generar burbujas estables. • Subsequently, the pulp containing mineral particles in suspension is conditioned with a lime modifier (ii) to adjust the pH, with soluble collectors that have the main function of hydrophobizing the copper sulphide particles, and with non-polar collectors insoluble in water, which are added to the pulp not emulsified, or in some less common cases emulsified in water; Surfactants are also added to the pulp water to generate stable bubbles.
• Luego en la etapa de flotación colectiva se inyectan burbujas (iii) a las celdas de flotación y se suministra energía para mantener las partículas en suspensión. • Then in the collective flotation stage bubbles (iii) are injected into the flotation cells and energy is supplied to keep the particles in suspension.
• A continuación, el concentrado colectivo es acondicionado (iv) con ácido sulfúrico para mejorar la flotabilidad de la molibdenita, con modificador NaSH para depresar la flotabilidad de los sulfuros de cobre, además de colector no polar, surfactantes y en muchos casos también con antiespumantes. • Next, the collective concentrate is conditioned (iv) with sulfuric acid to improve the buoyancy of molybdenite, with a NaSH modifier to depress the buoyancy of copper sulphides, in addition to non-polar collector, surfactants and in many cases also with antifoams .
• Finalmente, en la etapa de flotación selectiva se inyectan (v) burbujas a las celdas de flotación y se suministra energía para mantener las partículas en suspensión. • Finally, in the selective flotation stage (v) bubbles are injected into the flotation cells and energy is supplied to keep the particles in suspension.
Si bien es cierto, la tecnología actual es ampliamente utilizada, existe una tremenda oportunidad para lograr optimizar la recuperación de cobre y molibdeno. Por ejemplo, abordar la problemática de la recuperación de finos y ultra-finos y el correcto acondicionamiento de los reactivos adicionados a la flotación. a. Mejorar la recuperación de finos y ultra-finos. Uno de los aspectos que más afecta la eficiencia de la recuperación de estos metales está relacionado a la baja flotabilidad de las partículas minerales cuando el tamaño disminuye bajo los 40 pm. Pérdidas importantes de cobre y molibdeno se producen en la flotación en la fracción fina, ya que estas partículas debido a su baja inercia tienden a moverse con el agua y no adherirse a las burbujas. Además, las interacciones de doble capa eléctrica entre burbujas y partículas se hacen más relevantes a estos tamaños, impidiendo la adhesión. Es por esto, por lo que para mejorar la flotación de finos lo que generalmente se plantea es generar burbujas pequeñas (200 - 500 micrones) en las celdas, sin embrago, esto no es necesariamente fácil. Como resultado, la mala flotabilidad de las partículas finas da lugar a una cinética de flotación más lenta en relación con las partículas de mayor tamaño, generando así una baja recuperación que trae consigo una pérdida económica. Although it is true, current technology is widely used, there is a tremendous opportunity to optimize the recovery of copper and molybdenum. For example, addressing the problem of recovery of fines and ultra-fines and the correct conditioning of reagents added to flotation. to. Improve the recovery of fines and ultra-fines. One of the aspects that most affects the efficiency of the recovery of these metals is related to the low buoyancy of mineral particles when the size decreases below 40 pm. Significant losses of copper and molybdenum occur in flotation in the fine fraction, since these particles, due to their low inertia, tend to move with the water and not adhere to the bubbles. Furthermore, the electrical double-layer interactions between bubbles and particles become more relevant to these sizes, preventing adhesion. This is why, in order to improve fines flotation, what generally arises is to generate small bubbles (200 - 500 microns) in the cells, however, this is not necessarily easy. As a result, poor buoyancy of fine particles results in slower buoyancy kinetics relative to larger particles, thus generating a low recovery resulting in economic loss.
El efecto del tamaño de partícula en la flotación es particularmente importante en el caso de la flotación de molibdenita. Además del efecto hidrodinámico asociado a la disminución de la probabilidad de adhesión, la flotación de molibdenita se ve fuertemente afectada por la pérdida de hidrofobicidad de este mineral cuando el tamaño disminuye. La molibdenita en general se modela como un mineral laminar conteniendo caras hidrofóbicas y bordes hidrofílicos. Estas superficies están determinadas por el hábito de fractura durante la molienda, dado que es mucho más probable que la fractura ocurra a través de los bordes de las partículas. Luego a medida que la razón área cara/área borde disminuye, las partículas de molibdenita se hacen menos hidrofóbicas y, por lo tanto, la flotabilidad disminuye. The effect of particle size on flotation is particularly important in the case of molybdenite flotation. In addition to the hydrodynamic effect associated with the decrease in the probability of adhesion, the molybdenite flotation is strongly affected by the loss of hydrophobicity of this mineral when the size decreases. Molybdenite is generally modeled as a lamellar mineral containing hydrophobic faces and hydrophilic edges. These surfaces are determined by the habit of fracture during grinding, since fracture is much more likely to occur across the edges of the particles. Then as the face area / edge area ratio decreases, molybdenite particles become less hydrophobic and therefore buoyancy decreases.
Una opción conocida es el proceso de floculación selectiva mediante la adición de óxido de polietileno (OPE), (Rubio, 1976). El OPE, también conocido como polietilenglicol o polioxietileno, es un poliéter ampliamente empleado en la industria. Dentro de sus diversos usos se tiene su aplicación como agente floculante o disolvente, donde actúa floculando partículas sólidas hidrofóbicas naturales o inducidas (calcopirita, covelina, grafito, talco, etc.), con la particularidad de no flocular partículas hidrofílicas. b. Mejorar el acondicionamiento de los reactivos adicionados a la flotación. En la tecnología actual de flotación de minerales sulfurados Cu-Mo, y en general en la mayoría de las aplicaciones, los reactivos de flotación se suministran disueltos en la fase acuosa y el proceso de adsorción de estos reactivos en las interfases sólido/líquido (colectores) y líquido/gas (surfactantes) se da a partir de la difusión de los reactivos desde la fase líquida hacia ambas interfases. Dado que estos reactivos son necesarios en el punto de colisión y unión partícula- burbuja, en el proceso convencional son llevados a este punto parcialmente adsorbidos sobre partículas minerales y parcialmente sobre la superficie de burbujas. A known option is the selective flocculation process by adding polyethylene oxide (OPE), (Rubio, 1976). OPE, also known as polyethylene glycol or polyoxyethylene, is a polyether widely used in industry. Among its various uses, it has its application as a flocculating agent or solvent, where it works by flocculating natural or induced hydrophobic solid particles (chalcopyrite, coveline, graphite, talc, etc.), with the particularity of not flocculating hydrophilic particles. b. Improve the conditioning of the reagents added to the flotation. In current Cu-Mo sulphide mineral flotation technology, and in general in most applications, flotation reagents are supplied dissolved in the aqueous phase and the process of adsorption of these reagents at the solid / liquid interfaces (collectors ) and liquid / gas (surfactants) occurs from the diffusion of the reagents from the liquid phase to both interfaces. Since these reagents are necessary at the point of collision and particle-bubble bonding, in the conventional process they are brought to this point partially adsorbed on mineral particles and partially on the surface of bubbles.
A continuación, se presentan algunas tecnologías que tienen relación con la presente invención: Here are some technologies that are related to the present invention:
1. “Collecting agent and applications thereof in fine-sized molybdenite flotation”. Wang Sen; Zhu Yongn; Guo Jinping; Xu Qiusheng; He Tingshu; Zheng Yanfei; Li Huí; 2015. La tecnología se refiere a un agente colector y sus aplicaciones en flotación de molibdenita de tamaño fino. El agente colector consiste en el agente Sad OO y querosene a una relación en masa de 1 ,5: 6-8. Además, se muestra y recomienda las condiciones de aplicación del agente de colección en la flotación de molibdenita de tamaño fino. Cuando se usa el agente de recogida, la tasa de recuperación de molibdenita de malla - #400 puede aumentarse en un 4 por ciento promedio. 1. “Collecting agent and applications thereof in fine-sized molybdenite flotation”. Wang Sen; Zhu Yongn; Guo Jinping; Xu Qiusheng; I have Tingshu; Zheng Yanfei; Li Huí; 2015. The technology relates to a fine size molybdenite flotation agent and its applications. The collecting agent consists of the agent Sad OO and kerosene at a mass ratio of 1, 5: 6-8. In addition, the application conditions of the collection agent in fine size molybdenite flotation are shown and recommended. When the collection agent is used, the recovery rate of # 400 mesh molybdenite can be increased by an average 4 percent.
2. “Method for increasing flotation molybdenite recovery rate”. Jiangxi rare earth & rare met; 2016. 2. "Method for increasing flotation molybdenite recovery rate". Jiangxi rare earth & rare met; 2016.
Se divulga un método para aumentar la tasa de recuperación de molibdenita en el proceso de flotación. El método incluye agregar querosene mediante un atomizador en donde se agita continuamente a alta velocidad, de modo que el querosene se disperse y atomice. Luego se usa una bomba peristáltica para suministrar la emulsión de querosene a un punto de alimentación química de la celda de flotación en un modo de elevación. Los beneficios del método apuntan a que el área de contacto de la emulsión de querosene y la molibdenita aumentan considerablemente. A method of increasing the molybdenite recovery rate in the flotation process is disclosed. The method includes adding kerosene through an atomizer where it is continuously stirred at high speed, so that the kerosene disperses and atomizes. A peristaltic pump is then used to deliver the kerosene emulsion to a chemical feed point in the flotation cell in a lift mode. The benefits of the method suggest that the contact area of the kerosene emulsion and molybdenite increase considerably.
3. “A coa! oil atomizer for molybdenite flotation”. Wei Ning; 2016. 3. "A coa! oil atomizer for molybdenite flotation ”. Wei Ning; 2016.
La invención se refiere al diseño, aplicación y montaje de un atomizador de aceite de carbón como colector para la flotación de molibdenita, donde se quiere aumentar la tasa de recuperación de la fracción fina y aumentar la eficiencia de flotación de molibdenita. De manera intuitiva la microemulsión mejoraría la superficie de contacto del agente colector, acortando en gran medida el tiempo de acondicionamiento de la pulpa. The invention relates to the design, application and assembly of a carbon oil atomizer as a collector for molybdenite flotation, where it is desired to increase the recovery rate of the fine fraction and increase the molybdenite flotation efficiency. Intuitively, the microemulsion would improve the contact surface of the collecting agent, greatly shortening the conditioning time of the pulp.
4.“Coal flotation improvement through hydrophobic flocculation induced by polyethylene oxide”. Liang, L, Tan, J, Li, Y, Peng, J, XieCoal G; 2015. 4. "Coal flotation improvement through hydrophobic flocculation induced by polyethylene oxide". Liang, L, Tan, J, Li, Y, Peng, J, XieCoal G; 2015.
El estudio muestra la floculación selectiva de partículas hidrofóbicas en la flotación de carbón mediante el uso de óxido de polietileno como agente floculante. El objetivo era formar flóculos de carbón fino para aumentar la recuperación y la ley del concentrado de carbón final en el proceso de flotación. La selectividad de la floculación es mejorada mediante la adición de un agente dispersante, en donde se logra reducir la presencia de arcillas y ceniza en el concentrado de carbón mediante la adición de hexametafosfato de sodio en presencia de óxido de polietileno. The study shows the selective flocculation of hydrophobic particles in carbon flotation by using polyethylene oxide as a flocculating agent. The objective was to form fine carbon flocs to increase the recovery and grade of the final carbon concentrate in the flotation process. The selectivity of the flocculation is improved by the addition of a dispersing agent, where it is possible to reduce the presence of clays and ash in the carbon concentrate by adding sodium hexametaphosphate in the presence of polyethylene oxide.
Finalmente, los procesos de flotación colectiva Cu-Mo cuentan con etapas de flotación primaria, de limpieza y scavenger, sin embargo, en la mayoría de los casos, presentan problemáticas en cuanto a la recuperación global de molibdeno, debido a la depresión de la molibdenita por el efecto del tamaño de partícula y la cal. En base a estos antecedentes es que aún persiste la necesidad de encontrar alternativas que permitan hacer más eficiente el proceso de flotación para la obtención de estos minerales. Breve descripción de las figuras Finally, the Cu-Mo collective flotation processes have primary, cleaning and scavenger flotation stages, however, in most cases, they present problems in terms of overall molybdenum recovery, due to molybdenite depression by the effect of particle size and lime. Based on this background, there is still a need to find alternatives that make the flotation process more efficient for obtaining these minerals. Brief description of the figures
Figura 1 : Procesamiento actual de minerales Cu-Mo de origen porfídico por flotación (Estado del Arte). Figure 1: Current processing of Cu-Mo minerals of porphyric origin by flotation (State of the Art).
Figura 2: Diagrama de flujo del proceso para mejorar la recuperación de molibdeno y cobre. Figure 2: Flow diagram of the process to improve the recovery of molybdenum and copper.
Figura 3: Efecto de adición de OPE en la recuperación de Cu y Mo por flotación. Figure 3: Effect of OPE addition on the recovery of Cu and Mo by flotation.
Figura 4: Efecto de adición de OPE en la tensión interfacial agua/diésel versus dosis de OPE. Figure 4: Effect of OPE addition on water / diesel interfacial tension versus OPE dose.
Figura 5: Efecto de la adición de cationes en presencia de OPE a la emulsión, en la recuperación de molibdeno. Figure 5: Effect of the addition of cations in the presence of OPE to the emulsion, in the recovery of molybdenum.
Figura 6: Efecto del acondicionamiento de burbujas en la recuperación de Cu y Mo. Figure 6: Effect of bubble conditioning on the recovery of Cu and Mo.
Figura 7: Sistema de acondicionamiento de burbujas mediante celda mecánica (A) o columna de flotación (B). Figure 7: Bubble conditioning system using mechanical cell (A) or flotation column (B).
Divulgación de la Invención Disclosure of the Invention
La presente tecnología corresponde a un proceso para mejorar la recuperación de molibdeno y cobre a través de la flotación de minerales, lo que se logra debido al aumento de la recuperación del contenido total de molibdenita y sulfuros de cobre, y en particular para tamaños de partícula finos < 40 pm, y a un mejor acondicionamiento de los reactivos suministrados al proceso. Ventajosamente, este proceso logra una recuperación global mayor de molibdeno en un rango entre 7 y 20 puntos porcentuales, y de cobre entre 3 y 5 puntos porcentuales, respecto de la tecnología actual. The present technology corresponds to a process to improve the recovery of molybdenum and copper through mineral flotation, which is achieved due to the increase in the recovery of the total content of molybdenite and copper sulfides, and in particular for particle sizes. fines <40 pm, and better conditioning of the reagents supplied to the process. Advantageously, this process achieves a greater overall recovery of molybdenum in a range between 7 and 20 percentage points, and copper between 3 and 5 percentage points, with respect to current technology.
Este proceso de recuperación de molibdeno y cobre considera la adición de diferentes componentes en las etapas de flotación como: This molybdenum and copper recovery process considers the addition of different components in the flotation stages such as:
• adición de óxido de polietileno (OPE) en forma directa a la pulpa mineral en el acondicionamiento previo a las etapas de flotación primaria {Rougheή, limpieza (C/eaner) y barrido ( Scavenger ); • addition of polyethylene oxide (OPE) directly to the mineral pulp in the conditioning prior to the primary flotation stages {Rougheή, cleaning (C / eaner) and sweeping (Scavenger);
• adición de colector no polar emulsificado en presencia de OPE, surfactantes y cationes en el acondicionamiento previo a las etapas de flotación; • addition of emulsified non-polar collector in the presence of OPE, surfactants and cations in conditioning prior to the float stages;
• pre-aireación de la emulsión de colector no polar generada en presencia de OPE y cationes; y • pre-aeration of the non-polar collector emulsion generated in the presence of OPE and cations; and
• acondicionamiento de burbujas inyectadas a las máquinas de flotación recubiertas con colector no polar y OPE. • conditioning of bubbles injected into flotation machines coated with non-polar collector and OPE.
A continuación, se presenta una descripción detallada de las etapas del proceso para mejorar la recuperación de molibdeno y cobre a través de la flotación de minerales, para lo cual se toma como referencia la Figura 2: The following is a detailed description of the process steps to improve the recovery of molybdenum and copper through mineral flotation, for which Figure 2 is taken as a reference:
A.- Acondicionamiento y flotación primaria ( Rougher ) Esta etapa inicial considera un acondicionamiento y una flotación primaria (Rougher), las que se describe a continuación: A.- Conditioning and primary flotation (Rougher) This initial stage considers conditioning and primary flotation (Rougher), which are described below:
A.1 Para el acondicionamiento de la pulpa mineral previo a la flotación primaria, primeramente, se debe preparar una emulsión mezclando colector no polar con una solución 0,01 - 0,1 M de cationes a una razón solución/colector que varía entre 3:1 y 50:1 , en presencia de OPE a dosis de entre 5 - 60 g/ton de mineral seco, de colector no polar a dosis de entre 5 - 1000 g/ton de mineral seco y de surfactante a dosis de entre 5 - 40 g/ton de mineral seco. La adición de OPE en forma directa a la pulpa mineral en esta etapa, y en las demás etapas del circuito de flotación, permite mejorar la flotación de las partículas finas y ultrafinas de molibdenita y de los sulfuros de cobre hidrofobizados, ya que este reactivo actúa como floculante selectivo de minerales con superficies hidrofóbicas, tal como se puede apreciar en la Figura 3, donde se muestra el efecto de la adición de OPE en la recuperación de Cu (a) y Mo (b) por flotación. Como resultado se logra una generación de agregados de partículas que tienen una mayor probabilidad de flotación en el proceso industrial y, por lo tanto, ayuda a mejorar la eficiencia del proceso en términos de recuperación de metal fino. A.1 For conditioning the mineral pulp prior to primary flotation, firstly, an emulsion must be prepared by mixing non-polar collector with a 0.01 - 0.1 M solution of cations at a solution / collector ratio ranging from 3 : 1 and 50: 1, in the presence of OPE at doses between 5 - 60 g / ton of dry mineral, of non-polar collector at doses of between 5 - 1000 g / ton of dry mineral and of surfactant at doses of between 5 - 40 g / ton of dry mineral. The addition of OPE directly to the mineral pulp in this stage, and in the other stages of the flotation circuit, allows improving the flotation of fine and ultrafine molybdenite particles and hydrophobized copper sulphides, since this reagent acts as a selective flocculant of minerals with hydrophobic surfaces, as can be seen in Figure 3, where the effect of the addition of OPE on the recovery of Cu (a) and Mo (b) by flotation is shown. As a result, a generation of particle aggregates is achieved that have a higher probability of flotation in the industrial process and, therefore, helps to improve the efficiency of the process in terms of fine metal recovery.
El OPE también actúa como agente emulsificante del colector no polar, ya que es capaz de disminuir la tensión interfacial agua/colector (Figura 4) mediante la adición de pequeñas dosis de reactivo, por lo que el colector debe ser agregado al proceso previamente emulsificado en presencia de OPE. La emulsificación del colector no polar permite aumentar el área de contacto entre el colector y el mineral hidrofóbico, lo que se relaciona a la acción del OPE de reducir la tensión interfacial agua/colector. Esta posibilidad de aumentar la ruptura del colector mediante la presencia de OPE, causa un aumento en la adsorción del colector a la superficie del mineral y una mayor superficie específica para una misma dosis. Por lo que, el OPE es capaz de generar emulsiones más estables, menor tamaño de gotas del colector presente en la emulsión y, por ende, mayor área específica de éste para la interacción con el mineral y mayor recuperación (ver Figura 5, donde (a) corresponde a Mo: Emulsión + Ca2+ + H2O2, 1 g/L; (b) a Mo: Emulsión + Ca2+; (c) a Mo: Emulsión; y (d) a Mo: no emulsión). Adicionalmente, la incorporación de cationes como Ca2+ al agua utilizada para generar la emulsificación del colector no polar, genera un efecto sinérgico en la adhesión entre las gotas del colector no polar y las superficies de los minerales a través de interacciones electrostáticas con sitios hidrofílicos, lo que redunda en un aumento de la recuperación (Figura 5). OPE also acts as an emulsifying agent for the non-polar collector, since it is capable of lowering the water / collector interfacial tension (Figure 4) by adding small doses of reagent, so the collector must be added to the previously emulsified process in presence of OPE. The emulsification of the non-polar collector allows to increase the contact area between the collector and the hydrophobic mineral, which is related to the action of the OPE to reduce the interfacial water / collector tension. This possibility of increasing the rupture of the collector through the presence of OPE, causes an increase in the adsorption of the collector to the surface of the mineral and a greater specific surface for the same dose. Therefore, OPE is capable of generating more stable emulsions, smaller droplet size of the collector present in the emulsion and, therefore, a greater specific area of the latter for interaction with the mineral and greater recovery (see Figure 5, where ( a) corresponds to Mo: Emulsion + Ca 2+ + H2O2, 1 g / L; (b) to Mo: Emulsion + Ca 2+ ; (c) to Mo: Emulsion; and (d) to Mo: no emulsion). Additionally, the incorporation of cations such as Ca 2+ to the water used to generate the emulsification of the non-polar collector, generates a synergistic effect on the adhesion between the drops of the non-polar collector and the mineral surfaces through electrostatic interactions with hydrophilic sites. , which results in an increase in recovery (Figure 5).
El colector no polar que puede ser del tipo preferente, pero no exclusivo, diésel, kerosene u otra parafina; el surfactante puede ser del tipo preferente, pero no exclusivo, alcohol alifático, poliglicol o algún otro agente espumante usado en la flotación de minerales; y los cationes pueden ser del tipo calcio a la forma de sales de cloruro o sulfato. Adicionalmente, se debe adicionar colector amil xantato de potasio (AXP) a dosis de entre 5 - 20 g/ton de mineral seco. Se debe ajustar el pH de la emulsión a 1 1 para asegurar la menor tensión interfacial entre agua/colector (Figura 4). Posteriormente, la mezcla de todos estos reactivos se agita utilizando, preferentemente, en un reactor emulsificador (R1 ) provisto de un agitador de aspas que opera a una velocidad de deformación de cizalle que varía entre 2.000 y 10.000 s 1 , por un periodo de tiempo de entre 0,1 - 2 minutos, para lograr generar una emulsión de gotas de colector no polar de tamaño que varía entre 0,5 - 10 micrones. Luego de generada la emulsión, se adiciona peróxido de hidrógeno a una concentración de entre 0,1 - 10 g/L de volumen de emulsión de tal forma de generar la oxidación de AXP sobre las gotas de colector no polar, lo que mejora la recuperación de cobre (Figura 5). The non-polar collector which may be of the preferred, but not exclusive, type, diesel, kerosene or other paraffin; the surfactant may be of the preferred, but not exclusive, type, aliphatic alcohol, polyglycol, or some other foaming agent used in mineral flotation; and the cations can be of the calcium type in the form of chloride or sulfate salts. Additionally, potassium amyl xanthate (AXP) collector must be added at doses between 5-20 g / ton of dry mineral. The pH of the emulsion should be adjusted to 1 1 to ensure the lowest interfacial tension between water / collector (Figure 4). Subsequently, the mixture of all these reagents is stirred using, preferably, an emulsifying reactor (R1) equipped with a blade stirrer operating at a shear deformation rate that it varies between 2,000 and 10,000 s 1 , for a period of time of between 0.1 - 2 minutes, in order to generate an emulsion of non-polar collector droplets of size that varies between 0.5 - 10 microns. After the emulsion is generated, hydrogen peroxide is added at a concentration of between 0.1 - 10 g / L of emulsion volume in order to generate the oxidation of AXP on the non-polar collector droplets, which improves recovery copper (Figure 5).
A.2.- Una vez preparada la emulsión se alimenta a un estanque de acondicionamiento (a), que permite un tiempo de acondicionamiento de 0,5 - 1 ,5 minutos, donde se mezcla con el mineral proveniente de las etapas de molienda y clasificación con granulometrías P80 entre 100 y 300 micrones (1 ). Este mineral requiere ser acondicionado con colectores para sulfuros de cobre del tipo preferente, pero no exclusivo, xantanto, tionocarbamato, ditiofosfato, hidroxamato en dosis entre 10 - 100 g/ton, con colector no polar que puede ser del tipo preferente, pero no exclusivo, diésel, kerosene u otra parafina en dosis de 10 - 1000 g/ton, con surfactantes del tipo preferente, pero no exclusivo, alcohol alifático o poliglicol en dosis de 10 - 50 g/ton, con OPE a una dosis de entre 10 - 60 g/ton de mineral como agente floculante de partículas finas hidrofóbicas diluido en agua a 0,1 - 5 %. A.2.- Once the emulsion is prepared, it is fed to a conditioning tank (a), which allows a conditioning time of 0.5 - 1.5 minutes, where it is mixed with the mineral from the grinding and classification with P80 granulometries between 100 and 300 microns (1). This mineral needs to be conditioned with copper sulfide collectors of the preferred, but not exclusive, type, xanthan, thionocarbamate, dithiophosphate, hydroxamate in doses between 10 - 100 g / ton, with a non-polar collector that may be of the preferred, but not exclusive, type , diesel, kerosene or other paraffin in doses of 10 - 1000 g / ton, with surfactants of the preferred but not exclusive type, aliphatic alcohol or polyglycol in doses of 10 - 50 g / ton, with OPE at a dose of between 10 - 60 g / ton of mineral as hydrophobic fine particle flocculating agent diluted in water at 0.1 - 5%.
A.3.- El estanque con la mezcla mineral/emulsión (a) debe permanecer agitado a velocidades de deformación de cizalle de 50 - 100 s 1 de tal forma de no romper los flóculos de las partículas finas hidrofóbicas y mantener el material particulado en suspensión. Se debe ajustar el pH entre 9 - 1 1 con cal durante 1 a 10 minutos. El OPE a utilizar en todas las etapas de flotación debe tener un peso molecular entre 100.000 -1 .000.000 g/mol y una pureza superior al 98%, concentraciones a las cuales este reactivo genera el efecto floculante sobre partículas finas hidrofóbicas y emulsificante de colector no polar. A.3.- The pond with the mineral / emulsion mixture (a) must remain agitated at shear deformation speeds of 50 - 100 s 1 so as not to break the flocs of fine hydrophobic particles and keep the particulate material in suspension. The pH should be adjusted between 9 - 1 1 with lime for 1 to 10 minutes. The OPE to be used in all the flotation stages must have a molecular weight between 100,000 -1,000,000 g / mol and a purity of more than 98%, concentrations at which this reagent generates the flocculating effect on fine hydrophobic particles and collector emulsifier. nonpolar.
A.4.- Luego de acondicionada la pulpa se alimenta preferentemente, pero no excluyentemente, en celdas mecánicas o neumáticas (M) a porcentaje de sólidos de entre 20 - 40 %, donde se realiza la flotación primaria ( Rougher ). Las burbujas inyectadas en este tipo de celda son previamente acondicionadas en reactor (RA1 ), ilustrado en la Figura 7A, donde (i) corresponde a la zona de emulsificación; (ii) a la zona de contacto y acondicionamiento de burbujas; e (iii) a las burbujas acondicionadas. En la zona de emulsificación (i) se genera un proceso de dispersión de los colectores polares y no polares del tipo preferente, pero no exclusivo, xantanto, tionocarbamato, ditiofosfato, hidroxamato en dosis entre 1 - 10 g/ton, con colector no polar que puede ser del tipo preferente, pero no exclusivo, diésel, kerosene u otra parafina en dosis de 1 - 100 g/ton y en presencia de surfactantes del tipo preferente, pero no exclusivo, alcohol alifático o poliglicol en dosis de 1 - 20 g/ton en agua mezclando con agitador de aspas a una velocidad de deformación de cizalle que puede variar entre 2.000 - 10.000 s 1. El objetivo principal en esta zona es producir micro-gotas estables de alta área superficial, de tal forma de poder aumentar la probabilidad de recubrir las burbujas en la zona de contacto y acondicionamiento de burbujas (ii). La zona de contacto y acondicionamiento de burbujas (ii), tiene por objetivo generar contacto entre las burbujas generadas a través de un micro-burbujeador (sparger) y los reactivos en forma de micro-gotas, provenientes desde la zona de emulsificación (i), de tal forma que se maximice el número de burbujas recubiertas con colector. Una vez acondicionadas las burbujas (iii), se transfieren a la celda de flotación. La Figura 7B corresponde a otra opción para el acondicionamiento de las burbujas, donde se puede utilizar una columna de flotación, donde (i) a la zona de emulsificación; (ii) a la zona de contacto y acondicionamiento de burbujas, (iii) a las burbujas acondicionadas, (iv) al agua de lavado, (v) a la alimentación, (vi) al concentrado y (vii) a la cola. La velocidad superficial de gas (Jg) puede variar entre 0,5 - 3 cm/s. A.4.- After conditioning, the pulp is fed preferably, but not exclusively, in mechanical or pneumatic cells (M) with a percentage of solids between 20 - 40%, where the primary flotation is carried out (Rougher). The bubbles injected into this type of cell are previously conditioned in reactor (RA1), illustrated in Figure 7A, where (i) corresponds to the emulsification zone; (ii) to the contact area and bubble conditioning; and (iii) to the conditioned bubbles. In the emulsification zone (i) a dispersion process of the polar and non-polar collectors of the preferred, but not exclusive, type is generated, xanthan, thionocarbamate, dithiophosphate, hydroxamate in doses between 1 - 10 g / ton, with non-polar collector which may be of the preferred, but not exclusive, type, diesel, kerosene or other paraffin in doses of 1 - 100 g / ton and in the presence of surfactants of the preferred, but not exclusive, type, aliphatic alcohol or polyglycol in doses of 1 - 20 g / ton in water mixing with a blade stirrer at a shear deformation speed that can vary between 2,000 - 10,000 s 1 . The main objective in this area is to produce stable micro-drops with a high surface area, in order to increase the probability of covering the bubbles in the area of contact and bubble conditioning (ii). The area of contact and conditioning of bubbles (ii), aims to generate contact between the bubbles generated through a micro-sparger and the reagents in the form of micro-drops, coming from the area emulsification (i), so as to maximize the number of bubbles covered with collector. Once the bubbles (iii) have been conditioned, they are transferred to the flotation cell. Figure 7B corresponds to another option for bubble conditioning, where a flotation column can be used, where (i) to the emulsification zone; (ii) to the zone of contact and conditioning of bubbles, (iii) to the conditioned bubbles, (iv) to the washing water, (v) to the feed, (vi) to the concentrate and (vii) to the glue. The gas surface velocity (Jg) can vary between 0.5-3 cm / s.
El acondicionamiento de burbujas previo a la flotación tiene efectos positivos en el proceso de adhesión partícula-burbuja y, por lo tanto, en la eficiencia global del proceso. Otro aspecto positivo tiene que ver con evitar la adhesión de los hidroxi-complejos de Mg y Ca sobre las burbujas, lo que permite mejorar la flotación, no sólo de molibdenita, sino también de minerales sulfurados de Cu. En la Figura 6 se muestran resultados de recuperación de cobre y molibdeno en flotación rougher con burbujas acondicionadas con colector de cobre y colector no polar diésel, en función del pH ajustado con cal, donde (a) corresponde a Mo con tecnología actual; (b) a Mo-burbujas acondicionadas; (c) a Cu con tecnología actual; y (d) a Cu-burbujas acondicionadas. Se observa que la recuperación de molibdeno aumenta entre 23 y 26 puntos porcentuales cuando las burbujas se acondicionan con colectores, y entre 5 y 6 puntos porcentuales de recuperación de Cu. Bubble conditioning prior to flotation has positive effects on the particle-bubble adhesion process and, therefore, on the overall efficiency of the process. Another positive aspect has to do with avoiding the adhesion of the hydroxy-complexes of Mg and Ca on the bubbles, which allows improving the flotation, not only of molybdenite, but also of sulphided Cu minerals. Figure 6 shows the results of recovery of copper and molybdenum in rougher flotation with bubbles conditioned with copper collector and diesel non-polar collector, as a function of the pH adjusted with lime, where (a) corresponds to Mo with current technology; (b) a conditioned Mo-bubbles; (c) to Cu with current technology; and (d) to conditioned Cu-bubbles. It is observed that the recovery of molybdenum increases between 23 and 26 percentage points when the bubbles are conditioned with collectors, and between 5 and 6 percentage points of Cu recovery.
B.- Etapa de remolienda B.- Re-grinding stage
El proceso considera una etapa de remolienda que permite liberar las especies mineralógicas de interés que se encuentran aún ocluidas en la matriz mineral y, por ende, que no pudieron ser concentradas en la etapa de limpieza (C) y barrido (S). Por otra parte, la remolienda aumenta la liberación del concentrado rougher (2) que alimenta a la etapa de limpieza (5), y es donde se lleva a cabo el ajuste del tamaño requerido para esta misma etapa (C), que demanda un tamaño de partícula 100 % menor a 50 micrones, que es más fino que en el caso de la alimentación a la flotación primaria (1 ). The process considers a re-grinding stage that allows releasing the mineralogical species of interest that are still occluded in the mineral matrix and, therefore, could not be concentrated in the cleaning (C) and sweeping (S) stage. On the other hand, re-grinding increases the release of the rougher concentrate (2) that feeds the cleaning stage (5), and is where the adjustment of the size required for this same stage (C) is carried out, which requires a size 100% particle size less than 50 microns, which is finer than in the case of primary flotation feed (1).
La etapa de remolienda se compone básicamente de una línea de remolienda, llevada a cabo en un molino de bolas (RM) de tipo vertical u horizontal, y de una línea de clasificación llevada a cabo mediante hidrociclones (HC). De manera adicional, esta etapa cuenta con un cajón de recepción de pulpa (CJ) para el mezclado de las corrientes que serán sometidas a clasificación y remolienda. El cajón de recepción (CJ) es alimentado por el concentrado primario (2), por la descarga del molino (1 1 ) y por el concentrado scavenger (8). La mezcla (4) de dichas corrientes es enviada a la batería de hidrociclones (HC), que es donde se realiza la clasificación del mineral de acuerdo con su granulometría de corte, dando lugar a dos corrientes: una suspensión concentrada ( underflow ) (10) y una suspensión diluida ( overflow ) (5) que alimenta a la etapa de limpieza con granulometría de entre 70 - 85 % -325#. La suspensión concentrada (10) corresponde al mineral grueso y se recircula al molino de remolienda (RM). La suspensión diluida (5) corresponde al mineral fino que cumple con el tamaño de corte, por lo tanto, esta corriente es la que avanza en el proceso siendo la alimentación de la etapa de limpieza (C). The re-grinding stage basically consists of a re-grinding line, carried out in a vertical or horizontal type ball mill (RM), and a classification line carried out using hydrocyclones (HC). Additionally, this stage has a pulp receiving drawer (CJ) for mixing the streams that will be subjected to sorting and re-grinding. The receiving box (CJ) is fed by the primary concentrate (2), by the discharge from the mill (1 1) and by the scavenger concentrate (8). The mixture (4) of said streams is sent to the hydrocyclone battery (HC), which is where the mineral classification is made according to its cut granulometry, giving rise to two streams: a concentrated suspension (underflow) (10 ) and a diluted suspension (overflow) (5) that feeds the cleaning stage with a grain size of between 70 - 85% -325 #. The concentrated suspension (10) corresponds to the coarse ore and is recirculated to the re-grinding mill (RM). The diluted suspension (5) corresponds to the fine mineral that meets the size of Therefore, this current is the one that advances in the process, being the feeding of the cleaning stage (C).
C.- Acondicionamiento y flotación de limpieza ( Cleaner ) C.- Conditioning and cleaning flotation (Cleaner)
Esta etapa considera un acondicionamiento y la flotación de limpieza que permite aumentar la ley del concentrado, facilitando el cumplimiento de las leyes de concentrados comerciales, pudiendo existir más de una etapa de limpieza. El detalle de éstas se describe a continuación: This stage considers a conditioning and cleaning flotation that allows increasing the grade of the concentrate, facilitating compliance with the laws of commercial concentrates, and there may be more than one cleaning stage. The detail of these is described below:
C.1 .- Se comienza con la preparación de una emulsión de colector no polar en un reactor emulsificador (R2) bajo las mismas condiciones de elaboración de la etapa (A.1 ). C.1 .- Begin with the preparation of a non-polar collector emulsion in an emulsifier reactor (R2) under the same elaboration conditions as in step (A.1).
C.2.- Una vez preparada la emulsión se alimenta a un estanque de acondicionamiento (b), que permita un tiempo de acondicionamiento de 0,5 - 1 ,5 minutos, donde se mezcla con la pulpa mineral proveniente de la etapa de remolienda (5), que viene con un porcentaje de sólidos de entre 20 - 30 %. Este mineral requiere ser acondicionado con colectores para sulfuros de cobre del tipo preferente, pero no exclusivo, xantanto, tionocarbamato, ditiofosfato, hidroxamato en dosis entre 10 - 100 g/ton, con colector no polar que puede ser del tipo preferente, pero no exclusivo, diésel, kerosene u otra parafina en dosis de 10 - 1000 g/ton, con surfactantes del tipo preferente, pero no exclusivo, alcohol alifático o poliglicol en dosis de 10 - 50 g/ton, y con OPE a una dosis de entre 10 - 60 g/ton de mineral como agente floculante de partículas finas hidrofóbicas diluido en agua a 0,1 - 5 %. C.2.- Once the emulsion is prepared, it is fed to a conditioning tank (b), which allows a conditioning time of 0.5 - 1.5 minutes, where it is mixed with the mineral pulp from the re-grinding stage. (5), which comes with a solids percentage of between 20 - 30%. This mineral needs to be conditioned with copper sulfide collectors of the preferred, but not exclusive, type, xanthan, thionocarbamate, dithiophosphate, hydroxamate in doses between 10 - 100 g / ton, with a non-polar collector that may be of the preferred, but not exclusive, type , diesel, kerosene or other paraffin in doses of 10 - 1000 g / ton, with surfactants of the preferred but not exclusive type, aliphatic alcohol or polyglycol in doses of 10 - 50 g / ton, and with OPE at a dose of between 10 - 60 g / ton of mineral as hydrophobic fine particle flocculating agent diluted in water at 0.1 - 5%.
C.3.- El estanque con la mezcla mineral emulsión/mineral (b) debe permanecer agitado a velocidades de deformación de cizalle de 50 - 100 s 1 de tal forma de no romper los flóculos de partículas finas y mantener el material particulado en suspensión. Se debe ajustar el pH entre 9 - 1 1 ,8 con cal durante 1 a 10 minutos. El OPE a utilizar en todas las etapas de flotación debe tener un peso molecular entre 100.000 y 1 .000.000 g/mol y una pureza superior al 98%, concentraciones a las cuales este reactivo genera el efecto floculante sobre partículas finas hidrofóbicas y a la vez actúa como emulsificante de colector no polar. C.3.- The tank with the mineral emulsion / mineral mixture (b) must remain agitated at shear deformation speeds of 50 - 100 s 1 so as not to break the fine particle flocs and keep the particulate material in suspension. . The pH should be adjusted between 9 - 1 1, 8 with lime for 1 to 10 minutes. The OPE to be used in all the flotation stages must have a molecular weight between 100,000 and 1,000,000 g / mol and a purity greater than 98%, concentrations at which this reagent generates the flocculating effect on hydrophobic fine particles and at the same time acts as a non-polar collector emulsifier.
C.4.- Luego de acondicionada la pulpa se alimenta preferentemente, pero no excluyentemente, en celdas neumáticas a porcentaje de sólidos de entre 20 - 40 %, donde se realiza la flotación de limpieza (C). El uso de celdas neumáticas tiene el propósito de favorecer la no ruptura de los flóculos o aglomerados de partículas finas (< 20 micrones) formados previamente en el acondicionamiento. Las burbujas inyectadas en este tipo de celda son previamente acondicionadas en reactor (RA2) de acuerdo con lo descrito en la sección A.4. C.4.- After conditioning, the pulp is fed preferably, but not exclusively, in pneumatic cells with a percentage of solids between 20 - 40%, where the cleaning flotation is carried out (C). The use of pneumatic cells has the purpose of favoring the non-rupture of the flocs or agglomerates of fine particles (<20 microns) previously formed in the conditioning. The bubbles injected into this type of cell are preconditioned in reactor (RA2) according to what is described in section A.4.
La flotación de limpieza genera un concentrado de una ley entre 20 - 35% de Cu y 0,5 - 2% Mo, correspondiente al producto final del proceso (6). Además del concentrado, la etapa de flotación de limpieza da lugar a una cola de limpieza (7), dicha pulpa es recirculada y alimentada en la etapa scavenger (D) para recuperar el mineral de interés presente en ella. Las recuperaciones obtenidas en la flotación de limpieza varían entre 65 - 75% de Cu y 70 - 80% de Mo. El pH de operación de esta etapa varía entre 10,5 - 1 1 ,7, el cual se ajusta mediante la adición de cal para facilitar la depresión de pirita, y así mejorar la performance de la limpieza aumentado la ley del concentrado final. The cleaning flotation generates a grade concentrate between 20 - 35% Cu and 0.5 - 2% Mo, corresponding to the final product of the process (6). In addition to the concentrate, the cleaning flotation stage gives rise to a cleaning glue (7), said pulp is recirculated and fed in the scavenger stage (D) to recover the mineral of interest present in it. The recoveries obtained in the cleaning flotation vary between 65 - 75% Cu and 70 - 80% Mo. The operating pH of this stage varies between 10.5 - 1 1, 7, which is adjusted by addition of lime to facilitate depression of pyrite, and thus improve cleaning performance by increasing the grade of the final concentrate.
D.- Acondicionamiento y flotación scavenger ( Scavenger ) D.- Conditioning and flotation scavenger (Scavenger)
La etapa de flotación scavenger (S) permite absorber las ineficiencias que puedan existir en la etapa de limpieza (C), generalmente asociadas a la variabilidad del mineral procesado, lo cual puede afectar las recuperaciones y las leyes de concentrado Cleaner. En caso de existir más de una etapa de limpieza, debe generarse el mismo número para esta etapa. The scavenger float stage (S) allows the inefficiencies that may exist in the cleaning stage (C) to be absorbed, generally associated with the variability of the processed mineral, which can affect recoveries and grades of Cleaner concentrate. If there is more than one cleaning stage, the same number must be generated for this stage.
Esta etapa es alimentada con la cola (7) de la etapa de limpieza (C) generando un concentrado scavenger (8) y una cola scavenger (9). El concentrado scavenger (8) es enviado al cajón del circuito de remolienda para ser colectado en el cajón de recepción (CJ), mientras que la cola (9) es enviada a descarte junto con la cola rougher{3) formando parte del relave final del proceso (12). Las etapas se describen a continuación: This stage is fed with the tail (7) of the cleaning stage (C) generating a scavenger concentrate (8) and a scavenger tail (9). The scavenger concentrate (8) is sent to the re-circuit drawer to be collected in the reception drawer (CJ), while the tail (9) is sent to discard along with the rougher tail {3) as part of the final tailings of the process (12). The stages are described below:
D.1 .- Se comienza con la preparación de una emulsión de colector no polar en un reactor emulsificador (R3) bajo las mismas condiciones de elaboración de la etapa (A.1 ). D.1 .- Begin with the preparation of a non-polar collector emulsion in an emulsifier reactor (R3) under the same elaboration conditions as in step (A.1).
D.2.- Una vez preparada la emulsión se alimenta a un estanque de acondicionamiento (g), que permita un tiempo de acondicionamiento de 0,5 - 1 ,5 minutos, donde se mezcla con la pulpa mineral de la cola de etapa de limpieza (7) la que viene con un porcentaje de sólidos de entre 20 - 30 %. Este mineral requiere ser acondicionado con colectores para sulfuros de cobre del tipo preferente, pero no exclusivo, xantanto, tionocarbamato, ditiofosfato, hidroxamato en dosis entre 10 - 100 g/ton, con colector no polar que puede ser del tipo preferente, pero no exclusivo, diésel, kerosene u otra parafina en dosis de 10 - 1000 g/ton, con surfactantes del tipo preferente, pero no exclusivo, alcohol alifático o poliglicol en dosis de 10 - 50 g/ton, y con OPE a una dosis de entre 10 - 60 g/ton de mineral como agente floculante de partículas finas hidrofóbicas diluido en agua a 0,1 - 5 %. D.2.- Once the emulsion is prepared, it is fed to a conditioning tank (g), which allows a conditioning time of 0.5 - 1.5 minutes, where it is mixed with the mineral pulp from the tail of the cleaning (7) which comes with a percentage of solids between 20 - 30%. This mineral needs to be conditioned with copper sulfide collectors of the preferred, but not exclusive, type, xanthan, thionocarbamate, dithiophosphate, hydroxamate in doses between 10 - 100 g / ton, with a non-polar collector that may be of the preferred, but not exclusive, type , diesel, kerosene or other paraffin in doses of 10 - 1000 g / ton, with surfactants of the preferred but not exclusive type, aliphatic alcohol or polyglycol in doses of 10 - 50 g / ton, and with OPE at a dose of between 10 - 60 g / ton of mineral as hydrophobic fine particle flocculating agent diluted in water at 0.1 - 5%.
D.3.- El estanque con la mezcla emulsión/mineral (g) debe permanecer agitado a velocidades de deformación de cizalle de 50 - 100 s 1 de tal forma de no romper flóculos de partículas finas y mantener el material particulado en suspensión. Se debe ajustar el pH entre 9 - 1 1 ,5 con cal durante 1 a 10 minutos. El OPE a utilizar en todas las etapas de flotación debe tener un peso molecular entre 100.000 - 1 .000.000 g/mol y una pureza superior al 98%, concentraciones a las cuales este reactivo genera el efecto floculante sobre partículas finas hidrofóbicas y emulsificante de colector no polar. D.3.- The tank with the emulsion / mineral mixture (g) must remain agitated at shear deformation speeds of 50 - 100 s 1 in order not to break flocs of fine particles and keep the particulate material in suspension. The pH should be adjusted between 9 - 1 1, 5 with lime for 1 to 10 minutes. The OPE to be used in all the flotation stages must have a molecular weight between 100,000 - 1,000,000 g / mol and a purity greater than 98%, concentrations at which this reagent generates the flocculating effect on fine hydrophobic particles and collector emulsifier. nonpolar.
D.4.- Luego de acondicionada la pulpa se alimenta en celdas mecánicas o neumáticas a porcentaje de sólidos de entre 20 - 40 %, donde se realiza la flotación scavenger (S). Las burbujas inyectadas en este tipo de celda son previamente acondicionadas en reactor (RA3) de acuerdo con lo descrito en la sección A.4. La flotación scavenger tiene el objeto de maximizar la recuperación de los minerales de interés y evitar pérdidas en los relaves. Esta etapa permite la obtención de concentrados Cu-Mo (8) de leyes de entre 5 - 15 % de Cu y 0,1 - 0,5% de Mo. Los valores de recuperación másica varían desde 5 a 25% y las recuperaciones de Cu y Mo fluctúan desde 90 a 95% y 50 a 90%, respectivamente. La cola (9) de esta etapa es enviada a descarte (12) y las leyes de Cu y Mo varían entre 0,02 - 0,045 % y 0,005 - 0,01 %, respectivamente. D.4.- After conditioning, the pulp is fed into mechanical or pneumatic cells with a percentage of solids between 20 - 40%, where the scavenger flotation (S) is carried out. The bubbles injected into this type of cell are previously conditioned in the reactor (RA3) according to what is described in section A.4. The scavenger flotation is intended to maximize the recovery of the minerals of interest and avoid losses in the tailings. This stage allows obtaining Cu-Mo concentrates (8) of grades between 5 - 15% Cu and 0.1 - 0.5% Mo. The mass recovery values vary from 5 to 25% and the recoveries of Cu and Mo fluctuate from 90 to 95% and 50 to 90%, respectively. The tail (9) of this stage is sent to discard (12) and the Cu and Mo laws vary between 0.02 - 0.045% and 0.005 - 0.01%, respectively.
Ejemplo de aplicación Application example
Para evaluar el proceso de flotación colectiva Cu-Mo desarrollado, se realizaron pruebas de flotación de ciclo cerrado de acuerdo con el circuito presentado en la Figura 2. Los experimentos se realizaron utilizando como mineral de alimentación 10 kg de mineral sulfurado del tipo porfídico cuyas propiedades químicas y mineralógicas se describen en la Tabla 1 , y donde se consideró como control la tecnología actual utilizada. To evaluate the Cu-Mo collective flotation process developed, closed cycle flotation tests were performed according to the circuit presented in Figure 2. The experiments were performed using 10 kg of porphyrid-type sulphided mineral as feed mineral whose properties Chemical and mineralogical are described in Table 1, and where the current technology used was considered as control.
Tabla 1 . Propiedades químicas y mineralógicas del mineral Table 1 . Chemical and mineralogical properties of the mineral
Figure imgf000013_0001
Figure imgf000013_0001
En la Tabla 2 se muestran las condiciones de la tecnología actual y la Tabla 3 las condiciones de la tecnología propuesta. En todos los casos el pH se ajustó con cal. Table 2 shows the current technology conditions and Table 3 the proposed technology conditions. In all cases the pH was adjusted with lime.
Tabla 2. Condiciones tecnología actual Table 2. Current technology conditions
Figure imgf000013_0002
Figure imgf000014_0002
Figure imgf000013_0002
Figure imgf000014_0002
Tabla 3. Condiciones tecnología propuesta
Figure imgf000014_0001
Figure imgf000015_0001
Table 3. Proposed technology conditions
Figure imgf000014_0001
Figure imgf000015_0001
La Tabla 4 muestra los resultados comparativos de ambas tecnologías, donde se observa que los resultados de la propuesta son mejores en términos de una mayor recuperación de cobre y de molibdeno, lo cual trae consigo beneficios económicos importantes para el negocio minero. Table 4 shows the comparative results of both technologies, where it is observed that the results of the proposal are better in terms of a greater recovery of copper and molybdenum, which brings with it significant economic benefits for the mining business.
Tabla 4. Table 4.
Figure imgf000016_0001
Figure imgf000016_0001

Claims

Reivindicaciones Claims
1 .- Un proceso de flotación de minerales para aumentar la recuperación de molibdenita y sulfuros de cobre CARACTERIZADO porque comprende al menos las siguientes etapas: 1 .- A mineral flotation process to increase the recovery of molybdenite and copper sulphides CHARACTERIZED because it comprises at least the following stages:
1 .1 Acondicionamiento y flotación primaria (A): 1 .1 Conditioning and primary flotation (A):
Se debe preparar una emulsión mezclando un colector no polar con una solución 0,01 - 0,1 M de cationes a una razón solución/colector que varía entre 3:1 y 50:1 , en presencia de OPE a dosis de entre 5 - 60 g/ton de mineral seco, de colector no polar a dosis de entre 5 - 1000 g/ton de mineral seco y surfactante a dosis de entre 5 y 40 g/ton de mineral seco; adicionalmente, se debe adicionar colector amil xantato de potasio a dosis de entre 5 - 20 g/ton de mineral seco y se debe ajustar el pH de la emulsión a 1 1 ; posteriormente, la mezcla se agita a una velocidad de deformación de cizalle entre 2.000 y 10.000 s 1 durante 0,1 - 2 minutos, para lograr una emulsión de gotas de colector no polar de tamaño entre 0,5 - 10 micrones; luego de generada la emulsión se adiciona peróxido de hidrógeno a una concentración de entre 0,1 - 10 g/L de volumen de emulsión; An emulsion should be prepared by mixing a non-polar collector with a 0.01 - 0.1 M cation solution at a solution / collector ratio ranging from 3: 1 to 50: 1, in the presence of OPE at doses between 5 - 60 g / ton of dry mineral, from a non-polar collector at doses between 5 - 1000 g / ton of dry mineral and surfactant at doses of between 5 and 40 g / ton of dry mineral; Additionally, potassium amyl xanthate collector should be added at doses between 5-20 g / ton of dry mineral and the pH of the emulsion should be adjusted to 1 1; Subsequently, the mixture is stirred at a shear strain rate between 2,000 and 10,000 s 1 for 0.1-2 minutes, to achieve an emulsion of non-polar collector droplets of size between 0.5-10 microns; after the emulsion is generated, hydrogen peroxide is added at a concentration of between 0.1-10 g / L of emulsion volume;
preparada la emulsión, se alimenta a un estanque de acondicionamiento durante 0,5 - 1 ,5 minutos, donde se mezcla con mineral de granulometrías P80 entre 100 y 300 micrones, el cual debe ser acondicionado con colectores para sulfuros de cobre en dosis de 10 - 100 g/ton, con colector no polar en dosis de 10 - 1000 g/ton, con surfactantes en dosis de 10 - 50 g/ton, y con OPE a una dosis de entre 10 - 60 g/ton de mineral diluido en agua a 0,1 - 5%; el estanque con la mezcla mineral/emulsión debe permanecer agitado a velocidades de deformación de cizalle de 50 - 100 s 1 y se debe ajustar el pH entre 9 - 1 1 con cal durante 1 a 10 minutos; luego de acondicionada la pulpa se alimenta en celdas mecánicas o neumáticas a porcentaje de sólidos de entre 20 - 40 %, donde se realiza la flotación primaria, y donde se inyectan burbujas previamente acondicionadas a una velocidad superficial de gas entre 0,5 - 3 cm/s;Once the emulsion has been prepared, it is fed into a conditioning tank for 0.5 - 1.5 minutes, where it is mixed with mineral granules P80 between 100 and 300 microns, which must be conditioned with copper sulfide collectors in doses of 10 - 100 g / ton, with non-polar collector in doses of 10 - 1000 g / ton, with surfactants in doses of 10 - 50 g / ton, and with OPE at a dose of between 10 - 60 g / ton of mineral diluted in water at 0.1-5%; the pond with the mineral / emulsion mixture should remain agitated at shear strain rates of 50-100 s 1 and the pH should be adjusted between 9-1 1 with lime for 1 to 10 minutes; after conditioning, the pulp is fed into mechanical or pneumatic cells with a percentage of solids between 20 - 40%, where the primary flotation is carried out, and where previously conditioned bubbles are injected at a superficial gas velocity between 0.5 - 3 cm / s;
1 .2.- Etapa de remolienda: 1 .2.- Re-grinding stage:
Esta etapa se compone de una línea de remolienda, llevada a cabo en un molino de bolas (RM) de tipo vertical u horizontal, de una línea de clasificación mediante hidrociclones (HC) y de un cajón de recepción (CJ) de pulpa para el mezclado de las corrientes sometidas a clasificación y remolienda, este último es alimentado por el concentrado primario (2), por una descarga del molino (1 1 ) y por un concentrado scavenger (8); y donde la mezcla (4) de dichas corrientes es enviada a hidrociclones (HC), que origina dos corrientes, una suspensión concentrada (10) corresponde al mineral grueso y que se recircula al molino de remolienda (RM); y una suspensión diluida (5) que alimenta a la etapa de limpieza con granulometría de entre 70 - 85 % -325#; This stage consists of a re-grinding line, carried out in a vertical or horizontal type ball mill (RM), a hydrocyclone (HC) sorting line and a pulp receiving box (CJ) for the mixing of the streams subjected to sorting and re-grinding, the latter is fed by the primary concentrate (2), by a discharge from the mill (1 1) and by a scavenger concentrate (8); and where the mixture (4) of said streams is sent to hydrocyclones (HC), which originates two streams, a concentrated suspension (10) corresponds to the thick mineral and which is recirculated to the re-grinding mill (RM); and a diluted suspension (5) that feeds the cleaning stage with a grain size of between 70 - 85% -325 #;
1 .3.- Acondicionamiento y flotación de limpieza Se debe preparar una emulsión de colector no polar en un reactor emulsificador (R2) bajo las mismas condiciones de elaboración de la etapa (1.1 ); luego se alimenta a un estanque de acondicionamiento (b) durante 0,5 - 1 ,5 minutos, donde se mezcla con la pulpa mineral proveniente de la etapa de remolienda (5), que tiene un porcentaje de sólidos de entre 20 - 30 %; y donde el mineral debe ser acondicionado con colectores para sulfuros de cobre en dosis de 10 - 100 g/ton, con colector no polar en dosis de 10 - 1000 g/ton, con surfactantes en dosis de 10 - 50 g/ton, y con OPE a una dosis de entre 10 - 60 g/ton de mineral diluido en agua a 0,1 - 5 %; el estanque con la mezcla mineral emulsión/mineral (b) debe permanecer agitado a velocidades de deformación de cizalle de 50 - 100 s 1 y se debe ajustar el pH entre 9 - 1 1 ,8 con cal durante 1 a 10 minutos; 1 .3.- Conditioning and cleaning flotation A non-polar collector emulsion must be prepared in an emulsifier reactor (R2) under the same working conditions as in step (1.1); then it is fed to a conditioning tank (b) for 0.5 - 1.5 minutes, where it is mixed with the mineral pulp from the re-grinding stage (5), which has a percentage of solids of between 20 - 30% ; and where the mineral must be conditioned with copper sulfide collectors in doses of 10 - 100 g / ton, with nonpolar collector in doses of 10 - 1000 g / ton, with surfactants in doses of 10 - 50 g / ton, and with OPE at a dose of between 10 - 60 g / ton of mineral diluted in water at 0.1 - 5%; the pond with the mineral emulsion / mineral mixture (b) should remain agitated at shear deformation rates of 50 - 100 s 1 and the pH should be adjusted between 9 - 1 1, 8 with lime for 1 to 10 minutes;
acondicionada la pulpa, se alimenta en celdas neumáticas a porcentaje de sólidos de entre 20 - 40 %, donde se realiza la flotación de limpieza conditioned the pulp, it is fed in pneumatic cells with a percentage of solids between 20 - 40%, where the cleaning flotation is carried out
(C), y donde se inyectan burbujas acondicionadas a una velocidad superficial de gas de entre 0,5 - 3 cm/s; la flotación de limpieza genera un concentrado de una ley entre 20 - 35% de Cu y 0,5 - 2% Mo correspondiente al producto final del proceso (6); además genera una cola de limpieza (7), la cual es recirculada y alimentada en la etapa scavenger(C), and where conditioned bubbles are injected at a superficial gas velocity of between 0.5-3 cm / s; cleaning flotation generates a grade concentrate between 20 - 35% Cu and 0.5 - 2% Mo corresponding to the final product of the process (6); it also generates a cleaning queue (7), which is recirculated and fed in the scavenger stage
(D); y donde las recuperaciones varían entre 65 - 75% de Cu y 70 - 80% de Mo, y donde el pH de operación varía entre 10,5 - 11 ,7; (D); and where the recoveries vary between 65 - 75% Cu and 70 - 80% Mo, and where the operating pH varies between 10.5 - 11, 7;
1.4.- Acondicionamiento y flotación scavenger: 1.4.- Conditioning and scavenger flotation:
Se debe preparar una emulsión de colector no polar en un reactor emulsificador (R2) bajo las mismas condiciones de elaboración de la etapa (1.1 ) y se alimenta a un estanque de acondicionamiento (g) durante 0,5 - 1 ,5 minutos, donde se mezcla con la pulpa mineral de la cola de etapa de limpieza (7) que tiene un porcentaje de sólidos de entre 20 - 30 %, el cual es acondicionado con colectores para sulfuros de cobre en dosis de 10 - 100 g/ton, con colector no polar en dosis de 10 - 1000 g/ton, con surfactante en dosis de 10 - 50 g/ton, y con OPE a una dosis de entre 10 - 60 g/ton de mineral diluido en agua a 0,1 - 5 %; y donde el estanque con la mezcla mineral emulsión/mineral (g) debe permanecer agitado a velocidades de deformación de cizalle de 50 - 100 s 1 y se debe ajustar el pH entre 9 - 11 ,5 con cal durante 1 a 10 minutos; luego de acondicionada la pulpa se alimenta en celdas mecánicas o neumáticas a porcentaje de sólidos de entre 20 - 40 %, donde se realiza la flotación scavenger (S) y donde se inyectan las burbujas previamente acondicionadas a una velocidad superficial de entre 0,5 - 3 cm/s; y donde se obtienen concentrados Cu-Mo (8) de leyes de entre 5 - 15 % de Cu y 0,1 - 0,5% de Mo; y donde la cola (9) es enviada a descarte (12) y las leyes de Cu y Mo varían entre 0,02 - 0,045 % y 0,005 - 0,01 %, respectivamente. A non-polar collector emulsion should be prepared in an emulsifier reactor (R2) under the same working conditions as in step (1.1) and fed to a conditioning tank (g) for 0.5-1.5 minutes, where it is mixed with the mineral pulp from the cleaning stage glue (7) which has a percentage of solids between 20 - 30%, which is conditioned with copper sulfide collectors in doses of 10 - 100 g / ton, with non-polar collector in doses of 10 - 1000 g / ton, with surfactant in doses of 10 - 50 g / ton, and with OPE at a dose of between 10 - 60 g / ton of mineral diluted in water at 0.1 - 5 %; and where the pond with the mineral emulsion / mineral mixture (g) must remain agitated at shear strain rates of 50-100 s 1 and the pH must be adjusted between 9-11.5 with lime for 1 to 10 minutes; after conditioning, the pulp is fed into mechanical or pneumatic cells with a percentage of solids between 20 - 40%, where the scavenger flotation (S) is carried out and where the previously conditioned bubbles are injected at a surface speed of between 0.5 - 3 cm / s; and where Cu-Mo concentrates (8) of grades between 5 - 15% Cu and 0.1 - 0.5% Mo are obtained; and where the tail (9) is sent to discard (12) and the Cu and Mo laws vary between 0.02 - 0.045% and 0.005 - 0.01%, respectively.
2.- Un proceso de flotación de minerales para aumentar la recuperación de molibdenita y sulfuros de cobre según reivindicación 1 , CARACTERIZADO porque las burbujas son acondicionadas en reactor provisto de una zona de emulsificación y una zona de contacto y acondicionamiento de burbujas, donde en la primera zona se genera un proceso de dispersión de colectores polares y no polares en agua en dosis entre 1 - 10 g/ton y en presencia de surfactante en dosis de 1 - 20 g/ton en agua mezclando con agitador de aspas a velocidad de deformación de cizalle que puede variar entre 2.000 - 10.000 s 1 para producir micro-gotas; y en la zona de contacto y acondicionamiento de burbujas se genera contacto entre las burbujas generadas a través de un micro-burbujeador y los reactivos en forma de micro-gotas, provenientes desde la zona de emulsificación.2.- A mineral flotation process to increase the recovery of molybdenite and copper sulfides according to claim 1, CHARACTERIZED because the bubbles are conditioned in a reactor provided with a zone of emulsification and a zone of contact and conditioning of bubbles, where in the first zone a process of dispersion of polar and non-polar collectors in water is generated in doses between 1 - 10 g / ton and in the presence of surfactant in doses of 1 - 20 g / ton in water mixing with a blade stirrer at a shear deformation speed that can vary between 2,000 - 10,000 s 1 to produce micro-drops; and in the area of contact and conditioning of bubbles, contact is generated between the bubbles generated through a micro-bubbler and the reagents in the form of micro-drops, coming from the emulsification zone.
3.- Un proceso de flotación de minerales para aumentar la recuperación de molibdenita y sulfuros de cobre según reivindicaciones 1 y 2, CARACTERIZADO porque, opcionalmente, las burbujas son acondicionadas en una columna de flotación. 3.- A mineral flotation process to increase the recovery of molybdenite and copper sulfides according to claims 1 and 2, CHARACTERIZED because, optionally, the bubbles are conditioned in a flotation column.
4.- Un proceso de flotación de minerales para aumentar la recuperación de molibdenita y sulfuros de cobre según reivindicación 1 , CARACTERIZADO porque el colector no polar es del tipo diésel, kerosene u otra parafina. 4.- A mineral flotation process to increase the recovery of molybdenite and copper sulfides according to claim 1, CHARACTERIZED because the non-polar collector is of the diesel, kerosene or other paraffin type.
5.- Un proceso de flotación de minerales para aumentar la recuperación de molibdenita y sulfuros de cobre según reivindicación 1 , CARACTERIZADO porque el surfactante es del tipo alcohol alifático o poliglicol. 5.- A mineral flotation process to increase the recovery of molybdenite and copper sulfides according to claim 1, CHARACTERIZED because the surfactant is of the aliphatic alcohol or polyglycol type.
6.- Un proceso de flotación de minerales para aumentar la recuperación de molibdenita y sulfuros de cobre según reivindicación 1 , CARACTERIZADO porque los cationes son del tipo calcio a la forma de sales de cloruro o sulfato. 6.- A mineral flotation process to increase the recovery of molybdenite and copper sulphides according to claim 1, CHARACTERIZED because the cations are of the calcium type in the form of chloride or sulfate salts.
7.- Un proceso de flotación de minerales para aumentar la recuperación de molibdenita y sulfuros de cobre según reivindicación 1 , CARACTERIZADO porque los colectores para sulfuros de cobre son del tipo xantanto, tionocarbamato, ditiofosfato e hidroxamato. 7.- A mineral flotation process to increase the recovery of molybdenite and copper sulphides according to claim 1, CHARACTERIZED because the collectors for copper sulphides are of the xanthan, thionocarbamate, dithiophosphate and hydroxamate type.
8.- Un proceso de flotación de minerales para aumentar la recuperación de molibdenita y sulfuros de cobre según reivindicación 1 , CARACTERIZADO porque el OPE utilizado en todas las etapas de flotación tiene un peso molecular entre 100.000 y 1 .000.000 g/mol. 8.- A mineral flotation process to increase the recovery of molybdenite and copper sulphides according to claim 1, CHARACTERIZED because the OPE used in all the flotation stages has a molecular weight between 100,000 and 1,000,000 g / mol.
9.- Un proceso de flotación de minerales para aumentar la recuperación de molibdenita y sulfuros de cobre según reivindicación 1 , CARACTERIZADO porque, opcionalmente, existe más de una etapa de acondicionamiento y flotación de limpieza. 9.- A mineral flotation process to increase the recovery of molybdenite and copper sulfides according to claim 1, CHARACTERIZED because, optionally, there is more than one stage of conditioning and cleaning flotation.
10.- Un proceso de flotación de minerales para aumentar la recuperación de molibdenita y sulfuros de cobre según reivindicaciones 1 y 10, CARACTERIZADO porque, opcionalmente, existe más de una etapa de acondicionamiento y flotación scavenger. 10.- A mineral flotation process to increase the recovery of molybdenite and copper sulfides according to claims 1 and 10, CHARACTERIZED because, optionally, there is more than one stage of conditioning and flotation scavenger.
PCT/CL2019/050116 2018-12-27 2019-11-22 Mineral flotation process for the recovery of molybdenite and copper sulphates, and particularly the recovery of fines WO2020132762A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CL3817-2018 2018-12-27
CL2018003817A CL2018003817A1 (en) 2018-12-27 2018-12-27 A flotation process of minerals to increase the recovery of molybdenite and copper sulphides and in particular the recovery of fines.

Publications (1)

Publication Number Publication Date
WO2020132762A1 true WO2020132762A1 (en) 2020-07-02

Family

ID=65898291

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CL2019/050116 WO2020132762A1 (en) 2018-12-27 2019-11-22 Mineral flotation process for the recovery of molybdenite and copper sulphates, and particularly the recovery of fines

Country Status (2)

Country Link
CL (1) CL2018003817A1 (en)
WO (1) WO2020132762A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104549764A (en) * 2014-11-25 2015-04-29 西安建筑科技大学 Collecting agent and applications thereof in fine-sized molybdenite flotation

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104549764A (en) * 2014-11-25 2015-04-29 西安建筑科技大学 Collecting agent and applications thereof in fine-sized molybdenite flotation

Non-Patent Citations (9)

* Cited by examiner, † Cited by third party
Title
ALVAREZ CHAUR, A: "Floculación selectiva de molibdenita de bajo tamaño mediante el uso de oxido de polietileno", TESIS UNIVERSIDAD DE CONCEPCIÓN, FACULTAD DE INGENIERÍA METALÚRGICA, 2018, Retrieved from the Internet <URL:https://buscadorpatentes.inapi.cl/UI/DocumentVieweraspxenc=VuVAlpAozo3BfWdTt9aVfc0Ys2mlqZsnbJPnnfUIHNOwmAUKaJ4gf4VNHLHKP/KlftXEDcYxKduwmTcE5FK7q5Xixf8bumWn9vJKA4q1IUMYsaN1DCyiLU2nt2r/X8RckFWw9/Dzl9QL6iQcRTCtLgDknJkThtGv47QK9FkV9qU=> [retrieved on 20200502] *
ALVAREZ, A ET AL.: "Use of polyethylene oxide to improve flotation of fine molybdenite", MINERALS ENGINEERING, vol. 127, October 2018 (2018-10-01), pages 232 - 237, XP085457078, DOI: 10.1016/j.mineng.2018.08.018 *
DARKO GERARDO ARIAS SALINAS: "Optimizacion de la flotacion de la molibdenita fina utilizando oxido de polietileno", TESIS UNIVERSIDAD DE CONCEPCION, FACULTAD DE INGENIERIA METALÚRGICA, 2019, XP055723736, Retrieved from the Internet <URL:http://repositoho.udec.d/bitstream/11594/3451/6/Tesis_Optimizacion_de_la_flotacion_de_molibdenita%20.Image.Marked.pdf> [retrieved on 20200602] *
LI, S ET AL.: "Effect of polyethylene oxide on flotation of molybdenite fines", MINERALS ENGINEERING, vol. 146, no. 1, 2020, pages 06146 *
LONG LIANG, JIAKUN TAN, ZHIYUAN LI, YAOLI PENG, GUANGYUAN XIE: "Coal Flotation Improvement Through Hydrophobic Flocculation Induced by Polyethylene Oxide", INTERNATIONAL JOURNAL OF COAL PREPARATION AND UTILIZATION, vol. 36, no. 3, 2015, pages 1 - 29, XP055723737 *
SWORSKA, A ET AL.: "Flocculation of the Syncrude fine tailings Part II . Effect of hydrodynamic conditions", INT. J. MINER. PROCESS., vol. 60, 2000, pages 153 - 161, XP055431588, DOI: 10.1016/S0301-7516(00)00013-2 *
SWORSKA, A ET AL.: "Flocculation of the Syncrude fine tailingsPart I . Effect of pH, polymer dosage and Mg2+ and Ca2+ cations", J. MINER. PROCESS ., vol. 60, 2000, pages 143 - 152, XP055431586, DOI: 10.1016/S0301-7516(00)00012-0 *
VELASQUEZ BARRENECHEA, V.: "Optimization de la recuperación de cobre en el circuito de flotación de Codelco-EI Salvador en base a la evaluación de nuevas formulaciones de reactivos de flotación [ On line", TESIS UNIVERSIDAD DE CONCEPTION, FACULTAD DE INGENIERIA METALÚRGICA, 2018, XP055723729, Retrieved from the Internet <URL:http://repositorio.udec.cl/jspui/handle/11594/3058> [retrieved on 20200502] *
XING-HUA, C. ET AL.: "Degradation of ethyl xanthate in flotation residues by hydrogen peroxide", J. CENT. SOUTH UNIV., vol. 22, 2015, pages 495 - 501, XP035452417, DOI: 10.1007/s11771-015-2548-0 *

Also Published As

Publication number Publication date
CL2018003817A1 (en) 2019-03-22

Similar Documents

Publication Publication Date Title
US7004326B1 (en) Arsenide depression in flotation of multi-sulfide minerals
US9889452B2 (en) Methods for facilitating mineral extraction
Castro et al. Froth flotation in saline water
Lucay et al. Study of the natural floatability of molybdenite fines in saline solutions and effect of gypsum precipitation
CA2873696C (en) A method for improving selectivity and recovery in the flotation of nickel sulphide ores that contain pyrrhotite by exploiting the synergy of mulitiple depressants
US10589293B2 (en) Moderately oxidized polysaccharide depressants for use in iron ore flotation processes
US20150068956A1 (en) Method and apparatus for separation of molybdenite from pyrite containing copper-molybdenum ores
Maree et al. The effects of mixtures of potassium amyl xanthate (PAX) and isopropyl ethyl thionocarbamate (IPETC) collectors on grade and recovery in the froth flotation of a nickel sulfide ore
EP3021972A1 (en) Method for recovering a copper sulfide from an ore containing an iron sulfide
US20140305848A1 (en) Method for improving selectivity and recovery in the flotation of nickel sulphide ores that contain pyrrhotite by exploiting the synergy of multiple depressants
US3827557A (en) Method of copper sulfide ore flotation
AU647946B2 (en) Process for improved precious metals recovery from ores with the use of alkylhydroxamate collectors
WO2020132762A1 (en) Mineral flotation process for the recovery of molybdenite and copper sulphates, and particularly the recovery of fines
US2485083A (en) Froth flotation of copper sulfide ores with lignin sulfonates
JP5188118B2 (en) Flotation method that suppresses the floatability of pyrite
US4416770A (en) Selective mineral recovery
US1397703A (en) Concentration of ores
US4090867A (en) Flotation of non-sulphide copper ores
US11014097B2 (en) Functionalized silicones for froth flotation
US1326855A (en) Edwin edser
US20090266746A1 (en) Mineral ore flotation aid
CA1301963C (en) Ore flotation employing dimercaptothiadiazoles
WO2022038854A1 (en) Flotation method and method for collecting copper
Aruna et al. Floc-flotation of chalcopyrite from a low grade Cu-Zn ore
WO2019113142A1 (en) Flotation separation aid useful for collection of mineral ore fines

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19904073

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19904073

Country of ref document: EP

Kind code of ref document: A1