WO2020129996A1 - Film-form adhesive, adhesive sheet, and semiconductor device and manufacturing method thereof - Google Patents

Film-form adhesive, adhesive sheet, and semiconductor device and manufacturing method thereof Download PDF

Info

Publication number
WO2020129996A1
WO2020129996A1 PCT/JP2019/049478 JP2019049478W WO2020129996A1 WO 2020129996 A1 WO2020129996 A1 WO 2020129996A1 JP 2019049478 W JP2019049478 W JP 2019049478W WO 2020129996 A1 WO2020129996 A1 WO 2020129996A1
Authority
WO
WIPO (PCT)
Prior art keywords
adhesive
film
film adhesive
semiconductor element
semiconductor
Prior art date
Application number
PCT/JP2019/049478
Other languages
French (fr)
Japanese (ja)
Inventor
慎太郎 橋本
由衣 國土
奏美 中村
恒則 大平
紘平 谷口
Original Assignee
日立化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成株式会社 filed Critical 日立化成株式会社
Publication of WO2020129996A1 publication Critical patent/WO2020129996A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/04Non-macromolecular additives inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/08Macromolecular additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J133/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Adhesives based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J163/00Adhesives based on epoxy resins; Adhesives based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • C09J7/35Heat-activated

Definitions

  • the present invention relates to a film adhesive, an adhesive sheet, a semiconductor device and a method for manufacturing the same.
  • stacked MCPs Multi Chip Packages
  • semiconductor elements semiconductor elements (semiconductor chips) are stacked in multiple stages
  • memory semiconductor packages for mobile phones and mobile audio devices.
  • higher speed, higher density, and higher integration of semiconductor packages are being promoted.
  • the speed has been increased by using copper as a wiring material for semiconductor chip circuits.
  • lead frames made of copper are being used.
  • the semiconductor package is electrically conductive. It tends to be difficult to secure the desired characteristics.
  • copper ions generated by corrosion move inside the adhesive, and electrical signal loss tends to occur within the semiconductor chip or between semiconductor chips/semiconductor chips.
  • Adhesives that capture copper ions generated in semiconductor packages are being studied from the viewpoint of preventing loss of electrical signals.
  • a thermoplastic resin having an epoxy group and not having a carboxyl group and a heterocyclic compound containing a tertiary nitrogen atom as a ring atom are formed, and a complex is formed with a cation.
  • an adhesive sheet for producing a semiconductor device which comprises the organic complex forming compound.
  • the present invention is mainly intended to provide a film-like adhesive that can sufficiently suppress the problems associated with the movement of copper ions in the adhesive and that is excellent in the adhesiveness and embedding property with the substrate.
  • One aspect of the present invention provides a film adhesive for adhering a semiconductor element and a supporting member on which the semiconductor element is mounted.
  • the film adhesive contains an epoxy resin having an epoxy equivalent of 140 to 220 g/eq, a phenol resin having a hydroxyl equivalent of 90 to 130 g/eq, and a thermoplastic resin, and the content of the thermoplastic resin is , 55 to 75 mass% based on the total amount of the film adhesive.
  • the crosslink density of the cured product of the film adhesive tends to increase.
  • the adhesiveness with the substrate is improved, and further, it is possible to suppress the incorporation of copper ions and the like from the outside, and as a result, the adhesive It is possible to sufficiently suppress the problems associated with the movement of copper ions inside.
  • the film adhesive can improve the embedding property even after undergoing a thermal history by containing a specific content of the thermoplastic resin, resulting in peeling at the adhesive interface and insufficient embedding property of the substrate. It is possible to suppress defects.
  • the thermoplastic resin may be an acrylic resin.
  • the acrylic resin may contain a specific acrylic resin.
  • P CO the height of the absorption peak derived from the stretching vibration of the carbonyl group
  • P CN the height of the peak derived from the stretching vibration of the nitrile group
  • the acrylic resin may satisfy the condition of the following formula (1). P CN /P CO ⁇ 0.100 (1)
  • the film adhesive may further contain an inorganic filler.
  • the thickness of the film adhesive may be 50 ⁇ m or less.
  • the adhesive sheet includes a base material and the above film adhesive provided on one surface of the base material.
  • the substrate may be a dicing tape.
  • the semiconductor device includes a semiconductor element, a support member on which the semiconductor element is mounted, and an adhesive member that is provided between the semiconductor element and the support member and adheres the semiconductor element and the support member, and the adhesive member is the above-mentioned member. It is a cured product of a film adhesive.
  • the support member may include a member made of copper.
  • Another aspect of the present invention provides a method for manufacturing a semiconductor device.
  • One aspect of a method for manufacturing a semiconductor device includes a step of adhering a semiconductor element and a supporting member using the above film adhesive.
  • Another aspect of a method for manufacturing a semiconductor device is to attach a plurality of pieces of a plurality of pieces by cutting the semiconductor wafer on which the film-like adhesive of the above-mentioned adhesive sheet is attached to the semiconductor wafer and the step of attaching the film-like adhesive.
  • the method includes a step of producing a semiconductor element with a film-like adhesive and a step of adhering the semiconductor element with a film-like adhesive to a support member.
  • the method for manufacturing the semiconductor device may further include a step of heating the semiconductor element with the film adhesive attached to the support member using a reflow oven.
  • a film-like adhesive that can sufficiently suppress defects caused by the movement of copper ions in the adhesive, and that is excellent in adhesiveness and embeddability with a substrate.
  • an adhesive sheet and a semiconductor device using such a film adhesive are provided.
  • a method for manufacturing a semiconductor device using a film adhesive or an adhesive sheet is provided.
  • the numerical range indicated by using “to” indicates the range including the numerical values before and after “to” as the minimum value and the maximum value, respectively.
  • the upper limit or the lower limit described in one numerical range may be replaced with the upper limit or the lower limit of the numerical range described in other stages. Good.
  • the upper limit value or the lower limit value of the numerical range may be replaced with the value shown in the examples.
  • (meth)acrylate means acrylate or corresponding methacrylate.
  • the film adhesive is a film adhesive for adhering a semiconductor element and a supporting member on which the semiconductor element is mounted, and is (A) an epoxy resin having an epoxy equivalent of 140 to 220 g/eq. (Hereinafter, sometimes referred to as "specific epoxy resin"), and (B) a phenol resin having a hydroxyl equivalent of 90 to 130 g/eq (hereinafter sometimes referred to as "specific phenol resin"), and ( C) and a thermoplastic resin.
  • the content of the thermoplastic resin is 55 to 75 mass% based on the total amount of the film adhesive.
  • the film adhesive can be obtained by molding an adhesive composition containing (A) a specific epoxy resin, (B) a specific phenol resin, and (C) a thermoplastic resin into a film. it can.
  • the film adhesive and the adhesive composition may be those that can go through a semi-cured (B stage) state and then a fully cured (C stage) state after the curing treatment.
  • Component (A) Epoxy resin having an epoxy equivalent of 140 to 220 g/eq.
  • the component (A) is not particularly limited as long as it has an epoxy equivalent of 140 to 220 g/eq and has an epoxy group in the molecule. Can be used.
  • Examples of such component (A) include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, bisphenol A novolac type epoxy resin, bisphenol.
  • F novolac type epoxy resin stilbene type epoxy resin, triazine skeleton containing epoxy resin, fluorene skeleton containing epoxy resin, triphenol methane type epoxy resin, biphenyl type epoxy resin, xylylene type epoxy resin, biphenyl aralkyl type epoxy resin, naphthalene type epoxy resin , Polyfunctional phenols, diglycidyl ether compounds of polycyclic aromatic compounds such as anthracene, and the like. These may be used alone or in combination of two or more.
  • the component (A) may be a cresol novolac type epoxy resin, a phenol novolac type epoxy resin, a bisphenol F type epoxy resin, or a bisphenol A type epoxy resin from the viewpoint of tackiness and flexibility of the film. Good.
  • the epoxy equivalent of the epoxy resin is 140 to 220 g/eq.
  • the epoxy equivalent of the epoxy resin may be 145 to 215 g/eq or 150 to 210 g/eq.
  • the epoxy equivalent of the epoxy resin is in such a range, when it is combined with a specific phenol resin, the cured product of the obtained film adhesive tends to have a high crosslinking density.
  • Component (B) Phenolic resin having a hydroxyl equivalent of 90 to 130 g/eq.
  • Component (B) can be a curing agent for epoxy resins.
  • Component (B) can be used without particular limitation as long as it has a hydroxyl equivalent of 90 to 130 g/eq and has a phenolic hydroxyl group in the molecule.
  • examples of the component (B) include phenols such as phenol, cresol, resorcin, catechol, bisphenol A, bisphenol F, phenylphenol and aminophenol, and/or ⁇ -naphthol, ⁇ -naphthol, dihydroxynaphthalene and the like.
  • novolac type phenol resins obtained by condensation or cocondensation of naphthols and a compound having an aldehyde group such as formaldehyde under an acidic catalyst. These may be used alone or in combination of two or more.
  • the component (B) may be a phenol novolac type phenol resin or a naphthol aralkyl resin.
  • the hydroxyl equivalent of the phenol resin is 90 to 130 g/eq.
  • the hydroxyl equivalent of the phenol resin may be 95 to 125 g/eq or 100 to 120 g/eq. If the hydroxyl equivalent of the phenolic resin is 70 g/eq or more, the crosslink density of the cured product of the obtained film adhesive tends to be high when combined with a specific epoxy resin.
  • the ratio of the epoxy equivalent of the component (A) to the hydroxyl equivalent of the component (B) is 0.30/0.70. ⁇ 0.70/0.30, 0.35/0.65 to 0.65/0.35, 0.40/0.60 to 0.60/0.40, or 0.45/0.55 to It may be 0.55/0.45.
  • the equivalent ratio is 0.30/0.70 or more, more sufficient curability tends to be obtained.
  • the equivalent ratio is 0.70/0.30 or less, it is possible to prevent the viscosity from becoming too high, and it is possible to obtain more sufficient fluidity.
  • the total content of the components (A) and (B) may be 5 to 45% by mass, 10 to 40% by mass, or 15 to 30% by mass based on the total amount of the film adhesive.
  • the elastic modulus tends to be improved by crosslinking.
  • the total content of the component (A) and the component (B) is 45% by mass or less based on the total amount of the film adhesive, the film handleability tends to be maintained.
  • Thermoplastic Resin examples include acrylic resins, polyester resins, polyamide resins, polyimide resins, silicone resins, butadiene resins; and modified products thereof. These may be used alone or in combination of two or more.
  • the component (C) may be an acrylic resin from the viewpoint of having few ionic impurities, high heat resistance, and ensuring the reliability of the semiconductor element.
  • the acrylic resin means a polymer having a structural unit derived from a (meth)acrylic acid ester.
  • the acrylic resin may contain a structural unit derived from a (meth)acrylic acid ester having a crosslinkable functional group such as an epoxy group, an alcoholic or phenolic hydroxyl group, and a carboxyl group.
  • the acrylic resin may be an acrylic rubber having a structural unit derived from a (meth)acrylic acid ester as a main component.
  • the content of the structural unit derived from the (meth)acrylic acid ester in the acrylic rubber may be, for example, 70% by mass or more, 80% by mass or more, or 90% by mass or more based on the total amount of the structural unit.
  • the acrylic rubber may contain a structural unit derived from a (meth)acrylic acid ester having a crosslinkable functional group such as an epoxy group, an alcoholic or phenolic hydroxyl group, and a carboxyl group.
  • the acrylic resin is capable of further suppressing the movement of copper ions in the adhesive by reducing the nitrile group contained in the acrylic resin, and also has an embedding property. Tends to be better. Therefore, the acrylic resin may contain an acrylic resin having a low proportion of nitrile groups, or may contain an acrylic resin containing no nitrile groups (that is, an acrylic resin containing no structural unit derived from acrylonitrile). ..
  • the acrylic resin has the following formula (1), where P CO is the height of the absorption peak derived from the stretching vibration of the carbonyl group and P CN is the height of the peak derived from the stretching vibration of the nitrile group. ) Acrylic resin satisfying the condition of 1) may be included. P CN /P CO ⁇ 0.100 (1)
  • the carbonyl group is mainly derived from the structural unit (meth)acrylic acid ester
  • the nitrile group is mainly derived from the structural unit acrylonitrile.
  • the height of the absorption peak derived from the stretching vibration of the carbonyl group (P CO ) and the height of the peak derived from the stretching vibration of the nitrile group (P CN ) are defined in the examples.
  • a small P CN /P CO means that the acrylic resin has a small number of structural units derived from acrylonitrile. Therefore, an acrylic resin that does not include a structural unit derived from acrylonitrile theoretically has a numerical value of P CN /P CO close to 0 and can satisfy the condition of the formula (1).
  • P CN / P CO may be 0.100 or less, 0.095 or less, 0.090 or less, 0.085 or less, 0.080 or less, 0.075 or less, 0.070 or less, 0.065 or less , 0.060 or less, 0.055 or less, 0.050 or less, 0.040 or less, 0.030 or less, 0.020 or less, or 0.010 or less.
  • P CN /P CO 0.100 or less, it may be possible to sufficiently suppress the movement (permeation) of copper ions in the adhesive. Further, it is possible as the value of P CN / P CO decreases, more sufficiently suppressed migration of copper ions in the adhesive (transparent). Also, as the value of P CN / P CO is reduced, to lower the cohesive force of the acrylic resin tends to be buried resistance more excellent.
  • the acrylic resin two or more kinds of acrylic resins satisfying such requirements may be used in combination.
  • the glass transition temperature (Tg) of the component (C) may be -50 to 50°C or -30 to 30°C.
  • Tg of the component (C) is ⁇ 50° C. or higher, it tends to be possible to prevent the flexibility of the adhesive from becoming too high. As a result, the film adhesive can be easily cut during wafer dicing, and burrs can be prevented from occurring.
  • the Tg of the component (C) is 50° C. or less, the flexibility of the adhesive tends to be suppressed from decreasing. This tends to make it easier to fill voids when the film adhesive is attached to the wafer. In addition, it becomes possible to prevent chipping at the time of dicing due to deterioration of the adhesiveness of the wafer.
  • the glass transition temperature (Tg) means a value measured using DSC (Thermal Differential Scanning Calorimeter) (for example, Thermo Plus 2 manufactured by Rigaku Corporation).
  • the weight average molecular weight (Mw) of the component (C) may be 100,000 to 3,000,000 or 200,000 to 2,000,000.
  • Mw means a value measured by gel permeation chromatography (GPC) and converted using a calibration curve based on standard polystyrene.
  • Examples of commercially available products of the component (C) (acrylic rubber) include SG-P3, SG-80H, HTR-860P-3CSP (all manufactured by Nagase ChemteX Corporation).
  • Examples of commercially available products of component (C) (acrylic rubber) that does not contain a structural unit derived from acrylonitrile include KH-CT-865 (manufactured by Hitachi Chemical Co., Ltd.).
  • the content of the component (C) is 55 to 75 mass% based on the total amount of the film adhesive, and may be 57 mass% or more or 60 mass% or more, and 73 mass% or less or 70 mass% or less. You can When the content of the component (C) is 55% by mass or more based on the total amount of the film adhesive, the embedding property after the heat history is applied tends to be improved. When the content of the component (C) is 75% by mass or less based on the total amount of the film adhesive, sufficient adhesiveness tends to be secured.
  • Component (D) Inorganic filler
  • the film adhesive may further contain (D) an inorganic filler.
  • the component (D) include aluminum hydroxide, magnesium hydroxide, calcium carbonate, magnesium carbonate, calcium silicate, magnesium silicate, calcium oxide, magnesium oxide, aluminum oxide, aluminum nitride, aluminum borate whiskers, and boron nitride. , Silica and the like. These may be used alone or in combination of two or more. These may be surface-treated with a surface treatment agent such as a silane coupling agent. Among these, the component (D) may be silica from the viewpoint of adjusting the melt viscosity.
  • the shape of the component (D) is not particularly limited, but may be spherical.
  • the average particle size of the component (D) may be 0.01 to 1 ⁇ m, 0.01 to 0.08 ⁇ m, or 0.03 to 0.06 ⁇ m from the viewpoint of fluidity.
  • the average particle diameter means a value obtained by converting from the BET specific surface area.
  • the content of the component (D) may be 0.1 to 50% by mass, 0.1 to 30% by mass, or 0.1 to 20% by mass based on the total amount of the film adhesive.
  • the film adhesive may further contain (E) a coupling agent, (F) a curing accelerator and the like.
  • the component (E) may be a silane coupling agent.
  • the silane coupling agent include ⁇ -ureidopropyltriethoxysilane, ⁇ -mercaptopropyltrimethoxysilane, 3-phenylaminopropyltrimethoxysilane, and 3-(2-aminoethyl)aminopropyltrimethoxysilane. To be These may be used alone or in combination of two or more.
  • Component (F) Curing Accelerator
  • the component (F) is not particularly limited, and those generally used can be used.
  • Examples of the component (F) include imidazoles and their derivatives, organic phosphorus compounds, secondary amines, tertiary amines, and quaternary ammonium salts. These may be used alone or in combination of two or more.
  • the component (F) may be an imidazole or a derivative thereof from the viewpoint of reactivity.
  • imidazoles examples include 2-methylimidazole, 1-benzyl-2-methylimidazole, 1-cyanoethyl-2-phenylimidazole, 1-cyanoethyl-2-methylimidazole and the like. These may be used alone or in combination of two or more.
  • the film adhesive may further contain other components.
  • Other components include, for example, pigments, ion scavengers, antioxidants and the like.
  • the content of the component (E), the component (F), and other components may be 0 to 30 mass% based on the total amount of the film adhesive.
  • FIG. 1 is a schematic cross-sectional view showing an embodiment of a film adhesive.
  • the film adhesive 1 (adhesive film) shown in FIG. 1 is obtained by molding an adhesive composition into a film.
  • the film adhesive 1 may be in a semi-cured (B stage) state.
  • Such a film adhesive 1 can be formed by applying an adhesive composition to a support film.
  • the varnish of the adhesive composition adheresive varnish
  • the components (A) and (B), and other components that are added as necessary are mixed in a solvent, and the mixed liquid is mixed or kneaded.
  • the adhesive varnish is prepared, the adhesive varnish is applied to the support film, and the solvent is heated and dried to remove the adhesive to form the film adhesive 1.
  • the support film is not particularly limited as long as it can withstand the above heat drying, for example, polyester film, polypropylene film, polyethylene terephthalate film, polyimide film, polyetherimide film, polyether naphthalate film, polymethylpentene film, etc. May be
  • the base material 2 may be a multilayer film in which two or more kinds are combined, and the surface thereof may be treated with a release agent such as a silicone-based or silica-based release agent.
  • the thickness of the support film may be, for example, 10 to 200 ⁇ m or 20 to 170 ⁇ m.
  • Mixing or kneading can be performed using a disperser such as an ordinary stirrer, raider, triple roll, ball mill and the like. You may combine these suitably.
  • a disperser such as an ordinary stirrer, raider, triple roll, ball mill and the like. You may combine these suitably.
  • the solvent used for preparing the adhesive varnish is not limited as long as it can uniformly dissolve, knead or disperse each component, and conventionally known solvents can be used.
  • a solvent include ketone solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone, dimethylformamide, dimethylacetamide, N-methylpyrrolidone, toluene, xylene, and the like.
  • the solvent may be methyl ethyl ketone, cyclohexanone or the like in terms of drying speed and price.
  • a known method can be used, and examples thereof include a knife coating method, a roll coating method, a spray coating method, a gravure coating method, a bar coating method, and a curtain coating method.
  • the heating and drying conditions are not particularly limited as long as the solvent used is sufficiently volatilized, but heating and drying can be performed at 50 to 150° C. for 1 to 30 minutes.
  • the thickness of the film adhesive may be 50 ⁇ m or less.
  • the thickness of the film adhesive may be 40 ⁇ m or less, 30 ⁇ m or less, 20 ⁇ m or less, or 15 ⁇ m or less.
  • the lower limit of the thickness of the film adhesive 1 is not particularly limited, but can be, for example, 1 ⁇ m or more.
  • FIG. 2 is a schematic cross-sectional view showing an embodiment of the adhesive sheet.
  • the adhesive sheet 100 shown in FIG. 2 includes a base material 2 and a film adhesive 1 provided on the base material 2.
  • FIG. 3 is a schematic cross-sectional view showing another embodiment of the adhesive sheet.
  • the adhesive sheet 110 shown in FIG. 3 includes a base material 2, a film adhesive 1 provided on the base material 2, and a cover film provided on the surface of the film adhesive 1 opposite to the base material 2. 3 and 3.
  • the base material 2 is not particularly limited, but may be a base material film.
  • the base film may be similar to the support film described above.
  • the cover film 3 is used to prevent damage or contamination of the film adhesive, and may be, for example, a polyethylene film, a polypropylene film, a surface release agent-treated film, or the like.
  • the thickness of the cover film 3 may be, for example, 15 to 200 ⁇ m or 70 to 170 ⁇ m.
  • the adhesive sheets 100 and 110 can be formed by applying an adhesive composition to a base film, similarly to the method of forming a film adhesive described above.
  • the method of applying the adhesive composition to the substrate 2 may be the same as the method of applying the adhesive composition to the support film.
  • the adhesive sheet 110 can be obtained by further laminating the cover film 3 on the film adhesive 1.
  • the adhesive sheets 100 and 110 may be formed by using a film-shaped adhesive agent prepared in advance.
  • the adhesive sheet 100 can be formed by laminating under a predetermined condition (for example, room temperature (20° C.) or a heated state) using a roll laminator, a vacuum laminator, or the like. Since the adhesive sheet 100 can be continuously manufactured and is excellent in efficiency, it may be formed using a roll laminator in a heated state.
  • the adhesive sheet is a dicing/die bonding integrated adhesive sheet in which the base material 2 is a dicing tape.
  • the process of laminating on the semiconductor wafer is performed once, so that the work efficiency can be improved.
  • the dicing tape examples include plastic films such as polytetrafluoroethylene film, polyethylene terephthalate film, polyethylene film, polypropylene film, polymethylpentene film and polyimide film.
  • the dicing tape may be subjected to surface treatment such as primer coating, UV treatment, corona discharge treatment, polishing treatment, and etching treatment, if necessary.
  • the dicing tape may have adhesiveness.
  • Such a dicing tape may be one in which the above-mentioned plastic film is provided with tackiness, or one in which the above-mentioned plastic film is provided with an adhesive layer.
  • the pressure-sensitive adhesive layer may be either a pressure-sensitive type or a radiation-curable type, has a sufficient adhesive force so that the semiconductor element does not scatter during dicing, and does not damage the semiconductor element in the subsequent semiconductor element pickup step.
  • a pressure-sensitive type or a radiation-curable type
  • has a sufficient adhesive force so that the semiconductor element does not scatter during dicing, and does not damage the semiconductor element in the subsequent semiconductor element pickup step.
  • the thickness of the dicing tape may be 60 to 150 ⁇ m or 70 to 130 ⁇ m from the viewpoints of economy and handleability of the film.
  • FIG. 4 is a schematic cross-sectional view showing another embodiment of the adhesive sheet.
  • FIG. 5 is a schematic cross-sectional view showing another embodiment of the adhesive sheet.
  • the adhesive sheet 120 shown in FIG. 4 includes the dicing tape 7, the adhesive layer 6, and the film adhesive 1 in this order.
  • the adhesive sheet 130 shown in FIG. 5 includes the dicing tape 7 and the film adhesive 1 provided on the dicing tape 7.
  • the adhesive sheet 120 can be obtained, for example, by providing the pressure-sensitive adhesive layer 6 on the dicing tape 7 and further laminating the film adhesive 1 on the pressure-sensitive adhesive layer 6.
  • the adhesive sheet 130 can be obtained, for example, by bonding the dicing tape 7 and the film adhesive 1 together.
  • the film-like adhesive and the adhesive sheet may be used for manufacturing a semiconductor device, and the film-like adhesive and the dicing tape may be applied to a semiconductor wafer or a semiconductor element (semiconductor chip) that has already been cut into small pieces at 0° C. After bonding at 90° C., a semiconductor element with a film adhesive is obtained by cutting with a rotary blade, a laser or stretching, and then the semiconductor element with the film adhesive is applied to an organic substrate, a lead frame, or another semiconductor element. It may be used in the manufacture of a semiconductor device including a step of adhering on.
  • semiconductor wafers include single crystal silicon, polycrystalline silicon, various ceramics, and compound semiconductors such as gallium arsenide.
  • the film adhesive and the adhesive sheet include semiconductor elements such as IC and LSI, lead frames such as 42 alloy lead frame and copper lead frame; plastic films such as polyimide resin and epoxy resin; It can be used as a die-bonding adhesive for bonding a plastic impregnated and cured with an epoxy resin or the like; a semiconductor mounting support member such as ceramics such as alumina or the like.
  • the film adhesive and the adhesive sheet are also suitably used as an adhesive for adhering semiconductor elements to each other in a Stacked-PKG having a structure in which a plurality of semiconductor elements are stacked.
  • one semiconductor element serves as a support member on which the semiconductor element is mounted.
  • the film adhesive and the adhesive sheet are, for example, a protective sheet for protecting the back surface of the semiconductor element of the flip-chip type semiconductor device, and a material for sealing between the surface of the semiconductor element of the flip-chip type semiconductor device and the adherend. It can also be used as a sealing sheet or the like.
  • a semiconductor device manufactured using a film adhesive will be specifically described with reference to the drawings. Note that semiconductor devices having various structures have been proposed in recent years, and the application of the film adhesive according to the present embodiment is not limited to the semiconductor device having the structure described below.
  • FIG. 6 is a schematic sectional view showing an embodiment of a semiconductor device.
  • the semiconductor device 200 shown in FIG. 6 is provided between the semiconductor element 9, the supporting member 10 on which the semiconductor element 9 is mounted, the semiconductor element 9 and the supporting member 10, and is an adhesive for bonding the semiconductor element 9 and the supporting member 10. And a member (cured product 1c of film adhesive).
  • a connection terminal (not shown) of the semiconductor element 9 is electrically connected to an external connection terminal (not shown) via a wire 11 and sealed by a sealing material 12.
  • FIG. 7 is a schematic cross-sectional view showing another embodiment of the semiconductor device.
  • the first-stage semiconductor element 9a is bonded to the support member 10 on which the terminals 13 are formed by an adhesive member (cured material 1c of film adhesive), and the first-stage semiconductor element 9a.
  • the semiconductor element 9b of the second stage is further adhered to the top by an adhesive member (cured product 1c of film adhesive).
  • the connection terminals (not shown) of the semiconductor element 9 a in the first stage and the semiconductor element 9 b in the second stage are electrically connected to the external connection terminals via the wires 11 and sealed by the sealing material 12.
  • the film adhesive according to the present embodiment can be suitably used for a semiconductor device having a structure in which a plurality of semiconductor elements are stacked.
  • the semiconductor device (semiconductor package) shown in FIGS. 6 and 7 has, for example, a film adhesive interposed between the semiconductor element and the support member or between the semiconductor element and the two by heat-pressing them. Are bonded, and then, if necessary, a wire bonding step, a sealing step with a sealing material, a heating and melting step including reflow with solder, and the like.
  • the heating temperature in the thermocompression bonding step is usually 20 to 250° C.
  • the load is usually 0.1 to 200 N
  • the heating time is usually 0.1 to 300 seconds.
  • the supporting member or It may be a method of attaching to a semiconductor element.
  • the support member may include a member made of copper.
  • a member made of copper is used as a constituent member of the semiconductor device.
  • the member made of copper for example, a lead frame, a wiring, a wire, a heat dissipating material, etc. can be mentioned, but even if copper is used for any member, the influence of copper ions can be reduced. Is.
  • the method of manufacturing a semiconductor device using the dicing/die-bonding integrated adhesive sheet is not limited to the method of manufacturing a semiconductor device described below.
  • a semiconductor wafer is pressure-bonded to the film-like adhesive 1 on the adhesive sheet 120 (adhesive sheet with integrated dicing and die bonding), and this is adhesively held and fixed (mounting step).
  • This step may be performed while pressing with a pressing means such as a pressure roll.
  • the semiconductor wafer is diced.
  • the semiconductor wafer is cut into a predetermined size, and a plurality of individual semiconductor elements (semiconductor chips) with a film-like adhesive are manufactured.
  • the dicing can be performed, for example, from the circuit surface side of the semiconductor wafer according to a conventional method.
  • a cutting method called full-cut in which a dicing tape is cut a method in which a semiconductor wafer is cut into half and cut by cooling and pulling, a laser cutting method, and the like can be employed.
  • the dicing device used in this step is not particularly limited, and a conventionally known device can be used.
  • the pickup method is not particularly limited, and various conventionally known methods can be adopted. For example, there is a method in which individual semiconductor elements are pushed up by a needle from the side of an adhesive sheet integrated with dicing and die bonding, and the pushed up semiconductor elements are picked up by a pickup device.
  • the pressure-sensitive adhesive layer is radiation (for example, ultraviolet ray) curable, pick up is performed after the pressure-sensitive adhesive layer is irradiated with radiation. As a result, the adhesive strength of the pressure-sensitive adhesive layer to the film adhesive is reduced, and the semiconductor element can be easily peeled off. As a result, the pickup can be performed without damaging the semiconductor element.
  • radiation for example, ultraviolet ray
  • the semiconductor element with a film adhesive formed by dicing is adhered to the support member for mounting the semiconductor element via the film adhesive.
  • Bonding may be done by crimping.
  • the conditions for die bonding are not particularly limited, and can be set appropriately as needed. Specifically, for example, the die bond temperature may be 80 to 160° C., the bonding load may be 5 to 15 N, and the bonding time may be 1 to 10 seconds.
  • thermosetting the film adhesive may be provided.
  • thermosetting the film-like adhesive that bonds the support member and the semiconductor element in the bonding step it is possible to more firmly bond and fix.
  • pressure may be applied simultaneously to cure.
  • the heating temperature in this step can be appropriately changed depending on the constituents of the film adhesive.
  • the heating temperature may be, for example, 60 to 200°C.
  • the temperature or pressure may be changed stepwise.
  • a wire bonding process is performed to electrically connect the tip of the terminal portion (inner lead) of the support member and the electrode pad on the semiconductor element with a bonding wire.
  • a bonding wire for example, a gold wire, an aluminum wire, a copper wire or the like is used.
  • the temperature for wire bonding may be in the range of 80 to 250°C or 80 to 220°C.
  • the heating time may be several seconds to several minutes.
  • the connection may be performed by using the vibration energy of ultrasonic waves and the compression energy of applied pressure together while being heated within the above temperature range.
  • a sealing process is performed to seal the semiconductor element with the sealing resin.
  • This step is performed to protect the semiconductor element or the bonding wire mounted on the support member.
  • This step is performed by molding the resin for sealing with a mold.
  • the sealing resin may be, for example, an epoxy resin. The substrate and the residue are embedded by heat and pressure at the time of sealing, and peeling due to bubbles at the adhesive interface can be prevented.
  • the sealing resin that is insufficiently cured in the sealing process is completely cured. Even if the film adhesive is not cured by heat in the sealing step, the film adhesive can be cured by heat as well as the curing of the sealing resin in this step, so that the adhesive fixation can be achieved.
  • the heating temperature in this step can be appropriately set depending on the type of the sealing resin, and may be, for example, in the range of 165 to 185° C., and the heating time may be about 0.5 to 8 hours.
  • the semiconductor element with the film adhesive adhered to the support member is heated using a reflow oven.
  • a resin-sealed semiconductor device may be surface-mounted on the support member.
  • the surface mounting method include reflow soldering in which solder is supplied in advance on a printed wiring board and then heated and melted by hot air or the like to perform soldering.
  • the heating method include hot air reflow and infrared reflow.
  • the heating method may be a method of heating the whole or a method of heating a local portion.
  • the heating temperature may be, for example, in the range of 240 to 280°C.
  • the film adhesive according to the present embodiment tends to have lower cohesive force and improved embedding property by using a specific acrylic rubber. Therefore, it is difficult for air bubbles to be caught in the semiconductor device, the air bubbles can be easily diffused in the sealing step, and peeling due to the air bubbles at the adhesive interface can be prevented.
  • A Specific epoxy resin (A1) YDCN-700-10 (trade name, Nippon Steel & Sumikin Chemical Co., Ltd., o-cresol novolac type epoxy resin, epoxy equivalent: 209 g/eq)
  • A3) EXA-830CRP (trade name, manufactured by DIC Corporation, BPF type epoxy resin, epoxy equivalent: 155 to 163 g/eq)
  • Epoxy resin other than the specific epoxy resin epoxy resin having an epoxy equivalent outside the range of 140 to 220 g/eq
  • A1 NC-3000 trade name, manufactured by Nippon Kayaku Co., Ltd., biphenylaralkyl-type epoxy resin, epoxy equivalent: 265 to 285 g/eq
  • A2 NC-2000-L trade name, manufactured by Nippon Kayaku Co., Ltd., phenylaralkyl type epoxy resin, epoxy equivalent: 229 to 244 g/eq
  • Phenolic resin other than the specific phenolic resin phenolic resin having a hydroxyl equivalent outside the range of 90 to 130 g/eq
  • B1 HE-100C-30 trade name, manufactured by Air Water Co., phenylaralkyl-type phenol resin, hydroxyl group equivalent: 174 g/eq
  • B2 MEH-7851H trade name, manufactured by Meiwa Kasei Co., Ltd., biphenylaralkyl-type phenol resin, hydroxyl equivalent: 216 g/eq
  • KH-CT-865 trade name, manufactured by Hitachi Chemical Co., Ltd., acrylic rubber containing no constitutional unit derived from acrylonitrile, weight average molecular weight: 480,000, Tg: 7° C.
  • P CN / P CO of (C3) since it does not contain a constituent unit derived from acrylonitrile, (C2) equal to or a value of P CN / P CO of less (i.e., P CN / P CO It is estimated that ⁇ 0.001).
  • the highest absorbance peak was a peak point between the two points between 1670 cm -1 and 1860 cm -1. 1670cm and -1 and a linear baseline between the two points between 1860 cm -1, and a baseline point that it is the same wave number and the peak point on the base line, the difference in absorbance of the baseline point and the peak point.
  • the height (P CO ) of the absorption peak derived from the stretching vibration of the carbonyl group was used.
  • D Inorganic filler (D1) R972 (trade name, manufactured by Nippon Aerosil Co., Ltd., silica, average particle size: 0.016 ⁇ m)
  • D2 Silica filler dispersion liquid (average particle size: 0.050 ⁇ m) in which the silica filler in YA050C (trade name, manufactured by Admatechs Co., Ltd., silica filler dispersion liquid) is surface-treated with a vinylsilane coupling agent and an alkylsilane coupling agent. )
  • D3 SC2050-HLG trade name, manufactured by Admatechs Co., Ltd., silica filler dispersion, average particle size 0.50 ⁇ m
  • E Coupling agent (E1) A-189 (trade name, manufactured by Nippon Unicar Co., Ltd., ⁇ -mercaptopropyltrimethoxysilane) (E2) A-1160 (trade name, ⁇ -ureidopropyltriethoxysilane manufactured by Nippon Unicar Co., Ltd.)
  • the produced adhesive varnish was filtered with a 100-mesh filter and vacuum degassed.
  • a polyethylene terephthalate (PET) film having a thickness of 38 ⁇ m and subjected to a release treatment was prepared, and the adhesive varnish after vacuum defoaming was applied on the PET film.
  • the applied adhesive varnish is heated and dried in two stages of 90° C. for 5 minutes and 130° C. for 5 minutes to obtain the film adhesives of Examples 1 to 4 and Comparative Examples 1 to 9 in the B stage state. Obtained.
  • the film adhesive was adjusted to have a thickness of 10 ⁇ m depending on the coating amount of the adhesive varnish.
  • NMP N-methyl-2-pyrrolidone
  • the film adhesives of Examples 1 to 4 and Comparative Examples 1 to 9 in the B stage state were further dried by heating at 170° C. for 1 hour, and the film adhesives of Examples 1 to 4 and Comparative Examples 1 to 9 in the C stage state.
  • a film adhesive was prepared.
  • the film-like adhesives (thickness: 10 ⁇ m) of Examples 1 to 4 and Comparative Examples 1 to 9 in the C stage state were cut out into circles each having a diameter of about 3 cm.
  • two silicon packing sheets having a thickness of 1.5 mm, an outer diameter of about 3 cm and an inner diameter of 1.8 cm were prepared.
  • the film adhesive cut out in a circular shape was sandwiched between two silicon packing sheets, sandwiched between the flange portions of two glass cells having a volume of 50 mL, and fixed with a rubber band.
  • a voltage was applied at an applied voltage of 24.0 V at room temperature, and measurement of the current value was started after the voltage was applied. The measurement is performed until the current value exceeds 5 ⁇ A, and the time when the current value becomes 1 ⁇ A is the copper ion permeation time.
  • the copper ion permeation time is 200 minutes or more, “A”, and the copper ion permeation time is 140 minutes. If it is less than 200 minutes, it is designated as "B”, if the copper ion permeation time is 80 minutes or more and less than 140 minutes, it is designated as "C”, and if the copper ion permeation time is less than 80 minutes, it is designated as "D”. did.
  • the obtained dicing sample was cut using Full Auto Dicer DFD-6361 (manufactured by Disco Corporation).
  • the cutting was performed by a step cut method using two blades, and a dicing blade ZH05-SD3500-N1-xx-DD and ZH05-SD4000-N1-xx-BB (both manufactured by Disco Corporation) were used.
  • the cutting conditions were a blade rotation speed of 4000 rpm, a cutting speed of 50 mm/sec, and a chip size of 7.5 mm ⁇ 7.5 mm.
  • the cutting was performed in the first step so that the semiconductor wafer remained about 30 ⁇ m, and then in the second step so that a cut of about 20 ⁇ m was formed in the dicing tape.
  • the resin-sealed semiconductor device was analyzed by an ultrasonic imaging device (SAT) (manufactured by Hitachi Construction Machinery Co., Ltd., HYE-FOCUS), and the limit time (0 hours, 1 hour, 2 hours) in which no void was generated. , Or 3 hours) was evaluated as embedding property. "A” when the limit time was 3 hours, "B” when the limit time was 2 hours, "C” when the limit time was 1 hour, and 0 hours. The case was designated as "D”. The results are shown in Table 1, Table 2 and Table 3. In this evaluation, it can be said that the longer the limit time in which voids do not occur, the better the embeddability because the embedding is possible even if a thermal history is given.
  • SAT ultrasonic imaging device
  • the die shear strength after curing was measured using the semiconductor element (semiconductor chip) with the film adhesive.
  • the semiconductor chip was thermocompression bonded onto a solder resist (Taiyo Holdings Co., Ltd., trade name: AUS-308).
  • the pressure bonding conditions were a temperature of 120° C., a time of 1 second, and a pressure of 0.1 MPa. Then, the sample obtained by pressure bonding was put into a dryer and cured at 170° C. for 1 hour.
  • the film-like adhesives of Examples 1 to 4 were all B or more in terms of copper ion permeation time, embeddability, and adhesiveness. It was superior to the film adhesives of Examples 1 to 9.
  • the film-like adhesive of the present invention was able to sufficiently suppress the defects caused by the movement of copper ions in the adhesive, and further was excellent in the adhesiveness to the substrate and the embedding property.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Adhesive Tapes (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Dicing (AREA)

Abstract

A film-form adhesive for bonding a semiconductor element and a support member for mounting the semiconductor element. This film-form adhesive contains an epoxy resin having an epoxy equivalent amount of 140-220 g/eq, a phenolic resin having a hydroxyl group equivalent amount of 90-130 g/eq, and a thermoplastic resin. The content of the thermoplastic resin is 55-75 mass% based on the total amount of the film-form adhesive.

Description

フィルム状接着剤、接着シート、並びに半導体装置及びその製造方法Film adhesive, adhesive sheet, semiconductor device, and method of manufacturing the same
 本発明は、フィルム状接着剤、接着シート、並びに半導体装置及びその製造方法に関する。 The present invention relates to a film adhesive, an adhesive sheet, a semiconductor device and a method for manufacturing the same.
 近年、半導体素子(半導体チップ)を多段に積層したスタックドMCP(Multi Chip Package)が普及しており、携帯電話、携帯オーディオ機器用のメモリ半導体パッケージ等として搭載されている。また、携帯電話等の多機能化に伴い、半導体パッケージの高速化、高密度化、高集積化等も推し進められている。これに伴い、半導体チップ回路の配線材料として銅を使用することによって高速化が図られている。また、複雑な搭載基板への接続信頼性の向上、半導体パッケージからの排熱促進の観点から、銅を素材としたリードフレーム等が使用されつつある。 In recent years, stacked MCPs (Multi Chip Packages) in which semiconductor elements (semiconductor chips) are stacked in multiple stages have become widespread, and are mounted as memory semiconductor packages for mobile phones and mobile audio devices. In addition, with the multi-functionalization of mobile phones and the like, higher speed, higher density, and higher integration of semiconductor packages are being promoted. Along with this, the speed has been increased by using copper as a wiring material for semiconductor chip circuits. Further, from the viewpoint of improving the reliability of connection to a complicated mounting board and accelerating heat exhaustion from the semiconductor package, lead frames made of copper are being used.
 しかし、銅が腐食し易い特性を有すること、及び、低コスト化の観点に基づき、回路面の絶縁性を確保するためのコート材も簡略化される場合があることから、半導体パッケージは、電気的特性を確保し難くなる傾向にある。特に、半導体チップを多段積層する半導体パッケージでは、腐食により発生した銅イオンが接着剤内部を移動し、半導体チップ内又は半導体チップ/半導体チップ間での電気信号のロスが起こり易い傾向にある。 However, since the copper has the property of being easily corroded, and the coating material for ensuring the insulating property of the circuit surface may be simplified from the viewpoint of cost reduction, the semiconductor package is electrically conductive. It tends to be difficult to secure the desired characteristics. In particular, in a semiconductor package in which semiconductor chips are stacked in multiple stages, copper ions generated by corrosion move inside the adhesive, and electrical signal loss tends to occur within the semiconductor chip or between semiconductor chips/semiconductor chips.
 また、高機能化という観点から、複雑な搭載基板へ半導体素子を接続することが多く、接続信頼性を向上するために銅を素材としたリードフレームが好まれる傾向にある。このような場合においても、リードフレームから発生する銅イオンによる電気信号のロスが問題となることがある。 Also, from the perspective of higher functionality, semiconductor elements are often connected to complex mounting boards, and lead frames made of copper tend to be preferred in order to improve connection reliability. Even in such a case, loss of an electric signal due to copper ions generated from the lead frame may be a problem.
 さらに、銅を素材とする部材を使用した半導体パッケージにおいては、その部材から銅イオンが発生し、電気的な不具合を起こす可能性が高く、充分な耐HAST性が得られないことがある。 Furthermore, in a semiconductor package that uses a member made of copper, there is a high possibility that copper ions will be generated from that member, causing an electrical failure, and sufficient HAST resistance may not be obtained.
 電気信号のロス等を防ぐ観点から、半導体パッケージ内で発生する銅イオンを捕捉する接着剤の検討が行われている。例えば、特許文献1には、エポキシ基を有し、且つ、カルボキシル基を有さない熱可塑性樹脂と、3級の窒素原子を環原子に含む複素環化合物を有し、陽イオンと錯体を形成する有機系錯体形成化合物とを有する半導体装置製造用の接着シートが開示されている。 Adhesives that capture copper ions generated in semiconductor packages are being studied from the viewpoint of preventing loss of electrical signals. For example, in Patent Document 1, a thermoplastic resin having an epoxy group and not having a carboxyl group and a heterocyclic compound containing a tertiary nitrogen atom as a ring atom are formed, and a complex is formed with a cation. There is disclosed an adhesive sheet for producing a semiconductor device, which comprises the organic complex forming compound.
特開2013-026566号公報JP, 2013-026566, A
 しかしながら、従来の接着剤では、接着剤内の銅イオンの移動に伴う不具合の抑制の点において充分でなく、未だ改善の余地がある。 However, conventional adhesives are not sufficient in terms of suppressing the problems associated with the movement of copper ions in the adhesive, and there is still room for improvement.
 そこで、本発明は、接着剤内の銅イオンの移動に伴う不具合を充分に抑制することができ、さらに基板との接着性及び埋込性に優れるフィルム状接着剤を提供することを主な目的とする。 Therefore, the present invention is mainly intended to provide a film-like adhesive that can sufficiently suppress the problems associated with the movement of copper ions in the adhesive and that is excellent in the adhesiveness and embedding property with the substrate. And
 本発明の一側面は、半導体素子と半導体素子を搭載する支持部材とを接着するためのフィルム状接着剤を提供する。当該フィルム状接着剤は、エポキシ当量が140~220g/eqであるエポキシ樹脂と、水酸基当量が90~130g/eqであるフェノール樹脂と、熱可塑性樹脂とを含有し、熱可塑性樹脂の含有量が、フィルム状接着剤全量を基準として、55~75質量%である。 One aspect of the present invention provides a film adhesive for adhering a semiconductor element and a supporting member on which the semiconductor element is mounted. The film adhesive contains an epoxy resin having an epoxy equivalent of 140 to 220 g/eq, a phenol resin having a hydroxyl equivalent of 90 to 130 g/eq, and a thermoplastic resin, and the content of the thermoplastic resin is , 55 to 75 mass% based on the total amount of the film adhesive.
 フィルム状接着剤が特定のエポキシ樹脂及び特定のフェノール樹脂を含有することによって、フィルム状接着剤の硬化物の架橋密度が高くなる傾向にある。このようにフィルム状接着剤の硬化物の架橋密度を高くすることによって、基板との接着性が向上し、さらに、外部からの銅イオン等の混入を抑制することができ、結果として、接着剤内の銅イオンの移動に伴う不具合を充分に抑制することが可能となる。また、フィルム状接着剤が、特定の含有量の熱可塑性樹脂を含有することによって、熱履歴を経ても埋込性を向上させることができ、接着界面での剥離及び基板の埋込性不足による不具合を抑制することができる。 By containing a specific epoxy resin and a specific phenol resin in the film adhesive, the crosslink density of the cured product of the film adhesive tends to increase. By increasing the cross-linking density of the cured product of the film adhesive in this manner, the adhesiveness with the substrate is improved, and further, it is possible to suppress the incorporation of copper ions and the like from the outside, and as a result, the adhesive It is possible to sufficiently suppress the problems associated with the movement of copper ions inside. In addition, the film adhesive can improve the embedding property even after undergoing a thermal history by containing a specific content of the thermoplastic resin, resulting in peeling at the adhesive interface and insufficient embedding property of the substrate. It is possible to suppress defects.
 熱可塑性樹脂は、アクリル樹脂であってよい。アクリル樹脂は、特定のアクリル樹脂を含んでいてもよい。ここで、特定のアクリル樹脂は、赤外吸収スペクトルにおいて、カルボニル基の伸縮振動に由来する吸収ピークの高さをPCO、ニトリル基の伸縮振動に由来するピークの高さをPCNとしたとき、下記式(1)の条件を満たすアクリル樹脂であり得る。
 PCN/PCO≦0.100 (1)
The thermoplastic resin may be an acrylic resin. The acrylic resin may contain a specific acrylic resin. Here, in the infrared absorption spectrum of the specific acrylic resin, the height of the absorption peak derived from the stretching vibration of the carbonyl group is P CO , and the height of the peak derived from the stretching vibration of the nitrile group is P CN. The acrylic resin may satisfy the condition of the following formula (1).
P CN /P CO ≦0.100 (1)
 フィルム状接着剤は、無機フィラーをさらに含有していてもよい。 The film adhesive may further contain an inorganic filler.
 フィルム状接着剤の厚みは、50μm以下であってよい。 The thickness of the film adhesive may be 50 μm or less.
 本発明の他の一側面は、接着シートを提供する。当該接着シートは、基材と、基材の一方の面上に設けられた上述のフィルム状接着剤とを備える。基材は、ダイシングテープであってよい。 Another aspect of the present invention provides an adhesive sheet. The adhesive sheet includes a base material and the above film adhesive provided on one surface of the base material. The substrate may be a dicing tape.
 本発明の他の一側面は、半導体装置を提供する。当該半導体装置は、半導体素子と、半導体素子を搭載する支持部材と、半導体素子及び支持部材の間に設けられ、半導体素子と支持部材とを接着する接着部材とを備え、接着部材が、上述のフィルム状接着剤の硬化物である。支持部材は、銅を素材とする部材を含んでいてよい。 Another aspect of the present invention provides a semiconductor device. The semiconductor device includes a semiconductor element, a support member on which the semiconductor element is mounted, and an adhesive member that is provided between the semiconductor element and the support member and adheres the semiconductor element and the support member, and the adhesive member is the above-mentioned member. It is a cured product of a film adhesive. The support member may include a member made of copper.
 本発明の他の一側面は、半導体装置の製造方法を提供する。半導体装置の製造方法の一態様は、上述のフィルム状接着剤を用いて、半導体素子と支持部材とを接着する工程を備える。 Another aspect of the present invention provides a method for manufacturing a semiconductor device. One aspect of a method for manufacturing a semiconductor device includes a step of adhering a semiconductor element and a supporting member using the above film adhesive.
 半導体装置の製造方法の他の一態様は、半導体ウェハに、上述の接着シートのフィルム状接着剤を貼り付ける工程と、フィルム状接着剤を貼り付けた半導体ウェハを切断することによって、複数の個片化されたフィルム状接着剤付き半導体素子を作製する工程と、フィルム状接着剤付き半導体素子を支持部材に接着する工程とを備える。当該半導体装置の製造方法は、支持部材に接着されたフィルム状接着剤付き半導体素子に対して、リフロー炉を用いて加熱する工程をさらに備えていてもよい。 Another aspect of a method for manufacturing a semiconductor device is to attach a plurality of pieces of a plurality of pieces by cutting the semiconductor wafer on which the film-like adhesive of the above-mentioned adhesive sheet is attached to the semiconductor wafer and the step of attaching the film-like adhesive. The method includes a step of producing a semiconductor element with a film-like adhesive and a step of adhering the semiconductor element with a film-like adhesive to a support member. The method for manufacturing the semiconductor device may further include a step of heating the semiconductor element with the film adhesive attached to the support member using a reflow oven.
 本発明によれば、接着剤内の銅イオンの移動に伴う不具合を充分に抑制することができ、さらに基板との接着性及び埋込性に優れるフィルム状接着剤が提供される。また、本発明によれば、このようなフィルム状接着剤を用いた接着シート及び半導体装置が提供される。さらに、本発明によれば、フィルム状接着剤又は接着シートを用いた半導体装置の製造方法が提供される。 According to the present invention, it is possible to provide a film-like adhesive that can sufficiently suppress defects caused by the movement of copper ions in the adhesive, and that is excellent in adhesiveness and embeddability with a substrate. Further, according to the present invention, an adhesive sheet and a semiconductor device using such a film adhesive are provided. Further, according to the present invention, there is provided a method for manufacturing a semiconductor device using a film adhesive or an adhesive sheet.
フィルム状接着剤の一実施形態を示す模式断面図である。It is a schematic cross section which shows one Embodiment of a film adhesive. 接着シートの一実施形態を示す模式断面図である。It is a schematic cross section which shows one Embodiment of an adhesive sheet. 接着シートの他の一実施形態を示す模式断面図である。It is a schematic cross section which shows other one Embodiment of an adhesive sheet. 接着シートの他の一実施形態を示す模式断面図である。It is a schematic cross section which shows other one Embodiment of an adhesive sheet. 接着シートの他の一実施形態を示す模式断面図である。It is a schematic cross section which shows other one Embodiment of an adhesive sheet. 半導体装置の一実施形態を示す模式断面図である。It is a schematic cross section which shows one Embodiment of a semiconductor device. 半導体装置の他の一実施形態を示す模式断面図である。It is a schematic cross section which shows other one Embodiment of a semiconductor device.
 以下、図面を適宜参照しながら、本発明の実施形態について説明する。ただし、本発明は以下の実施形態に限定されるものではない。以下の実施形態において、その構成要素(ステップ等も含む)は、特に明示した場合を除き、必須ではない。各図における構成要素の大きさは概念的なものであり、構成要素間の大きさの相対的な関係は各図に示されたものに限定されない。 An embodiment of the present invention will be described below with reference to the drawings. However, the present invention is not limited to the following embodiments. In the following embodiments, the constituent elements (including steps and the like) are not essential unless otherwise specified. The sizes of the constituent elements in each figure are conceptual, and the relative size relationships between the constituent elements are not limited to those shown in each figure.
 本明細書における数値及びその範囲についても同様であり、本発明を制限するものではない。本明細書において「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を示す。本明細書中に段階的に記載されている数値範囲において、一つの数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本明細書中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。 The same applies to the numerical values and ranges thereof in the present specification, and does not limit the present invention. In the present specification, the numerical range indicated by using "to" indicates the range including the numerical values before and after "to" as the minimum value and the maximum value, respectively. In the numerical ranges described stepwise in the present specification, the upper limit or the lower limit described in one numerical range may be replaced with the upper limit or the lower limit of the numerical range described in other stages. Good. Further, in the numerical range described in the present specification, the upper limit value or the lower limit value of the numerical range may be replaced with the value shown in the examples.
 本明細書において、(メタ)アクリレートは、アクリレート又はそれに対応するメタクリレートを意味する。(メタ)アクリロイル基、(メタ)アクリル共重合体等の他の類似表現についても同様である。 In the present specification, (meth)acrylate means acrylate or corresponding methacrylate. The same applies to other similar expressions such as a (meth)acryloyl group and a (meth)acrylic copolymer.
 一実施形態に係るフィルム状接着剤は、半導体素子と半導体素子を搭載する支持部材とを接着するためのフィルム状接着剤であって、(A)エポキシ当量が140~220g/eqであるエポキシ樹脂(以下、「特定のエポキシ樹脂」という場合がある。)と、(B)水酸基当量が90~130g/eqであるフェノール樹脂(以下、「特定のフェノール樹脂」という場合がある。)と、(C)熱可塑性樹脂とを含有する。熱可塑性樹脂の含有量は、フィルム状接着剤全量を基準として、55~75質量%である。 The film adhesive according to one embodiment is a film adhesive for adhering a semiconductor element and a supporting member on which the semiconductor element is mounted, and is (A) an epoxy resin having an epoxy equivalent of 140 to 220 g/eq. (Hereinafter, sometimes referred to as "specific epoxy resin"), and (B) a phenol resin having a hydroxyl equivalent of 90 to 130 g/eq (hereinafter sometimes referred to as "specific phenol resin"), and ( C) and a thermoplastic resin. The content of the thermoplastic resin is 55 to 75 mass% based on the total amount of the film adhesive.
 フィルム状接着剤は、(A)特定のエポキシ樹脂と、(B)特定のフェノール樹脂と、(C)熱可塑性樹脂とを含有する接着剤組成物を、フィルム状に成形することによって得ることができる。フィルム状接着剤及び接着剤組成物は、半硬化(Bステージ)状態を経て、硬化処理後に完全硬化(Cステージ)状態となり得るものであってよい。 The film adhesive can be obtained by molding an adhesive composition containing (A) a specific epoxy resin, (B) a specific phenol resin, and (C) a thermoplastic resin into a film. it can. The film adhesive and the adhesive composition may be those that can go through a semi-cured (B stage) state and then a fully cured (C stage) state after the curing treatment.
(A)成分:エポキシ当量が140~220g/eqであるエポキシ樹脂
 (A)成分は、エポキシ当量が140~220g/eqであって、分子内にエポキシ基を有するものであれば、特に制限なく用いることができる。このような(A)成分としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、ビスフェノールFノボラック型エポキシ樹脂、スチルベン型エポキシ樹脂、トリアジン骨格含有エポキシ樹脂、フルオレン骨格含有エポキシ樹脂、トリフェノールメタン型エポキシ樹脂、ビフェニル型エポキシ樹脂、キシリレン型エポキシ樹脂、ビフェニルアラルキル型エポキシ樹脂、ナフタレン型エポキシ樹脂、多官能フェノール類、アントラセン等の多環芳香族類のジグリシジルエーテル化合物などが挙げられる。これらは、1種を単独で又は2種以上を組み合わせて用いてもよい。これらの中でも、(A)成分は、フィルムのタック性、柔軟性などの観点から、クレゾールノボラック型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、又はビスフェノールA型エポキシ樹脂であってもよい。
Component (A): Epoxy resin having an epoxy equivalent of 140 to 220 g/eq. The component (A) is not particularly limited as long as it has an epoxy equivalent of 140 to 220 g/eq and has an epoxy group in the molecule. Can be used. Examples of such component (A) include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, bisphenol A novolac type epoxy resin, bisphenol. F novolac type epoxy resin, stilbene type epoxy resin, triazine skeleton containing epoxy resin, fluorene skeleton containing epoxy resin, triphenol methane type epoxy resin, biphenyl type epoxy resin, xylylene type epoxy resin, biphenyl aralkyl type epoxy resin, naphthalene type epoxy resin , Polyfunctional phenols, diglycidyl ether compounds of polycyclic aromatic compounds such as anthracene, and the like. These may be used alone or in combination of two or more. Among these, the component (A) may be a cresol novolac type epoxy resin, a phenol novolac type epoxy resin, a bisphenol F type epoxy resin, or a bisphenol A type epoxy resin from the viewpoint of tackiness and flexibility of the film. Good.
 エポキシ樹脂のエポキシ当量は、140~220g/eqである。エポキシ樹脂のエポキシ当量は、145~215g/eq又は150~210g/eqであってもよい。エポキシ樹脂のエポキシ当量がこのような範囲にあると、特定のフェノール樹脂と組み合わせたときに、得られるフィルム状接着剤の硬化物の架橋密度を高くできる傾向にある。 The epoxy equivalent of the epoxy resin is 140 to 220 g/eq. The epoxy equivalent of the epoxy resin may be 145 to 215 g/eq or 150 to 210 g/eq. When the epoxy equivalent of the epoxy resin is in such a range, when it is combined with a specific phenol resin, the cured product of the obtained film adhesive tends to have a high crosslinking density.
(B)成分:水酸基当量が90~130g/eqであるフェノール樹脂
 (B)成分は、エポキシ樹脂の硬化剤となり得るものである。(B)成分は、水酸基当量が90~130g/eqであって、分子内にフェノール性水酸基を有するものであれば特に制限なく用いることができる。このような(B)成分としては、例えば、フェノール、クレゾール、レゾルシン、カテコール、ビスフェノールA、ビスフェノールF、フェニルフェノール、アミノフェノール等のフェノール類及び/又はα-ナフトール、β-ナフトール、ジヒドロキシナフタレン等のナフトール類とホルムアルデヒド等のアルデヒド基を有する化合物とを酸性触媒下で縮合又は共縮合させて得られるノボラック型フェノール樹脂などが挙げられる。これらは、1種を単独で又は2種以上を組み合わせて用いてもよい。これらの中でも、(B)成分は、フェノールノボラック型フェノール樹脂又はナフトールアラルキル樹脂であってもよい。
Component (B): Phenolic resin having a hydroxyl equivalent of 90 to 130 g/eq. Component (B) can be a curing agent for epoxy resins. Component (B) can be used without particular limitation as long as it has a hydroxyl equivalent of 90 to 130 g/eq and has a phenolic hydroxyl group in the molecule. Examples of the component (B) include phenols such as phenol, cresol, resorcin, catechol, bisphenol A, bisphenol F, phenylphenol and aminophenol, and/or α-naphthol, β-naphthol, dihydroxynaphthalene and the like. Examples thereof include novolac type phenol resins obtained by condensation or cocondensation of naphthols and a compound having an aldehyde group such as formaldehyde under an acidic catalyst. These may be used alone or in combination of two or more. Among these, the component (B) may be a phenol novolac type phenol resin or a naphthol aralkyl resin.
 フェノール樹脂の水酸基当量は、90~130g/eqである。フェノール樹脂の水酸基当量は、95~125g/eq又は100~120g/eqであってもよい。フェノール樹脂の水酸基当量が70g/eq以上であると、特定のエポキシ樹脂と組み合わせたときに、得られるフィルム状接着剤の硬化物の架橋密度を高くできる傾向にある。 The hydroxyl equivalent of the phenol resin is 90 to 130 g/eq. The hydroxyl equivalent of the phenol resin may be 95 to 125 g/eq or 100 to 120 g/eq. If the hydroxyl equivalent of the phenolic resin is 70 g/eq or more, the crosslink density of the cured product of the obtained film adhesive tends to be high when combined with a specific epoxy resin.
 (A)成分のエポキシ当量と(B)成分の水酸基当量との比((A)成分のエポキシ当量/(B)成分の水酸基当量)は、硬化性の観点から、0.30/0.70~0.70/0.30、0.35/0.65~0.65/0.35、0.40/0.60~0.60/0.40、又は0.45/0.55~0.55/0.45であってよい。当該当量比が0.30/0.70以上であると、より充分な硬化性が得られる傾向にある。当該当量比が0.70/0.30以下であると、粘度が高くなり過ぎることを防ぐことができ、より充分な流動性を得ることができる。 From the viewpoint of curability, the ratio of the epoxy equivalent of the component (A) to the hydroxyl equivalent of the component (B) (epoxy equivalent of the component (A)/hydroxyl equivalent of the component (B)) is 0.30/0.70. ~ 0.70/0.30, 0.35/0.65 to 0.65/0.35, 0.40/0.60 to 0.60/0.40, or 0.45/0.55 to It may be 0.55/0.45. When the equivalent ratio is 0.30/0.70 or more, more sufficient curability tends to be obtained. When the equivalent ratio is 0.70/0.30 or less, it is possible to prevent the viscosity from becoming too high, and it is possible to obtain more sufficient fluidity.
 (A)成分及び(B)成分の合計の含有量は、フィルム状接着剤全量を基準として、5~45質量%、10~40質量%、又は15~30質量%であってよい。(A)成分及び(B)成分の合計の含有量が、フィルム状接着剤全量を基準として、5質量%以上であると、架橋によって弾性率が向上する傾向にある。(A)成分及び(B)成分の合計の含有量がフィルム状接着剤全量を基準として、45質量%以下であると、フィルム取扱い性を維持できる傾向にある。 The total content of the components (A) and (B) may be 5 to 45% by mass, 10 to 40% by mass, or 15 to 30% by mass based on the total amount of the film adhesive. When the total content of the components (A) and (B) is 5% by mass or more based on the total amount of the film adhesive, the elastic modulus tends to be improved by crosslinking. When the total content of the component (A) and the component (B) is 45% by mass or less based on the total amount of the film adhesive, the film handleability tends to be maintained.
(C)成分:熱可塑性樹脂
 (C)成分としては、例えば、アクリル樹脂、ポリエステル樹脂、ポリアミド樹脂、ポリイミド樹脂、シリコーン樹脂、ブタジエン樹脂;及びこれらの変性体等が挙げられる。これらは、1種を単独で又は2種以上を組み合わせて用いてもよい。(C)成分は、イオン性不純物が少なく、耐熱性が高く、半導体素子の信頼性を確保できる観点から、アクリル樹脂であってよい。ここで、アクリル樹脂は、(メタ)アクリル酸エステルに由来する構成単位を有するポリマーを意味する。アクリル樹脂は、エポキシ基、アルコール性又はフェノール性水酸基、カルボキシル基等の架橋性官能基を有する(メタ)アクリル酸エステルに由来する構成単位を含むものであってよい。
Component (C): Thermoplastic Resin Examples of the component (C) include acrylic resins, polyester resins, polyamide resins, polyimide resins, silicone resins, butadiene resins; and modified products thereof. These may be used alone or in combination of two or more. The component (C) may be an acrylic resin from the viewpoint of having few ionic impurities, high heat resistance, and ensuring the reliability of the semiconductor element. Here, the acrylic resin means a polymer having a structural unit derived from a (meth)acrylic acid ester. The acrylic resin may contain a structural unit derived from a (meth)acrylic acid ester having a crosslinkable functional group such as an epoxy group, an alcoholic or phenolic hydroxyl group, and a carboxyl group.
 アクリル樹脂は、(メタ)アクリル酸エステルに由来する構成単位を主成分として有するアクリルゴムであってよい。アクリルゴムにおける(メタ)アクリル酸エステルに由来する構成単位の含有量は、構成単位全量を基準として、例えば、70質量%以上、80質量%以上、又は90質量%以上であってよい。アクリルゴムは、エポキシ基、アルコール性又はフェノール性水酸基、カルボキシル基等の架橋性官能基を有する(メタ)アクリル酸エステルに由来する構成単位を含むものであってよい。 The acrylic resin may be an acrylic rubber having a structural unit derived from a (meth)acrylic acid ester as a main component. The content of the structural unit derived from the (meth)acrylic acid ester in the acrylic rubber may be, for example, 70% by mass or more, 80% by mass or more, or 90% by mass or more based on the total amount of the structural unit. The acrylic rubber may contain a structural unit derived from a (meth)acrylic acid ester having a crosslinkable functional group such as an epoxy group, an alcoholic or phenolic hydroxyl group, and a carboxyl group.
 アクリル樹脂は、本発明者らの検討によると、アクリル樹脂に含まれるニトリル基を少なくすることによって、接着剤内の銅イオンの移動をよりに抑制することが可能であり、埋込性にもより優れる傾向にある。そのため、アクリル樹脂は、ニトリル基の割合が少ないアクリル樹脂を含んでいてもよく、ニトリル基を含まないアクリル樹脂(すなわち、アクリルニトリルに由来する構成単位を含まないアクリル樹脂)を含んでいてもよい。 According to the studies conducted by the present inventors, the acrylic resin is capable of further suppressing the movement of copper ions in the adhesive by reducing the nitrile group contained in the acrylic resin, and also has an embedding property. Tends to be better. Therefore, the acrylic resin may contain an acrylic resin having a low proportion of nitrile groups, or may contain an acrylic resin containing no nitrile groups (that is, an acrylic resin containing no structural unit derived from acrylonitrile). ..
 アクリル樹脂は、赤外吸収スペクトルにおいて、カルボニル基の伸縮振動に由来する吸収ピークの高さをPCO、ニトリル基の伸縮振動に由来するピークの高さをPCNとしたとき、下記式(1)の条件を満たすアクリル樹脂を含んでいてもよい。
 PCN/PCO≦0.100 (1)
In the infrared absorption spectrum, the acrylic resin has the following formula (1), where P CO is the height of the absorption peak derived from the stretching vibration of the carbonyl group and P CN is the height of the peak derived from the stretching vibration of the nitrile group. ) Acrylic resin satisfying the condition of 1) may be included.
P CN /P CO ≦0.100 (1)
 ここで、カルボニル基は主に構成単位である(メタ)アクリル酸エステルに由来するものであり、ニトリル基は主に構成単位であるアクリルニトリルに由来するものである。なお、カルボニル基の伸縮振動に由来する吸収ピークの高さ(PCO)及びニトリル基の伸縮振動に由来するピークの高さ(PCN)は、実施例で定義されるものを意味する。 Here, the carbonyl group is mainly derived from the structural unit (meth)acrylic acid ester, and the nitrile group is mainly derived from the structural unit acrylonitrile. The height of the absorption peak derived from the stretching vibration of the carbonyl group (P CO ) and the height of the peak derived from the stretching vibration of the nitrile group (P CN ) are defined in the examples.
 PCN/PCOが小さいことは、アクリル樹脂において、アクリルニトリルに由来する構成単位が少ないことを意味する。そのため、アクリルニトリルに由来する構成単位を含まないアクリル樹脂は、理論上、PCN/PCOが0に近い数値を示し、式(1)の条件を満たし得る。 A small P CN /P CO means that the acrylic resin has a small number of structural units derived from acrylonitrile. Therefore, an acrylic resin that does not include a structural unit derived from acrylonitrile theoretically has a numerical value of P CN /P CO close to 0 and can satisfy the condition of the formula (1).
 PCN/PCOは、0.100以下であってよく、0.095以下、0.090以下、0.085以下、0.080以下、0.075以下、0.070以下、0.065以下、0.060以下、0.055以下、0.050以下、0.040以下、0.030以下、0.020以下、又は0.010以下であってよい。PCN/PCOが0.100以下であると、接着剤内の銅イオンの移動(透過)を充分に抑制することが可能となり得る。また、PCN/PCOの値が小さくなるにつれて、接着剤内の銅イオンの移動(透過)をより充分に抑制することができる。また、PCN/PCOの値が小さくなるにつれて、アクリル樹脂の凝集力が低下するため、埋込性もより優れる傾向にある。アクリル樹脂は、このような要件を満たすアクリル樹脂を2種以上組み合わせて用いてもよい。 P CN / P CO may be 0.100 or less, 0.095 or less, 0.090 or less, 0.085 or less, 0.080 or less, 0.075 or less, 0.070 or less, 0.065 or less , 0.060 or less, 0.055 or less, 0.050 or less, 0.040 or less, 0.030 or less, 0.020 or less, or 0.010 or less. When P CN /P CO is 0.100 or less, it may be possible to sufficiently suppress the movement (permeation) of copper ions in the adhesive. Further, it is possible as the value of P CN / P CO decreases, more sufficiently suppressed migration of copper ions in the adhesive (transparent). Also, as the value of P CN / P CO is reduced, to lower the cohesive force of the acrylic resin tends to be buried resistance more excellent. As the acrylic resin, two or more kinds of acrylic resins satisfying such requirements may be used in combination.
 (C)成分のガラス転移温度(Tg)は、-50~50℃又は-30~30℃であってよい。(C)成分のTgが-50℃以上であると、接着剤の柔軟性が高くなり過ぎることを防ぐことができる傾向にある。これにより、ウェハダイシング時にフィルム状接着剤を切断し易くなり、バリの発生を防ぐことが可能となる。(C)成分のTgが50℃以下であると、接着剤の柔軟性の低下を抑制できる傾向にある。これによって、フィルム状接着剤をウェハに貼り付ける際に、ボイドを充分に埋め込み易くなる傾向にある。また、ウェハの密着性の低下によるダイシング時のチッピングを防ぐことが可能となる。ここで、ガラス転移温度(Tg)は、DSC(熱示差走査熱量計)(例えば、株式会社リガク製、Thermo Plus 2)を用いて測定した値を意味する。 The glass transition temperature (Tg) of the component (C) may be -50 to 50°C or -30 to 30°C. When the Tg of the component (C) is −50° C. or higher, it tends to be possible to prevent the flexibility of the adhesive from becoming too high. As a result, the film adhesive can be easily cut during wafer dicing, and burrs can be prevented from occurring. When the Tg of the component (C) is 50° C. or less, the flexibility of the adhesive tends to be suppressed from decreasing. This tends to make it easier to fill voids when the film adhesive is attached to the wafer. In addition, it becomes possible to prevent chipping at the time of dicing due to deterioration of the adhesiveness of the wafer. Here, the glass transition temperature (Tg) means a value measured using DSC (Thermal Differential Scanning Calorimeter) (for example, Thermo Plus 2 manufactured by Rigaku Corporation).
 (C)成分の重量平均分子量(Mw)は、10万~300万又は20万~200万であってよい。(C)成分のMwがこのような範囲にあると、フィルム形成性、フィルム状における強度、可撓性、タック性等を適切に制御することができるとともに、リフロー性に優れ、埋め込み性を向上することができる。ここで、Mwは、ゲルパーミエーションクロマトグラフィー(GPC)で測定し、標準ポリスチレンによる検量線を用いて換算した値を意味する。 The weight average molecular weight (Mw) of the component (C) may be 100,000 to 3,000,000 or 200,000 to 2,000,000. When the Mw of the component (C) is in such a range, the film formability, strength in film form, flexibility, tackiness and the like can be appropriately controlled, and the reflow property is excellent and the embedding property is improved. can do. Here, Mw means a value measured by gel permeation chromatography (GPC) and converted using a calibration curve based on standard polystyrene.
 (C)成分(アクリルゴム)の市販品としては、例えば、SG-P3、SG-80H、HTR-860P-3CSP(いずれもナガセケムテックス株式会社製)が挙げられる。アクリルニトリルに由来する構成単位を含まない(C)成分(アクリルゴム)の市販品としては、例えば、KH-CT-865(日立化成株式会社製)等が挙げられる。 Examples of commercially available products of the component (C) (acrylic rubber) include SG-P3, SG-80H, HTR-860P-3CSP (all manufactured by Nagase ChemteX Corporation). Examples of commercially available products of component (C) (acrylic rubber) that does not contain a structural unit derived from acrylonitrile include KH-CT-865 (manufactured by Hitachi Chemical Co., Ltd.).
 (C)成分の含有量は、フィルム状接着剤全量を基準として、55~75質量%であり、57質量%以上又は60質量%以上であってよく、73質量%以下又は70質量%以下であってよい。(C)成分の含有量が、フィルム状接着剤全量を基準として、55質量%以上であると、熱履歴が加わった後の埋め込み性が向上する傾向にある。(C)成分の含有量が、フィルム状接着剤全量を基準として、75質量%以下であると、充分な接着性が確保できる傾向にある。 The content of the component (C) is 55 to 75 mass% based on the total amount of the film adhesive, and may be 57 mass% or more or 60 mass% or more, and 73 mass% or less or 70 mass% or less. You can When the content of the component (C) is 55% by mass or more based on the total amount of the film adhesive, the embedding property after the heat history is applied tends to be improved. When the content of the component (C) is 75% by mass or less based on the total amount of the film adhesive, sufficient adhesiveness tends to be secured.
(D)成分:無機フィラー
 フィルム状接着剤は、(D)無機フィラーをさらに含有していてもよい。(D)成分としては、例えば、水酸化アルミニウム、水酸化マグネシウム、炭酸カルシウム、炭酸マグネシウム、ケイ酸カルシウム、ケイ酸マグネシウム、酸化カルシウム、酸化マグネシウム、酸化アルミニウム、窒化アルミニウム、ホウ酸アルミウィスカ、窒化ホウ素、シリカ等が挙げられる。これらは、1種を単独で又は2種以上を組み合わせて用いてもよい。これらは、シランカップリング剤等の表面処理剤で表面処理されていてもよい。これらの中でも、(D)成分は、溶融粘度の調整の観点から、シリカであってもよい。(D)成分の形状は、特に制限されないが、球状であってよい。
Component (D): Inorganic filler The film adhesive may further contain (D) an inorganic filler. Examples of the component (D) include aluminum hydroxide, magnesium hydroxide, calcium carbonate, magnesium carbonate, calcium silicate, magnesium silicate, calcium oxide, magnesium oxide, aluminum oxide, aluminum nitride, aluminum borate whiskers, and boron nitride. , Silica and the like. These may be used alone or in combination of two or more. These may be surface-treated with a surface treatment agent such as a silane coupling agent. Among these, the component (D) may be silica from the viewpoint of adjusting the melt viscosity. The shape of the component (D) is not particularly limited, but may be spherical.
 (D)成分の平均粒径は、流動性の観点から、0.01~1μm、0.01~0.08μm、又は0.03~0.06μmであってよい。ここで、平均粒径は、BET比表面積から換算することによって求められる値を意味する。 The average particle size of the component (D) may be 0.01 to 1 μm, 0.01 to 0.08 μm, or 0.03 to 0.06 μm from the viewpoint of fluidity. Here, the average particle diameter means a value obtained by converting from the BET specific surface area.
 (D)成分の含有量は、フィルム状接着剤全量を基準として、0.1~50質量%、0.1~30質量%、又は0.1~20質量%であってよい。 The content of the component (D) may be 0.1 to 50% by mass, 0.1 to 30% by mass, or 0.1 to 20% by mass based on the total amount of the film adhesive.
 フィルム状接着剤(接着剤組成物)は、(E)カップリング剤、(F)硬化促進剤等をさらに含有していてもよい。 The film adhesive (adhesive composition) may further contain (E) a coupling agent, (F) a curing accelerator and the like.
(E)成分:カップリング剤
 (E)成分は、シランカップリング剤であってよい。シランカップリング剤としては、例えば、γ-ウレイドプロピルトリエトキシシラン、γ-メルカプトプロピルトリメトキシシラン、3-フェニルアミノプロピルトリメトキシシラン、3-(2-アミノエチル)アミノプロピルトリメトキシシラン等が挙げられる。これらは、1種を単独で又は2種以上を組み合わせて用いてもよい。
Component (E): Coupling Agent The component (E) may be a silane coupling agent. Examples of the silane coupling agent include γ-ureidopropyltriethoxysilane, γ-mercaptopropyltrimethoxysilane, 3-phenylaminopropyltrimethoxysilane, and 3-(2-aminoethyl)aminopropyltrimethoxysilane. To be These may be used alone or in combination of two or more.
(F)成分:硬化促進剤
 (F)成分は、特に限定されず、一般に使用されるものを用いることができる。(F)成分としては、例えば、イミダゾール類及びその誘導体、有機リン系化合物、第二級アミン類、第三級アミン類、第四級アンモニウム塩等が挙げられる。これらは、1種を単独で又は2種以上を組み合わせて用いてもよい。これらの中でも、反応性の観点から、(F)成分は、イミダゾール類及びその誘導体であってもよい。
Component (F): Curing Accelerator The component (F) is not particularly limited, and those generally used can be used. Examples of the component (F) include imidazoles and their derivatives, organic phosphorus compounds, secondary amines, tertiary amines, and quaternary ammonium salts. These may be used alone or in combination of two or more. Among these, the component (F) may be an imidazole or a derivative thereof from the viewpoint of reactivity.
 イミダゾール類としては、例えば、2-メチルイミダゾール、1-ベンジル-2-メチルイミダゾール、1-シアノエチル-2-フェニルイミダゾール、1-シアノエチル-2-メチルイミダゾール等が挙げられる。これらは、1種を単独で又は2種以上を組み合わせて用いてもよい。 Examples of the imidazoles include 2-methylimidazole, 1-benzyl-2-methylimidazole, 1-cyanoethyl-2-phenylimidazole, 1-cyanoethyl-2-methylimidazole and the like. These may be used alone or in combination of two or more.
 フィルム状接着剤(接着剤組成物)は、その他の成分をさらに含有していてもよい。その他の成分としては、例えば、顔料、イオン補捉剤、酸化防止剤等が挙げられる。 The film adhesive (adhesive composition) may further contain other components. Other components include, for example, pigments, ion scavengers, antioxidants and the like.
 (E)成分、(F)成分、及びその他の成分の含有量は、フィルム状接着剤全量を基準として、0~30質量%であってよい。 The content of the component (E), the component (F), and other components may be 0 to 30 mass% based on the total amount of the film adhesive.
 図1は、フィルム状接着剤の一実施形態を示す模式断面図である。図1に示すフィルム状接着剤1(接着フィルム)は、接着剤組成物をフィルム状に成形したものである。フィルム状接着剤1は、半硬化(Bステージ)状態であってよい。このようなフィルム状接着剤1は、接着剤組成物を支持フィルムに塗布することによって形成することができる。接着剤組成物のワニス(接着剤ワニス)を用いる場合は、(A)成分及び(B)成分、並びに必要に応じて添加される他の成分を溶剤中で混合し、混合液を混合又は混練して接着剤ワニスを調製し、接着剤ワニスを支持フィルムに塗布し、溶剤を加熱乾燥して除去することによってフィルム状接着剤1を形成することができる。 FIG. 1 is a schematic cross-sectional view showing an embodiment of a film adhesive. The film adhesive 1 (adhesive film) shown in FIG. 1 is obtained by molding an adhesive composition into a film. The film adhesive 1 may be in a semi-cured (B stage) state. Such a film adhesive 1 can be formed by applying an adhesive composition to a support film. When the varnish of the adhesive composition (adhesive varnish) is used, the components (A) and (B), and other components that are added as necessary are mixed in a solvent, and the mixed liquid is mixed or kneaded. Thus, the adhesive varnish is prepared, the adhesive varnish is applied to the support film, and the solvent is heated and dried to remove the adhesive to form the film adhesive 1.
 支持フィルムは、上記の加熱乾燥に耐えるものであれば特に限定されないが、例えば、ポリエステルフィルム、ポリプロピレンフィルム、ポリエチレンテレフタレートフィルム、ポリイミドフィルム、ポリエーテルイミドフィルム、ポリエーテルナフタレートフィルム、ポリメチルペンテンフィルム等であってよい。基材2は、2種以上を組み合わせた多層フィルムであってもよく、表面がシリコーン系、シリカ系等の離型剤などで処理されたものであってもよい。支持フィルムの厚みは、例えば、10~200μm又は20~170μmであってよい。 The support film is not particularly limited as long as it can withstand the above heat drying, for example, polyester film, polypropylene film, polyethylene terephthalate film, polyimide film, polyetherimide film, polyether naphthalate film, polymethylpentene film, etc. May be The base material 2 may be a multilayer film in which two or more kinds are combined, and the surface thereof may be treated with a release agent such as a silicone-based or silica-based release agent. The thickness of the support film may be, for example, 10 to 200 μm or 20 to 170 μm.
 混合又は混練は、通常の撹拌機、らいかい機、三本ロール、ボールミル等の分散機を用いて、行うことができる。これらを適宜組み合わせてもよい。 Mixing or kneading can be performed using a disperser such as an ordinary stirrer, raider, triple roll, ball mill and the like. You may combine these suitably.
 接着剤ワニスの調製に用いられる溶剤は、各成分を均一に溶解、混練または分散できるものであれば制限はなく、従来公知のものを使用することができる。このような溶剤としては、例えば、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン系溶媒、ジメチルホルムアミド、ジメチルアセトアミド、Nメチルピロリドン、トルエン、キシレン等が挙げられる。溶剤は、乾燥速度及び価格の点でメチルエチルケトン、シクロヘキサノン等であってよい。 The solvent used for preparing the adhesive varnish is not limited as long as it can uniformly dissolve, knead or disperse each component, and conventionally known solvents can be used. Examples of such a solvent include ketone solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone, dimethylformamide, dimethylacetamide, N-methylpyrrolidone, toluene, xylene, and the like. The solvent may be methyl ethyl ketone, cyclohexanone or the like in terms of drying speed and price.
 接着剤ワニスを支持フィルムに塗布する方法としては、公知の方法を用いることができ、例えば、ナイフコート法、ロールコート法、スプレーコート法、グラビアコート法、バーコート法、カーテンコート法等が挙げられる。加熱乾燥の条件は、使用した溶剤が充分に揮散する条件であれば特に制限はないが、50~150℃で、1~30分間加熱して行うことができる。 As a method of applying the adhesive varnish to the support film, a known method can be used, and examples thereof include a knife coating method, a roll coating method, a spray coating method, a gravure coating method, a bar coating method, and a curtain coating method. To be The heating and drying conditions are not particularly limited as long as the solvent used is sufficiently volatilized, but heating and drying can be performed at 50 to 150° C. for 1 to 30 minutes.
 フィルム状接着剤の厚みは、50μm以下であってよい。フィルム状接着剤の厚みが50μm以下であると、通常、半導体素子と半導体素子を搭載する支持部材との距離が近くなるため、銅イオンによる不具合が発生し易くなる傾向にある。本実施形態に係るフィルム状接着剤は、接着剤内の銅イオンの移動(透過)を充分に抑制することが可能であることから、その厚みを50μm以下とすることが可能となる。フィルム状接着剤1の厚みは、40μm以下、30μm以下、20μm以下、又は15μm以下であってもよい。フィルム状接着剤1の厚みの下限は、特に制限されないが、例えば、1μm以上とすることができる。 The thickness of the film adhesive may be 50 μm or less. When the thickness of the film adhesive is 50 μm or less, the distance between the semiconductor element and the supporting member on which the semiconductor element is mounted is usually short, and defects due to copper ions tend to occur easily. Since the film adhesive according to the present embodiment can sufficiently suppress the movement (permeation) of copper ions in the adhesive, it is possible to set the thickness to 50 μm or less. The thickness of the film adhesive 1 may be 40 μm or less, 30 μm or less, 20 μm or less, or 15 μm or less. The lower limit of the thickness of the film adhesive 1 is not particularly limited, but can be, for example, 1 μm or more.
 図2は、接着シートの一実施形態を示す模式断面図である。図2に示す接着シート100は、基材2と、基材2上に設けられたフィルム状接着剤1とを備える。図3は、接着シートの他の一実施形態を示す模式断面図である。図3に示す接着シート110は、基材2と、基材2上に設けられたフィルム状接着剤1と、フィルム状接着剤1の基材2とは反対側の面に設けられたカバーフィルム3とを備える。 FIG. 2 is a schematic cross-sectional view showing an embodiment of the adhesive sheet. The adhesive sheet 100 shown in FIG. 2 includes a base material 2 and a film adhesive 1 provided on the base material 2. FIG. 3 is a schematic cross-sectional view showing another embodiment of the adhesive sheet. The adhesive sheet 110 shown in FIG. 3 includes a base material 2, a film adhesive 1 provided on the base material 2, and a cover film provided on the surface of the film adhesive 1 opposite to the base material 2. 3 and 3.
 基材2は、特に制限されないが、基材フィルムであってよい。基材フィルムは、上述の支持フィルムと同様のものであってよい。 The base material 2 is not particularly limited, but may be a base material film. The base film may be similar to the support film described above.
 カバーフィルム3は、フィルム状接着剤の損傷又は汚染を防ぐために用いられ、例えば、ポリエチレンフィルム、ポリプロピレンフィルム、表面はく離剤処理フィルム等であってよい。カバーフィルム3の厚みは、例えば、15~200μm又は70~170μmであってよい。 The cover film 3 is used to prevent damage or contamination of the film adhesive, and may be, for example, a polyethylene film, a polypropylene film, a surface release agent-treated film, or the like. The thickness of the cover film 3 may be, for example, 15 to 200 μm or 70 to 170 μm.
 接着シート100、110は、上述のフィルム状接着剤を形成する方法と同様に、接着剤組成物を基材フィルムに塗布することによって形成することができる。接着剤組成物を基材2に塗布する方法は、上述の接着剤組成物を支持フィルムに塗布する方法と同様であってよい。 The adhesive sheets 100 and 110 can be formed by applying an adhesive composition to a base film, similarly to the method of forming a film adhesive described above. The method of applying the adhesive composition to the substrate 2 may be the same as the method of applying the adhesive composition to the support film.
 接着シート110は、さらにフィルム状接着剤1にカバーフィルム3を積層させることによって得ることができる。 The adhesive sheet 110 can be obtained by further laminating the cover film 3 on the film adhesive 1.
 接着シート100、110は、予め作製したフィルム状接着剤を用いて形成してもよい。この場合、接着シート100は、ロールラミネーター、真空ラミネーター等を用いて所定条件(例えば、室温(20℃)又は加熱状態)でラミネートすることによって形成することができる。接着シート100は、連続的に製造ができ、効率に優れることから、加熱状態でロールラミネーターを用いて形成してもよい。 The adhesive sheets 100 and 110 may be formed by using a film-shaped adhesive agent prepared in advance. In this case, the adhesive sheet 100 can be formed by laminating under a predetermined condition (for example, room temperature (20° C.) or a heated state) using a roll laminator, a vacuum laminator, or the like. Since the adhesive sheet 100 can be continuously manufactured and is excellent in efficiency, it may be formed using a roll laminator in a heated state.
 接着シートの他の実施形態は、基材2がダイシングテープであるダイシング・ダイボンディング一体型接着シートである。ダイシング・ダイボンディング一体型接着シートを用いると、半導体ウェハへのラミネート工程が1回となることから、作業の効率化が可能である。 Another embodiment of the adhesive sheet is a dicing/die bonding integrated adhesive sheet in which the base material 2 is a dicing tape. When the dicing/die-bonding integrated adhesive sheet is used, the process of laminating on the semiconductor wafer is performed once, so that the work efficiency can be improved.
 ダイシングテープとしては、例えば、ポリテトラフルオロエチレンフィルム、ポリエチレンテレフタレートフィルム、ポリエチレンフィルム、ポリプロピレンフィルム、ポリメチルペンテンフィルム、ポリイミドフィルム等のプラスチックフィルムなどが挙げられる。また、ダイシングテープは、必要に応じて、プライマー塗布、UV処理、コロナ放電処理、研磨処理、エッチング処理等の表面処理が行われていてもよい。ダイシングテープは、粘着性を有するものであってもよい。このようなダイシングテープは、上述のプラスチックフィルムに粘着性を付与したものであってよく、上述のプラスチックフィルムの片面に粘着剤層を設けたものであってよい。粘着剤層は、感圧型又は放射線硬化型のいずれであってもよく、ダイシング時には半導体素子が飛散しない充分な粘着力を有し、その後の半導体素子のピックアップ工程においては半導体素子を傷つけない程度の低い粘着力を有するものであれば特に制限されず、従来公知のものを使用することができる。 Examples of the dicing tape include plastic films such as polytetrafluoroethylene film, polyethylene terephthalate film, polyethylene film, polypropylene film, polymethylpentene film and polyimide film. The dicing tape may be subjected to surface treatment such as primer coating, UV treatment, corona discharge treatment, polishing treatment, and etching treatment, if necessary. The dicing tape may have adhesiveness. Such a dicing tape may be one in which the above-mentioned plastic film is provided with tackiness, or one in which the above-mentioned plastic film is provided with an adhesive layer. The pressure-sensitive adhesive layer may be either a pressure-sensitive type or a radiation-curable type, has a sufficient adhesive force so that the semiconductor element does not scatter during dicing, and does not damage the semiconductor element in the subsequent semiconductor element pickup step. There is no particular limitation as long as it has a low adhesive force, and conventionally known ones can be used.
 ダイシングテープの厚みは、経済性及びフィルムの取扱い性の観点から、60~150μm又は70~130μmであってよい。 The thickness of the dicing tape may be 60 to 150 μm or 70 to 130 μm from the viewpoints of economy and handleability of the film.
 このようなダイシング・ダイボンディング一体型接着シートとしては、例えば、図4に示される構成を有するもの、図5に示される構成を有するもの等が挙げられる。図4は、接着シートの他の一実施形態を示す模式断面図である。図5は、接着シートの他の一実施形態を示す模式断面図である。図4に示す接着シート120は、ダイシングテープ7、粘着剤層6、及びフィルム状接着剤1をこの順に備える。図5に示す接着シート130は、ダイシングテープ7と、ダイシングテープ7上に設けられたフィルム状接着剤1とを備える。 Examples of such a dicing/die-bonding integrated adhesive sheet include those having the configuration shown in FIG. 4 and those having the configuration shown in FIG. FIG. 4 is a schematic cross-sectional view showing another embodiment of the adhesive sheet. FIG. 5 is a schematic cross-sectional view showing another embodiment of the adhesive sheet. The adhesive sheet 120 shown in FIG. 4 includes the dicing tape 7, the adhesive layer 6, and the film adhesive 1 in this order. The adhesive sheet 130 shown in FIG. 5 includes the dicing tape 7 and the film adhesive 1 provided on the dicing tape 7.
 接着シート120は、例えば、ダイシングテープ7上に粘着剤層6を設け、さらに粘着剤層6上にフィルム状接着剤1を積層させることによって得ることができる。接着シート130は、例えば、ダイシングテープ7とフィルム状接着剤1とを貼り合わせることによって得ることができる。 The adhesive sheet 120 can be obtained, for example, by providing the pressure-sensitive adhesive layer 6 on the dicing tape 7 and further laminating the film adhesive 1 on the pressure-sensitive adhesive layer 6. The adhesive sheet 130 can be obtained, for example, by bonding the dicing tape 7 and the film adhesive 1 together.
 フィルム状接着剤及び接着シートは、半導体装置の製造に用いられるものであってよく、半導体ウェハ又はすでに小片化されている半導体素子(半導体チップ)に、フィルム状接着剤及びダイシングテープを0℃~90℃で貼り合わせた後、回転刃、レーザー又は伸張による分断でフィルム状接着剤付き半導体素子を得た後、当該フィルム状接着剤付き半導体素子を、有機基板、リードフレーム、又は他の半導体素子上に接着する工程を含む半導体装置の製造に用いられるものであってよい。 The film-like adhesive and the adhesive sheet may be used for manufacturing a semiconductor device, and the film-like adhesive and the dicing tape may be applied to a semiconductor wafer or a semiconductor element (semiconductor chip) that has already been cut into small pieces at 0° C. After bonding at 90° C., a semiconductor element with a film adhesive is obtained by cutting with a rotary blade, a laser or stretching, and then the semiconductor element with the film adhesive is applied to an organic substrate, a lead frame, or another semiconductor element. It may be used in the manufacture of a semiconductor device including a step of adhering on.
 半導体ウェハとしては、例えば、単結晶シリコン、多結晶シリコン、各種セラミック、ガリウムヒ素等の化合物半導体などが挙げられる。 Examples of semiconductor wafers include single crystal silicon, polycrystalline silicon, various ceramics, and compound semiconductors such as gallium arsenide.
 フィルム状接着剤及び接着シートは、IC、LSI等の半導体素子と、42アロイリードフレーム、銅リードフレーム等のリードフレーム;ポリイミド樹脂、エポキシ樹脂等のプラスチックフィルム;ガラス不織布等基材にポリイミド樹脂、エポキシ樹脂等のプラスチックを含浸、硬化させたもの;アルミナ等のセラミックス等の半導体搭載用支持部材などとを貼り合せるためのダイボンディング用接着剤として用いることができる。 The film adhesive and the adhesive sheet include semiconductor elements such as IC and LSI, lead frames such as 42 alloy lead frame and copper lead frame; plastic films such as polyimide resin and epoxy resin; It can be used as a die-bonding adhesive for bonding a plastic impregnated and cured with an epoxy resin or the like; a semiconductor mounting support member such as ceramics such as alumina or the like.
 フィルム状接着剤及び接着シートは、複数の半導体素子を積み重ねた構造のStacked-PKGにおいて、半導体素子と半導体素子とを接着するための接着剤としても好適に用いられる。この場合、一方の半導体素子が、半導体素子を搭載する支持部材となる。 The film adhesive and the adhesive sheet are also suitably used as an adhesive for adhering semiconductor elements to each other in a Stacked-PKG having a structure in which a plurality of semiconductor elements are stacked. In this case, one semiconductor element serves as a support member on which the semiconductor element is mounted.
 フィルム状接着剤及び接着シートは、例えば、フリップチップ型半導体装置の半導体素子の裏面を保護する保護シート、フリップチップ型半導体装置の半導体素子の表面と被着体との間を封止するための封止シート等としても用いることできる。 The film adhesive and the adhesive sheet are, for example, a protective sheet for protecting the back surface of the semiconductor element of the flip-chip type semiconductor device, and a material for sealing between the surface of the semiconductor element of the flip-chip type semiconductor device and the adherend. It can also be used as a sealing sheet or the like.
 フィルム状接着剤を用いて製造された半導体装置について、図面を用いて具体的に説明する。なお、近年は様々な構造の半導体装置が提案されており、本実施形態に係るフィルム状接着剤の用途は、以下に説明する構造の半導体装置に限定されるものではない。 A semiconductor device manufactured using a film adhesive will be specifically described with reference to the drawings. Note that semiconductor devices having various structures have been proposed in recent years, and the application of the film adhesive according to the present embodiment is not limited to the semiconductor device having the structure described below.
 図6は、半導体装置の一実施形態を示す模式断面図である。図6に示す半導体装置200は、半導体素子9と、半導体素子9を搭載する支持部材10と、半導体素子9及び支持部材10の間に設けられ、半導体素子9と支持部材10とを接着する接着部材(フィルム状接着剤の硬化物1c)とを備える。半導体素子9の接続端子(図示せず)はワイヤ11を介して外部接続端子(図示せず)と電気的に接続され、封止材12によって封止されている。 FIG. 6 is a schematic sectional view showing an embodiment of a semiconductor device. The semiconductor device 200 shown in FIG. 6 is provided between the semiconductor element 9, the supporting member 10 on which the semiconductor element 9 is mounted, the semiconductor element 9 and the supporting member 10, and is an adhesive for bonding the semiconductor element 9 and the supporting member 10. And a member (cured product 1c of film adhesive). A connection terminal (not shown) of the semiconductor element 9 is electrically connected to an external connection terminal (not shown) via a wire 11 and sealed by a sealing material 12.
 図7は、半導体装置の他の一実施形態を示す模式断面図である。図7に示す半導体装置210において、一段目の半導体素子9aは、接着部材(フィルム状接着剤の硬化物1c)によって、端子13が形成された支持部材10に接着され、一段目の半導体素子9a上にさらに接着部材(フィルム状接着剤の硬化物1c)によって二段目の半導体素子9bが接着されている。一段目の半導体素子9a及び二段目の半導体素子9bの接続端子(図示せず)は、ワイヤ11を介して外部接続端子と電気的に接続され、封止材12によって封止されている。このように、本実施形態に係るフィルム状接着剤は、半導体素子を複数重ねる構造の半導体装置にも好適に使用できる。 FIG. 7 is a schematic cross-sectional view showing another embodiment of the semiconductor device. In the semiconductor device 210 shown in FIG. 7, the first-stage semiconductor element 9a is bonded to the support member 10 on which the terminals 13 are formed by an adhesive member (cured material 1c of film adhesive), and the first-stage semiconductor element 9a. The semiconductor element 9b of the second stage is further adhered to the top by an adhesive member (cured product 1c of film adhesive). The connection terminals (not shown) of the semiconductor element 9 a in the first stage and the semiconductor element 9 b in the second stage are electrically connected to the external connection terminals via the wires 11 and sealed by the sealing material 12. As described above, the film adhesive according to the present embodiment can be suitably used for a semiconductor device having a structure in which a plurality of semiconductor elements are stacked.
 図6及び図7に示す半導体装置(半導体パッケージ)は、例えば、半導体素子と支持部材との間又は半導体素子と半導体素子との間にフィルム状接着剤を介在させ、これらを加熱圧着して両者を接着させ、その後、必要に応じてワイヤーボンディング工程、封止材による封止工程、はんだによるリフローを含む加熱溶融工程等を経ることによって得られる。加熱圧着工程における加熱温度は、通常、20~250℃、荷重は、通常、0.1~200Nであり、加熱時間は、通常、0.1~300秒間である。 The semiconductor device (semiconductor package) shown in FIGS. 6 and 7 has, for example, a film adhesive interposed between the semiconductor element and the support member or between the semiconductor element and the two by heat-pressing them. Are bonded, and then, if necessary, a wire bonding step, a sealing step with a sealing material, a heating and melting step including reflow with solder, and the like. The heating temperature in the thermocompression bonding step is usually 20 to 250° C., the load is usually 0.1 to 200 N, and the heating time is usually 0.1 to 300 seconds.
 半導体素子と支持部材との間又は半導体素子と半導体素子との間にフィルム状接着剤を介在させる方法としては、上述したように、予めフィルム状接着剤付半導体素子を作製した後、支持部材又は半導体素子に貼り付ける方法であってよい。 As a method for interposing a film adhesive between the semiconductor element and the supporting member or between the semiconductor element and the semiconductor element, as described above, after the film-shaped adhesive-attached semiconductor element is prepared in advance, the supporting member or It may be a method of attaching to a semiconductor element.
 支持部材は、銅を素材とする部材を含むものであってよい。本実施形態に係る半導体装置は、フィルム状接着剤の硬化物1cによって半導体素子と支持部材とが接着されているため、半導体装置の構成部材として銅を素材とする部材を用いている場合であっても、当該部材から発生する銅イオンの影響を低減することができ、銅イオンに起因する電気的な不具合の発生を充分に抑制することができる。 The support member may include a member made of copper. In the semiconductor device according to the present embodiment, since the semiconductor element and the supporting member are bonded to each other by the cured product 1c of the film adhesive, a case where a member made of copper is used as a constituent member of the semiconductor device. However, it is possible to reduce the influence of copper ions generated from the member, and it is possible to sufficiently suppress the occurrence of electrical defects due to copper ions.
 ここで、銅を素材とする部材としては、例えば、リードフレーム、配線、ワイヤ、放熱材等が挙げられるが、いずれの部材に銅を用いた場合でも、銅イオンの影響を低減することが可能である。 Here, as the member made of copper, for example, a lead frame, a wiring, a wire, a heat dissipating material, etc. can be mentioned, but even if copper is used for any member, the influence of copper ions can be reduced. Is.
 次に、図4に示すダイシング・ダイボンディング一体型接着シートを用いた場合における半導体装置の製造方法の一実施形態について説明する。なお、ダイシング・ダイボンディング一体型接着シートによる半導体装置の製造方法は、以下に説明する半導体装置の製造方法に限定されるものではない。 Next, an embodiment of a method for manufacturing a semiconductor device using the dicing/die-bonding integrated adhesive sheet shown in FIG. 4 will be described. The method of manufacturing a semiconductor device using the dicing/die-bonding integrated adhesive sheet is not limited to the method of manufacturing a semiconductor device described below.
 まず、接着シート120(ダイシング・ダイボンディング一体型接着シート)におけるフィルム状接着剤1に半導体ウェハを圧着し、これを接着保持させて固定する(マウント工程)。本工程は、圧着ロール等の押圧手段によって押圧しながら行ってもよい。 First, a semiconductor wafer is pressure-bonded to the film-like adhesive 1 on the adhesive sheet 120 (adhesive sheet with integrated dicing and die bonding), and this is adhesively held and fixed (mounting step). This step may be performed while pressing with a pressing means such as a pressure roll.
 次に、半導体ウェハのダイシングを行う。これにより、半導体ウェハを所定のサイズに切断して、複数の個片化されたフィルム状接着剤付き半導体素子(半導体チップ)を製造する。ダイシングは、例えば、半導体ウェハの回路面側から常法に従って行うことができる。また、本工程では、例えば、ダイシングテープまで切込みを行なうフルカットと呼ばれる切断方式、半導体ウェハに半分切込みを入れて冷却化引っ張ることにより分断する方式、レーザーによる切断方式等を採用できる。本工程で用いるダイシング装置としては、特に限定されず、従来公知のものを用いることができる。 Next, the semiconductor wafer is diced. As a result, the semiconductor wafer is cut into a predetermined size, and a plurality of individual semiconductor elements (semiconductor chips) with a film-like adhesive are manufactured. The dicing can be performed, for example, from the circuit surface side of the semiconductor wafer according to a conventional method. In addition, in this step, for example, a cutting method called full-cut in which a dicing tape is cut, a method in which a semiconductor wafer is cut into half and cut by cooling and pulling, a laser cutting method, and the like can be employed. The dicing device used in this step is not particularly limited, and a conventionally known device can be used.
 ダイシング・ダイボンディング一体型接着シートに接着固定された半導体素子を剥離するために、半導体素子のピックアップを行う。ピックアップの方法としては特に限定されず、従来公知の種々の方法を採用できる。例えば、個々の半導体素子をダイシング・ダイボンディング一体型接着シート側からニードルによって突き上げ、突き上げられた半導体素子をピックアップ装置によってピックアップする方法等が挙げられる。 ㆍPick up the semiconductor elements to peel off the semiconductor elements that are adhesively fixed to the dicing/die bonding integrated adhesive sheet. The pickup method is not particularly limited, and various conventionally known methods can be adopted. For example, there is a method in which individual semiconductor elements are pushed up by a needle from the side of an adhesive sheet integrated with dicing and die bonding, and the pushed up semiconductor elements are picked up by a pickup device.
 ここでピックアップは、粘着剤層が放射線(例えば、紫外線)硬化型の場合、該粘着剤層に放射線を照射した後に行う。これにより、粘着剤層のフィルム状接着剤に対する粘着力が低下し、半導体素子の剥離が容易になる。その結果、半導体素子を損傷させることなく、ピックアップが可能となる。 If the pressure-sensitive adhesive layer is radiation (for example, ultraviolet ray) curable, pick up is performed after the pressure-sensitive adhesive layer is irradiated with radiation. As a result, the adhesive strength of the pressure-sensitive adhesive layer to the film adhesive is reduced, and the semiconductor element can be easily peeled off. As a result, the pickup can be performed without damaging the semiconductor element.
 次に、ダイシングによって形成されたフィルム状接着剤付き半導体素子を、フィルム状接着剤を介して半導体素子を搭載するための支持部材に接着する。接着は圧着によって行われてよい。ダイボンドの条件としては、特に限定されず、適宜必要に応じて設定することができる。具体的には、例えば、ダイボンド温度80~160℃、ボンディング荷重5~15N、ボンディング時間1~10秒の範囲内で行うことができる。 Next, the semiconductor element with a film adhesive formed by dicing is adhered to the support member for mounting the semiconductor element via the film adhesive. Bonding may be done by crimping. The conditions for die bonding are not particularly limited, and can be set appropriately as needed. Specifically, for example, the die bond temperature may be 80 to 160° C., the bonding load may be 5 to 15 N, and the bonding time may be 1 to 10 seconds.
 必要に応じて、フィルム状接着剤を熱硬化させる工程を設けてもよい。上記接着工程によって支持部材と半導体素子とを接着しているフィルム状接着剤を熱硬化させることによって、より強固に接着固定が可能となる。熱硬化を行う場合、圧力を同時に加えて硬化させてもよい。本工程における加熱温度は、フィルム状接着剤に構成成分によって適宜変更することができる。加熱温度は、例えば、60~200℃であってよい。なお、温度又は圧力は、段階的に変更しながら行ってもよい。 If necessary, a step of thermosetting the film adhesive may be provided. By thermosetting the film-like adhesive that bonds the support member and the semiconductor element in the bonding step, it is possible to more firmly bond and fix. When heat curing is performed, pressure may be applied simultaneously to cure. The heating temperature in this step can be appropriately changed depending on the constituents of the film adhesive. The heating temperature may be, for example, 60 to 200°C. The temperature or pressure may be changed stepwise.
 次に、支持部材の端子部(インナーリード)の先端と半導体素子上の電極パッドとをボンディングワイヤーで電気的に接続するワイヤーボンディング工程を行う。ボンディングワイヤーとしては、例えば、金線、アルミニウム線、銅線等が用いられる。ワイヤーボンディングを行う際の温度は、80~250℃又は80~220℃の範囲内であってよい。加熱時間は数秒~数分間であってよい。結線は、上記温度範囲内で加熱された状態で、超音波による振動エネルギーと印加加圧とによる圧着エネルギーの併用によって行われてもよい。 Next, a wire bonding process is performed to electrically connect the tip of the terminal portion (inner lead) of the support member and the electrode pad on the semiconductor element with a bonding wire. As the bonding wire, for example, a gold wire, an aluminum wire, a copper wire or the like is used. The temperature for wire bonding may be in the range of 80 to 250°C or 80 to 220°C. The heating time may be several seconds to several minutes. The connection may be performed by using the vibration energy of ultrasonic waves and the compression energy of applied pressure together while being heated within the above temperature range.
 次に、封止樹脂によって半導体素子を封止する封止工程を行う。本工程は、支持部材に搭載された半導体素子又はボンディングワイヤーを保護するために行われる。本工程は、封止用の樹脂を金型で成型することにより行う。封止樹脂としては、例えばエポキシ系の樹脂であってよい。封止時の熱及び圧力によって基板及び残渣が埋め込まれ、接着界面での気泡による剥離を防止することができる。 Next, a sealing process is performed to seal the semiconductor element with the sealing resin. This step is performed to protect the semiconductor element or the bonding wire mounted on the support member. This step is performed by molding the resin for sealing with a mold. The sealing resin may be, for example, an epoxy resin. The substrate and the residue are embedded by heat and pressure at the time of sealing, and peeling due to bubbles at the adhesive interface can be prevented.
 次に、後硬化工程において、封止工程で硬化不足の封止樹脂を完全に硬化させる。封止工程において、フィルム状接着剤が熱硬化されない場合でも、本工程において、封止樹脂の硬化とともにフィルム状接着剤を熱硬化させて接着固定が可能になる。本工程における加熱温度は、封止樹脂の種類よって適宜設定することができ、例えば、165~185℃の範囲内であってよく、加熱時間は0.5~8時間程度であってよい。 Next, in the post-curing process, the sealing resin that is insufficiently cured in the sealing process is completely cured. Even if the film adhesive is not cured by heat in the sealing step, the film adhesive can be cured by heat as well as the curing of the sealing resin in this step, so that the adhesive fixation can be achieved. The heating temperature in this step can be appropriately set depending on the type of the sealing resin, and may be, for example, in the range of 165 to 185° C., and the heating time may be about 0.5 to 8 hours.
 次に、支持部材に接着されたフィルム状接着剤付き半導体素子に対して、リフロー炉を用いて加熱する。本工程では支持部材上に、樹脂封止した半導体装置を表面実装してもよい。表面実装の方法としては、例えば、プリント配線板上に予めはんだを供給した後、温風等によって加熱溶融し、はんだ付けを行うリフローはんだ付けなどが挙げられる。加熱方法としては、例えば、熱風リフロー、赤外線リフロー等が挙げられる。また、加熱方法は、全体を加熱するものであってもよく、局部を加熱するものであってもよい。加熱温度は、例えば、240~280℃の範囲内であってよい。 Next, the semiconductor element with the film adhesive adhered to the support member is heated using a reflow oven. In this step, a resin-sealed semiconductor device may be surface-mounted on the support member. Examples of the surface mounting method include reflow soldering in which solder is supplied in advance on a printed wiring board and then heated and melted by hot air or the like to perform soldering. Examples of the heating method include hot air reflow and infrared reflow. Further, the heating method may be a method of heating the whole or a method of heating a local portion. The heating temperature may be, for example, in the range of 240 to 280°C.
 半導体素子を多層に積層する場合には、ワイヤーボンディング工程等の熱履歴が多くなり、フィルム状接着剤と半導体素子との界面に存在する気泡による剥離への影響は大きなものとなり得る。しかしながら、本実施形態に係るフィルム状接着剤は、特定のアクリルゴムを用いることによって、凝集力が低下し、埋込性が向上する傾向にある。そのため、半導体装置内に気泡を巻き込み難く、封止工程における気泡を容易に拡散させることができ、接着界面での気泡による剥離を防止することができる。 When stacking semiconductor elements in multiple layers, the heat history during the wire bonding process and the like increases, and the effect of air bubbles present at the interface between the film adhesive and the semiconductor element on peeling can be significant. However, the film adhesive according to the present embodiment tends to have lower cohesive force and improved embedding property by using a specific acrylic rubber. Therefore, it is difficult for air bubbles to be caught in the semiconductor device, the air bubbles can be easily diffused in the sealing step, and peeling due to the air bubbles at the adhesive interface can be prevented.
 以下に、本発明を実施例に基づいて具体的に説明するが、本発明はこれらに限定されるものではない。 The present invention will be specifically described below based on examples, but the present invention is not limited to these.
[フィルム状接着剤の作製]
(実施例1~4及び比較例1~9)
<接着剤ワニスの調製>
 表1、表2及び表3に示す品名及び組成比(単位:質量%)で、(A)又は(a)のエポキシ樹脂、(B)又は(b)のフェノール樹脂、及び(D)無機フィラーからなる組成物にシクロヘキサノンを加え、撹拌混合した。これに、表1、表2及び表3に示す(C)熱可塑性樹脂を加えて撹拌し、さらに表1、表2及び表3に示す(E)カップリング剤及び(F)硬化促進剤を加えて、各成分が均一になるまで撹拌して、接着剤ワニスを調製した。なお、表1、表2及び表3に示す(C)成分及び(D)成分の数値は、固形分の質量%を意味する。
[Preparation of film adhesive]
(Examples 1 to 4 and Comparative Examples 1 to 9)
<Preparation of adhesive varnish>
Epoxy resin of (A) or (a), phenolic resin of (B) or (b), and (D) inorganic filler with the product names and composition ratios (unit: mass%) shown in Table 1, Table 2 and Table 3. Cyclohexanone was added to the composition consisting of and mixed with stirring. To this, the thermoplastic resin (C) shown in Table 1, Table 2 and Table 3 was added and stirred, and further the (E) coupling agent and (F) curing accelerator shown in Table 1, Table 2 and Table 3 were added. In addition, an adhesive varnish was prepared by stirring the components until they were uniform. In addition, the numerical value of (C)component and (D)component shown in Table 1, Table 2, and Table 3 means the mass% of solid content.
(A)特定のエポキシ樹脂
(A1)YDCN-700-10(商品名、新日鉄住金化学株式会社製、o-クレゾールノボラック型エポキシ樹脂、エポキシ当量:209g/eq)
(A2)N-770(商品名、新日鉄住金化学株式会社製、フェノールノボラック型エポキシ樹脂、エポキシ当量:183~193g/eq)
(A3)EXA-830CRP(商品名、DIC株式会社製、BPF型エポキシ樹脂、エポキシ当量:155~163g/eq)
(A) Specific epoxy resin (A1) YDCN-700-10 (trade name, Nippon Steel & Sumikin Chemical Co., Ltd., o-cresol novolac type epoxy resin, epoxy equivalent: 209 g/eq)
(A2) N-770 (trade name, manufactured by Nippon Steel & Sumikin Chemical Co., Ltd., phenol novolac type epoxy resin, epoxy equivalent: 183 to 193 g/eq)
(A3) EXA-830CRP (trade name, manufactured by DIC Corporation, BPF type epoxy resin, epoxy equivalent: 155 to 163 g/eq)
(a)特定のエポキシ樹脂以外のエポキシ樹脂(エポキシ当量が140~220g/eqの範囲外にあるエポキシ樹脂)
(a1)NC-3000(商品名、日本化薬株式会社製、ビフェニルアラルキル型エポキシ樹脂、エポキシ当量:265~285g/eq)
(a2)NC-2000-L(商品名、日本化薬株式会社製、フェニルアラルキル型エポキシ樹脂、エポキシ当量:229~244g/eq)
(A) Epoxy resin other than the specific epoxy resin (epoxy resin having an epoxy equivalent outside the range of 140 to 220 g/eq)
(A1) NC-3000 (trade name, manufactured by Nippon Kayaku Co., Ltd., biphenylaralkyl-type epoxy resin, epoxy equivalent: 265 to 285 g/eq)
(A2) NC-2000-L (trade name, manufactured by Nippon Kayaku Co., Ltd., phenylaralkyl type epoxy resin, epoxy equivalent: 229 to 244 g/eq)
(B)特定のフェノール樹脂
(B1)PSM-4326(商品名、群栄化学工業株式会社製、フェノールノボラック樹脂、水酸基当量:105g/eq)
(B2)KA-1160(商品名、DIC株式会社製、クレゾールノボラック樹脂、水酸基当量:117g/eq)
(B) Specific phenol resin (B1) PSM-4326 (trade name, manufactured by Gunei Chemical Industry Co., Ltd., phenol novolac resin, hydroxyl group equivalent: 105 g/eq)
(B2) KA-1160 (trade name, manufactured by DIC Corporation, cresol novolac resin, hydroxyl group equivalent: 117 g/eq)
(b)特定のフェノール樹脂以外のフェノール樹脂(水酸基当量が90~130g/eqの範囲外にあるフェノール樹脂)
(b1)HE-100C-30(商品名、エア・ウォーター株式会社製、フェニルアラルキル型フェノール樹脂、水酸基当量:174g/eq)
(b2)MEH-7851H(商品名、明和化成株式会社製、ビフェニルアラルキル型フェノール樹脂、水酸基当量:216g/eq)
(B) Phenolic resin other than the specific phenolic resin (phenolic resin having a hydroxyl equivalent outside the range of 90 to 130 g/eq)
(B1) HE-100C-30 (trade name, manufactured by Air Water Co., phenylaralkyl-type phenol resin, hydroxyl group equivalent: 174 g/eq)
(B2) MEH-7851H (trade name, manufactured by Meiwa Kasei Co., Ltd., biphenylaralkyl-type phenol resin, hydroxyl equivalent: 216 g/eq)
(C)熱可塑性樹脂
(C1)SG-P3溶剤変更品(SG-P3(商品名、ナガセケムテックス株式会社製、アクリルゴムのメチルエチルケトン溶液)の溶剤を変更したもの、アクリルゴムの重量平均分子量:80万、アクリルゴムの理論Tg:12℃、PCN/PCO=0.070)
(C2)SG-P3改良品(SG-P3(商品名、ナガセケムテックス株式会社製)のアクリルゴムにおいて、アクリルニトリルに由来する構成単位を除いたもの、アクリルゴムの重量平均分子量:60万、アクリルゴムの理論Tg:12℃、PCN/PCO=0.001)
(C3)KH-CT-865(商品名、日立化成株式会社製、アクリルニトリルに由来する構成単位を含まないアクリルゴム、重量平均分子量:48万、Tg:7℃)
(C) Thermoplastic resin (C1) SG-P3 solvent-modified product (SG-P3 (trade name, manufactured by Nagase Chemtex Co., Ltd., methyl ethyl ketone solution of acrylic rubber) in which the solvent is changed, weight average molecular weight of acrylic rubber: 800,000, theoretical Tg of acrylic rubber: 12° C., P CN /P CO =0.070)
(C2) SG-P3 improved product (SG-P3 (trade name, manufactured by Nagase Chemtex Co., Ltd.) acrylic rubber excluding constituent units derived from acrylonitrile, acrylic rubber weight average molecular weight: 600,000, Theory of acrylic rubber Tg: 12° C., P CN /P CO =0.001)
(C3) KH-CT-865 (trade name, manufactured by Hitachi Chemical Co., Ltd., acrylic rubber containing no constitutional unit derived from acrylonitrile, weight average molecular weight: 480,000, Tg: 7° C.)
(IRスペクトルの測定)
 (C1)及び(C2)のPCN/PCOは以下の方法によって算出した。まず、(C1)及び(C2)から溶剤を除去したものをKBr錠剤法によって、透過IRスペクトルを測定し、縦軸を吸光度、横軸を波数(cm-1)で表示した。IRスペクトルの測定には、FT-IR6300(日本分光株式会社製、光源:高輝度セラミック光源、検出器:DLATGS)を使用した。なお、(C3)のPCN/PCOは、アクリルニトリルに由来する構成単位を含まないことから、(C2)のPCN/PCOの値と同等又はそれ以下(すなわち、PCN/PCO≦0.001)であることが推測される。
(Measurement of IR spectrum)
P CN / P CO of (C1) and (C2) was calculated by the following method. First, the solvent removed from (C1) and (C2) was subjected to KBr tablet method to measure a transmission IR spectrum, and the vertical axis was the absorbance and the horizontal axis was the wave number (cm −1 ). FT-IR6300 (manufactured by JASCO Corporation, light source: high-brightness ceramic light source, detector: DLATGS) was used for the measurement of IR spectrum. Incidentally, P CN / P CO of (C3), since it does not contain a constituent unit derived from acrylonitrile, (C2) equal to or a value of P CN / P CO of less (i.e., P CN / P CO It is estimated that ≦0.001).
(カルボニル基の伸縮振動に由来する吸収ピークの高さPCO
 1670cm-1と1860cm-1との2点の間で最も吸光度の高いピークをピーク点とした。1670cm-1と1860cm-1との2点間の直線をベースラインとし、このベースライン上でピーク点と同波数である点をベースライン点とし、ベースライン点とピーク点との吸光度の差をカルボニル基の伸縮振動に由来する吸収ピークの高さ(PCO)とした。
(Height of absorption peak P CO due to stretching vibration of carbonyl group)
The highest absorbance peak was a peak point between the two points between 1670 cm -1 and 1860 cm -1. 1670cm and -1 and a linear baseline between the two points between 1860 cm -1, and a baseline point that it is the same wave number and the peak point on the base line, the difference in absorbance of the baseline point and the peak point The height (P CO ) of the absorption peak derived from the stretching vibration of the carbonyl group was used.
(ニトリル基の伸縮振動に由来するピークの高さPCN
 PCOを求めたものと同一のIRスペクトルにおいて、2270cm-1と2220cm-1との2点の間で最も吸光度の高いピークをピーク点とした。2270cm-1と2220cm-1との2点間の直線をベースラインとし、このベースライン上でピーク点と同波数である点をベースライン点とし、ベースライン点とピーク点との吸光度の差をニトリル基の伸縮振動に由来するピークの高さ(PCN)とした。
(Peak height P CN derived from stretching vibration of nitrile group)
In the same IR spectrum as those seeking P CO, and the peak point a high peak most absorbance between two points between 2270 cm -1 and 2220cm -1. 2270cm and -1 and a linear baseline between the two points of the 2220Cm -1, and a baseline point that it is the same wave number and the peak point on the base line, the difference in absorbance of the baseline point and the peak point The height of the peak ( PCN ) derived from stretching vibration of the nitrile group was used.
(D)無機フィラー
(D1)R972(商品名、日本アエロジル株式会社製、シリカ、平均粒径:0.016μm)
(D2)YA050C(商品名、アドマテックス株式会社製、シリカフィラー分散液)におけるシリカフィラーがビニルシランカップリング剤及びアルキルシランカップリング剤で表面処理されているシリカフィラー分散液(平均粒径0.050μm)
(D3)SC2050-HLG(商品名、アドマテックス株式会社製、シリカフィラー分散液、平均粒径0.50μm)
(D) Inorganic filler (D1) R972 (trade name, manufactured by Nippon Aerosil Co., Ltd., silica, average particle size: 0.016 μm)
(D2) Silica filler dispersion liquid (average particle size: 0.050 μm) in which the silica filler in YA050C (trade name, manufactured by Admatechs Co., Ltd., silica filler dispersion liquid) is surface-treated with a vinylsilane coupling agent and an alkylsilane coupling agent. )
(D3) SC2050-HLG (trade name, manufactured by Admatechs Co., Ltd., silica filler dispersion, average particle size 0.50 μm)
(E)カップリング剤
(E1)A-189(商品名、日本ユニカー株式会社製、γ-メルカプトプロピルトリメトキシシラン)
(E2)A-1160(商品名、日本ユニカー株式会社製、γ-ウレイドプロピルトリエトキシシラン)
(E) Coupling agent (E1) A-189 (trade name, manufactured by Nippon Unicar Co., Ltd., γ-mercaptopropyltrimethoxysilane)
(E2) A-1160 (trade name, γ-ureidopropyltriethoxysilane manufactured by Nippon Unicar Co., Ltd.)
(F)硬化促進剤
(F1)2PZ-CN(商品名、四国化成工業株式会社製、1-シアノエチル-2-フェニルイミダゾール)
(F) Curing accelerator (F1) 2PZ-CN (trade name, 1-cyanoethyl-2-phenylimidazole manufactured by Shikoku Chemicals Co., Ltd.)
<フィルム状接着剤の作製>
 作製した接着剤ワニスを100メッシュのフィルターでろ過し、真空脱泡した。基材フィルムとして、厚み38μmの離型処理を施したポリエチレンテレフタレート(PET)フィルムを用意し、真空脱泡後の接着剤ワニスをPETフィルム上に塗布した。塗布した接着剤ワニスを、90℃で5分間、続いて130℃で5分間の2段階で加熱乾燥し、Bステージ状態にある実施例1~4及び比較例1~9のフィルム状接着剤を得た。フィルム状接着剤においては、接着剤ワニスの塗布量によって、厚み10μmになるように調整した。
<Production of film adhesive>
The produced adhesive varnish was filtered with a 100-mesh filter and vacuum degassed. As a base film, a polyethylene terephthalate (PET) film having a thickness of 38 μm and subjected to a release treatment was prepared, and the adhesive varnish after vacuum defoaming was applied on the PET film. The applied adhesive varnish is heated and dried in two stages of 90° C. for 5 minutes and 130° C. for 5 minutes to obtain the film adhesives of Examples 1 to 4 and Comparative Examples 1 to 9 in the B stage state. Obtained. The film adhesive was adjusted to have a thickness of 10 μm depending on the coating amount of the adhesive varnish.
[銅イオン透過時間の測定]
<A液の調製>
 無水硫酸銅(II)2.0gを蒸留水1020gに溶解させ、完全に硫酸銅が溶解するまで撹拌し、銅イオン濃度がCu元素換算で濃度500mg/kgである硫酸銅水溶液を調製した。得られた硫酸銅水溶液をA液とした。
[Measurement of copper ion transmission time]
<Preparation of solution A>
2.0 g of anhydrous copper(II) sulfate was dissolved in 1020 g of distilled water and stirred until copper sulfate was completely dissolved, to prepare a copper sulfate aqueous solution having a copper ion concentration of 500 mg/kg in terms of Cu element. The obtained copper sulfate aqueous solution was designated as solution A.
<B液の調製>
 無水硫酸ナトリウム1.0gを蒸留水1000gに溶解させ、完全に硫酸ナトリウムが溶解するまで撹拌した。これにさらにN-メチル-2-ピロリドン(NMP)を1000g加え、撹拌した。その後、室温になるまで空冷して硫酸ナトリウム水溶液を得た。得られた溶液をB液とした。
<Preparation of solution B>
1.0 g of anhydrous sodium sulfate was dissolved in 1000 g of distilled water and stirred until the sodium sulfate was completely dissolved. To this, 1000 g of N-methyl-2-pyrrolidone (NMP) was further added and stirred. Then, the mixture was air-cooled to room temperature to obtain a sodium sulfate aqueous solution. The resulting solution was designated as solution B.
<銅イオン透過時間の測定>
 Bステージ状態にある実施例1~4及び比較例1~9のフィルム状接着剤をさらに170℃、1時間で加熱乾燥し、Cステージ状態にある実施例1~4及び比較例1~9のフィルム状接着剤を作製した。Cステージ状態にある実施例1~4及び比較例1~9のフィルム状接着剤(厚み:10μm)を、それぞれ直径約3cmの円状に切り抜いた。次に、厚み1.5mm、外径約3cm、内径1.8cmのシリコンパッキンシートを2枚用意した。円状に切り抜いたフィルム状接着剤を2枚のシリコンパッキンシートで挟み、これを容積50mLの2つのガラス製セルのフランジ部で挟み、ゴムバンドで固定した。
<Measurement of copper ion permeation time>
The film adhesives of Examples 1 to 4 and Comparative Examples 1 to 9 in the B stage state were further dried by heating at 170° C. for 1 hour, and the film adhesives of Examples 1 to 4 and Comparative Examples 1 to 9 in the C stage state. A film adhesive was prepared. The film-like adhesives (thickness: 10 μm) of Examples 1 to 4 and Comparative Examples 1 to 9 in the C stage state were cut out into circles each having a diameter of about 3 cm. Next, two silicon packing sheets having a thickness of 1.5 mm, an outer diameter of about 3 cm and an inner diameter of 1.8 cm were prepared. The film adhesive cut out in a circular shape was sandwiched between two silicon packing sheets, sandwiched between the flange portions of two glass cells having a volume of 50 mL, and fixed with a rubber band.
 次に、一方のガラス製セルにA液を50g注入した後、他方のガラス製セルにB液を50g注入した。各セルにカーボン電極として、Mars Carbon(ステッドラー有限合資会社製、φ2mm/130mm)を挿入した。A液側を陽極、B液側を陰極として、陽極と直流電源(株式会社エーアンドディ製、直流電源装置AD-9723D)とを接続した。また、陰極と直流電源とを、電流計(三和電気計器株式会社製、Degital multimeter PC-720M)を介して直列に接続した。室温下、印加電圧24.0Vにて電圧を印加し、印加した後から電流値の計測を開始した。測定は電流値が5μAを超えるまで行い、電流値が1μAとなった時間を銅イオン透過時間とし、銅イオン透過時間が200分以上であった場合を「A」、銅イオン透過時間が140分以上200分未満であった場合を「B」、銅イオン透過時間が80分以上140分未満であった場合を「C」、銅イオン透過時間が80分未満であった場合を「D」とした。結果を表1、表2、及び表3に示す。本測定では、透過時間が長いほど、銅イオンの移動(透過)が抑制されているといえる。 Next, after injecting 50 g of solution A into one glass cell, inject 50 g of solution B into the other glass cell. Mars Carbon (manufactured by Steedler Co., Ltd., φ2 mm/130 mm) was inserted into each cell as a carbon electrode. The liquid A side was used as an anode and the liquid B side was used as a cathode, and the anode was connected to a DC power supply (DC power supply device AD-9723D, manufactured by A&D Corporation). In addition, the cathode and the DC power source were connected in series via an ammeter (manufactured by Sanwa Denki Keiki Co., Ltd., Digital multimeter PC-720M). A voltage was applied at an applied voltage of 24.0 V at room temperature, and measurement of the current value was started after the voltage was applied. The measurement is performed until the current value exceeds 5 μA, and the time when the current value becomes 1 μA is the copper ion permeation time. When the copper ion permeation time is 200 minutes or more, “A”, and the copper ion permeation time is 140 minutes. If it is less than 200 minutes, it is designated as "B", if the copper ion permeation time is 80 minutes or more and less than 140 minutes, it is designated as "C", and if the copper ion permeation time is less than 80 minutes, it is designated as "D". did. The results are shown in Table 1, Table 2 and Table 3. In this measurement, it can be said that the longer the permeation time is, the more the migration (permeation) of copper ions is suppressed.
[埋込性の評価]
<半導体装置の作製>
 実施例1~4及び比較例1~9のフィルム状接着剤を用いて埋込性の評価を行った。ダイシングテープ(日立化成株式会社製、厚み110μm)を用意し、作製した実施例1~4及び比較例1~9のフィルム状接着剤(厚み10μm)を貼り付けて、ダイシングテープ及びフィルム状接着剤を備えるダイシング-ダイボンディング一体型接着シートを作製した。ダイシング-ダイボンディング一体型接着シートのフィルム状接着剤側に、ステージ温度70℃で75μm厚の半導体ウェハをラミネートし、ダイシングサンプルを作製した。
[Evaluation of embeddability]
<Production of semiconductor device>
The embeddability was evaluated using the film adhesives of Examples 1 to 4 and Comparative Examples 1 to 9. A dicing tape (manufactured by Hitachi Chemical Co., Ltd., thickness 110 μm) was prepared, and the film adhesives (thickness 10 μm) of Examples 1 to 4 and Comparative Examples 1 to 9 prepared were attached to the dicing tape and the film adhesive. A dicing-die bonding integral type adhesive sheet having the above was produced. A semiconductor wafer having a thickness of 75 μm was laminated at a stage temperature of 70° C. on the film adhesive side of the dicing-die bonding integrated adhesive sheet to prepare a dicing sample.
 フルオートダイサーDFD-6361(株式会社ディスコ製)を用いて、得られたダイシングサンプルを切断した。切断には、2枚のブレードを用いるステップカット方式で行い、ダイシングブレードZH05-SD3500-N1-xx-DD、及びZH05-SD4000-N1-xx-BB(いずれも株式会社ディスコ製)を用いた。切断条件は、ブレード回転数4000rpm、切断速度50mm/sec、チップサイズ7.5mm×7.5mmとした。切断は、半導体ウェハが30μm程度残るように1段階目の切断を行い、次いで、ダイシングテープに20μm程度の切り込みが入るように2段階目の切断を行った。 The obtained dicing sample was cut using Full Auto Dicer DFD-6361 (manufactured by Disco Corporation). The cutting was performed by a step cut method using two blades, and a dicing blade ZH05-SD3500-N1-xx-DD and ZH05-SD4000-N1-xx-BB (both manufactured by Disco Corporation) were used. The cutting conditions were a blade rotation speed of 4000 rpm, a cutting speed of 50 mm/sec, and a chip size of 7.5 mm×7.5 mm. The cutting was performed in the first step so that the semiconductor wafer remained about 30 μm, and then in the second step so that a cut of about 20 μm was formed in the dicing tape.
 次に、ピックアップ用コレットを用いて、ピックアップすべき半導体チップをピックアップした。ピックアップでは、中央の1本のピンを用いて突き上げた。ピックアップ条件は、突き上げ速度を20mm/sとし、突き上げ高さを450μmに設定した。このようにして、フィルム状接着剤付き半導体素子(半導体チップ)を得た。 Next, using the pickup collet, we picked up the semiconductor chip to be picked up. In the pickup, I pushed up using one pin in the center. The pickup conditions were a push-up speed of 20 mm/s and a push-up height of 450 μm. In this way, a semiconductor element (semiconductor chip) with a film adhesive was obtained.
 次に、ダイボンダBESTEM-D02(キャノンマシナリー社製)を用いてダミー回路を有するガラスエポキシ基板に、フィルム状接着剤付き半導体素子(半導体チップ)を圧着した。このとき、半導体素子がダミー回路の中央となるように位置を調整した。このようにして、半導体素子を備える半導体基板を得た。 Next, using a die bonder BESTEM-D02 (manufactured by Canon Machinery), a semiconductor element (semiconductor chip) with a film adhesive was pressure-bonded to a glass epoxy substrate having a dummy circuit. At this time, the position was adjusted so that the semiconductor element was at the center of the dummy circuit. In this way, a semiconductor substrate having a semiconductor element was obtained.
<モールド埋込性の評価>
 得られた半導体素子を備える半導体基板を評価サンプルとして3つ用意した。評価サンプルを乾燥機で150℃、それぞれ1時間、2時間、又は3時間加熱し、熱履歴を与えた。その後、半導体素子を備える半導体基板を、モールド用封止材(日立化成株式会社製、CEL-9750ZHF10)を用いて、モールド装置(アピックヤマダ株式会社製、MSL-06M)で175℃、6.9MPa、120秒の条件で樹脂封止行った。
<Evaluation of mold embeddability>
Three semiconductor substrates having the obtained semiconductor element were prepared as evaluation samples. The evaluation sample was heated in a dryer at 150° C. for 1 hour, 2 hours, or 3 hours, respectively, to give a thermal history. After that, the semiconductor substrate provided with the semiconductor element was molded at 175° C. and 6.9 MPa with a molding apparatus (MSL-06M, manufactured by Apic Yamada Co., Ltd.) using a sealing material for molding (CEL-9750ZHF10, manufactured by Hitachi Chemical Co., Ltd.) Resin sealing was performed under the condition of 120 seconds.
 樹脂封止を行った半導体装置を超音波映像装置(SAT)(日立建機株式会社製、HYE-FOCUS)にて分析し、ボイドが発生しなかった限界時間(0時間、1時間、2時間、又は3時間)を埋込性として評価した。限界時間が3時間であった場合を「A」、限界時間が2時間であった場合を「B」、限界時間が1時間であった場合を「C」、限界時間が0時間であった場合を「D」とした。結果を表1、表2、及び表3に示す。本評価では、ボイドが発生しない限界時間が長いほど、熱履歴を与えても埋込可能であることから、埋込性に優れているといえる。 The resin-sealed semiconductor device was analyzed by an ultrasonic imaging device (SAT) (manufactured by Hitachi Construction Machinery Co., Ltd., HYE-FOCUS), and the limit time (0 hours, 1 hour, 2 hours) in which no void was generated. , Or 3 hours) was evaluated as embedding property. "A" when the limit time was 3 hours, "B" when the limit time was 2 hours, "C" when the limit time was 1 hour, and 0 hours. The case was designated as "D". The results are shown in Table 1, Table 2 and Table 3. In this evaluation, it can be said that the longer the limit time in which voids do not occur, the better the embeddability because the embedding is possible even if a thermal history is given.
[接着性の評価]
<硬化後ダイシェア強度の測定>
 上記フィルム状接着剤付き半導体素子(半導体チップ)を用いて、硬化後ダイシェア強度を測定した。半導体チップをソルダーレジスト(太陽ホールディングス株式会社、商品名:AUS-308)上に熱圧着した。圧着条件は、温度120℃、時間1秒、圧力0.1MPaとした。続いて、圧着によって得られたサンプルを乾燥機に入れ、170℃、1時間硬化させた。ソルダーレジストに圧着した半導体チップを硬化させ、万能ボンドテスター(ノードソン・アドバンス・テクノロジー株式会社製、商品名:シリーズ4000)によって半導体チップを引っ掛けながら引っ張ることによって、半導体チップとソルダーレジストとの硬化後ダイシェア強度を測定した。測定条件はステージ温度を250℃とした。硬化後ダイシェア強度が2.8MPa以上であった場合を「A」、硬化後ダイシェア強度が2.2MPa以上2.8MPa未満であった場合を「B」、硬化後ダイシェア強度が1.6MPa以上2.2MPa未満であった場合を「C」、硬化後ダイシェア強度が1.6MPa未満であった場合を「D」とした。結果を表1、表2、及び表3に示す。
[Evaluation of adhesiveness]
<Measurement of die shear strength after curing>
The die shear strength after curing was measured using the semiconductor element (semiconductor chip) with the film adhesive. The semiconductor chip was thermocompression bonded onto a solder resist (Taiyo Holdings Co., Ltd., trade name: AUS-308). The pressure bonding conditions were a temperature of 120° C., a time of 1 second, and a pressure of 0.1 MPa. Then, the sample obtained by pressure bonding was put into a dryer and cured at 170° C. for 1 hour. By curing the semiconductor chip that has been pressure bonded to the solder resist and pulling it while hooking the semiconductor chip with a universal bond tester (Nordson Advance Technology Co., Ltd., product name: Series 4000), the die share after curing of the semiconductor chip and the solder resist The strength was measured. The measurement conditions were a stage temperature of 250°C. When the die shear strength after curing was 2.8 MPa or more, "A", when the die shear strength after curing was 2.2 MPa or more and less than 2.8 MPa, "B", the die shear strength after curing was 1.6 MPa or more 2 When it was less than 0.2 MPa, it was designated as "C", and when the die shear strength after curing was less than 1.6 MPa, it was designated as "D". The results are shown in Table 1, Table 2 and Table 3.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表1、表2、及び表3に示すとおり、実施例1~4のフィルム状接着剤は、銅イオン透過時間、埋込性、及び接着性の点でいずれの評価もB以上であり、比較例1~9のフィルム状接着剤に比べて、優れていた。 As shown in Table 1, Table 2, and Table 3, the film-like adhesives of Examples 1 to 4 were all B or more in terms of copper ion permeation time, embeddability, and adhesiveness. It was superior to the film adhesives of Examples 1 to 9.
 以上より、本発明のフィルム状接着剤が、接着剤内の銅イオンの移動に伴う不具合を充分に抑制することができ、さらに基板との接着性及び埋込性に優れることが確認された。 From the above, it was confirmed that the film-like adhesive of the present invention was able to sufficiently suppress the defects caused by the movement of copper ions in the adhesive, and further was excellent in the adhesiveness to the substrate and the embedding property.
 1…フィルム状接着剤、2…基材、3…カバーフィルム、6…粘着剤層、7…ダイシングテープ、9,9a,9b…半導体素子、10…支持部材、11…ワイヤ、12…封止材、13…端子、100,110,120,130…接着シート、200,210…半導体装置。 DESCRIPTION OF SYMBOLS 1... Film adhesive, 2... Base material, 3... Cover film, 6... Adhesive layer, 7... Dicing tape, 9, 9a, 9b... Semiconductor element, 10... Supporting member, 11... Wire, 12... Sealing Material, 13... Terminal, 100, 110, 120, 130... Adhesive sheet, 200, 210... Semiconductor device.

Claims (12)

  1.  半導体素子と前記半導体素子を搭載する支持部材とを接着するためのフィルム状接着剤であって、
     エポキシ当量が140~220g/eqであるエポキシ樹脂と、
     水酸基当量が90~130g/eqであるフェノール樹脂と、
     熱可塑性樹脂と、
    を含有し、
     前記熱可塑性樹脂の含有量が、フィルム状接着剤全量を基準として、55~75質量%である、フィルム状接着剤。
    A film-like adhesive for bonding a semiconductor element and a supporting member on which the semiconductor element is mounted,
    An epoxy resin having an epoxy equivalent of 140 to 220 g/eq,
    A phenolic resin having a hydroxyl equivalent of 90 to 130 g/eq,
    A thermoplastic resin,
    Containing
    The film adhesive, wherein the content of the thermoplastic resin is 55 to 75% by mass based on the total amount of the film adhesive.
  2.  前記熱可塑性樹脂が、アクリル樹脂である、請求項1に記載のフィルム状接着剤。 The film adhesive according to claim 1, wherein the thermoplastic resin is an acrylic resin.
  3.  前記アクリル樹脂が、赤外吸収スペクトルにおいて、カルボニル基の伸縮振動に由来する吸収ピークの高さをPCO、ニトリル基の伸縮振動に由来するピークの高さをPCNとしたとき、下記式(1)の条件を満たすアクリル樹脂を含む、請求項2に記載のフィルム状接着剤。
     PCN/PCO≦0.100 (1)
    In the infrared absorption spectrum of the acrylic resin, when the absorption peak height derived from carbonyl group stretching vibration is P CO and the peak height derived from nitrile group stretching vibration is P CN , the following formula ( The film adhesive according to claim 2, comprising an acrylic resin satisfying the condition 1).
    P CN /P CO ≦0.100 (1)
  4.  無機フィラーをさらに含有する、請求項1~3のいずれか一項に記載のフィルム状接着剤。 The film adhesive according to any one of claims 1 to 3, further containing an inorganic filler.
  5.  前記フィルム状接着剤の厚みが、50μm以下である、請求項1~4のいずれか一項に記載のフィルム状接着剤。 The film adhesive according to any one of claims 1 to 4, wherein the thickness of the film adhesive is 50 µm or less.
  6.  基材と、
     前記基材の一方の面上に設けられた請求項1~5のいずれか一項に記載のフィルム状接着剤と、
    を備える、接着シート。
    Base material,
    The film adhesive according to any one of claims 1 to 5, which is provided on one surface of the base material.
    An adhesive sheet comprising:
  7.  前記基材が、ダイシングテープである、請求項6に記載の接着シート。 The adhesive sheet according to claim 6, wherein the base material is a dicing tape.
  8.  半導体素子と、
     前記半導体素子を搭載する支持部材と、
     前記半導体素子及び前記支持部材の間に設けられ、前記半導体素子と前記支持部材とを接着する接着部材と、
    を備え、
     前記接着部材が、請求項1~5のいずれか一項に記載のフィルム状接着剤の硬化物である、半導体装置。
    Semiconductor element,
    A supporting member on which the semiconductor element is mounted,
    An adhesive member that is provided between the semiconductor element and the support member, and that bonds the semiconductor element and the support member,
    Equipped with
    A semiconductor device, wherein the adhesive member is a cured product of the film adhesive according to any one of claims 1 to 5.
  9.  前記支持部材が、銅を素材とする部材を含む、請求項8に記載の半導体装置。 The semiconductor device according to claim 8, wherein the support member includes a member made of copper.
  10.  請求項1~5のいずれか一項に記載のフィルム状接着剤を用いて、半導体素子と支持部材とを接着する工程を備える、半導体装置の製造方法。 A method for manufacturing a semiconductor device, comprising a step of bonding a semiconductor element and a supporting member using the film adhesive according to any one of claims 1 to 5.
  11.  半導体ウェハに、請求項6又は7に記載の接着シートの前記フィルム状接着剤を貼り付ける工程と、
     前記フィルム状接着剤を貼り付けた前記半導体ウェハを切断することによって、複数の個片化されたフィルム状接着剤付き半導体素子を作製する工程と、
     前記フィルム状接着剤付き半導体素子を支持部材に接着する工程と、
    を備える、半導体装置の製造方法。
    Attaching the film adhesive of the adhesive sheet according to claim 6 or 7 to a semiconductor wafer;
    A step of producing a plurality of individual semiconductor elements with a film adhesive by cutting the semiconductor wafer to which the film adhesive is attached,
    A step of adhering the semiconductor element with the film adhesive to a support member,
    A method for manufacturing a semiconductor device, comprising:
  12.  前記支持部材に接着された前記フィルム状接着剤付き半導体素子に対して、リフロー炉を用いて加熱する工程をさらに備える、請求項11に記載の半導体装置の製造方法。 The method of manufacturing a semiconductor device according to claim 11, further comprising the step of heating the semiconductor element with the film adhesive adhered to the supporting member using a reflow oven.
PCT/JP2019/049478 2018-12-19 2019-12-17 Film-form adhesive, adhesive sheet, and semiconductor device and manufacturing method thereof WO2020129996A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-237451 2018-12-19
JP2018237451A JP2022033064A (en) 2018-12-19 2018-12-19 Film-like adhesive, adhesive sheet, as well as semiconductor device, and its manufacturing method

Publications (1)

Publication Number Publication Date
WO2020129996A1 true WO2020129996A1 (en) 2020-06-25

Family

ID=71101964

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/049478 WO2020129996A1 (en) 2018-12-19 2019-12-17 Film-form adhesive, adhesive sheet, and semiconductor device and manufacturing method thereof

Country Status (3)

Country Link
JP (1) JP2022033064A (en)
TW (1) TW202033703A (en)
WO (1) WO2020129996A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI744166B (en) * 2021-01-06 2021-10-21 研能科技股份有限公司 System-in-package chip of printer driver system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009030043A (en) * 2007-06-28 2009-02-12 Lintec Corp Pressure-sensitive adhesive composition, pressure-sensitive adhesive sheet, and method for producing semiconductor device
JP2009161588A (en) * 2007-12-28 2009-07-23 Lintec Corp Adhesive composition, adhesive sheet and method for manufacturing semiconductor device
JP2010132807A (en) * 2008-12-05 2010-06-17 Lintec Corp Adhesive composition, adhesive sheet and method of manufacturing semiconductor device
WO2015016352A1 (en) * 2013-08-02 2015-02-05 リンテック株式会社 Adhesive composition, adhesive sheet, and method for producing semiconductor device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009030043A (en) * 2007-06-28 2009-02-12 Lintec Corp Pressure-sensitive adhesive composition, pressure-sensitive adhesive sheet, and method for producing semiconductor device
JP2009161588A (en) * 2007-12-28 2009-07-23 Lintec Corp Adhesive composition, adhesive sheet and method for manufacturing semiconductor device
JP2010132807A (en) * 2008-12-05 2010-06-17 Lintec Corp Adhesive composition, adhesive sheet and method of manufacturing semiconductor device
WO2015016352A1 (en) * 2013-08-02 2015-02-05 リンテック株式会社 Adhesive composition, adhesive sheet, and method for producing semiconductor device

Also Published As

Publication number Publication date
JP2022033064A (en) 2022-02-28
TW202033703A (en) 2020-09-16

Similar Documents

Publication Publication Date Title
CN113348221A (en) Adhesive composition, film-like adhesive, adhesive sheet, and method for manufacturing semiconductor device
JP2024010048A (en) Semiconductor device
WO2020129996A1 (en) Film-form adhesive, adhesive sheet, and semiconductor device and manufacturing method thereof
WO2020158490A1 (en) Filmy adhesive, adhesive sheet, semiconductor device, and method for manufacturing same
WO2019220540A1 (en) Semiconductor device, thermosetting resin composition used for production thereof, and dicing die bonding integrated tape
JP7255146B2 (en) FILM ADHESIVE, ADHESIVE SHEET, SEMICONDUCTOR DEVICE AND MANUFACTURING METHOD THEREOF
WO2020065783A1 (en) Film-shaped adhesive, adhesive sheet, semiconductor device, and production method for semiconductor device
WO2020162412A1 (en) Film-like adhesive, adhesive sheet and semiconductor device
JP7435458B2 (en) Film adhesive, adhesive sheet, semiconductor device and manufacturing method thereof
WO2020136904A1 (en) Adhesive film, integrated dicing/die bonding film, and method for producing semiconductor package
WO2022149581A1 (en) Adhesive agent composition, film-form adhesive agent, dicing/die-bonding integrated film, semiconductor device, and method for manufacturing same
WO2022149582A1 (en) Film-like adhesive, integrated dicing/die bonding film, semiconductor device and method for producing same
WO2023048188A1 (en) Film adhesive, dicing and die-bonding two-in-one film, semiconductor device, and manufacturing method for same
JP2022044991A (en) Die bonding film, adhesive sheet, semiconductor device and method for manufacturing the same
CN116670240A (en) Film-like adhesive, adhesive sheet, and semiconductor device and method for manufacturing same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19900726

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 06.09.2021)

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 19900726

Country of ref document: EP

Kind code of ref document: A1