WO2020129863A1 - 接合方法および接合体 - Google Patents

接合方法および接合体 Download PDF

Info

Publication number
WO2020129863A1
WO2020129863A1 PCT/JP2019/049049 JP2019049049W WO2020129863A1 WO 2020129863 A1 WO2020129863 A1 WO 2020129863A1 JP 2019049049 W JP2019049049 W JP 2019049049W WO 2020129863 A1 WO2020129863 A1 WO 2020129863A1
Authority
WO
WIPO (PCT)
Prior art keywords
cover
main body
joining
flow path
bonding
Prior art date
Application number
PCT/JP2019/049049
Other languages
English (en)
French (fr)
Inventor
年彦 花待
大輔 藤野
優 瀧本
良仁 荒木
理啓 藤井
Original Assignee
日本発條株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本発條株式会社 filed Critical 日本発條株式会社
Priority to EP19900978.8A priority Critical patent/EP3900867A4/en
Priority to KR1020217017680A priority patent/KR102670607B1/ko
Priority to KR1020247017491A priority patent/KR20240091000A/ko
Priority to JP2020561389A priority patent/JPWO2020129863A1/ja
Priority to CN201980084269.3A priority patent/CN113195146A/zh
Priority to US17/413,680 priority patent/US20220009022A1/en
Publication of WO2020129863A1 publication Critical patent/WO2020129863A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/02Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating by means of a press ; Diffusion bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/02Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating by means of a press ; Diffusion bonding
    • B23K20/023Thermo-compression bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/002Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating specially adapted for particular articles or work
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/22Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating taking account of the properties of the materials to be welded
    • B23K20/233Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating taking account of the properties of the materials to be welded without ferrous layer
    • B23K20/2336Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating taking account of the properties of the materials to be welded without ferrous layer both layers being aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/04Tubular or hollow articles
    • B23K2101/14Heat exchangers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/36Electric or electronic devices
    • B23K2101/40Semiconductor devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/08Non-ferrous metals or alloys
    • B23K2103/10Aluminium or alloys thereof

Definitions

  • the present invention relates to a joining method and a joined body for joining members by diffusion joining.
  • Electrodes, cooling plates, heaters, shower heads, etc. have plates with flow paths.
  • the plate with a flow path is made of a metal or ceramics composite, and a main body portion in which a flow path through which a heating medium or a cooling medium or a process gas moves is formed is covered with a cover (see, for example, Patent Document 1). reference).
  • Patent Document 1 after overlapping the cover and the main body, the main body and the cover are joined by brazing.
  • the present invention has been made in view of the above, and an object of the present invention is to provide a joining method and a joined body which can suppress deterioration in quality due to joining while reliably joining the main body and the cover. ..
  • a joining method according to the present invention is made of aluminum or an aluminum alloy, and a main body portion in which a flow path for circulating a medium that promotes heat exchange is formed, and aluminum or aluminum.
  • a joining method of joining a cover made of an alloy and covering the flow path of the main body portion which comprises a covering step of covering the main body portion with the cover, a joining temperature of 500°C to 640°C, and a joining surface pressure of And a diffusion bonding step of bonding the main body portion and the cover by diffusion bonding under a condition of 0.7 MPa or more.
  • the joining method according to the present invention is characterized in that, in the above invention, the flatness of the joining surface of the main body and the flatness of the joining surface of the cover are each 0.2 or less.
  • the joining method according to the present invention is characterized in that, in the above invention, the surface roughness of the joint surface of the main body and the surface roughness of the joint surface of the cover are both greater than 0 and not more than Ra 0.4.
  • the joined body according to the present invention is made of aluminum or an aluminum alloy, a main body portion in which a flow path for circulating a medium that promotes heat exchange is formed, and aluminum or an aluminum alloy, and the flow path of the main body portion is formed.
  • the joined body according to the present invention is characterized in that, in the above-mentioned invention, the main body portion and the cover are made of No. 6061 aluminum alloy and have a tensile strength of 125 MPa or more.
  • the present invention it is possible to reliably bond the main body and the cover while suppressing the quality deterioration due to the bonding.
  • FIG. 1 is a partial cross-sectional view showing the structure of a plate with a flow path according to an embodiment of the present invention.
  • FIG. 2 is an enlarged cross-sectional view of the region R shown in FIG.
  • FIG. 3 is a cross-sectional view illustrating a method for manufacturing a plate with a flow path according to an embodiment of the present invention.
  • FIG. 4 is a cross-sectional view illustrating a method of manufacturing a plate with a flow channel according to an embodiment of the present invention.
  • FIG. 5 is a figure explaining the structure of the test piece used for the Example of this invention.
  • FIG. 6A is a diagram showing an SEM image of an interface after joining in an example of the present invention.
  • FIG. 6A is a diagram showing an SEM image of an interface after joining in an example of the present invention.
  • FIG. 6B is a diagram showing an SEM image of the interface after joining in the example of the present invention.
  • FIG. 6C is a diagram showing an SEM image of an interface after joining in an example of the present invention.
  • FIG. 7A is a diagram showing an EDX observation image of the interface after joining in the example of the present invention.
  • FIG. 7B is a diagram showing an EDX observation image of the interface after joining in the example of the present invention.
  • FIG. 7C is a diagram showing an EDX observation image of the interface after joining in the example of the present invention.
  • FIG. 7D is a diagram showing an EDX observation image of the interface after joining in the example of the present invention.
  • FIG. 7A is a diagram showing an EDX observation image of the interface after joining in the example of the present invention.
  • FIG. 7B is a diagram showing an EDX observation image of the interface after joining in the example of the present invention.
  • FIG. 7C is a diagram showing an EDX observation image of the interface
  • FIG. 8 is a figure which shows the tensile test result of the test piece which carried out the diffusion bonding by making joining surface pressure 0.7 MPa.
  • FIG. 9 is a diagram showing a tensile test result of a test piece diffusion-bonded with a bonding surface pressure of 0.7 MPa.
  • FIG. 10 is a diagram showing a tensile test result of a test piece diffusion-bonded with a bonding surface pressure of 0.5 MPa.
  • FIG. 11 is a diagram showing a tensile test result of a test piece diffusion-bonded with a bonding surface pressure of 0.5 MPa.
  • FIG. 12 is a diagram showing an ultrasonic flaw detection test result of the plate with flow passages according to the example.
  • FIG. 13 is a diagram for explaining particle measurement.
  • FIG. 1 is a partial cross-sectional view showing the structure of a plate with a flow channel according to an embodiment of the present invention.
  • FIG. 2 is an enlarged cross-sectional view of the region R shown in FIG.
  • the flow path plate 1 shown in FIG. 1 includes a disk-shaped main body 10 and a cover 20 that covers one surface (here, the upper surface) of the main body 10.
  • the flow path plate 1 is a bonded body in which the main body 10 and the cover 20 are bonded by diffusion bonding.
  • the flow path plate 1 is attached to, for example, a semiconductor device and functions as a cooling device in the semiconductor device.
  • the flow path plate 1 may be used as a heater for warming an attached device, or may be used as a heater plate for allowing gas to flow in a flow path described later, and ejects process gas in a thin film forming apparatus. It may be used as a shower head.
  • the main body 10 has a disk shape made of aluminum or an aluminum alloy.
  • Flow paths (for example, flow paths 11 to 13 shown in FIG. 1) through which a medium that promotes heat exchange is circulated are formed in the main body portion 10.
  • the surface of the main body 10 on the opening side of the flow path is joined to the cover 20 by diffusion joining.
  • the channels 11 to 13 are separated by the wall portion 14 or the wall portion 15.
  • the flow paths 11 to 13 may communicate with each other to form one flow path, or at least a part thereof may form an independent flow path.
  • the medium is a liquid such as water or a gas.
  • the cover 20 has a disc shape made of aluminum or an aluminum alloy.
  • the cover 20 covers the flow path forming surface of the main body 10.
  • Examples of the aluminum alloy include No. 6061 aluminum alloy (A6061).
  • the main body 10 and the cover 20 are joined by diffusion joining described later.
  • the medium is introduced from the medium inlet (not shown) to flow in the flow passage, and the medium is discharged from the medium outlet (not shown).
  • the heat transferred from the heat source is released to the outside via the main body 10 and the cover 20, or the medium absorbing the heat transferred from the heat source is discharged from the flow path.
  • 3 and 4 are cross-sectional views illustrating a method of manufacturing a plate with flow passages according to an embodiment of the present invention.
  • the flow path plate 1 is, for example, in the shape of a disk having a diameter of 150 mm or more.
  • the main body 10 and the base material 200 for the cover are joined by diffusion joining (see FIG. 4: diffusion joining step).
  • diffusion bonding pressure is applied to the closely attached members under a temperature condition equal to or lower than the melting point of the members, and the diffusion is used to bond the atoms between the bonding surfaces. At this time, a load is applied to the closely attached members to the extent that plastic deformation does not occur as much as possible.
  • a joining temperature is 500° C. or more and 640° C. or less, and a joining surface pressure is 0.7 MPa or more.
  • the joining temperature varies depending on the type of aluminum alloy. For example, the temperature is set lower than the melting point of the member.
  • the bonding surface pressure is preferably 3 MPa or less, though it depends on the kind of the member.
  • the flatness of the joint surface of each member is preferably 0.2 or less.
  • the surface roughness of the joint surface is preferably greater than 0 and Ra 0.4 or less, and more preferably Ra 0.1 or less.
  • the main body 10 and the cover 20 are joined by diffusion joining.
  • diffusion bonding it is possible to reliably bond the main body portion and the cover while suppressing deterioration of quality due to the bonding.
  • the surface of the flow path is roughened, the flow rate varies in the portion where the brazing material stays, and the temperature changes due to the flow rate variation. It is possible to suppress deterioration of quality such as contamination of impurities due to a brazing material component, and reliably bond the members.
  • the present invention may include various embodiments and the like not described here, and various design changes and the like may be made without departing from the technical idea specified by the claims. Is possible.
  • FIG. 5 is a figure explaining the structure of the test piece used for the Example of this invention.
  • the member 300 is made of No. 6061 aluminum alloy (A6061).
  • the member 300 has a substantially columnar joint portion 301 having a joint surface, and a grip portion 302 which is continuous with the joint surface side of the joint portion 301 and which is gripped during a test.
  • the grip 302 has a thread formed on its side surface.
  • FIGS. 6A to 6C are views showing SEM images of the interface after joining in the example of the present invention.
  • FIG. 6B is an enlarged view of the central portion of FIG. 6A.
  • FIG. 6C is an enlarged view of the central portion of FIG. 6B. As shown in FIGS. 6A to 6C, it can be seen that the bonding is performed without defects at the bonding interface.
  • FIG. 7A to 7D are diagrams showing EDX observation images of the interface after joining in the example of the present invention.
  • FIG. 7A shows a reflection image at the interface after joining.
  • FIG. 7B shows a distribution image of aluminum (Al) at the interface after joining.
  • FIG. 7C shows a distribution image of magnesium (Mg) at the interface after joining.
  • FIG. 7D shows a distribution image of silicon (Si) at the interface after bonding. 7B to 7D, the lighter the color, the more the component is included.
  • FIG. 7B it can be seen that aluminum, which is the main component of the member 300, is widely distributed. Further, as shown in FIGS. 7C and 7D, it can be seen that magnesium and silicon are precipitated at the bonding interface. Here, magnesium and silicon reduce the oxide film of aluminum to an oxide. It is considered that this reaction causes the amorphous oxide film at the bonding interface to change to crystalline oxide particles, which contributes to bonding between the members 300.
  • FIG. 8 is a diagram showing a tensile test result of a test piece diffusion-bonded with a bonding surface pressure of 0.7 MPa.
  • Test piece No. 1 to No. No. 6 has a tensile strength of more than 125 MPa.
  • the tensile strength of No. 6061 aluminum alloy (A6061) is 125 MPa. From this, the test piece No. 1 to No. No. 6 can be said to have a tensile strength that is greater than the tensile strength of the No. 6061 aluminum alloy (A6061) that is the main component of the member 300.
  • FIG. 9 is a diagram showing a tensile test result of a test piece diffusion-bonded with a bonding surface pressure of 0.7 MPa. Test piece No. 1 to No. It can be seen that in all of No. 6, the fracture occurred in one member, not in the bonded interface.
  • FIG. 10 is a diagram showing a tensile test result of a test piece diffusion-bonded with a bonding surface pressure of 0.5 MPa.
  • Test piece No. 11-No. In No. 16 the test piece No. The tensile strength of No. 13 is less than 125 MPa. From this, the test piece No. 11-No. In some cases, 16 has a tensile strength smaller than the tensile strength of the No. 6061 aluminum alloy (A6061) which is the main component of the member 300.
  • A6061 aluminum alloy
  • FIG. 11 is a diagram showing a tensile test result of a test piece diffusion-bonded with a bonding surface pressure of 0.5 MPa. Test piece No. 11-No. It can be seen that some of 16 (test pieces No. 13 and No. 16) are fractured at the bonding interface.
  • FIG. 12 is a diagram showing an ultrasonic flaw detection test result of the plate with flow passages according to the example.
  • FIG. 12 shows a plate with a flow channel bonded with a bonding surface pressure of 0.7 MPa. As can be seen from FIG. 12, there is no defect such as damage in the flow path formed in the disk member.
  • FIG. 13 is a diagram for explaining particle measurement.
  • each test piece (test piece 100) was attached to the jig 101, and particles collected via the jig 101 were measured by the measuring device 102. Particle measurement was carried out three times for each test piece. Since the amount of initial particles is large, in the first measurement, the process of flowing nitrogen into the flow channel was carried out several times for several minutes to stabilize the particles, and then the particles were measured.
  • IPA isopropyl alcohol
  • nitrogen was introduced for 1 minute, and the number of particles (accumulated number) according to the particle diameter was counted.
  • the number of particles having a particle size (particle size) of 0.3 ⁇ m or less and the number of particles having a particle size of more than 0.3 ⁇ m and 0.5 ⁇ m or less were counted.
  • the results of particle measurement by the test pieces joined by diffusion joining are as follows. Particle size 0.5 ⁇ m or less 0.3 ⁇ m or less First time 88 15 Second time 39 13 Third time 15 2
  • the results of particle measurement by the test pieces joined by brazing are as follows. Particle size 0.3 ⁇ m or less 0.5 ⁇ m or less First time 483 168 Second time 238 84 Third time 189 87
  • the count number was zero in all sizes. From the above measurement results, it can be said that the flow channels of the plate with flow channels joined by diffusion bonding have less particles than the flow channels of the plate with flow channels joined by brazing.
  • the joining method and the joined body according to the present invention are suitable for surely joining the main body and the cover and suppressing the quality deterioration due to the joining.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

本発明にかかる接合方法は、アルミニウムまたはアルミニウム合金からなり、熱交換を促す媒体を流通させる流路が形成される本体部と、アルミニウムまたはアルミニウム合金からなり、本体部の流路を覆うカバーとを接合する接合方法であって、本体部にカバーを被せる被覆ステップと、接合温度が500℃以上640℃以下、接合面圧が0.7MPa以上の条件下で拡散接合することによって、本体部とカバーとを接合する拡散接合ステップと、を含む。

Description

接合方法および接合体
 本発明は、部材同士を拡散接合によって接合する接合方法および接合体に関するものである。
 半導体製造装置に用いられる部品として、電極部、冷却板、ヒーター、シャワーヘッドなどは流路付プレートを有する。流路付きプレートは、金属やセラミックス複合体からなり、加温用、冷却用の媒体またはプロセスガスが移動する流路が形成された本体部がカバーで覆われている(例えば、特許文献1を参照)。特許文献1では、カバーと本体部とを重ね合わせた後、ろう付によって本体部とカバーとを接合している。
特表2009-535801号公報
 しかしながら、特許文献1の接合方法では、ろう付時にろうが流路に流れ込んで、流路の表面が荒れたり、ろうが滞留した部分における流量のばらつき、流量のばらつきによる温度変化が生じたり、ろう材成分による不純物汚染が発生したりする等の品質低下が懸念されている。
 本発明は、上記に鑑みてなされたものであって、本体部とカバーとを確実に接合しつつ、接合による品質低下を抑制することができる接合方法および接合体を提供することを目的とする。
 上述した課題を解決し、目的を達成するために、本発明にかかる接合方法は、アルミニウムまたはアルミニウム合金からなり、熱交換を促す媒体を流通させる流路が形成される本体部と、アルミニウムまたはアルミニウム合金からなり、前記本体部の前記流路を覆うカバーとを接合する接合方法であって、前記本体部に前記カバーを被せる被覆ステップと、接合温度が500℃以上640℃以下、接合面圧が0.7MPa以上の条件下で拡散接合することによって、前記本体部と前記カバーとを接合する拡散接合ステップと、を含むことを特徴とする。
 また、本発明にかかる接合方法は、上記の発明において、前記本体部の接合面および前記カバーの接合面の平面度が、それぞれ0.2以下であることを特徴とする。
 また、本発明にかかる接合方法は、上記の発明において、前記本体部の接合面および前記カバーの接合面の面粗度が、各々0より大きくRa0.4以下であることを特徴とする。
 また、本発明にかかる接合体は、アルミニウムまたはアルミニウム合金からなり、熱交換を促す媒体を流通させる流路が形成される本体部と、アルミニウムまたはアルミニウム合金からなり、前記本体部の前記流路を覆うカバーと、を備え、前記本体部と前記カバーとが、拡散接合されてなることを特徴とする。
 また、本発明にかかる接合体は、上記の発明において、前記本体部および前記カバーが、6061番のアルミニウム合金からなり、引張り強さが125MPa以上であることを特徴とする。
 本発明によれば、本体部とカバーとを確実に接合しつつ、接合による品質低下を抑制することができるという効果を奏する。
図1は、本発明の一実施の形態にかかる流路付きプレートの構造を示す部分断面図である。 図2は、図1に示す領域Rを拡大した断面図である。 図3は、本発明の一実施の形態にかかる流路付きプレートの製造方法を説明する断面図である。 図4は、本発明の一実施の形態にかかる流路付きプレートの製造方法を説明する断面図である。 図5は、本発明の実施例に用いた試験片の構成を説明する図である。 図6Aは、本発明の実施例における接合後の界面のSEM画像を示す図である。 図6Bは、本発明の実施例における接合後の界面のSEM画像を示す図である。 図6Cは、本発明の実施例における接合後の界面のSEM画像を示す図である。 図7Aは、本発明の実施例における接合後の界面のEDX観察像を示す図である。 図7Bは、本発明の実施例における接合後の界面のEDX観察像を示す図である。 図7Cは、本発明の実施例における接合後の界面のEDX観察像を示す図である。 図7Dは、本発明の実施例における接合後の界面のEDX観察像を示す図である。 図8は、接合面圧を0.7MPaとして拡散接合した試験片の引張試験結果を示す図である。 図9は、接合面圧を0.7MPaとして拡散接合した試験片の引張試験結果を示す図である。 図10は、接合面圧を0.5MPaとして拡散接合した試験片の引張試験結果を示す図である。 図11は、接合面圧を0.5MPaとして拡散接合した試験片の引張試験結果を示す図である。 図12は、実施例にかかる流路付きプレートの超音波探傷試験結果を示す図である。 図13は、パーティクル測定について説明する図である。
 以下、本発明を実施するための形態を図面と共に詳細に説明する。なお、以下の実施の形態により本発明が限定されるものではない。また、以下の説明において参照する各図は、本発明の内容を理解し得る程度に形状、大きさ、および位置関係を概略的に示してあるに過ぎない。すなわち、本発明は各図で例示された形状、大きさ、および位置関係のみに限定されるものではない。
 図1は、本発明の一実施の形態にかかる流路付きプレートの構造を示す部分断面図である。図2は、図1に示す領域Rを拡大した断面図である。図1に示す流路付きプレート1は、円板状の本体部10と、本体部10の一方の面(ここでは上面)を覆うカバー20とを備える。流路付きプレート1は、本体部10とカバー20とが拡散接合によって接合された接合体である。流路付きプレート1は、例えば、半導体装置に取り付けられ、当該半導体装置における冷却装置として機能する。このほか、流路付きプレート1は、取り付けられる装置を温めるヒーターとして用いてもよいし、後述する流路にガスを流通させるヒータープレートとして用いてもよいし、薄膜形成装置においてプロセスガスを噴射するシャワーヘッドとして用いてもよい。
 本体部10は、アルミニウム、又はアルミニウム合金からなる円板状をなす。本体部10には、熱交換を促す媒体を流通させる流路(例えば、図1に示す流路11~13)が形成されている。本体部10は、流路の開口側の面がカバー20と拡散接合によって接合している。流路11~13は、壁部14または壁部15によって区切られている。流路11~13は、連通して一つの流路を形成するものであってもよいし、少なくとも一部が独立した流路を形成するものであってもよい。また、媒体は、例えば水等の液体や、気体である。
 カバー20は、アルミニウム、又はアルミニウム合金からなる円板状をなす。カバー20は、本体部10の流路形成面を覆っている。
 アルミニウム合金としては、例えば6061番のアルミニウム合金(A6061)が挙げられる。
 本体部10とカバー20とは、後述する拡散接合によって接合される。
 流路付きプレート1では、媒体流入口(図示せず)から媒体を導入して流路に流通させ、媒体排出口(図示せず)から媒体を排出する。流路付きプレート1では、熱源から伝達された熱を、本体部10及びカバー20を介して外部に放出するか、または、熱源から伝達された熱を吸収した媒体が流路から排出される。
 次に、流路付きプレート1の作製方法について説明する。図3および図4は、本発明の一実施の形態にかかる流路付きプレートの製造方法を説明する断面図である。
 まず、上述した流路(例えば流路11~13)が形成された本体部10と、カバー20を用意する(図3参照)。そして、本体部10にカバー20を被せる(被覆ステップ)。この際、本体部10の流路の開口が、カバー20によって覆われる。流路付きプレート1は、例えばφ150mm以上の円板状をなしている。
 続いて、本体部10とカバー用母材200とを拡散接合により接合する(図4参照:拡散接合ステップ)。拡散接合では、密着させた部材同士に対し、部材の融点以下の温度条件において加圧して、接合面間に生じる原子の拡散を利用して接合する。この際、密着させた部材には、塑性変形をできるだけ生じない程度の荷重を加える。
 アルミニウム、又はアルミニウム合金からなる部材同士を拡散接合させる条件としては、接合温度が500℃以上640℃以下、接合面圧が0.7MPa以上である。
 接合温度は、アルミニウム合金の種類によって変わる。例えば、部材の融点よりも低い温度に設定される。
 接合面圧は、部材の種類にもよるが、3MPa以下であることが好ましい。
 また、各部材の接合面の精度として、平面度が0.2以下であることが好ましい。また、接合面の面粗度は、0より大きくRa0.4以下であることが好ましく、Ra0.1以下であることがさらに好ましい。
 上述した実施の形態では、本体部10とカバー20とを拡散接合によって接合するようにした。拡散接合することによって、本体部とカバーとを確実に接合しつつ、接合による品質低下を抑制することができる。本実施の形態では、従来のような、ろう付時にろうが流路に流れ込んで、流路の表面が荒れたり、ろうが滞留した部分における流量のばらつき、流量のばらつきによる温度変化が生じたり、ろう材成分による不純物汚染が発生したりする品質の低下を抑制し、部材同士を確実に接合することが可能である。
 このように、本発明はここでは記載していない様々な実施の形態等を含みうるものであり、請求の範囲により特定される技術的思想を逸脱しない範囲内において種々の設計変更等を施すことが可能である。
 以下、本発明にかかる接合方法および接合体の実施例について説明する。なお、本発明は、これらの実施例に限定されるものではない。
(試験片の接合面の評価)
 接合体として試験を行う試験片は、同一の形状をなす二つの部材を接合させたものを使用した。図5は、本発明の実施例に用いた試験片の構成を説明する図である。本試験片は、部材300を拡散接合させたものを使用した。部材300は、6061番のアルミニウム合金(A6061)からなる。部材300は、接合面を有する略円柱状の接合部301と、接合部301の接合面側と反対側に連なり、試験時に把持される把持部302とを有する。把持部302は、側面においてねじ山が形成されている。
 本実施例では、上述した部材300を用いて、接合温度を550℃、接合面圧を0.7MPaとして拡散接合した試験片を6つ、接合面圧を0.5MPaとして接合した試験片を6つ作製した。図6A~図6Cは、本発明の実施例における接合後の界面のSEM画像を示す図である。図6Bは、図6Aの中央部を拡大した図である。図6Cは、図6Bの中央部を拡大した図である。図6A~図6Cに示すように、接合界面において、欠陥なく接合されていることがわかる。
 図7A~図7Dは、本発明の実施例における接合後の界面のEDX観察像を示す図である。図7Aは、接合後の界面における反射像を示している。図7Bは、接合後の界面におけるアルミニウム(Al)の分布像を示している。図7Cは、接合後の界面におけるマグネシウム(Mg)の分布像を示している。図7Dは、接合後の界面におけるケイ素(Si)の分布像を示している。図7B~図7Dでは、色が薄いほど、その成分を多く含んでいることを示している。
 図7Bに示すように、部材300の主成分であるアルミニウムが広く分布していることがわかる。
 また、図7Cおよび図7Dに示すように、マグネシウムやケイ素が接合界面において析出していることがわかる。ここでは、マグネシウムやケイ素が、アルミニウムの酸化皮膜を還元して酸化物となる。この反応によって、接合界面の非晶質酸化膜が結晶酸化物粒子に変化し、部材300同士の接合に寄与していることが考えられる。
(試験片の引張試験)
 また、これらの試験片について、引張試験を実施した。接合面圧を0.7MPaとして接合した試験片にNo.1~No.6の番号を付し、接合面圧を0.5MPaとして接合した試験片にNo.11~No.16の番号を付して試験を行った。引張試験結果を、図8~図11に示す。
 図8は、接合面圧を0.7MPaとして拡散接合した試験片の引張試験結果を示す図である。試験片No.1~No.6は、いずれも引張り強さが125MPaを超えている。ここで、6061番のアルミニウム合金(A6061)の引張り強さは125MPaである。このことから、試験片No.1~No.6は、すべての試験片が、部材300の主成分である6061番のアルミニウム合金(A6061)の引張り強さよりも大きい引張り強さを有しているといえる。
 図9は、接合面圧を0.7MPaとして拡散接合した試験片の引張試験結果を示す図である。試験片No.1~No.6のいずれについても、接合界面ではなく、一方の部材において破断が生じていることがわかる。
 図10は、接合面圧を0.5MPaとして拡散接合した試験片の引張試験結果を示す図である。試験片No.11~No.16においては、試験片No.13の引張り強さが、125MPaを下回っている。このことから、試験片No.11~No.16は、一部において、部材300の主成分である6061番のアルミニウム合金(A6061)の引張り強さよりも小さい引張り強さとなることがある。
 図11は、接合面圧を0.5MPaとして拡散接合した試験片の引張試験結果を示す図である。試験片No.11~No.16のうち、一部(試験片No.13、No.16)が、接合界面において破断が生じていることがわかる。
(流路付きプレートの超音波探傷試験)
 図12は、実施例にかかる流路付きプレートの超音波探傷試験結果を示す図である。図12は、接合面圧を0.7MPaとして接合した流路付きプレートを示している。図12から分かるように、円板の部材に形成されている流路に損傷などの欠陥がないことがわかる。
(流路付きプレートのパーティクル測定)
 また、上述した流路付きプレート1を作製し、この流路付きプレート1を試験片として、パーティクル測定を行った。比較対象として、ろう付によって接合した試験片を作製して、パーティクル測定を行った。図13は、パーティクル測定について説明する図である。本実施例では、各試験片(試験片100)を治具101に取り付け、治具101を介して収集したパーティクルを、測定器102によって測定した。パーティクル測定は、各試験片について、それぞれ三回実施した。
 初期のパーティクルは量が多いため、一回目の測定では、数分間、流路に窒素を流す処理を複数回実施し、パーティクルを安定させてからパーティクルの測定を行った。パーティクル測定では、まず、イソプロピルアルコール(Isopropyl alcohol:IPA)を流路に導入し、45秒間、窒素でブローした。その後、窒素を1分導入し、粒径に応じた粒子数(積算数)をカウントした。本実施例では、粒径(パーティクルサイズ)が0.3μm以下の粒子数と、粒径が0.3μmより大きく0.5μm以下の粒子数をカウントした。
 拡散接合によって接合した試験片によるパーティクル測定の結果は、以下のようになった。
          パーティクルサイズ
       0.5μm以下  0.3μm以下
  1回目    88       15
  2回目    39       13
  3回目    15        2
 これに対し、ろう付けによって接合した試験片によるパーティクル測定の結果は、以下のようになった。
          パーティクルサイズ
       0.3μm以下  0.5μm以下
  1回目   483      168
  2回目   238       84
  3回目   189       87
 なお、治具のみのパーティクル測定では、いずれのサイズもカウント数がゼロであった。
 上述した測定結果から、拡散接合によって接合した流路付きプレートの流路は、ろう付によって接合した流路付きプレートの流路と比して、パーティクルが少ないといえる。
 以上説明したように、本発明に係る接合方法および接合体は、本体部とカバーとを確実に接合しつつ、接合による品質低下を抑制するのに好適である。
 1 流路付きプレート
 10 本体部
 11~13 流路
 14、15 壁部
 20 カバー

Claims (5)

  1.  アルミニウムまたはアルミニウム合金からなり、熱交換を促す媒体を流通させる流路が形成される本体部と、アルミニウムまたはアルミニウム合金からなり、前記本体部の前記流路を覆うカバーとを接合する接合方法であって、
     前記本体部に前記カバーを被せる被覆ステップと、
     接合温度が500℃以上640℃以下、接合面圧が0.7MPa以上の条件下で拡散接合することによって、前記本体部と前記カバーとを接合する拡散接合ステップと、
     を含むことを特徴とする接合方法。
  2.  前記本体部の接合面および前記カバーの接合面の平面度が、それぞれ0.2以下である
     ことを特徴とする請求項1に記載の接合方法。
  3.  前記本体部の接合面および前記カバーの接合面の面粗度が、各々0より大きくRa0.4以下である
     ことを特徴とする請求項1または2に記載の接合方法。
  4.  アルミニウムまたはアルミニウム合金からなり、熱交換を促す媒体を流通させる流路が形成される本体部と、
     アルミニウムまたはアルミニウム合金からなり、前記本体部の前記流路を覆うカバーと、
     を備え、
     前記本体部と前記カバーとが、拡散接合されてなる
     ことを特徴とする接合体。
  5.  前記本体部および前記カバーが、6061番のアルミニウム合金からなり、
     引張り強さが125MPa以上である
     ことを特徴とする請求項4に記載の接合体。
PCT/JP2019/049049 2018-12-21 2019-12-13 接合方法および接合体 WO2020129863A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP19900978.8A EP3900867A4 (en) 2018-12-21 2019-12-13 JOINING METHODS AND JOINT BODIES
KR1020217017680A KR102670607B1 (ko) 2018-12-21 2019-12-13 접합 방법 및 접합체
KR1020247017491A KR20240091000A (ko) 2018-12-21 2019-12-13 접합 방법 및 접합체
JP2020561389A JPWO2020129863A1 (ja) 2018-12-21 2019-12-13 接合方法および接合体
CN201980084269.3A CN113195146A (zh) 2018-12-21 2019-12-13 接合方法及接合体
US17/413,680 US20220009022A1 (en) 2018-12-21 2019-12-13 Joining method and joined body

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018240266 2018-12-21
JP2018-240266 2018-12-21

Publications (1)

Publication Number Publication Date
WO2020129863A1 true WO2020129863A1 (ja) 2020-06-25

Family

ID=71101298

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/049049 WO2020129863A1 (ja) 2018-12-21 2019-12-13 接合方法および接合体

Country Status (7)

Country Link
US (1) US20220009022A1 (ja)
EP (1) EP3900867A4 (ja)
JP (1) JPWO2020129863A1 (ja)
KR (2) KR102670607B1 (ja)
CN (1) CN113195146A (ja)
TW (1) TWI830840B (ja)
WO (1) WO2020129863A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004216242A (ja) * 2003-01-14 2004-08-05 Nippon Steel Corp 拡散接合性の良好な排気ガス浄化用メタル担体用耐熱ステンレス鋼箔およびメタル担体
JP2006159223A (ja) * 2004-12-03 2006-06-22 Kobelco Kaken:Kk AlまたはAl合金接合体の製法
JP2009535801A (ja) 2006-04-28 2009-10-01 ダンスン エレクトロン カンパニー リミテッド サセプタの製造方法、及び、この方法によって製造されたサセプタ
JP2014091125A (ja) * 2012-10-31 2014-05-19 Nitto Seiko Co Ltd 炭素含有量の異なる鋼材部品およびその製造方法

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5461015A (en) * 1977-10-25 1979-05-17 Kobe Steel Ltd Manufacture of aluminum-soldered fin heat exchanger
GB8429979D0 (en) * 1984-11-28 1985-02-13 British Aerospace Diffusion banding of metals
JPS62254989A (ja) * 1986-04-24 1987-11-06 セジユデユ−ル・ソシエテ・ドウ・トランスフオルマシオン・ドウ・ラリユミニウム・ペシネ アルミニウム又はアルミニウム合金部材の固体状態拡散による接合方法
US5433835B1 (en) * 1993-11-24 1997-05-20 Applied Materials Inc Sputtering device and target with cover to hold cooling fluid
JP2001050682A (ja) * 1999-08-05 2001-02-23 Showa Alum Corp パネル型熱交換器およびその製造方法
JP2003300391A (ja) * 2002-04-08 2003-10-21 Sumitomo Electric Ind Ltd 加熱圧着用接合体およびそれを用いた加熱圧着装置
DE10251658B4 (de) * 2002-11-01 2005-08-25 Atotech Deutschland Gmbh Verfahren zum Verbinden von zur Herstellung von Mikrostrukturbauteilen geeigneten, mikrostrukturierten Bauteillagen sowie Mikrostrukturbauteil
CN1234496C (zh) * 2002-12-27 2006-01-04 北京青云航空仪表有限公司 铝铜双金属片的低温低压反应扩散焊
JP2005021946A (ja) * 2003-07-03 2005-01-27 Masao Hondo 異種金属部材の接合方法
JP4838992B2 (ja) * 2004-10-08 2011-12-14 古河スカイ株式会社 ヒータプレート及びヒータプレートの製造方法
JP2007285682A (ja) * 2006-04-20 2007-11-01 Xenesys Inc 熱交換器製造方法
KR100780749B1 (ko) * 2006-12-28 2007-11-30 주식회사 단성일렉트론 써셉터 제조방법 및 이를 이용한 써셉터
KR101235027B1 (ko) * 2008-07-15 2013-02-21 도쿄엘렉트론가부시키가이샤 마이크로파 플라즈마 처리 장치 및, 냉각 재킷의 제조 방법
JP2010094683A (ja) * 2008-10-14 2010-04-30 Panasonic Corp アルミニウム合金の拡散接合法
US8159821B2 (en) * 2009-07-28 2012-04-17 Dsem Holdings Sdn. Bhd. Diffusion bonding circuit submount directly to vapor chamber
MY154119A (en) * 2010-06-04 2015-05-06 Furukawa Sky Aluminum Corp Method of bonding aluminum alloy materials to each other
KR20120021770A (ko) * 2010-08-17 2012-03-09 명화공업주식회사 초경량 듀얼 드럼 브레이크 및 그 제조방법
CN103722304B (zh) * 2014-01-09 2016-12-07 北京航空航天大学 一种用于界面强化传热的铝合金界面低温扩散连接用材料
CN104084691A (zh) * 2014-07-10 2014-10-08 西北工业大学 铝合金等强度扩散连接方法
FR3026974B1 (fr) * 2014-10-10 2016-12-09 Commissariat Energie Atomique Procede de realisation d'un module d'echangeur de chaleur a au moins deux circuits de circulation de fluide, echangeur thermique et reacteur-echangeur associes
WO2016138987A1 (de) * 2015-03-02 2016-09-09 Linde Aktiengesellschaft Verfahren zur herstellung eines plattenwärmeübertragers
JP6468028B2 (ja) * 2015-03-30 2019-02-13 三菱マテリアル株式会社 放熱板付パワーモジュール用基板
JP6808503B2 (ja) * 2016-02-05 2021-01-06 株式会社アルバック 部材接合方法
JP6572810B2 (ja) * 2016-03-15 2019-09-11 三菱マテリアル株式会社 接合体の製造方法、及び、パワーモジュール用基板の製造方法
JP6321067B2 (ja) * 2016-03-31 2018-05-09 住友精密工業株式会社 拡散接合型熱交換器
CN106475679B (zh) * 2016-11-30 2018-07-27 山东大学 一种铜与铝合金的无中间层非连续加压真空扩散连接工艺
CN111819682A (zh) * 2018-03-26 2020-10-23 三菱综合材料株式会社 绝缘电路基板用接合体的制造方法及绝缘电路基板用接合体
CN208005081U (zh) * 2018-03-30 2018-10-26 吉林大学 铝合金散热冷板扩散焊夹具
CN108161324A (zh) * 2018-03-30 2018-06-15 吉林大学 铝合金散热冷板扩散焊夹具
GB2573546B (en) * 2018-05-09 2021-03-31 Twi Ltd A method of diffusion bonding
DE102019204131A1 (de) * 2019-03-26 2019-06-06 Carl Zeiss Smt Gmbh Vorrichtung zur Führung eines flüssigen oder gasförmigen Mediums, Verfahren zur Herstellung einer entsprechenden Vorrichtung, Feldfacettenmodul und Projektionsbelichtungsanlage
CN110253131B (zh) * 2019-07-01 2020-12-04 中国科学院工程热物理研究所 毛细通道换热器及其制备方法
CN110375567A (zh) * 2019-07-20 2019-10-25 中国船舶重工集团公司第七二四研究所 一种基于层压扩散焊工艺的多层通道冷板及其成形方法
CN110579123A (zh) * 2019-09-19 2019-12-17 中国核动力研究设计院 双侧异型流道的高压紧凑换热器结构及其组装方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004216242A (ja) * 2003-01-14 2004-08-05 Nippon Steel Corp 拡散接合性の良好な排気ガス浄化用メタル担体用耐熱ステンレス鋼箔およびメタル担体
JP2006159223A (ja) * 2004-12-03 2006-06-22 Kobelco Kaken:Kk AlまたはAl合金接合体の製法
JP2009535801A (ja) 2006-04-28 2009-10-01 ダンスン エレクトロン カンパニー リミテッド サセプタの製造方法、及び、この方法によって製造されたサセプタ
JP2014091125A (ja) * 2012-10-31 2014-05-19 Nitto Seiko Co Ltd 炭素含有量の異なる鋼材部品およびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3900867A4

Also Published As

Publication number Publication date
TW202023722A (zh) 2020-07-01
KR20240091000A (ko) 2024-06-21
EP3900867A4 (en) 2022-09-28
EP3900867A1 (en) 2021-10-27
KR20210089732A (ko) 2021-07-16
CN113195146A (zh) 2021-07-30
US20220009022A1 (en) 2022-01-13
JPWO2020129863A1 (ja) 2021-11-25
KR102670607B1 (ko) 2024-05-29
TWI830840B (zh) 2024-02-01

Similar Documents

Publication Publication Date Title
US20220212279A1 (en) Welded, Laminated Apparatus, Methods of Making, and Methods of Using the Apparatus
TWI389246B (zh) A method of manufacturing a gas supply structure of an electrostatic chuck device, a gas supply structure of an electrostatic chuck unit, and an electrostatic chuck
JP4257728B2 (ja) スパッターターゲット集成体の形成法
US20170240475A1 (en) Low Temperature Method For Hermetically Joining Non-Diffusing Ceramic Materials In Multi-Layer Plate Devices
CN103945971B (zh) 用于生产耐高温复合主体的工艺
US20060110624A1 (en) Bonding agent, aluminum nitride composite body, and manufacturing method of the same
JP6231428B2 (ja) Li含有酸化物ターゲット接合体およびその製造方法
CN107735386A (zh) 用于修复在半导体加工中使用的设备件的方法
JP7312825B2 (ja) ベリリウム銅合金接合体及びその製造方法
WO2020129863A1 (ja) 接合方法および接合体
JP6546953B2 (ja) スパッタリングターゲット−バッキングプレート接合体及びその製造方法
JPS59225893A (ja) Ti又はTi合金とAl又はAl合金との接合方法
JPH07218670A (ja) 冷却装置の製造方法
Zhao et al. Influence of surface morphology on wetting behaviors of liquid metal during aluminum heat exchanger fabrication
US6779713B1 (en) Joining of composite beryllium-aluminum parts
JP6318441B2 (ja) 接合方法
WO2020022046A1 (ja) アルミナ分散強化銅のろう付接合方法
Singh et al. Study Of Diffusion Bonding Of WL10 To SS Joining With & Without Titanium Interlayer Using Thermo Mechanical Simulator
TW202030830A (zh) 接合構件、半導體製造製程用接合構件以及半導體製造製程裝置
JP2005243877A (ja) 真空中冷却用セラミック部品
KR101749962B1 (ko) 질량유량계 접합면의 경면처리 방법
JP3976993B2 (ja) セラミックス基材の接合方法、セラミックス基材の接合体およびセラミックスヒーター
TW201823491A (zh) 濺鍍靶材用背板的修補方法、修補完成的背板以及使用修補完成的背板的濺鍍靶材
JP6502225B2 (ja) セラミックヒータ及びその製造方法
TW202100269A (zh) 接合構件及其製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19900978

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2020561389

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20217017680

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019900978

Country of ref document: EP

Effective date: 20210721