WO2020129577A1 - 電池監視制御回路 - Google Patents

電池監視制御回路 Download PDF

Info

Publication number
WO2020129577A1
WO2020129577A1 PCT/JP2019/046838 JP2019046838W WO2020129577A1 WO 2020129577 A1 WO2020129577 A1 WO 2020129577A1 JP 2019046838 W JP2019046838 W JP 2019046838W WO 2020129577 A1 WO2020129577 A1 WO 2020129577A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
control circuit
monitoring control
battery monitoring
circuit
Prior art date
Application number
PCT/JP2019/046838
Other languages
English (en)
French (fr)
Inventor
小林 仁
Original Assignee
パナソニックセミコンダクターソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックセミコンダクターソリューションズ株式会社 filed Critical パナソニックセミコンダクターソリューションズ株式会社
Priority to JP2020561254A priority Critical patent/JP7458326B2/ja
Publication of WO2020129577A1 publication Critical patent/WO2020129577A1/ja
Priority to US17/349,437 priority patent/US11824390B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3835Arrangements for monitoring battery or accumulator variables, e.g. SoC involving only voltage measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/396Acquisition or processing of data for testing or for monitoring individual cells or groups of cells within a battery
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a battery monitoring control circuit and a battery control system.
  • Patent Document 1 discloses a battery monitoring system that can save power by stopping the operation of the voltage generating means in the power saving mode.
  • the battery monitoring system includes a plurality of starting circuits for controlling the starting of the regulator.
  • the plurality of start-up circuits include a start-up circuit for outputting an L-level power-up signal for starting up the regulator in response to a start-up signal input from the MCU of the control circuit unit.
  • the plurality of start-up circuits start up to output an L-level power-up signal for starting up the regulator in accordance with the voltage potential VDD generated by the regulator of the lower-order or higher-order battery monitoring IC 20 that has been started up earlier. It has a circuit.
  • the conventional example has a problem that the power consumption in the sleep mode is still large.
  • the object of the present invention is to solve the above problems and to reduce the power consumption in the sleep state before starting the battery monitoring control circuit to zero, and a battery provided with the battery monitoring control circuit. To provide a control system.
  • a battery monitoring control circuit is A battery pack to which a plurality of secondary battery cells are connected is divided into a plurality of blocks, and a plurality of battery monitoring control circuits that measure the output voltage of each or a plurality of secondary battery cells and the battery monitoring control circuit are controlled.
  • a battery monitoring control circuit used in a battery control system including a control circuit, Each battery monitoring control circuit, Communication between the battery monitoring control circuits, or a communication interface for communicating with the control circuit, A power converter that converts a start signal input to the communication interface into a DC voltage, A starting circuit that is supplied with electric power from the DC voltage from the power converter as a power supply voltage and that generates a starting control signal for starting the battery monitoring control circuit.
  • a battery control system is A battery pack to which a plurality of secondary battery cells are connected is divided into a plurality of blocks, and a plurality of battery monitoring control circuits that measure the output voltage of each or a plurality of secondary battery cells and the battery monitoring control circuit are controlled.
  • a battery control system comprising a control circuit, Each battery monitoring control circuit, Communication between the battery monitoring control circuits, or a communication interface for communicating with the control circuit, A power converter that converts a start signal input to the communication interface into a DC voltage, A starting circuit that is supplied with electric power from the DC voltage from the power converter as a power supply voltage and that generates a starting control signal for starting the battery monitoring control circuit.
  • the power converter converts a start signal input to the communication interface into a DC voltage, and the start circuit is powered by using the DC voltage from the power converter as a power supply voltage. , Generating a start control signal for starting the battery monitoring control circuit. As a result, the battery monitoring control circuit is activated, so that the power consumption in the sleep state before activating the battery monitoring control circuit can be reduced to zero.
  • FIG. 6 is a block diagram showing a configuration example of a battery control system including a battery monitoring control circuit according to Comparative Example 1.
  • FIG. 7 is a block diagram showing a configuration example of a battery control system including a battery monitoring control circuit according to a comparative example 2.
  • FIG. 14 is a block diagram showing a configuration example of a battery control system including a battery monitoring control circuit according to Comparative Example 3.
  • FIG. 2 is a circuit diagram showing a detailed configuration example of a power converter, a start circuit, and a start switch of the battery management IC BM1 of FIG. 7 is a timing chart showing the operation of the battery management IC BM1 of FIG.
  • FIG. 9 is a circuit diagram showing a detailed configuration example of a power converter, a startup circuit, and a startup switch of a battery management IC BM1A according to Modification 1.
  • FIG. 9 is a circuit diagram showing a detailed configuration example of a power converter, a start circuit, and a start switch of a battery management IC BM1B according to Modification 2.
  • FIG. 1 is a block diagram showing a configuration example of a battery control system including a battery monitoring control circuit according to an embodiment.
  • the battery monitoring control circuit corresponds to the battery management ICs BM1 and BM2 in FIG.
  • a plurality of battery cells B1, B2,... are connected in series to each other to form an assembled battery BA.
  • each of the battery cells B1, B2,... Constitutes a plurality of secondary batteries, which are, for example, lithium-ion batteries, in series with each other to form a storage cell.
  • the battery management IC BM1 is a battery monitoring control circuit that monitors and controls each voltage of the battery cell B1 or each secondary battery in the battery cell B1, and is mounted on the printed wiring board of the cell management unit (CMU) SM1. It The cell management unit (CMU) SM1 includes a battery management IC BM1 and two isolation transformers TR1 and TR2 for performing daisy communication.
  • the battery management IC BM2 is a battery monitoring control circuit that monitors and controls each voltage of the battery cell B2 or each secondary battery in the battery cell B2, and is on the printed wiring board of the cell management unit (CMU) SM2. It is installed.
  • the cell management unit (CMU) SM2 includes a battery management IC BM2 and two isolation transformers TR1 and TR2 for performing daisy communication.
  • the battery management unit (BMU) 50 is configured to include a first control circuit 51 which is a control ECU (Electric Control Unit) for controlling the entire battery control system, and an isolation transformer TR0 for daisy communication.
  • the isolation transformer TR0 is a galvanic element that maintains galvanic isolation at a boundary separation barrier between a low voltage region AL that operates at a low voltage of about 5V and a high voltage region AH that operates at a high voltage of about 86.4V. It is provided on the isolation barrier 52.
  • the battery management unit (BMU) 50 is connected to the daisy communication interface (daisy communication I/F) 14 of the battery management IC BM1 via the insulating transformer TR0, the daisy communication line L0, and the insulating transformer TR1 in the cell management unit CM1.
  • the daisy communication interface 14 of the battery management IC BM1 is the daisy communication interface of the battery management IC BM2 via the insulation transformer TR2 in the cell management unit CM1, the daisy communication line L1, and the insulation transformer TR1 in the cell management unit CM2. 14 is connected.
  • the daisy communication interface 14 of the battery management IC BM2 is connected to the daisy communication interface 14 of the battery management IC BM3 via the insulation transformer TR2 in the cell management unit CM2, the daisy communication line L2 and the like.
  • the first control circuit 51 is connected to the daisy communication interface 14 of the battery management IC BM1, and the daisy communication interface 14 is connected to the daisy communication interface 14 of the battery management IC BM2 in the next stage. Then, the daisy communication interface 14 is connected to the daisy communication interface 14 of the battery management IC BM3 in the next stage.
  • the daisy communication interface 14 sends an activation signal to the daisy communication interface 14 of the battery management IC BM1 in the next stage.
  • the daisy communication interface 14 further transmits a start signal to the daisy communication interface 14 of the battery management IC BM2 in the next stage, and so on.
  • other communication methods may be used.
  • the battery management IC BM1 includes a second control circuit 10, a power supply circuit 11, a multiplexer (MUX) 12, an AD converter (ADC) 13, a daisy communication interface 14, a start switch 15, and a power converter 20. , And a start-up circuit 30.
  • the power supply voltage of the battery cell B1 is input to the power supply circuit 11 via the start switch 15, and the power supply circuit 11 converts the input power supply voltage into a predetermined operating voltage, and the second control circuit 10, the multiplexer 12, and the AD conversion.
  • the daisy communication interface 14 is connected to both ends of a plurality of batteries in the battery cell B1, detects the voltage across each battery, selects the voltage, and outputs it to the second control circuit 10 via the AD converter 13.
  • the second control circuit 10 is a control circuit that controls the overall operation of the battery management IC BM1, and, for example, sequentially detects the voltages across the plurality of batteries in the battery cell B1 by controlling the multiplexer 12. Then, the detected voltage is output to the daisy communication interface 14 and transmitted to, for example, the first control circuit 51.
  • the first control circuit 51 When activating each of the battery management ICs BM1, BM2, BM3, etc., the first control circuit 51 sends a predetermined activation signal, which is, for example, a differential AC pulse signal whose amplitude changes over time, to the daisy communication line L0. Via the battery management IC BM1 to the power converter 20 and the daisy communication interface 14.
  • the power converter 20 performs AC-DC conversion on the input start signal by, for example, full-wave rectification to generate a predetermined DC voltage, and then changes the DC voltage to a predetermined DC voltage higher than the DC voltage. The voltage is converted into a voltage, and the DC voltage is applied to the starting circuit 30 as a control signal.
  • the starting circuit 30 is turned on, and at this time, the starting control signal Sc is output to the control terminal of the starting switch 15, so that the starting switch 15 is turned on.
  • the power supply voltage of the battery cell B1 is input to the power supply circuit 11 via the start switch 15, and the power supply circuit 11 supplies power as described above.
  • the battery management IC BM1 is activated from the sleep state which is the standby state.
  • the daisy communication interface 14 activated by the supply of the power supply voltage from the power supply circuit 11 transmits a predetermined activation signal, which is, for example, a differential AC pulse signal whose amplitude changes with the passage of time, through the daisy communication line L1.
  • the startup switch 15 of the battery management IC BM2 is turned on by the startup operation of the power converter 20 of the battery management IC BM2 and the startup circuit 30.
  • the battery management IC BM2 is activated from the sleep state which is the standby state. After that, the circuits after the battery management IC BM3 are activated in the same manner.
  • the battery management IC BM1 which is one of the plurality of battery monitoring control circuits activated by the activation signal is operated by another battery monitoring control circuit from the daisy communication interface 14 via the daisy communication line L1.
  • the second control circuit 10 of the battery management IC BM2 which is another battery monitoring control circuit, is activated.
  • the battery management IC BM2 is transmitted from the daisy communication interface 14 via the daisy communication line L2 to the daisy communication interface 14 of the battery management IC BM3, which is another battery monitoring control circuit.
  • the second control circuit 10 of the battery management IC BM3 is started, and so on.
  • FIG. 6 is a circuit diagram showing a detailed configuration example of the power converter 20, the starting circuit 30, and the starting switch 15 of the battery management IC BM1 of FIG.
  • the power converter 20 includes an AC-DC converter 21, a comparator 22, and a DC-DC converter 23.
  • the AC-DC converter 21 includes a diode bridge type full-wave rectifier circuit 26 including, for example, four diodes D1 to D4, and a smoothing capacitor C21.
  • the power converter 20 performs full-wave rectification on the differential start signals S1 and S2, which are input, for example, differential pulse signals, and then smoothes them to convert them into a predetermined DC voltage signal S3, and then the comparator 22 and DC-DC. It is supplied as the power supply voltage of the converter 23.
  • the comparator 22 generates a binarized clock signal S4 of a predetermined cycle based on the input differential activation signals S1 and S2 by using its own hysteresis characteristic having positive and negative threshold values. It is supplied to the DC-DC converter 23. That is, the comparator 22 is configured as a signal generator that generates the binarized clock signal S4.
  • the DC-DC converter 23 includes three diodes D11 to D13, capacitors C11 to C13, and three inverters INV1 to INV3, and constitutes a so-called known charge pump circuit.
  • the DC-DC converter 23 sequentially charges up the input DC voltage signal S3 in synchronization with the clock signal S3 while charging/discharging the capacitors C11 to C13 according to the clock signal, thereby sequentially increasing the input DC voltage. It is converted into a DC voltage higher than the voltage and output to the starting circuit 30.
  • the start-up circuit 30 includes a switching element such as an N-channel MOS transistor Q1 and a resistor R1 connected between its gate and ground. The start-up circuit 30 is turned on at start-up and outputs a predetermined L-level start control signal Sc.
  • the start-up switch 15 is composed of a switching element such as a P-channel MOS transistor Q2 and a resistor R2 connected between its gate and source, and is turned on in response to an L-level start-up control signal Sc, and the battery cell
  • the power supply voltage of B1 is supplied to the power supply circuit 11.
  • the battery management ICs BM2, BM3,... are also configured and operate similarly to the battery management IC BM1, except that the activation signal comes from the preceding battery management IC.
  • FIG. 7 is a timing chart showing the operation of the battery management IC BM1 shown in FIG.
  • the differential start signals S1 and S2 having an inversion relation to each other are full-wave rectified by the AC-DC converter 21, and the full-wave rectification is performed.
  • the waveform signal S3 is input to the DC-DC converter 23.
  • the comparator 22 generates a clock signal S4 having a predetermined cycle from the input differential activation signals S1 and S2 and supplies the clock signal S4 to the DC-DC converter 23.
  • the DC-DC converter 23 is driven by the clock signal S4 to sequentially step up the input full-wave rectified waveform signal S3, thereby converting it into a DC voltage higher than the input DC voltage, and then the starter circuit 30. Output.
  • the starting circuit 30 is turned on at the time of starting at a predetermined threshold voltage or higher and generates a predetermined L level start control signal Sc to output the start switch 15.
  • the start switch 15 is turned on in response to the L level start control signal Sc, and supplies the power supply voltage of the battery cell B1 to the power supply circuit 11.
  • the battery management IC BM1 that is the battery monitoring control circuit is activated from the sleep mode that is the standby state (the sleep state before activating the battery monitoring control circuit).
  • differential signals are used as the activation signals S1 and S2 as the activation signals S1 and S2 .
  • the amplitudes of the differential signals S1 and S2 change due to fluctuations in the power supply voltage in the battery management unit 50 or superimposition of noise, if at least the differential signals S1 and S2 fluctuate at the same time, the fluctuations will occur in the comparator 22 It is possible to prevent a malfunction from being caused in the timing of generating the start control signal Sc.
  • the single end signal is used as the activation signal, the above fluctuation may not be absorbed by the comparator 22 and a malfunction may occur in the timing of generating the activation control signal Sc.
  • a clock signal S4 obtained by binarizing the start signals S1 and S2 by the comparator 22 can be created and supplied to the DC-DC converter 23.
  • the DC-DC converter 23 which is the charge pump circuit, the boosting operation is not completed unless clocks for the number of stages of the charge pump are input. That is, since it acts as a kind of filter for noise that is not the activation signals S1 and S2, it is possible to distinguish between a regular activation signal and noise and prevent malfunction.
  • differential activation signals S1 and S2 are used in the present embodiment, the present invention is not limited to this, and any repetitive signal having a predetermined cycle having an amplitude that changes at least may be used.
  • an AC signal such as a sine wave signal or a rectangular wave signal may be used.
  • a battery control system (BMS) for controlling the assembled battery BA can be provided.
  • the battery monitoring and control circuit can monitor and control the state of charge (SOC: State of Charge) by measuring the voltage of each secondary battery of the battery cells B1, B2,... In the assembled battery BA.
  • the battery monitoring control circuit for example, activates the second control circuit 10, which is a cell management unit (CMU), from the sleep state which is the standby state, and the activation circuit 30 from the activation signals S1 and S2.
  • a power converter 20 for controlling activation for controlling activation.
  • the battery management unit 50 has a simple system configuration that is activated by transmitting activation signals S1 and S2 from the first control circuit 51 in the battery management unit 50 through its communication interface. Power consumption can be reduced to zero.
  • FIG. 2 is a block diagram showing a configuration example of a battery control system including a battery monitoring control circuit according to a modification of the embodiment.
  • the battery monitoring control circuit according to the modified example is different from the battery monitoring control circuit of FIG. 1 in the following points.
  • Cell management units SM1A and SM2A are provided in place of the cell management units SM1 and SM2.
  • the cell management unit SM1A has two capacitors C1 and C2 connected to the daisy communication line L1 instead of the insulating transformer TR2 shown in FIG.
  • the cell management unit SM2A includes two capacitors C1, C2, C3, C4 connected to the daisy communication line L1 instead of the insulating transformers TR1, TR2 shown in FIG.
  • capacitors C1 to C4 operate as coupling capacitors that do not allow a DC voltage to pass but a start signal that is an AC signal.
  • the modified example configured as described above also operates in the same manner as the battery monitoring control circuit of FIG. 1 and has the same operational effect. That is, in FIG. 2, power is supplied from the power supply circuit 11 of the battery monitoring control circuit similar to that in FIG. 1 to the second control circuit 10 which is the cell management unit (CMU). As a result, similarly to the above, the battery monitoring control circuit can be activated based on the activation control signal Sc, and the second control circuit 10 can be activated from the battery monitoring control circuit.
  • CMU cell management unit
  • FIG. 3 is a block diagram showing a configuration example of a battery control system including a battery monitoring control circuit according to Comparative Example 1
  • FIG. 4 is a configuration example of a battery control system including a battery monitoring control circuit according to Comparative Example 2. It is a block diagram shown.
  • Lithium-ion batteries are used as storage batteries that can store large amounts of electric power.
  • the lithium-ion battery has a risk of deterioration due to over-discharge, heat generation and explosion due to over-charge, it is important to accurately grasp the SOC and use the voltage of each battery cell within a certain voltage range. is there.
  • in-vehicle lithium-ion batteries for automobiles such as electric vehicles (EV) and hybrid vehicles (HEV) generate a voltage of about 400 to 800 V by an assembled battery in which several hundred cells (batteries) are connected in series. And drive the motor.
  • EV electric vehicles
  • HEV hybrid vehicles
  • To control the assembled battery of such a lithium-ion battery divide it into a plurality of blocks having a series number of about 6 to 24, and monitor and control individual cells in each block by a battery monitoring control circuit. Is common.
  • the battery monitoring control circuit of the assembled battery connects the negative electrode of the lowest cell to the GND terminal and the positive electrode of the highest cell with respect to the potential difference generated by the battery cells connected in series in the divided blocks. It is connected to the power supply voltage terminal so as to operate.
  • the output voltage of a cell of a general lithium-ion battery is about 3.6V, and for example, in a battery monitoring control circuit that manages a block of 24 series, about 86.4V is provided between the power supply and the GND terminal. A voltage will be applied.
  • the battery monitoring control circuit is provided with a multiplexer (MUX) for selecting a cell to be measured in order to measure the voltage of each battery cell connected in series, an AD converter for measuring the selected cell voltage, a control logic and the like. , And a communication interface between each battery cell voltage measurement value and a control circuit (control ECU (Electric Control Unit)) of a higher-level battery control system (BMS).
  • MUX multiplexer
  • AD converter Analog converter
  • the AD converter, control logic, and communication interface built into the battery monitoring control circuit described above satisfy the required specifications such as circuit performance, chip area, and current consumption, and operate at about 1.8 to 5 V. It is composed of transistor elements with low power supply voltage. Therefore, the battery monitoring control circuit is provided with the power supply circuit for the built-in circuit from the high power supply voltage between the power supply and the GND terminal.
  • a battery monitoring control circuit that manages cells in 24 series is provided with a regulator that generates a power supply voltage of about 86.4 V to about 1.8 V or about 5 V, and supplies the power as a power source for a built-in circuit.
  • Lithium ion batteries for driving assembled batteries that generate a high voltage of approximately 400 to 800 V which are installed in electric vehicles (EVs), hybrid vehicles (HEVs), etc., are mainly used for vehicle control (for example, engine start, electrical equipment From a low-voltage power supply system supplied by an auxiliary battery (for example, a lead battery or a 12V lead battery) used to supply electricity to products, etc., to a high-voltage power supply system that is galvanically isolated. Install. Therefore, the battery monitoring control circuit that controls the lithium-ion battery for driving needs to be directly connected to the lithium-ion battery and is therefore installed in the high-voltage power supply system. On the other hand, the control circuit for controlling the lithium-ion battery is often installed on the auxiliary battery (lead battery, 12V lead battery) side.
  • the communication interface between the general battery monitoring control circuit and the control circuit maintains the galvanic insulation and performs communication, so that the isolation transformers TR1 and TR2 and the photocouplers 61 and 63 are provided.
  • the resistors 62 and 64 are circuit resistors for supplying power to the photocouplers 61 and 63.
  • the battery management IC BM1P, BM2P or BM1Q, BM2Q in the cell management unit SM1P, SM2P or SM1Q, SM2Q of FIG. 3 and FIG. 4 starts with the standby circuit current Iw flowing from the power supply voltage of the battery cells B1, B2.
  • a dedicated power supply circuit 20P (not the power converter 20 of FIG. 1) is provided.
  • in-vehicle battery monitoring and control circuits for electric vehicles (EVs) and hybrid vehicles (HEVs) are equipped with daisy-chain (interlaced) communication interfaces and galvanic isolation between the battery monitoring and control circuits. And the communication between potentials having different GND levels between the battery monitoring control circuits.
  • Such an on-vehicle battery monitoring control circuit is used as a lithium-ion battery module in a state where it is connected to an assembled battery, so the battery monitoring control circuit is used without being electrically disconnected from the assembled battery. Therefore, the vehicle-mounted battery monitoring control circuit once assembled as a module and connected to the assembled battery will continue to operate without power interruption. Therefore, during long-term parking, transportation or storage of a car or a battery module, the electric power stored in the lithium-ion battery is gradually discharged from the connected battery monitoring control circuit. As a result, when the lithium-ion battery is in an over-discharged state, it becomes a factor that disrupts the homogenization of the amount of electricity stored in each battery cell of the assembled battery, which is called cell balance.
  • the in-vehicle battery monitoring control circuit has an operation mode called a sleep mode or a stationary mode that minimizes power consumption. It is necessary to minimize the power consumption of the battery monitoring and control circuit and reduce the amount of discharge from the battery as much as possible.
  • the battery monitoring control circuit activates the activation signal from the first control circuit 51 so that the battery monitoring control circuit activates the activation signal from the sleep mode. It was necessary to keep flowing the circuit current Iw for operating the minimum necessary circuit for receiving.
  • FIG. 3 shows a method in which the first control circuit 51 transmits an activation signal from the communication interface and the battery monitoring control circuit activates from the sleep mode to the normal operation state.
  • the battery monitoring control circuit of FIG. 3 it is necessary to keep the receiving circuit of the communication interface (starting circuit 30 of FIG. 3) in the operating state even in the sleep mode. Therefore, it is necessary to keep the power supply circuit 20P for start-up that supplies power to the start-up circuit 30 of the battery monitoring control circuit.
  • a start-up receiving circuit (start-up circuit 30 in FIG. 3) and a start-up dedicated power supply circuit 20P which are separate from the normal communication interface circuit, are provided to reduce the power consumption in the sleep mode as much as possible. Designed.
  • FIG. 4 a method is used in which the first control circuit 51 transmits an activation signal by the photocoupler 61 installed separately from the communication interface, and the battery monitoring control circuit activates from the sleep mode to the normal operation state.
  • the reason why the photocouplers 61 and 63 are used is that the first control circuit 51 and the battery monitoring control circuit need to maintain galvanic isolation and send a start signal over the galvanic isolation barrier 52. Even when starting using the photocouplers 61 and 63 of FIG. 4, how to supply the power of the phototransistor on the light receiving side of the photocouplers 61 and 63 becomes a problem, and the power supply circuit 53 is provided in the battery management unit 50Q. There is a need.
  • the phototransistors on the light-receiving side of the photocouplers 61 and 63 having a withstand voltage of the emitter-collector of about 80 to 300 V are used, and the power source from the uppermost battery cell managed by the battery monitoring control circuit is, for example, about 86.4 V.
  • the dark current of such photocouplers 61 and 63 causes a new problem that the dark current is accelerated at high temperature.
  • the dark current becomes several microamperes or more.
  • the photocouplers 61 and 63 are used, if the power supply circuit 53 that generates a voltage of around 5 V is used as shown in FIG. 4, the input of the battery monitoring control circuit that inputs the output signal from the photocouplers 61 and 63 is input. Since the circuits and control circuits also require a power supply of 5 V or less, the battery monitoring control circuit is equipped with a power supply circuit 20P dedicated to start-up, which supplies power to the photocouplers 61 and 63 and the start-up circuit 30. Therefore, also in FIG. 4, there is a problem that the power consumption in the sleep mode cannot be reduced to zero.
  • FIG. 5 is a block diagram showing a configuration example of a battery control system including a battery monitoring control circuit according to Comparative Example 3.
  • the battery control system shown in FIG. 5 is characterized by including digital isolators 65 and 66 in place of the photocouplers 61 and 63 of Comparative Example 2.
  • a digital isolator 65 which is an insulation type DC-DC power supply circuit that supplies a power supply voltage for starting the battery monitoring control circuit from the power supply circuit 53 on the first control circuit 51 side over the galvanic isolation barrier 52. , 66 are mounted. Since the power supply of the starting circuit 30 is supplied from the digital isolators 65 and 66 which are insulation type DC-DC power supply circuits, it is possible to reduce the power consumption of the battery monitoring control circuit to zero.
  • the battery monitoring control circuit and the battery control system solve the above-mentioned problems, and include the digital isolators 65 and 66 which are the insulation type DC-DC power supply circuits of FIG.
  • the first control circuit 51 transmits a start signal from the communication interface, so that the battery monitor control circuit can be started with a simple system configuration.
  • the power consumption of the circuit in the sleep mode can be reduced to zero.
  • FIG. 8 is a circuit diagram showing a detailed configuration example of a power converter, a starting circuit, and a starting switch of the battery management IC BM1A according to the first modification.
  • the circuit of FIG. 8 differs from the circuit of FIG. 6 in the following points.
  • a power converter 20A is provided instead of the power converter 20.
  • the power converter 20A includes an AC-DC converter 24 and a low-pass filter 25.
  • the difference will be described.
  • the AC-DC converter 24 includes diodes D11 and D12 and a capacitor C21 to form a half-wave rectifier circuit.
  • the AC-DC converter 24 half-wave rectifies the input differential activation signals S1 and S2 to convert the differential activation signals S1 and S2 into a predetermined DC voltage, and outputs the DC voltage to the activation circuit 30 via the low-pass filter 25.
  • the low-pass filter 25 includes a resistor R3 and a capacitor C22, reduces ripples and noise in the input DC voltage, and outputs the processed DC voltage as a starting voltage to the starting circuit 30.
  • the circuit of FIG. 8 configured as described above can generate a starting voltage of a DC voltage from the differential starting signals S1 and S2, similarly to the circuit of FIG.
  • the circuit configurations and operations of the starting circuit 30 and the starting switch 15 are exactly the same as those in FIG.
  • FIG. 9 is a circuit diagram showing a detailed configuration example of the power converter, the starting circuit, and the starting switch of the battery management IC BM1B according to the second modification.
  • the circuit of FIG. 9 differs from the circuit of FIG. 6 in the following points.
  • a power converter 20B is provided instead of the power converter 20.
  • the power converter 20B includes an AC-DC converter 21A, a comparator 22, and a DC-DC converter 23A.
  • the AC-DC converter 21A includes a diode-connected bridge type full-wave rectifier circuit 26A including, for example, four MOS transistors Q11 to Q14, and a smoothing capacitor C21.
  • the DC-DC converter 23A includes three MOS transistors Q21 to Q23, capacitors C31 and C32, capacitors C11 to C13, and three inverters INV1 to INV3, and is a known charge pump. Make up the circuit. Hereinafter, the difference will be described.
  • the power converter 20A performs full-wave rectification on the differential activation signals S1 and S2 that are input, for example, differential pulse signals, and then smoothes them to convert them into a predetermined DC voltage signal S3, and the comparator 22 And the power supply voltage of the DC-DC converter 23.
  • the comparator 22 operates in the same manner as in FIG. 6 and, based on the input differential activation signals S1 and S2, uses its own hysteresis characteristic having positive and negative threshold values to output a binary signal of a predetermined period.
  • the generated clock signal S4 is generated and supplied to the DC-DC converter 23.
  • the DC-DC converter 23A charges the capacitors C11 to C13 according to the clock signal and discharges the same, while synchronizing with the clock signal S3.
  • the voltage signal S3 is converted into a DC voltage higher than the input DC voltage and output to the starting circuit 30.
  • the circuit of FIG. 9 configured as described above can generate a starting voltage of a DC voltage from the differential starting signals S1 and S2, similarly to the circuit of FIG.
  • the circuit configurations and operations of the starting circuit 30 and the starting switch 15 are the same as those in FIG.
  • the battery pack B is configured by including a plurality of battery cells B1, B2,...,
  • the present invention is not limited to this, and a battery pack including a plurality of lithium ion capacitor cells is provided. You may comprise a battery.
  • the battery cells B1, B2,... And the lithium-ion capacitor cells are collectively referred to as, for example, “storage cells”.
  • the control circuit sends a start signal from the communication interface without using an isolated DC-DC power supply circuit such as a digital isolator or a photocoupler.
  • an isolated DC-DC power supply circuit such as a digital isolator or a photocoupler.
  • Second Control Circuit 11 Power Supply Circuit 12 Multiplexer (MUX) 13 AD converter (ADC) 14 Daisy communication interface (daisy communication I/F) 15 Start-up switch 20, 20A, 20B Power converter 20P Start-up dedicated power supply circuit 21, 21A, 21B AC-DC converter 22 Comparator 23, 23A DC-DC converter 24 AC-DC converter 25 Low-pass filter 26 Diode bridge type all Wave rectifier circuit 26A diode connected bridge type full wave rectifier circuit 30 starter circuit, 40 Micro Control Unit (MCU) 50 Battery Management Unit (BMU) 51 first control circuit 52 galvanic isolation barrier 61, 63 photocoupler 62, 64 resistor 65, 66 digital isolator AL low voltage region AH high voltage region B1, B2 battery cell BA assembled battery BM1, BM2, BM1A, BM2A, BM1B, BM2B, BM1P, BM2P, BM1Q, BM2Q, BM1R, BM2R Battery management IC C1 to C32 Capacitors D1 to D

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)
  • Measurement Of Current Or Voltage (AREA)

Abstract

複数の二次電池セルが接続される組電池を複数のブロックに分割し、個々又は複数の二次電池セルの出力電圧を測定する複数の電池監視制御回路と、前記電池監視制御回路を制御する制御回路と、を備える電池制御システムに用いられる電池監視制御回路であって、前記各電池監視制御回路は、前記各電池監視制御回路の間の通信、又は前記制御回路との通信を行う通信インターフェースと、前記通信インターフェースに入力される起動信号を直流電圧に変換する電力変換器と、前記電力変換器からの直流電圧を電源電圧として電力供給され、前記電池監視制御回路を起動する起動制御信号を発生する起動回路と、を備える。

Description

電池監視制御回路
 本発明は、電池監視制御回路、及び電池制御システムに関する。
 例えば特許文献1において、省電力モードの場合に、電圧生成手段の動作を停止させて省電力化することができる電池監視システムが開示されている。
 特許文献1に開示された従来例に係る電池監視システムは、レギュレータの起動を制御する複数の起動回路を備えている。複数の起動回路は、制御回路部のMCUから入力される起動信号に応じて、前記レギュレータを起動させるためのLレベルのパワーアップ信号を出力させるための起動回路を備えている。また、複数の起動回路は、先に起動した下位又は上位の電池監視IC20のレギュレータで生成された電圧電位VDDに応じて、レギュレータを起動させるためのLレベルのパワーアップ信号を出力させるための起動回路を備えている。
特開2014-134454号公報
 しかしながら、従来例では、スリープモード時の消費電力が、依然として大きいという課題を有している。
 本発明の目的は以上の問題点を解決し、電池監視制御回路を起動させる前のスリープ状態の消費電力をゼロにさせることができる、電池監視制御回路、及び当該電池監視制御回路を備えた電池制御システムを提供することにある。
 第1の発明に係る電池監視制御回路は、
 複数の二次電池セルが接続される組電池を複数のブロックに分割し、個々又は複数の二次電池セルの出力電圧を測定する複数の電池監視制御回路と、前記電池監視制御回路を制御する制御回路と、を備える電池制御システムに用いられる電池監視制御回路であって、
 前記各電池監視制御回路は、
 前記各電池監視制御回路の間の通信、又は前記制御回路との通信を行う通信インターフェースと、
 前記通信インターフェースに入力される起動信号を直流電圧に変換する電力変換器と、
 前記電力変換器からの直流電圧を電源電圧として電力供給され、前記電池監視制御回路を起動する起動制御信号を発生する起動回路と、を備える。
 第2の発明に係る電池制御システムは、
 複数の二次電池セルが接続される組電池を複数のブロックに分割し、個々又は複数の二次電池セルの出力電圧を測定する複数の電池監視制御回路と、前記電池監視制御回路を制御する制御回路と、を備える電池制御システムであって、
 前記各電池監視制御回路は、
 前記各電池監視制御回路の間の通信、又は前記制御回路との通信を行う通信インターフェースと、
 前記通信インターフェースに入力される起動信号を直流電圧に変換する電力変換器と、
 前記電力変換器からの直流電圧を電源電圧として電力供給され、前記電池監視制御回路を起動する起動制御信号を発生する起動回路と、を備える。
 従って、本発明によれば、前記電力変換器は、前記通信インターフェースに入力される起動信号を直流電圧に変換し、前記起動回路は、前記電力変換器からの直流電圧を電源電圧として電力供給され、前記電池監視制御回路を起動する起動制御信号を発生する。これにより、電池監視制御回路を起動させるので、電池監視制御回路を起動させる前のスリープ状態の消費電力をゼロにさせることができる。
実施の形態に係る電池監視制御回路を備えた電池制御システムの構成例を示すブロック図である。 実施の形態の変形例に係る電池監視制御回路を備えた電池制御システムの構成例を示すブロック図である。 比較例1に係る電池監視制御回路を備えた電池制御システムの構成例を示すブロック図である。 比較例2に係る電池監視制御回路を備えた電池制御システムの構成例を示すブロック図である。 比較例3に係る電池監視制御回路を備えた電池制御システムの構成例を示すブロック図である。 図1のバッテリーマネージメントIC BM1の電力変換器、起動回路及び起動スイッチの詳細構成例を示す回路図である。 図6のバッテリーマネージメントIC BM1の動作を示すタイミングチャートである。 変形例1に係るバッテリーマネージメントIC BM1Aの電力変換器、起動回路及び起動スイッチの詳細構成例を示す回路図である。 変形例2に係るバッテリーマネージメントIC BM1Bの電力変換器、起動回路及び起動スイッチの詳細構成例を示す回路図である。
 以下、本発明にかかる実施形態について図面を参照して説明する。なお、同一又は同様の構成要素については同一の符号を付している。
(実施の形態)
 図1は実施の形態に係る電池監視制御回路を備えた電池制御システムの構成例を示すブロック図である。ここで、電池監視制御回路は図1のバッテリーマネージメントIC BM1,BM2に対応する。
 図1において、複数の電池セルB1,B2,…が互いに直列に接続されて、組電池BAを構成する。ここで、各電池セルB1,B2,…はそれぞれ、例えばリチウムイオン電池である複数の二次電池を互いに直列に接続されて蓄電セルを構成する。
 バッテリーマネージメントIC BM1は、電池セルB1又は電池セルB1内の個々の二次電池の各電圧を監視制御する電池監視制御回路であって、セルマネージメントユニット(CMU)SM1のプリント配線基板上に装着される。セルマネージメントユニット(CMU)SM1は、バッテリーマネージメントIC BM1と、デイジー通信を行うための2個の絶縁トランスTR1,TR2とを備えて構成される。また、バッテリーマネージメントIC BM2は、電池セルB2又は電池セルB2内の個々の二次電池の各電圧を監視制御する電池監視制御回路であって、セルマネージメントユニット(CMU)SM2のプリント配線基板上に装着される。セルマネージメントユニット(CMU)SM2は、バッテリーマネージメントIC BM2と、デイジー通信を行うための2個の絶縁トランスTR1,TR2とを備えて構成される。以下、同様に、電池セルB3(図示せず)以降の各電池セルの電圧を監視制御するためにバッテリーマネージメントIC BMn(n=3,4,5,…)(図示せず)が設けられる。
 バッテリーマネージメントユニット(BMU)50は、電池制御システム全体を制御するための制御ECU(Electric Control Unit)である第1制御回路51と、デイジー通信のための絶縁トランスTR0とを備えて構成される。ここで、絶縁トランスTR0は、5V程度などの低電圧で動作する低電圧領域ALと、86.4V程度の高電圧で動作する高電圧領域AHとの境界分離障壁でのガルバニック絶縁を維持するガルバニックアイソレーションバリア52に設けられる。
 バッテリーマネージメントユニット(BMU)50は、絶縁トランスTR0、デイジー通信ラインL0及び、セルマネージメントユニットCM1内の絶縁トランスTR1を介して、バッテリーマネージメントIC BM1のデイジー通信インターフェース(デイジー通信I/F)14に接続される。また、バッテリーマネージメントIC BM1のデイジー通信インターフェース14は、セルマネージメントユニットCM1内の絶縁トランスTR2、デイジー通信ラインL1、及びセルマネージメントユニットCM2内の絶縁トランスTR1を介して、バッテリーマネージメントIC BM2のデイジー通信インターフェース14に接続される。さらに、バッテリーマネージメントIC BM2のデイジー通信インターフェース14は、セルマネージメントユニットCM2内の絶縁トランスTR2、デイジー通信ラインL2等を介して、バッテリーマネージメントIC BM3のデイジー通信インターフェース14に接続される。以下、同様に、各バッテリーマネージメントIC BMn(n=3,4,5,…)内のデイジー通信インターフェース14が順次、デイジー通信ラインを介して、デイジー接続で接続される。
 以上のように構成されたデイジー通信システムでは、第1制御回路51からバッテリーマネージメントIC BM1のデイジー通信インターフェース14に接続され、当該デイジー通信インターフェース14が次段のバッテリーマネージメントIC BM2のデイジー通信インターフェース14に接続され、当該デイジー通信インターフェース14が次段のバッテリーマネージメントIC BM3のデイジー通信インターフェース14に接続される。これにより、第1制御回路51と、各バッテリーマネージメントIC BMn(n=1,2,3,…)のデイジー通信インターフェースとがデイジー通信を行うことができる。
 例えば、各バッテリーマネージメントIC BMn(n=1,2,3,…)の動作を起動させるための起動信号は、第1制御回路51から、バッテリーマネージメントIC BM1のデイジー通信インターフェース14に送信された後、当該デイジー通信インターフェース14は起動信号を次段のバッテリーマネージメントIC BM1のデイジー通信インターフェース14に送信する。当該デイジー通信インターフェース14はさらに起動信号を次段のバッテリーマネージメントIC BM2のデイジー通信インターフェース14に送信し、以下同様である。
 本実施の形態においては、第1制御回路51と、各バッテリーマネージメントIC BMn(n=1,2,3,…)との間の通信方式としてデイジー通信方式を用いているが、本発明はこれに限らず、他の通信方式を用いてもよい。
 次いで、各バッテリーマネージメントIC BMn(n=1,2,3,…)の詳細構成について以下説明する。ここで、各バッテリーマネージメントIC BMn(n=1,2,3,…)は互いに同様の構成を有するので、ここでは、バッテリーマネージメントIC BM1を例にとり以下に説明する。
 バッテリーマネージメントIC BM1は、第2制御回路10と、電源回路11と、マルチプレクサ(MUX)12と、AD変換器(ADC)13と、デイジー通信インターフェース14と、起動スイッチ15と、電力変換器20と、起動回路30とを備えて構成される。電池セルB1の電源電圧は起動スイッチ15を介して電源回路11に入力され、電源回路11は入力される電源電圧を所定の動作電圧に変換して、第2制御回路10、マルチプレクサ12、AD変換器13、及びデイジー通信インターフェース14に供給する。マルチプレクサ12は電池セルB1のうちの複数の電池の両端に接続され、各電池の両端電圧を検出し、かつ選択してAD変換器13を介して第2制御回路10に出力する。第2制御回路10は、バッテリーマネージメントIC BM1全体の動作を制御する制御回路であって、例えば電池セルB1のうちの複数の電池の両端電圧を、マルチプレクサ12を制御することで順次選択的に検出し、検出した電圧をデイジー通信インターフェース14に出力して、例えば第1制御回路51に送信する。
 以上のように構成された電池制御システムの起動時動作について、以下に説明する。
 各バッテリーマネージメントIC BM1、BM2,BM3等を起動させるときに、第1制御回路51は、例えば時間経過で振幅が変化する例えば差動交流パルス信号である所定の起動信号を、デイジー通信ラインL0を介して、バッテリーマネージメントIC BM1の電力変換器20及びデイジー通信インターフェース14に送信する。電力変換器20は、入力される起動信号を例えば全波整流することでAC-DC変換して、所定の直流電圧を発生させた後、当該直流電圧を、当該直流電圧よりも高い所定の直流電圧に電圧変換し、当該直流電圧を起動回路30に制御信号として印加する。これに応答して、起動回路30がオンされ、このとき、起動制御信号Scが起動スイッチ15の制御端子に出力されることで、起動スイッチ15がオンされる。これにより、電池セルB1の電源電圧が起動スイッチ15を介して電源回路11に入力され、上述のように、電源回路11が電力供給を行う。これにより、バッテリーマネージメントIC BM1は待機状態であるスリープ状態から起動する。このとき、電源回路11からの電源電圧の供給により起動されたデイジー通信インターフェース14は、例えば時間経過で振幅が変化する例えば差動交流パルス信号である所定の起動信号を、デイジー通信ラインL1を介して、バッテリーマネージメントIC BM2の電力変換器20及びデイジー通信インターフェース14に送信することで、バッテリーマネージメントIC BM2の電力変換器20及び起動回路30の起動動作により、バッテリーマネージメントIC BM2の起動スイッチ15がオンされて同様に、バッテリーマネージメントIC BM2は待機状態であるスリープ状態から起動する。以下、同様に順次、バッテリーマネージメントIC BM3以降の回路が起動する。
 従って、本実施の形態では、起動信号により起動する複数の電池監視制御回路の一つであるバッテリーマネージメントIC BM1が、そのデイジー通信インターフェース14からデイジー通信ラインL1を介して別の電池監視制御回路であるバッテリーマネージメントIC BM2のデイジー通信インターフェース14に送信されることで、別の電池監視制御回路であるバッテリーマネージメントIC BM2の第2制御回路10を起動させる。次いで、バッテリーマネージメントIC BM2がそのデイジー通信インターフェース14からデイジー通信ラインL2を介して別の電池監視制御回路であるバッテリーマネージメントIC BM3のデイジー通信インターフェース14に送信されることで、別の電池監視制御回路であるバッテリーマネージメントIC BM3の第2制御回路10を起動させ、以下同様である。
 図6は図1のバッテリーマネージメントIC BM1の電力変換器20、起動回路30及び起動スイッチ15の詳細構成例を示す回路図である。
 図6において、電力変換器20は、AC-DC変換器21と、コンパレータ22と、DC-DC変換器23とを備えて構成される。ここで、AC-DC変換器21は、例えば4個のダイオードD1~D4を備えて構成されたダイオードブリッジ型全波整流回路26と、平滑用キャパシタC21とを備えて構成される。電力変換器20は入力される例えば差動パルス信号である差動起動信号S1,S2を全波整流した後、平滑することで所定の直流電圧信号S3に変換して、コンパレータ22及びDC-DC変換器23の電源電圧として供給する。コンパレータ22は入力される差動起動信号S1,S2に基づいて、正極側及び負極側の各しきい値を有する自身のヒステリシス特性を利用して所定周期の二値化クロック信号S4を発生してDC-DC変換器23に供給する。すなわち、コンパレータ22は二値化クロック信号S4を発生する信号発生器として構成される。
 DC-DC変換器23は、3個のダイオードD11~D13と、キャパシタC11~C13と、3個のインバータINV1~INV3とを備えて、いわゆる公知のチャージポンプ回路を構成する。DC-DC変換器23は、クロック信号に従ってキャパシタC11~C13への電荷の充放電を行いながら、クロック信号S3に同期して、入力される直流電圧信号S3を順次ステップアップさせることで、入力直流電圧よりも高い直流電圧に変換して起動回路30に出力する。起動回路30はスイッチング素子である例えばNチャネルMOSトランジスタQ1と、そのゲートと接地との間に接続される抵抗R1とを備えて構成され、起動時にオンとなり所定のLレベルの起動制御信号Scを発生して起動スイッチ15出力する。起動スイッチ15はスイッチング素子である例えばPチャネルMOSトランジスタQ2と、そのゲート・ソース間に接続された抵抗R2とを備えて構成され、Lレベルの起動制御信号Scに応答してオンとなり、電池セルB1の電源電圧を電源回路11に供給する。
 なお、バッテリーマネージメントIC BM2,BM3,…も、起動信号が前段のバッテリーマネージメントICから到来することを除き、バッテリーマネージメントIC BM1と同様に構成されて同様に動作する。
 図7は図6のバッテリーマネージメントIC BM1の動作を示すタイミングチャートである。図7から明らかなように、以上のように構成された図6の回路において、互いに反転関係を有する差動起動信号S1,S2はAC-DC変換器21により全波整流され、当該全波整流波形信号S3はDC-DC変換器23に入力される。コンパレータ22は、入力される差動起動信号S1,S2から、所定周期のクロック信号S4を発生してDC-DC変換器23に供給する。DC-DC変換器23は当該クロック信号S4により駆動されて、入力される全波整流波形信号S3を、順次ステップアップさせることで、入力直流電圧よりも高い直流電圧に変換して起動回路30に出力する。起動回路30は、所定のしきい値電圧以上での起動時にオンとなり所定のLレベルの起動制御信号Scを発生して起動スイッチ15出力する。起動スイッチ15はLレベルの起動制御信号Scに応答してオンとなり、電池セルB1の電源電圧を電源回路11に供給する。これにより、電池監視制御回路であるバッテリーマネージメントIC BM1は、待機状態であるスリープモード(電池監視制御回路を起動させる前のスリープ状態)から起動する。
 図6及び図7から明らかなように、起動信号S1,S2として差動信号を用いている理由は以下の通りである。例えばバッテリーマネージメントユニット50内の電源電圧の揺らぎ又はノイズの重畳により、各差動信号S1,S2の振幅が変化しても、少なくとも各差動信号S1,S2が同時に揺らいだ場合その揺らぎはコンパレータ22において吸収され、起動制御信号Scを発生するタイミングに対して誤動作を与えることを防止できる。しかし、起動信号としてシングルエンド信号を用いたときは、上記の揺らぎをコンパレータ22で吸収できずに、起動制御信号Scを発生するタイミングに対して誤動作を与える可能性がある。
 また、図6では、起動信号S1,S2をコンパレータ22で2値化したクロック信号S4を作成し、DC-DC変換器23に供給することができる。また、前記チャージポンプ回路であるDC-DC変換器23は、チャージポンプの段数分クロックが入力しないと昇圧動作が完了しない。つまり、起動信号S1,S2ではないノイズに対しては、一種のフィルタとなって働くため、正規の起動信号とノイズとを区別することが可能であって、誤動作を防止できる。
 なお、本実施の形態においては、差動起動信号S1,S2を用いているが、本発明はこれに限らず、少なくとも変化する振幅を有する所定周期の繰り返し信号であればよく、当該繰り返し信号は例えば正弦波信号又は矩形波信号等の交流信号であってもよい。
 以上説明したように、実施の形態に係る電池監視制御回路によれば、例えば複数個のリチウムイオン電池等の二次電池が直列に接続された電池セルB1,B2,…を直列に接続されなる組電池BAを制御する電池制御システム(BMS)を提供することができる。電池監視制御回路は、組電池BA内の電池セルB1,B2,…の各二次電池の電圧を測定して充電状態(SOC:State of Charge)の監視及び制御を行うことができる。ここで、電池監視制御回路は、例えばセルマネージメントユニット(CMU)である第2制御回路10を、待機状態であるスリープ状態から起動する起動回路30と、当該起動回路30を起動信号S1,S2から起動制御する電力変換器20とをさらに備えたことを特徴とする。ここで、バッテリーマネージメントユニット50内の第1制御回路51からの起動信号S1,S2をその通信インターフェースから送信することで起動するというシンプルなシステム構成を有し、電池監視制御回路のスリープモード時の消費電力をゼロにすることができる。
(実施の形態の変形例)
 図2は実施の形態の変形例に係る電池監視制御回路を備えた電池制御システムの構成例を示すブロック図である。図2において、当該変形例に係る電池監視制御回路は、図1の電池監視制御回路に比較して以下の点が異なる。
(1)セルマネージメントユニットSM1,SM2に代えて、セルマネージメントユニットSM1A,SM2Aを備えた。
(2)セルマネージメントユニットSM1Aでは、図1の絶縁トランスTR2に代えて、デイジー通信ラインL1に接続される2個のキャパシタC1,C2を備えた。
(3)セルマネージメントユニットSM2Aでは、図1の絶縁トランスTR1,TR2に代えて、デイジー通信ラインL1に接続される2個のキャパシタC1,C2,C3,C4を備えた。
 なお、これらキャパシタC1~C4は、直流電圧を通過させず、交流信号である起動信号を通過させるカップリングキャパシタとして動作する。
 以上のように構成された変形例においても、図1の電池監視制御回路と同様に動作し、同様の作用効果を有する。すなわち、図2では、図1と同様の電池監視制御回路の電源回路11から、セルマネージメントユニット(CMU)である第2制御回路10に電源供給を行っている。これにより、前記と同様に、起動制御信号Scに基づいて電池監視制御回路を起動し、電池監視制御回路から第2制御回路10を起動することができる。
(比較例1,2)
 ここで、本発明の理解を容易とするため、一般的な回路及びシステムである比較例1、2について説明する。
 図3は比較例1に係る電池監視制御回路を備えた電池制御システムの構成例を示すブロック図であり、図4は比較例2に係る電池監視制御回路を備えた電池制御システムの構成例を示すブロック図である。
 リチウムイオン電池は、大容量の電力を蓄えられる蓄電池として利用されている。しかしながら、リチウムイオン電池は、過放電による劣化、過充電による発熱や爆発の危険性をもつため、SOCを正確に把握して、各電池セルの電圧を一定電圧範囲内で使用することが重要である。特に、電気自動車(EV)やハイブリッド車(HEV)等の自動車の車載用のリチウムイオン電池は、数100個のセル(電池)を直列に接続した組電池により、400~800V程度の電圧を発生しモーターを駆動する。このようなリチウムイオン電池の組電池の制御は、6個から24個程度の直列数の複数のブロックに分割し、それぞれのブロックにある個々のセルを電池監視制御回路で監視及び制御を行うことが一般的である。
 また、組電池の電池監視制御回路は、分割されたブロックの直列接続された電池セルが発生する電位差に対して、最下位セルのマイナス電極をGND端子に接続し、最上位セルのプラス電極を電源電圧端子に接続して動作するように接続される。ここで、一般的な、リチウムイオン電池のセルの出力電圧は3.6V程度であり、例えば24直列のブロックを管理する、電池監視制御回路では、電源-GND端子間には86.4V程度の電圧が印加されることになる。
 電池監視制御回路には、直列接続された個々の電池セルの電圧を測定するため、測定するセルを選択するマルチプレクサ(MUX)や、選択されたセル電圧を測定するADコンバータ、制御ロジック等を備え、各電池セル電圧測定値を上位の電池制御システム(BMS)の制御回路(制御ECU(Electric Control Unit))との通信インターフェースを備えている。
 一般的に、前記の電池監視制御回路に内蔵されるAD変換器や制御ロジック、通信インターフェースは、回路性能、チップ面積、消費電流等の要求仕様を満足するため、1.8~5V程度の動作電源電圧が低いトランジスタ素子で構成される。従って、電池監視制御回路には、電源-GND端子間の高い電源電圧から、前記の内蔵回路用の電源回路を備えている。例えば24直列のセルを管理する電池監視制御回路であれば、86.4V程度から1.8V程度または5V程度の電源電圧を発生するレギュレータを備え、内蔵回路の電源として供給する。
 電気自動車(EV)やハイブリッド車(HEV)等に搭載される、400~800V程度の高電圧を発生する組電池の駆動用リチウムイオン電池は、主に車の制御(一例として、エンジン始動、電装品への電気供給、など)に使用される補器用電池(一例として、鉛電池、12V鉛電池)が供給する低電圧の電源系統から、ガルバニック絶縁(Galvanic Isolation)された高電圧の電源系統に設置する。従って、駆動用のリチウムイオン電池を制御する電池監視制御回路は、リチウムイオン電池に直接接続する必要があるため高電圧の電源系統内に設置されている。一方で、前記のリチウムイオン電池を制御する制御回路は、補器用電池(鉛電池、12V鉛電池)側に設置される場合は多い。
 従って、図3及び図4に示すように、一般的な電池監視制御回路と制御回路との通信インターフェースは、ガルバニック絶縁を維持して通信を行うため絶縁トランスTR1,TR2やフォトカプラ61,63等を用いて接続される。なお、抵抗62,64は当該フォトカプラ61,63に対して電源供給のための回路抵抗である。また、図3及び図4のセルマネージメントユニットSM1P,SM2P又はSM1Q,SM2Q内のバッテリーマネージメントIC BM1P,BM2P又はBM1Q,BM2Qは、電池セルB1,B2の電源電圧から待機時の回路電流Iwが流れる起動専用電源回路20P(図1の電力変換器20ではなく)を備えている。
 ところで、組電池に接続される複数の電池監視制御回路は、それぞれのGNDレベルが異なる電位に設置しているため、電池監視制御回路間の通信では、GNDレベルが異なる電位間での通信を行う必要がある。従って、電気自動車(EV)やハイブリッド車(HEV)等の車載用電池監視制御回路には、デイジーチェーン(数珠繋ぎ)の通信インターフェースが搭載され、電池監視制御回路と制御回路間のガルバニック絶縁された状態での通信や、電池監視制御回路間のGNDレベルが異なる電位間の通信を行う。
 このような車載用電池監視制御回路は、組電池に接続された状態でリチウムイオン電池モジュールとして使用されるため、電池監視制御回路が組電池から電気的に切断されることなく使用される。従って、一度モジュールとして組立てられ、組電池に接続された車載用電池監視制御回路は、電源が遮断されることがなく動作し続けることになる。そのため、長時間駐車や車や電池モジュールの運搬や保管時には、リチウムイオン電池から蓄えられた電力が、接続されている電池監視制御回路にから徐々に放電される。それにより、リチウムイオン電池が過放電状態になる場合や、セルバランスと呼ばれる組電池の各電池セルの蓄電量の均質化を崩す要因となる。
 そこで、車載用電池監視制御回路には、スリープモードあるいは静止モード等とよばれる消費電力が極小となる動作モードを備えており、前記のような長時間駐車や電池モジュールの運搬や保管時には、車載用電池監視制御回路の消費電力を極小化し、電池からの放電量をできるかぎり少なくすることが必要である。しかしながら、図3又は図4で示した、一般的な電池監視制御回路では、第1制御回路51からの起動信号により、スリープモードから通常動作状態に起動させるため、電池監視制御回路が起動信号を受信するための必要最小限の回路を動作させるための回路電流Iwを流し続ける必要があった。
 次いで、図3及び図4を用いて、一般的な電池制御システムのスリープモードから通常動作状態への起動する方法を説明する。
 図3では、第1制御回路51が起動信号を通信インターフェースから送信し、電池監視制御回路がスリープモードから通常動作状態へ起動する方法を示している。図3の電池監視制御回路では、スリープモード時であっても、通信インターフェースの受信回路(図3の起動回路30)を動作状態にしておく必要がある。そのため、電池監視制御回路の起動回路30に電源供給する起動専用電源回路20Pも動作し続ける必要がある。この場合、通常の通信インターフェース回路とは別の、起動専用の受信回路(図3の起動回路30)及び起動専用電源回路20Pを備えることが行われ、スリープモードの消費電力をできる限り少なくなるよう設計される。
 しかしながら、前記の起動回路30や起動専用電源回路20Pには、回路の動作電流Iwが流れ続けるため、スリープモード時の消費電力をゼロにすることはできないという問題点があった。
 また、図4では、第1制御回路51が起動信号を、通信インターフェースとは別に設置されたフォトカプラ61により送信し、電池監視制御回路がスリープモードから通常動作状態へ起動する方法を用いる。フォトカプラ61,63を使用する理由は、第1制御回路51と電池監視制御回路はガルバニック絶縁を維持し、ガルバニックアイソレーションバリア52を超えて起動信号を送る必要があるためである。図4のフォトカプラ61,63を使用して起動する場合でもフォトカプラ61,63の受光側のフォトトランジスタの電源をどのように供給するかが課題となり、バッテリーマネージメントユニット50Qにおいて電源回路53を設ける必要がある。
 さらに、フォトカプラ61,63の受光側のフォトトランジスタのエミッタ-コレクタ耐圧が80~300V程度のものを用い、電池監視制御回路が管理する最上位の電池セルから電源を例えば86.4V程度の電源に接続して使用すると、このようなフォトカプラ61,63の暗電流は、高温時に加速度的に増大するという新たな問題が生じる。また、一般的なフォトカプラ61,63では受光側のエミッタ-コレクタ間に高電圧を印加された状態で、使用温度が80°C前後になると暗電流は数マイクロアンペア以上になってしまう。
 そのため、フォトカプラ61,63を使用する場合に、図4のように、5V前後電圧を発生する電源回路53を使用すると、フォトカプラ61,63からの出力信号を入力する電池監視制御回路の入力回路や制御回路も5V以下の電源を必要とすることから、電池監視制御回路に5V程度の電圧を出力する起動専用電源回路20Pを搭載し、フォトカプラ61,63と起動回路30に電源供給を行うため、図4においても、スリープモード時の消費電力をゼロにすることはできないという問題が生じる。
(比較例3)
 さらに、図5を用いて、リープモード時の電池監視制御回路の消費電力をゼロにする一般的な例を示す。
 図5は比較例3に係る電池監視制御回路を備えた電池制御システムの構成例を示すブロック図である。図5の電池制御システムは、比較例2のフォトカプラ61,63に代えて、デジタルアイソレータ65,66を備えたことを特徴とする。
 図5においては、電池監視制御回路を起動する電源電圧を、第1制御回路51側の電源回路53からガルバニックアイソレーションバリア52を超えて供給する絶縁型のDC-DC電源回路であるデジタルアイソレータ65,66を搭載している。起動回路30の電源は、絶縁型のDC-DC電源回路であるデジタルアイソレータ65,66から供給するため、電池監視制御回路の消費電力をゼロにすることは可能である。
 しかしながら、絶縁型のDC-DC電源回路であるデジタルアイソレータ66をすべての電池監視制御回路が搭載されているセルマネージメントユニットSM1R,SM2R上に配置する必要があるため、セルマネージメントユニットSM1R,SM2Rのプリント配線基板(PCB)の面積や部品点数が増大するため、別の問題が生じる。
 一方、実施の形態に係る電池監視制御回路及び電池制御システムは、上述の問題を解決するものであり、図5の絶縁型のDC-DC電源回路であるデジタルアイソレータ65,66、及び図4のフォトカプラ61,63を使用することなく、図3のように、第1制御回路51が起動信号を通信インターフェースから送信することで、電池監視制御回路を起動するシンプルなシステム構成で、電池監視制御回路のスリープモード時の消費電力をゼロにすることができる。
(変形例1)
 図8は変形例1に係るバッテリーマネージメントIC BM1Aの電力変換器、起動回路及び起動スイッチの詳細構成例を示す回路図である。図8の回路は、図6の回路に比較して以下の点が異なる。
(1)電力変換器20に代えて、電力変換器20Aを備える。
(2)電力変換器20Aは、AC-DC変換器24と、ローパスフィルタ25とを備えて構成される。
 以下、当該相違点について説明する。
 図8において、AC-DC変換器24は、ダイオードD11,D12と、キャパシタC21を備えて、半波整流回路を構成する。AC-DC変換器24は、入力される差動起動信号S1,S2を半波整流することで所定の直流電圧に変換してローパスフィルタ25を介して起動回路30に出力する。ローパスフィルタ25は、抵抗R3と、キャパシタC22とを備えて構成され、入力される直流電圧内のリップル及びノイズを軽減して、処理後の直流電圧を起動電圧として起動回路30に出力する。
 以上のように構成された図8の回路は、図6の回路と同様に、差動起動信号S1,S2から直流電圧の起動電圧を発生することができる。なお、起動回路30及び起動スイッチ15の回路構成及び動作は図6と全く同様である。
(変形例2)
 図9は変形例2に係るバッテリーマネージメントIC BM1Bの電力変換器、起動回路及び起動スイッチの詳細構成例を示す回路図である。図9の回路は、図6の回路に比較して以下の点が異なる。
(1)電力変換器20に代えて、電力変換器20Bを備える。
(2)電力変換器20Bは、AC-DC変換器21Aと、コンパレータ22と、DC-DC変換器23Aとを備えて構成される。
(3)AC-DC変換器21Aは、例えば4個のMOSトランジスタQ11~Q14を備えて構成されたダイオード接続ブリッジ型全波整流回路26Aと、平滑用キャパシタC21とを備えて構成される。
(4)DC-DC変換器23Aは、3個のMOSトランジスタQ21~Q23と、キャパシタC31,C32と、キャパシタC11~C13と、3個のインバータINV1~INV3とを備えて、いわゆる公知のチャージポンプ回路を構成する。
 以下、当該相違点について説明する。
 図9において、電力変換器20Aは入力される例えば差動パルス信号である差動起動信号S1,S2を全波整流した後、平滑することで所定の直流電圧信号S3に変換して、コンパレータ22及びDC-DC変換器23の電源電圧として供給する。コンパレータ22は図6と同様に動作し、入力される差動起動信号S1,S2に基づいて、正極側及び負極側の各しきい値を有する自身のヒステリシス特性を利用して所定周期の二値化クロック信号S4を発生してDC-DC変換器23に供給する。
 DC-DC変換器23Aは、図6のDC-DC変換器23と同様に、クロック信号に従ってキャパシタC11~C13への電荷の充放電を行いながら、クロック信号S3に同期して、入力される直流電圧信号S3を順次ステップアップさせることで、入力直流電圧よりも高い直流電圧に変換して起動回路30に出力する。
 以上のように構成された図9の回路は、図6の回路と同様に、差動起動信号S1,S2から直流電圧の起動電圧を発生することができる。なお、起動回路30及び起動スイッチ15の回路構成及び動作は図6と同様である。
(別の変形例)
 以上の実施の形態及び変形例において、複数の電池セルB1,B2,…を備えて組電池BAを構成しているが、本発明はこれに限らず、複数のリチウムイオンキャパシタセルを備えて組電池を構成してもよい。ここで、電池セルB1,B2,…及びリチウムイオンキャパシタセルは総称して、例えば「蓄電セル」と呼ばれる。
 以上詳述したように、本発明によれば、絶縁型のDC-DC電源回路であるデジタルアイソレータやフォトカプラを使用することなく、制御回路が起動信号を通信インターフェースから送信することで起動するシンプルなシステム構成で、電池監視制御回路のスリープモード時の消費電力をゼロにすることを実現する。それにより、長時間駐車や車や電池モジュールの運搬や保管時でも、リチウムイオン電池から蓄えられた電力が、接続されている電池監視制御回路にから徐々に放電されることがない。従って、過放電による劣化がない状態で、電池モジュールの長期間の輸送や保管を実現することが可能であり、電気自動車(EV)やハイブリッド車(HEV)、電動バイク等のモビリティー分野のみならず、家庭用や産業用と蓄電池等、リチウムイオン電池の組電池を使用するあらゆる様々なアプリケーションの電池制御システムに適用することが可能である。
10 第2制御回路
11 電源回路
12 マルチプレクサ(MUX)
13 AD変換器(ADC)
14 デイジー通信インターフェース(デイジー通信I/F)
15 起動スイッチ
20,20A,20B 電力変換器
20P 起動専用電源回路
21,21A,21B AC-DC変換器
22 コンパレータ
23,23A DC-DC変換器
24 AC-DC変換器
25 ローパスフィルタ
26 ダイオードブリッジ型全波整流回路
26A ダイオード接続ブリッジ型全波整流回路
30 起動回路、
40 マイクロコントロールユニット(MCU)
50 バッテリーマネージメントユニット(BMU)
51 第1制御回路
52 ガルバニックアイソレーションバリア
61,63 フォトカプラ
62,64 抵抗
65,66 デジタルアイソレータ
AL 低電圧領域
AH 高電圧領域
B1,B2 電池セル
BA 組電池
BM1,BM2,BM1A,BM2A,BM1B,BM2B,BM1P,BM2P,BM1Q,BM2Q,BM1R,BM2R バッテリーマネージメントIC
C1~C32 キャパシタ
D1~D13 ダイオード
INV1~INV3 インバータ
Iw 待機時の回路電流
L0~L2 デイジー通信ライン
Q1~Q23 MOSトランジスタ
R1~R3 抵抗
S1,S2 起動信号
Sc 起動制御信号
SM1,SM2,SM1A,SM2A,SM1P,SM2P,SM1Q,SM2Q,SM1R,SM2R セルマネージメントユニット
TR0,TR2 絶縁トランス

Claims (10)

  1.  複数の二次電池セルが接続される組電池を複数のブロックに分割し、個々又は複数の二次電池セルの出力電圧を測定する複数の電池監視制御回路と、前記電池監視制御回路を制御する制御回路と、を備える電池制御システムに用いられる電池監視制御回路であって、
     前記各電池監視制御回路は、
     前記各電池監視制御回路の間の通信、又は前記制御回路との通信を行う通信インターフェースと、
     前記通信インターフェースに入力される起動信号を直流電圧に変換する電力変換器と、
     前記電力変換器からの直流電圧を電源電圧として電力供給され、前記電池監視制御回路を起動する起動制御信号を発生する起動回路と、を備える
     電池監視制御回路。
  2.  前記通信インターフェースは、前記電池監視制御回路の間をデイジー接続されるデイジー通信インターフェースである
     請求項1に記載の電池監視制御回路。
  3.  前記電力変換器は、ダイオード又はトランジスタを用いて構成されたAC-DC変換器を備える
     請求項1又は2に記載の電池監視制御回路。
  4.  前記電力変換器はさらに、前記AC-DC変換器の出力電圧を昇圧するチャージポンプ回路を備える
     請求項3に記載の電池監視制御回路。
  5.  前記電力変換器はさらに、
     前記通信インターフェースに入力される起動信号に基づいてクロック信号を発生する信号発生器を備え、
     前記チャージポンプ回路は前記クロック信号により駆動される
     請求項4に記載の電池監視制御回路。
  6.  前記起動信号は、変化する振幅及び所定周期を有する繰り返しの交流信号であって、差動信号、正弦波信号又は矩形波信号である
     請求項1~5のうちのいずれか1つに記載の電池監視制御回路。
  7.  前記電池監視制御回路は、セル制御ユニットに設けられる
     請求項1~6のうちのいずれか1つに記載の電池監視制御回路。
  8.  複数の二次電池セルが接続される組電池を複数のブロックに分割し、個々又は複数の二次電池セルの出力電圧を測定する複数の電池監視制御回路と、前記電池監視制御回路を制御する制御回路と、を備える電池制御システムであって、
     前記各電池監視制御回路は、
     前記各電池監視制御回路の間の通信、又は前記制御回路との通信を行う通信インターフェースと、
     前記通信インターフェースに入力される起動信号を直流電圧に変換する電力変換器と、
     前記電力変換器からの直流電圧を電源電圧として電力供給され、前記電池監視制御回路を起動する起動制御信号を発生する起動回路と、を備える
     電池制御システム。
  9.  前記起動信号に基づいて起動する前記複数の電池監視制御回路の一つが、別の前記電池監視制御回路を起動させる
     請求項8に記載の電池制御システム。
  10.  前記起動信号に基づいて起動する前記複数の電池監視制御回路の一つが、当該複数の電池監視制御回路の一つの内の前記制御回路を起動させる
     請求項8又は9に記載の電池制御システム。
PCT/JP2019/046838 2018-12-17 2019-11-29 電池監視制御回路 WO2020129577A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020561254A JP7458326B2 (ja) 2018-12-17 2019-11-29 電池監視制御回路
US17/349,437 US11824390B2 (en) 2018-12-17 2021-06-16 Battery monitoring system provided with battery monitoring control circuit for reducing consumption power in sleep state

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018235658 2018-12-17
JP2018-235658 2018-12-17

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/349,437 Continuation US11824390B2 (en) 2018-12-17 2021-06-16 Battery monitoring system provided with battery monitoring control circuit for reducing consumption power in sleep state

Publications (1)

Publication Number Publication Date
WO2020129577A1 true WO2020129577A1 (ja) 2020-06-25

Family

ID=71100266

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/046838 WO2020129577A1 (ja) 2018-12-17 2019-11-29 電池監視制御回路

Country Status (3)

Country Link
US (1) US11824390B2 (ja)
JP (1) JP7458326B2 (ja)
WO (1) WO2020129577A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112986835A (zh) * 2021-03-25 2021-06-18 东风汽车集团股份有限公司 动力电池的模拟前端监测电路
WO2022186376A1 (ja) * 2021-03-05 2022-09-09 ヌヴォトンテクノロジージャパン株式会社 組電池管理システム
WO2023042860A1 (ja) * 2021-09-15 2023-03-23 ヌヴォトンテクノロジージャパン株式会社 電圧測定装置及び組電池システム

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114552538B (zh) * 2022-03-15 2023-03-14 苏州赛芯电子科技股份有限公司 一种具备负载关断功能的电池保护***和锂电池
KR20240011462A (ko) * 2022-07-19 2024-01-26 현대모비스 주식회사 배터리 관리 장치 및 그 동작 방법

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003070179A (ja) * 2001-08-29 2003-03-07 Hitachi Ltd 蓄電装置及びその制御方法
JP2005318751A (ja) * 2004-04-30 2005-11-10 Shin Kobe Electric Mach Co Ltd 多直列電池制御システム
JP2008312391A (ja) * 2007-06-15 2008-12-25 Hitachi Vehicle Energy Ltd 電池制御装置
JP2010081756A (ja) * 2008-09-26 2010-04-08 Toshiba Corp 電池情報取得装置
JP2013238472A (ja) * 2012-05-15 2013-11-28 Renesas Electronics Corp 半導体装置および電圧測定装置
US20140205865A1 (en) * 2013-01-18 2014-07-24 Lapis Semiconductor Co., Ltd. Battery monitoring system, semiconductor device, battery assembly system, battery monitoring ic

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6034489A (en) * 1997-12-04 2000-03-07 Matsushita Electric Works R&D Laboratory, Inc. Electronic ballast circuit
WO2005031954A2 (en) * 2003-09-22 2005-04-07 Valence Technology, Inc. Electrical systems, power supply apparatuses, and power supply operations methods
JP5453184B2 (ja) * 2010-06-28 2014-03-26 日立ビークルエナジー株式会社 電池制御回路
JP6193573B2 (ja) 2013-01-10 2017-09-06 ラピスセミコンダクタ株式会社 電池監視システム、電池監視装置、及び電池監視システムの起動方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003070179A (ja) * 2001-08-29 2003-03-07 Hitachi Ltd 蓄電装置及びその制御方法
JP2005318751A (ja) * 2004-04-30 2005-11-10 Shin Kobe Electric Mach Co Ltd 多直列電池制御システム
JP2008312391A (ja) * 2007-06-15 2008-12-25 Hitachi Vehicle Energy Ltd 電池制御装置
JP2010081756A (ja) * 2008-09-26 2010-04-08 Toshiba Corp 電池情報取得装置
JP2013238472A (ja) * 2012-05-15 2013-11-28 Renesas Electronics Corp 半導体装置および電圧測定装置
US20140205865A1 (en) * 2013-01-18 2014-07-24 Lapis Semiconductor Co., Ltd. Battery monitoring system, semiconductor device, battery assembly system, battery monitoring ic

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022186376A1 (ja) * 2021-03-05 2022-09-09 ヌヴォトンテクノロジージャパン株式会社 組電池管理システム
CN112986835A (zh) * 2021-03-25 2021-06-18 东风汽车集团股份有限公司 动力电池的模拟前端监测电路
WO2023042860A1 (ja) * 2021-09-15 2023-03-23 ヌヴォトンテクノロジージャパン株式会社 電圧測定装置及び組電池システム

Also Published As

Publication number Publication date
US11824390B2 (en) 2023-11-21
US20210313815A1 (en) 2021-10-07
JPWO2020129577A1 (ja) 2021-11-04
JP7458326B2 (ja) 2024-03-29

Similar Documents

Publication Publication Date Title
WO2020129577A1 (ja) 電池監視制御回路
US7800346B2 (en) Device and method for equalizing charges of series-connected energy stores
US7812572B2 (en) Device and method for charge equalization of series-connected individual cells of an energy accumulator
US7825638B2 (en) Device and method for balancing charge between the individual cells of a double-layer capacitor
CN101728843B (zh) 自动启动电路及具自动启动电路的不间断电源供应器
US10056653B2 (en) Battery management device and power supply device
WO2013061461A1 (ja) バッテリシステム
US10263438B2 (en) Battery management system for vehicle
US20100308659A1 (en) Power supply device
CN103477530A (zh) 用于电池的充电平衡***
US20120299545A1 (en) Rechargeable battery power supply starter and cell balancing apparatus
KR101841559B1 (ko) 탑재형 전력 공급 장치를 작동시키기 위한 방법
JP2011229392A (ja) 蓄電装置
JP2005252789A (ja) 回路システム
US11101684B2 (en) Dual input power supply with shortened switching
US20150069960A1 (en) Auxiliary Battery Charging Apparatus
US20210078422A1 (en) System of charging battery of vehicle and method for controlling the same
CN104953692A (zh) 供电***
US20190339728A1 (en) Power supply circuit
WO2020071290A1 (ja) 蓄電システム
JP2010220279A (ja) 電源制御装置及び方法
WO2020183901A1 (ja) 通電制御装置
US20190199119A1 (en) Voltage converter
JP2000023306A (ja) 電気自動車の電源システム
JP2019198195A (ja) 車載用リチウムイオンバッテリ制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19899030

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020561254

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19899030

Country of ref document: EP

Kind code of ref document: A1