WO2020129574A1 - Electric compressor motor, electric compressor provided with same, and method for manufacturing electric compressor motor - Google Patents

Electric compressor motor, electric compressor provided with same, and method for manufacturing electric compressor motor Download PDF

Info

Publication number
WO2020129574A1
WO2020129574A1 PCT/JP2019/046780 JP2019046780W WO2020129574A1 WO 2020129574 A1 WO2020129574 A1 WO 2020129574A1 JP 2019046780 W JP2019046780 W JP 2019046780W WO 2020129574 A1 WO2020129574 A1 WO 2020129574A1
Authority
WO
WIPO (PCT)
Prior art keywords
electric compressor
motor
torque
stator
rotor
Prior art date
Application number
PCT/JP2019/046780
Other languages
French (fr)
Japanese (ja)
Inventor
真 吉田
Original Assignee
サンデンホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by サンデンホールディングス株式会社 filed Critical サンデンホールディングス株式会社
Priority to CN201980082112.7A priority Critical patent/CN113195893B/en
Priority to DE112019006344.8T priority patent/DE112019006344T5/en
Publication of WO2020129574A1 publication Critical patent/WO2020129574A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/14Stator cores with salient poles
    • H02K1/146Stator cores with salient poles consisting of a generally annular yoke with salient poles
    • H02K1/148Sectional cores
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B35/00Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for
    • F04B35/04Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for the means being electric
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/12Casings; Cylinders; Cylinder heads; Fluid connections
    • F04B39/121Casings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/18Means for mounting or fastening magnetic stationary parts on to, or to, the stator structures
    • H02K1/185Means for mounting or fastening magnetic stationary parts on to, or to, the stator structures to outer stators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/14Structural association with mechanical loads, e.g. with hand-held machine tools or fans
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/30Structural association with control circuits or drive circuits
    • H02K11/33Drive circuits, e.g. power electronics
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2203/00Specific aspects not provided for in the other groups of this subclass relating to the windings
    • H02K2203/12Machines characterised by the bobbins for supporting the windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/03Machines characterised by numerical values, ranges, mathematical expressions or similar information
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/19Arrangements for cooling or ventilating for machines with closed casing and closed-circuit cooling using a liquid cooling medium, e.g. oil

Definitions

  • the present invention relates to, for example, a motor for an electric compressor that is housed in a container and drives a compression element, an electric compressor including the same, and a method for manufacturing the motor for an electric compressor.
  • an electric compressor for compressing a refrigerant used in a refrigeration cycle has a container in which a scroll type compression element and a motor for driving the compression element are housed.
  • a stator core including an outer core (yoke member) and an inner core (teeth member) press-fitted therein has also been developed (for example, See Patent Document 1).
  • the inner core was connected between adjacent teeth by a bridge portion, and the outer peripheral shape of this bridge portion was a stepped shape with corners.
  • the bridge portion has such a shape, there is a problem in that the change in the width dimension in the radial direction becomes large, so that the cogging torque increases and the torque ripple also increases.
  • the present invention has been made in order to solve the above-mentioned conventional technical problems, and has an bridge portion that connects the teeth of the inner core, and for an electric compressor that reduces cogging torque and torque ripple as much as possible.
  • An object of the present invention is to provide a motor, an electric compressor including the motor, and a method for manufacturing a motor for an electric compressor.
  • the motor for an electric compressor comprises a stator and a rotor with a built-in permanent magnet that rotates inside the stator.
  • the tips of adjacent teeth are continuous, and the winding is
  • the inner core is composed of an inner core and an outer core that is coupled to the outside of the inner core to form a magnetic path.
  • the inner core has a bridge portion that connects the tips of adjacent teeth.
  • the outer peripheral shape is configured by an arc, and the rotor has an outer peripheral shape having a gap expansion portion in which the gap between the magnetic pole and the inner peripheral surface of the stator widens from the center of the magnetic pole to the space between the magnetic poles.
  • the electric compressor motor according to the invention of claim 2 is characterized in that, in the above invention, the outer peripheral shape of the bridge portion is constituted by a straight line at the center and arcs continuous on both sides thereof.
  • An electric compressor according to a third aspect of the present invention is characterized in that the electric compressor motor of each of the above inventions and a compression element driven by the electric compressor motor are housed in a container.
  • the radius of the arc of the gap expansion part of the rotor is R2
  • the arc of the gap expansion part from the center of the rotor is
  • the offset amount to the center is R1 and the radius of the arc of the outer peripheral shape of the bridge portion of the inner core is R4
  • the offset amount R1 is set to a region in which the cogging torque does not increase and the torque ripple decreases
  • R2 is set to a region where the average torque is suppressed from decreasing, the cogging torque does not increase and the torque ripple decreases
  • the radius R4 is set to a region where the torque ripple does not increase and the cogging torque decreases.
  • the stator in a motor for an electric compressor including a stator and a rotor with a built-in permanent magnet that rotates inside the stator, the stator has adjacent teeth that are continuous with each other and are wound. Since it is composed of the inner core and the outer core which is coupled to the outside of the inner core to form a magnetic path, the density of the windings can be increased to improve the performance. Moreover, since the tips of the teeth are continuous and the rigidity thereof is improved, the amount of deformation of the stator due to the reaction force accompanying the rotation of the rotor is also reduced, and the occurrence of vibration is also suppressed.
  • the inner core is provided with the bridge portion that connects the tips of the adjacent teeth, and the outer peripheral shape of this bridge portion is configured by an arc, so that the width dimension in the radial direction of the bridge portion may change abruptly.
  • the cogging torque and the torque ripple can be suppressed.
  • the rotor since the rotor has an outer peripheral shape having a gap widening portion in which the gap with the inner peripheral surface of the stator is widened from the center of the magnetic pole to the space between the magnetic poles, the induced voltage can be approximated to a sine wave. As a result, the cogging torque and the torque ripple can be reduced while suppressing the decrease in the output torque.
  • the outer peripheral shape of the bridge portion may be an arc shape as a whole, but if the outer peripheral shape of the bridge portion is constituted by a straight line at the center and continuous arcs on both sides thereof as in the invention of claim 2, it may be changed depending on conditions. It becomes possible to reduce the cogging torque and the torque ripple.
  • the motor for electric compressor and the compression element of each of the above inventions are housed in a container to constitute an electric compressor, thereby providing a small-sized high-performance electric compressor. It becomes possible.
  • the radius of the arc of the enlarged gap portion of the rotor is R2 as in the invention of claim 4, and the radius of the arc of the enlarged gap portion from the center of the rotor is R2.
  • the offset amount R1 is set in a region where the cogging torque does not increase and the torque ripple decreases, and the radius
  • R2 By setting R2 to a region where the average torque is suppressed from decreasing, the cogging torque does not increase and the torque ripple decreases, and the radius R4 is set to a region where the torque ripple does not increase and the cogging torque decreases, It is possible to effectively suppress a decrease in output torque and reduce cogging torque and torque ripple.
  • FIG. 3 is an enlarged plan sectional view of an essential part of the motor of FIG. 2. It is a figure which shows the relationship of the offset amount R1 in FIG. 3, and an output torque, a torque ripple, and a cogging torque. It is a figure which shows the relationship between the radius R2 in FIG. 3, and an output torque, a torque ripple, and a cogging torque. It is a figure which shows the relationship of the radius R4 in FIG. 3, and an output torque, a torque ripple, and a cogging torque. It is a figure which compares the cogging torque of this invention and the motor for electric compressors of the conventional structure.
  • the electric compressor 1 of the embodiment is a scroll compressor in which a scroll compression element 3 and a motor (motor for electric compressor) 4 of the present invention are housed in a container 2.
  • the scroll compression element 3 includes a fixed scroll 6 fixed to the container 2 and a movable scroll 7 that is revolved by the rotation shaft 8 of the motor 4 without rotating with respect to the fixed scroll 6.
  • the spiral wrap 11 formed and the spiral wrap 12 formed on the movable scroll 7 are arranged so as to mesh with each other.
  • the refrigerant is introduced into the container 2 from a refrigerant introduction passage (not shown), and is sucked into the compression chamber formed between the wraps 11 and 12 from the outside. Since this compression chamber becomes narrower toward the center due to the orbital motion of the movable scroll 7, the sucked refrigerant is compressed and discharged from the central portion through the discharge chamber 14 and a refrigerant discharge passage (not shown). Further, since the pressure inside the container 2 becomes low, the refrigerant also passes around the motor 4, and the motor 4 is cooled by this refrigerant.
  • the motor 4 of the embodiment is a permanent magnet synchronous motor, and includes a stator 21 including a core 22 and a winding wire 23, and a magnet-embedded rotor 24 (a plurality of electromagnetic fields) that is fixed to the rotating shaft 8 and rotates inside the stator 21. It is made by stacking steel sheets).
  • the core 22 of the stator 21 is divided into two parts in which an inner core 26 (inner core) having a plurality of teeth 27 (a number corresponding to the number of poles; 12 in the embodiment) and an outer core 28 (outer core) are separated.
  • the distal end portions 27A and 27A of the teeth 27 and 27 adjacent to the inner core 26 are configured to be continuous with each other by the bridge portion 29.
  • the slots 31 between the teeth 27 of the inner core 26 are shaped to open outward and close in the center.
  • the inner core 26 and the outer core 28 are formed by laminating a plurality of electromagnetic steel plates and joining them together. Further, the same number of fitting recesses 32 as the teeth 27 of the inner core 26 are formed inside the outer core 28.
  • the winding wire 23 is wound around a bobbin 33 made of an insulating material in advance, and the bobbin 33 has a mounting hole 34 into which the tooth 27 of the inner core 26 is inserted.
  • the inner core 26 and the outer core 28 are formed by stacking and joining electromagnetic steel plates.
  • the winding wire 23 is wound around the bobbin 33, and 12 pieces thereof are prepared.
  • the teeth 27 of the inner core 26 are inserted into the mounting holes 34 of each bobbin 33 around which the winding wire 23 is wound, and the bobbins 33 are mounted on all the teeth 27 from the outside (a total of 12 pieces are mounted).
  • the winding wire 23 is wound around the inner core 26.
  • the inner core 26 provided with the winding wire 23 is fitted into the outer core 28.
  • the outer ends of the teeth 27 of the inner core 26 are fitted into the fitting recesses 32 of the outer core 28, whereby the inner core 26 and the outer core 28 are integrated (FIG. 3).
  • the winding wire 23 of each bobbin 33 is wired so as to form a predetermined electric circuit.
  • the tips 27A of the teeth 27 are continuous, and the windings 23 are mounted from the outside in the slots 31 that are open to the outside. Therefore, a nozzle is inserted from the gap between the tips of the teeth to wind the windings. It is possible to increase the density of the windings and to improve the performance, as compared with a motor that directly winds.
  • the rigidity of the inner core 26 is improved because the distal end portions 27A of the teeth 27 are continuous by the bridge portion 29, so that the amount of deformation of the core 22 of the stator 21 due to the reaction force due to the rotation of the rotor 24 is also increased. There is an advantage that the generation of vibration is suppressed.
  • the outer peripheral shape of the bridge portion 29 of the inner core 26 of the stator 21 is configured by the straight line L1 at the center and the arcs A1 smoothly continuous on both sides thereof.
  • the outer peripheral shape of the bridge portion 29 may be a circular arc shape as a whole, but with such a shape, the width dimension in the radial direction of the bridge portion 29 does not suddenly change, and the cogging torque and the torque are reduced. The ripple can be suppressed.
  • the rotor 24 is composed of a rotor core 37 formed by laminating a plurality of electromagnetic steel plates having holes 36 for housing permanent magnets, and a permanent magnet 38 housed and held in each hole 36. Then, the rotor 24 rotates via the gap with the inner peripheral surface of the teeth 27 of the stator 21.
  • the number of pole pairs of the rotor 24 of the embodiment is eight, and the permanent magnets 38 corresponding to the number are incorporated.
  • the rotor 24 has an outer peripheral shape including the gap expanding portion 24A in which the gap between the inner peripheral surface of the teeth 27 of the stator 21 widens from the center of the magnetic pole to the space between the magnetic poles.
  • FIGS. 3 to 7 a method for setting the shape of the gap expansion portion 24A of the rotor 24 and the bridge portion 29 of the stator 21 will be described.
  • the angle ⁇ 1 in FIG. 3 is 2 ⁇ /N [rad].
  • a straight line B passing through the central portion of one magnet 38 at a right angle is used as a reference of an angle, and a line drawn from the center O0 of the rotor 24 at a position rotated clockwise by an angle ⁇ 2/2 is denoted by A.
  • a recessed gap expansion portion 24A is formed in the outer diameter portion of the rotor 24 that intersects with the line A.
  • each recess is composed of two gap expanding portions 24A, and the radius R2 is the radius of the arc of the gap expanding portion 24A.
  • the radius of the arc A1 of the outer peripheral shape of the bridge portion 29 is R4 (FIG. 3)
  • the rotor 24 having a shape including an arc from the center O0 (radius R3) and an arc from the point O1 (radius R2).
  • the parameters constituting the shape of the stator 21 having the radius R4 of the arc A1 of the bridge portion 29 of the tooth 27 those having a great influence on the cogging torque, torque ripple (torque pulsation), and average torque are:
  • FIGS. 4 to 6 show changes in the cogging torque, the torque ripple, and the average torque when the offset amount R1, the radius R2, and the radius R4 are changed.
  • the rhombus shows the average torque
  • the square shows the torque ripple
  • the triangle shows the cogging torque.
  • the offset amount R1 is set to a region near point E in FIG.
  • the radius R2 is set in the region near point F in FIG. 5 where the torque ripple and the cogging torque intersect.
  • the radius R4 when the radius R4 is increased, the average torque does not substantially change, the torque ripple increases from a certain time, and the cogging torque decreases and becomes almost flat. Therefore, in order to reduce the cogging torque while keeping the torque ripple small, the radius R4 is set in a region near point G in FIG. 6 where the cogging torque changes from decreasing to leveling.
  • X1 represents the cogging torque of a general motor
  • X2 represents the cogging torque of the motor of Patent Document 1
  • X3 represents the cogging torque of the motor 4 of the present invention.
  • the cogging torque of the motor 4 of the present invention is half that of the motor of Patent Document 1, and can be reduced to about 1/10 of the case of the conventional motor.
  • the motor 4 of the present invention is suitable for various electric compressors such as a rotary electric compressor without being limited thereto.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Compressor (AREA)

Abstract

Provided is an electric compressor motor having bridge parts spanning between teeth in an inner core, in which cogging torque and torque ripples are reduced as much as possible. A stator 21 is configured from an inner core 26 in which the tips of adjacent teeth 27 are continuous and windings 23 are laid around the core, and an outer core 28 that couples with the outer side of the inner core to form a magnetic path. The inner core has bridge parts 29 spanning between the tips of adjacent teeth, and the outer peripheral shapes of the bridge parts are each configured in an arc A1. A rotor 24 is provided with gap-widening parts 24A in which a gap with the inner peripheral surface of the stator widens from the centers of magnetic poles towards the spaces between the magnetic poles.

Description

電動圧縮機用モータ、それを備えた電動圧縮機、及び、電動圧縮機用モータの製造方法Electric compressor motor, electric compressor including the same, and method for manufacturing electric compressor motor
 本発明は、例えば容器内に収納されて圧縮要素を駆動する電動圧縮機用モータ、それを備えた電動圧縮機、及び、電動圧縮機用モータの製造方法に関するものである。 The present invention relates to, for example, a motor for an electric compressor that is housed in a container and drives a compression element, an electric compressor including the same, and a method for manufacturing the motor for an electric compressor.
 従来より冷凍サイクルで使用される冷媒圧縮用の電動圧縮機は、容器内にスクロール式等の圧縮要素と、この圧縮要素を駆動するモータを収納して構成されている。また、従来では巻線の占積率を増大させるために、ステータのコアを、アウターコア(ヨーク部材)とそれに圧入されるインナーコア(ティース部材)から構成したものも開発されている(例えば、特許文献1参照)。 Conventionally, an electric compressor for compressing a refrigerant used in a refrigeration cycle has a container in which a scroll type compression element and a motor for driving the compression element are housed. Further, conventionally, in order to increase the space factor of the winding, a stator core including an outer core (yoke member) and an inner core (teeth member) press-fitted therein has also been developed (for example, See Patent Document 1).
特開2016-116391号公報JP, 2016-116391, A 特開平8-98440号公報JP-A-8-98440 特開2006-238667号公報JP, 2006-238667, A
 この場合、インナーコアは隣接するティース間がブリッジ部にて繋がっており、このブリッジ部の外周形状は、角のある段差形状とされていた。しかしながら、ブリッジ部が係る形状である場合、径方向の幅寸法の変化が大きくなり、そのため、コギングトルクが増大し、トルクリップルも増大する問題があった。 In this case, the inner core was connected between adjacent teeth by a bridge portion, and the outer peripheral shape of this bridge portion was a stepped shape with corners. However, in the case where the bridge portion has such a shape, there is a problem in that the change in the width dimension in the radial direction becomes large, so that the cogging torque increases and the torque ripple also increases.
 一方、目的は異なるが、ブリッジ部の外周形状を円形とするものも開発されている(例えば、特許文献2参照)。また、コギングトルクを低減するために、ロータの各磁極の外周形状を円弧で構成し、且つ、この円弧の中心をロータの中心からオフセットしたロータも開発されている(例えば、特許文献1参照)。 On the other hand, although the purpose is different, a bridge having a circular outer peripheral shape has also been developed (for example, see Patent Document 2). Further, in order to reduce the cogging torque, a rotor in which the outer peripheral shape of each magnetic pole of the rotor is formed by an arc and the center of the arc is offset from the center of the rotor has also been developed (for example, see Patent Document 1). ..
 本発明は、係る従来の技術的課題を解決するために成されたものであり、インナーコアのティース間を繋ぐブリッジ部を有し、且つ、コギングトルク及びトルクリップルを極力低減した電動圧縮機用モータ、それを備えた電動圧縮機、及び、電動圧縮機用モータの製造方法を提供することを目的とする。 The present invention has been made in order to solve the above-mentioned conventional technical problems, and has an bridge portion that connects the teeth of the inner core, and for an electric compressor that reduces cogging torque and torque ripple as much as possible. An object of the present invention is to provide a motor, an electric compressor including the motor, and a method for manufacturing a motor for an electric compressor.
 本発明の電動圧縮機用モータは、ステータと、このステータの内側において回転する永久磁石内蔵型のロータから成るものであって、ステータは、隣接するティースの先端が連続しており、巻線が施されたインナーコアと、このインナーコアの外側に結合して磁路を形成するアウターコアとから構成され、インナーコアは、隣接するティースの先端間を繋ぐブリッジ部を有し、このブリッジ部の外周形状は円弧にて構成されており、ロータは、磁極の中心から磁極間に向けて、ステータの内周面とのギャップが広がるギャップ拡大部を備えた外周形状を有していることを特徴とする。 The motor for an electric compressor according to the present invention comprises a stator and a rotor with a built-in permanent magnet that rotates inside the stator. In the stator, the tips of adjacent teeth are continuous, and the winding is The inner core is composed of an inner core and an outer core that is coupled to the outside of the inner core to form a magnetic path. The inner core has a bridge portion that connects the tips of adjacent teeth. The outer peripheral shape is configured by an arc, and the rotor has an outer peripheral shape having a gap expansion portion in which the gap between the magnetic pole and the inner peripheral surface of the stator widens from the center of the magnetic pole to the space between the magnetic poles. And
 請求項2の発明の電動圧縮機用モータは、上記発明においてブリッジ部の外周形状は、中央の直線とその両側に連続する円弧にて構成されていることを特徴とする。 The electric compressor motor according to the invention of claim 2 is characterized in that, in the above invention, the outer peripheral shape of the bridge portion is constituted by a straight line at the center and arcs continuous on both sides thereof.
 請求項3の発明の電動圧縮機は、上記各発明の電動圧縮機用モータと、この電動圧縮機用モータにより駆動される圧縮要素を容器内に収納して成ることを特徴とする。 An electric compressor according to a third aspect of the present invention is characterized in that the electric compressor motor of each of the above inventions and a compression element driven by the electric compressor motor are housed in a container.
 請求項4の発明は、請求項1又は請求項2の発明の電動圧縮機用モータを製造するにあたり、ロータのギャップ拡大部の円弧の半径をR2、ロータの中心からのギャップ拡大部の円弧の中心までのオフセット量をR1、インナーコアのブリッジ部の外周形状の円弧の半径をR4とした場合に、オフセット量R1を、コギングトルクが増加せず、トルクリップルが減少する領域に設定し、半径R2を、平均トルクの減少を抑え、コギングトルクが増加せず、トルクリップルが減少する領域に設定し、半径R4を、トルクリップルが増加せず、コギングトルクが減少する領域に設定することを特徴とする。 According to the invention of claim 4, in manufacturing the motor for an electric compressor of the invention of claim 1 or 2, the radius of the arc of the gap expansion part of the rotor is R2, and the arc of the gap expansion part from the center of the rotor is When the offset amount to the center is R1 and the radius of the arc of the outer peripheral shape of the bridge portion of the inner core is R4, the offset amount R1 is set to a region in which the cogging torque does not increase and the torque ripple decreases, and R2 is set to a region where the average torque is suppressed from decreasing, the cogging torque does not increase and the torque ripple decreases, and the radius R4 is set to a region where the torque ripple does not increase and the cogging torque decreases. And
 本発明によれば、ステータと、このステータの内側において回転する永久磁石内蔵型のロータから成る電動圧縮機用モータにおいて、ステータを、隣接するティースの先端が連続しており、巻線が施されたインナーコアと、このインナーコアの外側に結合して磁路を形成するアウターコアとから構成したので、巻線の密度を大きくして性能の向上を図ることができる。また、ティースの先端が連続しており、その剛性が向上するため、ロータの回転に伴う反力によるステータの変形量も減少することになり、振動の発生も抑制される。 According to the present invention, in a motor for an electric compressor including a stator and a rotor with a built-in permanent magnet that rotates inside the stator, the stator has adjacent teeth that are continuous with each other and are wound. Since it is composed of the inner core and the outer core which is coupled to the outside of the inner core to form a magnetic path, the density of the windings can be increased to improve the performance. Moreover, since the tips of the teeth are continuous and the rigidity thereof is improved, the amount of deformation of the stator due to the reaction force accompanying the rotation of the rotor is also reduced, and the occurrence of vibration is also suppressed.
 特に本発明ではインナーコアに、隣接するティースの先端間を繋ぐブリッジ部を設け、このブリッジ部の外周形状を円弧にて構成したので、ブリッジ部の径方向における幅寸法が急激に変化することが無くなり、コギングトルクとトルクリップルを抑制することができるようになる。更に、ロータを、磁極の中心から磁極間に向けて、ステータの内周面とのギャップが広がるギャップ拡大部を備えた外周形状を有するようにしたので、誘起電圧を正弦波に近づけることができるようになり、出力トルクの低下を抑制しながら、コギングトルクとトルクリップルの低減を図ることができるようになる。 In particular, in the present invention, the inner core is provided with the bridge portion that connects the tips of the adjacent teeth, and the outer peripheral shape of this bridge portion is configured by an arc, so that the width dimension in the radial direction of the bridge portion may change abruptly. As a result, the cogging torque and the torque ripple can be suppressed. Further, since the rotor has an outer peripheral shape having a gap widening portion in which the gap with the inner peripheral surface of the stator is widened from the center of the magnetic pole to the space between the magnetic poles, the induced voltage can be approximated to a sine wave. As a result, the cogging torque and the torque ripple can be reduced while suppressing the decrease in the output torque.
 この場合、ブリッジ部の外周形状は全体が円弧形状でもよいが、請求項2の発明の如くブリッジ部の外周形状を、中央の直線とその両側に連続する円弧にて構成すれば、条件によって更なるコギングトルクとトルクリップルの低減を図ることができるようになる。 In this case, the outer peripheral shape of the bridge portion may be an arc shape as a whole, but if the outer peripheral shape of the bridge portion is constituted by a straight line at the center and continuous arcs on both sides thereof as in the invention of claim 2, it may be changed depending on conditions. It becomes possible to reduce the cogging torque and the torque ripple.
 そして、請求項3の発明の如く上記各発明の電動圧縮機用モータと圧縮要素を容器内に収納して電動圧縮機を構成することにより、小型で振動も少ない高性能な電動圧縮機とすることが可能となる。 Further, as in the invention of claim 3, the motor for electric compressor and the compression element of each of the above inventions are housed in a container to constitute an electric compressor, thereby providing a small-sized high-performance electric compressor. It becomes possible.
 また、請求項1又は請求項2の電動圧縮機用モータを製造するにあたり、請求項4の発明の如くロータのギャップ拡大部の円弧の半径をR2、ロータの中心からのギャップ拡大部の円弧の中心までのオフセット量をR1、インナーコアのブリッジ部の外周形状の円弧の半径をR4とした場合に、オフセット量R1を、コギングトルクが増加せず、トルクリップルが減少する領域に設定し、半径R2を、平均トルクの減少を抑え、コギングトルクが増加せず、トルクリップルが減少する領域に設定し、半径R4を、トルクリップルが増加せず、コギングトルクが減少する領域に設定することで、効果的に出力トルクの低下を抑制し、コギングトルクとトルクリップルの低減を図ることができるようになる。 In manufacturing the motor for an electric compressor according to claim 1 or 2, the radius of the arc of the enlarged gap portion of the rotor is R2 as in the invention of claim 4, and the radius of the arc of the enlarged gap portion from the center of the rotor is R2. When the offset amount to the center is R1 and the radius of the circular arc of the outer peripheral shape of the bridge portion of the inner core is R4, the offset amount R1 is set in a region where the cogging torque does not increase and the torque ripple decreases, and the radius By setting R2 to a region where the average torque is suppressed from decreasing, the cogging torque does not increase and the torque ripple decreases, and the radius R4 is set to a region where the torque ripple does not increase and the cogging torque decreases, It is possible to effectively suppress a decrease in output torque and reduce cogging torque and torque ripple.
本発明を適用した一実施形態の電動圧縮機の縦断側面図である。It is a vertical side view of an electric compressor of one embodiment to which the present invention is applied. 図1の電動圧縮機のモータ(電動圧縮機用モータ)を構成するステータの分解斜視図である。It is an exploded perspective view of the stator which comprises the motor (motor for electric compressors) of the electric compressor of FIG. 図2のモータの要部拡大平断面図である。FIG. 3 is an enlarged plan sectional view of an essential part of the motor of FIG. 2. 図3中のオフセット量R1と出力トルク、トルクリップル及びコギングトルクの関係を示す図である。It is a figure which shows the relationship of the offset amount R1 in FIG. 3, and an output torque, a torque ripple, and a cogging torque. 図3中の半径R2と出力トルク、トルクリップル及びコギングトルクの関係を示す図である。It is a figure which shows the relationship between the radius R2 in FIG. 3, and an output torque, a torque ripple, and a cogging torque. 図3中の半径R4と出力トルク、トルクリップル及びコギングトルクの関係を示す図である。It is a figure which shows the relationship of the radius R4 in FIG. 3, and an output torque, a torque ripple, and a cogging torque. 本発明と従来の構造の電動圧縮機用モータのコギングトルクを比較する図である。It is a figure which compares the cogging torque of this invention and the motor for electric compressors of the conventional structure.
 以下、本発明の実施の形態について、詳細に説明する。実施例の電動圧縮機1は、容器2内にスクロール圧縮要素3と本発明のモータ(電動圧縮機用モータ)4を収納してなるスクロール圧縮機である。スクロール圧縮要素3は、容器2に固定された固定スクロール6と、モータ4の回転軸8により、固定スクロール6に対して回転せずに公転運動される可動スクロール7とから成り、固定スクロール6に形成された渦巻き状のラップ11と可動スクロール7に形成された渦巻き状のラップ12とが噛み合うように配置されている。 Hereinafter, embodiments of the present invention will be described in detail. The electric compressor 1 of the embodiment is a scroll compressor in which a scroll compression element 3 and a motor (motor for electric compressor) 4 of the present invention are housed in a container 2. The scroll compression element 3 includes a fixed scroll 6 fixed to the container 2 and a movable scroll 7 that is revolved by the rotation shaft 8 of the motor 4 without rotating with respect to the fixed scroll 6. The spiral wrap 11 formed and the spiral wrap 12 formed on the movable scroll 7 are arranged so as to mesh with each other.
 容器2内には図示しない冷媒導入通路から冷媒が導入され、両ラップ11、12間に構成される圧縮室に外側から吸い込まれる。この圧縮室は可動スクロール7の公転運動により中心に向けて狭くなるため、吸い込まれた冷媒は圧縮され、中心部から吐出室14、図示しない冷媒吐出通路を経て吐出されることになる。また、容器2内は低圧となるため、モータ4の周囲にも冷媒が通過することになり、この冷媒でモータ4は冷却されるかたちとなる。 The refrigerant is introduced into the container 2 from a refrigerant introduction passage (not shown), and is sucked into the compression chamber formed between the wraps 11 and 12 from the outside. Since this compression chamber becomes narrower toward the center due to the orbital motion of the movable scroll 7, the sucked refrigerant is compressed and discharged from the central portion through the discharge chamber 14 and a refrigerant discharge passage (not shown). Further, since the pressure inside the container 2 becomes low, the refrigerant also passes around the motor 4, and the motor 4 is cooled by this refrigerant.
 次に、本発明のモータ4について説明する。実施例のモータ4は永久磁石同期モータであり、コア22と巻線23から成るステータ21と、回転軸8に固定されてステータ21の内側で回転する磁石内蔵型のロータ24(複数枚の電磁鋼板を積層して成る)とから構成されている。 Next, the motor 4 of the present invention will be described. The motor 4 of the embodiment is a permanent magnet synchronous motor, and includes a stator 21 including a core 22 and a winding wire 23, and a magnet-embedded rotor 24 (a plurality of electromagnetic fields) that is fixed to the rotating shaft 8 and rotates inside the stator 21. It is made by stacking steel sheets).
 ステータ21のコア22は、複数(極数に応じた数。実施例では12個)のティース27を有するインナーコア26(内側コア)と、アウターコア28(外側コア)とが分離された二分割構成とされており、インナーコア26の隣接するティース27、27の各先端部27A、27Aは、ブリッジ部29により相互に連続した構成とされている。これにより、インナーコア26の各ティース27間のスロット31は、外方向に向けて開放し、中心方向が閉じた形状とされている。 The core 22 of the stator 21 is divided into two parts in which an inner core 26 (inner core) having a plurality of teeth 27 (a number corresponding to the number of poles; 12 in the embodiment) and an outer core 28 (outer core) are separated. The distal end portions 27A and 27A of the teeth 27 and 27 adjacent to the inner core 26 are configured to be continuous with each other by the bridge portion 29. As a result, the slots 31 between the teeth 27 of the inner core 26 are shaped to open outward and close in the center.
 係るインナーコア26及びアウターコア28は複数枚の電磁鋼板を積層し、結合して構成されている。また、アウターコア28の内側には、インナーコア26のティース27と同数の嵌合凹所32が形成されている。一方、巻線23は予め絶縁体から成るボビン33に巻回されており、このボビン33にはインナーコア26のティース27が差し込まれる装着孔34が形成されている。 The inner core 26 and the outer core 28 are formed by laminating a plurality of electromagnetic steel plates and joining them together. Further, the same number of fitting recesses 32 as the teeth 27 of the inner core 26 are formed inside the outer core 28. On the other hand, the winding wire 23 is wound around a bobbin 33 made of an insulating material in advance, and the bobbin 33 has a mounting hole 34 into which the tooth 27 of the inner core 26 is inserted.
 そして、ステータ21を組み立てる際には、先ず、電磁鋼板を積層して結合することにより、インナーコア26とアウターコア28を構成する。また、巻線23をボビン33に巻回し、それを12個用意する。次に、巻線23を巻回した各ボビン33の装着孔34内にインナーコア26のティース27を挿入するかたちでボビン33を全てのティース27に外側から装着する(計12個装着する)。 Then, when assembling the stator 21, first, the inner core 26 and the outer core 28 are formed by stacking and joining electromagnetic steel plates. In addition, the winding wire 23 is wound around the bobbin 33, and 12 pieces thereof are prepared. Next, the teeth 27 of the inner core 26 are inserted into the mounting holes 34 of each bobbin 33 around which the winding wire 23 is wound, and the bobbins 33 are mounted on all the teeth 27 from the outside (a total of 12 pieces are mounted).
 このようにしてインナーコア26に巻線23が巻装される。次に、巻線23が施されたインナーコア26をアウターコア28内に嵌め込む。この際、インナーコア26の各ティース27の外端部がアウターコア28の各嵌合凹所32内に嵌着されることでインナーコア26とアウターコア28は一体化される(図3)。尚、各ボビン33の巻線23は所定の電気回路を構成するように配線されるものとする。 In this way, the winding wire 23 is wound around the inner core 26. Next, the inner core 26 provided with the winding wire 23 is fitted into the outer core 28. At this time, the outer ends of the teeth 27 of the inner core 26 are fitted into the fitting recesses 32 of the outer core 28, whereby the inner core 26 and the outer core 28 are integrated (FIG. 3). The winding wire 23 of each bobbin 33 is wired so as to form a predetermined electric circuit.
 このように、ステータ21はティース27の先端部27Aが連続しており、外方に開放したスロット31に外側から巻線23を装着するため、ティース先端部の隙間からノズルを挿入して巻線を直巻するモータに比して巻線の密度を大きくし、性能の向上を図ることができる。 As described above, in the stator 21, the tips 27A of the teeth 27 are continuous, and the windings 23 are mounted from the outside in the slots 31 that are open to the outside. Therefore, a nozzle is inserted from the gap between the tips of the teeth to wind the windings. It is possible to increase the density of the windings and to improve the performance, as compared with a motor that directly winds.
 また、インナーコア26は各ティース27の先端部27Aがブリッジ部29により連続していることにより、その剛性が向上するので、ロータ24の回転に伴う反力によるステータ21のコア22の変形量も減少することになり、振動の発生も抑制されるという利点がある。 Further, the rigidity of the inner core 26 is improved because the distal end portions 27A of the teeth 27 are continuous by the bridge portion 29, so that the amount of deformation of the core 22 of the stator 21 due to the reaction force due to the rotation of the rotor 24 is also increased. There is an advantage that the generation of vibration is suppressed.
 更に、この発明ではステータ21のインナーコア26のブリッジ部29の外周形状を、中央の直線L1と、その両側に滑らかに連続する円弧A1にて構成している。尚、このブリッジ部29の外周形状は全体が円弧の形状でもよいが、このように形状とすることで、ブリッジ部29の径方向における幅寸法が急激に変化することが無くなり、コギングトルクとトルクリップルを抑制することができるようになる。 Further, according to the present invention, the outer peripheral shape of the bridge portion 29 of the inner core 26 of the stator 21 is configured by the straight line L1 at the center and the arcs A1 smoothly continuous on both sides thereof. The outer peripheral shape of the bridge portion 29 may be a circular arc shape as a whole, but with such a shape, the width dimension in the radial direction of the bridge portion 29 does not suddenly change, and the cogging torque and the torque are reduced. The ripple can be suppressed.
 一方、ロータ24は永久磁石を収納する孔部36を有する複数枚の電磁鋼板を積層して構成されたロータコア37と、各孔部36に収納保持された永久磁石38とから構成されている。そして、ロータ24はステータ21のティース27の内周面とギャップを介して回転する。尚、実施例のロータ24の極対数は8であり、その数に応じた永久磁石38が内蔵されている。 On the other hand, the rotor 24 is composed of a rotor core 37 formed by laminating a plurality of electromagnetic steel plates having holes 36 for housing permanent magnets, and a permanent magnet 38 housed and held in each hole 36. Then, the rotor 24 rotates via the gap with the inner peripheral surface of the teeth 27 of the stator 21. The number of pole pairs of the rotor 24 of the embodiment is eight, and the permanent magnets 38 corresponding to the number are incorporated.
 更に、この発明ではロータ24は、磁極の中心から磁極間に向けて、ステータ21のティース27の内周面とのギャップが広がるギャップ拡大部24Aを備えた外周形状とされている。これにより、誘起電圧を正弦波に近づけることができるようになり、出力トルクの低下を抑制しながら、コギングトルクとトルクリップルの低減を図ることができるようになる。 Further, in the present invention, the rotor 24 has an outer peripheral shape including the gap expanding portion 24A in which the gap between the inner peripheral surface of the teeth 27 of the stator 21 widens from the center of the magnetic pole to the space between the magnetic poles. As a result, the induced voltage can be made closer to a sine wave, and the cogging torque and the torque ripple can be reduced while suppressing the decrease in the output torque.
 次に、図3~図7を参照しながら、ロータ24のギャップ拡大部24Aとステータ21のブリッジ部29の形状の設定方法について説明する。モータ4の極数をNとしたとき、図3中の角度θ1=2π/N[rad]とする。図3において、一つの磁石38の中央部を直角に貫通する直線Bを角度の基準として、角度θ2/2だけ図3の右周りに回転した位置にロータ24の中心O0から引いた線をAとする。この線Aと交わるロータ24の外径部に凹んだギャップ拡大部24Aを作る。 Next, referring to FIGS. 3 to 7, a method for setting the shape of the gap expansion portion 24A of the rotor 24 and the bridge portion 29 of the stator 21 will be described. When the number of poles of the motor 4 is N, the angle θ1 in FIG. 3 is 2π/N [rad]. In FIG. 3, a straight line B passing through the central portion of one magnet 38 at a right angle is used as a reference of an angle, and a line drawn from the center O0 of the rotor 24 at a position rotated clockwise by an angle θ2/2 is denoted by A. And A recessed gap expansion portion 24A is formed in the outer diameter portion of the rotor 24 that intersects with the line A.
 この場合、線Aからθ1=π/2[rad]だけ図3の左周りに回転して中心O0から引いた線Dと、中心O0を基準としてオフセット量R1の円の交わる点をO1とする。この点O1から半径R2の円弧を描き、この円弧と線Aとの交点をP1とする。次に、中心O0から半径R3で描いた円弧と、点O1から半径R2で描いた円弧との交点をP2とする。このとき、P1からP2で出来た円弧を線Aで鏡面複写することで、線Aとロータ24の外径の交わる周辺に凹みができる。これを極数N個分中心O0のまわりに角度θ1毎に複写していくことで、ロータ24の外周にN個の凹みを作ることができる。 In this case, the intersection point of the line D rotated from the line A by θ1=π/2 [rad] in the counterclockwise direction in FIG. 3 and drawn from the center O0 and the circle of the offset amount R1 with the center O0 as the reference is O1. .. An arc of radius R2 is drawn from this point O1, and the intersection of this arc and the line A is P1. Next, the intersection point of the circular arc drawn from the center O0 with the radius R3 and the circular arc drawn from the point O1 to the radius R2 is defined as P2. At this time, by making a mirror copy of the arc formed by P1 and P2 along the line A, a dent can be formed around the intersection of the line A and the outer diameter of the rotor 24. By copying this for the number of poles N around the center O0 for each angle θ1, N recesses can be formed on the outer circumference of the rotor 24.
 即ち、各凹みは二つのギャップ拡大部24Aで構成されることになり、半径R2がギャップ拡大部24Aの円弧の半径となる。また、ブリッジ部29の外周形状の円弧A1の半径をR4とした場合(図3)、中心O0からの円弧(半径R3)と点O1からの円弧(半径R2)とから成る形状を持つロータ24と、ティース27のブリッジ部29の円弧A1の半径R4を持つステータ21の形状を構成するパラメータのなかで、コギングトルク、トルクリップル(トルク脈動)、及び、平均トルクに大きい影響を持つものは、オフセット量R1と、半径R2と、半径R4である。 That is, each recess is composed of two gap expanding portions 24A, and the radius R2 is the radius of the arc of the gap expanding portion 24A. When the radius of the arc A1 of the outer peripheral shape of the bridge portion 29 is R4 (FIG. 3), the rotor 24 having a shape including an arc from the center O0 (radius R3) and an arc from the point O1 (radius R2). Among the parameters constituting the shape of the stator 21 having the radius R4 of the arc A1 of the bridge portion 29 of the tooth 27, those having a great influence on the cogging torque, torque ripple (torque pulsation), and average torque are: The offset amount R1, the radius R2, and the radius R4.
 次に、オフセット量R1、半径R2、及び、半径R4を変化させたときのコギングトルク、トルクリップル、及び、平均トルクの変化を図4~図6に示す。各図において菱形は平均トルク、四角はトルクリップル、三角はコギングトルクを示している。 Next, FIGS. 4 to 6 show changes in the cogging torque, the torque ripple, and the average torque when the offset amount R1, the radius R2, and the radius R4 are changed. In each figure, the rhombus shows the average torque, the square shows the torque ripple, and the triangle shows the cogging torque.
 先ず、図4において、オフセット量R1を大きくしていくと、平均トルクは略変わらず、トルクリップルは減少し、コギングトルクは図4中のE点から急激に増大する。そこで、トルクリップルを増加させずに、コギングトルクを減らすため、オフセット量R1は図4中のE点付近の領域に設定する。 First, in FIG. 4, as the offset amount R1 is increased, the average torque remains substantially unchanged, the torque ripple decreases, and the cogging torque increases sharply from point E in FIG. Therefore, in order to reduce the cogging torque without increasing the torque ripple, the offset amount R1 is set to a region near point E in FIG.
 次に、図5において、半径R2を大きくしていくと、平均トルクは若干減少し、トルクリップルは減少し、コギングトルクは増加して略横ばいとなる。そこで、平均トルクの減少を抑えながら、トルクリップルとコギングトルクを小さくするには、トルクリップルとコギングトルクが交差する図5中F点付近の領域に半径R2を設定する。 Next, in FIG. 5, as the radius R2 is increased, the average torque is slightly decreased, the torque ripple is decreased, and the cogging torque is increased and becomes substantially flat. Therefore, in order to reduce the torque ripple and the cogging torque while suppressing the decrease of the average torque, the radius R2 is set in the region near point F in FIG. 5 where the torque ripple and the cogging torque intersect.
 次に、図6において、半径R4を大きくしていくと、平均トルクは略変わらず、トルクリップルはあるときから増大し、コギングトルクは減少して略横ばいとなる。そこで、トルクリップルが小さいまま、コギングトルクを小さくするには、コギングトルクが減少から横ばいに転じる図6中G点付近の領域に半径R4を設定する。 Next, in FIG. 6, when the radius R4 is increased, the average torque does not substantially change, the torque ripple increases from a certain time, and the cogging torque decreases and becomes almost flat. Therefore, in order to reduce the cogging torque while keeping the torque ripple small, the radius R4 is set in a region near point G in FIG. 6 where the cogging torque changes from decreasing to leveling.
 このように、ギャップ拡大部24Aの円弧の半径R2と、オフセット量R1と、ブリッジ部29の外周形状の円弧A1の半径R4を設定することで、出力トルクの低下を抑制しながら、コギングトルクとトルクリップルの低減を図ることができるようになる。図8のX1は一般的なモータのコギングトルク、X2は特許文献1のモータのコギングトルク、X3は本発明のモータ4のコギングトルクを示している。この図から明らかな如く、本発明のモータ4のコギングトルクは特許文献1のモータの場合の半分となり、従来のモータの場合と比較すると1/10程度に減少させることができた。 In this way, by setting the radius R2 of the arc of the gap widening portion 24A, the offset amount R1, and the radius R4 of the arc A1 of the outer peripheral shape of the bridge portion 29, the cogging torque and the It becomes possible to reduce the torque ripple. In FIG. 8, X1 represents the cogging torque of a general motor, X2 represents the cogging torque of the motor of Patent Document 1, and X3 represents the cogging torque of the motor 4 of the present invention. As is clear from this figure, the cogging torque of the motor 4 of the present invention is half that of the motor of Patent Document 1, and can be reduced to about 1/10 of the case of the conventional motor.
 尚、実施例では本発明をスクロール電動圧縮機に採用したが、それに限らず、ロータリ電動圧縮機など、種々の電動圧縮機に本発明のモータ4は好適である。 Although the present invention is applied to the scroll electric compressor in the embodiments, the motor 4 of the present invention is suitable for various electric compressors such as a rotary electric compressor without being limited thereto.
 1 電動圧縮機
 2 容器
 3 スクロール圧縮要素
 4 モータ
 8 回転軸
 21 ステータ
 22 コア
 23 巻線
 24 ロータ
 24A ギャップ拡大部
 26 インナーコア
 27 ティース
 27A 先端部
 28 アウターコア
 29 ブリッジ部
 31 スロット
 38 永久磁石
 A1 円弧
DESCRIPTION OF SYMBOLS 1 Electric compressor 2 Container 3 Scroll compression element 4 Motor 8 Rotating shaft 21 Stator 22 Core 23 Winding 24 Rotor 24A Gap expansion part 26 Inner core 27 Teeth 27A Tip part 28 Outer core 29 Bridge part 31 Slot 38 Permanent magnet A1 Arc

Claims (4)

  1.  ステータと、該ステータの内側において回転する永久磁石内蔵型のロータから成る電動圧縮機用モータにおいて、
     前記ステータは、
     隣接するティースの先端が連続しており、巻線が施されたインナーコアと、
     該インナーコアの外側に結合して磁路を形成するアウターコアとから構成され、
     前記インナーコアは、隣接する前記ティースの先端間を繋ぐブリッジ部を有し、該ブリッジ部の外周形状は円弧にて構成されており、
     前記ロータは、
     磁極の中心から磁極間に向けて、前記ステータの内周面とのギャップが広がるギャップ拡大部を備えた外周形状を有していることを特徴とする電動圧縮機用モータ。
    A motor for an electric compressor, comprising a stator and a rotor having a built-in permanent magnet that rotates inside the stator,
    The stator is
    The inner cores that have the windings on the tips of adjacent teeth are continuous.
    And an outer core that is coupled to the outside of the inner core to form a magnetic path,
    The inner core has a bridge portion that connects the tips of the adjacent teeth, and the outer peripheral shape of the bridge portion is configured by an arc,
    The rotor is
    A motor for an electric compressor, which has an outer peripheral shape having a gap expansion portion in which a gap with the inner peripheral surface of the stator widens from the center of the magnetic pole toward the space between the magnetic poles.
  2.  前記ブリッジ部の外周形状は、中央の直線とその両側に連続する円弧にて構成されていることを特徴とする請求項1に記載の電動圧縮機用モータ。 The motor for an electric compressor according to claim 1, wherein the outer peripheral shape of the bridge portion is composed of a straight line at the center and arcs continuous on both sides thereof.
  3.  請求項1又は請求項2に記載の電動圧縮機用モータと、該電動圧縮機用モータにより駆動される圧縮要素を容器内に収納して成ることを特徴とする電動圧縮機。 An electric compressor comprising the electric compressor motor according to claim 1 or 2 and a compression element driven by the electric compressor motor, which is housed in a container.
  4.  前記ロータのギャップ拡大部の円弧の半径をR2、前記ロータの中心からの前記ギャップ拡大部の円弧の中心までのオフセット量をR1、前記インナーコアのブリッジ部の外周形状の円弧の半径をR4とした場合に、
     前記オフセット量R1を、コギングトルクが増加せず、トルクリップルが減少する領域に設定し、
     前記半径R2を、平均トルクの減少を抑え、コギングトルクが増加せず、トルクリップルが減少する領域に設定し、
     前記半径R4を、トルクリップルが増加せず、コギングトルクが減少する領域に設定することを特徴とする請求項1又は請求項2に記載の電動圧縮機用モータの製造方法。
    The radius of the arc of the gap expansion portion of the rotor is R2, the offset amount from the center of the rotor to the center of the arc of the gap expansion portion is R1, and the radius of the arc of the outer peripheral shape of the bridge portion of the inner core is R4. If you do
    The offset amount R1 is set in a region where the torque ripple does not increase and the cogging torque does not increase.
    The radius R2 is set to a region where the decrease of the average torque is suppressed, the cogging torque does not increase, and the torque ripple decreases,
    The method for manufacturing an electric compressor motor according to claim 1 or 2, wherein the radius R4 is set in a region where the torque ripple does not increase and the cogging torque decreases.
PCT/JP2019/046780 2018-12-20 2019-11-29 Electric compressor motor, electric compressor provided with same, and method for manufacturing electric compressor motor WO2020129574A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980082112.7A CN113195893B (en) 2018-12-20 2019-11-29 Motor for electric compressor, electric compressor including the same, and method for manufacturing motor for electric compressor
DE112019006344.8T DE112019006344T5 (en) 2018-12-20 2019-11-29 An electrically powered compressor motor, an electrically powered compressor comprising the same, and a method of making a motor for an electrically powered compressor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018238251A JP2020102911A (en) 2018-12-20 2018-12-20 Motor for electric compressor, electric compressor with the same, and manufacturing method of motor for electric compressor
JP2018-238251 2018-12-20

Publications (1)

Publication Number Publication Date
WO2020129574A1 true WO2020129574A1 (en) 2020-06-25

Family

ID=71101105

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/046780 WO2020129574A1 (en) 2018-12-20 2019-11-29 Electric compressor motor, electric compressor provided with same, and method for manufacturing electric compressor motor

Country Status (4)

Country Link
JP (1) JP2020102911A (en)
CN (1) CN113195893B (en)
DE (1) DE112019006344T5 (en)
WO (1) WO2020129574A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003264947A (en) * 2002-03-08 2003-09-19 Fujitsu General Ltd Permanent magnet motor
JP2004304997A (en) * 2003-03-18 2004-10-28 Asmo Co Ltd Stator and brush-less motor
JP2006238667A (en) * 2005-02-28 2006-09-07 Matsushita Electric Ind Co Ltd Electric motor
JP2007181259A (en) * 2005-12-27 2007-07-12 Matsushita Electric Ind Co Ltd Brushless motor
JP2014103730A (en) * 2012-11-19 2014-06-05 Mitsuba Corp Brushless motor, rotor core used therefor, and method for manufacturing rotor core
JP2015037379A (en) * 2013-08-09 2015-02-23 ジョンソン エレクトリック ソシエテ アノニム Single-phase brushless motor
WO2015186455A1 (en) * 2014-06-06 2015-12-10 三菱電機株式会社 Permanent magnet motor and drive-integrated permanent magnet motor
JP2016116391A (en) * 2014-12-17 2016-06-23 サンデンホールディングス株式会社 Motor for compressor, and compressor comprising the same

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0898440A (en) 1994-09-16 1996-04-12 Asmo Co Ltd Stator for rotating field type motor
CN101375485B (en) * 2006-04-17 2011-04-13 松下电器产业株式会社 Motor
JP5147343B2 (en) * 2007-09-25 2013-02-20 日立アプライアンス株式会社 Permanent magnet type rotary motor for washing machine fan drive
EP2800243B8 (en) * 2011-12-26 2018-02-28 Mitsubishi Electric Corporation Rotor of permanent-magnet embedded motor, and compressor, blower, and refrigerating/air conditioning device using the rotor
CN104348271B (en) * 2013-08-09 2019-07-23 德昌电机(深圳)有限公司 Brushless single phase motor
JP6357870B2 (en) * 2014-05-22 2018-07-18 富士電機株式会社 Permanent magnet motor
JP6664958B2 (en) * 2015-12-25 2020-03-13 サンデンホールディングス株式会社 Compressor motor and compressor provided with the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003264947A (en) * 2002-03-08 2003-09-19 Fujitsu General Ltd Permanent magnet motor
JP2004304997A (en) * 2003-03-18 2004-10-28 Asmo Co Ltd Stator and brush-less motor
JP2006238667A (en) * 2005-02-28 2006-09-07 Matsushita Electric Ind Co Ltd Electric motor
JP2007181259A (en) * 2005-12-27 2007-07-12 Matsushita Electric Ind Co Ltd Brushless motor
JP2014103730A (en) * 2012-11-19 2014-06-05 Mitsuba Corp Brushless motor, rotor core used therefor, and method for manufacturing rotor core
JP2015037379A (en) * 2013-08-09 2015-02-23 ジョンソン エレクトリック ソシエテ アノニム Single-phase brushless motor
WO2015186455A1 (en) * 2014-06-06 2015-12-10 三菱電機株式会社 Permanent magnet motor and drive-integrated permanent magnet motor
JP2016116391A (en) * 2014-12-17 2016-06-23 サンデンホールディングス株式会社 Motor for compressor, and compressor comprising the same

Also Published As

Publication number Publication date
JP2020102911A (en) 2020-07-02
CN113195893B (en) 2023-04-11
DE112019006344T5 (en) 2021-09-09
CN113195893A (en) 2021-07-30

Similar Documents

Publication Publication Date Title
JP4135018B2 (en) Magnet-embedded rotor, electric motor using the rotor, and compressor using the electric motor
WO2017110476A1 (en) Compressor motor and compressor equipped with same
JP2002315243A (en) Permanent magnet type rotary electric machine
JP5971114B2 (en) Permanent magnet embedded rotary electric machine
JP2009171826A (en) Armature, magnetic core therefor, rotary electric machine, and compressor
WO2015163039A1 (en) Electric compressor
JP2017085875A (en) Brushless motor
WO2016098574A1 (en) Compressor motor and compressor equipped with same
JP6789390B2 (en) Reluctance motors, compressors and air conditioners
JP4285137B2 (en) Fluid machinery
JP5178371B2 (en) Electric motor
JPWO2019043850A1 (en) Rotor, electric motor, compressor and air conditioner
JP2017077160A (en) Brushless motor
JP2006254622A (en) Permanent magnet type motor
JP2010041852A (en) Stator, motor and compressor
WO2020129574A1 (en) Electric compressor motor, electric compressor provided with same, and method for manufacturing electric compressor motor
JP4253574B2 (en) Permanent magnet type rotating electric machine and compressor using the same
JP2013236419A (en) Rotary electric machine
WO2022110311A1 (en) Stator core, stator, permanent-magnet synchronous motor, compressor, and refrigeration device
JP5134935B2 (en) Electric motor
CN112564318B (en) Stator punching sheet, stator core, motor, compressor and refrigeration equipment
CN213602456U (en) Stator punching sheet, stator core, permanent magnet synchronous motor, compressor and refrigeration equipment
JP2010166661A (en) Rotary electric machine, driving method for rotary electric machine, and compressor
JP7497811B2 (en) Rotors, motors, compressors, refrigeration equipment
JP5352442B2 (en) Permanent magnet motor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19899528

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19899528

Country of ref document: EP

Kind code of ref document: A1