WO2020129481A1 - Lithium secondary battery - Google Patents

Lithium secondary battery Download PDF

Info

Publication number
WO2020129481A1
WO2020129481A1 PCT/JP2019/044550 JP2019044550W WO2020129481A1 WO 2020129481 A1 WO2020129481 A1 WO 2020129481A1 JP 2019044550 W JP2019044550 W JP 2019044550W WO 2020129481 A1 WO2020129481 A1 WO 2020129481A1
Authority
WO
WIPO (PCT)
Prior art keywords
region
active material
positive electrode
secondary battery
negative electrode
Prior art date
Application number
PCT/JP2019/044550
Other languages
French (fr)
Japanese (ja)
Inventor
真彦 日比野
俊介 水上
貴大 中西
雄樹 藤田
Original Assignee
日本碍子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本碍子株式会社 filed Critical 日本碍子株式会社
Priority to JP2020561222A priority Critical patent/JP7190509B2/en
Priority to KR1020217015200A priority patent/KR102618405B1/en
Priority to CN201980063910.5A priority patent/CN113169305A/en
Priority to EP19898780.2A priority patent/EP3902032A4/en
Publication of WO2020129481A1 publication Critical patent/WO2020129481A1/en
Priority to US17/302,994 priority patent/US20210273256A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/105Pouches or flexible bags
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/14Primary casings; Jackets or wrappings for protecting against damage caused by external factors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/172Arrangements of electric connectors penetrating the casing
    • H01M50/174Arrangements of electric connectors penetrating the casing adapted for the shape of the cells
    • H01M50/178Arrangements of electric connectors penetrating the casing adapted for the shape of the cells for pouch or flexible bag cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/233Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions
    • H01M50/238Flexibility or foldability
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/552Terminals characterised by their shape
    • H01M50/553Terminals adapted for prismatic, pouch or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/30Batteries in portable systems, e.g. mobile phone, laptop
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/124Primary casings; Jackets or wrappings characterised by the material having a layered structure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a thin lithium secondary battery.
  • Japanese Unexamined Patent Application Publication No. 2016-139494 discloses a laminate type battery including a laminate member in which two films are stacked and a battery cell housed between the two films. There is. In the laminate type battery, the peripheral edge portion of the laminate member is folded in order to reduce the battery storage space in the device in which the laminate type battery is mounted.
  • both sides of the laminated outer body are bent by 90° for the purpose of improving space efficiency.
  • both sides of the laminated film are bent by 90° for the purpose of suppressing local deformation of the laminated film and suppressing insulation failure. ..
  • lithium secondary batteries also called lithium-ion secondary batteries
  • Known methods for manufacturing the smart card include a cold laminate in which a lithium secondary battery is sandwiched between card base materials and pressed at room temperature, and a hot laminate in which a lithium secondary battery is sandwiched between card base materials and heated and pressed. ing.
  • Japanese Unexamined Patent Publication No. 2005-74936 (Reference 4) relates to a method of manufacturing an IC card having an IC chip mounted instead of a thin battery. Also in the manufacture of an IC card, a step of sandwiching an IC chip between two base sheet and heating and pressing is performed.
  • the lithium secondary battery is pressed when the above-mentioned hot lamination is performed, and the electrolytic solution filled inside the battery is discharged to the outside of the battery. There is a risk of leakage.
  • the present invention is directed to a thin lithium secondary battery, and an object thereof is to suppress leakage of an electrolytic solution to the outside of the lithium secondary battery.
  • a lithium secondary battery is a positive electrode, a separator arranged on the positive electrode in a predetermined stacking direction, and a separator opposite to the positive electrode of the separator in the stacking direction.
  • the exterior body includes a rectangular coating region that overlaps the positive electrode, the separator, and the negative electrode in the stacking direction, and a rectangular frame-shaped outer peripheral region that surrounds the periphery of the coating region.
  • the outer peripheral region is a strip-shaped region that extends along a pair of sides other than the side on which the two terminals are arranged, and is a pair of first regions to which the two-layer sheet portions are joined and a pair of first regions.
  • a second region which is a strip-shaped region extending along at least one of the first region and the covering region, and in which the two-layer sheet portions are in contact with or close to each other in a non-bonded state. And This makes it possible to suppress the leakage of the electrolytic solution to the outside of the lithium secondary battery.
  • the positive electrode active material width which is the width of the positive electrode active material region in the width direction perpendicular to the pair of sides and the negative electrode active material width which is the width of the negative electrode active material region are different, the positive electrode The smaller one of the active material width and the negative electrode active material width is taken as a divisor, and when the positive electrode active material width and the negative electrode active material width are the same, one of the positive electrode active material width and the negative electrode active material width When one is a divisor, and the second region is present only between one of the pair of first regions and the covering region, the width of the second region is the dividend, and the pair of first regions When a pair of the second regions is present between both of the one region and the covering region, the total width of the pair of the second regions is taken as the dividend, and the value obtained by dividing the dividend by the divisor is 0.02. It is above 1 and below 1.
  • the at least one first region is folded back in the width direction by a folding line extending parallel to the pair of sides.
  • the folding line is located on the opposite side of the second region with respect to the center of the at least one first region in the width direction or the center of the at least one first region in the width direction.
  • the folding line is located between the widthwise center of the at least one first region and the second region.
  • the positive electrode includes a sheet-shaped current collector having conductivity and an active material plate which is a plate-shaped ceramic sintered body containing a lithium composite oxide.
  • the active material plate has a structure in which a plurality of primary particles having a layered rock salt structure are bonded.
  • the average inclination angle of the plurality of primary particles is greater than 0° and 30° or less.
  • the average tilt angle is an average value of angles formed by the (003) planes of the plurality of primary particles and the main surface of the active material plate.
  • the lithium secondary battery is used as a power supply source in a sheet-shaped device or a flexible device.
  • the lithium secondary battery is used as a power supply source in a smart card, which is the flexible device.
  • the lithium secondary battery is used as a power supply source in a target device that is subjected to a step of heating and pressurizing during manufacturing.
  • FIG. 3 is a cross-sectional view of a lithium secondary battery according to one embodiment. It is a top view of a lithium secondary battery. It is sectional drawing of another lithium secondary battery. It is sectional drawing of a lithium secondary battery. It is sectional drawing of a lithium secondary battery. It is a top view of a lithium secondary battery. It is sectional drawing of a lithium secondary battery. It is sectional drawing of a lithium secondary battery. It is sectional drawing of a lithium secondary battery. It is sectional drawing of a lithium secondary battery. It is sectional drawing of a lithium secondary battery. It is sectional drawing of a lithium secondary battery. It is a figure which shows the flow of manufacture of a lithium secondary battery. It is a figure which shows the flow of manufacture of a lithium secondary battery. It is sectional drawing of a lithium secondary battery.
  • FIG. 1 is a sectional view showing the configuration of a lithium secondary battery 1 according to an embodiment of the present invention.
  • FIG. 2 is a plan view of the lithium secondary battery 1.
  • the lithium secondary battery 1 and its configuration are drawn thicker than they actually are.
  • a part of the structure on the front side and the back side of the cross section is also illustrated. The same applies to FIG.
  • the lithium secondary battery 1 is a small and thin battery.
  • the shape of the lithium secondary battery 1 in a plan view is, for example, a substantially rectangular shape.
  • the length of the lithium secondary battery 1 in the vertical direction in plan view is 10 mm to 46 mm
  • the length in the horizontal direction is 10 mm to 46 mm.
  • the thickness of the lithium secondary battery 1 (that is, the thickness in the vertical direction in FIG. 1) is, for example, 0.30 mm to 0.45 mm, preferably 0.40 mm to 0.45 mm.
  • the lithium secondary battery 1 is a sheet-shaped or flexible thin plate-shaped member.
  • the sheet-shaped member is a thin member that is easily deformed by a relatively small force, and is also called a film-shaped member. The same applies to the following description.
  • the lithium secondary battery 1 is mounted on, for example, a sheet-shaped device or a flexible device and used as a power supply source.
  • the sheet-like device is a thin device that is easily deformed by a relatively small force, and is also called a film-like device.
  • the lithium secondary battery 1 is, for example, built in a smart card having an arithmetic processing function and used as a power supply source in the smart card.
  • a smart card is a card-type flexible device.
  • the smart card is used as, for example, a card with a fingerprint authentication/wireless communication function including a wireless communication IC, a fingerprint analysis ASIC, and a fingerprint sensor.
  • a device for which the lithium secondary battery 1 is used as a power supply source such as a smart card, is also referred to as a “target device”.
  • the mounting of the lithium secondary battery 1 on the smart card is performed by, for example, cold lamination in which pressure is applied at room temperature or hot lamination in which pressure is applied while heating.
  • the processing temperature in hot lamination is, for example, 110°C to 260°C.
  • the upper limit of the processing temperature is preferably lower than 240°C, more preferably lower than 220°C, further preferably lower than 200°C, and most preferably 150°C or lower.
  • the processing pressure in hot lamination is, for example, 0.1 MPa (megapascal) to 6 MPa, and the processing time (that is, heating/pressurizing time) is, for example, 10 to 20 minutes.
  • the lithium secondary battery 1 includes a positive electrode 2, a negative electrode 3, a separator 4, an electrolytic solution 5, an outer casing 6, and two terminals 7.
  • the positive electrode 2, the separator 4, and the negative electrode 3 are stacked in a predetermined stacking direction.
  • the positive electrode 2, the separator 4, and the negative electrode 3 are stacked in the vertical direction in the figure.
  • the upper side and the lower side in FIG. 1 are simply referred to as “upper side” and “lower side”.
  • the up-down direction in FIG. 1 is simply referred to as “up-down direction” and also referred to as “overlapping direction”.
  • the vertical direction in FIG. 1 does not have to match the actual vertical direction when the lithium secondary battery 1 is mounted on a target device such as a smart card.
  • the separator 4 is arranged on the upper surface of the positive electrode 2 in the vertical direction (that is, the stacking direction).
  • the negative electrode 3 is arranged on the upper surface of the separator 4 in the vertical direction.
  • the negative electrode 3 is arranged on the side of the separator 4 opposite to the positive electrode 2 in the vertical direction.
  • Each of the positive electrode 2, the separator 4, and the negative electrode 3 has, for example, a substantially rectangular shape in a plan view.
  • the positive electrode 2, the separator 4, and the negative electrode 3 have approximately the same shape in plan view (that is, approximately the same shape and approximately the same size).
  • the exterior body 6 is a sheet-shaped and bag-shaped member.
  • the exterior body 6 is substantially rectangular in plan view.
  • the exterior body 6 includes two layers of sheet portions 65 and 66 that are vertically overlapped with each other.
  • first sheet portion 65 the sheet portion 65 located below the positive electrode 2
  • second sheet portion 66 the sheet portion 66 located above the negative electrode 3
  • the outer peripheral edge of the first sheet portion 65 and the outer peripheral edge of the second sheet portion 66 are joined by, for example, heat fusion (so-called heat sealing).
  • the first sheet portion 65 and the second sheet portion 66 of the outer package 6 are each made of, for example, a laminated film in which a metal foil 61 formed of a metal such as aluminum (Al) and an insulating resin layer 62 are laminated. It is formed. In the first sheet portion 65 and the second sheet portion 66, the resin layer 62 is located inside the metal foil 61.
  • the exterior body 6 covers the positive electrode 2 and the negative electrode 3 from both sides in the vertical direction.
  • the outer package 6 houses the positive electrode 2, the separator 4, the negative electrode 3, and the electrolytic solution 5 therein.
  • the electrolytic solution 5 continuously exists around the positive electrode 2, the separator 4, and the negative electrode 3. In other words, the electrolytic solution 5 is interposed between the positive electrode 2 and the negative electrode 3.
  • the electrolytic solution 5 impregnates the positive electrode 2, the separator 4, and the negative electrode 3.
  • the two terminals 7 extend from the inside of the exterior body 6 to the outside. Inside the outer package 6, one terminal 7 is electrically connected to the positive electrode 2, and the other terminal 7 is electrically connected to the negative electrode 3.
  • the positive electrode 2 includes a positive electrode current collector 21, a positive electrode active material plate 22, and a conductive bonding layer 23.
  • the positive electrode current collector 21 is a conductive sheet-shaped member.
  • the lower surface of the positive electrode current collector 21 is bonded to the resin layer 62 of the exterior body 6 via the positive electrode bonding layer 63.
  • the positive electrode bonding layer 63 is formed of, for example, a mixed resin of acid-modified polyolefin-based resin and epoxy-based resin.
  • the positive electrode bonding layer 63 may be formed of various other materials.
  • the thickness of the positive electrode bonding layer 63 is, for example, 0.5 ⁇ m to 10 ⁇ m.
  • the positive electrode current collector 21 includes, for example, a metal foil formed of a metal such as aluminum and a conductive carbon layer laminated on the upper surface of the metal foil.
  • a metal foil formed of a metal such as aluminum and a conductive carbon layer laminated on the upper surface of the metal foil.
  • the main surface of the positive electrode current collector 21 facing the positive electrode active material plate 22 is covered with the conductive carbon layer.
  • the metal foil described above is formed of various metals other than aluminum (for example, copper, nickel, silver, gold, chromium, iron, tin, lead, tungsten, molybdenum, titanium, zinc, or alloys containing these). May be.
  • the conductive carbon layer may be omitted from the positive electrode current collector 21.
  • the positive electrode active material plate 22 (that is, the active material plate of the positive electrode 2) is a relatively thin plate-shaped ceramic sintered body containing a lithium composite oxide.
  • the positive electrode active material plate 22 is bonded onto the upper surface of the positive electrode current collector 21 via the conductive bonding layer 23.
  • the positive electrode active material plate 22 faces the separator 4 in the vertical direction.
  • the upper surface of the positive electrode active material plate 22 contacts the lower surface of the separator 4.
  • the positive electrode active material plate 22 contains substantially no resin. Therefore, the main surface of the positive electrode 2 facing the separator 4 (that is, the upper surface in FIG. 1) contains substantially no resin.
  • the positive electrode active material plate 22 has a structure in which a plurality of (that is, a large number of) primary particles are bonded.
  • the primary particles are composed of a lithium composite oxide having a layered rock salt structure.
  • the lithium composite oxide is typically an oxide represented by the general formula: Li p MO 2 (wherein 0.05 ⁇ p ⁇ 1.10).
  • M is at least one kind of transition metal, and includes, for example, one or more kinds selected from cobalt (Co), nickel (Ni) and manganese (Mn).
  • the layered rock salt structure is a crystal structure in which lithium layers and transition metal layers other than lithium are alternately stacked with an oxygen layer in between.
  • the layered rock salt structure has a crystal structure in which transition metal ion layers and lithium single layers are alternately stacked via oxide ions (typically, ⁇ -NaFeO 2 type structure: cubic rock salt type structure [111 ] A structure in which a transition metal and lithium are regularly arranged in the axial direction).
  • the lithium composite oxide is lithium cobalt oxide (L
  • the positive electrode active material plate 22 includes magnesium (Mg), aluminum, silicon (Si), calcium (Ca), titanium (Ti), vanadium (V), chromium (Cr), iron (Fe), copper (Cu). , Zinc (Zn), gallium (Ga), germanium (Ge), strontium (Sr), yttrium (Y), zirconia (Zr), niobium (Nb), molybdenum (Mo), silver (Ag), tin (Sn). , Antimony (Sb), tellurium (Te), barium (Ba), bismuth (Bi), and the like may be further included in one or more kinds. In addition, the positive electrode active material plate 22 may be sputtered with gold (Au) or the like as a current collecting aid.
  • Au gold
  • the average primary particle size of the plurality of primary particles is, for example, 20 ⁇ m or less, preferably 15 ⁇ m or less.
  • the primary particle size is, for example, 0.2 ⁇ m or more, preferably 0.4 ⁇ m or more.
  • the primary particle size can be measured by analyzing an SEM (scanning electron microscope) image of the cross section of the positive electrode active material plate 22.
  • the positive electrode active material plate 22 is processed by a cross section polisher (CP) to expose a polished cross section, and the polished cross section is subjected to a predetermined magnification (for example, 1000 times) and a predetermined visual field (for example, 125 ⁇ m). ⁇ 125 ⁇ m) and observed by SEM.
  • CP cross section polisher
  • the visual field is set so that 20 or more primary particles are present in the visual field.
  • the diameter of the circumscribed circle when the circumscribed circle is drawn for all the primary particles in the obtained SEM image is determined, and the average value of these is taken as the primary particle size.
  • the average tilt angle (that is, the average orientation angle) of the plurality of primary particles is preferably larger than 0° and 30° or less.
  • the average tilt angle is more preferably 5° or more and 28° or less, and further preferably 10° or more and 25° or less.
  • the average tilt angle is an average value of angles formed by the (003) planes of the plurality of primary particles and the main surface of the positive electrode active material plate 22 (for example, the lower surface of the positive electrode active material plate 22).
  • the tilt angle of the primary particles was analyzed by electron beam backscattering diffraction (EBSD) on the cross section of the positive electrode active material plate 22. It can be measured by Specifically, for example, the positive electrode active material plate 22 is processed by a cross section polisher to expose a polished cross section, and the polished cross section has a predetermined magnification (for example, 1000 times) and a predetermined visual field (for example, 125 ⁇ m ⁇ 125 ⁇ m). Analyze by EBSD at. In the obtained EBSD image, the tilt angle of each primary particle is represented by the shade of color, and the darker the color, the smaller the tilt angle. Then, the average value of the inclination angles of the plurality of primary particles obtained from the EBSD image is set as the above-mentioned average inclination angle.
  • EBSD electron beam backscattering diffraction
  • the proportion of the primary particles having a tilt angle of more than 0° and 30° or less is preferably 60% or more, more preferably 80% or more, More preferably, it is 90% or more.
  • the upper limit of the ratio is not particularly limited and may be 100%.
  • the ratio can be obtained by obtaining the total area of the primary particles having an inclination angle larger than 0° and 30° or less in the above EBSD image and dividing the total area of the primary particles by the total particle area. it can.
  • the porosity of the positive electrode active material plate 22 is, for example, 25% to 45%.
  • the porosity of the positive electrode active material plate 22 is a volume ratio of pores (including open pores and closed pores) in the positive electrode active material plate 22.
  • the porosity can be measured by analyzing a SEM image of the cross section of the positive electrode active material plate 22.
  • the positive electrode active material plate 22 is processed by a cross section polisher (CP) to expose a polished cross section.
  • the polished cross section is observed by SEM with a predetermined magnification (for example, 1000 times) and a predetermined visual field (for example, 125 ⁇ m ⁇ 125 ⁇ m).
  • the obtained SEM image is analyzed, the area of all pores in the visual field is divided by the area (cross-sectional area) of the positive electrode active material plate 22 in the visual field, and the obtained value is multiplied by 100 to obtain the porosity ( %).
  • the average pore diameter which is the average value of the diameter of the pores included in the positive electrode active material plate 22, is, for example, 15 ⁇ m or less, preferably 12 ⁇ m or less, and more preferably 10 ⁇ m or less.
  • the average pore diameter is, for example, 0.1 ⁇ m or more, preferably 0.3 ⁇ m or more.
  • the diameter of the pores described above is typically the diameter of the sphere when the pores are assumed to be spherical with the same volume or the same cross-sectional area.
  • the average pore diameter is an average value of the diameters of a plurality of pores calculated on a number basis.
  • the average pore diameter can be obtained by a known method such as analysis of a cross-sectional SEM image or mercury porosimetry.
  • the average pore diameter is measured by a mercury porosimetry method using a mercury porosimeter.
  • the positive electrode active material plate 22 is a single plate-shaped member, but it may be divided into a plurality of plate-shaped members (hereinafter referred to as “active material plate elements”).
  • each of the plurality of active material plate elements is bonded to the positive electrode current collector 21 via the conductive bonding layer 23.
  • the plurality of active material plate elements are arranged in a matrix (that is, a grid) on the positive electrode current collector 21, for example.
  • the shape of each active material plate element in a plan view is, for example, a substantially rectangular shape.
  • the plurality of active material plate elements may have substantially the same shape (that is, substantially the same shape and substantially the same size) in plan view, or may have different shapes.
  • the plurality of active material plate elements are arranged apart from each other in a plan view.
  • the conductive bonding layer 23 contains conductive powder and a binder.
  • the conductive powder is, for example, powder of acetylene black, scaly natural graphite, carbon nanotubes, carbon nanofibers, carbon nanotube derivatives, or carbon nanofiber derivatives.
  • the binder includes, for example, a polyimide amide resin.
  • the polyimide amide resin contained in the binder may be one type or two or more types. Further, the binder may contain a resin other than the polyimide amide resin.
  • the conductive bonding layer 23 is formed by coating the positive electrode current collector 21 or the positive electrode active material plate 22 with a liquid or paste adhesive containing the above-described conductive powder and binder, and a solvent. And the positive electrode active material plate 22 are formed by evaporating and solidifying the solvent.
  • the thickness of the positive electrode current collector 21 is, for example, 9 ⁇ m to 50 ⁇ m, preferably 9 ⁇ m to 20 ⁇ m, and more preferably 9 ⁇ m to 15 ⁇ m.
  • the thickness of the positive electrode active material plate 22 is, for example, 15 ⁇ m to 200 ⁇ m, preferably 30 ⁇ m to 150 ⁇ m, and more preferably 50 ⁇ m to 100 ⁇ m. By thickening the positive electrode active material plate 22, the active material capacity per unit area can be increased and the energy density of the lithium secondary battery 1 can be increased. By thinning the positive electrode active material plate 22, it is possible to suppress deterioration of battery characteristics (in particular, increase in resistance value) due to repeated charging and discharging.
  • the thickness of the conductive bonding layer 23 is, for example, 3 ⁇ m to 28 ⁇ m, preferably 5 ⁇ m to 25 ⁇ m.
  • the negative electrode 3 includes a negative electrode current collector 31 and a negative electrode active material layer 32.
  • the negative electrode current collector 31 is a conductive sheet-shaped member.
  • the upper surface of the negative electrode current collector 31 is bonded to the exterior body 6 via the negative electrode bonding layer 64.
  • the negative electrode bonding layer 64 is formed of, for example, a mixed resin of acid-modified polyolefin resin and epoxy resin.
  • the negative electrode bonding layer 64 may be formed of various other materials.
  • the thickness of the negative electrode bonding layer 64 is, for example, 0.5 ⁇ m to 10 ⁇ m.
  • the negative electrode current collector 31 is, for example, a metal foil formed of a metal such as copper.
  • the metal foil is various metals other than copper (for example, copper, stainless steel, nickel, aluminum, silver, gold, chromium, iron, tin, lead, tungsten, molybdenum, titanium, zinc, or alloys containing these, etc.). ).
  • the negative electrode active material layer 32 includes a binder containing a resin as a main component and a carbonaceous material that is a negative electrode active material.
  • the negative electrode active material layer 32 is coated on the lower surface of the negative electrode current collector 31. That is, the negative electrode 3 is a so-called coated electrode.
  • the negative electrode active material layer 32 faces the separator 4 in the vertical direction.
  • the lower surface of the negative electrode active material layer 32 contacts the upper surface of the separator 4.
  • the above-mentioned carbonaceous material is, for example, graphite (natural graphite or artificial graphite), pyrolytic carbon, coke, resin fired body, mesophase spherule, or mesophase pitch.
  • a lithium storage material may be used as the negative electrode active material instead of the carbonaceous material.
  • the lithium storage material is, for example, silicon, aluminum, tin, iron, iridium, or an alloy, oxide, or fluoride containing these.
  • the binder is, for example, styrene butadiene rubber (SBR), polyvinylidene fluoride (PVDF) or a mixture thereof.
  • SBR is used as a binder.
  • SBR is less likely to dissolve in ⁇ -butyrolactone (GBL) contained in the electrolytic solution 5 described later. Therefore, by using SBR as the binder of the negative electrode 3, the deterioration of the negative electrode active material layer 32 due to the electrolytic solution 5 can be suppressed.
  • the thickness of the negative electrode current collector 31 is, for example, 5 ⁇ m to 25 ⁇ m, preferably 8 ⁇ m to 20 ⁇ m, and more preferably 8 ⁇ m to 15 ⁇ m.
  • the thickness of the negative electrode active material layer 32 is, for example, 20 ⁇ m to 300 ⁇ m, preferably 30 ⁇ m to 250 ⁇ m, and more preferably 30 ⁇ m to 150 ⁇ m.
  • the lithium secondary battery 1 may be provided with a negative electrode 3a having a structure different from that of the negative electrode 3, as shown in FIG. 3, instead of the negative electrode 3 which is a coating electrode.
  • the negative electrode 3a has substantially the same structure as the positive electrode 2 described above.
  • the negative electrode 3a includes a negative electrode current collector 31a, a negative electrode active material plate 32a, and a conductive bonding layer 33a.
  • the negative electrode current collector 31a is a sheet-shaped member having conductivity.
  • the negative electrode current collector 31a is, for example, a member having the same structure and made of the same material as the negative electrode current collector 31 described above.
  • the negative electrode active material plate 32a (that is, the active material plate of the negative electrode 3a) is a relatively thin plate-shaped ceramic sintered body containing a lithium composite oxide (for example, lithium titanium oxide (LTO)).
  • the negative electrode active material plate 32a is bonded to the lower surface of the negative electrode current collector 31a via the conductive bonding layer 33a.
  • the conductive bonding layer 33a is formed of, for example, the same material as the conductive bonding layer 23 of the positive electrode 2 described above.
  • the negative electrode active material plate 32a faces the separator 4 in the vertical direction.
  • the lower surface of the negative electrode active material plate 32 a contacts the upper surface of the separator 4.
  • the negative electrode active material plate 32 a like the positive electrode active material plate 22, contains substantially no resin. Therefore, the main surface of the negative electrode 3a facing the separator 4 (that is, the lower surface in FIG. 3) contains substantially no resin.
  • the thickness of the negative electrode current collector 31 is, for example, 5 ⁇ m to 25 ⁇ m, preferably 8 ⁇ m to 20 ⁇ m, and more preferably 8 ⁇ m to 15 ⁇ m.
  • the thickness of the negative electrode active material plate 32a is, for example, 10 ⁇ m to 300 ⁇ m, preferably 30 ⁇ m to 200 ⁇ m, and more preferably 30 ⁇ m to 150 ⁇ m. By thickening the negative electrode active material plate 32a, the active material capacity per unit area can be increased and the energy density of the lithium secondary battery 1 can be increased. By thinning the negative electrode active material plate 32a, it is possible to suppress deterioration of battery characteristics (in particular, increase in resistance value) due to repeated charging and discharging.
  • the thickness of the conductive bonding layer 33a is, for example, 3 ⁇ m to 30 ⁇ m, preferably 5 ⁇ m to 25 ⁇ m.
  • the negative electrode active material plate 32a is a single plate-shaped member, but may be divided into a plurality of plate-shaped members (hereinafter referred to as “active material plate elements”).
  • each of the plurality of active material plate elements is bonded to the negative electrode current collector 31a via the conductive bonding layer 33a.
  • the plurality of active material plate elements are arranged in a matrix (that is, a grid) on the negative electrode current collector 31a.
  • the shape of each active material plate element in a plan view is, for example, a substantially rectangular shape.
  • the plurality of active material plate elements may have substantially the same shape (that is, substantially the same shape and substantially the same size) in plan view, or may have different shapes.
  • the plurality of active material plate elements are arranged apart from each other in a plan view.
  • the electrolytic solution 5 is, for example, a solution in which lithium borofluoride (LiBF 4 ) is dissolved in a non-aqueous solvent.
  • the non-aqueous solvent may be a single solvent consisting of ⁇ -butyrolactone (GBL) or a mixed solvent containing GBL and ethylene carbonate (EC).
  • GBL ⁇ -butyrolactone
  • EC ethylene carbonate
  • the volume ratio of EC:GBL in the non-aqueous solvent is, for example, 0:1 to 1:1 (that is, the GBL ratio is 50% to 100% by volume). , Preferably 0:1 to 1:1.5 (GBL ratio 60% by volume to 100% by volume), and more preferably 0:1 to 1:2 (GBL ratio 66.6% by volume to 100% by volume). And more preferably 0:1 to 1:3 (GBL ratio 75% to 100% by volume).
  • the solvent of the electrolytic solution 5 may be changed variously.
  • the solvent of the electrolytic solution 5 does not necessarily need to contain GBL and may be a single solvent of EC.
  • LiBF 4 which is a solute, is an electrolyte having a high decomposition temperature. Therefore, the heat resistance of the lithium secondary battery 1 can be further improved.
  • the LiBF 4 concentration in the electrolytic solution 5 is, for example, 0.5 mol/L to 2 mol/L, preferably 0.6 mol/L to 1.9 mol/L, and more preferably 0.7 mol/L to 1.7 mol. /L, and more preferably 0.8 mol/L to 1.5 mol/L.
  • the solute of the electrolytic solution 5 may be variously changed.
  • the solute of the electrolytic solution 5 may be lithium hexafluorophosphate (LiPF 6 ).
  • the electrolytic solution 5 preferably further contains vinylene carbonate (VC) and/or fluoroethylene carbonate (FEC) as an additive. Both VC and FEC have excellent heat resistance. When the electrolytic solution 5 contains the additive, a SEI film having excellent heat resistance is formed on the surface of the negative electrode 3, and the heat resistance of the lithium secondary battery 1 can be further improved.
  • VC vinylene carbonate
  • FEC fluoroethylene carbonate
  • the separator 4 is a sheet-shaped or thin plate-shaped insulating member.
  • the separator 4 is, for example, a single-layer separator made of resin.
  • the resin is, for example, polyimide, polyethylene, polyester (for example, polyethylene terephthalate (PET)), polypropylene, or the like.
  • the separator 4 is a polyimide porous film (for example, a three-dimensional porous structure (3DOM)).
  • Polyimide is superior in heat resistance to polyethylene and polypropylene, and is also excellent in wettability with GBL. Therefore, the heat resistance of the lithium secondary battery 1 can be improved by using the separator 4 made of polyimide. Further, the electrolytic solution 5 can be prevented from being repelled by the separator 4, and the electrolytic solution 5 can easily permeate into the separator 4.
  • the separator 4 may be, for example, a two-layer separator in which a resin layer is laminated on a ceramic substrate.
  • the separator 4 may be a two-layer separator in which a substrate, which is a resin layer, is coated with ceramic.
  • the separator 4 may have a multilayer structure of three layers or more.
  • the separator 4 may be a three-layer separator in which resin layers are laminated on the upper surface and the lower surface of the ceramic substrate.
  • FIG. 4 is a cross-sectional view of the lithium secondary battery 1 taken along the line IV-IV in FIG.
  • FIG. 5 is an enlarged view showing the left end portion of the lithium secondary battery 1 in FIG.
  • the lithium secondary battery 1 and its configuration are drawn thicker than they actually are in order to facilitate understanding of the drawings.
  • the exterior body 6 the detailed illustration of the laminated structure is omitted, and it is drawn by one solid line.
  • FIG. 6 is a plan view of the lithium secondary battery 1.
  • the outer casing 6 includes a covering region 67 and an outer peripheral region 68.
  • the outer peripheral area 68 includes a first area 681 and a second area 682.
  • the outer peripheral area 68 includes two first areas 681 and two second areas 682.
  • the covering region 67, the first region 681, and the second region 682 are each surrounded by a chain double-dashed line.
  • the hatched area 67 and the area of the outer peripheral area 68 excluding the second area 682 are hatched in parallel.
  • the second area 682 of the outer peripheral area 68 is not shaded with parallel diagonal lines.
  • the covering region 67 of the outer package 6 is a substantially rectangular region that vertically overlaps the positive electrode 2, the separator 4, and the negative electrode 3 in a plan view.
  • the outer peripheral region 68 is a region (that is, a region that does not overlap the positive electrode 2, the separator 4, and the negative electrode 3) of the exterior body 6 excluding the coating region 67, and has a substantially rectangular frame shape surrounding the periphery of the coating region 67 in plan view. Area.
  • the outer peripheral area 68 is continuous with the covered area 67.
  • the two first regions 681 are substantially rectangular strip-shaped regions that extend along a pair of sides on both sides in the left-right direction in FIGS. 4 and 6 (hereinafter, also referred to as “long sides 691”).
  • the left-right direction in FIGS. 4 to 6 is also referred to as “width direction”.
  • the width direction is substantially perpendicular to the pair of long sides 691 of the exterior body 6.
  • Each first region 681 is a region including a long side 691, and is separated in the width direction from a pair of sides in the width direction of the covering region 67.
  • the two-layer sheet portions that is, the first sheet portion 65 and the second sheet portion 66 of the exterior body 6 that overlap in the vertical direction are joined as described above.
  • each first region 681 in the direction perpendicular to the width direction is substantially the same as the length of the covered region 67 in the longitudinal direction. ..
  • the width of each first region 681 in the width direction (hereinafter, also simply referred to as “width”) is substantially constant over the entire length in the longitudinal direction.
  • the width of the first region 681 is, for example, 1 mm to 5 mm, preferably 1.5 mm to 4 mm, and more preferably 2 mm to 3 mm.
  • the first region 681 only needs to have a shape that can be regarded as a substantially strip shape, and the width of the first region 681 may change slightly in the longitudinal direction.
  • the two second regions 682 are arranged between the covering region 67 and the pair of first regions 681 on both sides of the covering region 67 in the width direction.
  • the two second regions 682 are substantially rectangular strip-shaped regions extending in the longitudinal direction along a pair of sides of the covering region 67 in the width direction.
  • the two second regions 682 are substantially rectangular strip-shaped regions extending in the longitudinal direction along the pair of first regions 681.
  • Each second region 682 is continuous with the covering region 67 and the first region 681 in the width direction.
  • the two-layer sheet portions (that is, the first sheet portion 65 and the second sheet portion 66) of the exterior body 6 that are vertically overlapped are in contact with each other in a non-bonded state.
  • the contact is a direct contact in which the electrolytic solution 5 and the like are not interposed between the first sheet portion 65 and the second sheet portion 66.
  • the first sheet portion 65 and the second sheet portion 66 may be close to each other with a slight gap therebetween.
  • the electrolyte solution 5 may be slightly present in the void, or the electrolyte solution 5 may not be present.
  • each second region 682 in the longitudinal direction is substantially the same as the length of the covering region 67 and the first region 681 in the longitudinal direction.
  • the width of each second region 682 in the width direction is substantially constant over the entire length in the longitudinal direction.
  • the width of the second region 682 is, for example, 0.3 mm to 25 mm, preferably 0.5 mm to 15 mm, and more preferably 1 mm to 5 mm.
  • the second region 682 only needs to have a shape that can be regarded as a substantially strip shape, and the width of the second region 682 may change slightly in the longitudinal direction.
  • the total width of the pair of second areas 682 arranged in the width direction is referred to as “second area width A1”.
  • the width of the positive electrode active material plate 22 of the positive electrode 2 (that is, the width of the active material region in which the active material is provided in the positive electrode 2) is referred to as the “positive electrode active material width”
  • the width of the negative electrode active material layer 32 of the negative electrode 3 ( That is, the width of the active material region in which the active material is provided in the negative electrode 3) is called the “negative electrode active material width”.
  • the positive electrode active material width and the negative electrode active material width are different, the smaller width of the positive electrode active material width and the negative electrode active material width is referred to as “active material region width B3”.
  • the positive electrode active material width and the negative electrode active material width are the same, one of the positive electrode active material width and the negative electrode active material width is set as the active material region width B3.
  • the width of the positive electrode active material plate 22 is substantially the same as the width of the negative electrode active material layer 32.
  • the active material region width B3 may be either the positive electrode active material width or the negative electrode active material width.
  • a value obtained by dividing the dividend by the divisor with the second region width A1 as the dividend and the active material region width B3 as the divisor is, for example, 0.02 or more, It is preferably 0.04 or more.
  • the second region width A1/active material region width B3 is, for example, 1 or less, preferably 0.2 or less.
  • the active material region width B3 is, for example, 15 mm to 25 mm.
  • the second regions 682 do not necessarily have to be provided on both sides of the covering region 67 in the width direction, and may be arranged only on one side of the covering region 67 in the width direction. In other words, the second region 682 may be provided between at least one of the pair of first regions 681 and the covering region 67.
  • the above-mentioned second region width A1 is the same as the one of the first region 681. This is the width of the two areas 682.
  • the first region 681 and the second region 682 extend substantially parallel to the width direction at both ends of the exterior body 6 in the width direction, but the shape of the first region 681 is It may be changed in various ways.
  • the first region 681 of the exterior body 6 has a fold line 693 extending in parallel to the pair of long sides 691 (see FIG. 6) of the exterior body 6 in the width direction inside ( That is, it is folded back by about 180° to the side closer to the covering region 67).
  • non-folding part 694 a part of the outer peripheral region 68 extending from the covering region 67 to the folding line 693
  • folding part 695 a part folded back inward in the width direction at the folding line 693
  • the folded portion 695 faces the non-folded portion 694 in the vertical direction.
  • the folded portion 695 is folded back to the upper side (that is, the negative electrode 3 side) in the drawings, but is folded back to the lower side (that is, the positive electrode 2 side) in the drawings.
  • the first region 681 and the second region 682 on one side in the width direction are shown, but the first region 681 and the second region 682 on the other side in the width direction also have the same structure. May have.
  • the folding line 693 is located in the outer peripheral region 68 at substantially the center of the first region 681 in the width direction. Therefore, the edge of the folded-back portion 695 (that is, the side edge opposite to the folded-back line 693) is located at substantially the same position in the width direction as the boundary between the first region 681 and the second region 682 in the non-folded-back portion 694.
  • the first region 681 is folded in half along the folding line 693, and the folded-back portion 695 of the first region 681 vertically faces the remaining portion of the first region 681. Further, the folded portion 695 of the first region 681 does not face the second region 682 in the vertical direction.
  • the second region 682 is located between the folding line 693 and the covering region 67, and thus is not folded back. In other words, the folded portion 695 does not include the second region 682.
  • the folding line 693 is located in the outer peripheral region 68 on the opposite side of the second region 682 with respect to the center of the first region 681 in the width direction (that is, outside the center in the width direction). .. Therefore, the edge of the folded portion 695 is located on the outer side in the width direction (that is, the side farther from the covering region 67) than the boundary between the first region 681 and the second region 682 in the non-folded portion 694.
  • the first region 681 is folded in half along the folding line 693, and the folded-back portion 695 of the first region 681 vertically faces the remaining portion of the first region 681.
  • the folded portion 695 of the first region 681 does not face the second region 682 in the vertical direction.
  • the second region 682 is located between the folding line 693 and the covering region 67, and thus is not folded back. In other words, the folded portion 695 does not include the second region 682.
  • the fold line 693 is located in the outer peripheral region 68 between the widthwise center of the first region 681 and the second region 682. Therefore, the edge of the folded portion 695 is located on the inner side in the width direction (that is, on the side closer to the covered region 67) than the boundary between the first region 681 and the second region 682 in the non-folded portion 694.
  • the first region 681 is folded in two along the folding line 693, and the folded portion 695 of the first region 681 vertically faces the remaining portion of the first region 681 and the second region 682.
  • the folded portion 695 opposes substantially the entire non-folded portion 694 in the vertical direction.
  • the second region 682 is located between the folding line 693 and the covering region 67, and thus is not folded back. In other words, the folded portion 695 does not include the second region 682.
  • the first sheet portion 65 and the second sheet portion 66 of the exterior body 6 two aluminum laminated films (manufactured by Showa Denko Packaging, thickness 61 ⁇ m, three-layer structure of polypropylene film/aluminum foil/nylon film) Be prepared. Further, the positive electrode active material plate 22 is prepared. The positive electrode active material plate 22 is formed by sintering a LiCoO 2 green sheet. In the example shown in FIG. 10A, the positive electrode active material plate 22 has a plurality of active material plate elements 24. Even when the positive electrode active material plate 22 is a continuous member (that is, a single plate), the following manufacturing method is substantially the same.
  • the LiCoO 2 green sheet is manufactured as follows. First, Co 3 O 4 powder (manufactured by Shodo Chemical Industry Co., Ltd.) and Li 2 CO 3 powder (manufactured by Honjo Chemical Co., Ltd.), which were weighed so that the molar ratio of Li/Co was 1.01, were mixed. After that, it is held at 780° C. for 5 hours. Subsequently, the obtained powder is crushed and crushed in a pot mill so that the volume-based D50 is 0.4 ⁇ m, and a powder composed of LiCoO 2 plate-like particles is obtained.
  • binder polyvinyl butyral: product number BM-2, manufactured by Sekisui Chemical Co., Ltd.
  • plastic 4 parts by weight of the agent DOP: Di(2-ethylhexyl) phthalate, manufactured by Kurogane
  • the obtained mixture is stirred under reduced pressure for defoaming, and the viscosity is adjusted to 4000 cP to prepare a LiCoO 2 slurry.
  • the viscosity is measured by a Brookfield LVT viscometer.
  • the slurry thus prepared is formed into a sheet on a polyethylene terephthalate (PET) film by a doctor blade method to form a LiCoO 2 green sheet.
  • the thickness of the LiCoO 2 green sheet after drying was 98 ⁇ m.
  • the LiCoO 2 green sheet peeled from the PET film is cut into 50 mm square with a cutter, and placed on the center of a magnesia setter (size 90 mm square, height 1 mm) as a lower setter. Further, a porous magnesia setter as an upper setter is placed on the LiCoO 2 sheet.
  • the LiCoO 2 sheet is placed in a 120 mm square alumina sheath (manufactured by Nikkato Co., Ltd.) while being sandwiched between setters. At this time, the lid is opened with a gap of 0.5 mm without sealing the alumina sheath.
  • the obtained laminate is heated to 600° C.
  • LiCoO 2 sintered body plate having a thickness of 90 ⁇ m is obtained.
  • the obtained LiCoO 2 sintered body plate is cut into a rectangular shape of 10.5 mm ⁇ 9.5 mm square by a laser processing machine to obtain a plurality of active material plate elements 24 (that is, the positive electrode active material plate 22). ..
  • the positive electrode active material plate 22 When the positive electrode active material plate 22 is prepared, acetylene black is mixed with a solution in which polyamideimide (PAI) is dissolved in N-methylpyrrolidone to prepare a slurry, and 2 ⁇ L (microliter) of the slurry is used as a positive electrode current collector.
  • the conductive bonding layer 23 is formed by being dropped on the body 21 (aluminum foil having a thickness of 9 mm). Then, the positive electrode active material plate 22 is placed on the conductive bonding layer 23 and dried. In the example shown in FIG. 10A, the positive electrode active material plate 22 having the plurality of active material plate elements 24 is bonded to the positive electrode current collector 21 via the conductive bonding layer 23.
  • PAI polyamideimide
  • the composite body of the positive electrode current collector 21 and the positive electrode active material plate 22 (that is, the plurality of active material plate elements 24) is laminated on the first sheet portion 65, and the first sheet portion is interposed via the positive electrode bonding layer 63.
  • the positive electrode assembly 20 is formed by being bonded to 65.
  • One end of one terminal 7 is fixed to the positive electrode current collector 21 in advance by welding.
  • the negative electrode active material layer 32 (carbon layer having a thickness of 130 ⁇ m) is coated on the negative electrode current collector 31 (copper foil having a thickness of 10 ⁇ m).
  • the negative electrode active material layer 32 is a carbon coating film containing a mixture of graphite as an active material and PVDF as a binder.
  • the composite body of the negative electrode current collector 31 and the negative electrode active material layer 32 is laminated on the second sheet portion 66 and bonded to the second sheet portion 66 via the negative electrode bonding layer 64, whereby the negative electrode assembly is formed.
  • a product 30 is formed. Note that one end of one terminal 7 is fixed to the negative electrode current collector 31 in advance by welding.
  • a porous polyimide film (TOKS-8023i2 manufactured by Tokyo Ohka Kogyo) is prepared. Then, the positive electrode assembly 20, the separator 4, and the negative electrode assembly 30 are sequentially laminated so that the positive electrode active material plate 22 and the negative electrode active material layer 32 face the separator 4, and the intermediate laminate 10 is formed. In the intermediate laminate 10, both upper and lower surfaces are covered with the exterior body 6 (that is, the first sheet portion 65 and the second sheet portion 66), and the first positive electrode assembly 20, the separator 4, and the negative electrode assembly 30 are surrounded by a first The seat portion 65 and the second seat portion 66 extend.
  • the exterior body 6 that is, the first sheet portion 65 and the second sheet portion 66
  • the thickness of the positive electrode assembly 20, the separator 4, and the negative electrode assembly 30 (hereinafter collectively referred to as “battery element”) in the vertical direction is 0.33 mm.
  • the shape of the battery element in plan view is a substantially rectangular shape of 2.3 cm ⁇ 3.2 cm.
  • three of the four sides of the substantially rectangular intermediate laminate 10 are sealed by heat fusion bonding.
  • three sides are sealed except one side on the upper side in the figure.
  • the three sides include one side from which the two terminals 7 project.
  • a patch jig adjusted to have a sealing width of 2 mm is used, and the outer peripheral portion of the intermediate laminate 10 is heated at 200° C. and 1.5 MPa (megapascal) for 10 seconds. And pressurized.
  • the first sheet The portion 65 and the second sheet portion 66 are heat-sealed.
  • the intermediate laminate 10 is housed in the vacuum dryer 81 to remove moisture and dry the adhesive (that is, the positive electrode bonding layer 63, the negative electrode bonding layer 64, and the conductive bonding layer 23). Is done. At this time, the gas existing between the second regions 682 is removed on one sealed side located on the lower side in the drawing. As a result, in the second region 682, the first sheet portion 65 and the second sheet portion 66 are in contact with each other in the non-contact state, or are close to each other with a slight gap therebetween.
  • the adhesive that is, the positive electrode bonding layer 63, the negative electrode bonding layer 64, and the conductive bonding layer 23.
  • the intermediate laminate 10 is housed in the glove box 82.
  • the injection device 83 is inserted between the first sheet portion 65 and the second sheet portion 66, and the electrolytic solution 5 receives the electrolytic solution 5 via the injection device 83.
  • the electrolyte solution 5 was prepared by dissolving LiBF 4 in a mixed solvent containing EC and GBL in a volume ratio of 1:3 so as to have a concentration of 1.5 mol/L, and further adding 5% by weight of VC as an additive. It is a liquid added so that.
  • the unsealed one side is temporarily sealed (that is, vacuum-sealed) in the glove box 82 under a depressurized atmosphere with an absolute pressure of 5 kPa. Then, the intermediate laminate 10 is subjected to initial charging and aging for 7 days. When the aging ends, a portion of the first sheet portion 65 and the second sheet portion 66 near the outer edge of one temporarily sealed side (that is, the end portion that does not include the battery element) is cut off and generated by the aging. The gas containing the water and the like is removed (that is, degassing is performed).
  • the sides formed by the above cutting are sealed by heat fusion bonding in a depressurized atmosphere in the glove box 82 with an absolute pressure of 5 kPa.
  • the patch jig adjusted so that the sealing width might be 2 mm was used similarly to the above-mentioned three sides sealing, and the 1st sheet part 65 and the 2nd sheet part 66 are 200 degreeC. , And heated and pressurized at 1.5 MPa for 10 seconds.
  • the outer peripheral region 68 see FIG. 6) of the exterior body 6, in the first region 681 on one side located on the upper side in the drawing, the first sheet portion 65 and the second sheet portion 66 are heated.
  • the lithium secondary battery 1 is formed. Further, in the second region 682 of the one side located on the upper side in the drawing, the first sheet portion 65 and the second sheet portion 66 are in contact with each other in a non-contact state, or are close to each other with a slight gap therebetween. .. After that, an extra portion of the outer peripheral portion of the outer package 6 is cut off, and the shape of the lithium secondary battery 1 is adjusted. When the lithium secondary battery 1 illustrated in FIGS. 7 to 9 is manufactured, the folded-back portion 695 of the outer package 6 is folded back along the folded-back line 693.
  • the shape of the lithium secondary battery 1 in plan view was a rectangle of 38 mm ⁇ 27 mm, the thickness was 0.45 mm or less, and the capacity was 30 mAh.
  • the average orientation angle of the primary particles in the positive electrode active material plate 22 was 16°.
  • the average orientation angle was measured as follows. First, the above-mentioned LiCoO 2 sintered body plate was polished by a cross section polisher (CP) (IB-15000CP manufactured by JEOL Ltd.) to obtain a cross section (that is, perpendicular to the main surface of the LiCoO 2 sintered body plate). The cross section was subjected to EBSD measurement in a field of view (125 ⁇ m ⁇ 125 ⁇ m) of 1000 times to obtain an EBSD image.
  • CP cross section polisher
  • This EBSD measurement was performed using a Schottky field emission scanning electron microscope (JSM-7800F, manufactured by JEOL Ltd.). Then, for all the particles specified in the obtained EBSD image, the angle formed by the (003) plane of the primary particles and the main surface of the LiCoO 2 sintered body plate (that is, the inclination of the crystal orientation from (003)) was determined as the tilt angle, and the average value of these angles was defined as the average orientation angle of the primary particles.
  • JSM-7800F Schottky field emission scanning electron microscope
  • the plate thickness of the LiCoO 2 sintered body plate was 90 ⁇ m as described above.
  • the plate thickness is measured by polishing a LiCoO 2 sintered plate with a cross section polisher (CP) (manufactured by JEOL Ltd., IB-15000CP), and observing the obtained cross section by SEM (JSM6390LA, JEOL Ltd.). did.
  • the thickness of the LiCoO 2 green sheet after the above-mentioned drying was also measured in the same manner.
  • the porosity of the LiCoO 2 sintered body plate was 30%.
  • the porosity was measured as follows.
  • the LiCoO 2 sintered body plate was polished by a cross section polisher (CP) (manufactured by JEOL Ltd., IB-15000CP), and the obtained cross section was observed with an SEM under a field of view of 1000 times (125 ⁇ m ⁇ 125 ⁇ m). JSM6390LA).
  • the obtained SEM image was subjected to image analysis, the area of all the pores was divided by the area of the LiCoO 2 sintered body plate, and the obtained value was multiplied by 100 to calculate the porosity (%).
  • the average pore diameter of the LiCoO 2 sintered body plate was 0.8 ⁇ m.
  • the average pore diameter was measured by a mercury porosimetry using a mercury porosimeter (manufactured by Shimadzu Corporation, Autopore IV9510).
  • the lithium secondary battery 1 when the lithium secondary battery 1 is mounted on a smart card, the lithium secondary battery 1 is sandwiched between card base materials and cold laminated to press at room temperature, or the lithium secondary battery 1 is used as a card. Hot laminating is performed in which the substrate is sandwiched and heated and pressed.
  • the covering region 67 is compressed in the vertical direction, and the first sheet portion 65 and the first sheet portion 65 are compressed in the covering region 67. A part of the electrolytic solution 5 existing between the second sheet portion 66 and the second sheet portion 66 is extruded toward the periphery of the covering region 67.
  • the electrolytic solution 5 extruded from the covering region 67 flows between the first sheet portion 65 and the second sheet portion 66 which are in contact with or close to each other in the second region 682 in a non-bonded state, and as shown in FIG.
  • the first sheet portion 65 and the second sheet portion 66 are vertically separated from each other. Then, the electrolytic solution 5 is held in the space formed between the first sheet portion 65 and the second sheet portion 66 in the second region 682.
  • the electrolytic solution 5 penetrates between the first sheet portion 65 and the second sheet portion 66 joined in the first region 681 to separate the first sheet portion 65 and the second sheet portion 66 from each other. This can be prevented or suppressed. As a result, it is possible to prevent or suppress deterioration of the sealing performance of the outer package 6 and leakage of the electrolytic solution 5 from between the first sheet portion 65 and the second sheet portion 66.
  • the pressure applied to the lithium secondary battery 1 is removed, most of the electrolytic solution 5 that has diffused into the second region 682 returns to the coating region 67 due to a capillary phenomenon or the like. The same applies to the lithium secondary battery 1 (see FIGS. 7 to 9) in which the outer peripheral region 68 is folded back along the folding line 693 described above.
  • the electrolytic solution 5 may infiltrate between the first sheet portion 65 and the second sheet portion 66 joined in the first region 681, and may cause the first sheet portion 65 and the second sheet portion 66 to be separated from each other. is there. Further, the electrolytic solution 5 may leak to the outside of the lithium secondary battery 1 from between the peeled first sheet portion 65 and the second sheet portion 66.
  • the width of the second region 682 is excessively large, the size of the entire lithium secondary battery 1 is limited to some extent, so that the areas of the positive electrode active material plate 22 and the negative electrode active material layer 32 are reduced, and the battery characteristics are reduced. It may decrease. Specifically, the rate characteristics and cycle characteristics of the lithium secondary battery 1 may deteriorate.
  • A1/B3 in the table is a value obtained by dividing the above-mentioned second area width A1 by the active material area width B3.
  • A1/B3 is the ratio of the second region width A1 to the active material region width B3.
  • Comparative Examples 1 to 3 Examples 1 to 6 and Comparative Example 4, A1/B3 is changed.
  • the width of the first region 681 is 2 mm.
  • the liquid leakage in the table indicates the presence or absence of leakage of the electrolytic solution 5 when the lithium secondary battery 1 is subjected to substantially the same processing as the above hot lamination.
  • the hot plate press heated to 135° C. vertically pressurizes the lithium secondary battery 1 at a processing pressure of 3 MPa to determine whether the electrolytic solution 5 leaks to the outside of the lithium secondary battery 1. was visually confirmed.
  • the rate characteristics in the table are the dissolution ratio (%) obtained by dividing the second capacity by the first capacity described later.
  • the first capacity is a capacity calculated by charging the lithium secondary battery 1 at 0.2C to 4.2V and then discharging at 0.2C to 3.0V.
  • the second capacity is a capacity calculated by charging the lithium secondary battery 1 at 0.2C to 4.2V and then discharging at 1.0C to 3.0V.
  • the cycle characteristics in the table indicate that the lithium secondary battery 1 is charged up to 4.2 V at 0.5 C and discharged up to 3.0 V at 0.5 C, repeated 300 times, and the capacity of the lithium secondary battery 1 after the repetition is repeated. Is a value (%) obtained by dividing by the capacity of the lithium secondary battery 1 before repetition.
  • A1/B3 is less than 0.0067. In Examples 1 to 6, A1/B3 is 0.02 to 1.0. In Comparative Example 4, A1/B3 is 1.2. In Comparative Examples 1 to 3, leakage of the electrolytic solution 5 occurred. On the other hand, in Examples 1 to 6 and Comparative Example 4, the electrolyte solution 5 did not leak. Further, in Comparative Examples 1 to 3 and Examples 1 to 6, the rate characteristics were 70% to 73% and the cycle characteristics were 90% to 94%. On the other hand, in Comparative Example 4, the rate characteristic was low at 55% and the cycle characteristic was low at 49%.
  • the lithium secondary battery 1 includes the positive electrode 2, the separator 4, the negative electrode 3, the electrolytic solution 5, the outer casing 6, and the two terminals 7.
  • the separator 4 is arranged on the positive electrode 2 in a predetermined stacking direction.
  • the negative electrode 3 is arranged on the side of the separator 4 opposite to the positive electrode 2 in the stacking direction.
  • the electrolytic solution 5 impregnates the positive electrode 2, the negative electrode 3, and the separator 4.
  • the outer package 6 has a two-layer sheet portion (that is, the first sheet portion 65 and the second sheet portion 66) that covers the positive electrode 2 and the negative electrode 3 from both sides in the stacking direction.
  • the outer package 6 is a rectangular sheet-shaped member that accommodates the positive electrode 2, the separator 4, the negative electrode 3, and the electrolytic solution 5 therein.
  • the two terminals 7 are connected to the positive electrode 2 and the negative electrode 3 inside the exterior body 6, respectively.
  • the two terminals 7 extend to the outside of the exterior body 6.
  • the outer package 6 includes a covering region 67 and an outer peripheral region 68.
  • the covering region 67 is a rectangular region that overlaps the positive electrode 2, the separator 4, and the negative electrode 3 in the stacking direction.
  • the outer peripheral area 68 is a rectangular frame-shaped area surrounding the periphery of the covered area 67.
  • the outer peripheral area 68 includes a first area 681 and a second area 682.
  • the first region 681 is a strip-shaped region that extends along a pair of sides (that is, a pair of long sides 691) other than the side where the two terminals 7 are arranged. In the first region 681, the two-layer sheet portions (that is, the first sheet portion 65 and the second sheet portion 66) are joined.
  • the second region 682 is a strip-shaped region extending along the covering region 67 between at least one first region 681 of the pair of first regions 681 and the covering region 67.
  • the two-layer sheet portions that is, the first sheet portion 65 and the second sheet portion 66
  • the electrolytic solution 5 of the lithium secondary battery 1 when the electrolytic solution 5 of the lithium secondary battery 1 is extruded from the covering region 67 to the outer peripheral region 68, the first sheet portion 65 and the second sheet portion 66 are separated from each other in the second region 682, The electrolytic solution 5 can be held in the space between the first sheet portion 65 and the second sheet portion 66. Therefore, peeling of the first region 681 (that is, peeling between the first sheet portion 65 and the second sheet portion 66 in the first region 681) by the electrolytic solution 5 extruded from the covering region 67 can be suppressed. In addition, leakage of the electrolytic solution 5 to the outside of the lithium secondary battery 1 can be suppressed.
  • the value obtained by dividing the second area width A1 which is the dividend by the active material area width B3 which is the divisor is preferably 0.02 or more and 1 or less.
  • the active material region width B3 is obtained by dividing the positive electrode active material width which is the width of the active material region of the positive electrode 2 and the negative electrode active material width which is the width of the active material region of the negative electrode 3 in the width direction perpendicular to the pair of long sides 691.
  • the second region width A1 is the width of the one second region 682 when the second region 682 exists only between the one first region 681 and the covering region 67 of the pair of first regions 681. If there is a pair of second regions 682 between both the pair of first regions 681 and the covering region 67, the total width of the pair of second regions 682 is present. As a result, as shown in Examples 1 to 6 in Table 1, leakage of the electrolytic solution 5 from the lithium secondary battery 1 can be prevented and the battery characteristics (that is, rate characteristics and cycle characteristics) deteriorate. Can be prevented or suppressed.
  • the at least one first region 681 be folded back in the width direction at a folding line 693 extending parallel to the pair of long sides 691.
  • the size (so-called footprint) of the lithium secondary battery 1 in plan view can be reduced.
  • the target device in which the lithium secondary battery 1 is mounted can be downsized. Alternatively, it is possible to reduce the mounting space of the lithium secondary battery 1 in the target device.
  • the folding line 693 is located at the center of the at least one first region 681 in the width direction or on the opposite side of the second region 682 with respect to the center of the at least one first region 681 in the width direction. (See Figures 7 and 8). Accordingly, since the folded-back portion 695 does not vertically overlap the second region 682, the expansion of the second region 682 is caused by the expansion of the second region 682 when the electrolytic solution 5 extruded from the covering region 67 flows into the second region 682. Can be prevented. Therefore, the second region 682 is appropriately expanded, and the electrolytic solution 5 can be appropriately retained in the second region 682.
  • the folding line 693 is located between the center of the at least one first region 681 in the width direction and the second region 682 (see FIG. 9).
  • the folded-back portion 695 is folded back to a position on the inner side in the width direction that overlaps the second region 682 in the vertical direction.
  • the size of the lithium secondary battery 1 in plan view can be further reduced.
  • the positive electrode 2 includes the conductive sheet-shaped current collector (that is, the positive electrode current collector 21 ), and the active material plate (that is, the positive electrode current collector 21) that is the plate-shaped ceramic sintered body containing the lithium composite oxide (that is, The positive electrode active material plate 22) is preferably provided.
  • the battery characteristics of the lithium secondary battery 1 can be further improved.
  • the positive electrode active material plate 22 of the positive electrode 2 has a structure in which a plurality of primary particles having a layered rock salt structure are bonded.
  • the average tilt angle of the plurality of primary particles is preferably larger than 0° and 30° or less.
  • the average tilt angle is an average value of angles formed by the (003) planes of the plurality of primary particles and the main surface of the positive electrode active material plate 22.
  • the positive electrode active material plate 22 in contact with the conductive bonding layer 23 the main surface to which internal stress generated when the crystal lattice expands or contracts is not easily applied, the positive electrode active material plate 22 and the positive electrode It is possible to suppress a decrease in the bonding strength with the current collector 21. As a result, it is possible to improve the voltage stability during charging and discharging of the lithium secondary battery 1.
  • the lithium secondary battery 1 is particularly suitable as a power supply source in a thin and relatively deformable device, that is, a sheet-shaped device or a flexible device (for example, a smart card).
  • the lithium secondary battery 1 can suppress the leakage of the electrolytic solution 5, it is a target device that is subjected to the step of extruding the electrolytic solution 5 from the covering region 67 during manufacturing, that is, manufacturing. It is particularly suitable when it is used as a power supply source in a target device to which a step of applying pressure while heating is performed.
  • the second region width A1/active material region width B3 may be less than 0.02 as long as it is greater than 0.
  • the second area width A1/active material area width B3 may be larger than one. In any case, leakage of the electrolytic solution 5 to the outside of the lithium secondary battery 1 can be suppressed.
  • the folding line 693 is located on the first region 681, but the folding line 693 may be arranged on the second region 682.
  • a part of the folded-back portion 695 (that is, the end portion on the inner side in the width direction) may overlap the covering region 67 in the vertical direction.
  • the folded-back portion 695 is folded back by about 180° at the folded-back line 693, but the folded-back angle may be less than 180°.
  • the folding-back angle is an angle formed by the folding-back portion 695 before folding and the folding-back portion 695 after folding in the cross-sectional views as shown in FIGS. 7 to 9.
  • the folding angle is preferably 90° or more and 180° or less.
  • the folding part 695 is folded only once at the folding line 693, but the number of folding may be plural.
  • a portion on the outer side in the width direction of the first region 681 may be folded back multiple times inward in the width direction to form a folded portion 695 having a spiral cross section.
  • the second region 682 where the first sheet portion 65 and the second sheet portion 66 of the exterior body 6 are in contact with or close to each other in the non-bonded state is adjacent to the short side where the two terminals 7 are provided in the exterior body 6. However, it may be provided along a side other than the long side 691 (that is, another short side parallel to the short side where the two terminals 7 are provided).
  • the two terminals 7 do not necessarily have to extend from one side of the exterior body 6 to the outside of the exterior body 6, and may extend from the pair of parallel sides to the exterior of the exterior body 6, respectively.
  • the structure of the positive electrode active material plate 22 of the positive electrode 2 may be variously modified.
  • the average tilt angle of the plurality of primary particles having a layered rock salt structure may be larger than 30° or may be 0°.
  • the structure of the plurality of primary particles may be a structure other than the layered rock salt structure.
  • the positive electrode 2 may be a coated electrode in which a positive electrode active material layer containing a binder containing a resin as a main component and a positive electrode active material is coated on the positive electrode current collector 21.
  • the lithium secondary battery 1 is a flexible device other than a smart card (for example, a card type device) or a sheet-like device (for example, a wearable device provided on clothes or the like, or a body sticking type device). It may be used as a power supply source. Further, the lithium secondary battery 1 may be used as a power supply source for various objects (for example, IoT module) other than the above-mentioned devices.
  • the lithium secondary battery of the present invention can be used in various fields where the lithium secondary battery is used, for example, as a power supply source in a smart card having an arithmetic processing function.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Steroid Compounds (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Abstract

An external body (6) of a lithium secondary battery (1) includes a coated region (67) and an outer peripheral region (68). The coated region (67) is a rectangular region in which a positive electrode (2), a separator (4), and a negative electrode (3) overlap in an overlapping direction. The outer peripheral region (68) is a rectangular frame-like region that surrounds the coated region (67). First regions (681) of the outer peripheral region (68) are belt-like regions that extend along a pair of long sides (691). In the first regions (681), a first sheet portion (65) and a second sheet portion (66) are bonded. A second region (682) is a belt-like region that extends along the coated region (67) between at least one of the pair of the first regions (681) and the coated region (67). In the second region (682), the first sheet portion (65) and the second sheet portion (66) contact each other or are in close proximity to each other without being bonded. Thus, leakage of an electrolyte (5) outside the lithium secondary battery (1) can be suppressed.

Description

リチウム二次電池Lithium secondary battery
 本発明は、薄型のリチウム二次電池に関する。 The present invention relates to a thin lithium secondary battery.
 従来、薄型電池は、様々な機器等に搭載されて電力供給源として利用されている。例えば、特開2016-139494号公報(文献1)では、2枚のフィルムを重ね合わせたラミネート部材と、当該2枚のフィルムの間に収納された電池セルとを有するラミネート型電池が開示されている。当該ラミネート型電池では、ラミネート型電池が搭載される機器において電池収納スペースを小型化することを目的として、ラミネート部材の周縁部が折り畳まれている。 Conventionally, thin batteries have been installed in various devices and used as a power supply source. For example, Japanese Unexamined Patent Application Publication No. 2016-139494 (Reference 1) discloses a laminate type battery including a laminate member in which two films are stacked and a battery cell housed between the two films. There is. In the laminate type battery, the peripheral edge portion of the laminate member is folded in order to reduce the battery storage space in the device in which the laminate type battery is mounted.
 また、特開2015-153513号公報(文献2)のラミネート外装電池においても同様に、スペース効率の向上を目的として、ラミネート外装体の両側部が90°折り曲げられている。特開2009-32612号公報(文献3)のラミネート外装電池では、ラミネートフィルムの局所的な変形を抑制して絶縁不良を抑制することを目的として、ラミネートフィルムの両側部が90°折り曲げられている。 Similarly, in the laminated outer battery disclosed in JP-A-2015-153513 (Reference 2), both sides of the laminated outer body are bent by 90° for the purpose of improving space efficiency. In the laminated outer battery of JP 2009-32612 A (Reference 3), both sides of the laminated film are bent by 90° for the purpose of suppressing local deformation of the laminated film and suppressing insulation failure. ..
 近年、スマートカードの電力供給源として、薄型のリチウム二次電池(リチウムイオン二次電池とも呼ぶ。)の利用が検討されている。当該スマートカードの製造方法として、リチウム二次電池をカード基材で挟み込んで常温にて加圧するコールドラミネート、および、リチウム二次電池をカード基材で挟み込んで加熱および加圧するホットラミネート等が知られている。 In recent years, the use of thin lithium secondary batteries (also called lithium-ion secondary batteries) has been considered as a power supply source for smart cards. Known methods for manufacturing the smart card include a cold laminate in which a lithium secondary battery is sandwiched between card base materials and pressed at room temperature, and a hot laminate in which a lithium secondary battery is sandwiched between card base materials and heated and pressed. ing.
 一方、特開2005-74936号公報(文献4)は、薄型電池ではなくICチップが搭載されたICカードの製造方法に関するものである。ICカードの製造においても、ICチップを間に挟んだ2枚の基体シートで挟み込んで加熱および加圧する工程が行われる。 On the other hand, Japanese Unexamined Patent Publication No. 2005-74936 (Reference 4) relates to a method of manufacturing an IC card having an IC chip mounted instead of a thin battery. Also in the manufacture of an IC card, a step of sandwiching an IC chip between two base sheet and heating and pressing is performed.
 ところで、リチウム二次電池が搭載されたスマートカード等を製造する場合、上述のホットラミネート等が行われる際にリチウム二次電池が圧迫され、電池内部に充填されている電解液が、電池外部へと漏出するおそれがある。 By the way, when manufacturing a smart card or the like equipped with a lithium secondary battery, the lithium secondary battery is pressed when the above-mentioned hot lamination is performed, and the electrolytic solution filled inside the battery is discharged to the outside of the battery. There is a risk of leakage.
 本発明は、薄型のリチウム二次電池に向けられており、リチウム二次電池の外部への電解液の漏出を抑制することを目的としている。 The present invention is directed to a thin lithium secondary battery, and an object thereof is to suppress leakage of an electrolytic solution to the outside of the lithium secondary battery.
 本発明の好ましい一の形態に係るリチウム二次電池は、正極と、所定の重ね合わせ方向において前記正極上に配置されるセパレータと、前記重ね合わせ方向において前記セパレータの前記正極とは反対側に配置される負極と、前記正極、前記負極および前記セパレータに含浸する電解液と、前記重ね合わせ方向の両側から前記正極および前記負極を被覆する2層のシート部を有するとともに、前記正極、前記セパレータ、前記負極および前記電解液を内部に収容する矩形シート状の外装体と、前記外装体の内部にて前記正極および前記負極にそれぞれ接続されるとともに前記外装体の外部へと延びる2つの端子と、を備える。前記外装体は、前記正極、前記セパレータおよび前記負極と前記重ね合わせ方向に重なる矩形状の被覆領域と、前記被覆領域の周囲を囲む矩形枠状の外周領域と、を備える。前記外周領域は、前記2つの端子が配置される辺以外の一対の辺に沿ってそれぞれ延びる帯状領域であって前記2層のシート部が接合される一対の第1領域と、前記一対の第1領域のうち少なくとも一方の第1領域と前記被覆領域との間にて前記被覆領域に沿って延びる帯状領域であって前記2層のシート部が非接合状態にて接触または近接する第2領域と、を備える。これにより、リチウム二次電池の外部への電解液の漏出を抑制することができる。 A lithium secondary battery according to a preferred embodiment of the present invention is a positive electrode, a separator arranged on the positive electrode in a predetermined stacking direction, and a separator opposite to the positive electrode of the separator in the stacking direction. With the negative electrode, the positive electrode, the electrolytic solution impregnating the negative electrode and the separator, and having a two-layer sheet portion that covers the positive electrode and the negative electrode from both sides in the stacking direction, the positive electrode, the separator, A rectangular sheet-shaped exterior body that accommodates the negative electrode and the electrolytic solution therein, and two terminals that are connected to the positive electrode and the negative electrode inside the exterior body and extend to the outside of the exterior body, respectively. Equipped with. The exterior body includes a rectangular coating region that overlaps the positive electrode, the separator, and the negative electrode in the stacking direction, and a rectangular frame-shaped outer peripheral region that surrounds the periphery of the coating region. The outer peripheral region is a strip-shaped region that extends along a pair of sides other than the side on which the two terminals are arranged, and is a pair of first regions to which the two-layer sheet portions are joined and a pair of first regions. A second region, which is a strip-shaped region extending along at least one of the first region and the covering region, and in which the two-layer sheet portions are in contact with or close to each other in a non-bonded state. And This makes it possible to suppress the leakage of the electrolytic solution to the outside of the lithium secondary battery.
 好ましくは、前記一対の辺に垂直な幅方向における前記正極の活物質領域の幅である正極活物質幅と前記負極の活物質領域の幅である負極活物質幅とが異なる場合は、前記正極活物質幅および前記負極活物質幅のうち小さい方を除数とし、前記正極活物質幅と前記負極活物質幅とが同じである場合は前記正極活物質幅および前記負極活物質幅のうちいずれか一方を除数として、前記一対の第1領域のうち一方の第1領域と前記被覆領域との間にのみ前記第2領域が存在する場合は前記第2領域の幅を被除数とし、前記一対の第1領域の双方と前記被覆領域との間に一対の前記第2領域が存在する場合は前記一対の第2領域の合計幅を被除数として、前記被除数を前記除数により除算した値は、0.02以上かつ1以下である。 Preferably, when the positive electrode active material width which is the width of the positive electrode active material region in the width direction perpendicular to the pair of sides and the negative electrode active material width which is the width of the negative electrode active material region are different, the positive electrode The smaller one of the active material width and the negative electrode active material width is taken as a divisor, and when the positive electrode active material width and the negative electrode active material width are the same, one of the positive electrode active material width and the negative electrode active material width When one is a divisor, and the second region is present only between one of the pair of first regions and the covering region, the width of the second region is the dividend, and the pair of first regions When a pair of the second regions is present between both of the one region and the covering region, the total width of the pair of the second regions is taken as the dividend, and the value obtained by dividing the dividend by the divisor is 0.02. It is above 1 and below 1.
 好ましくは、前記少なくとも一方の第1領域は、前記一対の辺に平行に延びる折り返し線にて幅方向に折り返されている。 Preferably, the at least one first region is folded back in the width direction by a folding line extending parallel to the pair of sides.
 好ましくは、前記折り返し線は、前記少なくとも一方の第1領域の幅方向の中央、または、前記少なくとも一方の第1領域の幅方向の中央に対して前記第2領域の反対側に位置する。 Preferably, the folding line is located on the opposite side of the second region with respect to the center of the at least one first region in the width direction or the center of the at least one first region in the width direction.
 好ましくは、前記折り返し線は、前記少なくとも一方の第1領域の幅方向の中央と前記第2領域との間に位置する。 Preferably, the folding line is located between the widthwise center of the at least one first region and the second region.
 好ましくは、前記正極は、導電性を有するシート状の集電体と、リチウム複合酸化物を含む板状セラミック焼結体である活物質板と、を備える。 Preferably, the positive electrode includes a sheet-shaped current collector having conductivity and an active material plate which is a plate-shaped ceramic sintered body containing a lithium composite oxide.
 好ましくは、前記活物質板は、層状岩塩構造を有する複数の一次粒子が結合した構造を有している。前記複数の一次粒子の平均傾斜角は、0°よりも大きく、かつ、30°以下である。前記平均傾斜角は、前記複数の一次粒子の(003)面と前記活物質板の主面とが成す角度の平均値である。 Preferably, the active material plate has a structure in which a plurality of primary particles having a layered rock salt structure are bonded. The average inclination angle of the plurality of primary particles is greater than 0° and 30° or less. The average tilt angle is an average value of angles formed by the (003) planes of the plurality of primary particles and the main surface of the active material plate.
 好ましくは、前記リチウム二次電池は、シート状デバイス、または、可撓性を有するデバイスにおける電力供給源として利用される。 Preferably, the lithium secondary battery is used as a power supply source in a sheet-shaped device or a flexible device.
 好ましくは、前記リチウム二次電池は、前記可撓性を有するデバイスであるスマートカードにおける電力供給源として利用される。 Preferably, the lithium secondary battery is used as a power supply source in a smart card, which is the flexible device.
 好ましくは、前記リチウム二次電池は、製造の際に加熱しつつ加圧する工程が施される対象デバイスにおける電力供給源として利用される。 Preferably, the lithium secondary battery is used as a power supply source in a target device that is subjected to a step of heating and pressurizing during manufacturing.
 上述の目的および他の目的、特徴、態様および利点は、添付した図面を参照して以下に行うこの発明の詳細な説明により明らかにされる。 The above objects and other objects, features, aspects and advantages will be made clear by the detailed description of the present invention given below with reference to the accompanying drawings.
一の実施の形態に係るリチウム二次電池の断面図である。FIG. 3 is a cross-sectional view of a lithium secondary battery according to one embodiment. リチウム二次電池の平面図である。It is a top view of a lithium secondary battery. 他のリチウム二次電池の断面図である。It is sectional drawing of another lithium secondary battery. リチウム二次電池の断面図である。It is sectional drawing of a lithium secondary battery. リチウム二次電池の断面図である。It is sectional drawing of a lithium secondary battery. リチウム二次電池の平面図である。It is a top view of a lithium secondary battery. リチウム二次電池の断面図である。It is sectional drawing of a lithium secondary battery. リチウム二次電池の断面図である。It is sectional drawing of a lithium secondary battery. リチウム二次電池の断面図である。It is sectional drawing of a lithium secondary battery. リチウム二次電池の製造の流れを示す図である。It is a figure which shows the flow of manufacture of a lithium secondary battery. リチウム二次電池の製造の流れを示す図である。It is a figure which shows the flow of manufacture of a lithium secondary battery. リチウム二次電池の断面図である。It is sectional drawing of a lithium secondary battery.
 図1は、本発明の一の実施の形態に係るリチウム二次電池1の構成を示す断面図である。図2は、リチウム二次電池1の平面図である。図1では、図の理解を容易にするために、リチウム二次電池1およびその構成を、実際よりも厚く描いている。なお、図1では、断面よりも手前側および奥側の一部の構造を併せて図示する。図3においても同様である。 FIG. 1 is a sectional view showing the configuration of a lithium secondary battery 1 according to an embodiment of the present invention. FIG. 2 is a plan view of the lithium secondary battery 1. In FIG. 1, in order to facilitate understanding of the drawing, the lithium secondary battery 1 and its configuration are drawn thicker than they actually are. In addition, in FIG. 1, a part of the structure on the front side and the back side of the cross section is also illustrated. The same applies to FIG.
 リチウム二次電池1は、小型かつ薄型の電池である。リチウム二次電池1の平面視における形状は、例えば略矩形状である。例えば、リチウム二次電池1の平面視における縦方向の長さは10mm~46mmであり、横方向の長さは10mm~46mmである。リチウム二次電池1の厚さ(すなわち、図1中の上下方向の厚さ)は、例えば0.30mm~0.45mmであり、好ましくは0.40mm~0.45mmである。リチウム二次電池1は、シート状または可撓性を有する薄板状の部材である。シート状の部材とは、比較的小さい力によって容易に変形する薄い部材であり、フィルム状の部材とも呼ばれる。以下の説明においても同様である。 The lithium secondary battery 1 is a small and thin battery. The shape of the lithium secondary battery 1 in a plan view is, for example, a substantially rectangular shape. For example, the length of the lithium secondary battery 1 in the vertical direction in plan view is 10 mm to 46 mm, and the length in the horizontal direction is 10 mm to 46 mm. The thickness of the lithium secondary battery 1 (that is, the thickness in the vertical direction in FIG. 1) is, for example, 0.30 mm to 0.45 mm, preferably 0.40 mm to 0.45 mm. The lithium secondary battery 1 is a sheet-shaped or flexible thin plate-shaped member. The sheet-shaped member is a thin member that is easily deformed by a relatively small force, and is also called a film-shaped member. The same applies to the following description.
 リチウム二次電池1は、例えば、シート状デバイス、または、可撓性を有するデバイスに搭載されて電力供給源として利用される。シート状デバイスとは、比較的小さい力によって容易に変形する薄いデバイスであり、フィルム状デバイスとも呼ばれる。本実施の形態では、リチウム二次電池1は、例えば、演算処理機能を有するスマートカードに内蔵され、当該スマートカードにおける電力供給源として利用される。スマートカードは、カード型の可撓性を有するデバイスである。スマートカードは、例えば、無線通信IC、指紋解析用ASICおよび指紋センサを備えた指紋認証・無線通信機能付きカード等として用いられる。以下の説明では、スマートカード等のように、リチウム二次電池1が電力供給源として利用される対象となるデバイスを「対象デバイス」とも呼ぶ。 The lithium secondary battery 1 is mounted on, for example, a sheet-shaped device or a flexible device and used as a power supply source. The sheet-like device is a thin device that is easily deformed by a relatively small force, and is also called a film-like device. In the present embodiment, the lithium secondary battery 1 is, for example, built in a smart card having an arithmetic processing function and used as a power supply source in the smart card. A smart card is a card-type flexible device. The smart card is used as, for example, a card with a fingerprint authentication/wireless communication function including a wireless communication IC, a fingerprint analysis ASIC, and a fingerprint sensor. In the following description, a device for which the lithium secondary battery 1 is used as a power supply source, such as a smart card, is also referred to as a “target device”.
 スマートカードへのリチウム二次電池1の搭載は、例えば、常温にて加圧を行うコールドラミネート、または、加熱しつつ加圧を行うホットラミネートにより行われる。ホットラミネートにおける加工温度は、例えば110℃~260℃である。当該加工温度の上限は、好ましくは240℃未満であり、より好ましくは220℃未満であり、さらに好ましくは200℃未満であり、最も好ましくは150℃以下である。また、ホットラミネートにおける加工圧力は、例えば0.1MPa(メガパスカル)~6MPaであり、加工時間(すなわち、加熱・加圧時間)は、例えば10分~20分である。 The mounting of the lithium secondary battery 1 on the smart card is performed by, for example, cold lamination in which pressure is applied at room temperature or hot lamination in which pressure is applied while heating. The processing temperature in hot lamination is, for example, 110°C to 260°C. The upper limit of the processing temperature is preferably lower than 240°C, more preferably lower than 220°C, further preferably lower than 200°C, and most preferably 150°C or lower. The processing pressure in hot lamination is, for example, 0.1 MPa (megapascal) to 6 MPa, and the processing time (that is, heating/pressurizing time) is, for example, 10 to 20 minutes.
 リチウム二次電池1は、正極2と、負極3と、セパレータ4と、電解液5と、外装体6と、2つの端子7とを備える。正極2、セパレータ4および負極3は、所定の重ね合わせ方向に重ね合わせられている。図1に示す例では、正極2、セパレータ4および負極3は、図中の上下方向に積層されている。以下の説明では、図1中の上側および下側を、単に「上側」および「下側」と呼ぶ。また、図1中の上下方向を、単に「上下方向」と呼び、「重ね合わせ方向」とも呼ぶ。図1中の上下方向は、リチウム二次電池1がスマートカード等の対象デバイスに搭載される際の実際の上下方向と一致する必要はない。 The lithium secondary battery 1 includes a positive electrode 2, a negative electrode 3, a separator 4, an electrolytic solution 5, an outer casing 6, and two terminals 7. The positive electrode 2, the separator 4, and the negative electrode 3 are stacked in a predetermined stacking direction. In the example shown in FIG. 1, the positive electrode 2, the separator 4, and the negative electrode 3 are stacked in the vertical direction in the figure. In the following description, the upper side and the lower side in FIG. 1 are simply referred to as “upper side” and “lower side”. Further, the up-down direction in FIG. 1 is simply referred to as “up-down direction” and also referred to as “overlapping direction”. The vertical direction in FIG. 1 does not have to match the actual vertical direction when the lithium secondary battery 1 is mounted on a target device such as a smart card.
 図1に示す例では、セパレータ4は、上下方向(すなわち、重ね合わせ方向)において正極2の上面上に配置される。負極3は、上下方向においてセパレータ4の上面上に配置される。換言すれば、負極3は、上下方向においてセパレータ4の正極2とは反対側に配置される。正極2、セパレータ4および負極3はそれぞれ、平面視において例えば略矩形状である。正極2、セパレータ4および負極3は、平面視においておよそ同形状(すなわち、およそ同じ形、かつ、およそ同じ大きさ)である。 In the example shown in FIG. 1, the separator 4 is arranged on the upper surface of the positive electrode 2 in the vertical direction (that is, the stacking direction). The negative electrode 3 is arranged on the upper surface of the separator 4 in the vertical direction. In other words, the negative electrode 3 is arranged on the side of the separator 4 opposite to the positive electrode 2 in the vertical direction. Each of the positive electrode 2, the separator 4, and the negative electrode 3 has, for example, a substantially rectangular shape in a plan view. The positive electrode 2, the separator 4, and the negative electrode 3 have approximately the same shape in plan view (that is, approximately the same shape and approximately the same size).
 外装体6は、シート状かつ袋状の部材である。外装体6は、平面視において略矩形である。外装体6は、上下方向に重なる2層のシート部65,66を備える。以下の説明では、正極2の下側に位置するシート部65を「第1シート部65」と呼び、負極3の上側に位置するシート部66を「第2シート部66」と呼ぶ。第1シート部65の外周縁と第2シート部66の外周縁とは、例えば熱融着(いわゆる、ヒートシール)により接合されている。外装体6の第1シート部65および第2シート部66はそれぞれ、例えば、アルミニウム(Al)等の金属により形成された金属箔61と、絶縁性の樹脂層62とが積層されたラミネートフィルムにより形成される。第1シート部65および第2シート部66では、樹脂層62は、金属箔61の内側に位置する。 The exterior body 6 is a sheet-shaped and bag-shaped member. The exterior body 6 is substantially rectangular in plan view. The exterior body 6 includes two layers of sheet portions 65 and 66 that are vertically overlapped with each other. In the following description, the sheet portion 65 located below the positive electrode 2 is referred to as “first sheet portion 65”, and the sheet portion 66 located above the negative electrode 3 is referred to as “second sheet portion 66”. The outer peripheral edge of the first sheet portion 65 and the outer peripheral edge of the second sheet portion 66 are joined by, for example, heat fusion (so-called heat sealing). The first sheet portion 65 and the second sheet portion 66 of the outer package 6 are each made of, for example, a laminated film in which a metal foil 61 formed of a metal such as aluminum (Al) and an insulating resin layer 62 are laminated. It is formed. In the first sheet portion 65 and the second sheet portion 66, the resin layer 62 is located inside the metal foil 61.
 外装体6は、上下方向の両側から正極2および負極3を被覆する。外装体6は、正極2、セパレータ4、負極3および電解液5を内部に収容する。電解液5は、正極2、セパレータ4および負極3の周囲に連続して存在する。換言すれば、電解液5は、正極2および負極3の間に介在する。電解液5は、正極2、セパレータ4および負極3に含浸している。2つの端子7は、外装体6の内部から外部へと延びる。外装体6の内部において、一方の端子7は正極2に電気的に接続されており、他方の端子7は負極3に電気的に接続されている。 The exterior body 6 covers the positive electrode 2 and the negative electrode 3 from both sides in the vertical direction. The outer package 6 houses the positive electrode 2, the separator 4, the negative electrode 3, and the electrolytic solution 5 therein. The electrolytic solution 5 continuously exists around the positive electrode 2, the separator 4, and the negative electrode 3. In other words, the electrolytic solution 5 is interposed between the positive electrode 2 and the negative electrode 3. The electrolytic solution 5 impregnates the positive electrode 2, the separator 4, and the negative electrode 3. The two terminals 7 extend from the inside of the exterior body 6 to the outside. Inside the outer package 6, one terminal 7 is electrically connected to the positive electrode 2, and the other terminal 7 is electrically connected to the negative electrode 3.
 正極2は、正極集電体21と、正極活物質板22と、導電性接合層23とを備える。正極集電体21は、導電性を有するシート状の部材である。正極集電体21の下面は、正極接合層63を介して外装体6の樹脂層62に接合されている。正極接合層63は、例えば、酸変性ポリオレフィン系樹脂とエポキシ系樹脂との混合樹脂により形成される。正極接合層63は、他の様々な材料により形成されてもよい。正極接合層63の厚さは、例えば0.5μm~10μmである。 The positive electrode 2 includes a positive electrode current collector 21, a positive electrode active material plate 22, and a conductive bonding layer 23. The positive electrode current collector 21 is a conductive sheet-shaped member. The lower surface of the positive electrode current collector 21 is bonded to the resin layer 62 of the exterior body 6 via the positive electrode bonding layer 63. The positive electrode bonding layer 63 is formed of, for example, a mixed resin of acid-modified polyolefin-based resin and epoxy-based resin. The positive electrode bonding layer 63 may be formed of various other materials. The thickness of the positive electrode bonding layer 63 is, for example, 0.5 μm to 10 μm.
 正極集電体21は、例えば、アルミニウム等の金属により形成される金属箔と、当該金属箔の上面上に積層された導電性カーボン層とを備える。換言すれば、正極集電体21の正極活物質板22に対向する主面は、導電性カーボン層により被覆されている。上述の金属箔は、アルミニウム以外の様々な金属(例えば、銅、ニッケル、銀、金、クロム、鉄、スズ、鉛、タングステン、モリブデン、チタン、亜鉛、または、これらを含む合金等)により形成されてもよい。また、正極集電体21から上記導電性カーボン層は省略されてもよい。 The positive electrode current collector 21 includes, for example, a metal foil formed of a metal such as aluminum and a conductive carbon layer laminated on the upper surface of the metal foil. In other words, the main surface of the positive electrode current collector 21 facing the positive electrode active material plate 22 is covered with the conductive carbon layer. The metal foil described above is formed of various metals other than aluminum (for example, copper, nickel, silver, gold, chromium, iron, tin, lead, tungsten, molybdenum, titanium, zinc, or alloys containing these). May be. Further, the conductive carbon layer may be omitted from the positive electrode current collector 21.
 正極活物質板22(すなわち、正極2の活物質板)は、リチウム複合酸化物を含む比較的薄い板状セラミック焼結体である。正極活物質板22は、導電性接合層23を介して正極集電体21の上面上に接合される。正極活物質板22は、上下方向においてセパレータ4と対向する。正極活物質板22の上面は、セパレータ4の下面と接触する。正極活物質板22は、実質的に樹脂を含んでいない。したがって、正極2のセパレータ4に対向する主面(すなわち、図1中の上面)は、実質的に樹脂を含んでいない。 The positive electrode active material plate 22 (that is, the active material plate of the positive electrode 2) is a relatively thin plate-shaped ceramic sintered body containing a lithium composite oxide. The positive electrode active material plate 22 is bonded onto the upper surface of the positive electrode current collector 21 via the conductive bonding layer 23. The positive electrode active material plate 22 faces the separator 4 in the vertical direction. The upper surface of the positive electrode active material plate 22 contacts the lower surface of the separator 4. The positive electrode active material plate 22 contains substantially no resin. Therefore, the main surface of the positive electrode 2 facing the separator 4 (that is, the upper surface in FIG. 1) contains substantially no resin.
 正極活物質板22は、複数の(すなわち、多数の)一次粒子が結合した構造を有している。当該一次粒子は、層状岩塩構造を有するリチウム複合酸化物で構成される。リチウム複合酸化物は、典型的には、一般式:LiMO(式中、0.05<p<1.10)で表される酸化物である。Mは少なくとも1種類の遷移金属であり、例えば、コバルト(Co)、ニッケル(Ni)およびマンガン(Mn)から選択される1種以上を含む。層状岩塩構造とは、リチウム層とリチウム以外の遷移金属層とが酸素の層を挟んで交互に積層された結晶構造である。すなわち、層状岩塩構造は、酸化物イオンを介して遷移金属イオン層とリチウム単独層とが交互に積層した結晶構造(典型的には、α-NaFeO型構造:立方晶岩塩型構造の[111]軸方向に遷移金属とリチウムとが規則配列した構造)である。 The positive electrode active material plate 22 has a structure in which a plurality of (that is, a large number of) primary particles are bonded. The primary particles are composed of a lithium composite oxide having a layered rock salt structure. The lithium composite oxide is typically an oxide represented by the general formula: Li p MO 2 (wherein 0.05<p<1.10). M is at least one kind of transition metal, and includes, for example, one or more kinds selected from cobalt (Co), nickel (Ni) and manganese (Mn). The layered rock salt structure is a crystal structure in which lithium layers and transition metal layers other than lithium are alternately stacked with an oxygen layer in between. That is, the layered rock salt structure has a crystal structure in which transition metal ion layers and lithium single layers are alternately stacked via oxide ions (typically, α-NaFeO 2 type structure: cubic rock salt type structure [111 ] A structure in which a transition metal and lithium are regularly arranged in the axial direction).
 層状岩塩構造を有するリチウム複合酸化物の好ましい例としては、コバルト酸リチウム(LiCoO(式中、1≦p≦1.1)、ニッケル酸リチウム(LiNiO)、マンガン酸リチウム(LiMnO)、ニッケルマンガン酸リチウム(Li(Ni0.5,Mn0.5)O)、一般式:Li(Co,Ni,Mn)O(式中、0.97≦p≦1.07,x+y+z=1)で表される固溶体、Li(Co,Ni,Al)O2(式中、0.97≦p≦1.07、x+y+z=1、0<x≦0.25、0.6≦y≦0.9および0<z≦0.1)で表される固溶体、または、LiMnOとLiMO(式中、MはCo、Ni等の遷移金属)との固溶体が挙げられる。特に好ましくは、リチウム複合酸化物はコバルト酸リチウムLiCoO(式中、1≦p≦1.1)であり、例えば、LiCoO(LCO)である。 Preferred examples of the lithium composite oxide having a layered rock salt structure include lithium cobalt oxide (Li p CoO 2 (wherein 1≦p≦1.1), lithium nickel oxide (LiNiO 2 ), and lithium manganate (Li 2 MnO 3), lithium nickel manganese oxide (Li p (Ni 0.5, Mn 0.5) O 2), the general formula: Li p (Co x, Ni y, in Mn z) O 2 (wherein 0.97 ≦p≦1.07, x+y+z=1), a solid solution represented by Li p (Co x , Ni y , Al z )O 2 (wherein 0.97≦p≦1.07, x+y+z=1, 0< x≦0.25, 0.6≦y≦0.9 and 0<z≦0.1), or a solid solution represented by Li 2 MnO 3 and LiMO 2 (wherein M is Co, Ni, or the like). And a solid solution with a transition metal). Particularly preferably, the lithium composite oxide is lithium cobalt oxide Li p CoO 2 (wherein 1≦p≦1.1), for example, LiCoO 2 (LCO). ..
 なお、正極活物質板22は、マグネシウム(Mg)、アルミニウム、ケイ素(Si)、カルシウム(Ca)、チタン(Ti)、バナジウム(V)、クロム(Cr)、鉄(Fe)、銅(Cu)、亜鉛(Zn)、ガリウム(Ga)、ゲルマニウム(Ge)、ストロンチウム(Sr)、イットリウム(Y)、ジルコニア(Zr)、ニオブ(Nb)、モリブデン(Mo)、銀(Ag)、スズ(Sn)、アンチモン(Sb)、テルル(Te)、バリウム(Ba)、ビスマス(Bi)等の元素を1種類以上さらに含んでいてもよい。また、正極活物質板22には、集電助剤として金(Au)等がスパッタされていてもよい。 The positive electrode active material plate 22 includes magnesium (Mg), aluminum, silicon (Si), calcium (Ca), titanium (Ti), vanadium (V), chromium (Cr), iron (Fe), copper (Cu). , Zinc (Zn), gallium (Ga), germanium (Ge), strontium (Sr), yttrium (Y), zirconia (Zr), niobium (Nb), molybdenum (Mo), silver (Ag), tin (Sn). , Antimony (Sb), tellurium (Te), barium (Ba), bismuth (Bi), and the like may be further included in one or more kinds. In addition, the positive electrode active material plate 22 may be sputtered with gold (Au) or the like as a current collecting aid.
 正極活物質板22において、上記複数の一次粒子の平均粒径である一次粒径は、例えば20μm以下であり、好ましくは15μm以下である。また、当該一次粒径は、例えば0.2μm以上であり、好ましくは0.4μm以上である。当該一次粒径は、正極活物質板22の断面のSEM(走査型電子顕微鏡)画像を解析することにより測定することができる。具体的には、例えば、正極活物質板22をクロスセクションポリッシャ(CP)で加工して研磨断面を露出させ、当該研磨断面を所定の倍率(例えば、1000倍)および所定の視野(例えば、125μm×125μm)でSEMにより観察する。このとき、視野内に20個以上の一次粒子が存在するように視野を設定する。得られたSEM画像中の全ての一次粒子について外接円を描いたときの当該外接円の直径を求め、これらの平均値を一次粒径とする。 In the positive electrode active material plate 22, the average primary particle size of the plurality of primary particles is, for example, 20 μm or less, preferably 15 μm or less. The primary particle size is, for example, 0.2 μm or more, preferably 0.4 μm or more. The primary particle size can be measured by analyzing an SEM (scanning electron microscope) image of the cross section of the positive electrode active material plate 22. Specifically, for example, the positive electrode active material plate 22 is processed by a cross section polisher (CP) to expose a polished cross section, and the polished cross section is subjected to a predetermined magnification (for example, 1000 times) and a predetermined visual field (for example, 125 μm). ×125 μm) and observed by SEM. At this time, the visual field is set so that 20 or more primary particles are present in the visual field. The diameter of the circumscribed circle when the circumscribed circle is drawn for all the primary particles in the obtained SEM image is determined, and the average value of these is taken as the primary particle size.
 正極活物質板22において、複数の一次粒子の平均傾斜角(すなわち、平均配向角度)は、0°よりも大きく、かつ、30°以下であることが好ましい。また、当該平均傾斜角は、より好ましくは5°以上かつ28°以下であり、さらに好ましくは10°以上かつ25°以下である。当該平均傾斜角は、複数の一次粒子の(003)面と、正極活物質板22の主面(例えば、正極活物質板22の下面)とが成す角度の平均値である。 In the positive electrode active material plate 22, the average tilt angle (that is, the average orientation angle) of the plurality of primary particles is preferably larger than 0° and 30° or less. The average tilt angle is more preferably 5° or more and 28° or less, and further preferably 10° or more and 25° or less. The average tilt angle is an average value of angles formed by the (003) planes of the plurality of primary particles and the main surface of the positive electrode active material plate 22 (for example, the lower surface of the positive electrode active material plate 22).
 一次粒子の傾斜角(すなわち、一次粒子の(003)面と正極活物質板22の主面とが成す角度)は、正極活物質板22の断面を電子線後方散乱回折法(EBSD)により解析することによって測定することができる。具体的には、例えば、正極活物質板22をクロスセクションポリッシャで加工して研磨断面を露出させ、当該研磨断面を所定の倍率(例えば、1000倍)および所定の視野(例えば、125μm×125μm)でEBSDにより解析する。得られたEBSD像において、各一次粒子の傾斜角は色の濃淡で表され、色が濃いほど傾斜角が小さいことを示す。そして、EBSD像から求められた複数の一次粒子の傾斜角の平均値が、上述の平均傾斜角とされる。 The tilt angle of the primary particles (that is, the angle formed by the (003) plane of the primary particles and the main surface of the positive electrode active material plate 22) was analyzed by electron beam backscattering diffraction (EBSD) on the cross section of the positive electrode active material plate 22. It can be measured by Specifically, for example, the positive electrode active material plate 22 is processed by a cross section polisher to expose a polished cross section, and the polished cross section has a predetermined magnification (for example, 1000 times) and a predetermined visual field (for example, 125 μm×125 μm). Analyze by EBSD at. In the obtained EBSD image, the tilt angle of each primary particle is represented by the shade of color, and the darker the color, the smaller the tilt angle. Then, the average value of the inclination angles of the plurality of primary particles obtained from the EBSD image is set as the above-mentioned average inclination angle.
 正極活物質板22を構成する一次粒子において、傾斜角が0°よりも大きくかつ30°以下である一次粒子の占める割合は、好ましくは60%以上であり、より好ましくは80%以上であり、さらに好ましくは90%以上である。当該割合の上限値は特に限定されず、100%であってもよい。当該割合は、上述のEBSD像において、傾斜角が0°よりも大きくかつ30°以下である一次粒子の合計面積を求め、当該一次粒子の合計面積を全粒子面積で除算することにより求めることができる。 In the primary particles constituting the positive electrode active material plate 22, the proportion of the primary particles having a tilt angle of more than 0° and 30° or less is preferably 60% or more, more preferably 80% or more, More preferably, it is 90% or more. The upper limit of the ratio is not particularly limited and may be 100%. The ratio can be obtained by obtaining the total area of the primary particles having an inclination angle larger than 0° and 30° or less in the above EBSD image and dividing the total area of the primary particles by the total particle area. it can.
 正極活物質板22の気孔率は、例えば、25%~45%である。正極活物質板22の気孔率とは、正極活物質板22における気孔(開気孔および閉気孔を含む。)の体積比率である。当該気孔率は、正極活物質板22の断面のSEM画像を解析することにより測定することができる。例えば、正極活物質板22をクロスセクションポリッシャ(CP)で加工して研磨断面を露出させる。当該研磨断面を所定の倍率(例えば、1000倍)および所定の視野(例えば、125μm×125μm)でSEMにより観察する。得られたSEM画像を解析し、視野内の全ての気孔の面積を視野内の正極活物質板22の面積(断面積)で除算し、得られた値に100を乗算することにより気孔率(%)を得る。 The porosity of the positive electrode active material plate 22 is, for example, 25% to 45%. The porosity of the positive electrode active material plate 22 is a volume ratio of pores (including open pores and closed pores) in the positive electrode active material plate 22. The porosity can be measured by analyzing a SEM image of the cross section of the positive electrode active material plate 22. For example, the positive electrode active material plate 22 is processed by a cross section polisher (CP) to expose a polished cross section. The polished cross section is observed by SEM with a predetermined magnification (for example, 1000 times) and a predetermined visual field (for example, 125 μm×125 μm). The obtained SEM image is analyzed, the area of all pores in the visual field is divided by the area (cross-sectional area) of the positive electrode active material plate 22 in the visual field, and the obtained value is multiplied by 100 to obtain the porosity ( %).
 正極活物質板22に含まれる気孔の直径の平均値である平均気孔径は、例えば15μm以下であり、好ましくは12μm以下であり、より好ましくは10μm以下である。また、当該平均気孔径は、例えば0.1μm以上であり、好ましくは0.3μm以上である。上述の気孔の直径は、典型的には、当該気孔を同体積あるいは同断面積を有する球形と仮定した場合の、当該球形における直径である。平均気孔径は、複数の気孔の直径の平均値を個数基準で算出したものである。当該平均気孔径は、例えば、断面SEM画像の解析、または、水銀圧入法等、周知の方法により求めることができる。好ましくは、当該平均気孔径は、水銀ポロシメーターを用いて水銀圧入法により測定される。 The average pore diameter, which is the average value of the diameter of the pores included in the positive electrode active material plate 22, is, for example, 15 μm or less, preferably 12 μm or less, and more preferably 10 μm or less. The average pore diameter is, for example, 0.1 μm or more, preferably 0.3 μm or more. The diameter of the pores described above is typically the diameter of the sphere when the pores are assumed to be spherical with the same volume or the same cross-sectional area. The average pore diameter is an average value of the diameters of a plurality of pores calculated on a number basis. The average pore diameter can be obtained by a known method such as analysis of a cross-sectional SEM image or mercury porosimetry. Preferably, the average pore diameter is measured by a mercury porosimetry method using a mercury porosimeter.
 図1に示す例では、正極活物質板22は、1枚の板状部材であるが、複数の板状部材(以下、「活物質板要素」と呼ぶ。)に分割されていてもよい。この場合、複数の活物質板要素はそれぞれ、導電性接合層23を介して正極集電体21に接合される。複数の活物質板要素は、例えば、正極集電体21上においてマトリクス状(すなわち、格子状)に配列される。平面視における各活物質板要素の形状は、例えば略矩形である。複数の活物質板要素は、平面視において略同形状(すなわち、略同じ形かつ略同じ大きさ)であってもよく、異なる形状を有していてもよい。複数の活物質板要素は、平面視において互いに離間して配置される。 In the example shown in FIG. 1, the positive electrode active material plate 22 is a single plate-shaped member, but it may be divided into a plurality of plate-shaped members (hereinafter referred to as “active material plate elements”). In this case, each of the plurality of active material plate elements is bonded to the positive electrode current collector 21 via the conductive bonding layer 23. The plurality of active material plate elements are arranged in a matrix (that is, a grid) on the positive electrode current collector 21, for example. The shape of each active material plate element in a plan view is, for example, a substantially rectangular shape. The plurality of active material plate elements may have substantially the same shape (that is, substantially the same shape and substantially the same size) in plan view, or may have different shapes. The plurality of active material plate elements are arranged apart from each other in a plan view.
 導電性接合層23は、導電性粉末と、バインダとを含む。導電性粉末は、例えば、アセチレンブラック、鱗片状の天然黒鉛、カーボンナノチューブ、カーボンナノファイバー、カーボンナノチューブ誘導体、または、カーボンナノファイバー誘導体等の粉末である。バインダは、例えば、ポリイミドアミド樹脂を含む。バインダに含まれるポリイミドアミド樹脂は、1種類であっても、2種類以上であってもよい。また、バインダは、ポリイミドアミド樹脂以外の樹脂を含んでいてもよい。導電性接合層23は、上述の導電性粉末およびバインダ、並びに、溶媒を含む液状またはペースト状の接着剤が、正極集電体21または正極活物質板22に塗布されて、正極集電体21と正極活物質板22との間にて溶媒が蒸発して固化することにより形成される。 The conductive bonding layer 23 contains conductive powder and a binder. The conductive powder is, for example, powder of acetylene black, scaly natural graphite, carbon nanotubes, carbon nanofibers, carbon nanotube derivatives, or carbon nanofiber derivatives. The binder includes, for example, a polyimide amide resin. The polyimide amide resin contained in the binder may be one type or two or more types. Further, the binder may contain a resin other than the polyimide amide resin. The conductive bonding layer 23 is formed by coating the positive electrode current collector 21 or the positive electrode active material plate 22 with a liquid or paste adhesive containing the above-described conductive powder and binder, and a solvent. And the positive electrode active material plate 22 are formed by evaporating and solidifying the solvent.
 正極集電体21の厚さは、例えば9μm~50μmであり、好ましくは9μm~20μmであり、より好ましくは9μm~15μmである。正極活物質板22の厚さは、例えば15μm~200μmであり、好ましくは30μm~150μmであり、より好ましくは50μm~100μmである。正極活物質板22を厚くすることにより、単位面積当たりの活物質容量を大きくし、リチウム二次電池1のエネルギー密度を増大させることができる。正極活物質板22を薄くすることにより、充放電の繰り返しに伴う電池特性の劣化(特に、抵抗値の増大)を抑制することができる。導電性接合層23の厚さは、例えば、3μm~28μmであり、好ましくは5μm~25μmである。 The thickness of the positive electrode current collector 21 is, for example, 9 μm to 50 μm, preferably 9 μm to 20 μm, and more preferably 9 μm to 15 μm. The thickness of the positive electrode active material plate 22 is, for example, 15 μm to 200 μm, preferably 30 μm to 150 μm, and more preferably 50 μm to 100 μm. By thickening the positive electrode active material plate 22, the active material capacity per unit area can be increased and the energy density of the lithium secondary battery 1 can be increased. By thinning the positive electrode active material plate 22, it is possible to suppress deterioration of battery characteristics (in particular, increase in resistance value) due to repeated charging and discharging. The thickness of the conductive bonding layer 23 is, for example, 3 μm to 28 μm, preferably 5 μm to 25 μm.
 負極3は、負極集電体31と、負極活物質層32とを備える。負極集電体31は、導電性を有するシート状の部材である。負極集電体31の上面は、負極接合層64を介して外装体6に接合されている。負極接合層64は、例えば、酸変性ポリオレフィン系樹脂とエポキシ系樹脂との混合樹脂により形成される。負極接合層64は、他の様々な材料により形成されてもよい。負極接合層64の厚さは、例えば0.5μm~10μmである。 The negative electrode 3 includes a negative electrode current collector 31 and a negative electrode active material layer 32. The negative electrode current collector 31 is a conductive sheet-shaped member. The upper surface of the negative electrode current collector 31 is bonded to the exterior body 6 via the negative electrode bonding layer 64. The negative electrode bonding layer 64 is formed of, for example, a mixed resin of acid-modified polyolefin resin and epoxy resin. The negative electrode bonding layer 64 may be formed of various other materials. The thickness of the negative electrode bonding layer 64 is, for example, 0.5 μm to 10 μm.
 負極集電体31は、例えば、銅等の金属により形成される金属箔である。当該金属箔は、銅以外の様々な金属(例えば、銅、ステンレス鋼、ニッケル、アルミニウム、銀、金、クロム、鉄、スズ、鉛、タングステン、モリブデン、チタン、亜鉛、または、これらを含む合金等)により形成されてもよい。 The negative electrode current collector 31 is, for example, a metal foil formed of a metal such as copper. The metal foil is various metals other than copper (for example, copper, stainless steel, nickel, aluminum, silver, gold, chromium, iron, tin, lead, tungsten, molybdenum, titanium, zinc, or alloys containing these, etc.). ).
 負極活物質層32は、樹脂を主成分とするバインダと、負極活物質である炭素質材料とを含む。負極活物質層32は、負極集電体31の下面上に塗工される。すなわち、負極3は、いわゆる塗工電極である。負極活物質層32は、上下方向においてセパレータ4と対向する。負極活物質層32の下面は、セパレータ4の上面と接触する。負極活物質層32では、上述の炭素質材料は、例えば、黒鉛(天然黒鉛もしくは人造黒鉛)、熱分解炭素、コークス、樹脂焼成体、メソフェーズ小球体、または、メソフェーズ系ピッチ等である。負極3では、炭素質材料に代えてリチウム吸蔵物質が負極活物質として利用されてもよい。当該リチウム吸蔵物質は、例えば、シリコン、アルミ、スズ、鉄、イリジウム、または、これらを含む合金、酸化物もしくはフッ化物等である。 The negative electrode active material layer 32 includes a binder containing a resin as a main component and a carbonaceous material that is a negative electrode active material. The negative electrode active material layer 32 is coated on the lower surface of the negative electrode current collector 31. That is, the negative electrode 3 is a so-called coated electrode. The negative electrode active material layer 32 faces the separator 4 in the vertical direction. The lower surface of the negative electrode active material layer 32 contacts the upper surface of the separator 4. In the negative electrode active material layer 32, the above-mentioned carbonaceous material is, for example, graphite (natural graphite or artificial graphite), pyrolytic carbon, coke, resin fired body, mesophase spherule, or mesophase pitch. In the negative electrode 3, a lithium storage material may be used as the negative electrode active material instead of the carbonaceous material. The lithium storage material is, for example, silicon, aluminum, tin, iron, iridium, or an alloy, oxide, or fluoride containing these.
 バインダは、例えば、スチレンブタジエンゴム(SBR)、ポリフッ化ビニリデン(PVDF)またはこれらの混合物である。本実施の形態では、SBRがバインダとして使用される。SBRは、PVDFに比べて、後述する電解液5に含まれるγ-ブチロラクトン(GBL)に溶解しにくい。したがって、SBRを負極3のバインダとして使用することにより、電解液5による負極活物質層32の劣化を抑制することができる。 The binder is, for example, styrene butadiene rubber (SBR), polyvinylidene fluoride (PVDF) or a mixture thereof. In this embodiment, SBR is used as a binder. Compared to PVDF, SBR is less likely to dissolve in γ-butyrolactone (GBL) contained in the electrolytic solution 5 described later. Therefore, by using SBR as the binder of the negative electrode 3, the deterioration of the negative electrode active material layer 32 due to the electrolytic solution 5 can be suppressed.
 負極集電体31の厚さは、例えば5μm~25μmであり、好ましくは8μm~20μmであり、より好ましくは8μm~15μmである。負極活物質層32の厚さは、例えば20μm~300μmであり、好ましくは30μm~250μmであり、より好ましくは30μm~150μmである。負極活物質層32を厚くすることにより、単位面積当たりの活物質容量を大きくし、リチウム二次電池1のエネルギー密度を増大させることができる。負極活物質層32を薄くすることにより、充放電の繰り返しに伴う電池特性の劣化(特に、抵抗値の増大)を抑制することができる。 The thickness of the negative electrode current collector 31 is, for example, 5 μm to 25 μm, preferably 8 μm to 20 μm, and more preferably 8 μm to 15 μm. The thickness of the negative electrode active material layer 32 is, for example, 20 μm to 300 μm, preferably 30 μm to 250 μm, and more preferably 30 μm to 150 μm. By thickening the negative electrode active material layer 32, the active material capacity per unit area can be increased and the energy density of the lithium secondary battery 1 can be increased. By thinning the negative electrode active material layer 32, it is possible to suppress deterioration of battery characteristics (in particular, increase in resistance value) due to repeated charging and discharging.
 リチウム二次電池1では、塗工電極である負極3に代えて、図3に示すように、負極3とは異なる構造を有する負極3aが設けられてもよい。負極3aは、上述の正極2と略同様の構造を有する。具体的には、負極3aは、負極集電体31aと、負極活物質板32aと、導電性接合層33aとを備える。負極集電体31aは、導電性を有するシート状の部材である。負極集電体31aは、例えば、上述の負極集電体31と同様の材料にて形成された同構造の部材である。 The lithium secondary battery 1 may be provided with a negative electrode 3a having a structure different from that of the negative electrode 3, as shown in FIG. 3, instead of the negative electrode 3 which is a coating electrode. The negative electrode 3a has substantially the same structure as the positive electrode 2 described above. Specifically, the negative electrode 3a includes a negative electrode current collector 31a, a negative electrode active material plate 32a, and a conductive bonding layer 33a. The negative electrode current collector 31a is a sheet-shaped member having conductivity. The negative electrode current collector 31a is, for example, a member having the same structure and made of the same material as the negative electrode current collector 31 described above.
 負極活物質板32a(すなわち、負極3aの活物質板)は、リチウム複合酸化物(例えば、リチウムチタン酸化物(LTO))を含む比較的薄い板状セラミック焼結体である。負極活物質板32aは、導電性接合層33aを介して負極集電体31aの下面に接合される。導電性接合層33aは、例えば、上述の正極2の導電性接合層23と同様の材料により形成される。負極活物質板32aは、上下方向においてセパレータ4と対向する。負極活物質板32aの下面は、セパレータ4の上面と接触する。負極活物質板32aは、正極活物質板22と同様に、実質的に樹脂を含んでいない。したがって、負極3aのセパレータ4に対向する主面(すなわち、図3中の下面)は、実質的に樹脂を含んでいない。 The negative electrode active material plate 32a (that is, the active material plate of the negative electrode 3a) is a relatively thin plate-shaped ceramic sintered body containing a lithium composite oxide (for example, lithium titanium oxide (LTO)). The negative electrode active material plate 32a is bonded to the lower surface of the negative electrode current collector 31a via the conductive bonding layer 33a. The conductive bonding layer 33a is formed of, for example, the same material as the conductive bonding layer 23 of the positive electrode 2 described above. The negative electrode active material plate 32a faces the separator 4 in the vertical direction. The lower surface of the negative electrode active material plate 32 a contacts the upper surface of the separator 4. The negative electrode active material plate 32 a, like the positive electrode active material plate 22, contains substantially no resin. Therefore, the main surface of the negative electrode 3a facing the separator 4 (that is, the lower surface in FIG. 3) contains substantially no resin.
 負極集電体31の厚さは、例えば5μm~25μmであり、好ましくは8μm~20μmであり、より好ましくは8μm~15μmである。負極活物質板32aの厚さは、例えば10μm~300μmであり、好ましくは30μm~200μmであり、より好ましくは30μm~150μmである。負極活物質板32aを厚くすることにより、単位面積当たりの活物質容量を大きくし、リチウム二次電池1のエネルギー密度を増大させることができる。負極活物質板32aを薄くすることにより、充放電の繰り返しに伴う電池特性の劣化(特に、抵抗値の増大)を抑制することができる。導電性接合層33aの厚さは、例えば、3μm~30μmであり、好ましくは5μm~25μmである。 The thickness of the negative electrode current collector 31 is, for example, 5 μm to 25 μm, preferably 8 μm to 20 μm, and more preferably 8 μm to 15 μm. The thickness of the negative electrode active material plate 32a is, for example, 10 μm to 300 μm, preferably 30 μm to 200 μm, and more preferably 30 μm to 150 μm. By thickening the negative electrode active material plate 32a, the active material capacity per unit area can be increased and the energy density of the lithium secondary battery 1 can be increased. By thinning the negative electrode active material plate 32a, it is possible to suppress deterioration of battery characteristics (in particular, increase in resistance value) due to repeated charging and discharging. The thickness of the conductive bonding layer 33a is, for example, 3 μm to 30 μm, preferably 5 μm to 25 μm.
 図3に示す例では、負極活物質板32aは、1枚の板状部材であるが、複数の板状部材(以下、「活物質板要素」と呼ぶ。)に分割されていてもよい。この場合、複数の活物質板要素はそれぞれ、導電性接合層33aを介して負極集電体31aに接合される。複数の活物質板要素は、例えば、負極集電体31a上においてマトリクス状(すなわち、格子状)に配列される。平面視における各活物質板要素の形状は、例えば略矩形である。複数の活物質板要素は、平面視において略同形状(すなわち、略同じ形かつ略同じ大きさ)であってもよく、異なる形状を有していてもよい。複数の活物質板要素は、平面視において互いに離間して配置される。 In the example shown in FIG. 3, the negative electrode active material plate 32a is a single plate-shaped member, but may be divided into a plurality of plate-shaped members (hereinafter referred to as “active material plate elements”). In this case, each of the plurality of active material plate elements is bonded to the negative electrode current collector 31a via the conductive bonding layer 33a. For example, the plurality of active material plate elements are arranged in a matrix (that is, a grid) on the negative electrode current collector 31a. The shape of each active material plate element in a plan view is, for example, a substantially rectangular shape. The plurality of active material plate elements may have substantially the same shape (that is, substantially the same shape and substantially the same size) in plan view, or may have different shapes. The plurality of active material plate elements are arranged apart from each other in a plan view.
 図1および図3に示すリチウム二次電池1では、電解液5は、例えば、非水溶媒中にホウフッ化リチウム(LiBF)を溶解させた溶液である。非水溶媒は、γ-ブチロラクトン(GBL)からなる単独溶媒であってもよいし、GBLおよびエチレンカーボネート(EC)を含む混合溶媒であってもよい。非水溶媒にGBLが含まれることにより、電解液5の沸点が上昇するため、リチウム二次電池1の耐熱性を向上させることができる。リチウム二次電池1の耐熱性向上の観点からは、当該非水溶媒におけるEC:GBLの体積比は、例えば0:1~1:1(すなわち、GBL比率50体積%~100体積%)であり、好ましくは0:1~1:1.5(GBL比率60体積%~100体積%)であり、より好ましくは0:1~1:2(GBL比率66.6体積%~100体積%)であり、さらに好ましくは0:1~1:3(GBL比率75体積%~100体積%)である。なお、電解液5の溶媒は、様々に変更されてよい。例えば、電解液5の溶媒は、必ずしもGBLを含む必要はなく、ECの単独溶媒であってもよい。 In the lithium secondary battery 1 shown in FIGS. 1 and 3, the electrolytic solution 5 is, for example, a solution in which lithium borofluoride (LiBF 4 ) is dissolved in a non-aqueous solvent. The non-aqueous solvent may be a single solvent consisting of γ-butyrolactone (GBL) or a mixed solvent containing GBL and ethylene carbonate (EC). By including GBL in the non-aqueous solvent, the boiling point of the electrolytic solution 5 rises, so that the heat resistance of the lithium secondary battery 1 can be improved. From the viewpoint of improving the heat resistance of the lithium secondary battery 1, the volume ratio of EC:GBL in the non-aqueous solvent is, for example, 0:1 to 1:1 (that is, the GBL ratio is 50% to 100% by volume). , Preferably 0:1 to 1:1.5 (GBL ratio 60% by volume to 100% by volume), and more preferably 0:1 to 1:2 (GBL ratio 66.6% by volume to 100% by volume). And more preferably 0:1 to 1:3 (GBL ratio 75% to 100% by volume). The solvent of the electrolytic solution 5 may be changed variously. For example, the solvent of the electrolytic solution 5 does not necessarily need to contain GBL and may be a single solvent of EC.
 溶質であるLiBFは、分解温度の高い電解質である。このため、リチウム二次電池1の耐熱性をさらに向上させることができる。電解液5におけるLiBF濃度は、例えば0.5mol/L~2mol/Lであり、好ましくは0.6mol/L~1.9mol/Lであり、より好ましくは0.7mol/L~1.7mol/Lであり、さらに好ましくは0.8mol/L~1.5mol/Lである。なお、電解液5の溶質は、様々に変更されてよい。例えば、電解液5の溶質は、六フッ化リン酸リチウム(LiPF)であってもよい。 LiBF 4 , which is a solute, is an electrolyte having a high decomposition temperature. Therefore, the heat resistance of the lithium secondary battery 1 can be further improved. The LiBF 4 concentration in the electrolytic solution 5 is, for example, 0.5 mol/L to 2 mol/L, preferably 0.6 mol/L to 1.9 mol/L, and more preferably 0.7 mol/L to 1.7 mol. /L, and more preferably 0.8 mol/L to 1.5 mol/L. The solute of the electrolytic solution 5 may be variously changed. For example, the solute of the electrolytic solution 5 may be lithium hexafluorophosphate (LiPF 6 ).
 電解液5は、添加剤としてビニレンカーボネート(VC)、および/または、フルオロエチレンカーボネート(FEC)をさらに含むのが好ましい。VCおよびFECはいずれも耐熱性に優れる。電解液5が当該添加剤を含むことにより、耐熱性に優れたSEI膜が負極3の表面に形成され、リチウム二次電池1の耐熱性を、より一層向上することができる。 The electrolytic solution 5 preferably further contains vinylene carbonate (VC) and/or fluoroethylene carbonate (FEC) as an additive. Both VC and FEC have excellent heat resistance. When the electrolytic solution 5 contains the additive, a SEI film having excellent heat resistance is formed on the surface of the negative electrode 3, and the heat resistance of the lithium secondary battery 1 can be further improved.
 セパレータ4は、シート状または薄板状の絶縁部材である。セパレータ4は、例えば、樹脂により形成された単層セパレータである。換言すれば、セパレータ4の正極2に対向する面および負極3に対向する面は、樹脂により形成されている。当該樹脂は、例えば、ポリイミド、ポリエチレン、ポリエステル(例えば、ポリエチレンテレフタレート(PET))またはポリプロピレン等である。本実施の形態では、セパレータ4はポリイミド製の多孔質膜(例えば、三次元多孔構造体(3DOM))である。ポリイミドは、ポリエチレンおよびポリプロピレンに比べて、耐熱性に優れ、また、上述のGBLに対する濡れ性にも優れる。したがって、ポリイミド製のセパレータ4を使用することにより、リチウム二次電池1の耐熱性を向上することができる。また、電解液5がセパレータ4により弾かれることを抑制し、電解液5をセパレータ4に容易に浸透させることができる。 The separator 4 is a sheet-shaped or thin plate-shaped insulating member. The separator 4 is, for example, a single-layer separator made of resin. In other words, the surface of the separator 4 facing the positive electrode 2 and the surface of the separator 4 facing the negative electrode 3 are made of resin. The resin is, for example, polyimide, polyethylene, polyester (for example, polyethylene terephthalate (PET)), polypropylene, or the like. In the present embodiment, the separator 4 is a polyimide porous film (for example, a three-dimensional porous structure (3DOM)). Polyimide is superior in heat resistance to polyethylene and polypropylene, and is also excellent in wettability with GBL. Therefore, the heat resistance of the lithium secondary battery 1 can be improved by using the separator 4 made of polyimide. Further, the electrolytic solution 5 can be prevented from being repelled by the separator 4, and the electrolytic solution 5 can easily permeate into the separator 4.
 なお、セパレータ4は、例えば、セラミック基板上に樹脂層が積層された2層セパレータであってもよい。あるいは、セパレータ4は、樹脂層である基板上にセラミックがコーティングされた2層セパレータであってもよい。セパレータ4は、3層以上の多層構造を有していてもよい。例えば、セパレータ4は、セラミック基板の上面および下面に樹脂層が積層された3層セパレータであってもよい。 Note that the separator 4 may be, for example, a two-layer separator in which a resin layer is laminated on a ceramic substrate. Alternatively, the separator 4 may be a two-layer separator in which a substrate, which is a resin layer, is coated with ceramic. The separator 4 may have a multilayer structure of three layers or more. For example, the separator 4 may be a three-layer separator in which resin layers are laminated on the upper surface and the lower surface of the ceramic substrate.
 図4は、図2中のIV-IVの位置でリチウム二次電池1を切断した断面図である。図5は、図4中のリチウム二次電池1の左端部を拡大して示す図である。図4および図5では、図の理解を容易にするために、リチウム二次電池1およびその構成を、実際よりも厚く描いている。また、外装体6については、ラミネート構造の詳細な図示を省略し、1本の実線で描いている。図6は、リチウム二次電池1の平面図である。 FIG. 4 is a cross-sectional view of the lithium secondary battery 1 taken along the line IV-IV in FIG. FIG. 5 is an enlarged view showing the left end portion of the lithium secondary battery 1 in FIG. In FIG. 4 and FIG. 5, the lithium secondary battery 1 and its configuration are drawn thicker than they actually are in order to facilitate understanding of the drawings. Further, with respect to the exterior body 6, the detailed illustration of the laminated structure is omitted, and it is drawn by one solid line. FIG. 6 is a plan view of the lithium secondary battery 1.
 図4ないし図6に示すように、外装体6は、被覆領域67と、外周領域68とを備える。また、外周領域68は、第1領域681と、第2領域682とを備える。図4および図6に示す例では、外周領域68は2つの第1領域681と、2つの第2領域682とを備える。図6では、被覆領域67、第1領域681および第2領域682をそれぞれ二点鎖線にて囲む。また、図6では、被覆領域67、および、外周領域68の第2領域682を除く領域に平行斜線を付す。外周領域68の第2領域682には平行斜線を付していない。 As shown in FIGS. 4 to 6, the outer casing 6 includes a covering region 67 and an outer peripheral region 68. In addition, the outer peripheral area 68 includes a first area 681 and a second area 682. In the example shown in FIGS. 4 and 6, the outer peripheral area 68 includes two first areas 681 and two second areas 682. In FIG. 6, the covering region 67, the first region 681, and the second region 682 are each surrounded by a chain double-dashed line. In addition, in FIG. 6, the hatched area 67 and the area of the outer peripheral area 68 excluding the second area 682 are hatched in parallel. The second area 682 of the outer peripheral area 68 is not shaded with parallel diagonal lines.
 外装体6の被覆領域67は、平面視において、正極2、セパレータ4および負極3と上下方向に重なる略矩形状の領域である。外周領域68は、外装体6のうち被覆領域67を除く領域(すなわち、正極2、セパレータ4および負極3と重ならない領域)であり、平面視において、被覆領域67の周囲を囲む略矩形枠状の領域である。外周領域68は、被覆領域67と連続する。 The covering region 67 of the outer package 6 is a substantially rectangular region that vertically overlaps the positive electrode 2, the separator 4, and the negative electrode 3 in a plan view. The outer peripheral region 68 is a region (that is, a region that does not overlap the positive electrode 2, the separator 4, and the negative electrode 3) of the exterior body 6 excluding the coating region 67, and has a substantially rectangular frame shape surrounding the periphery of the coating region 67 in plan view. Area. The outer peripheral area 68 is continuous with the covered area 67.
 2つの第1領域681は、図4および図6中の左右方向の両側の一対の辺(以下、「長辺691」とも呼ぶ。)に沿ってそれぞれ延びる略矩形の略帯状領域である。以下の説明では、図4ないし図6中の左右方向を「幅方向」とも呼ぶ。当該幅方向は、外装体6の一対の長辺691に対して略垂直である。各第1領域681は、長辺691を含む領域であり、被覆領域67の幅方向の一対の辺から幅方向に離間している。一対の第1領域681では、上下方向に重なる外装体6の2層のシート部(すなわち、第1シート部65および第2シート部66)が、上述のように接合されている。 The two first regions 681 are substantially rectangular strip-shaped regions that extend along a pair of sides on both sides in the left-right direction in FIGS. 4 and 6 (hereinafter, also referred to as “long sides 691”). In the following description, the left-right direction in FIGS. 4 to 6 is also referred to as “width direction”. The width direction is substantially perpendicular to the pair of long sides 691 of the exterior body 6. Each first region 681 is a region including a long side 691, and is separated in the width direction from a pair of sides in the width direction of the covering region 67. In the pair of first regions 681, the two-layer sheet portions (that is, the first sheet portion 65 and the second sheet portion 66) of the exterior body 6 that overlap in the vertical direction are joined as described above.
 図6に示す例では、各第1領域681の幅方向に対して垂直な方向(以下、「長手方向」とも呼ぶ。)の長さは、被覆領域67の長手方向の長さと略同じである。また、各第1領域681の幅方向の幅(以下、単に「幅」とも呼ぶ。)は、長手方向の略全長に亘って略一定である。第1領域681の幅は、例えば1mm~5mmであり、好ましくは1.5mm~4mmであり、より好ましくは2mm~3mmである。なお、第1領域681は、実質的に帯状と捉えられる形状を有していればよく、第1領域681の幅は長手方向において多少変化してもよい。 In the example shown in FIG. 6, the length of each first region 681 in the direction perpendicular to the width direction (hereinafter, also referred to as “longitudinal direction”) is substantially the same as the length of the covered region 67 in the longitudinal direction. .. The width of each first region 681 in the width direction (hereinafter, also simply referred to as “width”) is substantially constant over the entire length in the longitudinal direction. The width of the first region 681 is, for example, 1 mm to 5 mm, preferably 1.5 mm to 4 mm, and more preferably 2 mm to 3 mm. The first region 681 only needs to have a shape that can be regarded as a substantially strip shape, and the width of the first region 681 may change slightly in the longitudinal direction.
 2つの第2領域682は、被覆領域67の幅方向の両側にて、被覆領域67と一対の第1領域681との間に配置される。2つの第2領域682は、被覆領域67の幅方向の一対の辺に沿って長手方向に延びる略矩形の略帯状領域である。換言すれば、2つの第2領域682は、一対の第1領域681に沿って長手方向に延びる略矩形の略帯状領域である。各第2領域682は、幅方向において被覆領域67および第1領域681と連続している。第2領域682では、上下方向に重なる外装体6の2層のシート部(すなわち、第1シート部65および第2シート部66)が、非接合状態にて接触している。当該接触は、第1シート部65と第2シート部66との間に電解液5等が介在しない直接的接触である。なお、第2領域682では、第1シート部65および第2シート部66は、僅かな空隙を挟んで近接していてもよい。当該空隙には、電解液5が僅かに存在していてもよく、電解液5が存在していなくてもよい。 The two second regions 682 are arranged between the covering region 67 and the pair of first regions 681 on both sides of the covering region 67 in the width direction. The two second regions 682 are substantially rectangular strip-shaped regions extending in the longitudinal direction along a pair of sides of the covering region 67 in the width direction. In other words, the two second regions 682 are substantially rectangular strip-shaped regions extending in the longitudinal direction along the pair of first regions 681. Each second region 682 is continuous with the covering region 67 and the first region 681 in the width direction. In the second region 682, the two-layer sheet portions (that is, the first sheet portion 65 and the second sheet portion 66) of the exterior body 6 that are vertically overlapped are in contact with each other in a non-bonded state. The contact is a direct contact in which the electrolytic solution 5 and the like are not interposed between the first sheet portion 65 and the second sheet portion 66. In the second region 682, the first sheet portion 65 and the second sheet portion 66 may be close to each other with a slight gap therebetween. The electrolyte solution 5 may be slightly present in the void, or the electrolyte solution 5 may not be present.
 図6に示す例では、各第2領域682の長手方向の長さは、被覆領域67および第1領域681の長手方向の長さと略同じである。また、各第2領域682の幅方向の幅は、長手方向の略全長に亘って略一定である。第2領域682の幅は、例えば0.3mm~25mmであり、好ましくは0.5mm~15mmであり、より好ましくは1mm~5mmである。なお、第2領域682は、実質的に帯状と捉えられる形状を有していればよく、第2領域682の幅は長手方向において多少変化してもよい。 In the example shown in FIG. 6, the length of each second region 682 in the longitudinal direction is substantially the same as the length of the covering region 67 and the first region 681 in the longitudinal direction. The width of each second region 682 in the width direction is substantially constant over the entire length in the longitudinal direction. The width of the second region 682 is, for example, 0.3 mm to 25 mm, preferably 0.5 mm to 15 mm, and more preferably 1 mm to 5 mm. The second region 682 only needs to have a shape that can be regarded as a substantially strip shape, and the width of the second region 682 may change slightly in the longitudinal direction.
 以下の説明では、幅方向に並ぶ一対の第2領域682の合計幅を「第2領域幅A1」と呼ぶ。また、正極2の正極活物質板22の幅(すなわち、正極2において活物質が設けられる活物質領域の幅)を「正極活物質幅」と呼び、負極3の負極活物質層32の幅(すなわち、負極3において活物質が設けられる活物質領域の幅)を「負極活物質幅」と呼ぶ。正極活物質幅と負極活物質幅とが異なる場合、正極活物質幅および負極活物質幅のうち小さい方の幅を「活物質領域幅B3」と呼ぶ。一方、正極活物質幅と負極活物質幅とが同じである場合は、正極活物質幅および負極活物質幅のうちいずれか一方を活物質領域幅B3とする。図4に示す例では、正極活物質板22の幅は、負極活物質層32の幅と略同じである。この場合、活物質領域幅B3は、正極活物質幅および負極活物質幅のいずれであってもよい。 In the following description, the total width of the pair of second areas 682 arranged in the width direction is referred to as “second area width A1”. Further, the width of the positive electrode active material plate 22 of the positive electrode 2 (that is, the width of the active material region in which the active material is provided in the positive electrode 2) is referred to as the “positive electrode active material width”, and the width of the negative electrode active material layer 32 of the negative electrode 3 ( That is, the width of the active material region in which the active material is provided in the negative electrode 3) is called the “negative electrode active material width”. When the positive electrode active material width and the negative electrode active material width are different, the smaller width of the positive electrode active material width and the negative electrode active material width is referred to as “active material region width B3”. On the other hand, when the positive electrode active material width and the negative electrode active material width are the same, one of the positive electrode active material width and the negative electrode active material width is set as the active material region width B3. In the example shown in FIG. 4, the width of the positive electrode active material plate 22 is substantially the same as the width of the negative electrode active material layer 32. In this case, the active material region width B3 may be either the positive electrode active material width or the negative electrode active material width.
 第2領域幅A1を被除数とし、活物質領域幅B3を除数として、被除数を除数により除算した値(すなわち、第2領域幅A1/活物質領域幅B3)は、例えば0.02以上であり、好ましくは0.04以上である。また、第2領域幅A1/活物質領域幅B3は、例えば1以下であり、好ましくは0.2以下である。活物質領域幅B3は、例えば、15mm~25mmである。 A value obtained by dividing the dividend by the divisor with the second region width A1 as the dividend and the active material region width B3 as the divisor (that is, the second region width A1/active material region width B3) is, for example, 0.02 or more, It is preferably 0.04 or more. The second region width A1/active material region width B3 is, for example, 1 or less, preferably 0.2 or less. The active material region width B3 is, for example, 15 mm to 25 mm.
 リチウム二次電池1の外装体6では、第2領域682は、必ずしも被覆領域67の幅方向の両側に設けられる必要はなく、被覆領域67の幅方向の一方側のみに配置されてもよい。換言すれば、第2領域682は、一対の第1領域681のうち、少なくとも一方の第1領域681と被覆領域67との間に設けられていればよい。外装体6において、一対の第1領域681のうち一方の第1領域681と被覆領域67との間にのみ第2領域682が存在する場合、上述の第2領域幅A1は、当該1つの第2領域682の幅である。 In the exterior body 6 of the lithium secondary battery 1, the second regions 682 do not necessarily have to be provided on both sides of the covering region 67 in the width direction, and may be arranged only on one side of the covering region 67 in the width direction. In other words, the second region 682 may be provided between at least one of the pair of first regions 681 and the covering region 67. In the exterior body 6, when the second region 682 exists only between the one first region 681 and the covering region 67 of the pair of first regions 681, the above-mentioned second region width A1 is the same as the one of the first region 681. This is the width of the two areas 682.
 図4に示す例では、外装体6の幅方向両端部において、第1領域681および第2領域682は、折り曲げられることなく幅方向に略平行に延びているが、第1領域681の形状は様々に変更されてよい。例えば、図7ないし図9に示すように、外装体6の第1領域681は、外装体6の一対の長辺691(図6参照)に平行に延びる折り返し線693にて、幅方向内側(すなわち、被覆領域67に近づく側)へと約180°折り返されている。以下の説明では、外周領域68のうち、被覆領域67から折り返し線693まで延びる部位を「非折り返し部694」と呼び、折り返し線693にて幅方向内側に折り返される部位を「折り返し部695」と呼ぶ。折り返し部695は、非折り返し部694と上下方向に対向する。 In the example shown in FIG. 4, the first region 681 and the second region 682 extend substantially parallel to the width direction at both ends of the exterior body 6 in the width direction, but the shape of the first region 681 is It may be changed in various ways. For example, as shown in FIGS. 7 to 9, the first region 681 of the exterior body 6 has a fold line 693 extending in parallel to the pair of long sides 691 (see FIG. 6) of the exterior body 6 in the width direction inside ( That is, it is folded back by about 180° to the side closer to the covering region 67). In the following description, a part of the outer peripheral region 68 extending from the covering region 67 to the folding line 693 is referred to as a “non-folding part 694”, and a part folded back inward in the width direction at the folding line 693 is referred to as a “folding part 695”. Call. The folded portion 695 faces the non-folded portion 694 in the vertical direction.
 図7ないし図9に示す例では、折り返し部695は図中の上側(すなわち、負極3側)へと折り返されているが、図中の下側(すなわち、正極2側)へと折り返されてもよい。なお、図7ないし図9では、幅方向の一方側の第1領域681および第2領域682を示しているが、幅方向の他方側の第1領域681および第2領域682も、同様の構造を有してよい。 In the example shown in FIGS. 7 to 9, the folded portion 695 is folded back to the upper side (that is, the negative electrode 3 side) in the drawings, but is folded back to the lower side (that is, the positive electrode 2 side) in the drawings. Good. 7 to 9, the first region 681 and the second region 682 on one side in the width direction are shown, but the first region 681 and the second region 682 on the other side in the width direction also have the same structure. May have.
 図7に示す例では、折り返し線693は、外周領域68において、第1領域681の幅方向の略中央に位置する。したがって、折り返し部695のエッジ(すなわち、折り返し線693とは反対側の側縁)は、非折り返し部694における第1領域681と第2領域682との境界と、幅方向の略同じ位置に位置する。換言すれば、第1領域681は折り返し線693にて2つ折りにされ、第1領域681の折り返し部695は、第1領域681の残りの部位と上下方向に対向する。また、第1領域681の折り返し部695は、第2領域682とは上下方向に対向しない。第2領域682は、折り返し線693と被覆領域67との間に位置しているため、折り返されない。換言すれば、折り返し部695は第2領域682を含まない。 In the example shown in FIG. 7, the folding line 693 is located in the outer peripheral region 68 at substantially the center of the first region 681 in the width direction. Therefore, the edge of the folded-back portion 695 (that is, the side edge opposite to the folded-back line 693) is located at substantially the same position in the width direction as the boundary between the first region 681 and the second region 682 in the non-folded-back portion 694. To do. In other words, the first region 681 is folded in half along the folding line 693, and the folded-back portion 695 of the first region 681 vertically faces the remaining portion of the first region 681. Further, the folded portion 695 of the first region 681 does not face the second region 682 in the vertical direction. The second region 682 is located between the folding line 693 and the covering region 67, and thus is not folded back. In other words, the folded portion 695 does not include the second region 682.
 図8に示す例では、折り返し線693は、外周領域68において、第1領域681の幅方向の中央に対して第2領域682の反対側(すなわち、当該中央よりも幅方向外側)に位置する。したがって、折り返し部695のエッジは、非折り返し部694における第1領域681と第2領域682との境界よりも、幅方向外側(すなわち、被覆領域67から遠い側)に位置する。換言すれば、第1領域681は折り返し線693にて2つ折りにされ、第1領域681の折り返し部695は、第1領域681の残りの部位と上下方向に対向する。また、第1領域681の折り返し部695は、第2領域682とは上下方向に対向しない。第2領域682は、折り返し線693と被覆領域67との間に位置しているため、折り返されない。換言すれば、折り返し部695は第2領域682を含まない。 In the example illustrated in FIG. 8, the folding line 693 is located in the outer peripheral region 68 on the opposite side of the second region 682 with respect to the center of the first region 681 in the width direction (that is, outside the center in the width direction). .. Therefore, the edge of the folded portion 695 is located on the outer side in the width direction (that is, the side farther from the covering region 67) than the boundary between the first region 681 and the second region 682 in the non-folded portion 694. In other words, the first region 681 is folded in half along the folding line 693, and the folded-back portion 695 of the first region 681 vertically faces the remaining portion of the first region 681. Further, the folded portion 695 of the first region 681 does not face the second region 682 in the vertical direction. The second region 682 is located between the folding line 693 and the covering region 67, and thus is not folded back. In other words, the folded portion 695 does not include the second region 682.
 図9に示す例では、折り返し線693は、外周領域68において、第1領域681の幅方向の中央と第2領域682との間に位置する。したがって、折り返し部695のエッジは、非折り返し部694における第1領域681と第2領域682との境界よりも、幅方向内側(すなわち、被覆領域67に近い側)に位置する。換言すれば、第1領域681は折り返し線693にて2つ折りにされ、第1領域681の折り返し部695は、第1領域681の残りの部位および第2領域682と上下方向に対向する。図9に示す例では、折り返し部695は、非折り返し部694の略全体と上下方向に対向する。第2領域682は、折り返し線693と被覆領域67との間に位置しているため、折り返されない。換言すれば、折り返し部695は第2領域682を含まない。 In the example shown in FIG. 9, the fold line 693 is located in the outer peripheral region 68 between the widthwise center of the first region 681 and the second region 682. Therefore, the edge of the folded portion 695 is located on the inner side in the width direction (that is, on the side closer to the covered region 67) than the boundary between the first region 681 and the second region 682 in the non-folded portion 694. In other words, the first region 681 is folded in two along the folding line 693, and the folded portion 695 of the first region 681 vertically faces the remaining portion of the first region 681 and the second region 682. In the example shown in FIG. 9, the folded portion 695 opposes substantially the entire non-folded portion 694 in the vertical direction. The second region 682 is located between the folding line 693 and the covering region 67, and thus is not folded back. In other words, the folded portion 695 does not include the second region 682.
 次に、図10Aおよび図10Bを参照しつつ、リチウム二次電池1の製造の流れの一例について説明する。まず、外装体6の第1シート部65および第2シート部66として、2枚のアルミラミネートフィルム(昭和電工パッケージング製、厚さ61μm、ポリプロピレンフィルム/アルミニウム箔/ナイロンフィルムの3層構造)が用意される。また、正極活物質板22が用意される。正極活物質板22は、LiCoOグリーンシートを焼結することにより形成される。図10Aに示す例では、正極活物質板22は複数の活物質板要素24を有する。なお、正極活物質板22が一繋がりの部材(すなわち、一枚板)である場合も、下記の製造方法は略同じである。 Next, an example of the flow of manufacturing the lithium secondary battery 1 will be described with reference to FIGS. 10A and 10B. First, as the first sheet portion 65 and the second sheet portion 66 of the exterior body 6, two aluminum laminated films (manufactured by Showa Denko Packaging, thickness 61 μm, three-layer structure of polypropylene film/aluminum foil/nylon film) Be prepared. Further, the positive electrode active material plate 22 is prepared. The positive electrode active material plate 22 is formed by sintering a LiCoO 2 green sheet. In the example shown in FIG. 10A, the positive electrode active material plate 22 has a plurality of active material plate elements 24. Even when the positive electrode active material plate 22 is a continuous member (that is, a single plate), the following manufacturing method is substantially the same.
 LiCoOグリーンシートは、次のようにして作製される。まず、Li/Coのモル比が1.01となるように秤量されたCo粉末(正同化学工業株式会社製)とLiCO粉末(本荘ケミカル株式会社製)とが混合された後、780℃で5時間保持される。続いて、得られた粉末が、ポットミルにて体積基準D50が0.4μmとなるように粉砕および解砕され、LiCoO板状粒子からなる粉末が得られる。 The LiCoO 2 green sheet is manufactured as follows. First, Co 3 O 4 powder (manufactured by Shodo Chemical Industry Co., Ltd.) and Li 2 CO 3 powder (manufactured by Honjo Chemical Co., Ltd.), which were weighed so that the molar ratio of Li/Co was 1.01, were mixed. After that, it is held at 780° C. for 5 hours. Subsequently, the obtained powder is crushed and crushed in a pot mill so that the volume-based D50 is 0.4 μm, and a powder composed of LiCoO 2 plate-like particles is obtained.
 得られたLiCoO粉末100重量部と、分散媒(トルエン:イソプロパノール=1:1)100重量部と、バインダー(ポリビニルブチラール:品番BM-2、積水化学工業株式会社製)10重量部と、可塑剤(DOP:Di(2-ethylhexyl)phthalate、黒金化成株式会社製)4重量部と、分散剤(製品名レオドールSP-O30、花王株式会社製)2重量部とが混合される。得られた混合物は、減圧下で撹拌されて脱泡されるとともに、粘度を4000cPに調整されることによって、LiCoOスラリーが調製される。粘度は、ブルックフィールド社製LVT型粘度計により測定される。こうして調製されたスラリーが、ポリエチレンテレフタレート(PET)フィルム上にドクターブレード法にてシート状に成形されることにより、LiCoOグリーンシートが形成される。乾燥後のLiCoOグリーンシートの厚さは98μmであった。 100 parts by weight of the obtained LiCoO 2 powder, 100 parts by weight of a dispersion medium (toluene:isopropanol=1:1), 10 parts by weight of a binder (polyvinyl butyral: product number BM-2, manufactured by Sekisui Chemical Co., Ltd.), plastic 4 parts by weight of the agent (DOP: Di(2-ethylhexyl) phthalate, manufactured by Kurogane Kasei Co., Ltd.) and 2 parts by weight of the dispersant (product name: Leodol SP-O30, manufactured by Kao Corporation) are mixed. The obtained mixture is stirred under reduced pressure for defoaming, and the viscosity is adjusted to 4000 cP to prepare a LiCoO 2 slurry. The viscosity is measured by a Brookfield LVT viscometer. The slurry thus prepared is formed into a sheet on a polyethylene terephthalate (PET) film by a doctor blade method to form a LiCoO 2 green sheet. The thickness of the LiCoO 2 green sheet after drying was 98 μm.
 次に、PETフィルムから剥がされたLiCoOグリーンシートが、カッターにより50mm角に切り出され、下部セッターとしてのマグネシア製セッター(寸法90mm角、高さ1mm)の中央に載置される。また、LiCoOシートの上には、上部セッターとしての多孔質マグネシア製セッターが載置される。LiCoOシートは、セッターで挟まれた状態で、120mm角のアルミナ鞘(株式会社ニッカトー製)内に載置される。このとき、アルミナ鞘を密閉することなく、0.5mmの隙間を空けて蓋がされる。得られた積層物は、昇温速度200℃/hで600℃まで昇温されて3時間脱脂された後に、870℃まで200℃/hで昇温されて20時間保持されることで焼成される。焼成後、室温まで降温させた後に焼成体がアルミナ鞘より取り出される。こうして厚さ90μmのLiCoO焼結体板が得られる。得られたLiCoO焼結体板は、レーザー加工機で10.5mm×9.5mm角の矩形状に切断されて、複数の活物質板要素24(すなわち、正極活物質板22)が得られる。 Next, the LiCoO 2 green sheet peeled from the PET film is cut into 50 mm square with a cutter, and placed on the center of a magnesia setter (size 90 mm square, height 1 mm) as a lower setter. Further, a porous magnesia setter as an upper setter is placed on the LiCoO 2 sheet. The LiCoO 2 sheet is placed in a 120 mm square alumina sheath (manufactured by Nikkato Co., Ltd.) while being sandwiched between setters. At this time, the lid is opened with a gap of 0.5 mm without sealing the alumina sheath. The obtained laminate is heated to 600° C. at a heating rate of 200° C./h and degreased for 3 hours, and then heated to 870° C. at 200° C./h and held for 20 hours to be fired. It After firing, the temperature is lowered to room temperature, and then the fired body is taken out from the alumina sheath. In this way, a LiCoO 2 sintered body plate having a thickness of 90 μm is obtained. The obtained LiCoO 2 sintered body plate is cut into a rectangular shape of 10.5 mm×9.5 mm square by a laser processing machine to obtain a plurality of active material plate elements 24 (that is, the positive electrode active material plate 22). ..
 正極活物質板22が用意されると、ポリアミドイミド(PAI)をN-メチルピロリドンに溶解させた溶液にアセチレンブラックが混合されてスラリーが調製され、当該スラリー2μL(マイクロリットル)が、正極集電体21(厚さ9mmのアルミニウム箔)上に滴下されて導電性接合層23が形成される。続いて、導電性接合層23上に正極活物質板22が載せられて乾燥される。図10Aに示す例では、複数の活物質板要素24を有する正極活物質板22が、導電性接合層23を介して正極集電体21に接合される。その後、正極集電体21および正極活物質板22(すなわち、複数の活物質板要素24)の複合体が、第1シート部65上に積層され、正極接合層63を介して第1シート部65に接合されることにより、正極組立品20が形成される。なお、正極集電体21には、1つの端子7の一方の端部が溶接により予め固定されている。 When the positive electrode active material plate 22 is prepared, acetylene black is mixed with a solution in which polyamideimide (PAI) is dissolved in N-methylpyrrolidone to prepare a slurry, and 2 μL (microliter) of the slurry is used as a positive electrode current collector. The conductive bonding layer 23 is formed by being dropped on the body 21 (aluminum foil having a thickness of 9 mm). Then, the positive electrode active material plate 22 is placed on the conductive bonding layer 23 and dried. In the example shown in FIG. 10A, the positive electrode active material plate 22 having the plurality of active material plate elements 24 is bonded to the positive electrode current collector 21 via the conductive bonding layer 23. Then, the composite body of the positive electrode current collector 21 and the positive electrode active material plate 22 (that is, the plurality of active material plate elements 24) is laminated on the first sheet portion 65, and the first sheet portion is interposed via the positive electrode bonding layer 63. The positive electrode assembly 20 is formed by being bonded to 65. One end of one terminal 7 is fixed to the positive electrode current collector 21 in advance by welding.
 一方、負極集電体31(厚さ10μmの銅箔)上には、負極活物質層32(厚さ130μmのカーボン層)が塗工される。負極活物質層32は、活物質としてのグラファイトと、バインダとしてのPVDFとの混合物を含むカーボン塗工膜である。続いて、負極集電体31および負極活物質層32の複合体が、第2シート部66上に積層され、負極接合層64を介して第2シート部66に接合されることにより、負極組立品30が形成される。なお、負極集電体31には、1つの端子7の一方の端部が溶接により予め固定されている。 On the other hand, the negative electrode active material layer 32 (carbon layer having a thickness of 130 μm) is coated on the negative electrode current collector 31 (copper foil having a thickness of 10 μm). The negative electrode active material layer 32 is a carbon coating film containing a mixture of graphite as an active material and PVDF as a binder. Subsequently, the composite body of the negative electrode current collector 31 and the negative electrode active material layer 32 is laminated on the second sheet portion 66 and bonded to the second sheet portion 66 via the negative electrode bonding layer 64, whereby the negative electrode assembly is formed. A product 30 is formed. Note that one end of one terminal 7 is fixed to the negative electrode current collector 31 in advance by welding.
 セパレータ4としては、多孔質ポリイミド膜(東京応化工業製 TOKS-8023i2)が用意される。そして、正極組立品20、セパレータ4および負極組立品30が、正極活物質板22および負極活物質層32がセパレータ4と対向するように順に積層され、中間積層体10が形成される。中間積層体10では、上下両面が外装体6(すなわち、第1シート部65および第2シート部66)により覆われており、正極組立品20、セパレータ4および負極組立品30の周囲に第1シート部65および第2シート部66が延在している。また、正極組立品20、セパレータ4および負極組立品30(以下、まとめて「電池要素」とも呼ぶ。)の上下方向の厚さは0.33mmである。平面視における電池要素の形状は、2.3cm×3.2cmの略矩形である。 As the separator 4, a porous polyimide film (TOKS-8023i2 manufactured by Tokyo Ohka Kogyo) is prepared. Then, the positive electrode assembly 20, the separator 4, and the negative electrode assembly 30 are sequentially laminated so that the positive electrode active material plate 22 and the negative electrode active material layer 32 face the separator 4, and the intermediate laminate 10 is formed. In the intermediate laminate 10, both upper and lower surfaces are covered with the exterior body 6 (that is, the first sheet portion 65 and the second sheet portion 66), and the first positive electrode assembly 20, the separator 4, and the negative electrode assembly 30 are surrounded by a first The seat portion 65 and the second seat portion 66 extend. In addition, the thickness of the positive electrode assembly 20, the separator 4, and the negative electrode assembly 30 (hereinafter collectively referred to as “battery element”) in the vertical direction is 0.33 mm. The shape of the battery element in plan view is a substantially rectangular shape of 2.3 cm×3.2 cm.
 続いて、略矩形状の中間積層体10の4つの辺のうち3つの辺が、熱融着接合により封止される。図10Aに示す例では、図中の上側の1つの辺を除く3つの辺が封止される。当該3つの辺には、2つの端子7が突出する1つの辺が含まれている。当該3つの辺の封止では、封止幅が2mmになるように調整された当て冶具が用いられ、中間積層体10の外周部分が、200℃、1.5MPa(メガパスカル)で10秒間加熱および加圧される。これにより、外装体6の上記外周領域68(図6参照)のうち、一対の第2領域682、および、未封止の辺に対応する一方の第1領域681を除く領域において、第1シート部65と第2シート部66とが熱融着する。 Subsequently, three of the four sides of the substantially rectangular intermediate laminate 10 are sealed by heat fusion bonding. In the example shown in FIG. 10A, three sides are sealed except one side on the upper side in the figure. The three sides include one side from which the two terminals 7 project. In the sealing of the three sides, a patch jig adjusted to have a sealing width of 2 mm is used, and the outer peripheral portion of the intermediate laminate 10 is heated at 200° C. and 1.5 MPa (megapascal) for 10 seconds. And pressurized. As a result, in the outer peripheral region 68 (see FIG. 6) of the exterior body 6, in the region excluding the pair of second regions 682 and the one first region 681 corresponding to the unsealed side, the first sheet The portion 65 and the second sheet portion 66 are heat-sealed.
 当該3つの辺の封止後、中間積層体10は、真空乾燥器81に収容され、水分の除去および接着剤(すなわち、正極接合層63、負極接合層64および導電性接合層23)の乾燥が行われる。このとき、図中の下側に位置する封止された1つの辺において、第2領域682の間に存在していたガスが除去される。これにより、当該第2領域682において、第1シート部65および第2シート部66が、非接触状態にて接触、または、僅かな空隙を挟んで近接する。 After sealing the three sides, the intermediate laminate 10 is housed in the vacuum dryer 81 to remove moisture and dry the adhesive (that is, the positive electrode bonding layer 63, the negative electrode bonding layer 64, and the conductive bonding layer 23). Is done. At this time, the gas existing between the second regions 682 is removed on one sealed side located on the lower side in the drawing. As a result, in the second region 682, the first sheet portion 65 and the second sheet portion 66 are in contact with each other in the non-contact state, or are close to each other with a slight gap therebetween.
 次に、図10Bに示されるように、中間積層体10がグローブボックス82内に収容される。そして、中間積層体10の未封止の1つの辺において、第1シート部65および第2シート部66の間に注入器具83が挿入され、注入器具83を介して電解液5が中間積層体10内に注入される。電解液5は、ECおよびGBLを体積比1:3で含む混合溶媒に、LiBFを1.5mol/Lの濃度となるように溶解させ、さらに、VCを添加剤として5重量%の濃度となるように添加した液体である。 Next, as shown in FIG. 10B, the intermediate laminate 10 is housed in the glove box 82. Then, on one unsealed side of the intermediate laminated body 10, the injection device 83 is inserted between the first sheet portion 65 and the second sheet portion 66, and the electrolytic solution 5 receives the electrolytic solution 5 via the injection device 83. Injected into 10. The electrolyte solution 5 was prepared by dissolving LiBF 4 in a mixed solvent containing EC and GBL in a volume ratio of 1:3 so as to have a concentration of 1.5 mol/L, and further adding 5% by weight of VC as an additive. It is a liquid added so that.
 電解液5の注入が終了すると、グローブボックス82内の絶対圧5kPaの減圧雰囲気下において、上記未封止の1つの辺が、簡易シーラにより仮封止(すなわち、減圧封止)される。続いて、中間積層体10に対して初期充電が施され、7日間のエージングが行われる。エージングが終了すると、第1シート部65および第2シート部66のうち、仮封止された1つの辺の外縁近傍の部位(すなわち、電池要素を含まない末端部分)が切除され、エージングにより発生した水分等を含むガスが除去される(すなわち、ガス抜きが行われる)。 When the injection of the electrolytic solution 5 is completed, the unsealed one side is temporarily sealed (that is, vacuum-sealed) in the glove box 82 under a depressurized atmosphere with an absolute pressure of 5 kPa. Then, the intermediate laminate 10 is subjected to initial charging and aging for 7 days. When the aging ends, a portion of the first sheet portion 65 and the second sheet portion 66 near the outer edge of one temporarily sealed side (that is, the end portion that does not include the battery element) is cut off and generated by the aging. The gas containing the water and the like is removed (that is, degassing is performed).
 ガス抜きが終了すると、グローブボックス82内の絶対圧5kPaの減圧雰囲気下において、上述の切除により形成された辺の熱融着接合による封止が行われる。当該封止では、上述の3つの辺の封止と同様に、封止幅が2mmになるように調整された当て冶具が用いられ、第1シート部65および第2シート部66が、200℃、1.5MPaで10秒間加熱および加圧される。これにより、外装体6の上記外周領域68(図6参照)のうち、図中の上側に位置する1つの辺の第1領域681において、第1シート部65と第2シート部66とが熱融着され、リチウム二次電池1が形成される。また、図中の上側に位置する当該1つの辺の第2領域682において、第1シート部65および第2シート部66が、非接触状態にて接触、または、僅かな空隙を挟んで近接する。その後、外装体6の外周部における余分な部位が切除されて、リチウム二次電池1の形状が整えられる。また、図7ないし図9に例示するリチウム二次電池1が製造される場合は、外装体6の折り返し部695が折り返し線693にて折り返される。リチウム二次電池1の平面視における形状は、38mm×27mmの長方形であり、厚さは0.45mm以下であり、容量は30mAhであった。 When the degassing is completed, the sides formed by the above cutting are sealed by heat fusion bonding in a depressurized atmosphere in the glove box 82 with an absolute pressure of 5 kPa. In the said sealing, the patch jig adjusted so that the sealing width might be 2 mm was used similarly to the above-mentioned three sides sealing, and the 1st sheet part 65 and the 2nd sheet part 66 are 200 degreeC. , And heated and pressurized at 1.5 MPa for 10 seconds. As a result, in the outer peripheral region 68 (see FIG. 6) of the exterior body 6, in the first region 681 on one side located on the upper side in the drawing, the first sheet portion 65 and the second sheet portion 66 are heated. By fusion bonding, the lithium secondary battery 1 is formed. Further, in the second region 682 of the one side located on the upper side in the drawing, the first sheet portion 65 and the second sheet portion 66 are in contact with each other in a non-contact state, or are close to each other with a slight gap therebetween. .. After that, an extra portion of the outer peripheral portion of the outer package 6 is cut off, and the shape of the lithium secondary battery 1 is adjusted. When the lithium secondary battery 1 illustrated in FIGS. 7 to 9 is manufactured, the folded-back portion 695 of the outer package 6 is folded back along the folded-back line 693. The shape of the lithium secondary battery 1 in plan view was a rectangle of 38 mm×27 mm, the thickness was 0.45 mm or less, and the capacity was 30 mAh.
 上述の製造方法により製造されたリチウム二次電池1では、正極活物質板22(すなわち、LiCoO焼結体板)における一次粒子の平均配向角度は、16°であった。当該平均配向角度は、次のようにして測定した。まず、上記LiCoO焼結体板をクロスセクションポリッシャ(CP)(日本電子株式会社製、IB-15000CP)により研磨し、得られた断面(すなわち、LiCoO焼結体板の主面に垂直な断面)を1000倍の視野(125μm×125μm)でEBSD測定して、EBSD像を得た。このEBSD測定は、ショットキー電界放出形走査電子顕微鏡(日本電子株式会社製、型式JSM-7800F)を用いて行った。そして、得られたEBSD像において特定される全ての粒子について、一次粒子の(003)面とLiCoO焼結体板の主面とがなす角度(すなわち、(003)からの結晶方位の傾き)を傾斜角として求め、それらの角度の平均値を一次粒子の平均配向角度とした。 In the lithium secondary battery 1 manufactured by the manufacturing method described above, the average orientation angle of the primary particles in the positive electrode active material plate 22 (that is, the LiCoO 2 sintered body plate) was 16°. The average orientation angle was measured as follows. First, the above-mentioned LiCoO 2 sintered body plate was polished by a cross section polisher (CP) (IB-15000CP manufactured by JEOL Ltd.) to obtain a cross section (that is, perpendicular to the main surface of the LiCoO 2 sintered body plate). The cross section was subjected to EBSD measurement in a field of view (125 μm×125 μm) of 1000 times to obtain an EBSD image. This EBSD measurement was performed using a Schottky field emission scanning electron microscope (JSM-7800F, manufactured by JEOL Ltd.). Then, for all the particles specified in the obtained EBSD image, the angle formed by the (003) plane of the primary particles and the main surface of the LiCoO 2 sintered body plate (that is, the inclination of the crystal orientation from (003)) Was determined as the tilt angle, and the average value of these angles was defined as the average orientation angle of the primary particles.
 LiCoO焼結体板の板厚は、上述のように90μmであった。当該板厚は、LiCoO焼結体板をクロスセクションポリッシャ(CP)(日本電子株式会社製、IB-15000CP)により研磨し、得られた断面をSEM観察(日本電子製、JSM6390LA)して測定した。なお、上述の乾燥後のLiCoOグリーンシートの厚さも、同様にして測定されたものである。 The plate thickness of the LiCoO 2 sintered body plate was 90 μm as described above. The plate thickness is measured by polishing a LiCoO 2 sintered plate with a cross section polisher (CP) (manufactured by JEOL Ltd., IB-15000CP), and observing the obtained cross section by SEM (JSM6390LA, JEOL Ltd.). did. The thickness of the LiCoO 2 green sheet after the above-mentioned drying was also measured in the same manner.
 LiCoO焼結体板の気孔率は、30%であった。当該気孔率は、次のようにして測定した。LiCoO焼結体板をクロスセクションポリッシャ(CP)(日本電子株式会社製、IB-15000CP)により研磨し、得られた断面を1000倍の視野(125μm×125μm)でSEM観察(日本電子製、JSM6390LA)した。得られたSEM像を画像解析し、全ての気孔の面積をLiCoO焼結体板の面積で除算し、得られた値に100を乗じることにより気孔率(%)を算出した。 The porosity of the LiCoO 2 sintered body plate was 30%. The porosity was measured as follows. The LiCoO 2 sintered body plate was polished by a cross section polisher (CP) (manufactured by JEOL Ltd., IB-15000CP), and the obtained cross section was observed with an SEM under a field of view of 1000 times (125 μm×125 μm). JSM6390LA). The obtained SEM image was subjected to image analysis, the area of all the pores was divided by the area of the LiCoO 2 sintered body plate, and the obtained value was multiplied by 100 to calculate the porosity (%).
 LiCoO焼結体板の平均気孔径は、0.8μmであった。当該平均気孔径は、水銀ポロシメーター(島津製作所製、オートポアIV9510)を用いて、水銀圧入法により測定した。 The average pore diameter of the LiCoO 2 sintered body plate was 0.8 μm. The average pore diameter was measured by a mercury porosimetry using a mercury porosimeter (manufactured by Shimadzu Corporation, Autopore IV9510).
 上述のように、リチウム二次電池1がスマートカードに搭載される際には、リチウム二次電池1をカード基材で挟み込んで常温にて加圧するコールドラミネート、または、リチウム二次電池1をカード基材で挟み込んで加熱および加圧するホットラミネートが行われる。このように、対象デバイスの製造の際に、リチウム二次電池1に対して上下方向の圧力が加えられると、被覆領域67が上下方向に圧縮され、被覆領域67において第1シート部65と第2シート部66との間に存在する電解液5の一部が、被覆領域67の周囲に向かって押し出される。 As described above, when the lithium secondary battery 1 is mounted on a smart card, the lithium secondary battery 1 is sandwiched between card base materials and cold laminated to press at room temperature, or the lithium secondary battery 1 is used as a card. Hot laminating is performed in which the substrate is sandwiched and heated and pressed. As described above, when the vertical pressure is applied to the lithium secondary battery 1 during the manufacture of the target device, the covering region 67 is compressed in the vertical direction, and the first sheet portion 65 and the first sheet portion 65 are compressed in the covering region 67. A part of the electrolytic solution 5 existing between the second sheet portion 66 and the second sheet portion 66 is extruded toward the periphery of the covering region 67.
 被覆領域67から押し出された電解液5は、第2領域682において非接合状態で接触または近接する第1シート部65および第2シート部66の間に流入し、図11に示すように、第1シート部65と第2シート部66とを上下方向に離間させる。そして、当該電解液5は、第2領域682において第1シート部65と第2シート部66との間にできた空間に保持される。 The electrolytic solution 5 extruded from the covering region 67 flows between the first sheet portion 65 and the second sheet portion 66 which are in contact with or close to each other in the second region 682 in a non-bonded state, and as shown in FIG. The first sheet portion 65 and the second sheet portion 66 are vertically separated from each other. Then, the electrolytic solution 5 is held in the space formed between the first sheet portion 65 and the second sheet portion 66 in the second region 682.
 このため、電解液5が、第1領域681において接合されている第1シート部65と第2シート部66との間に浸入して第1シート部65と第2シート部66とを剥離させることを防止または抑制することができる。その結果、外装体6の封止性能の低下、および、第1シート部65と第2シート部66との間からの電解液5の漏出を防止または抑制することができる。なお、リチウム二次電池1に加えられている圧力が除かれると、第2領域682へと拡散していた電解液5の大部分は、毛細管現象等により被覆領域67へと戻る。上述の折り返し線693にて外周領域68が折り返されるリチウム二次電池1(図7ないし図9参照)においても同様である。 Therefore, the electrolytic solution 5 penetrates between the first sheet portion 65 and the second sheet portion 66 joined in the first region 681 to separate the first sheet portion 65 and the second sheet portion 66 from each other. This can be prevented or suppressed. As a result, it is possible to prevent or suppress deterioration of the sealing performance of the outer package 6 and leakage of the electrolytic solution 5 from between the first sheet portion 65 and the second sheet portion 66. When the pressure applied to the lithium secondary battery 1 is removed, most of the electrolytic solution 5 that has diffused into the second region 682 returns to the coating region 67 due to a capillary phenomenon or the like. The same applies to the lithium secondary battery 1 (see FIGS. 7 to 9) in which the outer peripheral region 68 is folded back along the folding line 693 described above.
 一方、外装体6の被覆領域67と第1領域681との間に第2領域682が設けられていない場合、または、第2領域682の幅が過剰に小さい場合、被覆領域67から押し出された電解液5は、第1領域681において接合されている第1シート部65と第2シート部66との間に浸入し、第1シート部65と第2シート部66とを剥離させる可能性がある。さらには、剥離された第1シート部65と第2シート部66との間から、電解液5がリチウム二次電池1の外部に漏出する可能性もある。特に、リチウム二次電池1がホットラミネートによりスマートカード等に搭載される場合、電解液5の熱膨張等も生じるため、被覆領域67から押し出される電解液5の体積が増大する傾向がある。このため、外装体6の封止性能の低下、および、電解液のリチウム二次電池1外部への漏出が生じる可能性が増大する。 On the other hand, when the second region 682 is not provided between the covering region 67 and the first region 681 of the exterior body 6, or when the width of the second region 682 is excessively small, it is extruded from the covering region 67. The electrolytic solution 5 may infiltrate between the first sheet portion 65 and the second sheet portion 66 joined in the first region 681, and may cause the first sheet portion 65 and the second sheet portion 66 to be separated from each other. is there. Further, the electrolytic solution 5 may leak to the outside of the lithium secondary battery 1 from between the peeled first sheet portion 65 and the second sheet portion 66. In particular, when the lithium secondary battery 1 is mounted on a smart card or the like by hot lamination, thermal expansion of the electrolytic solution 5 also occurs, so that the volume of the electrolytic solution 5 extruded from the covering region 67 tends to increase. Therefore, the sealing performance of the outer package 6 is deteriorated, and the possibility that the electrolytic solution leaks to the outside of the lithium secondary battery 1 increases.
 また、第2領域682の幅が過剰に大きい場合、リチウム二次電池1全体の大きさはある程度制限されるため、正極活物質板22および負極活物質層32の面積が小さくなり、電池特性が低下する可能性がある。具体的には、リチウム二次電池1のレート特性およびサイクル特性が低下する可能性がある。 Further, when the width of the second region 682 is excessively large, the size of the entire lithium secondary battery 1 is limited to some extent, so that the areas of the positive electrode active material plate 22 and the negative electrode active material layer 32 are reduced, and the battery characteristics are reduced. It may decrease. Specifically, the rate characteristics and cycle characteristics of the lithium secondary battery 1 may deteriorate.
 次に、表1を参照しつつ、第2領域682の幅とリチウム二次電池1の電池特性(すなわち、レート特性およびサイクル特性)との関係について説明する。 Next, referring to Table 1, the relationship between the width of the second region 682 and the battery characteristics (that is, rate characteristics and cycle characteristics) of the lithium secondary battery 1 will be described.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表中のA1/B3は、上述の第2領域幅A1を活物質領域幅B3により除算した値である。換言すれば、A1/B3は、活物質領域幅B3に対する第2領域幅A1の割合である。比較例1~3、実施例1~6および比較例4では、A1/B3が変更されている。なお、比較例1~3、実施例1~6および比較例4では、第1領域681の幅は2mmである。 A1/B3 in the table is a value obtained by dividing the above-mentioned second area width A1 by the active material area width B3. In other words, A1/B3 is the ratio of the second region width A1 to the active material region width B3. In Comparative Examples 1 to 3, Examples 1 to 6 and Comparative Example 4, A1/B3 is changed. In Comparative Examples 1 to 3, Examples 1 to 6 and Comparative Example 4, the width of the first region 681 is 2 mm.
 表中の液漏れは、リチウム二次電池1に上述のホットラミネートと略同様の加工を施した場合の電解液5の漏出の有無を示す。具体的には、135℃に加熱した熱板プレスにより、加工圧力3MPaにてリチウム二次電池1を上下方向に加圧し、リチウム二次電池1の外部に電解液5が漏出しているか否かを目視で確認した。 The liquid leakage in the table indicates the presence or absence of leakage of the electrolytic solution 5 when the lithium secondary battery 1 is subjected to substantially the same processing as the above hot lamination. Specifically, the hot plate press heated to 135° C. vertically pressurizes the lithium secondary battery 1 at a processing pressure of 3 MPa to determine whether the electrolytic solution 5 leaks to the outside of the lithium secondary battery 1. Was visually confirmed.
 表中のレート特性は、後述する第1容量により第2容量を除算して得た溶量比(%)である。第1容量は、リチウム二次電池1を0.2Cで4.2Vまで充電した後、0.2Cで3.0Vまで放電して算出した容量である。第2容量は、リチウム二次電池1を0.2Cで4.2Vまで充電した後、1.0Cで3.0Vまで放電して算出した容量である。表中のサイクル特性は、リチウム二次電池1を0.5Cで4.2Vまで充電して0.5Cで3.0Vまで放電する工程を300回繰り返し、繰り返し後のリチウム二次電池1の容量を、繰り返し前のリチウム二次電池1の容量で除算して求めた値(%)である。 The rate characteristics in the table are the dissolution ratio (%) obtained by dividing the second capacity by the first capacity described later. The first capacity is a capacity calculated by charging the lithium secondary battery 1 at 0.2C to 4.2V and then discharging at 0.2C to 3.0V. The second capacity is a capacity calculated by charging the lithium secondary battery 1 at 0.2C to 4.2V and then discharging at 1.0C to 3.0V. The cycle characteristics in the table indicate that the lithium secondary battery 1 is charged up to 4.2 V at 0.5 C and discharged up to 3.0 V at 0.5 C, repeated 300 times, and the capacity of the lithium secondary battery 1 after the repetition is repeated. Is a value (%) obtained by dividing by the capacity of the lithium secondary battery 1 before repetition.
 比較例1~3では、A1/B3は、0.0067未満である。実施例1~6では、A1/B3は、0.02~1.0である。比較例4では、A1/B3は、1.2である。比較例1~3では、電解液5の漏出が発生した。一方、実施例1~6および比較例4では、電解液5の漏出は生じなかった。また、比較例1~3および実施例1~6では、レート特性は70%~73%であり、サイクル特性は90%~94%であった。一方、比較例4では、レート特性は55%と低く、サイクル特性も49%と低かった。 In Comparative Examples 1 to 3, A1/B3 is less than 0.0067. In Examples 1 to 6, A1/B3 is 0.02 to 1.0. In Comparative Example 4, A1/B3 is 1.2. In Comparative Examples 1 to 3, leakage of the electrolytic solution 5 occurred. On the other hand, in Examples 1 to 6 and Comparative Example 4, the electrolyte solution 5 did not leak. Further, in Comparative Examples 1 to 3 and Examples 1 to 6, the rate characteristics were 70% to 73% and the cycle characteristics were 90% to 94%. On the other hand, in Comparative Example 4, the rate characteristic was low at 55% and the cycle characteristic was low at 49%.
 以上に説明したように、リチウム二次電池1は、正極2と、セパレータ4と、負極3と、電解液5と、外装体6と、2つの端子7とを備える。セパレータ4は、所定の重ね合わせ方向において、正極2上に配置される。負極3は、当該重ね合わせ方向において、セパレータ4の正極2とは反対側に配置される。電解液5は、正極2、負極3およびセパレータ4に含浸する。外装体6は、重ね合わせ方向の両側から正極2および負極3を被覆する2層のシート部(すなわち、第1シート部65および第2シート部66)を有する。外装体6は、正極2、セパレータ4、負極3および電解液5を内部に収容する矩形シート状の部材である。2つの端子7は、外装体6の内部にて正極2および負極3にそれぞれ接続される。2つの端子7は、外装体6の外部へと延びる。 As described above, the lithium secondary battery 1 includes the positive electrode 2, the separator 4, the negative electrode 3, the electrolytic solution 5, the outer casing 6, and the two terminals 7. The separator 4 is arranged on the positive electrode 2 in a predetermined stacking direction. The negative electrode 3 is arranged on the side of the separator 4 opposite to the positive electrode 2 in the stacking direction. The electrolytic solution 5 impregnates the positive electrode 2, the negative electrode 3, and the separator 4. The outer package 6 has a two-layer sheet portion (that is, the first sheet portion 65 and the second sheet portion 66) that covers the positive electrode 2 and the negative electrode 3 from both sides in the stacking direction. The outer package 6 is a rectangular sheet-shaped member that accommodates the positive electrode 2, the separator 4, the negative electrode 3, and the electrolytic solution 5 therein. The two terminals 7 are connected to the positive electrode 2 and the negative electrode 3 inside the exterior body 6, respectively. The two terminals 7 extend to the outside of the exterior body 6.
 外装体6は、被覆領域67と、外周領域68とを備える。被覆領域67は、正極2、セパレータ4および負極3と重ね合わせ方向に重なる矩形状の領域である。外周領域68は、被覆領域67の周囲を囲む矩形枠状の領域である。外周領域68は、第1領域681と、第2領域682とを備える。第1領域681は、2つの端子7が配置される辺以外の一対の辺(すなわち、一対の長辺691)に沿ってそれぞれ延びる帯状領域である。第1領域681では、上記2層のシート部(すなわち、第1シート部65および第2シート部66)が接合される。第2領域682は、一対の第1領域681のうち少なくとも一方の第1領域681と被覆領域67との間にて、被覆領域67に沿って延びる帯状領域である。第2領域682では、上記2層のシート部(すなわち、第1シート部65および第2シート部66)が、非接合状態で接触または近接する。 The outer package 6 includes a covering region 67 and an outer peripheral region 68. The covering region 67 is a rectangular region that overlaps the positive electrode 2, the separator 4, and the negative electrode 3 in the stacking direction. The outer peripheral area 68 is a rectangular frame-shaped area surrounding the periphery of the covered area 67. The outer peripheral area 68 includes a first area 681 and a second area 682. The first region 681 is a strip-shaped region that extends along a pair of sides (that is, a pair of long sides 691) other than the side where the two terminals 7 are arranged. In the first region 681, the two-layer sheet portions (that is, the first sheet portion 65 and the second sheet portion 66) are joined. The second region 682 is a strip-shaped region extending along the covering region 67 between at least one first region 681 of the pair of first regions 681 and the covering region 67. In the second region 682, the two-layer sheet portions (that is, the first sheet portion 65 and the second sheet portion 66) are in contact with or close to each other in a non-bonded state.
 これにより、リチウム二次電池1の電解液5が被覆領域67から外周領域68へと押し出された場合に、第2領域682において、第1シート部65および第2シート部66が離間し、第1シート部65と第2シート部66との間の空間に電解液5を保持することができる。したがって、被覆領域67から押し出された電解液5による第1領域681の剥離(すなわち、第1領域681における第1シート部65と第2シート部66との剥離)を抑制することができる。また、リチウム二次電池1の外部への電解液5の漏出を抑制することができる。 As a result, when the electrolytic solution 5 of the lithium secondary battery 1 is extruded from the covering region 67 to the outer peripheral region 68, the first sheet portion 65 and the second sheet portion 66 are separated from each other in the second region 682, The electrolytic solution 5 can be held in the space between the first sheet portion 65 and the second sheet portion 66. Therefore, peeling of the first region 681 (that is, peeling between the first sheet portion 65 and the second sheet portion 66 in the first region 681) by the electrolytic solution 5 extruded from the covering region 67 can be suppressed. In addition, leakage of the electrolytic solution 5 to the outside of the lithium secondary battery 1 can be suppressed.
 上述のように、被除数である第2領域幅A1を除数である活物質領域幅B3により除算した値は、0.02以上かつ1以下であることが好ましい。活物質領域幅B3は、一対の長辺691に垂直な幅方向における正極2の活物質領域の幅である正極活物質幅と、負極3の活物質領域の幅である負極活物質幅とが異なる場合は、正極活物質幅および負極活物質幅のうち小さい方であり、正極活物質幅と負極活物質幅とが同じである場合は、正極活物質幅および負極活物質幅のうちいずれか一方である。第2領域幅A1は、一対の第1領域681のうち一方の第1領域681と被覆領域67との間にのみ第2領域682が存在する場合は、当該1つの第2領域682の幅であり、一対の第1領域681の双方と被覆領域67との間に一対の第2領域682が存在する場合は、当該一対の第2領域682の合計幅である。これにより、表1中の実施例1~6に示すように、リチウム二次電池1からの電解液5の漏出を防止することができるとともに、電池特性(すなわち、レート特性およびサイクル特性)の低下を防止または抑制することができる。 As described above, the value obtained by dividing the second area width A1 which is the dividend by the active material area width B3 which is the divisor is preferably 0.02 or more and 1 or less. The active material region width B3 is obtained by dividing the positive electrode active material width which is the width of the active material region of the positive electrode 2 and the negative electrode active material width which is the width of the active material region of the negative electrode 3 in the width direction perpendicular to the pair of long sides 691. When different, it is the smaller of the positive electrode active material width and the negative electrode active material width, and when the positive electrode active material width and the negative electrode active material width are the same, either the positive electrode active material width or the negative electrode active material width. On the other hand. The second region width A1 is the width of the one second region 682 when the second region 682 exists only between the one first region 681 and the covering region 67 of the pair of first regions 681. If there is a pair of second regions 682 between both the pair of first regions 681 and the covering region 67, the total width of the pair of second regions 682 is present. As a result, as shown in Examples 1 to 6 in Table 1, leakage of the electrolytic solution 5 from the lithium secondary battery 1 can be prevented and the battery characteristics (that is, rate characteristics and cycle characteristics) deteriorate. Can be prevented or suppressed.
 リチウム二次電池1では、図7ないし図9に示すように、上記少なくとも一方の第1領域681は、一対の長辺691に平行に延びる折り返し線693にて幅方向に折り返されることが好ましい。これにより、リチウム二次電池1の平面視における大きさ(いわゆる、フットプリント)を小型化することができる。その結果、リチウム二次電池1が搭載される対象デバイスを小型化することができる。あるいは、対象デバイスにおけるリチウム二次電池1の搭載スペースを小型化することができる。 In the lithium secondary battery 1, as shown in FIGS. 7 to 9, it is preferable that the at least one first region 681 be folded back in the width direction at a folding line 693 extending parallel to the pair of long sides 691. As a result, the size (so-called footprint) of the lithium secondary battery 1 in plan view can be reduced. As a result, the target device in which the lithium secondary battery 1 is mounted can be downsized. Alternatively, it is possible to reduce the mounting space of the lithium secondary battery 1 in the target device.
 好ましくは、折り返し線693は、上記少なくとも一方の第1領域681の幅方向の中央、または、当該少なくとも一方の第1領域681の幅方向の中央に対して第2領域682の反対側に位置する(図7および図8参照)。これにより、折り返し部695が第2領域682と上下方向に重ならないため、被覆領域67から押し出された電解液5が第2領域682に流入する際に、第2領域682の膨張が折り返し部695により阻害されることを防止することができる。したがって、第2領域682が好適に膨張し、上記電解液5を第2領域682において好適に保持することができる。 Preferably, the folding line 693 is located at the center of the at least one first region 681 in the width direction or on the opposite side of the second region 682 with respect to the center of the at least one first region 681 in the width direction. (See Figures 7 and 8). Accordingly, since the folded-back portion 695 does not vertically overlap the second region 682, the expansion of the second region 682 is caused by the expansion of the second region 682 when the electrolytic solution 5 extruded from the covering region 67 flows into the second region 682. Can be prevented. Therefore, the second region 682 is appropriately expanded, and the electrolytic solution 5 can be appropriately retained in the second region 682.
 また、折り返し線693は、上記少なくとも一方の第1領域681の幅方向の中央と、第2領域682との間に位置することも好ましい(図9参照)。これにより、折り返し部695が第2領域682と上下方向に重なる幅方向内側の位置まで折り返される。その結果、リチウム二次電池1の平面視における大きさ(いわゆる、フットプリント)を、さらに小型化することができる。 It is also preferable that the folding line 693 is located between the center of the at least one first region 681 in the width direction and the second region 682 (see FIG. 9). As a result, the folded-back portion 695 is folded back to a position on the inner side in the width direction that overlaps the second region 682 in the vertical direction. As a result, the size of the lithium secondary battery 1 in plan view (so-called footprint) can be further reduced.
 上述のように、正極2は、導電性を有するシート状の集電体(すなわち、正極集電体21)と、リチウム複合酸化物を含む板状セラミック焼結体である活物質板(すなわち、正極活物質板22)とを備えることが好ましい。これにより、リチウム二次電池1の上記電池特性をさらに向上することができる。 As described above, the positive electrode 2 includes the conductive sheet-shaped current collector (that is, the positive electrode current collector 21 ), and the active material plate (that is, the positive electrode current collector 21) that is the plate-shaped ceramic sintered body containing the lithium composite oxide (that is, The positive electrode active material plate 22) is preferably provided. Thereby, the battery characteristics of the lithium secondary battery 1 can be further improved.
 より好ましくは、正極2の正極活物質板22は、層状岩塩構造を有する複数の一次粒子が結合した構造を有している。また、当該複数の一次粒子の平均傾斜角は、0°よりも大きく、かつ、30°以下であることが好ましい。当該平均傾斜角は、複数の一次粒子の(003)面と正極活物質板22の主面とが成す角度の平均値である。これにより、充放電サイクルに伴う結晶格子の伸縮の際に発生する正極活物質板22の内部応力が、正極活物質板22の導電性接合層23および正極集電体21と対向する主面に加わることを抑制することができる。 More preferably, the positive electrode active material plate 22 of the positive electrode 2 has a structure in which a plurality of primary particles having a layered rock salt structure are bonded. The average tilt angle of the plurality of primary particles is preferably larger than 0° and 30° or less. The average tilt angle is an average value of angles formed by the (003) planes of the plurality of primary particles and the main surface of the positive electrode active material plate 22. As a result, the internal stress of the positive electrode active material plate 22 generated when the crystal lattice expands and contracts due to the charge/discharge cycle is applied to the conductive bonding layer 23 of the positive electrode active material plate 22 and the main surface facing the positive electrode current collector 21. It is possible to suppress the addition.
 このように、導電性接合層23に接触する正極活物質板22の主面を、結晶格子の伸縮の際に発生する内部応力が加わりにくい主面とすることにより、正極活物質板22と正極集電体21との接合強度の低下を抑制することができる。その結果、リチウム二次電池1の充電時および放電時における電圧の安定性を向上することができる。 In this way, by making the main surface of the positive electrode active material plate 22 in contact with the conductive bonding layer 23 the main surface to which internal stress generated when the crystal lattice expands or contracts is not easily applied, the positive electrode active material plate 22 and the positive electrode It is possible to suppress a decrease in the bonding strength with the current collector 21. As a result, it is possible to improve the voltage stability during charging and discharging of the lithium secondary battery 1.
 上述のリチウム二次電池1では、薄型であるにもかかわらず、加圧時等におけるリチウム二次電池1の外部への電解液5の漏出を抑制することができる。したがって、リチウム二次電池1は、薄型の比較的変形しやすいデバイス、すなわち、シート状デバイスまたは可撓性を有するデバイス(例えば、スマートカード)における電力供給源に特に適している。 Despite the thinness of the lithium secondary battery 1 described above, leakage of the electrolyte solution 5 to the outside of the lithium secondary battery 1 during pressurization or the like can be suppressed even though it is thin. Therefore, the lithium secondary battery 1 is particularly suitable as a power supply source in a thin and relatively deformable device, that is, a sheet-shaped device or a flexible device (for example, a smart card).
 上述のように、リチウム二次電池1は、電解液5の漏出を抑制することができるため、製造の際に被覆領域67から電解液5が押し出される工程が施される対象デバイス、すなわち、製造の際に加熱しつつ加圧する工程が施される対象デバイスにおける電力供給源として利用される場合に特に適している。 As described above, since the lithium secondary battery 1 can suppress the leakage of the electrolytic solution 5, it is a target device that is subjected to the step of extruding the electrolytic solution 5 from the covering region 67 during manufacturing, that is, manufacturing. It is particularly suitable when it is used as a power supply source in a target device to which a step of applying pressure while heating is performed.
 上述のリチウム二次電池1では、様々な変更が可能である。 Various changes can be made to the lithium secondary battery 1 described above.
 例えば、第2領域幅A1/活物質領域幅B3は、0よりも大きければ、0.02未満であってもよい。あるいは、第2領域幅A1/活物質領域幅B3は、1よりも大きくてもよい。いずれの場合であっても、リチウム二次電池1の外部への電解液5の漏出を抑制することができる。 For example, the second region width A1/active material region width B3 may be less than 0.02 as long as it is greater than 0. Alternatively, the second area width A1/active material area width B3 may be larger than one. In any case, leakage of the electrolytic solution 5 to the outside of the lithium secondary battery 1 can be suppressed.
 図7ないし図9に示す例では、折り返し線693は第1領域681上に位置するが、第2領域682上に折り返し線693が配置されてもよい。この場合、折り返し部695の一部(すなわち、幅方向内側の端部)は、被覆領域67と上下方向に重なっていてもよい。 In the example shown in FIGS. 7 to 9, the folding line 693 is located on the first region 681, but the folding line 693 may be arranged on the second region 682. In this case, a part of the folded-back portion 695 (that is, the end portion on the inner side in the width direction) may overlap the covering region 67 in the vertical direction.
 図7ないし図9に示す例では、折り返し部695は折り返し線693にて約180°折り返されているが、折り返し角度は180°未満であってもよい。当該折り返し角度は、図7ないし図9のような断面図において、折り返し前の折り返し部695と、折り返し後の折り返し部695とが成す角度である。当該折り返し角度は、90°以上かつ180°以下であることが好ましい。 In the example shown in FIGS. 7 to 9, the folded-back portion 695 is folded back by about 180° at the folded-back line 693, but the folded-back angle may be less than 180°. The folding-back angle is an angle formed by the folding-back portion 695 before folding and the folding-back portion 695 after folding in the cross-sectional views as shown in FIGS. 7 to 9. The folding angle is preferably 90° or more and 180° or less.
 また、図7ないし図9に示す例では、折り返し部695は折り返し線693にて1回のみ折り返されているが、折り返し回数は複数であってもよい。例えば、第1領域681の幅方向外側の部位が、幅方向内側へと複数回折り返され、断面が渦巻き状の折り返し部695が形成されてもよい。 Further, in the example shown in FIGS. 7 to 9, the folding part 695 is folded only once at the folding line 693, but the number of folding may be plural. For example, a portion on the outer side in the width direction of the first region 681 may be folded back multiple times inward in the width direction to form a folded portion 695 having a spiral cross section.
 外装体6の第1シート部65および第2シート部66が非接合状態で接触または近接する第2領域682は、上述のように、外装体6において2つの端子7が設けられる短辺に隣接する長辺691に沿って設けられるが、長辺691以外の辺(すなわち、2つの端子7が設けられる短辺と平行なもう1つの短辺)に沿って設けられてもよい。 As described above, the second region 682 where the first sheet portion 65 and the second sheet portion 66 of the exterior body 6 are in contact with or close to each other in the non-bonded state is adjacent to the short side where the two terminals 7 are provided in the exterior body 6. However, it may be provided along a side other than the long side 691 (that is, another short side parallel to the short side where the two terminals 7 are provided).
 2つの端子7は、必ずしも外装体6の1つの辺から外装体6の外部へと延びる必要はなく、互いに平行な一対の辺から外装体6の外部へとそれぞれ延びていてもよい。 The two terminals 7 do not necessarily have to extend from one side of the exterior body 6 to the outside of the exterior body 6, and may extend from the pair of parallel sides to the exterior of the exterior body 6, respectively.
 正極2の正極活物質板22の構造は、様々に変更されてよい。例えば、正極活物質板22において、層状岩塩構造を有する複数の一次粒子の平均傾斜角は、30°よりも大きくてもよく、0°であってもよい。あるいは、当該複数の一次粒子の構造は、層状岩塩構造以外の構造であってもよい。 The structure of the positive electrode active material plate 22 of the positive electrode 2 may be variously modified. For example, in the positive electrode active material plate 22, the average tilt angle of the plurality of primary particles having a layered rock salt structure may be larger than 30° or may be 0°. Alternatively, the structure of the plurality of primary particles may be a structure other than the layered rock salt structure.
 正極2は、樹脂を主成分とするバインダおよび正極活物質を含む正極活物質層が正極集電体21上に塗工された塗工電極であってもよい。 The positive electrode 2 may be a coated electrode in which a positive electrode active material layer containing a binder containing a resin as a main component and a positive electrode active material is coated on the positive electrode current collector 21.
 リチウム二次電池1は、スマートカード以外の可撓性を有するデバイス(例えば、カード型デバイス)、または、シート状デバイス(例えば、衣服等に設けられたウェアラブルデバイス、もしくは、身体貼付型デバイス)における電力供給源として利用されてもよい。また、リチウム二次電池1は、上述のデバイス以外の様々な対象物(例えば、IoTモジュール)の電力供給源として利用されてもよい。 The lithium secondary battery 1 is a flexible device other than a smart card (for example, a card type device) or a sheet-like device (for example, a wearable device provided on clothes or the like, or a body sticking type device). It may be used as a power supply source. Further, the lithium secondary battery 1 may be used as a power supply source for various objects (for example, IoT module) other than the above-mentioned devices.
 上記実施の形態および各変形例における構成は、相互に矛盾しない限り適宜組み合わされてよい。 The configurations of the above-described embodiment and each modification may be appropriately combined unless they contradict each other.
 発明を詳細に描写して説明したが、既述の説明は例示的であって限定的なものではない。したがって、本発明の範囲を逸脱しない限り、多数の変形や態様が可能であるといえる。 Although the invention has been described in detail, the above description is illustrative and not restrictive. Therefore, it can be said that many modifications and modes are possible without departing from the scope of the present invention.
 本発明のリチウム二次電池は、例えば、演算処理機能を有するスマートカードにおける電力供給源等として、リチウム二次電池が利用される様々な分野で利用可能である。 The lithium secondary battery of the present invention can be used in various fields where the lithium secondary battery is used, for example, as a power supply source in a smart card having an arithmetic processing function.
 1  リチウム二次電池
 2  正極
 3,3a  負極
 4  セパレータ
 5  電解液
 6  外装体
 7  端子
 21  正極集電体
 22  正極活物質板
 32  負極活物質層
 32a  負極活物質板
 65  第1シート部
 66  第2シート部
 67  被覆領域
 68  外周領域
 681  第1領域
 682  第2領域
 691  長辺
 693  折り返し線
DESCRIPTION OF SYMBOLS 1 Lithium secondary battery 2 Positive electrode 3,3a Negative electrode 4 Separator 5 Electrolyte 6 Outer package 7 Terminal 21 Positive electrode current collector 22 Positive electrode active material plate 32 Negative electrode active material layer 32a Negative electrode active material plate 65 1st sheet part 66 2nd sheet Part 67 Covering area 68 Peripheral area 681 First area 682 Second area 691 Long side 693 Folding line

Claims (10)

  1.  薄型のリチウム二次電池であって、
     正極と、
     所定の重ね合わせ方向において前記正極上に配置されるセパレータと、
     前記重ね合わせ方向において前記セパレータの前記正極とは反対側に配置される負極と、
     前記正極、前記負極および前記セパレータに含浸する電解液と、
     前記重ね合わせ方向の両側から前記正極および前記負極を被覆する2層のシート部を有するとともに、前記正極、前記セパレータ、前記負極および前記電解液を内部に収容する矩形シート状の外装体と、
     前記外装体の内部にて前記正極および前記負極にそれぞれ接続されるとともに前記外装体の外部へと延びる2つの端子と、
    を備え、
     前記外装体は、
     前記正極、前記セパレータおよび前記負極と前記重ね合わせ方向に重なる矩形状の被覆領域と、
     前記被覆領域の周囲を囲む矩形枠状の外周領域と、
    を備え、
     前記外周領域は、
     前記2つの端子が配置される辺以外の一対の辺に沿ってそれぞれ延びる帯状領域であって前記2層のシート部が接合される一対の第1領域と、
     前記一対の第1領域のうち少なくとも一方の第1領域と前記被覆領域との間にて前記被覆領域に沿って延びる帯状領域であって前記2層のシート部が非接合状態にて接触または近接する第2領域と、
    を備える。
    A thin lithium secondary battery,
    The positive electrode,
    A separator disposed on the positive electrode in a predetermined stacking direction,
    A negative electrode arranged on the side opposite to the positive electrode of the separator in the stacking direction,
    An electrolyte solution impregnating the positive electrode, the negative electrode and the separator,
    A rectangular sheet-shaped exterior body that has a two-layer sheet portion that covers the positive electrode and the negative electrode from both sides in the stacking direction, and that accommodates the positive electrode, the separator, the negative electrode, and the electrolytic solution inside,
    Two terminals connected to the positive electrode and the negative electrode inside the exterior body and extending to the outside of the exterior body;
    Equipped with
    The exterior body is
    A rectangular coating region that overlaps the positive electrode, the separator, and the negative electrode in the stacking direction,
    A rectangular frame-shaped outer peripheral region surrounding the periphery of the covered region,
    Equipped with
    The outer peripheral area is
    A pair of first regions, each of which is a strip-shaped region extending along a pair of sides other than the side on which the two terminals are arranged, and to which the two-layer sheet portions are joined;
    A strip-shaped region extending along the covering region between at least one of the pair of first regions and the covering region, and the two-layer sheet portions are in contact with or close to each other in a non-bonded state. A second area to
    Equipped with.
  2.  請求項1に記載のリチウム二次電池であって、
     前記一対の辺に垂直な幅方向における前記正極の活物質領域の幅である正極活物質幅と前記負極の活物質領域の幅である負極活物質幅とが異なる場合は、前記正極活物質幅および前記負極活物質幅のうち小さい方を除数とし、前記正極活物質幅と前記負極活物質幅とが同じである場合は前記正極活物質幅および前記負極活物質幅のうちいずれか一方を除数として、
     前記一対の第1領域のうち一方の第1領域と前記被覆領域との間にのみ前記第2領域が存在する場合は前記第2領域の幅を被除数とし、前記一対の第1領域の双方と前記被覆領域との間に一対の前記第2領域が存在する場合は前記一対の第2領域の合計幅を被除数として、
     前記被除数を前記除数により除算した値は、0.02以上かつ1以下である。
    The lithium secondary battery according to claim 1, wherein
    When the positive electrode active material width, which is the width of the positive electrode active material area in the width direction perpendicular to the pair of sides, and the negative electrode active material width, which is the width of the negative electrode active material area, are different, the positive electrode active material width And the smaller one of the negative electrode active material widths is a divisor, and when the positive electrode active material width and the negative electrode active material width are the same, one of the positive electrode active material width and the negative electrode active material width is a divisor. As
    When the second region exists only between the one first region and the covering region of the pair of first regions, the width of the second region is taken as the dividend, and both of the pair of first regions are included. When there is a pair of the second regions between the covering region and the total width of the pair of second regions as a dividend,
    A value obtained by dividing the dividend by the divisor is 0.02 or more and 1 or less.
  3.  請求項1または2に記載のリチウム二次電池であって、
     前記少なくとも一方の第1領域は、前記一対の辺に平行に延びる折り返し線にて幅方向に折り返されている。
    The lithium secondary battery according to claim 1 or 2, wherein
    The at least one first region is folded back in the width direction by a folding line extending parallel to the pair of sides.
  4.  請求項3に記載のリチウム二次電池であって、
     前記折り返し線は、前記少なくとも一方の第1領域の幅方向の中央、または、前記少なくとも一方の第1領域の幅方向の中央に対して前記第2領域の反対側に位置する。
    The lithium secondary battery according to claim 3, wherein
    The folding line is located on the opposite side of the second region with respect to the center of the at least one first region in the width direction or the center of the at least one first region in the width direction.
  5.  請求項3に記載のリチウム二次電池であって、
     前記折り返し線は、前記少なくとも一方の第1領域の幅方向の中央と前記第2領域との間に位置する。
    The lithium secondary battery according to claim 3, wherein
    The folding line is located between the center of the at least one first region in the width direction and the second region.
  6.  請求項1ないし5のいずれか1つに記載のリチウム二次電池であって、
     前記正極は、
     導電性を有するシート状の集電体と、
     リチウム複合酸化物を含む板状セラミック焼結体である活物質板と、
    を備える。
    The lithium secondary battery according to any one of claims 1 to 5,
    The positive electrode is
    A sheet-shaped current collector having conductivity,
    An active material plate which is a plate-shaped ceramic sintered body containing a lithium composite oxide,
    Equipped with.
  7.  請求項6に記載のリチウム二次電池であって、
     前記活物質板は、層状岩塩構造を有する複数の一次粒子が結合した構造を有しており、
     前記複数の一次粒子の平均傾斜角は、0°よりも大きく、かつ、30°以下であり、
     前記平均傾斜角は、前記複数の一次粒子の(003)面と前記活物質板の主面とが成す角度の平均値である。
    The lithium secondary battery according to claim 6, wherein
    The active material plate has a structure in which a plurality of primary particles having a layered rock salt structure are bonded,
    The average tilt angle of the plurality of primary particles is greater than 0° and 30° or less,
    The average tilt angle is an average value of angles formed by the (003) planes of the plurality of primary particles and the main surface of the active material plate.
  8.  請求項1ないし7のいずれか1つに記載のリチウム二次電池であって、
     シート状デバイス、または、可撓性を有するデバイスにおける電力供給源として利用される。
    The lithium secondary battery according to any one of claims 1 to 7,
    It is used as a power supply source in a sheet-shaped device or a flexible device.
  9.  請求項8に記載のリチウム二次電池であって、
     前記可撓性を有するデバイスであるスマートカードにおける電力供給源として利用される。
    The lithium secondary battery according to claim 8, wherein
    It is used as a power supply source in a smart card which is the flexible device.
  10.  請求項1ないし9のいずれか1つに記載のリチウム二次電池であって、
     製造の際に加熱しつつ加圧する工程が施される対象デバイスにおける電力供給源として利用される。
    The lithium secondary battery according to any one of claims 1 to 9,
    It is used as a power supply source in a target device to which a step of heating and pressurizing is performed during manufacturing.
PCT/JP2019/044550 2018-12-18 2019-11-13 Lithium secondary battery WO2020129481A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2020561222A JP7190509B2 (en) 2018-12-18 2019-11-13 lithium secondary battery
KR1020217015200A KR102618405B1 (en) 2018-12-18 2019-11-13 lithium secondary battery
CN201980063910.5A CN113169305A (en) 2018-12-18 2019-11-13 Lithium secondary battery
EP19898780.2A EP3902032A4 (en) 2018-12-18 2019-11-13 Lithium secondary battery
US17/302,994 US20210273256A1 (en) 2018-12-18 2021-05-18 Lithium secondary cell

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018236549 2018-12-18
JP2018-236549 2018-12-18

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/302,994 Continuation US20210273256A1 (en) 2018-12-18 2021-05-18 Lithium secondary cell

Publications (1)

Publication Number Publication Date
WO2020129481A1 true WO2020129481A1 (en) 2020-06-25

Family

ID=71101172

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/044550 WO2020129481A1 (en) 2018-12-18 2019-11-13 Lithium secondary battery

Country Status (7)

Country Link
US (1) US20210273256A1 (en)
EP (1) EP3902032A4 (en)
JP (1) JP7190509B2 (en)
KR (1) KR102618405B1 (en)
CN (1) CN113169305A (en)
TW (1) TWI810408B (en)
WO (1) WO2020129481A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022067753A (en) * 2020-10-21 2022-05-09 プライムプラネットエナジー&ソリューションズ株式会社 Laminate-type power storage device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002237279A (en) * 2001-02-09 2002-08-23 Mitsubishi Chemicals Corp Secondary battery
JP2005074936A (en) 2003-09-03 2005-03-24 Konica Minolta Photo Imaging Inc Device for producing laminate sheet as ic card intermediate
JP2009032612A (en) 2007-07-30 2009-02-12 Sanyo Electric Co Ltd Laminate outer packaging battery
JP2013196788A (en) * 2012-03-15 2013-09-30 Denso Corp Nonaqueous electrolyte secondary battery
JP2015153513A (en) 2014-02-12 2015-08-24 株式会社デンソー Laminate packaged battery
JP2016029617A (en) * 2014-07-25 2016-03-03 株式会社デンソー Nonaqueous electrolyte secondary battery
JP2016139494A (en) 2015-01-26 2016-08-04 トヨタ自動車株式会社 Laminated battery

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4830267B2 (en) * 2004-05-21 2011-12-07 トヨタ自動車株式会社 Laminated battery
JP2006079851A (en) * 2004-09-07 2006-03-23 Toshiba Battery Co Ltd Flat nonaqueous electrolyte secondary battery
JP5059890B2 (en) * 2009-03-31 2012-10-31 Jmエナジー株式会社 Laminate exterior power storage device
WO2011070918A1 (en) * 2009-12-07 2011-06-16 株式会社 村田製作所 Electrical storage device and method for manufacturing same
CN202503065U (en) * 2012-02-09 2012-10-24 广州丰江电池新技术股份有限公司 Thin lithium ion battery
JP2014032924A (en) * 2012-08-06 2014-02-20 Nec Energy Devices Ltd Film sheathed battery and method for manufacturing the same
JP6111476B2 (en) * 2012-12-24 2017-04-12 エルジー・ケム・リミテッド Pouch-type secondary battery with seal margin for improved durability
JP6126418B2 (en) * 2013-03-13 2017-05-10 セイコーインスツル株式会社 Method for producing electrochemical cell
JP2014179220A (en) * 2013-03-14 2014-09-25 Sanyo Electric Co Ltd Laminate armored battery
JP2015092456A (en) * 2013-10-01 2015-05-14 住友電気工業株式会社 Encapsulated type power storage device, and manufacturing method of the same
US9941506B2 (en) * 2014-02-21 2018-04-10 Semiconductor Energy Laboratory Co., Ltd. Current collector, secondary battery, electronic device, and manufacturing method thereof
JP5703409B2 (en) * 2014-04-30 2015-04-22 日本碍子株式会社 Lithium composite oxide sintered plate for lithium secondary battery
KR102211525B1 (en) * 2014-06-17 2021-02-02 삼성에스디아이 주식회사 Rechargeable battery having coner folding part
JP2016225186A (en) * 2015-06-01 2016-12-28 オートモーティブエナジーサプライ株式会社 Lithium ion secondary battery
JP6663178B2 (en) * 2015-07-17 2020-03-11 株式会社エンビジョンAescジャパン Lithium ion secondary battery
JP6622072B2 (en) * 2015-12-01 2019-12-18 株式会社エンビジョンAescジャパン Lithium ion secondary battery
CN109075321B (en) * 2016-04-25 2021-10-29 日本碍子株式会社 Positive electrode
JP6430065B2 (en) * 2016-04-25 2018-11-28 日本碍子株式会社 Method for producing positive electrode
KR102585510B1 (en) * 2017-02-13 2023-10-05 엔지케이 인슐레이터 엘티디 Lithium composite oxide sintered plate

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002237279A (en) * 2001-02-09 2002-08-23 Mitsubishi Chemicals Corp Secondary battery
JP2005074936A (en) 2003-09-03 2005-03-24 Konica Minolta Photo Imaging Inc Device for producing laminate sheet as ic card intermediate
JP2009032612A (en) 2007-07-30 2009-02-12 Sanyo Electric Co Ltd Laminate outer packaging battery
JP2013196788A (en) * 2012-03-15 2013-09-30 Denso Corp Nonaqueous electrolyte secondary battery
JP2015153513A (en) 2014-02-12 2015-08-24 株式会社デンソー Laminate packaged battery
JP2016029617A (en) * 2014-07-25 2016-03-03 株式会社デンソー Nonaqueous electrolyte secondary battery
JP2016139494A (en) 2015-01-26 2016-08-04 トヨタ自動車株式会社 Laminated battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022067753A (en) * 2020-10-21 2022-05-09 プライムプラネットエナジー&ソリューションズ株式会社 Laminate-type power storage device
JP7273773B2 (en) 2020-10-21 2023-05-15 プライムプラネットエナジー&ソリューションズ株式会社 Laminated power storage device

Also Published As

Publication number Publication date
CN113169305A (en) 2021-07-23
KR102618405B1 (en) 2023-12-27
EP3902032A4 (en) 2022-08-31
EP3902032A1 (en) 2021-10-27
TWI810408B (en) 2023-08-01
US20210273256A1 (en) 2021-09-02
JPWO2020129481A1 (en) 2021-10-14
JP7190509B2 (en) 2022-12-15
TW202032834A (en) 2020-09-01
KR20210077743A (en) 2021-06-25

Similar Documents

Publication Publication Date Title
US11658280B2 (en) Lithium secondary battery and card with built-in battery
JP2018206541A (en) Sealing method of battery element and manufacturing method of film sheathing battery using the same
JP2006202680A (en) Polymer battery
JP6985509B2 (en) Lithium secondary battery
JP7190509B2 (en) lithium secondary battery
JP7018376B2 (en) Solid state battery
JP7174068B2 (en) lithium secondary battery
JP7258045B2 (en) lithium secondary battery
WO2020079819A1 (en) Lithium secondary battery
CN112074987B (en) Lithium secondary battery
CN112088459B (en) Lithium secondary battery
KR102672385B1 (en) lithium secondary battery
TWI772625B (en) Lithium secondary batteries and cards with built-in batteries
CN113454811B (en) Lithium secondary battery
WO2023119937A1 (en) Lithium secondary battery
TWI811311B (en) Lithium secondary batteries and cards with built-in batteries
WO2019187917A1 (en) Lithium rechargeable battery and card with built-in battery
TW201943124A (en) Lithium rechargeable battery and card with built-in battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19898780

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020561222

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20217015200

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019898780

Country of ref document: EP

Effective date: 20210719