WO2020128242A1 - Method for manufacturing a metal core, and method for manufacturing a leading edge shield for a blade from such a metal core - Google Patents

Method for manufacturing a metal core, and method for manufacturing a leading edge shield for a blade from such a metal core Download PDF

Info

Publication number
WO2020128242A1
WO2020128242A1 PCT/FR2019/053034 FR2019053034W WO2020128242A1 WO 2020128242 A1 WO2020128242 A1 WO 2020128242A1 FR 2019053034 W FR2019053034 W FR 2019053034W WO 2020128242 A1 WO2020128242 A1 WO 2020128242A1
Authority
WO
WIPO (PCT)
Prior art keywords
core
shield
metal core
layer
leading edge
Prior art date
Application number
PCT/FR2019/053034
Other languages
French (fr)
Inventor
Jean-Michel Patrick Maurice Franchet
Daniel André Jean CORNU
Yann Lepetitcorps
Original Assignee
Safran
Universite De Bordeaux 1
Centre National De La Recherche Scientifique (Cnrs)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Safran, Universite De Bordeaux 1, Centre National De La Recherche Scientifique (Cnrs) filed Critical Safran
Publication of WO2020128242A1 publication Critical patent/WO2020128242A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P15/00Making specific metal objects by operations not covered by a single other subclass or a group in this subclass
    • B23P15/04Making specific metal objects by operations not covered by a single other subclass or a group in this subclass turbine or like blades from several pieces
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/322Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/32Rotors specially for elastic fluids for axial flow pumps
    • F04D29/321Rotors specially for elastic fluids for axial flow pumps for axial flow compressors
    • F04D29/324Blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/20Rotors
    • F05D2240/30Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
    • F05D2240/303Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor related to the leading edge of a rotor blade

Definitions

  • the present invention relates to the field of manufacturing metal parts, and in particular the manufacture of a leading edge shield of a blade of a rotary assembly present within a turbomachine.
  • the blades of rotary turbine engine assemblies such as the compressor and turbine blades, are commonly made of reinforced metal alloy.
  • the fan blades are sometimes made of composite material with an organic matrix, in particular in order to reduce their weight.
  • the fan blades are subjected to significant mechanical stresses, due to the speed of rotation of the rotary assembly and to the air flow passing through the air flow between the blades.
  • the blades of composite material resist these stresses, they are particularly sensitive to point impacts caused by elements foreign to the turbomachine, such as debris, which strike the blades and can cause delamination phenomena.
  • the elements foreign to the turbomachine come into contact with the blade 1 at its leading edge 2, that is to say in the front or upstream section of the blade which makes facing the air entering the rotary assembly.
  • the leading edge 2 is opposite to the trailing edge 3, which is the rear or downstream section of the blade at the level of which the air leaves the rotary assembly.
  • the leading edge 2 and the trailing edge 3 of the blade are connected by the lower surface 4 and the upper surface 5 of the blade 1, which form the two lateral faces of the blade.
  • the blades 1 are provided with shields 10, which are typically made of very resistant metallic material such as titanium alloys, and which are arranged on the blade so as to cover the edge d 'attack.
  • this type of shield 10 is provided with a shield body 1 1 from which extend a lower wing 12 and an upper wing 13 which delimit an internal cavity 14.
  • the lower surface 12 and upper surface 13 fins are configured to be inserted into the structure of the lower surface and the upper surface, respectively.
  • the leading edge 2 of the blade 1 is housed in the internal cavity 14 of the shield, and the body 1 1 of the shield covers the leading edge 2 of the blade and protects thus the latter of the upstream air flow entering the air stream of the rotary assembly.
  • the core conforming technique consists in carrying out a hot isostatic compression of a pressure plate 21 and a pressure plate 22, in order to conform them to a rigid core 20 of refractory material previously positioned between these plates.
  • the sheets for lower surface 21 and upper surface 22, generally comprising a titanium-based alloy are first shaped, typically by stamping, in order to bring them closer to the shape of the lower surface and upper surface of the attack shield to be manufactured.
  • the lower surface sheet is shown.
  • the sheets 21, 22 are then positioned around the core 20 so as to enclose said core.
  • the shape of the surface of the core 20 corresponds to the shape of the internal surface, that is to say of the internal cavity 14, of the shield to be manufactured.
  • Isostatic compression is then carried out of the assembly formed by the core 20 and the sheets 21, 22.
  • isostatic compression consists in compressing a mechanical part under high pressure and at high temperature in a closed enclosure, this which results in an isometric reduction in the dimensions of the mechanical part.
  • the core 20 is extracted from the shield obtained 10, and said shield is machined only on its outer surface 15 to obtain the final product. Machining of the outer surface of the shield can also be done before the shield core is removed.
  • FIG. 5B illustrates the sheets of lower surface 21 and upper surfaces 22 before and after their conformation on the metal core 20 to form the shield 10 of the blade leading edge.
  • the core shaping technique offers the advantage of controlling the shape of the internal surface, that is to say the shape of the internal cavity, of the shield, since it is a replica of the surface of the core. Therefore, no machining of the internal cavity of the shield is necessary unlike other known techniques.
  • the core must have three main characteristics related to the fact that the shaping step is carried out via a thermomechanical cycle at high temperature, of the order of 800 - 1000 ° C. , during which the core is in contact with the titanium alloy sheets for several hours:
  • the core must be non-deformable in the thermomechanical range of manufacture of the leading edge shield, in order to ensure the shape of the shield cavity. This characteristic is linked to the choice of core material, and makes it possible to avoid having to machine the shield cavity;
  • the metal alloys generally used for the core are alloys based on nickel or cobalt, these being rigid enough not to deform during conforming cycles at high temperature.
  • these alloys When these alloys are brought into contact at high temperature with the titanium alloys (type a + b) of the sheets, they react with the latter and form solid solutions or intermetallic compounds, which leads to contamination of the alloy of titanium of the sheets, or even a prohibitive bonding between the nickel or the cobalt of the core and the titanium of the sheets.
  • This solution consists in carrying out a nitriding or a carbonitriding of the core based on nickel or cobalt. This treatment generates a surface layer rich in nitrogen and carbon of a few tens of microns on the surface of the core, which plays the role of anti-diffusion barrier.
  • nitriding and carbonitriding consist in diffusing nitrogen in the case of nitriding, or both nitrogen and carbon in the case of carbonitriding, in the nucleus, through the surface of the nucleus.
  • These techniques make it possible to diffuse nitrogen and / or carbon deep into the metallic core and to create on the surface of the metallic core a layer of material enriched in nitride, in carbide, or in metallic carbonitride.
  • Nitriding and carbonitriding are reactive techniques.
  • nitrogen and carbon react with the different elements present in the metal alloy of the core, in order to form chemical compounds which are nitrides, carbides, and carbonitrides in the surface layer of the core.
  • carbides for example chromium, iron, molybdenum, tungsten, titanium, tantalum, niobium, and aluminum
  • nitrides for example chromium.
  • iron, molybdenum, tungsten, titanium, tantalum, niobium, and aluminum and others still form carbonitrides, for example titanium, tantalum, and iron.
  • the invention therefore aims to remedy the drawbacks of the prior art.
  • the invention provides a method of manufacturing a metal core and a method of manufacturing a leading edge shield of a blade from such a metal core, which aim in particular to greatly reduce, or even to to suppress, the diffusion of chemical species and chemical compounds between the core and the metal sheets intended to form the shield, during the hot conformation of said sheets around the core.
  • the invention also relates to such a metal core.
  • the invention provides a method of manufacturing a metal core for the hot shaping of a leading edge shield of a turbomachine blade, in which the metal core comprises a substrate comprising an alloy based on nickel or cobalt.
  • the method includes a step of depositing on the core substrate at least one anti-diffusion coating layer comprising at least one ceramic compound based on titanium nitride.
  • nickel-based alloy and “cobalt-based alloy” means an alloy mainly comprising nickel or cobalt, that is to say an alloy in which the mass content of nickel or cobalt respectively is predominant ahead of that of the other chemical elements of the alloy.
  • ceramic compound based on titanium nitride is understood to mean a ceramic compound mainly comprising titanium nitride TiN, that is to say a ceramic compound in which the mass content of titanium nitride is predominant compared to that of the other elements. chemical compounds.
  • the process for manufacturing a proposed metal core has the following different characteristics taken alone or according to their technically possible combinations:
  • the ceramic compound of the anti-diffusion coating layer comprises one or more of the following ceramic compounds: titanium nitride (TiN), titanium carbonitride (TiCN), titanium aluminonitride (TiAIN);
  • the anti-diffusion coating layer is deposited using one of the following techniques: chemical vapor deposition (CVD), physical vapor deposition (PVD), reactive spraying, reactive plasma-assisted evaporation (ERAP);
  • CVD chemical vapor deposition
  • PVD physical vapor deposition
  • ELP reactive plasma-assisted evaporation
  • the deposition of the anti-diffusion coating layer is carried out without modification of the physicochemical structure of the metal core on which said coating layer is deposited;
  • the manufacturing process further comprises, prior to the deposition of the anti-diffusion coating layer, the deposition of an intermediate layer, arranged between the core and the anti-diffusion coating layer in the fabricated leading edge shield.
  • said intermediate layer comprising a material whose coefficient of thermal expansion is between the coefficient of thermal expansion of the core and the coefficient of thermal expansion of the ceramic compound of the anti-diffusion coating layer.
  • the invention provides a metal core for the hot shaping of a leading edge shield of a turbomachine blade, comprising a substrate comprising an alloy based on nickel or cobalt.
  • the metal core further comprises an anti-diffusion coating layer deposited on the substrate, said anti-diffusion coating layer comprising at least one ceramic compound based on titanium nitride.
  • the coating layer is a layer distinct from the core substrate, deposited on the substrate to form the metal core, unlike the core of document WO 2017178742 in which carbon and nitrogen have diffused in the structure of the substrate, which induces a physico-chemical modification of said structure.
  • the diffusion of carbon and nitrogen modifies the surface of the substrate, while the deposition of a coating layer in accordance with the invention makes it possible to form a good interface between the substrate and said coating layer.
  • the ceramic compound of the anti-diffusion coating layer comprises one or more of the following ceramic compounds: titanium nitride (TiN), titanium carbonitride (TiCN), titanium aluminonitride (TiAIN).
  • the invention provides a method of manufacturing a leading edge shield of a turbomachine blade made of composite material, from preformed metal sheets comprising an alloy based on titanium and whose shape d 'a first metal sheet is close to the lower surface of the shield and the shape of a second metal sheet is close to the upper surface of the shield.
  • the process includes the following steps:
  • FIG. 1 is a perspective view of a blade shield as well as of a blade comprising such a shield, of a rotary assembly of a turbomachine, from the upstream side of the blade,
  • Figure 2 is a top view of the leading edge shield of the blade of Figure 1
  • Figure 3 is a perspective view of a preformed sheet intended to form part of an edge shield dawn attack
  • FIG. 4 is a perspective view which illustrates the positioning and assembly of a core with a bottom sheet and a top sheet
  • FIG. 5A is a front perspective view of the assembly formed by the core and the intrados and extrados sheets which surround the core,
  • FIG. 5B is a perspective view from the side of the lower and upper sheets after their conformation on the metal core to form the shield
  • FIG. 6A is an image obtained by scanning optical microscopy (SEM) of a substrate having undergone sandblasting on which a layer of titanium nitride TiN has been deposited
  • FIG. 6B is a spectrum obtained by luminescent discharge spectrometry (SDL) ) of the substrate of FIG. 6A
  • SEM scanning optical microscopy
  • SDL luminescent discharge spectrometry
  • FIG. 7A is a SEM image of a substrate having undergone sandblasting on which a layer of titanium aluminonitride TiAIN has been deposited
  • FIG. 7B is an SDL spectrum of the substrate of FIG. 7A.
  • FIG. 8A is a SEM image of a substrate having undergone sandblasting on which a layer of titanium carbonitride TiCN has been deposited
  • FIG. 8B is an SDL spectrum of the substrate of FIG. 8A.
  • FIG. 9 is a SEM image of an assembly according to the invention of a metal core positioned between a metal sheet on the lower surface and a metal sheet on the upper surface, in which the core is covered with a layer of anti-diffusion coating comprising a ceramic compound based on titanium nitride.
  • a first object of the invention relates to a method of manufacturing a metal core.
  • This metal core is subsequently used as a shaping element for two metal sheets, respectively a bottom sheet and a top sheet, which are arranged around and in contact with the core, in order to produce a leading edge shield. of a blade in a rotary element of a turbomachine.
  • the process for manufacturing such a shield constitutes a second object of the invention which will be described after the process for manufacturing the metal core.
  • the metal core includes an alloy based on nickel or cobalt.
  • the nickel or cobalt-based alloy preferably comprises at least 40% by weight of nickel or cobalt, and more preferably at least 50% by weight of nickel or cobalt, relative to the total weight of the core alloy.
  • the nickel or cobalt-based alloy optionally includes one or more other chemical elements, such as: chromium, iron, molybdenum, tungsten, titanium, tantalum, niobium, and aluminum.
  • At least one layer of anti-diffusion coating is deposited on the metal core, playing the role of a substrate.
  • Said coating layer comprises at least one ceramic compound based on titanium nitride.
  • the coating layer is deposited on the surface of the core, and thus forms a layer as such, of a given thickness, the chemical composition of which is different from that of the core.
  • the core is not consumed when the coating layer is deposited.
  • the ceramic compound based on titanium nitride preferably comprises at least 50 atomic% of titanium nitride, relative to the total weight of the ceramic compound of the coating layer.
  • the ceramic titanium nitride compound may include other chemical elements and / or chemical compounds in addition to the binary titanium nitride TiN.
  • the following compounds are ceramic compounds based on titanium nitride:
  • TiAIN titanium and aluminum nitride, characterized by the presence of aluminum Al in addition to the titanium nitride TiN;
  • titanium carbonitride characterized by the presence of carbon C in addition to the titanium nitride TiN;
  • the coating layer is physically and chemically inert with respect to the titanium metal sheets with which said layer comes into contact during the subsequent manufacture of the shield.
  • the coating layer an anti-diffusion barrier function.
  • this layer prevents physicochemical exchanges between the core and the metal sheets, such as in particular the transfer of one or more chemical elements from the core to the metal sheets and vice versa.
  • the contamination of the internal cavity of the shield obtained by elements of the nickel-based or cobalt-based alloy of the core is therefore limited, as is contamination of the core with elements of the metal alloy of the sheets intended to form the shield.
  • the adhesion of the core is also limited to the metal sheets which, in the techniques of the state of the art, results in the bonding of the core to the shield obtained, and requires additional operations of separation of the core and the shield which, in addition represent a significant additional cost, deteriorate the structure of the core at its surface.
  • the core covered with the coating layer does not adhere to the shield obtained.
  • the uncontaminated and structurally integrated core can thus be reused a large number of times for the manufacture of as many leading edge shields, without degrading its structure or its physico-chemical properties.
  • titanium nitride TiN has a Young's modulus of 250 GPa (Giga Pascal) and a coefficient of thermal expansion of 9.4 * 1 O ⁇ K 1 (Kelvin degrees) at 20 ° C (degrees Celsius).
  • the nickel-based alloy of the core has a Young's modulus of 225 GPa and a coefficient of thermal expansion of 11.5 * 10 6 K 1 at 20 ° C.
  • the ceramic compound of the coating layer is not deformable in the thermomechanical range for manufacturing a leading edge shield, and thus exhibits good thermodynamic stability.
  • the coating layer retains its structural integrity during the manufacture of the shield at high temperature and high pressure.
  • the ceramic compound based on titanium nitride has a Young's modulus and a coefficient of thermal expansion relatively close to those of the nickel-based alloy of the core, which gives a thermomechanical behavior relatively similar to these two. materials.
  • a first consequence is that, when the core alloy and the ceramic compound of the coating layer are thermally and mechanically stressed by isostatic compression during the manufacture of the shield, the risks of cracking, generally generated by differential expansion between two materials in contact with each other, are less.
  • a second consequence is that the coating layer has good adhesion to the metal core.
  • the core including the coating layer, will retain its structural integrity and anti-diffusion properties when reused, thereby guaranteeing less contamination by the core of the various leading edge shields produced.
  • the anti-diffusion coating layer can be designated as being a layer of a permanent coating.
  • the ceramic compound based on titanium nitride of the coating layer comprises titanium carbonitride TiCN. This ceramic compound gives the coating layer increased stability compared to the simple metal nitride TiN.
  • metallic nitrides for example chromium nitride CrN and titanium nitride TiN among others
  • chromium nitride CrN and titanium nitride TiN among others
  • the nitrogen released is likely to contaminate the internal surface of the sheets to be welded by diffusion, and thus potentially to degrade the quality of conformation of the sheets,
  • the loss of nitrogen from the coating layer is likely to degrade its anti-diffusion properties as well as its structural integrity, which would reduce the number of possible reuse of the core.
  • TiCN vs. 250 GPa for TiN
  • the ceramic compound based on titanium nitride of the coating layer comprises titanium aluminonitride TiAIN.
  • This ceramic compound has the advantage of containing aluminum, which is a chemical element already present in general in alloys of the core and metal sheets. If necessary, the presence of aluminum both in the core (substrate) and in the metal sheets as well as in the ceramic compound of the coating layer, makes it possible to greatly reduce the phenomenon of diffusion, and the physicochemical reactions resulting therefrom, between the coating layer on the one hand and the core and the metal sheets on the other hand.
  • a coating layer comprising several ceramic compounds based on titanium nitride.
  • the two preceding embodiments can be combined and result in a coating layer based on titanium carbonitride TiCN and on titanium aluminonitride TiAIN.
  • the pressure and temperature conditions are obviously adjusted during the deposition operation to allow the deposition of the different layers.
  • an intermediate layer is deposited on the core.
  • the intermediate layer is then arranged, after deposition of the coating layer, between the core and said coating layer.
  • the intermediate layer comprises a material whose coefficient of thermal expansion is between the coefficient of thermal expansion of the core alloy and the coefficient of thermal expansion of the ceramic compound of the coating layer.
  • the intermediate layer makes it possible to accommodate the differences in thermal expansion between the core and the coating layer, and thus reduce the risks of cracking of the coating during isostatic compression.
  • the intermediate layer is first deposited which is preferably a micron layer of metallic titanium, then the coating layer is deposited by spraying or reactive spraying on the intermediate layer.
  • the coating layer and when the intermediate layer is present, is deposited by chemical vapor or gas deposition ("CVD” deposition), by physical vapor or gas deposition (“PVD” deposition), or by evaporation plasma-assisted reagent ("ERAP / ARE" depot).
  • CVD chemical vapor or gas deposition
  • PVD physical vapor or gas deposition
  • ELP / ARE evaporation plasma-assisted reagent
  • Chemical vapor deposition consists of depositing a thin coating layer, preferably with a thickness of between 2 ⁇ m and 20 ⁇ m, on the surface of the core, which acts as the substrate and which has been previously placed in a reactor deposition chamber, from a reaction gas by means of chemical reactions.
  • the reaction gas comprises a precursor gas injected into the deposition chamber of the reactor by a first injection path and a reactant gas injected into the deposition chamber of the reactor by a second injection path distinct from the first, of so as to mix only after they have entered said deposit chamber.
  • titanium tetrachloride TiCI 4 As precursor gas and ammonia NH 3 as reactant gas.
  • titanium carbonitride TiAIN it is possible, for example, to use titanium tetrachloride TiCI 4 and AICI 3 as precursor gases and ammonia NH 3 as reactant gas.
  • the plasma assisted chemical deposition process or “plasma enhanced Chemical vapor deposition” (PECVD) consists of forming a plasma by supplying a radiofrequency source or using 'a discharge between two electrodes, from reactive gases.
  • the plasma then provides the energy necessary for the deposition of the thin layer on the surface of the substrate, which makes it possible to maintain the electrons at a high level of excitation, and thus to put the CVD deposit at markedly lower temperatures. than other variants of the CVD process, and also makes it possible to reduce surface defects of the final part.
  • PVD Physical vapor deposition
  • the various PVD deposition techniques include in particular the following techniques: vacuum evaporation, electron beam evaporation, cathode sputtering, pulsed laser ablation, or even molecular beam epitaxy.
  • the metal elements to be deposited are evaporated from an ingot by bombardment of this ingot with an electron beam.
  • the vapors are transported by the reactive gas and react with the gases near the substrate to form the layer to be deposited.
  • the method of manufacturing a blade leading edge shield is based on the hot shaping of titanium-based metal sheets, around the metal core comprising an anti-diffusion coating layer comprising at least one ceramic compound with titanium nitride base.
  • the coating layer is deposited on the core, prior to the hot forming of the metal sheets.
  • the core comprising the covering layer has the precise shape to be given to the internal cavity of the leading edge shield to be manufactured.
  • the sheets are shaped by stamping in order to bring them closer to the shape of the lower surface and of the upper surface of the shield to be manufactured.
  • the sheet forming operation does not need to be precise. In other words, it is not necessary for the shape of the sheets to correspond exactly to the shape of the core, since said sheets will subsequently be hot-formed. In this step, it is only a matter of getting closer to the shape of the core in order to simplify the assembly of the sheets around the core.
  • the intrados and extrados sheets are then positioned around the core so as to enclose said core.
  • the sheets are assembled with each other around the core, preferably by pointing and welding operations on the lateral edges of said sheets.
  • the coating layer is then located between the core (substrate) and the sheets, in contact with said sheets.
  • the assembly comprising the sheets and the core is then subjected to hot isostatic compression.
  • the compression temperature is between 800 ° C and 1000 ° C
  • the pressure is between 900 bar and 1100 bar.
  • hot forming techniques can be used, such as isothermal press forming. In this case, it is a uniaxial hot compaction that requires complex external tools.
  • the hot conformation by isostatic compression is however preferred, in that it does not require additional tools.
  • several assemblies, or even several dozen assemblies can be processed simultaneously under perfectly identical conditions. Press conforming can conform multiple assemblies only at the cost of a large capacity press and very complex tools.
  • isostatic deformation is preferred to uniaxial deformation for reasons of homogeneity of deformation.
  • the coating layer prevents any diffusion between the core and the sheets.
  • the coating layer prevents any physical or chemical reaction between the core and the sheets. So there is no contamination from the nucleus of the shield obtained, and no adhesion or bonding of the core with the shield. The next step of extracting the core from the internal cavity of the shield is then greatly facilitated.
  • the coating layer itself has high thermodynamic stability, in that its physical integrity is preserved throughout isostatic compression, as well as great physico-chemical stability, that is to say that said coating layer is physically and chemically inert towards metal sheets.
  • the core can thus be reused a large number of times, to form several other dawn attack shields, for a total preferably of at least 50, and more preferably of at least 100 reuse of the core.
  • the shield is machined on its outer surface to obtain the final abacus which can be mounted on the leading edge of the blade.
  • the machining of the surface of the internal cavity of the shield, intended to be brought into contact with the leading edge of the blade, is not necessary, since the shape of the cavity corresponds to that of the core and therefore has already the exact shape of the leading edge of the dawn.
  • Anti-diffusion coating layers comprising three different ceramic compounds were deposited on a Waspaloy® alloy substrate by physical gas phase deposition (PVD).
  • Waspaloy® is a nickel-based alloy marketed by United Technology Corp, whose mass composition is as follows: 58% nickel, 19% chromium, 13% cobalt, 4% molybdenum, 3% titanium, and 1.4% aluminum.
  • the three ceramic compounds in the deposited layers are: titanium nitride TiN, titanium and aluminum nitride TiAIN, and titanium carbonitride TiCN.
  • Table 2 Samples of substrates coated with an anti-diffusion layer The samples are coated in an epoxy resin, then are polished in order to obtain a satisfactory metallographic state allowing the observation and the characterization of the samples.
  • the epoxy coated samples were then metallized to allow good image and analysis quality.
  • the metallization deposit on the surface of each sample is composed of a thin layer of a gold-paladium mixture, deposited by sputtering. This deposition makes the surface of the sample conductive, which makes it possible for excess electrons to flow during the characterization of the sample by scanning electron microscopy (SEM).
  • SEM scanning electron microscopy
  • the three epoxy resin coated and metallized samples were analyzed by scanning electron microscopy (SEM) and by glow discharge spectrometry (SDL).
  • Scanning electron microscopy makes it possible to visualize the thickness of the coating layers and the sub-layer of the substrate, and also makes it possible to identify possible defects or interactions between these layers.
  • the scanning electron microscope used is a QUANTA 400 FEG SEM. The following parameters were used to obtain the images presented below: working voltage of 20 KV, Spot 3, and Diaphragm 4.
  • Luminescent discharge spectrometry makes it possible, in addition to scanning electron microscopy, to determine the chemical elements present in the samples by gradual erosion of said samples following a potential difference applied between two electrodes in a chamber at reduced pressure.
  • FIGS. 6A and 6B respectively represent a SEM image and an SDL spectrum for sample 1, the SEM image illustrating a fraction of the nucleus obtained 30.
  • the average thickness measured with SEM of the TiN coating layer, referenced 32 is approximately 1 micrometer.
  • FIGS. 7 A and 7B respectively represent a SEM image and an SDL spectrum for sample 2, the SEM image illustrating a fraction of the nucleus obtained 30.
  • the average thickness measured with SEM of the layer 32 of TiAIN coating is approximately 1 micrometer.
  • FIGS. 8A and 8B respectively represent a SEM image and an SDL spectrum for sample 3, the SEM image illustrating a fraction of the nucleus obtained 30.
  • the average thickness measured with SEM of the layer 32 of TiCN coating is approximately 1 micrometer.
  • the thicknesses of the different PVD deposits are around 1 micrometer, and the erosion times are around 50 seconds for the different elements of the ceramic compound layer. filed.

Abstract

The present invention concerns a method for manufacturing a metal core for the hot forming of a leading edge shield (10) of a turbomachine blade (1), said metal core (30) comprising a substrate (31) comprising a nickel-based or cobalt-based alloy, the method being characterised in that it comprises a step of depositing, on the substrate (31) of the metal core, at least one anti-diffusion coating layer (32) comprising at least one ceramic compound made from titanium nitride.

Description

PROCEDE DE FABRICATION D’UN NOYAU METALLIQUE, ET PROCEDE DE FABRICATION D’UN BOUCLIER DE BORD D’ATTAQUE D’UNE AUBE A PARTIR D’UN METHOD OF MANUFACTURING A METAL CORE, AND METHOD OF MANUFACTURING A SHIELD OF THE EDGE ATTACK OF A VANE FROM A
TEL NOYAU METALLIQUE SUCH A METAL CORE
DOMAINE DE L'INVENTION FIELD OF THE INVENTION
La présente invention concerne le domaine de la fabrication de pièces métalliques, et en particulier la fabrication d’un bouclier de bord d’attaque d’une aube d’un ensemble rotatif présent au sein d’une turbomachine. The present invention relates to the field of manufacturing metal parts, and in particular the manufacture of a leading edge shield of a blade of a rotary assembly present within a turbomachine.
ETAT DE LA TECHNIQUE STATE OF THE ART
Les aubes des ensembles rotatifs de turbomachine, telles que les aubes de compresseur et de turbine, sont couramment réalisées en alliage métallique renforcé. Pour la soufflante, les aubes de soufflante sont parfois réalisées en matériau composite à matrice organique, afin notamment de réduire leur poids. The blades of rotary turbine engine assemblies, such as the compressor and turbine blades, are commonly made of reinforced metal alloy. For the fan, the fan blades are sometimes made of composite material with an organic matrix, in particular in order to reduce their weight.
Les aubes de soufflante sont soumises à des contraintes mécaniques importantes, dues à la vitesse de rotation de l’ensemble rotatif et au flux d’air traversant la veine d’air entre les aubes. The fan blades are subjected to significant mechanical stresses, due to the speed of rotation of the rotary assembly and to the air flow passing through the air flow between the blades.
Bien que les aubes en matériau composite résistent à ces contraintes, elles sont particulièrement sensibles aux impacts ponctuels causés par des éléments étrangers à la turbomachine, tels que des débris, qui percutent les aubes et peuvent causer des phénomènes de délaminage. Although the blades of composite material resist these stresses, they are particularly sensitive to point impacts caused by elements foreign to the turbomachine, such as debris, which strike the blades and can cause delamination phenomena.
En référence à la figure 1 , les éléments étrangers à la turbomachine entrent au contact de l’aube 1 au niveau de son bord d’attaque 2, c’est-à-dire de la section avant ou amont de l’aube qui fait face à l’air entrant dans l’ensemble rotatif. Le bord d’attaque 2 est opposé au bord de fuite 3, qui est la section arrière ou aval de l’aube au niveau de laquelle l’air sort de l’ensemble rotatif. Le bord d’attaque 2 et le bord de fuite 3 de l’aube sont reliés par l’intrados 4 et l’extrados 5 de l’aube 1 , qui forment les deux faces latérales de l’aube. With reference to FIG. 1, the elements foreign to the turbomachine come into contact with the blade 1 at its leading edge 2, that is to say in the front or upstream section of the blade which makes facing the air entering the rotary assembly. The leading edge 2 is opposite to the trailing edge 3, which is the rear or downstream section of the blade at the level of which the air leaves the rotary assembly. The leading edge 2 and the trailing edge 3 of the blade are connected by the lower surface 4 and the upper surface 5 of the blade 1, which form the two lateral faces of the blade.
Pour prévenir les désagréments causés par les impacts ponctuels, les aubes 1 sont munies de boucliers 10, qui sont typiquement réalisés en matériau métallique très résistant tel que des alliages de titane, et qui sont agencés sur l’aube de manière à recouvrir le bord d’attaque. De manière générale, comme l’illustre plus en détail la figure 2, ce type de bouclier 10 est muni d’un corps de bouclier 1 1 duquel s’étendent une ailette intrados 12 et une ailette extrados 13 qui délimitent une cavité interne 14. Les ailettes intrados 12 et extrados 13 sont configurées pour être insérées dans la structure respectivement de l’intrados et de l’extrados de l’aube, de sorte que le bord d’attaque 2 de l’aube 1 vient se loger dans la cavité interne 14 du bouclier, et le corps 1 1 du bouclier recouvre le bord d’attaque 2 de l’aube et protège ainsi ce dernier du flux d’air amont entrant dans la veine d’air de l’ensemble rotatif. To prevent inconvenience caused by punctual impacts, the blades 1 are provided with shields 10, which are typically made of very resistant metallic material such as titanium alloys, and which are arranged on the blade so as to cover the edge d 'attack. In general, as illustrated in more detail in FIG. 2, this type of shield 10 is provided with a shield body 1 1 from which extend a lower wing 12 and an upper wing 13 which delimit an internal cavity 14. The lower surface 12 and upper surface 13 fins are configured to be inserted into the structure of the lower surface and the upper surface, respectively. of the blade, so that the leading edge 2 of the blade 1 is housed in the internal cavity 14 of the shield, and the body 1 1 of the shield covers the leading edge 2 of the blade and protects thus the latter of the upstream air flow entering the air stream of the rotary assembly.
Parmi les techniques existantes permettant de fabriquer les boucliers 10 de bord d’attaque, il existe la technique dite de « conformage par noyau », telle que décrite dans le document WO 201 1 1 14073. Among the existing techniques making it possible to manufacture the leading edge shields 10, there is the technique known as "core shaping", as described in document WO 201 1 1 14073.
La technique de conformage par noyau consiste à réaliser une compression isostatique à chaud d’une tôle d’intrados 21 et d’une tôle d’extrados 22, afin de les conformer à un noyau 20 rigide en matériau réfractaire préalablement positionné entre ces tôles. The core conforming technique consists in carrying out a hot isostatic compression of a pressure plate 21 and a pressure plate 22, in order to conform them to a rigid core 20 of refractory material previously positioned between these plates.
Plus précisément, comme l’illustre la figure 3, les tôles d’intrados 21 et d’extrados 22, comprenant généralement un alliage à base de titane, sont d’abord mises en forme, typiquement par matriçage, afin de les rapprocher de la forme de l’intrados et de l’extrados du bouclier d’attaque à fabriquer. Sur la figure 3, seule la tôle d’intrados est représentée. More precisely, as illustrated in FIG. 3, the sheets for lower surface 21 and upper surface 22, generally comprising a titanium-based alloy, are first shaped, typically by stamping, in order to bring them closer to the shape of the lower surface and upper surface of the attack shield to be manufactured. In Figure 3, only the lower surface sheet is shown.
Conformément aux figures 4 et 5A, les tôles 21 , 22 sont ensuite positionnées autour du noyau 20 de manière à enserrer ledit noyau. La forme de la surface du noyau 20 correspond à la forme de la surface interne, c’est-à-dire de la cavité interne 14, du bouclier à fabriquer. According to Figures 4 and 5A, the sheets 21, 22 are then positioned around the core 20 so as to enclose said core. The shape of the surface of the core 20 corresponds to the shape of the internal surface, that is to say of the internal cavity 14, of the shield to be manufactured.
On réalise ensuite une compression isostatique de l’ensemble formé par le noyau 20 et les tôles 21 , 22. De manière connue en soi, une compression isostatique consiste à compresser une pièce mécanique sous haute pression et à haute température dans une enceinte fermée, ce qui entraîne une réduction isométrique des dimensions de la pièce mécanique. Isostatic compression is then carried out of the assembly formed by the core 20 and the sheets 21, 22. In a manner known per se, isostatic compression consists in compressing a mechanical part under high pressure and at high temperature in a closed enclosure, this which results in an isometric reduction in the dimensions of the mechanical part.
Le noyau 20 est extrait du bouclier obtenu 10, et ledit bouclier est usiné uniquement sur sa surface extérieure 15 pour obtenir le produit final. L’usinage de la surface externe du bouclier peut également être réalisé avant le retrait du noyau du bouclier. The core 20 is extracted from the shield obtained 10, and said shield is machined only on its outer surface 15 to obtain the final product. Machining of the outer surface of the shield can also be done before the shield core is removed.
La figure 5B illustre les tôles d’intrados 21 et d’extrados 22 avant et après leur conformation sur le noyau métallique 20 pour former le bouclier 10 de bord d’attaque d’aube. FIG. 5B illustrates the sheets of lower surface 21 and upper surfaces 22 before and after their conformation on the metal core 20 to form the shield 10 of the blade leading edge.
La technique de conformage par noyau offre l’avantage de maîtriser la forme de la surface interne, c’est-à-dire la forme de la cavité interne, du bouclier, puisqu’elle est une réplique de la surface du noyau. Dès lors, aucun usinage de la cavité interne du bouclier n’est nécessaire contrairement à d’autres techniques connues. The core shaping technique offers the advantage of controlling the shape of the internal surface, that is to say the shape of the internal cavity, of the shield, since it is a replica of the surface of the core. Therefore, no machining of the internal cavity of the shield is necessary unlike other known techniques.
Lorsqu’il est réalisé avant le retrait du noyau, l’usinage de la surface externe du bouclier est maîtrisé et facilité grâce à la présence du noyau qui rigidifie l’ensemble tout en permettant d’avoir des référentiels dimensionnels intégrés. Enfin, cette technique présente des coûts de mise en oeuvre inférieurs à ceux des techniques connues, grâce au fait qu’un même noyau peut être réutilisé pour fabriquer d’autres boucliers de bord d’attaque. When it is carried out before the core is removed, the machining of the outer surface of the shield is controlled and facilitated thanks to the presence of the core which stiffens the assembly while allowing for integrated dimensional reference frames. Finally, this technique has lower implementation costs than known techniques, thanks to the fact that the same core can be reused to manufacture other leading edge shields.
Pour mettre en oeuvre la technique de conformage par noyau, le noyau doit présenter trois caractéristiques principales en relation avec le fait que l’étape de conformage s’effectue via un cycle thermomécanique à haute température, de l’ordre de 800 - 1000°C, durant lequel le noyau est en contact avec les tôles en alliage de titane pendant plusieurs heures : To implement the core shaping technique, the core must have three main characteristics related to the fact that the shaping step is carried out via a thermomechanical cycle at high temperature, of the order of 800 - 1000 ° C. , during which the core is in contact with the titanium alloy sheets for several hours:
1 ) le noyau doit être indéformable dans la gamme thermomécanique de fabrication du bouclier de bord d’attaque, afin d’assurer la forme de la cavité du bouclier. Cette caractéristique est liée au choix du matériau de noyau, et permet d’éviter d’avoir à usiner la cavité du bouclier ; 1) the core must be non-deformable in the thermomechanical range of manufacture of the leading edge shield, in order to ensure the shape of the shield cavity. This characteristic is linked to the choice of core material, and makes it possible to avoid having to machine the shield cavity;
2) il ne doit y avoir aucune réaction chimique entre le matériau du noyau et le matériau des tôles métalliques formant le bouclier. Cette caractéristique permet d’éviter ou au moins de réduire au maximum la décontamination chimique de la cavité du bouclier ; 2) there must be no chemical reaction between the material of the core and the material of the metal sheets forming the shield. This characteristic makes it possible to avoid or at least minimize chemical decontamination of the shield cavity;
3) Il ne doit y avoir aucune adhérence ou collage entre le matériau du noyau et le matériau des tôles métalliques formant le bouclier. Cette caractéristique conditionne la réutilisation du noyau et donc la viabilité économique de la technique de conformage par noyau. 3) There must be no adhesion or bonding between the material of the core and the material of the metal sheets forming the shield. This characteristic conditions the reuse of the core and therefore the economic viability of the core shaping technique.
Les caractéristiques 2) et 3) sont liées, en ce sens qu’une réaction chimique entre le matériau du noyau et le matériau des tôles métalliques augmente l’adhérence entre la surface du noyau et la cavité du bouclier, et nécessite donc un traitement particulier du noyau. Features 2) and 3) are related, in that a chemical reaction between the core material and the sheet metal material increases the adhesion between the core surface and the shield cavity, and therefore requires special treatment. of the nucleus.
En effet, les alliages métalliques généralement retenus pour le noyau sont des alliages à base de nickel ou de cobalt, ceux-ci étant suffisamment rigides pour ne pas se déformer lors des cycles de conformage à haute température. Lorsque ces alliages sont mis en contact à haute température avec les alliages de titane (type a+b) des tôles, ils réagissent avec ces derniers et forment des solutions solides ou des composés intermétalliques, ce qui conduit à une contamination de l’alliage de titane des tôles, voire à un collage rédhibitoire entre le nickel ou le cobalt du noyau et le titane des tôles. In fact, the metal alloys generally used for the core are alloys based on nickel or cobalt, these being rigid enough not to deform during conforming cycles at high temperature. When these alloys are brought into contact at high temperature with the titanium alloys (type a + b) of the sheets, they react with the latter and form solid solutions or intermetallic compounds, which leads to contamination of the alloy of titanium of the sheets, or even a prohibitive bonding between the nickel or the cobalt of the core and the titanium of the sheets.
Dans cette situation, il apparaît donc indispensable de traiter le noyau préalablement à la conformation à chaud des tôles de manière adaptée pour éviter la contamination et le collage du noyau au bouclier. Une solution à ce problème consiste à intercaler une barrière de diffusion entre les deux alliages métalliques en contact avant de leur faire subir la compaction isostatique à haute température. In this situation, it therefore appears essential to treat the core prior to hot shaping of the sheets in a suitable manner to avoid contamination and sticking of the core to the shield. One solution to this problem consists in interposing a diffusion barrier between the two metal alloys in contact before subjecting them to isostatic compaction at high temperature.
Cette solution, détaillée dans le document WO 2017178742, consiste à réaliser une nitruration ou une carbonitruration du noyau à base de nickel ou de cobalt. Ce traitement génère une couche superficielle riche en azote et en carbone de quelques dizaines de microns en surface du noyau, qui joue le rôle de barrière anti-diffusion. This solution, detailed in document WO 2017178742, consists in carrying out a nitriding or a carbonitriding of the core based on nickel or cobalt. This treatment generates a surface layer rich in nitrogen and carbon of a few tens of microns on the surface of the core, which plays the role of anti-diffusion barrier.
Plus précisément, la nitruration et la carbonitruration consistent à diffuser de l’azote dans le cas de la nitruration, ou à la fois de l’azote et du carbone dans le cas de la carbonitruration, dans le noyau, à travers la surface du noyau. Ces techniques permettent de faire diffuser l’azote et/ou le carbone en profondeur dans le noyau métallique et de créer en surface du noyau métallique une couche de matériau enrichi en nitrure, en carbure, ou en carbonitrure métallique. More precisely, nitriding and carbonitriding consist in diffusing nitrogen in the case of nitriding, or both nitrogen and carbon in the case of carbonitriding, in the nucleus, through the surface of the nucleus. . These techniques make it possible to diffuse nitrogen and / or carbon deep into the metallic core and to create on the surface of the metallic core a layer of material enriched in nitride, in carbide, or in metallic carbonitride.
La nitruration et la carbonitruration sont des techniques réactives. En d’autres termes, l’azote et le carbone réagissent avec les différents éléments présents dans l’alliage métallique du noyau, afin de former des composés chimiques que sont les nitrures, les carbures, et les carbonitrures dans la couche de surface du noyau. Parmi ces éléments du noyau, certains forment des carbures, par exemple le chrome, le fer, le molybdène, le tungstène, le titane, le tantale, le niobium, et l’aluminium, d’autres forment des nitrures, par exemple le chrome, le fer, le molybdène, le tungstène, le titane, le tantale, le niobium, et l’aluminium, et d’autres encore forment des carbonitrures, par exemple le titane, le tantale, et le fer. Nitriding and carbonitriding are reactive techniques. In other words, nitrogen and carbon react with the different elements present in the metal alloy of the core, in order to form chemical compounds which are nitrides, carbides, and carbonitrides in the surface layer of the core. . Among these elements of the core, some form carbides, for example chromium, iron, molybdenum, tungsten, titanium, tantalum, niobium, and aluminum, others form nitrides, for example chromium. , iron, molybdenum, tungsten, titanium, tantalum, niobium, and aluminum, and others still form carbonitrides, for example titanium, tantalum, and iron.
Malgré son efficacité apparente, en ce que la couche anti-diffusion enrichie en azote et en carbone limite la diffusion des éléments et composés chimiques entre le noyau et le bouclier, cette technique présente néanmoins des carences quant à l’efficacité de cette couche. Despite its apparent effectiveness, in that the anti-diffusion layer enriched in nitrogen and carbon limits the diffusion of chemical elements and compounds between the core and the shield, this technique nevertheless presents deficiencies as to the effectiveness of this layer.
Des traces de contamination sur la surface de la cavité du bouclier de bord d’attaque obtenu ainsi que des dégradations de la couche anti-diffusion sont observables dès le premier cycle de compression isostatique, c’est-à-dire dès la première utilisation du noyau pour former un premier bouclier. Ces inconvénients limitent fortement la possibilité de réutiliser le noyau pour fabriquer d’autres boucliers en grand nombre, par exemple au moins plusieurs dizaines voire plusieurs centaines, et grève ainsi le modèle économique de cette technique. EXPOSE DE L'INVENTION Traces of contamination on the surface of the cavity of the leading edge shield obtained as well as degradations of the anti-diffusion layer are observable from the first cycle of isostatic compression, that is to say from the first use of the core to form a first shield. These drawbacks greatly limit the possibility of reusing the core to manufacture other shields in large numbers, for example at least several tens or even hundreds, and thus strike the economic model of this technique. STATEMENT OF THE INVENTION
L’invention a donc pour but de remédier aux inconvénients de l’art antérieur. The invention therefore aims to remedy the drawbacks of the prior art.
L’invention propose un procédé de fabrication d’un noyau métallique et un procédé de fabrication d’un bouclier de bord d’attaque d’une aube à partir d’un tel noyau métallique, qui visent en particulier à diminuer fortement, voire à supprimer, la diffusion des espèces chimiques et des composés chimiques entre le noyau et les tôles métalliques destinées à former le bouclier, pendant la conformation à chaud desdites tôles autour du noyau. L’invention se rapporte également à un tel noyau métallique. The invention provides a method of manufacturing a metal core and a method of manufacturing a leading edge shield of a blade from such a metal core, which aim in particular to greatly reduce, or even to to suppress, the diffusion of chemical species and chemical compounds between the core and the metal sheets intended to form the shield, during the hot conformation of said sheets around the core. The invention also relates to such a metal core.
A cette fin, selon un premier aspect, l’invention propose un procédé de fabrication d’un noyau métallique pour la conformation à chaud d’un bouclier de bord d’attaque d’une aube de turbomachine, dans lequel le noyau métallique comprend un substrat comprenant un alliage à base de nickel ou de cobalt. Le procédé comprend une étape de dépôt sur le substrat du noyau d’au moins une couche de revêtement anti-diffusion comprenant au moins un composé céramique à base de nitrure de titane. To this end, according to a first aspect, the invention provides a method of manufacturing a metal core for the hot shaping of a leading edge shield of a turbomachine blade, in which the metal core comprises a substrate comprising an alloy based on nickel or cobalt. The method includes a step of depositing on the core substrate at least one anti-diffusion coating layer comprising at least one ceramic compound based on titanium nitride.
On entend par « alliage à base de nickel » et « alliage à base de cobalt » un alliage comprenant majoritairement du nickel ou du cobalt, c’est-à-dire un alliage dans lequel la teneur massique en nickel ou en cobalt respectivement est majoritaire devant celle des autres éléments chimiques de l’alliage. The term “nickel-based alloy” and “cobalt-based alloy” means an alloy mainly comprising nickel or cobalt, that is to say an alloy in which the mass content of nickel or cobalt respectively is predominant ahead of that of the other chemical elements of the alloy.
On entend par « composé céramique à base de nitrure de titane » un composé céramique comprenant majoritairement du nitrure de titane TiN, c’est-à-dire un composé céramique dans lequel la teneur massique en nitrure de titane est majoritaire devant celle des autres éléments chimiques du composé. The term “ceramic compound based on titanium nitride” is understood to mean a ceramic compound mainly comprising titanium nitride TiN, that is to say a ceramic compound in which the mass content of titanium nitride is predominant compared to that of the other elements. chemical compounds.
Selon d’autres aspects, le procédé de fabrication d’un noyau métallique proposé présente les différentes caractéristiques suivantes prises seules ou selon leurs combinaisons techniquement possibles : According to other aspects, the process for manufacturing a proposed metal core has the following different characteristics taken alone or according to their technically possible combinations:
le composé céramique de la couche de revêtement anti-diffusion comprend un ou plusieurs des composés céramiques suivants : nitrure de titane (TiN), carbonitrure de titane (TiCN), aluminonitrure de titane (TiAIN) ; the ceramic compound of the anti-diffusion coating layer comprises one or more of the following ceramic compounds: titanium nitride (TiN), titanium carbonitride (TiCN), titanium aluminonitride (TiAIN);
■ la couche de revêtement anti-diffusion est déposée selon l’une des techniques suivantes : dépôt chimique en phase vapeur (CVD), dépôt physique en phase vapeur (PVD), pulvérisation réactive, évaporation réactive assistée par plasma (ERAP); ■ the anti-diffusion coating layer is deposited using one of the following techniques: chemical vapor deposition (CVD), physical vapor deposition (PVD), reactive spraying, reactive plasma-assisted evaporation (ERAP);
le dépôt de la couche de revêtement anti-diffusion est réalisé sans modification de la structure physico-chimique du noyau métallique sur lequel est déposée ladite couche de revêtement ; Le procédé de fabrication comprend en outre, préalablement au dépôt de la couche de revêtement anti-diffusion, le dépôt d’une couche intermédiaire, agencée entre le noyau et la couche de revêtement anti-diffusion dans le bouclier de bord d’attaque fabriqué, ladite couche intermédiaire comprenant un matériau dont le coefficient de dilatation thermique est compris entre le coefficient de dilatation thermique du noyau et le coefficient de dilatation thermique du composé céramique de la couche de revêtement anti-diffusion. the deposition of the anti-diffusion coating layer is carried out without modification of the physicochemical structure of the metal core on which said coating layer is deposited; The manufacturing process further comprises, prior to the deposition of the anti-diffusion coating layer, the deposition of an intermediate layer, arranged between the core and the anti-diffusion coating layer in the fabricated leading edge shield. said intermediate layer comprising a material whose coefficient of thermal expansion is between the coefficient of thermal expansion of the core and the coefficient of thermal expansion of the ceramic compound of the anti-diffusion coating layer.
Selon un deuxième aspect, l’invention propose un noyau métallique pour la conformation à chaud d’un bouclier de bord d’attaque d’une aube de turbomachine, comprenant un substrat comprenant un alliage à base de nickel ou de cobalt. Le noyau métallique comprend en outre une couche de revêtement anti-diffusion déposée sur le substrat, ladite couche de revêtement anti-diffusion comprenant au moins un composé céramique à base de nitrure de titane. According to a second aspect, the invention provides a metal core for the hot shaping of a leading edge shield of a turbomachine blade, comprising a substrate comprising an alloy based on nickel or cobalt. The metal core further comprises an anti-diffusion coating layer deposited on the substrate, said anti-diffusion coating layer comprising at least one ceramic compound based on titanium nitride.
La couche de revêtement est une couche distincte du substrat du noyau, déposée sur le substrat pour former le noyau métallique, contrairement au noyau du document WO 2017178742 dans lequel du carbone et de l’azote ont diffusé dans la structure du substrat, ce qui induit une modification physico-chimique de ladite structure. En particulier, la diffusion de carbone et d’azote modifie la surface du substrat, tandis que le dépôt d’une couche de revêtement conformément à l’invention permet de former une bonne interface entre le substrat et ladite couche de revêtement. The coating layer is a layer distinct from the core substrate, deposited on the substrate to form the metal core, unlike the core of document WO 2017178742 in which carbon and nitrogen have diffused in the structure of the substrate, which induces a physico-chemical modification of said structure. In particular, the diffusion of carbon and nitrogen modifies the surface of the substrate, while the deposition of a coating layer in accordance with the invention makes it possible to form a good interface between the substrate and said coating layer.
Selon un mode de réalisation préféré, le composé céramique de la couche de revêtement anti-diffusion comprend un ou plusieurs composés céramiques suivants : nitrure de titane (TiN), carbonitrure de titane (TiCN), aluminonitrure de titane (TiAIN). According to a preferred embodiment, the ceramic compound of the anti-diffusion coating layer comprises one or more of the following ceramic compounds: titanium nitride (TiN), titanium carbonitride (TiCN), titanium aluminonitride (TiAIN).
Selon un troisième aspect, l’invention propose un procédé de fabrication d’un bouclier de bord d’attaque d’une aube de turbomachine en matériau composite, à partir de tôles métalliques préformées comprenant un alliage à base de titane et dont la forme d’une première tôle métallique est proche de l’intrados du bouclier et la forme d’une deuxième tôle métallique est proche de l’extrados du bouclier. Le procédé comprend les étapes suivantes : According to a third aspect, the invention provides a method of manufacturing a leading edge shield of a turbomachine blade made of composite material, from preformed metal sheets comprising an alloy based on titanium and whose shape d 'a first metal sheet is close to the lower surface of the shield and the shape of a second metal sheet is close to the upper surface of the shield. The process includes the following steps:
- fabrication d’un noyau métallique tel que décrit précédemment, - fabrication of a metal core as described above,
- positionnement des tôles métalliques autour du noyau métallique, - positioning of the metal sheets around the metal core,
- conformation à chaud des tôles métalliques autour du noyau métallique, - hot forming of the metal sheets around the metal core,
- extraction du noyau métallique. DESCRIPTION DES FIGURES - extraction of the metallic core. DESCRIPTION OF THE FIGURES
D’autres avantages et caractéristiques de l’invention apparaîtront à la lecture de la description suivante donnée à titre d’exemple illustratif et non limitatif, en référence aux figures annexées suivantes : Other advantages and characteristics of the invention will appear on reading the following description given by way of illustrative and nonlimiting example, with reference to the following appended figures:
la figure 1 est une vue en perspective d’un bouclier d’aube ainsi que d’une aube comprenant un tel bouclier, d’un ensemble rotatif d’une turbomachine, depuis le côté amont de l’aube, FIG. 1 is a perspective view of a blade shield as well as of a blade comprising such a shield, of a rotary assembly of a turbomachine, from the upstream side of the blade,
la figure 2 est une vue de dessus du bouclier de bord d’attaque de l’aube de la figure 1 , la figure 3 est une vue en perspective d’une tôle préformée destinée à former une partie d’un bouclier de bord d’attaque d’aube, Figure 2 is a top view of the leading edge shield of the blade of Figure 1, Figure 3 is a perspective view of a preformed sheet intended to form part of an edge shield dawn attack,
la figure 4 est une vue en perspective qui illustre le positionnement et l’assemblage d’un noyau avec une tôle d’intrados et une tôle d’extrados, FIG. 4 is a perspective view which illustrates the positioning and assembly of a core with a bottom sheet and a top sheet,
la figure 5A est une vue en perspective de face de l’ensemble formé par le noyau et les tôles d’intrados et d’extrados qui entourent le noyau, FIG. 5A is a front perspective view of the assembly formed by the core and the intrados and extrados sheets which surround the core,
la figure 5B est une vue en perspective de côté des tôles d’intrados et d’extrados après leur conformation sur le noyau métallique pour former le bouclier, FIG. 5B is a perspective view from the side of the lower and upper sheets after their conformation on the metal core to form the shield,
la figure 6A est une image obtenue par microscopie optique à balayage (MEB) d’un substrat ayant subi un sablage sur lequel a été déposée une couche de nitrure de titane TiN, la figure 6B est un spectre obtenu par spectrométrie à décharge luminescente (SDL) du substrat de la figure 6A, FIG. 6A is an image obtained by scanning optical microscopy (SEM) of a substrate having undergone sandblasting on which a layer of titanium nitride TiN has been deposited, FIG. 6B is a spectrum obtained by luminescent discharge spectrometry (SDL) ) of the substrate of FIG. 6A,
la figure 7A est une image MEB d’un substrat ayant subi un sablage sur lequel a été déposée une couche d’aluminonitrure de titane TiAIN, FIG. 7A is a SEM image of a substrate having undergone sandblasting on which a layer of titanium aluminonitride TiAIN has been deposited,
la figure 7B est un spectre SDL du substrat de la figure 7A, FIG. 7B is an SDL spectrum of the substrate of FIG. 7A,
la figure 8A est une image MEB d’un substrat ayant subi un sablage sur lequel a été déposée une couche de carbonitrure de titane TiCN, FIG. 8A is a SEM image of a substrate having undergone sandblasting on which a layer of titanium carbonitride TiCN has been deposited,
la figure 8B est un spectre SDL du substrat de la figure 8A, FIG. 8B is an SDL spectrum of the substrate of FIG. 8A,
la figure 9 est une image MEB d’un ensemble selon l’invention d’un noyau métallique positionné entre une tôle métallique d’intrados et une tôle métallique d’extrados, dans lequel le noyau est recouvert une couche de revêtement anti-diffusion comprenant un composé céramique à base de nitrure de titane. DESCRIPTION DETAILLEE DE MODES DE REALISATION DE L'INVENTION FIG. 9 is a SEM image of an assembly according to the invention of a metal core positioned between a metal sheet on the lower surface and a metal sheet on the upper surface, in which the core is covered with a layer of anti-diffusion coating comprising a ceramic compound based on titanium nitride. DETAILED DESCRIPTION OF EMBODIMENTS OF THE INVENTION
Procédé de fabrication d’un noyau métallique Method of manufacturing a metal core
Un premier objet de l’invention concerne un procédé de fabrication d’un noyau métallique. Ce noyau métallique sert par la suite d’élément de conformation pour deux tôles métalliques, respectivement une tôle d’intrados et une tôle d’extrados, qui sont agencées autour et au contact du noyau, afin de fabriquer un bouclier de bord d’attaque d’une aube dans un élément rotatif d’une turbomachine. Le procédé de fabrication d’un tel bouclier constitue un deuxième objet de l’invention qui sera décrit après le procédé de fabrication du noyau métallique. A first object of the invention relates to a method of manufacturing a metal core. This metal core is subsequently used as a shaping element for two metal sheets, respectively a bottom sheet and a top sheet, which are arranged around and in contact with the core, in order to produce a leading edge shield. of a blade in a rotary element of a turbomachine. The process for manufacturing such a shield constitutes a second object of the invention which will be described after the process for manufacturing the metal core.
Le noyau métallique comprend un alliage à base de nickel ou de cobalt. The metal core includes an alloy based on nickel or cobalt.
L’alliage à base de nickel ou de cobalt comprend de préférence au moins 40% en poids de nickel ou de cobalt, et de manière davantage préférée au moins 50% en poids de nickel ou de cobalt, par rapport au poids total de l’alliage du noyau. The nickel or cobalt-based alloy preferably comprises at least 40% by weight of nickel or cobalt, and more preferably at least 50% by weight of nickel or cobalt, relative to the total weight of the core alloy.
L’alliage à base de nickel ou de cobalt comprend éventuellement un ou plusieurs autres éléments chimiques, tels que : le chrome, le fer, le molybdène, le tungstène, le titane, le tantale, le niobium, et l’aluminium. The nickel or cobalt-based alloy optionally includes one or more other chemical elements, such as: chromium, iron, molybdenum, tungsten, titanium, tantalum, niobium, and aluminum.
Selon une première étape du procédé de fabrication du noyau, on dépose sur le noyau métallique, jouant le rôle d’un substrat, au moins une couche de revêtement anti-diffusion. Ladite couche de revêtement comprend au moins un composé céramique à base de nitrure de titane. According to a first step in the process for manufacturing the core, at least one layer of anti-diffusion coating is deposited on the metal core, playing the role of a substrate. Said coating layer comprises at least one ceramic compound based on titanium nitride.
La couche de revêtement est déposée sur la surface du noyau, et forme ainsi une couche en tant que telle, d’une épaisseur donnée, dont la composition chimique est différente de celle du noyau. Le noyau n’est pas consommé lors du dépôt de la couche de revêtement. The coating layer is deposited on the surface of the core, and thus forms a layer as such, of a given thickness, the chemical composition of which is different from that of the core. The core is not consumed when the coating layer is deposited.
Le composé céramique à base de nitrure de titane comprend de préférence au moins 50% atomique de nitrure de titane, par rapport au poids total du composé céramique de la couche de revêtement. The ceramic compound based on titanium nitride preferably comprises at least 50 atomic% of titanium nitride, relative to the total weight of the ceramic compound of the coating layer.
Le composé céramique à base de nitrure de titane peut comprendre d’autres éléments chimiques et/ou composés chimiques en plus du binaire nitrure de titane TiN. Par exemple, les composés suivants sont des composés céramiques à base de nitrure de titane : The ceramic titanium nitride compound may include other chemical elements and / or chemical compounds in addition to the binary titanium nitride TiN. For example, the following compounds are ceramic compounds based on titanium nitride:
- TiAIN : nitrure de titane et d’aluminium, caractérisé par la présence d’aluminium Al en plus du nitrure de titane TiN ; - TiAIN: titanium and aluminum nitride, characterized by the presence of aluminum Al in addition to the titanium nitride TiN;
- TiCN : carbonitrure de titane, caractérisé par la présence de carbone C en plus du nitrure de titane TiN ; La couche de revêtement est inerte physiquement et chimiquement vis-à-vis des tôles métalliques en titane avec lesquelles ladite couche entre en contact lors de la fabrication ultérieure du bouclier. - TiCN: titanium carbonitride, characterized by the presence of carbon C in addition to the titanium nitride TiN; The coating layer is physically and chemically inert with respect to the titanium metal sheets with which said layer comes into contact during the subsequent manufacture of the shield.
De plus, la présence d’un composé céramique à base de nitrure de titane confère à la couche de revêtement une fonction de barrière anti-diffusion. En d’autres termes, cette couche empêche les échanges physico-chimiques entre le noyau et les tôles métalliques, tel que notamment le transfert d’un ou plusieurs éléments chimiques depuis le noyau vers les tôles métalliques et inversement. In addition, the presence of a ceramic compound based on titanium nitride gives the coating layer an anti-diffusion barrier function. In other words, this layer prevents physicochemical exchanges between the core and the metal sheets, such as in particular the transfer of one or more chemical elements from the core to the metal sheets and vice versa.
On limite dès lors la contamination de la cavité interne du bouclier obtenu par des éléments de l’alliage à base de nickel ou de cobalt du noyau, ainsi que la contamination du noyau par des éléments de l’alliage métallique des tôles destinées à former le bouclier. The contamination of the internal cavity of the shield obtained by elements of the nickel-based or cobalt-based alloy of the core is therefore limited, as is contamination of the core with elements of the metal alloy of the sheets intended to form the shield.
On limite également l’adhérence du noyau aux tôles métalliques qui, dans les techniques de l’état de l’art, aboutit au collage du noyau au bouclier obtenu, et nécessite des opérations supplémentaires de séparation du noyau et du bouclier qui, en plus de représenter un coût supplémentaire important, détériorent la structure du noyau au niveau de sa surface. Conformément à l’invention, le noyau recouvert de la couche de revêtement n’adhère pas au bouclier obtenu. The adhesion of the core is also limited to the metal sheets which, in the techniques of the state of the art, results in the bonding of the core to the shield obtained, and requires additional operations of separation of the core and the shield which, in addition represent a significant additional cost, deteriorate the structure of the core at its surface. According to the invention, the core covered with the coating layer does not adhere to the shield obtained.
Le noyau non contaminé et intègre structurellement peut ainsi être réutilisé un grand nombre de fois pour la fabrication d’autant de boucliers de bord d’attaque, sans dégradation de sa structure ni de ses propriétés physico-chimiques. The uncontaminated and structurally integrated core can thus be reused a large number of times for the manufacture of as many leading edge shields, without degrading its structure or its physico-chemical properties.
Par ailleurs, comme indiqué dans le tableau 1 ci-dessous, qui regroupe certaines propriétés thermomécaniques de différents matériaux de revêtement potentiels, le nitrure de titane TiN présente un module d’Young de 250 GPa (Giga Pascal) et un coefficient de dilatation thermique de 9,4*1 O^K 1 (degrés Kelvin) à 20°C (degrés Celsius). Par comparaison, l’alliage à base de nickel du noyau présente un module d’Young de 225 GPa et un coefficient de dilatation thermique de 11 ,5*106K 1 à 20°C. Furthermore, as indicated in table 1 below, which groups together certain thermomechanical properties of different potential coating materials, titanium nitride TiN has a Young's modulus of 250 GPa (Giga Pascal) and a coefficient of thermal expansion of 9.4 * 1 O ^ K 1 (Kelvin degrees) at 20 ° C (degrees Celsius). By comparison, the nickel-based alloy of the core has a Young's modulus of 225 GPa and a coefficient of thermal expansion of 11.5 * 10 6 K 1 at 20 ° C.
Figure imgf000012_0001
Figure imgf000012_0001
Tableau 1 : propriétés theimomécaniques de matériaux de revêtements potentiels Table 1: theimomechanical properties of potential coating materials
Ainsi, comme le noyau, le composé céramique de la couche de revêtement n’est pas déformable dans la gamme thermomécanique de fabrication d’un bouclier de bord d’attaque, et présente ainsi une bonne stabilité thermodynamique. La couche de revêtement conserve son intégrité structurelle lors de la fabrication du bouclier à haute température et haute pression. Thus, like the core, the ceramic compound of the coating layer is not deformable in the thermomechanical range for manufacturing a leading edge shield, and thus exhibits good thermodynamic stability. The coating layer retains its structural integrity during the manufacture of the shield at high temperature and high pressure.
Par ailleurs, le composé céramique à base de nitrure de titane présente un module d’Young et un coefficient de dilatation thermique relativement proches de ceux de l’alliage à base de nickel du noyau, ce qui confère un comportement thermomécanique relativement similaire à ces deux matériaux. Furthermore, the ceramic compound based on titanium nitride has a Young's modulus and a coefficient of thermal expansion relatively close to those of the nickel-based alloy of the core, which gives a thermomechanical behavior relatively similar to these two. materials.
Une première conséquence est que, lorsque l’alliage du noyau et le composé céramique de la couche de revêtement sont sollicités thermiquement et mécaniquement par compression isostatique au cours de la fabrication du bouclier, les risques de fissuration, généralement engendrés par différentiel de dilatation entre deux matériaux au contact l’un de l’autre, sont moindres. A first consequence is that, when the core alloy and the ceramic compound of the coating layer are thermally and mechanically stressed by isostatic compression during the manufacture of the shield, the risks of cracking, generally generated by differential expansion between two materials in contact with each other, are less.
Une deuxième conséquence est que la couche de revêtement présente une bonne adhérence sur le noyau métallique. A second consequence is that the coating layer has good adhesion to the metal core.
Ces deux conséquences améliorent encore la réutilisabilité du noyau pour produire plusieurs boucliers de bord d’attaque d’aube. Le noyau, incluant la couche de revêtement, conservera son intégrité structurelle et ses propriétés anti-diffusion lors de ses réutilisations, garantissant ainsi une contamination moindre par le noyau des différents boucliers de bords d’attaque fabriqués. These two consequences further improve the reusability of the kernel to produce multiple dawn leading edge shields. The core, including the coating layer, will retain its structural integrity and anti-diffusion properties when reused, thereby guaranteeing less contamination by the core of the various leading edge shields produced.
Du fait de sa capacité à conserver son intégrité structurelle et son adhérence sur le noyau pendant de très nombreux cycles de conformation à chaud, au moins plusieurs dizaines de cycles, la couche de revêtement anti-diffusion peut être désignée comme étant une couche d’un revêtement permanent. Because of its ability to maintain its structural integrity and its adhesion to the core during very many hot shaping cycles, at least several tens of cycles, the anti-diffusion coating layer can be designated as being a layer of a permanent coating.
Selon un mode de réalisation, le composé céramique à base de nitrure de titane de la couche de revêtement comprend du carbonitrure de titane TiCN. Ce composé céramique confère à la couche de revêtement une stabilité accrue comparativement au nitrure métallique simple TiN. According to one embodiment, the ceramic compound based on titanium nitride of the coating layer comprises titanium carbonitride TiCN. This ceramic compound gives the coating layer increased stability compared to the simple metal nitride TiN.
En effet, les nitrures métalliques (par exemple le nitrure de chrome CrN et le nitrure de titane TiN entre autres) sont peu stables sous vide et peuvent parfois conduire à des pertes d’azote lors d’un maintien du composé céramique à haute température, selon les conditions de température et de pression employées. Cela peut être préjudiciable, car si la couche de revêtement rejette de l’azote lors du cycle de conformation à chaud : In fact, metallic nitrides (for example chromium nitride CrN and titanium nitride TiN among others) are not very stable under vacuum and can sometimes lead to nitrogen losses when the ceramic compound is kept at high temperature, depending on the temperature and pressure conditions used. This can be detrimental, because if the coating layer releases nitrogen during the hot shaping cycle:
- l’azote rejeté est susceptible de venir contaminer la surface interne des tôles à souder par diffusion, et ainsi de potentiellement dégrader la qualité de conformation des tôles, - the nitrogen released is likely to contaminate the internal surface of the sheets to be welded by diffusion, and thus potentially to degrade the quality of conformation of the sheets,
- la perte d’azote de la couche de revêtement est susceptible de dégrader ses propriétés anti-diffusion ainsi que son intégrité structurelle, ce qui réduirait le nombre de réutilisations possibles du noyau. - the loss of nitrogen from the coating layer is likely to degrade its anti-diffusion properties as well as its structural integrity, which would reduce the number of possible reuse of the core.
Le phénomène de perte d’azote sous vide lors d’un maintien à haute température est réduit pour les carbonitrures. Ainsi, un composé céramique à base de carbonitrure de titane TiCN, bien que plus rigide que le nitrure de titane TiN (module d’Young de 600 GPa pour The phenomenon of nitrogen loss under vacuum when maintained at high temperature is reduced for carbonitrides. Thus, a ceramic compound based on titanium carbonitride TiCN, although more rigid than titanium nitride TiN (Young's modulus of 600 GPa for
TiCN contre 250 GPa pour TiN), permet de maximiser la stabilité de la couche de revêtement. TiCN vs. 250 GPa for TiN), maximizes the stability of the coating layer.
Selon un autre mode de réalisation, le composé céramique à base de nitrure de titane de la couche de revêtement comprend de l’aluminonitrure de titane TiAIN. Ce composé céramique offre l’avantage de contenir de l’aluminium, qui est un élément chimique déjà présent en général dans les alliages du noyau et des tôles métalliques. Le cas échéant, la présence d’aluminium à la fois dans le noyau (substrat) et dans les tôles métalliques ainsi que dans le composé céramique de la couche de revêtement, permet de réduire fortement le phénomène de diffusion, et les réactions physico-chimiques qui en résultent, entre la couche de revêtement d’une part et le noyau et les tôles métalliques d’autre part. According to another embodiment, the ceramic compound based on titanium nitride of the coating layer comprises titanium aluminonitride TiAIN. This ceramic compound has the advantage of containing aluminum, which is a chemical element already present in general in alloys of the core and metal sheets. If necessary, the presence of aluminum both in the core (substrate) and in the metal sheets as well as in the ceramic compound of the coating layer, makes it possible to greatly reduce the phenomenon of diffusion, and the physicochemical reactions resulting therefrom, between the coating layer on the one hand and the core and the metal sheets on the other hand.
Il est possible de former une couche de revêtement comprenant plusieurs composés céramiques à base de nitrure de titane. Ainsi, les deux modes de réalisation précédents sont combinables et aboutissent à une couche de revêtement à base de carbonitrure de titane TiCN et l’aluminonitrure de titane TiAIN. Par ailleurs, il est possible de former plusieurs couches de revêtement, chacune des couches comprenant un ou plusieurs composés céramiques à base de nitrure de titane. Par exemple, on forme une première couche de revêtement à base de carbonitrure de titane TiCN et une deuxième couche à base d’aluminonitrure de titane TiAIN. It is possible to form a coating layer comprising several ceramic compounds based on titanium nitride. Thus, the two preceding embodiments can be combined and result in a coating layer based on titanium carbonitride TiCN and on titanium aluminonitride TiAIN. Furthermore, it is possible to form several coating layers, each of the layers comprising one or more ceramic compounds based on titanium nitride. For example, a first coating layer based on titanium carbonitride TiCN and a second layer based on titanium aluminonitride TiAIN is formed.
Les conditions de pression et de température sont bien évidemment ajustées pendant l’opération de dépôt pour permettre le dépôt des différentes couches. The pressure and temperature conditions are obviously adjusted during the deposition operation to allow the deposition of the different layers.
Selon un mode de réalisation, préalablement au dépôt de la couche de revêtement, on dépose sur le noyau une couche intermédiaire. La couche intermédiaire est alors agencée, après dépôt de la couche de revêtement, entre le noyau et ladite couche de revêtement. According to one embodiment, before depositing the coating layer, an intermediate layer is deposited on the core. The intermediate layer is then arranged, after deposition of the coating layer, between the core and said coating layer.
La couche intermédiaire comprend un matériau dont le coefficient de dilatation thermique est compris entre le coefficient de dilatation thermique de l’alliage du noyau et le coefficient de dilatation thermique du composé céramique de la couche de revêtement. The intermediate layer comprises a material whose coefficient of thermal expansion is between the coefficient of thermal expansion of the core alloy and the coefficient of thermal expansion of the ceramic compound of the coating layer.
La couche intermédiaire permet d’accommoder les différences de dilatation thermique entre le noyau et la couche de revêtement, et de réduire ainsi les risques de fissuration du revêtement lors de la compression isostatique. The intermediate layer makes it possible to accommodate the differences in thermal expansion between the core and the coating layer, and thus reduce the risks of cracking of the coating during isostatic compression.
Par exemple, pour déposer une couche de revêtement en nitrure de titane, on dépose d’abord la couche intermédiaire qui est préférablement une couche micronique de titane métallique, puis on dépose la couche de revêtement par pulvérisation ou pulvérisation réactive sur la couche intermédiaire. For example, to deposit a coating layer of titanium nitride, the intermediate layer is first deposited which is preferably a micron layer of metallic titanium, then the coating layer is deposited by spraying or reactive spraying on the intermediate layer.
La couche de revêtement, et lorsqu’elle est présente la couche intermédiaire, est déposée par dépôt chimique en phase vapeur ou gazeuse (dépôt « CVD »), par dépôt physique en phase vapeur ou gazeuse (dépôt « PVD »), ou par évaporation réactive assistée par plasma (dépôt « ERAP/ARE »). The coating layer, and when the intermediate layer is present, is deposited by chemical vapor or gas deposition ("CVD" deposition), by physical vapor or gas deposition ("PVD" deposition), or by evaporation plasma-assisted reagent ("ERAP / ARE" depot).
Le dépôt chimique en phase vapeur (CVD) consiste à déposer une couche mince de revêtement, préférablement d’une épaisseur comprise entre 2 pm et 20 pm, à la surface du noyau, qui joue le rôle du substrat et qui a été préalablement placé dans une chambre de dépôt d’un réacteur, à partir d’un gaz réactionnel par le biais de réactions chimiques. En pratique, le gaz réactionnel comprend un gaz précurseur injecté dans la chambre de dépôt du réacteur par une première voie d’injection et un gaz réactant injecté dans la chambre de dépôt du réacteur par une deuxième voie d’injection distincte de la première, de manière à ne se mélanger qu’une fois qu’ils ont pénétré dans ladite chambre de dépôt. Pour déposer une couche de nitrure de titane TiN, on peut par exemple utiliser le tétrachlorure de titane TiCI4 comme gaz précurseur et l’ammoniac NH3 comme gaz réactant. Pour déposer une couche de carbonitrure de titane TiAIN, on peut par exemple utiliser le tétrachlorure de titane TiCI4 et AICI3 comme gaz précurseurs et l’ammoniac NH3 comme gaz réactant. Parmi les variantes existantes du procédé CVD, le procédé de dépôt chimique par voie gazeuse assisté par plasma, ou « plasma enhanced Chemical vapor déposition » (PECVD), consiste à former un plasma par apport d’une source radiofréquence ou à l’aide d’une décharge entre deux électrodes, à partir de gaz réactifs. Le plasma apporte alors l’énergie nécessaire au déroulement du dépôt de la couche mince à la surface du substrat, ce qui permet de maintenir les électrons à un haut niveau d’excitation, et ainsi de mettre le dépôt CVD à des températures nettement plus basses que d’autres variantes du procédé CVD, et permet en plus de réduire les défauts en surface de la pièce finale. Chemical vapor deposition (CVD) consists of depositing a thin coating layer, preferably with a thickness of between 2 μm and 20 μm, on the surface of the core, which acts as the substrate and which has been previously placed in a reactor deposition chamber, from a reaction gas by means of chemical reactions. In practice, the reaction gas comprises a precursor gas injected into the deposition chamber of the reactor by a first injection path and a reactant gas injected into the deposition chamber of the reactor by a second injection path distinct from the first, of so as to mix only after they have entered said deposit chamber. To deposit a layer of titanium nitride TiN, it is possible, for example, to use titanium tetrachloride TiCI 4 as precursor gas and ammonia NH 3 as reactant gas. To deposit a layer of titanium carbonitride TiAIN, it is possible, for example, to use titanium tetrachloride TiCI 4 and AICI 3 as precursor gases and ammonia NH 3 as reactant gas. Among the existing variants of the CVD process, the plasma assisted chemical deposition process, or “plasma enhanced Chemical vapor deposition” (PECVD), consists of forming a plasma by supplying a radiofrequency source or using 'a discharge between two electrodes, from reactive gases. The plasma then provides the energy necessary for the deposition of the thin layer on the surface of the substrate, which makes it possible to maintain the electrons at a high level of excitation, and thus to put the CVD deposit at markedly lower temperatures. than other variants of the CVD process, and also makes it possible to reduce surface defects of the final part.
Le dépôt physique en phase vapeur (PVD) consiste également à déposer une couche mince de revêtement à la surface du noyau. Mais contrairement au dépôt CVD, la vapeur des éléments chimiques constitutifs de la couche de revêtement à déposer sont fournis via des phénomènes physiques. Physical vapor deposition (PVD) also involves depositing a thin layer of coating on the surface of the core. But unlike CVD deposition, the vapor of the chemical elements constituting the coating layer to be deposited are supplied via physical phenomena.
Les différentes techniques de dépôt PVD incluent notamment les techniques suivantes : l’évaporation sous vide, l’évaporation par faisceau d’électron, la pulvérisation cathodique, l’ablation laser pulsé, ou encore l’épitaxie par jet moléculaire. The various PVD deposition techniques include in particular the following techniques: vacuum evaporation, electron beam evaporation, cathode sputtering, pulsed laser ablation, or even molecular beam epitaxy.
Concernant l’évaporation réactive assistée par plasma (ERAP), les éléments métalliques à déposer sont évaporés à partir d’un lingot par bombardement de ce lingot avec un faisceau d’électrons. Les vapeurs sont transportées par le gaz réactif et réagissent avec les gaz à proximité du substrat pour former la couche à déposer. Regarding reactive plasma-assisted evaporation (ERAP), the metal elements to be deposited are evaporated from an ingot by bombardment of this ingot with an electron beam. The vapors are transported by the reactive gas and react with the gases near the substrate to form the layer to be deposited.
Le procédé de fabrication d’un bouclier de bord d’attaque d’une aube, notamment d’une aube d’un ensemble rotatif d’une turbomachine tel qu’une soufflante, à partir du noyau revêtu d’une couche anti-diffusion tel détaillé précédent, va maintenant être décrit. The method of manufacturing a blade leading edge shield, in particular a blade of a rotary assembly of a turbomachine such as a blower, from the core coated with an anti-diffusion layer such detailed previous, will now be described.
Procédé de fabrication d’un bouclier de bord d’attaque d’une aube Method of manufacturing a blade leading edge shield
Le procédé de fabrication d’un bouclier de bord d’attaque d’aube est basé sur la conformation à chaud de tôles métalliques à base de titane, autour du noyau métallique comprenant une couche de revêtement anti-diffusion comprenant au moins un composé céramique à base de nitrure de titane. The method of manufacturing a blade leading edge shield is based on the hot shaping of titanium-based metal sheets, around the metal core comprising an anti-diffusion coating layer comprising at least one ceramic compound with titanium nitride base.
Conformément à la première étape du procédé, la couche de revêtement est déposée sur le noyau, préalablement à la conformation à chaud des tôles métalliques. In accordance with the first step of the process, the coating layer is deposited on the core, prior to the hot forming of the metal sheets.
Le noyau comprenant la couche de revêtement a la forme précise à donner à la cavité interne du bouclier de bord d’attaque à fabriquer. The core comprising the covering layer has the precise shape to be given to the internal cavity of the leading edge shield to be manufactured.
Selon une étape optionnelle, les tôles sont mises en forme par matriçage afin de les rapprocher de la forme de l’intrados et de l’extrados du bouclier à fabriquer. L’opération de mise en forme des tôles n’a pas besoin d’être précise. En d’autres termes, il n’est pas nécessaire que la forme des tôles corresponde exactement à la forme du noyau, puisque lesdites tôles seront conformées à chaud par la suite. Il ne s’agit dans cette étape que de se rapprocher de la forme du noyau afin de simplifier l’assemblage des tôles autour du noyau. According to an optional step, the sheets are shaped by stamping in order to bring them closer to the shape of the lower surface and of the upper surface of the shield to be manufactured. The sheet forming operation does not need to be precise. In other words, it is not necessary for the shape of the sheets to correspond exactly to the shape of the core, since said sheets will subsequently be hot-formed. In this step, it is only a matter of getting closer to the shape of the core in order to simplify the assembly of the sheets around the core.
Les tôles d’intrados et d’extrados sont ensuite positionnées autour du noyau de manière à enserrer ledit noyau. En pratique, les tôles sont assemblées l’une avec l’autre autour du noyau, de préférence par des opérations de pointage et de soudage des bordures latérales desdites tôles. The intrados and extrados sheets are then positioned around the core so as to enclose said core. In practice, the sheets are assembled with each other around the core, preferably by pointing and welding operations on the lateral edges of said sheets.
La couche de revêtement est alors située entre le noyau (substrat) et les tôles, au contact desdites tôles. The coating layer is then located between the core (substrate) and the sheets, in contact with said sheets.
L’assemblage comprenant les tôles et le noyau subit ensuite une compression isostatique à chaud. Dans le cas de tôles en alliage de titane TA6V, la température de compression est comprise entre 800°C et 1000°C, et la pression est comprise entre 900 bar et 1100 bar. The assembly comprising the sheets and the core is then subjected to hot isostatic compression. In the case of TA6V titanium alloy sheets, the compression temperature is between 800 ° C and 1000 ° C, and the pressure is between 900 bar and 1100 bar.
Durant la compression isostatique, les tôles se déforment de manière à épouser parfaitement la forme du noyau, et se soudent par diffusion au niveau de leurs bordures latérales. Ceci aboutit à la formation de la cavité interne du bouclier dont la forme correspond exactement à celle du noyau. L’ensemble obtenu comprenant le noyau métallique recouvert de la couche de revêtement anti-diffusion et positionné entre les tôles métalliques d’intrados et d’extrados est représenté sur la figure 9. During isostatic compression, the sheets are deformed so as to conform perfectly to the shape of the core, and are welded by diffusion at their lateral edges. This results in the formation of the internal cavity of the shield whose shape corresponds exactly to that of the core. The assembly obtained comprising the metal core covered with the anti-diffusion coating layer and positioned between the metal sheets of lower and upper surfaces is shown in FIG. 9.
D’autres techniques de conformation à chaud sont utilisables, telles que le conformage isotherme sous presse. Dans ce cas, il s’agit d’une compaction uniaxiale à chaud qui nécessite des outillages externes complexes. Other hot forming techniques can be used, such as isothermal press forming. In this case, it is a uniaxial hot compaction that requires complex external tools.
La conformation à chaud par compression isostatique est cependant préférée, en ce qu’elle ne nécessite pas d’outillages supplémentaires. De plus, en fonction de la taille de l’installation utilisée, plusieurs assemblages, voire plusieurs dizaines d’assemblages peuvent être traités simultanément dans des conditions parfaitement identiques. Le conformage sous presse ne peut conformer plusieurs assemblages qu’au prix d’une presse de grande capacité et d’un outillage très complexe. Enfin, la déformation isostatique est préférée à une déformation uniaxiale pour des raisons d’homogénéité de déformation. The hot conformation by isostatic compression is however preferred, in that it does not require additional tools. In addition, depending on the size of the installation used, several assemblies, or even several dozen assemblies can be processed simultaneously under perfectly identical conditions. Press conforming can conform multiple assemblies only at the cost of a large capacity press and very complex tools. Finally, isostatic deformation is preferred to uniaxial deformation for reasons of homogeneity of deformation.
Pendant la conformation à chaud, la couche de revêtement empêche toute diffusion entre le noyau et les tôles. During hot forming, the coating layer prevents any diffusion between the core and the sheets.
En d’autres termes, la couche de revêtement empêche toute réaction physique ou chimique entre le noyau et les tôles. Ainsi, il n’y a pas de contamination par le noyau du bouclier obtenu, et aucune adhérence ou collage du noyau avec le bouclier. L’étape suivante consistant à extraire le noyau de la cavité interne du bouclier est alors grandement facilitée. In other words, the coating layer prevents any physical or chemical reaction between the core and the sheets. So there is no contamination from the nucleus of the shield obtained, and no adhesion or bonding of the core with the shield. The next step of extracting the core from the internal cavity of the shield is then greatly facilitated.
La couche de revêtement elle-même présente une grande stabilité thermodynamique, en ce que son intégrité physique est conservée tout au long de compression isostatique, ainsi qu’une grande stabilité physico-chimique, c’est-à-dire que ladite couche de revêtement est inerte physiquement et chimiquement vis-à-vis des tôles métalliques. Le noyau peut ainsi être réutilisé un grand nombre de fois, pour former plusieurs autres boucliers d’attaque d’aube, pour un total de préférence d’au moins 50, et de manière davantage préférée d’au moins 100 réutilisations du noyau. The coating layer itself has high thermodynamic stability, in that its physical integrity is preserved throughout isostatic compression, as well as great physico-chemical stability, that is to say that said coating layer is physically and chemically inert towards metal sheets. The core can thus be reused a large number of times, to form several other dawn attack shields, for a total preferably of at least 50, and more preferably of at least 100 reuse of the core.
Selon une dernière étape, le bouclier est usiné sur sa surface externe pour obtenir le boulier final qui peut être monté sur le bord d’attaque de l’aube. L’usinage de la surface de la cavité interne du bouclier, destinée à être mise au contact du bord d’attaque de l’aube, n’est pas nécessaire, puisque la forme de la cavité correspond à celle du noyau et a donc déjà la forme exacte du bord d’attaque de l’aube. In a final step, the shield is machined on its outer surface to obtain the final abacus which can be mounted on the leading edge of the blade. The machining of the surface of the internal cavity of the shield, intended to be brought into contact with the leading edge of the blade, is not necessary, since the shape of the cavity corresponds to that of the core and therefore has already the exact shape of the leading edge of the dawn.
EXEMPLES DE DEPOT D’UNE COUCHE DE REVETEMENT SUR UN SUBSTRATEXAMPLES OF DEPOSITION OF A COATING LAYER ON A SUBSTRATE
Conditionnement des échantillons à analyser Conditioning of the samples to be analyzed
Des couches de revêtement anti-diffusion comprenant trois composés céramiques différents ont été déposées sur un substrat en alliage Waspaloy® par dépôt physique en phase gazeuse (PVD). Anti-diffusion coating layers comprising three different ceramic compounds were deposited on a Waspaloy® alloy substrate by physical gas phase deposition (PVD).
Le Waspaloy® est un alliage à base de nickel, commercialisé par United Technology Corp, dont la composition massique est la suivante : 58% de nickel, 19% de chrome, 13% de cobalt, 4% de molybdène, 3% de titane, et 1 ,4% d’aluminium. Waspaloy® is a nickel-based alloy marketed by United Technology Corp, whose mass composition is as follows: 58% nickel, 19% chromium, 13% cobalt, 4% molybdenum, 3% titanium, and 1.4% aluminum.
Les trois composés céramiques des couches déposées sont les suivants : nitrure de titane TiN, nitrure de titane et d’aluminium TiAIN, et carbonitrure de titane TiCN. The three ceramic compounds in the deposited layers are: titanium nitride TiN, titanium and aluminum nitride TiAIN, and titanium carbonitride TiCN.
Les trois échantillons de substrats revêtus d’une couche anti-diffusion sont répertoriés dans le tableau 2. The three samples of substrates coated with an anti-diffusion layer are listed in Table 2.
Figure imgf000017_0001
Figure imgf000017_0001
Tableau 2 : Echantillons de substrats revêtus d’une couche anti-diffusion Les échantillons sont enrobés dans une résine époxy, puis sont polis afin d’obtenir un état métallographique satisfaisant permettant l’observation et la caractérisation des échantillons. Table 2: Samples of substrates coated with an anti-diffusion layer The samples are coated in an epoxy resin, then are polished in order to obtain a satisfactory metallographic state allowing the observation and the characterization of the samples.
Les échantillons enrobés de résine époxy ont ensuite été métallisés pour permettre une bonne qualité d’images et d’analyse. The epoxy coated samples were then metallized to allow good image and analysis quality.
Le dépôt de métallisation à la surface de chaque échantillon est composé d’une fine couche d’un mélange or-paladium, déposé par pulvérisation cathodique. Ce dépôt permet de rendre conductrice la surface de l’échantillon, ce qui rend possible la circulation d’électrons en excès lors de la caractérisation de l’échantillon par microscopie électronique à balayage (MEB). The metallization deposit on the surface of each sample is composed of a thin layer of a gold-paladium mixture, deposited by sputtering. This deposition makes the surface of the sample conductive, which makes it possible for excess electrons to flow during the characterization of the sample by scanning electron microscopy (SEM).
Analyse des échantillons Analysis of samples
Les trois échantillons enrobés de résine époxy et métallisés ont été analysés par microscopie électronique à balayage (MEB) et par spectrométrie à décharge luminescente (SDL). The three epoxy resin coated and metallized samples were analyzed by scanning electron microscopy (SEM) and by glow discharge spectrometry (SDL).
La microscopie électronique à balayage permet de visualiser l’épaisseur des couches de revêtement et de la sous-couche du substrat, et permet également de repérer d’éventuelles défauts ou interactions entre ces couches. Le microscope électronique à balayage utilisé est un MEB QUANTA 400 FEG. Les paramètres suivants ont été utilisés pour obtenir les images présentées ci-après : tension de travail de 20 KV, Spot 3, et Diaphragme 4. Scanning electron microscopy makes it possible to visualize the thickness of the coating layers and the sub-layer of the substrate, and also makes it possible to identify possible defects or interactions between these layers. The scanning electron microscope used is a QUANTA 400 FEG SEM. The following parameters were used to obtain the images presented below: working voltage of 20 KV, Spot 3, and Diaphragm 4.
La spectrométrie à décharge luminescente permet, en complément de la microscopie électronique à balayage, de déterminer les éléments chimiques présents dans les échantillons par érosion progressive dédits échantillons suite à une différence de potentiel appliquée entre deux électrodes dans une enceinte à pression réduite. Luminescent discharge spectrometry makes it possible, in addition to scanning electron microscopy, to determine the chemical elements present in the samples by gradual erosion of said samples following a potential difference applied between two electrodes in a chamber at reduced pressure.
Echantillon 1 : dépôt de TiN Sample 1: deposition of TiN
Les figures 6A et 6B représentent respectivement une image MEB et un spectre SDL pour l’échantillon 1 , l’image MEB illustrant une fraction du noyau obtenu 30. FIGS. 6A and 6B respectively represent a SEM image and an SDL spectrum for sample 1, the SEM image illustrating a fraction of the nucleus obtained 30.
D’après la figure 6A, l’épaisseur moyenne mesurée au MEB de la couche de revêtement en TiN, référencée 32, est d’environ 1 micromètre. From FIG. 6A, the average thickness measured with SEM of the TiN coating layer, referenced 32, is approximately 1 micrometer.
En SDL, d’après le graphe de la figure 6B, cela se traduit par un temps d’érosion de 50 secondes pour les éléments Ti et N. Echantillon 2 : dépôt de TiAIN Les figures 7 A et 7B représentent respectivement une image MEB et un spectre SDL pour l’échantillon 2, l’image MEB illustrant une fraction du noyau obtenu 30. In SDL, according to the graph in FIG. 6B, this results in an erosion time of 50 seconds for the elements Ti and N. Sample 2: deposition of TiAIN FIGS. 7 A and 7B respectively represent a SEM image and an SDL spectrum for sample 2, the SEM image illustrating a fraction of the nucleus obtained 30.
D’après la figure 7A, l’épaisseur moyenne mesurée au MEB de la couche 32 de revêtement en TiAIN est d’environ 1 micromètre. From FIG. 7A, the average thickness measured with SEM of the layer 32 of TiAIN coating is approximately 1 micrometer.
En SDL, d’après le graphe de la figure 7B, cela se traduit par un temps d’érosion de 50 secondes pour les éléments Ti et Al, et de 40 secondes pour N. In SDL, from the graph in FIG. 7B, this results in an erosion time of 50 seconds for the elements Ti and Al, and 40 seconds for N.
Echantillon 3 : dépôt de TiCN Sample 3: TiCN deposition
Les figures 8A et 8B représentent respectivement une image MEB et un spectre SDL pour l’échantillon 3, l’image MEB illustrant une fraction du noyau obtenu 30. FIGS. 8A and 8B respectively represent a SEM image and an SDL spectrum for sample 3, the SEM image illustrating a fraction of the nucleus obtained 30.
D’après la figure 8A, l’épaisseur moyenne mesurée au MEB de la couche 32 de revêtement en TiCN est d’environ 1 micromètre. According to FIG. 8A, the average thickness measured with SEM of the layer 32 of TiCN coating is approximately 1 micrometer.
En SDL, d’après le graphe de la figure 8B, cela se traduit par un temps d’érosion de 50 secondes pour les éléments Ti, C, et N. In SDL, according to the graph in Figure 8B, this results in an erosion time of 50 seconds for the elements Ti, C, and N.
Conclusion Conclusion
Au regard des images MEB et des spectres SDL obtenus pour les différents échantillons, les épaisseurs des différents dépôts PVD sont d’environ 1 micromètre, et les temps d’érosion sont d’environ 50 secondes pour les différents éléments de la couche de composé céramique déposée. With regard to SEM images and SDL spectra obtained for the different samples, the thicknesses of the different PVD deposits are around 1 micrometer, and the erosion times are around 50 seconds for the different elements of the ceramic compound layer. filed.
REFERENCESREFERENCES
WO 2011 1 14073 WO 2011 1 14073
WO 2017178742 WO 2017178742

Claims

REVENDICATIONS
1. Procédé de fabrication d’un noyau métallique (30) pour la conformation à chaud d’un bouclier (10) de bord d’attaque d’une aube (1 ) de turbomachine, dans lequel le noyau métallique (30) comprend un substrat (31 ) comprenant un alliage à base de nickel ou de cobalt, le procédé étant caractérisé en ce qu’il comprend une étape de dépôt sur le substrat (31 ) du noyau métallique d’au moins une couche (32) de revêtement anti-diffusion comprenant au moins un composé céramique à base de nitrure de titane. 1. Method of manufacturing a metal core (30) for the hot shaping of a shield (10) leading edge of a blade (1) of a turbomachine, in which the metal core (30) comprises a substrate (31) comprising an alloy based on nickel or cobalt, the method being characterized in that it comprises a step of depositing on the substrate (31) the metal core of at least one layer (32) of anti-coating -diffusion comprising at least one ceramic compound based on titanium nitride.
2. Procédé de fabrication selon la revendication 1 , dans lequel le composé céramique de la couche (32) de revêtement anti-diffusion comprend un ou plusieurs composés céramiques suivants : nitrure de titane (TiN), carbonitrure de titane (TiCN), aluminonitrure de titane (TiAIN). 2. The manufacturing method according to claim 1, wherein the ceramic compound of the anti-diffusion coating layer (32) comprises one or more of the following ceramic compounds: titanium nitride (TiN), titanium carbonitride (TiCN), aluminonitride titanium (TiAIN).
3. Procédé de fabrication selon l’une des revendications 1 ou 2, dans lequel la couche (32) de revêtement anti-diffusion est déposée selon l’une des techniques suivantes: dépôt chimique en phase vapeur (CVD), dépôt physique en phase vapeur (PVD), pulvérisation réactive, évaporation réactive assistée par plasma (ERAP). 3. Manufacturing method according to one of claims 1 or 2, wherein the layer (32) of anti-diffusion coating is deposited according to one of the following techniques: chemical vapor deposition (CVD), physical phase deposition steam (PVD), reactive spraying, reactive plasma-assisted evaporation (ERAP).
4. Procédé de fabrication selon l’une quelconque des revendications précédentes, dans lequel le dépôt de la couche (32) de revêtement anti-diffusion est réalisé sans modification de la structure physico-chimique du noyau métallique sur lequel est déposée ladite couche de revêtement. 4. Manufacturing process according to any one of the preceding claims, in which the deposition of the anti-diffusion coating layer (32) is carried out without modification of the physicochemical structure of the metal core on which said coating layer is deposited. .
5. Procédé de fabrication selon l’une quelconque des revendications précédentes, comprenant en outre, préalablement au dépôt de la couche (32) de revêtement anti-diffusion sur le substrat (31 ), le dépôt d’une couche intermédiaire, agencée entre le substrat (31 ) du noyau et la couche (32) de revêtement anti-diffusion dans le bouclier de bord d’attaque fabriqué, ladite couche intermédiaire comprenant un matériau dont le coefficient de dilatation thermique est compris entre le coefficient de dilatation thermique du substrat (31 ) du noyau et le coefficient de dilatation thermique du composé céramique de la couche (32) de revêtement anti-diffusion. 5. Manufacturing method according to any one of the preceding claims, further comprising, prior to the deposition of the layer (32) of anti-diffusion coating on the substrate (31), the deposition of an intermediate layer, arranged between the core substrate (31) and the anti-diffusion coating layer (32) in the fabricated leading edge shield, said intermediate layer comprising a material whose coefficient of thermal expansion is between the coefficient of thermal expansion of the substrate ( 31) of the core and the coefficient of thermal expansion of the ceramic compound of the layer (32) of anti-diffusion coating.
6. Noyau métallique (30) pour la conformation à chaud d’un bouclier (10) de bord d’attaque d’une aube (1 ) de turbomachine, comprenant un substrat (31 ) comprenant un alliage à base de nickel ou de cobalt, le noyau métallique étant caractérisé en ce qu’il comprend en outre une couche (32) de revêtement anti- diffusion déposée sur le substrat (31 ), ladite couche (32) de revêtement anti diffusion comprenant au moins un composé céramique à base de nitrure de titane. 6. Metal core (30) for the hot shaping of a shield (10) leading edge of a blade (1) of a turbomachine, comprising a substrate (31) comprising an alloy based on nickel or cobalt , the metal core being characterized in that it further comprises a layer (32) of anti-diffusion coating deposited on the substrate (31), said layer (32) of anti-diffusion coating comprising at least one ceramic compound based on titanium nitride.
7. Noyau métallique selon la revendication 6, dans lequel le composé céramique de la couche (32) de revêtement anti-diffusion comprend un ou plusieurs composés céramiques suivants : nitrure de titane (T i N ) , carbonitrure de titane (TiCN), aluminonitrure de titane (TiAIN). 7. Metal core according to claim 6, in which the ceramic compound of the anti-diffusion coating layer (32) comprises one or more of the following ceramic compounds: titanium nitride (T i N), titanium carbonitride (TiCN), aluminonitride titanium (TiAIN).
8. Procédé de fabrication d’un bouclier (10) de bord d’attaque d’une aube (1 ) de turbomachine en matériau composite, à partir de tôles métalliques (21 , 22) préformées comprenant un alliage à base de titane et dont la forme d’une première tôle métallique (21 ) est proche de l’intrados (12) du bouclier et la forme d’une deuxième tôle métallique (22) est proche de l’extrados (13) du bouclier, le procédé étant caractérisé en ce qu’il comprend les étapes suivantes: 8. Method for manufacturing a shield (10) for the leading edge of a blade (1) of a turbomachine made of composite material, from preformed metal sheets (21, 22) comprising an alloy based on titanium and of which the shape of a first metal sheet (21) is close to the lower surface (12) of the shield and the shape of a second metal sheet (22) is close to the upper surface (13) of the shield, the method being characterized in that it includes the following steps:
- fourniture d’un noyau métallique (30) fabriqué par un procédé selon l’une des revendications 1 à 5, - supply of a metal core (30) manufactured by a process according to one of claims 1 to 5,
- positionnement des tôles métalliques (21 , 22) autour du noyau métallique (30), - positioning of the metal sheets (21, 22) around the metal core (30),
- conformation à chaud des tôles métalliques (21 , 22) autour du noyau métallique (30) pour former le bouclier (10) de bord d’attaque d’aube, - hot shaping of the metal sheets (21, 22) around the metal core (30) to form the shield (10) of the blade leading edge,
- extraction du noyau métallique (30) du bouclier (10) de bord d’attaque d’aube. - extraction of the metal core (30) from the blade leading edge shield (10).
PCT/FR2019/053034 2018-12-21 2019-12-12 Method for manufacturing a metal core, and method for manufacturing a leading edge shield for a blade from such a metal core WO2020128242A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1873969A FR3090426B1 (en) 2018-12-21 2018-12-21 METHOD FOR MANUFACTURING A METALLIC CORE, AND METHOD FOR MANUFACTURING A BLADE LEADING EDGE SHIELD FROM SUCH A METALLIC CORE
FR1873969 2018-12-21

Publications (1)

Publication Number Publication Date
WO2020128242A1 true WO2020128242A1 (en) 2020-06-25

Family

ID=67185153

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2019/053034 WO2020128242A1 (en) 2018-12-21 2019-12-12 Method for manufacturing a metal core, and method for manufacturing a leading edge shield for a blade from such a metal core

Country Status (2)

Country Link
FR (1) FR3090426B1 (en)
WO (1) WO2020128242A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114042794A (en) * 2021-11-17 2022-02-15 宁波江丰热等静压技术有限公司 Forming method of titanium-containing metal curved plate
FR3114762A1 (en) * 2020-10-06 2022-04-08 Safran Aircraft Engines Method of manufacturing a turbomachine compressor blade by compacting
CN114669970A (en) * 2022-05-06 2022-06-28 北京航空航天大学 Forming method of composite blade titanium alloy wrapping edge

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0289173A1 (en) * 1987-04-30 1988-11-02 The British Petroleum Company p.l.c. Wear-resistant coated object
US20080102296A1 (en) * 2006-10-26 2008-05-01 Farshad Ghasripoor Erosion resistant coatings and methods of making
WO2011114073A1 (en) 2010-03-19 2011-09-22 Snecma Method for producing a metal insert to protect a leading edge made of a composite material
EP2907888A1 (en) * 2014-02-14 2015-08-19 Siemens Aktiengesellschaft Compressor blade with erosion resistant hard material coating
WO2017080645A1 (en) * 2015-11-10 2017-05-18 Oerlikon Surface Solutions Ag, Pfäffikon Turbine clearance control coatings and method
FR3047269A1 (en) * 2016-02-02 2017-08-04 Turbomeca CENTRIFUGAL DIFFUSER FOR TURBOMOTEUR
WO2017178742A1 (en) 2016-04-12 2017-10-19 Safran Aircraft Engines Core for high-temperature shaping of a metal part and manufacturing process

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0289173A1 (en) * 1987-04-30 1988-11-02 The British Petroleum Company p.l.c. Wear-resistant coated object
US20080102296A1 (en) * 2006-10-26 2008-05-01 Farshad Ghasripoor Erosion resistant coatings and methods of making
WO2011114073A1 (en) 2010-03-19 2011-09-22 Snecma Method for producing a metal insert to protect a leading edge made of a composite material
EP2907888A1 (en) * 2014-02-14 2015-08-19 Siemens Aktiengesellschaft Compressor blade with erosion resistant hard material coating
WO2017080645A1 (en) * 2015-11-10 2017-05-18 Oerlikon Surface Solutions Ag, Pfäffikon Turbine clearance control coatings and method
FR3047269A1 (en) * 2016-02-02 2017-08-04 Turbomeca CENTRIFUGAL DIFFUSER FOR TURBOMOTEUR
WO2017178742A1 (en) 2016-04-12 2017-10-19 Safran Aircraft Engines Core for high-temperature shaping of a metal part and manufacturing process

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3114762A1 (en) * 2020-10-06 2022-04-08 Safran Aircraft Engines Method of manufacturing a turbomachine compressor blade by compacting
WO2022074314A1 (en) * 2020-10-06 2022-04-14 Safran Aircraft Engines Method for manufacturing a turbomachine compressor blade by compacting
US11904420B2 (en) 2020-10-06 2024-02-20 Safran Aircraft Engines Method for manufacturing a turbomachine compressor blade by compacting
CN114042794A (en) * 2021-11-17 2022-02-15 宁波江丰热等静压技术有限公司 Forming method of titanium-containing metal curved plate
CN114042794B (en) * 2021-11-17 2024-02-06 宁波江丰热等静压技术有限公司 Forming method of titanium-containing metal curved plate
CN114669970A (en) * 2022-05-06 2022-06-28 北京航空航天大学 Forming method of composite blade titanium alloy wrapping edge

Also Published As

Publication number Publication date
FR3090426A1 (en) 2020-06-26
FR3090426B1 (en) 2022-02-11

Similar Documents

Publication Publication Date Title
WO2020128242A1 (en) Method for manufacturing a metal core, and method for manufacturing a leading edge shield for a blade from such a metal core
FR2967169B1 (en) COMPONENT AND METHODS OF MANUFACTURING AND COATING A COMPONENT
EP0562108B1 (en) Multi-layer material for anti-erosion and anti-abrasion coating
US7700167B2 (en) Erosion-protective coatings on polymer-matrix composites and components incorporating such coated composites
FR2967168A1 (en) COMPONENTS WITH RETAINING SHAPE COOLING CHANNELS AND METHODS OF MAKING THE SAME
FR2967204A1 (en) METHOD FOR MANUFACTURING A COMPONENT USING A FUGITIVE COATING
WO2008028981A2 (en) Process for depositing a thin film of a metal alloy on a substrate, and a metal alloy in thin-film form
FR2968704A1 (en) COOLED CHANNEL PIECE AND METHOD OF MANUFACTURE
EP0119459B1 (en) Part comprising a substrate provided with a hard and corrosion-resistant coating
FR2744461A1 (en) TITANIUM NITRIDE DOPED BY BORON, SUBSTRATE COATING BASED ON THIS NEW COMPOUND, HAVING HIGH HARDNESS AND ALLOWING VERY GOOD WEAR RESISTANCE, AND PARTS WITH SUCH COATING
EP3429787B1 (en) Process to produde and repair an abradable layer of a turbine ring
EP0962545B1 (en) Ceramic coating having a low thermal conductivity
EP0738787A1 (en) Method of making a metal object covered with diamond
FR2932496A1 (en) Depositing thermal barrier on metal substrate such as turbine blade, comprises depositing first metal coating on substrate to form sub-metal layer, and depositing second ceramic coating on first coating to form ceramic layer
FR2941965A1 (en) Depositing a protection layer on a metallic piece e.g. turbine blade using mold, comprises depositing precursor coating on piece and/or inner walls of mold, and depositing piece in the mold and then mold in a compression enclosure
WO2012146864A1 (en) Part comprising a coating over a metal substrate made of a superalloy, said coating including a metal sublayer
US20220259976A1 (en) Turbocharger turbine wheels having an alpha-alumina coating and methods for manufacutring the same
EP2903763B1 (en) Method of manufacturing a component covered with an abradable coating
FR2852537A1 (en) ASSEMBLY FOR THE MANUFACTURE OF A HOLLOW MECHANICAL PART BY DIFFUSION WELDING AND SUPERPLASTIC FORMING, USE OF SUCH AN ASSEMBLY AND METHOD FOR MANUFACTURING SUCH A MECHANICAL PART
WO2010092298A1 (en) Process for depositing a protective layer on a part
EP1600525B1 (en) Process for making or repairing a coating on a metallic substrate
FR3065968A1 (en) SUPERALLIATION TURBINE PIECE AND PROCESS FOR MANUFACTURING THE SAME BY BOMBING FILLED PARTICLES
EP3899081B1 (en) Method for manufacturing a core
EP1214462B1 (en) Method for making a metal part coated with diamond and metal part obtained by said method
WO2024089343A1 (en) Coating comprising hafnium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19839397

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19839397

Country of ref document: EP

Kind code of ref document: A1