WO2020125005A1 - 轨道列车牵引永磁同步电机转子位置检测装置及轨道列车 - Google Patents

轨道列车牵引永磁同步电机转子位置检测装置及轨道列车 Download PDF

Info

Publication number
WO2020125005A1
WO2020125005A1 PCT/CN2019/096527 CN2019096527W WO2020125005A1 WO 2020125005 A1 WO2020125005 A1 WO 2020125005A1 CN 2019096527 W CN2019096527 W CN 2019096527W WO 2020125005 A1 WO2020125005 A1 WO 2020125005A1
Authority
WO
WIPO (PCT)
Prior art keywords
resolver
permanent magnet
traction
magnet synchronous
amplifier
Prior art date
Application number
PCT/CN2019/096527
Other languages
English (en)
French (fr)
Inventor
王鸿雪
隋德磊
李磊
Original Assignee
中车大连电力牵引研发中心有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中车大连电力牵引研发中心有限公司 filed Critical 中车大连电力牵引研发中心有限公司
Publication of WO2020125005A1 publication Critical patent/WO2020125005A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/16Circuit arrangements for detecting position

Definitions

  • the invention relates to the technical field of rail train traction control, in particular to a rotor position detection device for a rail train traction permanent magnet synchronous motor and a rail train.
  • the power of the rail train is generally provided by the rail train traction motor.
  • the rail train traction motor is a permanent magnet synchronous motor.
  • the rail train traction motor includes a rotor composed of permanent magnets and a stator composed of coils, so how to detect the position of the rotor to control the coil The magnetic field and then control the work of the traction motor of the rail train has become a research hotspot.
  • the rotor position detection device of the permanent magnet synchronous motor is generally used to detect the rotor position.
  • the rotor position detection device of the permanent magnet synchronous motor includes a resolver, a decoding chip, and a main controller.
  • the rotor of the resolver and the traction motor of the rail train The rotor drive connection, the rotary transformer is electrically connected with the decoding chip, the decoding chip is electrically connected with the main controller, and the main controller is electrically connected with the rail train traction motor.
  • the rotor of the rail train traction motor rotates, and the rotor of the rail train traction motor drives the rotor of the rotary transformer.
  • the rotary transformer can detect the rotation signal of the rail train traction motor rotor, and then input the rotation signal to the decoding chip, and the decoding chip
  • the rotation signal is processed to obtain the rotation angle of the traction motor rotor of the rail train.
  • the decoding chips in the prior art have a one-to-one correspondence with the resolver, there are multiple rail train traction motors on the rail train, and correspondingly multiple decoder chips need to be provided, resulting in higher cost of the rail train.
  • the present invention provides a track train traction permanent magnet synchronous motor rotor position detection device and a track train to solve the one-to-one correspondence between the decoding chip and the resolver in the prior art, and the track train has multiple track train traction motors , Correspondingly need to set up multiple decoding chips, leading to the technical problem of high cost of rail trains.
  • An embodiment of the present invention provides a rotor position detection device for a traction permanent magnet synchronous motor of a rail train, including: a main controller, a field programmable gate array, a signal converter, a first resolver, and a second resolver;
  • the main controller is electrically connected to the field programmable gate array
  • the excitation end of the first resolver and the excitation end of the second resolver are electrically connected to the field programmable gate array;
  • the output end of the first resolver and the output end of the second resolver are both electrically connected to the input end of the signal converter, and the output end of the signal converter is electrically connected to the field programmable gate array ;
  • the rotor of the first resolver is drive-connected with the first traction motor
  • the rotor of the second resolver is drive-connected with the second traction motor
  • the rotor position detection device for the traction permanent magnet synchronous motor of the rail train as described above, preferably, the rotor position detection device for the traction permanent magnet synchronous motor of the rail train further includes a first amplifier and a second amplifier, the excitation of the first resolver
  • the terminal is connected to the field programmable gate array through the first amplifier, and the first amplifier is used to amplify the excitation signal input to the first resolver;
  • the excitation terminal of the second resolver is connected to the field programmable gate array through the second amplifier, and the second amplifier is used to amplify the excitation signal input to the second resolver.
  • the first amplifier includes a first differential amplifier circuit
  • the second amplifier includes a second differential amplifier circuit
  • the rotor position detection device for the traction permanent magnet synchronous motor of the rail train preferably, the rotor position detection device for the traction permanent magnet synchronous motor of the rail train further includes a third resolver, the excitation end of the third resolver and the rotor
  • the field programmable gate array is electrically connected, the output end of the third resolver is electrically connected to the signal converter; the third resolver is electrically connected to the third traction motor.
  • the rotor position detection device for the traction permanent magnet synchronous motor of the rail train as described above, preferably, the rotor position detection device for the traction permanent magnet synchronous motor of the rail train further includes a third amplifier, and the excitation end of the third rotary transformer passes through the A third amplifier is connected to the field programmable gate array, and the third amplifier is used to amplify the excitation signal delivered to the third resolver.
  • the rotor position detection device for the traction permanent magnet synchronous motor of the rail train as described above preferably, the rotor position detection device for the traction permanent magnet synchronous motor of the rail train further includes a fourth resolver, the excitation end of the fourth resolver and the rotor
  • the field programmable gate array is electrically connected, the output end of the fourth resolver is electrically connected to the signal converter; the third resolver is electrically connected to the fourth traction motor.
  • the rotor position detection device for the traction permanent magnet synchronous motor of the rail train as described above, preferably, the rotor position detection device for the traction permanent magnet synchronous motor of the rail train further includes a fourth amplifier, and the excitation end of the fourth rotary transformer passes through the A fourth amplifier is electrically connected to the field programmable gate array, and the fourth amplifier is used to amplify the excitation signal delivered to the fourth resolver.
  • the third amplifier includes a third differential amplifier circuit
  • the fourth amplifier includes a fourth differential amplifier circuit
  • the signal converter includes an analog-to-digital converter.
  • An embodiment of the present invention further provides a rail train, which is characterized by including the rotor position detection device for the rail train traction permanent magnet synchronous motor as described above.
  • the track train traction permanent magnet synchronous motor rotor position detection device and the track train provided by the invention electrically connect the main controller and the field programmable gate array; the excitation end of the first resolver and the excitation end of the second resolver are The field programmable gate array is electrically connected; the output end of the first resolver and the output end of the second resolver are electrically connected to the input end of the signal converter, and the output end of the signal converter is electrically connected to the field programmable gate array; At the same time, the rotor rotation angle of the first traction motor and the second traction motor is detected, which reduces the cost of the rail train.
  • FIG. 1 is a connection schematic diagram of a rotor position detection device for a traction permanent magnet synchronous motor of a rail train provided by an embodiment of the present invention.
  • FIG. 1 is a connection schematic diagram of a rotor position detection device for a traction permanent magnet synchronous motor of a rail train provided by an embodiment of the present invention.
  • This embodiment provides a rotor position detecting device for a traction permanent magnet synchronous motor of a rail train, which includes a main controller 10, a field programmable gate array 20, a signal converter 30, a first resolver 1 and a second resolver 2.
  • the main controller 10 is electrically connected to the field programmable gate array 20.
  • the excitation end of the first resolver 1 and the excitation end of the second resolver 2 are electrically connected to the field programmable gate array 20.
  • the output end of the first resolver 1 and the output end of the second resolver 2 are both electrically connected to the input end of the signal converter 30, and the output end of the signal converter 30 is electrically connected to the field programmable gate array 20.
  • the rotor of the first resolver 1 is drive-connected with the first traction motor
  • the rotor of the second resolver 2 is drive-connected with the second traction motor
  • the main controller 10 may be any device capable of controlling the operation of the traction motor of the rail train.
  • the main control may be a single-chip microcomputer or a programmable logic controller, etc., which can receive signals from the field programmable gate array 20, and can Field programmable gate array 20 sends signals.
  • the main controller 10 is also electrically connected to each rail train traction motor of the rail train, so as to analyze the signal from the field programmable gate array 20, and then control the operation of each rail train traction motor.
  • the first resolver 1 is an electromagnetic sensor, also known as a synchronous resolver; the first resolver 1 includes a stator and a rotor, the stator includes an original coil, the excitation end of the first resolver 1 is electrically connected to the original coil, the first resolver 1 The excitation terminal is also electrically connected to the field programmable gate array 20.
  • the programmable gate array can send an excitation signal to the original coil to supply power to the original coil;
  • the rotor of the first resolver 1 includes a secondary coil, the rotor of the first resolver 1 and the first The rotor drive connection of the traction motor; when the rotor of the first traction motor rotates, drives the rotor of the first resolver 1 to rotate, thereby generating a detection signal;
  • the signal converter 30 receives the detection signal and converts the detection signal to form The signal received by the field programmable gate array 20, and then the field programmable gate array 20 processes the signal to obtain the rotation angle of the first traction motor.
  • the first resolver 1 can detect the sine voltage signal and the cosine voltage signal that the first traction motor rotates. After receiving the sine voltage signal and the cosine voltage signal, the programmable gate array rotates the digital calculation method according to the coordinates (Coordinate Rotation Digital Computer (CORDIC for short) calculates the rotor rotation angle of the first traction motor.
  • CORDIC Coordinat Coordinatation Digital Computer
  • the structure and working principle of the second resolver 2 and the first resolver 1 are the same, and will not be repeated here.
  • the first traction motor and the second traction motor may be traction motors on different bogies in the same car in the rail train, of course, the first traction motor and the second traction motor may also be traction on bogies in different cars in the rail train Motor.
  • the field-programmable gate array 20 (Field-Programmable Array, FPGA for short) can process the detection signals from the first resolver 1 and the second resolver 2 to obtain the first traction motor and the second The rotation angle of the traction motor rotor, and then the rotation angle of the first traction motor and the second traction motor rotor is transmitted to the main controller 10, which is controlled according to the rotation angle of the first traction motor and the second traction motor rotor The first traction motor and the second traction motor work.
  • the field programmable gate array 20 can also send excitation signals to the first resolver 1 and the second resolver 2 to make the first resolver 1 and the second resolver 2 work. It is worth noting that the field programmable gate array 20 implements the above functions by executing internally stored programs.
  • the signal converter 30 may be any device capable of converting the detection signals transmitted by the first resolver 1 and the second resolver 2 into a signal that can be recognized by the field programmable gate array 20; for example: the signal converter 30
  • An analog-to-digital converter may be included.
  • the analog-to-digital converter may convert the analog signals output by the first resolver 1 and the second resolver 2 into digital signals and send them to the field programmable gate array 20.
  • the main controller 10 may be a TMS320F28335 digital signal processor
  • the field programmable gate array 20 may be an XC3S500E FPGA
  • the signal converter 30 may be an AD7606 analog-to-digital converter.
  • the working process of the rotor position detection device for the traction permanent magnet synchronous motor of the rail train is as follows: the field programmable gate array 20 transmits the excitation signal to the first resolver 1 and the second resolver 2 when the rotor of the first traction motor When rotating, the rotor of the first resolver 1 is driven to rotate, the first resolver 1 can detect the sine voltage signal and the cosine voltage signal, the signal converter 30 converts the sine voltage signal and the cosine voltage signal, and converts the converted sine The voltage signal and the cosine voltage signal are sent to the field programmable gate array 20. The field programmable gate array 20 processes the received sine voltage signal and cosine voltage signal to obtain the rotation angle of the first traction motor. The angle controls the operation of the first traction motor.
  • the second resolver 2 can detect the sine voltage signal and the cosine voltage signal, and the signal converter 30 pairs the sine voltage signal and the cosine voltage signal.
  • the voltage signal is converted, and the converted sine voltage signal and cosine voltage signal are sent to the field programmable gate array 20.
  • the field programmable gate array 20 processes the received sine voltage signal and cosine voltage signal to obtain the first
  • the rotation angle of the second traction motor the controller controls the work of the second traction motor according to the rotation angle.
  • the rotor position detection device for the traction permanent magnet synchronous motor of the rail train provided in this embodiment electrically connects the main controller 10 and the field programmable gate array 20; the excitation end of the first resolver 1 and the excitation end of the second resolver 2 Both are electrically connected to the field programmable gate array 20; the output end of the first resolver 1 and the output end of the second resolver 2 are electrically connected to the input end of the signal converter 30, and the output end of the signal converter 30 can be connected to the field
  • the programming gate array 20 is electrically connected; the rotor rotation angle of the first traction motor and the second traction motor can be simultaneously detected, which reduces the cost of the rail train.
  • the track train traction permanent magnet synchronous motor rotor position detection device further includes a first amplifier 5 and a second amplifier 6, the excitation end of the first resolver 1 is connected to the field programmable gate array 20 through the first amplifier 5, The first amplifier 5 is used to amplify the excitation signal input to the first resolver 1; the excitation end of the second resolver 2 is connected to the field programmable gate array 20 through the second amplifier 6, and the second amplifier 6 is used to input The excitation signal to the second resolver 2 is amplified.
  • the first amplifier 5 and the second amplifier 6 can amplify the excitation signal output by the field programmable gate array 20, and can set the output power of the field programmable gate array 20 to be smaller.
  • the first amplifier 5 includes a first differential amplifier circuit
  • the second amplifier 6 includes a second differential amplifier circuit.
  • the signal output of the differential amplifier circuit is relatively stable.
  • the track train traction permanent magnet synchronous motor rotor position detection device further includes a third resolver 3, the excitation end of the third resolver 3 is electrically connected to the field programmable gate array 20, and the output end of the third resolver 3 It is electrically connected to the signal converter 30; the third resolver 3 is electrically connected to the third traction motor.
  • the rotor position detection device of the traction permanent magnet synchronous motor of the rail train further includes a third amplifier 7, the excitation end of the third resolver 3 is connected to the field programmable gate array 20 through the third amplifier 7, and the third amplifier 7 is used to The excitation signal sent to the third resolver 3 is amplified.
  • the track train traction permanent magnet synchronous motor rotor position detection device further includes a fourth resolver 4, the excitation end of the fourth resolver 4 is electrically connected to the field programmable gate array 20, and the output end of the fourth resolver 4 is connected to a signal
  • the converter 30 is electrically connected; the third resolver 3 is electrically connected to the fourth traction motor.
  • Four traction motors can be tested simultaneously, further reducing the cost of aisle trains. It should be noted that the structure and working principle of the fourth resolver 4 and the first resolver 1 and the second resolver 2 are substantially the same, and will not be repeated here.
  • first traction motor, the second traction motor, the third traction motor, and the fourth traction motor may all be traction motors on the same car bogie; of course, the first traction motor, the second traction motor, the third traction motor And the fourth traction motor may also be a motor on a different car bogie.
  • the rotor position detection device of the traction permanent magnet synchronous motor of the rail train further includes a fourth amplifier 8, the excitation end of the fourth resolver 4 is electrically connected to the field programmable gate array 20 through the fourth amplifier 8, the fourth amplifier 8 It is used to amplify the excitation signal delivered to the fourth resolver 4.
  • the third amplifier 7 includes a third differential amplifier circuit
  • the fourth amplifier 8 includes a fourth differential amplifier circuit.
  • the signal output of the differential amplifier circuit is relatively stable.
  • a rail train is further provided, which includes the above-mentioned rail train traction permanent magnet synchronous motor rotor position detection device.
  • the terms “installation”, “connected”, “connection”, “fixed” and other terms should be understood in a broad sense, for example, it can be a fixed connection or a detachable connection, Or integrally formed, it can be mechanically connected, electrically connected or communicable with each other; it can be directly connected or indirectly connected through an intermediate medium, it can be the connection between two components or the interaction between two components unless There are other clear limits. Those of ordinary skill in the art can understand the specific meanings of the above terms in the present invention according to specific situations.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

本发明提供一种轨道列车牵引永磁同步电机转子位置检测装置及轨道列车,包括:主控制器、现场可编程门阵列、信号转换器、第一旋转变压器以及第二旋转变压器;主控制器与现场可编程门阵列电连接;第一旋转变压器的激励端以及第二旋转变压器的激励端均与现场可编程门阵列电连接;第一旋转变压器的输出端和第二旋转变压器的输出端均与信号转换器的输入端电连接,信号转换器的输出端与现场可编程门阵列电连接;第一旋转变压器的转子与第一牵引电机传动连接,第二旋转变压器的转子与第二牵引电机传动连接;可以同时检测第一牵引电机和第二牵引电机的转子转动角度,降低了轨道列车的成本。

Description

轨道列车牵引永磁同步电机转子位置检测装置及轨道列车 技术领域
本发明涉及轨道列车牵引控制技术领域,尤其涉及一种轨道列车牵引永磁同步电机转子位置检测装置及轨道列车。
背景技术
轨道列车的动力一般通过轨道列车牵引电机提供,轨道列车牵引电机为永磁同步电机,轨道列车牵引电机包括由永磁体构成的转子、以及由线圈构成的定子,因此如何检测转子的位置以控制线圈的磁场进而控制轨道列车牵引电机工作成为研究的热点。
现有技术中,一般通过永磁同步电机转子位置检测装置来检测转子的位置,永磁同步电机转子位置检测装置包括旋转变压器、解码芯片以及主控制器,旋转变压器的转子与轨道列车牵引电机的转子传动连接,旋转变压器与解码芯片电连接,解码芯片与主控制器电连接,主控制器与轨道列车牵引电机电连接。工作时,轨道列车牵引电机的转子发生转动,轨道列车牵引电机的转子带动旋转变压器的转子转动,旋转变压器可以检测出轨道列车牵引电机转子的转动信号,进而将转动信号输入到解码芯片,解码芯片对转动信号进行处理以获取轨道列车牵引电机转子的转动角度。
然而,现有技术中的解码芯片与旋转变压器一一对应,轨道列车上具有多个轨道列车牵引电机,相应的需设置多个解码芯片,导致轨道列车的成本较高。
发明内容
有鉴于此,本发明提供一种轨道列车牵引永磁同步电机转子位置检测装置及轨道列车,以解决现有技术中的解码芯片与旋转变压器一一对应,轨道列车上具有多个轨道列车牵引电机,相应的需设置多个解码芯 片,导致轨道列车的成本较高的技术问题。
本发明实施例提供了一种轨道列车牵引永磁同步电机转子位置检测装置,包括:主控制器、现场可编程门阵列、信号转换器、第一旋转变压器以及第二旋转变压器;
所述主控制器与所述现场可编程门阵列电连接;
所述第一旋转变压器的激励端以及所述第二旋转变压器的激励端均与所述现场可编程门阵列电连接;
所述第一旋转变压器的输出端和所述第二旋转变压器的输出端均与所述信号转换器的输入端电连接,所述信号转换器的输出端与所述现场可编程门阵列电连接;
所述第一旋转变压器的转子与第一牵引电机传动连接,所述第二旋转变压器的转子与第二牵引电机传动连接。
如上所述的轨道列车牵引永磁同步电机转子位置检测装置,优选地,所述轨道列车牵引永磁同步电机转子位置检测装置还包括第一放大器和第二放大器,所述第一旋转变压器的激励端通过所述第一放大器与所述现场可编程门阵列连接,所述第一放大器用于对输入到所述第一旋转变压器的激励信号进行放大;
所述第二旋转变压器的激励端通过所述第二放大器与所述现场可编程门阵列连接,所述第二放大器用于对输入到所述第二旋转变压器的激励信号进行放大。
如上所述的轨道列车牵引永磁同步电机转子位置检测装置,优选地,所述第一放大器包括第一差分放大电路,所述第二放大器包括第二差分放大电路。
如上所述的轨道列车牵引永磁同步电机转子位置检测装置,优选地,所述轨道列车牵引永磁同步电机转子位置检测装置还包括第三旋转变压器,所述第三旋转变压器的激励端与所述现场可编程门阵列电连接,所述第三旋转变压器的输出端与所述信号转换器电连接;所述第三旋转变压器与第三牵引电机电连接。
如上所述的轨道列车牵引永磁同步电机转子位置检测装置,优选地,所述轨道列车牵引永磁同步电机转子位置检测装置还包括第三放大 器,所述第三旋转变压器的激励端通过所述第三放大器与所述现场可编程门阵列连接,所述第三放大器用于对输送至所述第三旋转变压器的激励信号进行放大。
如上所述的轨道列车牵引永磁同步电机转子位置检测装置,优选地,所述轨道列车牵引永磁同步电机转子位置检测装置还包括第四旋转变压器,所述第四旋转变压器的激励端与所述现场可编程门阵列电连接,所述第四旋转变压器的输出端与所述信号转换器电连接;所述第三旋转变压器与第四牵引电机电连接。
如上所述的轨道列车牵引永磁同步电机转子位置检测装置,优选地,所述轨道列车牵引永磁同步电机转子位置检测装置还包括第四放大器,所述第四旋转变压器的激励端通过所述第四放大器与所述现场可编程门阵列电连接,所述第四放大器用于对输送至所述第四旋转变压器的激励信号进行放大。
如上所述的轨道列车牵引永磁同步电机转子位置检测装置,优选地,所述第三放大器包括第三差分放大电路,所述第四放大器包括第四差分放大电路。
如上所述的轨道列车牵引永磁同步电机转子位置检测装置,优选地,所述信号转换器包括模数转换器。
本发明实施例还提供一种轨道列车,其特征在于,包括如上所述的轨道列车牵引永磁同步电机转子位置检测装置。
本发明提供的轨道列车牵引永磁同步电机转子位置检测装置及轨道列车,通过使主控制器与现场可编程门阵列电连接;第一旋转变压器的激励端以及第二旋转变压器的激励端均与现场可编程门阵列电连接;第一旋转变压器的输出端和第二旋转变压器的输出端均与信号转换器的输入端电连接,信号转换器的输出端与现场可编程门阵列电连接;可以同时检测第一牵引电机和第二牵引电机的转子转动角度,降低了轨道列车的成本。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将 对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例提供的轨道列车牵引永磁同步电机转子位置检测装置的连接示意图。
附图标记说明:
1、第一旋转变压器;
2、第二旋转变压器;
3、第三旋转变压器;
4、第四旋转变压器;
5、第一放大器;
6、第二放大器;
7、第三放大器;
8、第四放大器;
10、主控制器;
20、现场可编程门阵列;
30、信号转换器。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
图1为本发明实施例提供的轨道列车牵引永磁同步电机转子位置检测装置的连接示意图。
请参照图1。本实施例提供一种轨道列车牵引永磁同步电机转子位置检测装置,包括:主控制器10、现场可编程门阵列20、信号转换器30、第一旋转变压器1以及第二旋转变压器2。
主控制器10与现场可编程门阵列20电连接。
第一旋转变压器1的激励端以及第二旋转变压器2的激励端均与现场可编程门阵列20电连接。
第一旋转变压器1的输出端和第二旋转变压器2的输出端均与信号转换器30的输入端电连接,信号转换器30的输出端与现场可编程门阵列20电连接。
第一旋转变压器1的转子与第一牵引电机传动连接,第二旋转变压器2的转子与第二牵引电机传动连接。
具体地,主控制器10可以为任意能够控制轨道列车牵引电机工作的装置,例如:主控制可以为单片机或者可编程逻辑控制器等,能够接收来自现场可编程门阵列20的信号,并且可以向现场可编程门阵列20发送信号的装置。另外主控制器10还与轨道列车的各轨道列车牵引电机电连接,以便对来自现场可编程门阵列20的信号进行分析后,控制各轨道列车牵引电机工作。
第一旋转变压器1为电磁式传感器又称同步分解器;第一旋转变压器1包括定子和转子,定子包括原线圈,第一旋转变压器1的激励端与原线圈电连接,第一旋转变压器1的激励端还与现场可编程门阵列20电连接,可编程门阵列可以向原线圈发送激励信号,以为原线圈供电;第一旋转变压器1的转子包括副线圈,第一旋转变压器1的转子与第一牵引电机的转子传动连接;当第一牵引电机的转子转动时带动第一旋转变压器1的转子转动,进而产生检测信号;信号转换器30接收检测信号,并且对检测信号进行转换,以形成能够被现场可编程门阵列20接收的信号,进而现场可编程门阵列20对信号进行处理以获得第一牵引电机的转动角度。
示例性的,第一旋转变压器1可以检测第一牵引电机转动的正弦电压信号和余弦电压信号,可编程门阵列接收到正弦电压信号和余弦电压信号后,根据坐标旋转数字计算方法(Coordinate Rotation Digital Computer,简称CORDIC)计算出第一牵引电机的转子转动角度。
本实施例中,第二旋转变压器2和第一旋转变压器1的结构和工作原理相同,在此不再赘述。第一牵引电机和第二牵引电机可以为轨道列车 中同一车厢内的不同转向架上的牵引电机,当然第一牵引电机和第二牵引电机还可以为轨道列车中不同车厢内转向架上的牵引电机。
本实施例中,现场可编程门阵列20(Field-Programmable Gate Array,简称FPGA)可以对来自第一旋转变压器1和第二旋转变压器2的检测信号进行处理,以获得第一牵引电机和第二牵引电机转子的转动角度,进而将第一牵引电机和第二牵引电机转子的转动角度输送至主控制器10内,主控制器10内根据第一牵引电机和第二牵引电机转子的转动角度控制第一牵引电机和第二牵引电机工作。另外,现场可编程门阵列20还可以向第一旋转变压器1和第二旋转变压器2输送激励信号,使第一旋转变压器1和第二旋转变压器2工作。值得注意的是,现场可编程门阵列20通过执行内部储存的程序实现上述功能。
本实施例中信号转换器30可以为任意能够将第一旋转变压器1和第二旋转变压器2输送的检测信号转变成能够被现场可编程门阵列20识别的信号的装置;例如:信号转换器30可以包括模数转换器,模数转换器可以将第一旋转变压器1和第二旋转变压器2输出的模拟信号转变成数字信号,并输送至现场可编程门阵列20中。
本实施例中,主控制器10可以为TMS320F28335型数字信号处理器,现场可编程门阵列20可为XC3S500E型FPGA,信号转换器30可以为AD7606型模数转换器。
本实施例提供的轨道列车牵引永磁同步电机转子位置检测装置的工作过程为:现场可编程门阵列20向第一旋转变压器1和第二旋转变压器2输送激励信号,当第一牵引电机的转子转动时,带动第一旋转变压器1的转子转动,第一旋转变压器1可以检测出正弦电压信号和余弦电压信号,信号转换器30对正弦电压信号和余弦电压信号进行转换,并将转换后的正弦电压信号和余弦电压信号输送至现场可编程门阵列20中,现场可编程门阵列20对接收到的正弦电压信号和余弦电压信号进行处理,以获得第一牵引电机的转动角度,控制器根据转动角度控制第一牵引电机工作。
与此同时,当第二牵引电机的转子转动时,带动第二旋转变压器2的转子转动,第二旋转变压器2可以检测出正弦电压信号和余弦电压信号, 信号转换器30对正弦电压信号和余弦电压信号进行转换,并将转换后的正弦电压信号和余弦电压信号输送至现场可编程门阵列20中,现场可编程门阵列20对接收到的正弦电压信号和余弦电压信号进行处理,以获得第二牵引电机的转动角度,控制器根据转动角度控制第二牵引电机工作。
本实施例提供的轨道列车牵引永磁同步电机转子位置检测装置,通过使主控制器10与现场可编程门阵列20电连接;第一旋转变压器1的激励端以及第二旋转变压器2的激励端均与现场可编程门阵列20电连接;第一旋转变压器1的输出端和第二旋转变压器2的输出端均与信号转换器30的输入端电连接,信号转换器30的输出端与现场可编程门阵列20电连接;可以同时检测第一牵引电机和第二牵引电机的转子转动角度,降低了轨道列车的成本。
本实施例中,轨道列车牵引永磁同步电机转子位置检测装置还包括第一放大器5和第二放大器6,第一旋转变压器1的激励端通过第一放大器5与现场可编程门阵列20连接,第一放大器5用于对输入到第一旋转变压器1的激励信号进行放大;第二旋转变压器2的激励端通过第二放大器6与现场可编程门阵列20连接,第二放大器6用于对输入到第二旋转变压器2的激励信号进行放大。
第一放大器5和第二放大器6可以对现场可编程门阵列20输出的激励信号进行放大,可以将现场可编程门阵列20的输出功率设置的较小。
进一步地,第一放大器5包括第一差分放大电路,第二放大器6包括第二差分放大电路。差分放大电路的信号输出较为稳定。
本实施例中,轨道列车牵引永磁同步电机转子位置检测装置还包括第三旋转变压器3,第三旋转变压器3的激励端与现场可编程门阵列20电连接,第三旋转变压器3的输出端与信号转换器30电连接;第三旋转变压器3与第三牵引电机电连接。
可以对三个牵引电机同时进行检测,进一步降低了轨道列车的成本。需要说明的是,第三旋转变压器3与第一旋转变压器1和第二旋转变压器2的结构和工作原理大体相同,在此不再赘述。
进一步地,轨道列车牵引永磁同步电机转子位置检测装置还包括第 三放大器7,第三旋转变压器3的激励端通过第三放大器7与现场可编程门阵列20连接,第三放大器7用于对输送至第三旋转变压器3的激励信号进行放大。
具体地,轨道列车牵引永磁同步电机转子位置检测装置还包括第四旋转变压器4,第四旋转变压器4的激励端与现场可编程门阵列20电连接,第四旋转变压器4的输出端与信号转换器30电连接;第三旋转变压器3与第四牵引电机电连接。可以对四个牵引电机同时进行检测,进一步降低了过道列车的成本。需要说明的是,第四旋转变压器4与第一旋转变压器1和第二旋转变压器2的结构和工作原理大体相同,在此不再赘述。
进一步地,第一牵引电机、第二牵引电机、第三牵引电机以及第四牵引电机可以均为同一车厢转向架上的牵引电机;当然,第一牵引电机、第二牵引电机、第三牵引电机以及第四牵引电机也可以为不同车厢转向架上的电机。
本实施例中,轨道列车牵引永磁同步电机转子位置检测装置还包括第四放大器8,第四旋转变压器4的激励端通过第四放大器8与现场可编程门阵列20电连接,第四放大器8用于对输送至第四旋转变压器4的激励信号进行放大。
进一步地,第三放大器7包括第三差分放大电路,第四放大器8包括第四差分放大电路。差分放大电路的信号输出较为稳定。
在其他实施例中还提供一种轨道列车,包括:如上所述的轨道列车牵引永磁同步电机转子位置检测装置。
在本发明中,除非另有明确的规定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸的连接,或一体成型,可以是机械连接,也可以是电连接或者彼此可通讯;可以是直接相连,也可以通过中间媒体间接连接,可以是两个元件内部的连通或者两个元件的互相作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领 域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (10)

  1. 一种轨道列车牵引永磁同步电机转子位置检测装置,其特征在于,包括:主控制器、现场可编程门阵列、信号转换器、第一旋转变压器以及第二旋转变压器;
    所述主控制器与所述现场可编程门阵列电连接;
    所述第一旋转变压器的激励端以及所述第二旋转变压器的激励端均与所述现场可编程门阵列电连接;
    所述第一旋转变压器的输出端和所述第二旋转变压器的输出端均与所述信号转换器的输入端电连接,所述信号转换器的输出端与所述现场可编程门阵列电连接;
    所述第一旋转变压器的转子与第一牵引电机传动连接,所述第二旋转变压器的转子与第二牵引电机传动连接。
  2. 根据权利要求1所述的轨道列车牵引永磁同步电机转子位置检测装置,其特征在于,所述轨道列车牵引永磁同步电机转子位置检测装置还包括第一放大器和第二放大器,所述第一旋转变压器的激励端通过所述第一放大器与所述现场可编程门阵列连接,所述第一放大器用于对输入到所述第一旋转变压器的激励信号进行放大;
    所述第二旋转变压器的激励端通过所述第二放大器与所述现场可编程门阵列连接,所述第二放大器用于对输入到所述第二旋转变压器的激励信号进行放大。
  3. 根据权利要求2所述的轨道列车牵引永磁同步电机转子位置检测装置,其特征在于,所述第一放大器包括第一差分放大电路,所述第二放大器包括第二差分放大电路。
  4. 根据权利要求1所述的轨道列车牵引永磁同步电机转子位置检测装置,其特征在于,所述轨道列车牵引永磁同步电机转子位置检测装置还包括第三旋转变压器,所述第三旋转变压器的激励端与所述现场可编程门阵列电连接,所述第三旋转变压器的输出端与所述信号转换器电连接;所述第三旋转变压器与第三牵引电机电连接。
  5. 根据权利要求4所述的轨道列车牵引永磁同步电机转子位置检测装置,其特征在于,所述轨道列车牵引永磁同步电机转子位置检测装置 还包括第三放大器,所述第三旋转变压器的激励端通过所述第三放大器与所述现场可编程门阵列连接,所述第三放大器用于对输送至所述第三旋转变压器的激励信号进行放大。
  6. 根据权利要求5所述的轨道列车牵引永磁同步电机转子位置检测装置,其特征在于,所述轨道列车牵引永磁同步电机转子位置检测装置还包括第四旋转变压器,所述第四旋转变压器的激励端与所述现场可编程门阵列电连接,所述第四旋转变压器的输出端与所述信号转换器电连接;所述第三旋转变压器与第四牵引电机电连接。
  7. 根据权利要求6所述的轨道列车牵引永磁同步电机转子位置检测装置,其特征在于,所述轨道列车牵引永磁同步电机转子位置检测装置还包括第四放大器,所述第四旋转变压器的激励端通过所述第四放大器与所述现场可编程门阵列电连接,所述第四放大器用于对输送至所述第四旋转变压器的激励信号进行放大。
  8. 根据权利要求7所述的轨道列车牵引永磁同步电机转子位置检测装置,其特征在于,所述第三放大器包括第三差分放大电路,所述第四放大器包括第四差分放大电路。
  9. 根据权利要求1-8任一项所述的轨道列车牵引永磁同步电机转子位置检测装置,其特征在于,所述信号转换器包括模数转换器。
  10. 一种轨道列车,其特征在于,包括:权利要求1-9任一项所述的轨道列车牵引永磁同步电机转子位置检测装置。
PCT/CN2019/096527 2018-12-20 2019-07-18 轨道列车牵引永磁同步电机转子位置检测装置及轨道列车 WO2020125005A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811560452.XA CN111431443A (zh) 2018-12-20 2018-12-20 轨道列车牵引永磁同步电机转子位置检测装置及轨道列车
CN201811560452.X 2018-12-20

Publications (1)

Publication Number Publication Date
WO2020125005A1 true WO2020125005A1 (zh) 2020-06-25

Family

ID=71101023

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/096527 WO2020125005A1 (zh) 2018-12-20 2019-07-18 轨道列车牵引永磁同步电机转子位置检测装置及轨道列车

Country Status (2)

Country Link
CN (1) CN111431443A (zh)
WO (1) WO2020125005A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104218728A (zh) * 2013-09-13 2014-12-17 黄河科技学院 高度集成的机电作动器及其应用方法
CN104796051A (zh) * 2015-04-17 2015-07-22 天津大学 基于fpga的旋转变压器线性变换方法及变换器
CN106787991A (zh) * 2016-05-26 2017-05-31 上海拿森汽车电子有限公司 电动助力转向***中旋转变压器的角度解码方法
CN108322003A (zh) * 2018-01-31 2018-07-24 武汉征原电气有限公司 一种新型的永磁同步牵引电机

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102403938B (zh) * 2011-12-14 2013-07-17 兰州交通大学 基于单fpga的旋转变压器解码处理装置和方法
CN107703919B (zh) * 2017-10-24 2024-07-02 上海辛格林纳新时达电机有限公司 数据采集装置、包含其的控制***以及通信方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104218728A (zh) * 2013-09-13 2014-12-17 黄河科技学院 高度集成的机电作动器及其应用方法
CN104796051A (zh) * 2015-04-17 2015-07-22 天津大学 基于fpga的旋转变压器线性变换方法及变换器
CN106787991A (zh) * 2016-05-26 2017-05-31 上海拿森汽车电子有限公司 电动助力转向***中旋转变压器的角度解码方法
CN108322003A (zh) * 2018-01-31 2018-07-24 武汉征原电气有限公司 一种新型的永磁同步牵引电机

Also Published As

Publication number Publication date
CN111431443A (zh) 2020-07-17

Similar Documents

Publication Publication Date Title
WO2021073139A1 (zh) 一种旋转变压器接线自检测***
KR101500143B1 (ko) 레졸버 고장 검출 인터페이스 회로 및 이를 이용한 고장 검출 방법
CN204794784U (zh) 旋转变压器激励信号发生器和旋转变压器***
CN101975923A (zh) 一种电动机加载性能测试***
CN105391368B (zh) 一种测量直线加速器治疗头光阑位置的***
CN213072674U (zh) 一种应答器c接口的测试装置
CN106471729A (zh) 驱动***的诊断和驱动***
CN106170910A (zh) 马达驱动的运输滚筒的电力供应和控制电路
WO2020125005A1 (zh) 轨道列车牵引永磁同步电机转子位置检测装置及轨道列车
CN103475343A (zh) 一种微弱信号抗干扰、放大和整形的低功耗处理方法
CN104777425A (zh) 共轴高速永磁同步电机互馈测试平台
US20080129231A1 (en) Electric motor car drive control apparatus
CN103616638B (zh) 轨道交通用滚筒形直线感应牵引电机性能测试互馈装置
WO2019144570A1 (zh) 一种磁轨制动控制***、方法及磁悬浮列车
CN103762806A (zh) 一种罩极式单相交流异步电动机振动转矩的抑制方法
CN205023777U (zh) 一种双绕组永磁容错电机垂直提升***
CN206602477U (zh) 永磁同步电机的位置传感器的转子偏移量检测***
CN102055464B (zh) 一种速度脉冲处理电路
CN203734576U (zh) 一种永磁无刷电机高可靠转子位置检测电路
CN109131381A (zh) 一种小型空轨车辆的轮毂电机驱动***及其驱动方法
CN101789747B (zh) 一种异步电动机测速控制方法及其装置
CN219979315U (zh) 一种采用软解码技术的旋变位置采样***
CN107074260B (zh) 用于铁路制动***的车轴发电机
CN106404890B (zh) 一种轨道交通车辆轮对在线检测***及驱动控制方法
CN202395718U (zh) 异步电机单通道速度检测驱动器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19900763

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19900763

Country of ref document: EP

Kind code of ref document: A1