WO2020124718A1 - 像素电极、薄膜晶体管阵列基板及显示面板 - Google Patents

像素电极、薄膜晶体管阵列基板及显示面板 Download PDF

Info

Publication number
WO2020124718A1
WO2020124718A1 PCT/CN2019/071843 CN2019071843W WO2020124718A1 WO 2020124718 A1 WO2020124718 A1 WO 2020124718A1 CN 2019071843 W CN2019071843 W CN 2019071843W WO 2020124718 A1 WO2020124718 A1 WO 2020124718A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
width
branch
pixel electrode
film transistor
Prior art date
Application number
PCT/CN2019/071843
Other languages
English (en)
French (fr)
Inventor
郝思坤
Original Assignee
深圳市华星光电半导体显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电半导体显示技术有限公司 filed Critical 深圳市华星光电半导体显示技术有限公司
Publication of WO2020124718A1 publication Critical patent/WO2020124718A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/13439Electrodes characterised by their electrical, optical, physical properties; materials therefor; method of making
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/1368Active matrix addressed cells in which the switching element is a three-electrode device

Definitions

  • the present application relates to the field of display technology, in particular to a pixel electrode, a thin film transistor array substrate, and a display panel.
  • the liquid crystal display is a display with a high-resolution color screen, which has gradually become a widely used display for various electronic devices such as mobile phones, personal digital assistants (PDAs), digital cameras, computer screens, and notebook computer screens.
  • PDAs personal digital assistants
  • LCDs liquid crystal display
  • liquid crystal displays usually consist of a thin film transistor substrate, a color filter substrate, and a liquid crystal layer between the thin film transistor substrate and the color filter substrate.
  • the thin film transistor substrate and the color filter substrate are both composed of a glass substrate and electrodes.
  • a vertical electric field mode display can be formed, such as twisted nematic (Twist Nematic, TN) mode, vertical alignment (Vertical Alignment (VA) mode, and the multi-quadrant vertical alignment technology (Multi-domain Vertical Alignment (MVA); another type of display is to form a horizontal electric field mode, the electrode is only located on one side of the thin film transistor substrate or color film substrate, such as In-plane switching (IPS) mode, fringe field switch (Fringe) Field Switching, FFS) mode, etc.
  • IPS In-plane switching
  • Fringe fringe field switch
  • FIG. 1 it is a schematic diagram of the structure of a thin film transistor of a VA mode display.
  • the structure of the pixel electrode 10 on the thin film transistor array side is a fishbone shape.
  • the pixel electrode 10 is divided into multiple regions to improve viewing angle characteristics.
  • 2b is a graph of the transmittance of the pixel electrode 10 at different positions of the thin film transistor shown in FIG. 1, wherein FIG.
  • FIG. 2a is a graph of the transmittance of the pixel electrode 10 at different positions when the branch electrode of the pixel electrode is wide
  • FIG. 2b is a pixel electrode
  • the transmittance diagrams of the pixel electrode 10 at different positions can be seen from FIGS. 2a and 2b.
  • the branch electrode constituting the pixel electrode 10 adopts the traditional structure design, it is difficult to achieve the maximum transmittance of each area of the pixel electrode .
  • the present application provides a pixel electrode, a thin film transistor array substrate, and a display panel.
  • the pixel electrode can improve the transmittance of each area of the pixel electrode.
  • a pixel electrode, the pixel electrode includes:
  • a main stem portion, the main stem portion includes a horizontal main stem electrode and a vertical main stem electrode, the horizontal main stem electrode and the vertical main stem electrode are perpendicular to each other, and the pixel electrode is divided into four branch areas;
  • branch portion the branch portion is located in the four branch portion areas, the branch portion in each branch portion area includes a plurality of parallel branch electrodes arranged in a preset direction, adjacent to the branch electrodes A slit is provided between them, and the width of the two ends of the branch electrode is different from the width of the middle of the branch electrode.
  • the width of both ends of the branch electrode is smaller than the width of the middle of the branch electrode.
  • the width of the branch electrode gradually decreases from the middle to both ends.
  • two opposite sides of the branch electrode are two arcs, and two concave sections of the arc are arranged oppositely so that the width of the branch electrode gradually decreases from the middle to both ends.
  • the width of the two ends of the branch electrode is larger than the width of the middle of the branch electrode.
  • the width of the branch electrode gradually increases from the middle to both ends.
  • two opposite sides of the branch electrode are two arcs, and the two convex sections of the arc are arranged oppositely so that the width of the branch electrode gradually increases from the middle to both ends.
  • the branch electrode includes a first end, a second end, and an intermediate portion between the first end and the second end, and the width of the first end is greater than that of the second end Width, the width of the second end is greater than the width of the middle portion.
  • the angle between the preset direction and the horizontal stem electrode is 45 degrees.
  • the preparation material of the pixel electrode is one of indium tin oxide or indium zinc oxide.
  • the thin film transistor array substrate includes a pixel electrode, and the pixel electrode includes:
  • a main stem portion includes a horizontal main stem electrode and a vertical main stem electrode, the horizontal main stem electrode and the vertical main stem electrode are perpendicular to each other, and each of the pixel electrodes is divided into four branch portions;
  • branching portion is located in four of the branching portion areas, the branching portion in each of the branching portion areas includes a plurality of parallel branch electrodes arranged in a predetermined direction, adjacent to the branch electrodes A slit is provided between them, and the width of the two ends of the branch electrode is different from the width of the middle of the branch electrode.
  • the width of the two ends of the branch electrode is smaller than the width of the middle of the branch electrode.
  • the width of the branch electrode gradually decreases from the middle to both ends.
  • the width of the two ends of the branch electrode is larger than the width of the middle of the branch electrode.
  • the width of the branch electrode gradually increases from the middle to both ends.
  • the branch electrode includes a first end, a second end, and an intermediate portion between the first end and the second end, and the width of the first end is greater than the first The width of the two ends, the width of the second end is greater than the width of the middle portion.
  • the angle between the preset direction and the horizontal stem electrode is 45 degrees.
  • the pixel electrode is made of indium tin oxide or indium zinc oxide.
  • a display panel including the above-mentioned thin film transistor array substrate.
  • the present application provides a pixel electrode, a thin film transistor array substrate, and a display panel.
  • FIG. 1 is a schematic structural diagram of a thin film transistor of a conventional VA mode display
  • FIG. 2a-2b are the transmittance diagrams of the pixel electrodes of the thin-film transistor in FIG. 1 at different positions, FIG. 2a is the transmittance diagrams of the pixel electrodes when the branch electrode is too wide, and FIG. 2b is the branch electrodes of the pixel electrode are too narrow At different times;
  • FIG. 3 is a schematic structural diagram of a pixel electrode according to the first embodiment of this application.
  • FIG. 4 is a graph of the transmittance of the pixel electrode at different positions when the pixel electrode shown in FIG. 3 is applied to a VA mode display;
  • FIG. 5 is a schematic structural diagram of a pixel electrode according to a second embodiment of this application.
  • FIG. 6 is a schematic structural diagram of a pixel electrode according to a third embodiment of this application.
  • FIG. 7 is a schematic structural diagram of a pixel electrode according to a fourth embodiment of the present application.
  • the present application provides a pixel electrode.
  • the pixel electrode includes:
  • the main stem part includes a horizontal main stem electrode and a vertical main stem electrode, and the horizontal main stem electrode and the vertical main stem electrode are perpendicular to each other and divide the pixel electrode into four branch regions;
  • the branch part is located in four branch part regions, and the branch part in each branch part region includes a plurality of parallel branch electrodes arranged in a preset direction, a slit is provided between adjacent branch electrodes, and the branch electrode two The width of the end is different from the width of the middle of the branch electrode.
  • the above solution improves the transmittance of each area of the pixel electrode by making the widths of both ends of the branch electrode of the pixel electrode different from the widths in the middle of the branch electrode.
  • FIG. 3 is a pixel electrode 20 according to the first embodiment of the present application.
  • the pixel electrode 20 includes:
  • the main stem 200 includes a horizontal main stem electrode 201 and a vertical main stem electrode 202.
  • the horizontal main stem electrode 201 and the vertical main stem electrode 202 are perpendicular to each other and divide the pixel electrode 20 into four branch regions;
  • the branch portion is located in the four branch portion areas.
  • the branch portion in each branch portion area includes a plurality of parallel branch electrodes 210 arranged in a predetermined direction.
  • a slit is provided between adjacent branch electrodes 210 to branch The width of both ends of the electrode 210 is smaller than the width of the middle of the branch electrode 210.
  • the branch electrode 210 includes a first end 211 and a second end 212 and an intermediate portion 213 between the first end 211 and the second end 212.
  • the width of the first end 211 is the same as the width of the second end 212, and the width of the first end 211 and the width of the second end 212 are both smaller than the width of the middle portion 213.
  • the width of the first end 211 and the width of the second end 212 may also be different.
  • the width of the first end 211 and the width of the second end 212 are both smaller than the width of the middle portion 213.
  • the angle between the preset direction and the horizontal stem electrode 201 is 45 degrees. In other embodiments, the angle between the preset direction and the horizontal stem electrode 201 may also be an angle between 0 degrees and 90 degrees.
  • This application is not specifically limited; the branch electrodes 210 in adjacent branch regions are arranged symmetrically with the horizontal main electrode 201 or the vertical main electrode 202 as the central axis.
  • the preparation material of the pixel electrode 20 is one of indium tin oxide or indium zinc oxide; the thickness of the pixel electrode is 1 nanometer to 40 nanometers.
  • the pixel electrode 20 shown in FIG. 3 is applied to a VA mode display with the same wavelength of colored light (same as the colored light that forms the transmittance maps at different positions of the pixel electrode 10 in FIGS. 2a and 2b)
  • the transmissivity diagrams at different positions of the pixel electrode 20 are the horizontal coordinate of the pixel electrode 20 (the horizontal coordinate axis is parallel to the horizontal main electrode 201) and the vertical coordinate.
  • the side vertical coordinate is the penetration coordinate.
  • the position of 210 (branch electrode) has the highest penetration rate, and the penetration rate here is close to 0.3; the position of 203 (gap between adjacent branch electrodes) The penetration rate is second, the penetration rate is between 0.22-0.28; the penetration rate at the location of 205 (the periphery of the branch) is 0.1-0.2.
  • the penetration rate is second, the penetration rate is between 0.22-0.28; the penetration rate at the location of 205 (the periphery of the branch) is 0.1-0.2.
  • the penetration rate at the location of 101a (the periphery of the branch) is 0.1-0.15
  • the penetration rate at the location of 102a (the gap between adjacent branch electrodes) is between 0.22-0.28
  • the location of 103a is The penetration rate at the location (branch electrode) is close to 0.3
  • the penetration rate at the location 101b (periphery of the branch) is 0.18-0.2
  • the penetration rate at the location 102b (gap between the branch electrodes) It is 0.22-0.28
  • the transmittance of 103b (branch electrode) is close to 0.3.
  • the pixel electrode of this embodiment when the pixel electrode of this embodiment is applied to a VA mode display, the pixel electrode can improve the transmittance of each area of the pixel electrode.
  • the pixel electrode of this embodiment can improve the transmittance of each area of the pixel electrode when applied to a VA mode display.
  • FIG. 5 is a pixel electrode 30 according to the second embodiment of the present application.
  • the pixel electrode 30 includes:
  • the main stem 300 includes a horizontal main stem electrode 301 and a vertical main stem electrode 302, and the horizontal main stem electrode 301 and the vertical main stem electrode 302 are perpendicular to each other and divide the pixel electrode 30 into four branch regions;
  • the branch portion is located in the four branch portion areas, and the branch portion in each branch portion area includes a plurality of parallel branch electrodes 310 arranged in a predetermined direction, and slits are provided between adjacent branch electrodes 310 to branch The width of the electrode 310 gradually decreases from the middle to both ends.
  • the branch electrode 310 includes a first end 311, a second end 312, and an intermediate portion 313 between the first end 311 and the second end 312, the width of the first end 311 and the width of the second end 312 Both are smaller than the width of the middle portion 313, and the relative sizes of the width of the first end 311 and the width of the second end 312 are not specifically limited; in this embodiment, the curvatures of the two arcs are different. In other embodiments, the two The curvature of the arcs can also be the same.
  • FIG. 6 is a pixel electrode 40 according to a third embodiment of the present application.
  • the pixel electrode 40 includes:
  • the main stem 400 includes a horizontal main stem electrode 401 and a vertical main stem electrode 402.
  • the horizontal main stem electrode 401 and the vertical main stem electrode 402 are perpendicular to each other and divide the pixel electrode 40 into four branch regions;
  • the branch portion is located in the four branch portion areas, and the branch portion in each branch portion area includes a plurality of parallel branch electrodes 410 arranged in a preset direction, and a slit is provided between adjacent branch electrodes 410 to branch The width of both ends of the electrode 410 is greater than the width of the middle of the branch electrode 410.
  • the branch electrode 410 includes a first end 411 and a second end 412 and an intermediate portion 413 between the first end 411 and the second end 412.
  • the width of the first end 411 is the same as the width of the second end 412, and the width of the first end 411 and the width of the second end 412 are both larger than the width of the middle portion 413.
  • the width of the first end 411 and the width of the second end 412 may also be different, but the width of the first end 411 and the width of the second end 412 are smaller than the width of the middle portion 413, for example, the first end
  • the width of 411 is greater than the width of the second end 412
  • the width of the second end 412 is greater than the width of the middle portion 413.
  • the pixel electrode 50 includes:
  • the main stem 500 includes a horizontal main stem electrode 501 and a vertical main stem electrode 502, the horizontal main stem electrode 501 and the vertical main stem electrode 502 are perpendicular to each other, and divide the pixel electrode 50 into four branch regions;
  • the branch portion is located in four branch portion areas, and the branch portion in each branch portion area includes a plurality of parallel branch electrodes 510 arranged in a predetermined direction, and a slit is provided between adjacent branch electrodes 510 to branch The width of the electrode 510 gradually increases from the middle to both ends.
  • the two opposite sides of the branch electrode 510 are two opposite arcs, and the protruding sections of the two arcs are arranged oppositely so that the width of the branch electrode 511 gradually increases from the middle to both ends.
  • the first end 511 of the branch electrode 510 is
  • the width of the second end 512 of the branch electrode may be the same or different.
  • the width of the first end 511 and the width of the second end 512 are both larger than the width of the middle portion 513 of the branch electrode 510.
  • the curvatures of the two arcs are different. In other embodiments, the curvatures of the two arcs may be the same.
  • the shapes of the branch electrodes in the first to fourth embodiments are different.
  • the shape of the branch electrodes in this application is not limited to the above embodiments.
  • the width of the two ends of the branch electrode and the width of the middle of the branch electrode may be different, for example, the branch electrode.
  • the shape of can also be a diamond shape or an arc shape, etc., which is not specifically limited in this application.
  • the present application also provides a thin film transistor array substrate.
  • the thin film transistor array substrate includes the above pixel electrodes.
  • the above thin film transistor array substrate further includes: a substrate, a first metal layer formed on the substrate; a first insulating layer covering the first metal layer; an active layer formed on the first insulating layer; active A second metal layer formed on the layer; a second insulating layer covering the second metal layer and having vias; a pixel electrode is formed on the second insulating layer and fills the vias to contact the drain electrode of the second metal layer.
  • the substrate is a glass substrate or a flexible substrate;
  • the first metal layer includes a gate and gate traces;
  • the second metal layer includes a source and a drain; both the first insulating layer and the second insulating layer serve as insulation The role.
  • Another object of the present application is to provide a display panel including the above-mentioned thin film transistor array substrate, which increases the transmittance of the display panel by increasing the highest transmittance of each area of the pixel electrode.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Geometry (AREA)
  • Liquid Crystal (AREA)
  • Thin Film Transistor (AREA)

Abstract

一种像素电极(20, 30, 40, 50)、薄膜晶体管阵列基板及显示面板,通过使像素电极(20, 30, 40, 50)的分支电极(210, 310, 410, 510)的两端宽度与分支电极(210, 310, 410, 510)的中间宽度不同以提高像素电极(20, 30, 40, 50)各个区域的穿透率。

Description

像素电极、薄膜晶体管阵列基板及显示面板 技术领域
本申请涉及显示技术领域,尤其涉及一种像素电极、薄膜晶体管阵列基板及显示面板。
背景技术
液晶显示器是具有高分辨率彩色屏幕的显示器,其已经逐渐成为各种电子设备如移动电话、个人数字助理(PDA)、数字相机、计算机屏幕以及笔记本电脑屏幕所广泛应用的显示器。
目前普遍采用的液晶显示器通常由薄膜晶体管基板、彩膜基板以及位于薄膜晶体管基板和彩膜基板之间的液晶层组成,薄膜晶体管基板和彩膜基板上均由玻璃基板和电极等组成。在薄膜晶体管基板和彩膜基板上均有电极时,可以形成纵向电场模式的显示器,如扭曲向列式(Twist Nematic, TN)模式,垂直配向(Vertical Alignment,VA)模式,以及为了解决视角过窄开发的多象限垂直配向技术(Multi-domain Vertical Alignment,MVA);另一类显示器是形成横向电场模式,电极只位于薄膜晶体管基板或彩膜基板的一侧,如平面转换(In-plane switching,IPS)模式、边缘场开关(Fringe Field Switching, FFS)模式等。VA模式显示器以其高开口、高分辨率、广视角等特点为液晶电视等大尺寸面板采用,然而使用传统方法设计的VA模式显示器的像素液晶效率低,导致液晶显示器的光学穿透率低。如图1所示,其为VA模式显示器的薄膜晶体管的结构示意图,薄膜晶体管阵列侧的像素电极10结构为鱼骨状,像素电极10被并分割为多个区域以改善视角特性,图2a和图2b为图1所示薄膜晶体管的像素电极10不同位置的穿透率图,其中,图2a为像素电极的分支电极较宽时像素电极10不同位置的穿透率图,图2b为像素电极的分支电极较窄时像素电极10不同位置的穿透率图,由图2a和图2b可知,组成像素电极10的分支电极采用传统的结构设计时,难以使像素电极各区域达到最大穿透率。
技术问题
鉴于现有技术的不足,本申请提供一种像素电极、薄膜晶体管阵列基板以及显示面板,该像素电极能提高像素电极各个区域的穿透率。
技术解决方案
一种像素电极,所述像素电极包括:
主干部,所述主干部包括水平主干电极和垂直主干电极,所述水平主干电极和所述垂直主干电极相互垂直且将所述像素电极均分为四个分支部区;
分支部,所述分支部位于四个所述分支部区中,每个所述分支部区中的所述分支部包括多条平行且沿预设方向排列的分支电极,相邻所述分支电极之间设置有狭缝,所述分支电极两端的宽度与所述分支电极中间的宽度不同。
在上述像素电极中,所述分支电极两端的宽度小于所述分支电极中间的宽度。
在上述像素电极中,所述分支电极的宽度由中间向两端逐渐减小。
在上述像素电极中,所述分支电极相对的两侧为两条弧线,两条所述弧线的凹陷段相对设置从而使得所述分支电极的宽度由中间向两端逐渐减小。
在上述像素电极中,所述分支电极两端的宽度大于所述分支电极中间的宽度。
在上述像素电极中,所述分支电极的宽度由中间向两端逐渐增大。
在上述像素电极中,所述分支电极相对的两侧为两条弧线,两条所述弧线的凸出段相对设置从而使得所述分支电极的宽度由中间向两端逐渐增大。
在上述像素电极中,所述分支电极包括第一端、第二端以及位于所述第一端和所述第二端之间的中间部,所述第一端的宽度大于所述第二端的宽度,所述第二端的宽度大于所述中间部的宽度。
在上述像素电极中,所述预设方向与所述水平主干电极之间的夹角为45度。
在上述像素电极中,所述像素电极的制备材料为氧化铟锡或氧化铟锌中的一种。
一种薄膜晶体管阵列基板,所述薄膜晶体管阵列基板包括像素电极,所述像素电极包括:
主干部,所述主干部包括水平主干电极和垂直主干电极,所述水平主干电极和所述垂直主干电极相互垂直且将所述像素电极均分为四个分支部区;
分支部,所述分支部位于四个所述分支部区中,每个所述分支部区中的所述分支部包括多条平行且沿预设方向排列的分支电极,相邻所述分支电极之间设置有狭缝,所述分支电极两端的宽度与所述分支电极中间的宽度不同。
在上述薄膜晶体管阵列基板中,所述分支电极两端的宽度小于所述分支电极中间的宽度。
在上述薄膜晶体管阵列基板中,所述分支电极的宽度由中间向两端逐渐减小。
在上述薄膜晶体管阵列基板中,所述分支电极两端的宽度大于所述分支电极中间的宽度。
在上述薄膜晶体管阵列基板中,所述分支电极的宽度由中间向两端逐渐增大。
在上述薄膜晶体管阵列基板中,所述分支电极包括第一端、第二端以及位于所述第一端和所述第二端之间的中间部,所述第一端的宽度大于所述第二端的宽度,所述第二端的宽度大于所述中间部的宽度。
在上述薄膜晶体管阵列基板中,所述预设方向与所述水平主干电极之间的夹角为45度。
在上述薄膜晶体管阵列基板中,所述像素电极的制备材料为氧化铟锡或氧化铟锌中的一种。
一种显示面板,所述显示面板包括上述薄膜晶体管阵列基板。
有益效果
本申请提供一种像素电极、薄膜晶体管阵列基板及显示面板,通过使像素电极的分支电极两端宽度与分支电极的中间宽度不同以提高像素电极各个区域的穿透率。
附图说明
图1为传统VA模式显示器的薄膜晶体管的结构示意图;
图2a-2b为图1中薄膜晶体管的像素电极不同位置的穿透率图,图2a为像素电极的分支电极过宽时不同位置的穿透率图,图2b为像素电极的分支电极过窄时不同位置的穿透率图;
图3为本申请第一实施例像素电极的结构示意图;
图4为图3所示的像素电极应用于VA模式显示器时像素电极不同位置的穿透率图;
图5为本申请第二实施例像素电极的结构示意图;
图6为本申请第三实施例像素电极的结构示意图;
图7为本申请第四实施例像素电极的结构示意图。
本发明的实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请提供一种像素电极,该像素电极包括:
主干部,主干部包括水平主干电极和垂直主干电极,水平主干电极和垂直主干电极相互垂直且将像素电极均分为四个分支部区;
分支部,分支部位于四个分支部区中,每个分支部区中的分支部包括多条平行且沿预设方向排列的分支电极,相邻分支电极之间设置有狭缝,分支电极两端的宽度与分支电极中间的宽度不同。
上述方案通过使像素电极的分支电极两端的宽度与分支电极中间的宽度不同以提高像素电极的各个区域的穿透率。
图3为本申请第一实施例的像素电极20,该像素电极20包括:
主干部200,主干部200包括水平主干电极201和垂直主干电极202,水平主干电极201和垂直主干电极202相互垂直且将像素电极20均分为四个分支部区;
分支部,分支部位于四个分支部区中,每个分支部区中的分支部包括多条平行且沿预设方向排列的分支电极210,相邻分支电极210之间设置有狭缝,分支电极210两端的宽度小于分支电极210中间的宽度。
分支电极210包括第一端211和第二端212以及位于第一端211和第二端212之间的中间部213。在本实施例中,第一端211的宽度与第二端212的宽度相同,第一端211的宽度和第二端212的宽度均小于中间部213的宽度。在其他实施例中,第一端211的宽度和第二端212的宽度也可以不同,第一端211的宽度和第二端212的宽度均小于中间部213的宽度。
在本实施例中,预设方向与水平主干电极201的夹角为45度,在其他实施例中,预设方向与水平主干电极201的夹角也可以为0度至90度之间的角度,本申请不做具体的限定;相邻分支部区的分支电极210以水平主干电极201或垂直主干电极202为中心轴线对称设置。像素电极20的制备材料为氧化铟锡或氧化铟锌中的一种;像素电极的厚度为1纳米-40纳米。
如图4所示,其为本实施例图3所示像素电极20应用于VA模式显示器时同一波长色光(与形成图2a和图2b中像素电极10不同位置的穿透率图的色光相同)在像素电极20不同位置的穿透率图,图4横坐标和图4左侧纵坐标分别为像素电极20横向位置坐标(横向坐标轴与水平主干电极201平行)和纵向位置坐标,图4右侧纵坐标为穿透率坐标,由图4可知,210所在位置(分支电极)的穿透率最高,此处的穿透率接近0.3;203所在位置(相邻分支电极之间的间隙)的穿透率次之,穿透率在0.22-0.28之间;205所在位置(分支部的***)的穿透率为0.1-0.2。而在图2a中,101a(分支部的***)所在位置的穿透率为0.1-0.15,102a所在位置(相邻分支电极之间的间隙)的穿透率为0.22-0.28之间,103a所在位置(分支电极)的穿透率接近0.3;在图2b中,101b所在位置(分支部的***)的穿透率为0.18-0.2,102b所在位置(分支电极之间的间隙)的穿透率为0.22-0.28,103b所在位置(分支电极)的穿透率接近0.3。相对于图2a和图2b,图4中穿透率为0.1-0.2所占的区域在整个像素电极中减少,穿透率为0.22-0.28和穿透率接近0.3所占的区域在整个像素电极中均增大。综上所述,本实施例像素电极应用于VA模式显示器时像素电极能提高像素电极的各个区域的穿透率。
与基于传统像素电极设计的显示器的像素电极穿透率相比,本实施例像素电极应用于VA模式显示器时能提高像素电极的各个区域的穿透率。
图5为本申请第二实施例的像素电极30,该像素电极30包括:
主干部300,主干部300包括水平主干电极301和垂直主干电极302,水平主干电极301和垂直主干电极302相互垂直且将像素电极30均分为四个分支部区;
分支部,分支部位于四个分支部区中,每个分支部区中的分支部包括多条平行且沿预设方向排列的分支电极310,相邻分支电极310之间设置有狭缝,分支电极310的宽度由中间向两端逐渐减小。
分支电极310相对的两侧为两条弧线,两条弧线的凹陷段相对设置从而使得分支电极311的宽度由中间向两端逐渐减小。在本实施例中,分支电极310包括第一端311、第二端312以及位于第一端311和第二端312之间的中间部313,第一端311的宽度和第二端312的宽度均小于中间部313的宽度,第一端311的宽度和第二端312的宽度的相对大小不作具体的限定;在本实施例中,两条弧线的曲率不同,在其他实施例中,两条弧线的曲率也可以相同。
图6为本申请第三实施例的像素电极40,该像素电极40包括:
主干部400,主干部400包括水平主干电极401和垂直主干电极402,水平主干电极401和垂直主干电极402相互垂直且将像素电极40均分为四个分支部区;
分支部,分支部位于四个分支部区中,每个分支部区中的分支部包括多条平行且沿预设方向排列的分支电极410,相邻分支电极410之间设置有狭缝,分支电极410两端的宽度大于分支电极410中间的宽度。
分支电极410包括第一端411和第二端412以及位于第一端411和第二端412之间的中间部413。在本实施例中,第一端411的宽度与第二端412的宽度相同,第一端411的宽度和第二端412的宽度均大于中间部413的宽度。在其他实施例中,第一端411的宽度和第二端412的宽度也可以不同,但第一端411的宽度和第二端412的宽度均小于中间部413的宽度,例如,第一端411的宽度大于第二端412的宽度,第二端412的宽度大于中间部413的宽度。
图7为本申请第四实施例的像素电极50,该像素电极50包括:
主干部500,主干部500包括水平主干电极501和垂直主干电极502,水平主干电极501和垂直主干电极502相互垂直且将像素电极50均分为四个分支部区;
分支部,分支部位于四个分支部区中,每个分支部区中的分支部包括多条平行且沿预设方向排列的分支电极510,相邻分支电极510之间设置有狭缝,分支电极510的宽度由中间向两端逐渐增大。
分支电极510相对的两侧为两条相对的弧线,两条弧线的凸出段相对设置从而使得分支电极511的宽度由中间向两端逐渐增大,分支电极510的第一端511与分支电极的第二端512的宽度可以相同,也可以不同,第一端511的宽度和第二端512的宽度均大于分支电极510的中间部513的宽度。在本申请中,两条弧线的曲率不相同,在其他实施例中,两条弧线的曲率也可以相同。
上述第一实施例至第四实施例的分支电极的形状均不相同,本申请分支电极的形状不限于上述实施例,分支电极的两端的宽度与分支电极中间的宽度不同即可,例如分支电极的形状也可以为菱形或弧形等,本申请不作具体的限定。
本申请还提供一种薄膜晶体管阵列基板,薄膜晶体管阵列基板包括上述像素电极。
进一步地,上述薄膜晶体管阵列基板还包括:一基板,于基板上形成的第一金属层;覆盖第一金属层的第一绝缘层;于第一绝缘层上形成的有源层;于有源层上形成的第二金属层;覆盖第二金属层且具有过孔的第二绝缘层;像素电极于第二绝缘层上形成且填充过孔以与第二金属层的漏电极接触。
在本申请中,基板为玻璃基板或柔性基板;第一金属层包括栅极以及栅极走线;第二金属层包括源极和漏极;第一绝缘层和第二绝缘层均起到绝缘的作用。
本申请的又一目的是提供一种显示面板,显示面板包括上述薄膜晶体管阵列基板,通过增加像素电极各个区域的最高穿透率而增加显示面板的穿透率。
以上实施例的说明只是用于帮助理解本申请的技术方案及其核心思想;本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例的技术方案的范围。

Claims (19)

  1. 一种像素电极,其中,所述像素电极包括:
    主干部,所述主干部包括水平主干电极和垂直主干电极,所述水平主干电极和所述垂直主干电极相互垂直且将所述像素电极均分为四个分支部区;
    分支部,所述分支部位于四个所述分支部区中,每个所述分支部区中的所述分支部包括多条平行且沿预设方向排列的分支电极,相邻所述分支电极之间设置有狭缝,所述分支电极两端的宽度与所述分支电极中间的宽度不同。
  2. 根据权利要求1所述的像素电极,其中,所述分支电极两端的宽度小于所述分支电极中间的宽度。
  3. 根据权利要求2所述的像素电极,其中,所述分支电极的宽度由中间向两端逐渐减小。
  4. 根据权利要求3所述的像素电极,其中,所述分支电极相对的两侧为两条弧线,两条所述弧线的凹陷段相对设置从而使得所述分支电极的宽度由中间向两端逐渐减小。
  5. 根据权利要求1所述的像素电极,其中,所述分支电极两端的宽度大于所述分支电极中间的宽度。
  6. 根据权利要求5所述的像素电极,其中,所述分支电极的宽度由中间向两端逐渐增大。
  7. 根据权利要求6所述的像素电极,其中,所述分支电极相对的两侧为两条弧线,两条所述弧线的凸出段相对设置从而使得所述分支电极的宽度由中间向两端逐渐增大。
  8. 根据权利要求1所述的像素电极,其中,所述分支电极包括第一端、第二端以及位于所述第一端和所述第二端之间的中间部,所述第一端的宽度大于所述第二端的宽度,所述第二端的宽度大于所述中间部的宽度。
  9. 根据权利要求1所述的像素电极,其中,所述预设方向与所述水平主干电极之间的夹角为45度。
  10. 根据权利要求1所述的像素电极,其中,所述像素电极的制备材料为氧化铟锡或氧化铟锌中的一种。
  11. 一种薄膜晶体管阵列基板,其中,所述薄膜晶体管阵列基板包括像素电极,所述像素电极包括:
    主干部,所述主干部包括水平主干电极和垂直主干电极,所述水平主干电极和所述垂直主干电极相互垂直且将所述像素电极均分为四个分支部区;
    分支部,所述分支部位于四个所述分支部区中,每个所述分支部区中的所述分支部包括多条平行且沿预设方向排列的分支电极,相邻所述分支电极之间设置有狭缝,所述分支电极两端的宽度与所述分支电极中间的宽度不同。
  12. 根据权利要求11所述的薄膜晶体管阵列基板,其中,所述分支电极两端的宽度小于所述分支电极中间的宽度。
  13. 根据权利要求12所述的薄膜晶体管阵列基板,其中,所述分支电极的宽度由中间向两端逐渐减小。
  14. 根据权利要求11所述的薄膜晶体管阵列基板,其中,所述分支电极两端的宽度大于所述分支电极中间的宽度。
  15. 根据权利要求14所述的薄膜晶体管阵列基板,其中,所述分支电极的宽度由中间向两端逐渐增大。
  16. 根据权利要求11所述的薄膜晶体管阵列基板,其中,所述分支电极包括第一端、第二端以及位于所述第一端和所述第二端之间的中间部,所述第一端的宽度大于所述第二端的宽度,所述第二端的宽度大于所述中间部的宽度。
  17. 根据权利要求11所述的薄膜晶体管阵列基板,其中,所述预设方向与所述水平主干电极之间的夹角为45度。
  18. 根据权利要求11所述的薄膜晶体管阵列基板,其中,所述像素电极的制备材料为氧化铟锡或氧化铟锌中的一种。
  19. 一种显示面板,其中,所述显示面板包括权利要求11所述的薄膜晶体管阵列基板。
PCT/CN2019/071843 2018-12-21 2019-01-16 像素电极、薄膜晶体管阵列基板及显示面板 WO2020124718A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811569938.X 2018-12-21
CN201811569938.XA CN109375435A (zh) 2018-12-21 2018-12-21 像素电极、薄膜晶体管阵列基板及显示面板

Publications (1)

Publication Number Publication Date
WO2020124718A1 true WO2020124718A1 (zh) 2020-06-25

Family

ID=65372188

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/071843 WO2020124718A1 (zh) 2018-12-21 2019-01-16 像素电极、薄膜晶体管阵列基板及显示面板

Country Status (2)

Country Link
CN (1) CN109375435A (zh)
WO (1) WO2020124718A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110673405A (zh) * 2019-09-04 2020-01-10 深圳市华星光电半导体显示技术有限公司 像素电极结构及显示装置
CN114660865A (zh) * 2022-03-24 2022-06-24 Tcl华星光电技术有限公司 阵列基板及显示装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080259263A1 (en) * 2007-04-20 2008-10-23 Samsung Electronics Co., Ltd. Liquid crystal display
US20090279036A1 (en) * 2008-05-08 2009-11-12 Sung-Hoon Kim Display substrate, a method of manufacturing the same and a display apparatus having the same
CN102768438A (zh) * 2011-05-02 2012-11-07 三星电子株式会社 液晶显示装置
CN103064217A (zh) * 2011-10-20 2013-04-24 三星显示有限公司 液晶显示装置、取向膜和用于制造取向膜的方法
CN105842938A (zh) * 2010-04-02 2016-08-10 三星显示有限公司 液晶显示面板

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9081237B2 (en) * 2010-04-02 2015-07-14 Samsung Display Co., Ltd. Pixel electrode panel, a liquid crystal display panel assembly and methods for manufacturing the same
KR20160084938A (ko) * 2015-01-06 2016-07-15 삼성디스플레이 주식회사 곡면형 표시 장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080259263A1 (en) * 2007-04-20 2008-10-23 Samsung Electronics Co., Ltd. Liquid crystal display
US20090279036A1 (en) * 2008-05-08 2009-11-12 Sung-Hoon Kim Display substrate, a method of manufacturing the same and a display apparatus having the same
CN105842938A (zh) * 2010-04-02 2016-08-10 三星显示有限公司 液晶显示面板
CN102768438A (zh) * 2011-05-02 2012-11-07 三星电子株式会社 液晶显示装置
CN103064217A (zh) * 2011-10-20 2013-04-24 三星显示有限公司 液晶显示装置、取向膜和用于制造取向膜的方法

Also Published As

Publication number Publication date
CN109375435A (zh) 2019-02-22

Similar Documents

Publication Publication Date Title
JP5767186B2 (ja) 表示装置及び電子機器
CN107132687B (zh) 一种阵列基板及制备方法、液晶显示面板、显示装置
TWI505004B (zh) 畫素結構
US10642103B2 (en) Display device
KR20020028477A (ko) 프린지 필드 구동 액정 표시 장치
TW201734605A (zh) 陣列基板以及曲面液晶顯示面板
JP5035915B2 (ja) Ffsモード液晶表示装置及びその製造方法
US8854587B2 (en) Liquid crystal display device
JP2007047784A (ja) 液晶表示装置
TWI518422B (zh) 顯示面板
WO2016149974A1 (zh) 高穿透率va型液晶显示面板及其制作方法
WO2019085700A1 (zh) 阵列基板及其制造方法和显示装置及其制造方法
WO2015010422A1 (zh) 液晶显示面板和显示装置
TWI422938B (zh) 邊界電場切換模式之液晶顯示裝置及其製造方法
CN113900306A (zh) 像素结构
WO2020124718A1 (zh) 像素电极、薄膜晶体管阵列基板及显示面板
JP2015503771A (ja) アレイ基板、液晶表示装置及び配向ラビング方法
US10048546B2 (en) Array substrate and manufacturing method thereof, liquid crystal display panel and display device
TWI446077B (zh) 邊緣場切換式液晶顯示器之像素結構
US20160252787A1 (en) Array substrate and manufacturing method thereof, liquid crystal panel and display device
KR20040107648A (ko) 광시야각 액정표시장치
CN203773201U (zh) 一种显示面板
TWI332094B (en) In plane switching liquid crystal display
KR20070003499A (ko) Ffs 모드 액정표시장치
CN104950533A (zh) 一种显示面板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19899862

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19899862

Country of ref document: EP

Kind code of ref document: A1