WO2020124677A1 - Compliant clamping device - Google Patents

Compliant clamping device Download PDF

Info

Publication number
WO2020124677A1
WO2020124677A1 PCT/CN2018/125206 CN2018125206W WO2020124677A1 WO 2020124677 A1 WO2020124677 A1 WO 2020124677A1 CN 2018125206 W CN2018125206 W CN 2018125206W WO 2020124677 A1 WO2020124677 A1 WO 2020124677A1
Authority
WO
WIPO (PCT)
Prior art keywords
jaw
driving link
cylinder
adapter
bracket
Prior art date
Application number
PCT/CN2018/125206
Other languages
French (fr)
Chinese (zh)
Inventor
刘金国
陈科利
吴晨晨
刘玉旺
Original Assignee
中国科学院沈阳自动化研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院沈阳自动化研究所 filed Critical 中国科学院沈阳自动化研究所
Publication of WO2020124677A1 publication Critical patent/WO2020124677A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J15/00Gripping heads and other end effectors
    • B25J15/02Gripping heads and other end effectors servo-actuated
    • B25J15/0206Gripping heads and other end effectors servo-actuated comprising articulated grippers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J15/00Gripping heads and other end effectors
    • B25J15/08Gripping heads and other end effectors having finger members

Definitions

  • the invention relates to a clamping device, in particular to a compliant clamping device.
  • the end gripper is generally installed as a gripping tool at the end of the robotic arm, grasps and grips the object with the claw, and then transfers from the initial position to the target position or performs other operations as needed.
  • the gripper is developing in the direction of dexterity and flexibility.
  • the existing grippers use hydraulic and electric motors as the driving source, which has the defects of excessive grip rigidity and insufficient flexibility.
  • the existing gripper can only complete the grasping of objects within a certain size range or fixed position, and does not have the ability to capture. It cannot realize the capturing and grasping actions for moving targets.
  • the object of the present invention is to provide a compliant gripper.
  • the compliant gripper has good flexibility and a large gripping range, and is particularly suitable for capturing and grasping objects of different sizes floating on the water surface or in other moving states, with flexible control and novel structure.
  • the invention includes a left clamping jaw, a right clamping jaw, a bracket, a mechanical arm end adapter, a linear cylinder, a driving link adapter, a driving link A and a driving link B, wherein one end of the linear cylinder is equipped with a mechanical arm end
  • the adapter is connected to the bracket at the other end.
  • the linear cylinder drives the drive link A and the drive link B to rotate around the hinge point with the drive link adapter through the drive link adapter, thereby driving the left and right jaws to articulate around the support respectively Point to clamp or release the target object;
  • the hinge part where the left and right jaws are hinged to the bracket is arranged up and down, and the driving link A and the driving link B are located between the two hinge parts and are arranged up and down; any one of the hinge parts A slot for accommodating one of the driving links is provided, and a limiting boss A for restricting the rotation of the driving link is provided on the slot wall of the slot;
  • the fingers of the left jaw and the other end of the right jaw are respectively grooved along the length direction, the grooves of the left jaw and the grooves of the right jaw are staggered;
  • the left jaw and the right jaw are divided into upper and lower layers, that is, the right jaw is divided into an upper jaw A and a lower jaw A, and the left jaw is divided into an upper jaw B and a lower jaw B.
  • the upper jaw One end of the jaw A, the lower jaw A, the upper jaw B, and the lower jaw B are hinges respectively hinged with the bracket, the four hinges are provided up and down, and the other end is the upper jaw that captures and holds the target object Finger end A, lower jaw finger end A, upper jaw finger end B and lower jaw finger end B;
  • the upper jaw A and the lower jaw A are connected by a screw, and the upper jaw A or the lower jaw A is provided with a cylindrical boss A; the upper jaw B and the lower jaw B are screwed.
  • the upper jaw B or the lower jaw B is provided with a cylindrical boss B; the driving link A and the driving link B are located in the upper jaw A, the hinge part of the upper jaw B and the lower jaw A, Between the hinges of the lower jaw B, and arranged up and down, the other ends of the driving link A and the driving link B are respectively connected to the cylindrical boss A and the cylindrical boss B; the two hinges in the middle
  • the opposite side of the part is respectively provided with slots for accommodating the driving link A and the driving link B, and each slot wall is provided with a limiting protrusion that restricts the rotation of the driving link A or the driving link B Taiwan A
  • the upper gripper finger end A, the lower gripper finger end A, the upper gripper finger end B and the lower gripper finger end B are respectively grooved along the length direction, and the groove of the upper gripper finger end A and the upper gripper
  • the grooves at the finger end B are staggered, and the grooves at the finger end A of the lower layer and the grooves at the finger end B of the lower layer are staggered;
  • One end of the linear cylinder is fixed with a cylinder tail connector, one end of the mechanical arm end adapter is connected to the cylinder tail connector, and the other side is connected with a mechanical arm end indicator; the other of the linear cylinder One end is connected with the front adapter of the cylinder, and the bracket is installed on the front adapter of the cylinder;
  • the side of the cylinder tail connector facing the linear cylinder is provided with a limit boss B to ensure reliable connection with the linear cylinder, and the cable tail groove is also provided on the cylinder tail connector; the front adapter of the cylinder faces the linear cylinder One side is provided with limit boss C to ensure reliable connection with linear cylinder;
  • the output end of the linear cylinder is provided with a threaded hole, the threaded hole is connected with a cylinder rod adapter via a connecting screw on the cylinder shaft end, one side of the drive link adapter is fixedly connected to the cylinder rod adapter, and the other One side is hinged with one end of drive link A and drive link B respectively;
  • the bracket is divided into an upper bracket and a lower bracket.
  • One side of the upper bracket and the lower bracket is respectively connected to the other end of the linear cylinder, and the other side is hinged to one end of the left and right jaws, respectively.
  • the present invention uses a linear cylinder as a driving source, the gripper has good flexibility, and can avoid the impact on the rigidity of the clamping target and the damage to the clamping target during the clamping process.
  • the jaws of the present invention are provided with long finger tips, so that the objects in the moving state can be captured and grasped.
  • the finger ends of the clamping jaws of the present invention are provided with left and right complementary grooves, so as to realize the grasping and clamping of objects of different sizes.
  • the present invention uses a linear cylinder as a driving source, which is simple to control, easy to operate and easy to implement.
  • FIG. 1 is a schematic diagram of a three-dimensional structure of the invention
  • FIG. 2 is a schematic diagram of the front structure of the driving part of the present invention in an explosion state
  • FIG. 3 is a schematic diagram of the rear structure of the driving part of the present invention in an explosion state
  • FIG. 4 is a schematic diagram of the upper explosion state structure of the clamping portion of the present invention.
  • FIG. 5 is a schematic structural diagram of the lower explosion state of the clamping portion of the present invention.
  • 1 is the upper jaw A
  • 101 is the upper jaw finger end A
  • 102 is the cylindrical boss A
  • 103 is the limit boss A
  • 2 is the lower jaw A
  • 201 is the lower jaw finger end A
  • 202 It is cylindrical boss B
  • 3 is the upper bracket
  • 4 is the cylinder tail connector
  • 401 is the cable trough
  • 402 is the limit boss B
  • 5 is the end adapter of the robot arm
  • 6 is the end of the robot arm
  • 7 It is a linear cylinder
  • 701 is the air inlet A
  • 702 is the air inlet B
  • 8 is the front adapter of the cylinder
  • 801 is the limit boss C
  • 9 is the lower bracket
  • 10 is the lower jaw B
  • 1001 is the lower layer Claw finger end B
  • 11 is the upper jaw B
  • 1101 is the upper jaw finger end B
  • 12 is the drive link adapter
  • 13 is the upper bracket fixing screw
  • 14 is the cylinder shaft end connection screw
  • 15 is the cylinder tie
  • the present invention includes a left jaw, a right jaw, a bracket, a cylinder tail connector 4, a robot arm end adapter 5, a robot arm end indicator 6, a linear cylinder 7, a cylinder front turn Connection piece 8, drive connecting rod adapter 12, cylinder connecting rod adapter 15, drive connecting rod A19 and drive connecting rod B20, wherein one end of the linear cylinder 7 is connected with the cylinder tail connecting piece 4, the cylinder tail connecting piece 4 passes through
  • the cylinder tail fixing screw 22 is fixed to one end (tail) of the linear cylinder 7; one side of the mechanical arm end adapter 5 is fixedly connected to the cylinder tail connecting piece 4 through the cylinder tail connecting piece fixing screw 18, and the other side is connected by a machine
  • the arm end fixing screw 17 is fixedly connected with the mechanical arm end indicator 6.
  • a limit boss B402 is provided to ensure reliable connection with the linear cylinder 7.
  • the cylinder tail connector 4 is also provided with a wire groove 401.
  • the other end (front part) of the linear cylinder 7 is connected with a cylinder front adaptor 8.
  • a side of the cylinder front adaptor 8 facing the linear cylinder 7 is provided with a limit boss C801 to ensure reliable connection with the linear cylinder 7.
  • the bracket is installed on the front adapter 8 of the cylinder.
  • the bracket of this embodiment is divided into an upper bracket 3 and a lower bracket 9, one side of the upper bracket 3 and the lower bracket 9 are fixedly connected to the front adapter 8 of the cylinder by an upper bracket fixing screw 13, a lower bracket fixing screw 16 Together, the other side is hinged with one end of the left jaw and the right jaw, respectively, and the other end of the left jaw and the right jaw are the jaw finger ends that capture and hold the target object.
  • the linear cylinder 7 of the present invention is a double-acting ultra-thin cylinder, thereby reducing the axial dimension of the gripper; the output end of the linear cylinder 7 is provided with a threaded hole, and the threaded hole is transferred to the cylinder rod through the cylinder shaft end connecting screw 14
  • the pieces 15 are fixed together.
  • One side of the driving link adapter 12 is fixedly connected to the cylinder tie rod adapter 15 and the other side is hinged to one end of the driving link A19 and the driving link B20, respectively, and the other end of the driving link A19 and the driving link B20 Connected to the left and right jaws respectively.
  • the left and right clamping jaws are hinged with the upper bracket 3 and the lower bracket 9, and the hinge part 23 is arranged up and down.
  • the driving link A19 and the driving link B20 are located between the two hinge parts 23 and are arranged up and down.
  • a slot 24 for accommodating one of the driving links is formed on any one of the hinge portions 23, and a limiting boss A103 for restricting the rotation of the driving link is provided on the slot wall of the slot 24.
  • the fingers of the left jaw and the other end of the right jaw are respectively grooved along the length direction.
  • the groove of the left jaw is complementary to the groove of the right jaw, that is, the groove of the left jaw is the same as that of the right jaw.
  • the grooves are staggered, and the fingers of one jaw are inserted into the groove of the other jaw during clamping.
  • the left jaw and the right jaw of this embodiment are divided into upper and lower layers, that is, the right jaw is divided into an upper jaw A1 and a lower jaw A2, and the left jaw is divided into an upper jaw B11 and a lower jaw B10.
  • One end of the upper jaw A1, the lower jaw A2, the upper jaw B11 and the lower jaw B10 are hinges 23 respectively hinged with the upper bracket 3 and the lower bracket 9, four hinges are arranged up and down, and the other ends are respectively captured
  • the upper jaw finger end A101, the lower jaw finger end A201, the upper jaw finger end B1101 and the lower jaw finger end B1001 of the target object are clamped.
  • the upper jaw finger end A101, the lower jaw finger end A201, the upper jaw finger end B1101, and the lower jaw finger end B1001 are respectively grooved along the length direction, the groove of the upper jaw finger end A101 and the upper jaw finger
  • the grooves of the end B1101 are staggered, and the grooves of the lower jaw finger end A201 and the lower layer jaw finger end B1001 are staggered.
  • the upper jaw A1 and the lower jaw A2 are fixed together by screws, and the upper jaw B11 and the lower jaw B10 are fixed together by screws.
  • a cylindrical boss A102 is provided on the upper jaw A1 or the lower jaw A2, and a cylindrical boss B202 is provided on the upper jaw B11 or the lower jaw B10; the driving link A19 and the driving link B20 are located on the upper jaw A1 and the upper layer
  • the hinge part 23 of the jaw B11 and the hinge part 23 of the lower jaw A2 and the lower jaw B10 are provided up and down.
  • the other ends of the driving link A19 and the driving link B20 are respectively connected to the cylindrical boss A102 and the cylindrical boss Taiwan B202 is fixed.
  • the opposite sides of the two hinge parts 23 in the middle are respectively provided with slots 24 for accommodating the driving link A19 and the driving link B20.
  • Each slot 24 is provided with a limiting driving link A19 or a driving link on the slot wall.
  • the limiting boss A103 of the rotation of the lever B20 plays a limiting role during the movement of the driving link A19 and the driving link B20.
  • one hinge part 23 is provided with a slot 24, and the other end hinge part 23 is provided with a cylindrical boss A102;
  • the hinge of the lower jaw A2 Among the hinge portions 23 of the portion 23 and the lower jaw B10, one hinge portion 23 is provided with a slot 24, and the other end hinge portion 23 is provided with a cylindrical boss B202.
  • the hinge part 23 of the upper jaw A1 is provided with a cylindrical boss A102
  • the hinge part 23 of the upper jaw B11 is provided with a slot 24, the cylindrical boss A102 is located in the slot 24, and is in contact with the upper layer
  • the hinge part 23 of the claw B11 can rotate relatively
  • the hinge part 23 of the lower jaw A2 is provided with a cylindrical boss B202
  • the hinge part 23 of the lower jaw B10 is provided with a slot 24, and the cylindrical boss B202 is located in the slot 24
  • the hinge portion 23 with the lower jaw B10 can rotate relatively.
  • the slot 24 on the hinge portion 23 of the upper jaw B11 and the slot 24 on the hinge portion 23 of the lower jaw B10 face each other vertically, and the driving link A19 and the driving link B20 are located between the two hinge portions 23.
  • the working principle of the present invention is:
  • the linear cylinder 7 is connected to an external air source through an air inlet A701 and an air inlet B702, respectively, and the external device realizes the expansion and contraction of the output end of the linear cylinder 7 by controlling the opening and closing of the air inlet A701 and the air inlet B702.
  • the driving link A19 and the driving link B20 are connected to the cylindrical boss A102 and the cylindrical boss B202, respectively, the upper jaw A1, the lower jaw A2, the upper jaw B10, and the lower jaw B11 are connected to the upper bracket 3 and
  • the lower bracket 9 is hinged, so the driving link A19 and the driving link B20 rotate around the hinge joint with the driving link adapter 12 respectively; under the action of the driving link A19 and the driving link B20, the upper jaw A1 and the lower layer
  • the sandwich jaw A2, the upper jaw B10, and the lower jaw B11 rotate and contract inward around the hinges hinged with the upper bracket 3 and the lower bracket 9, respectively, and capture and hold the target object through the fingers of the respective jaws.
  • the external air source inflates the linear cylinder 7 through the air inlet B702, the output end of the linear cylinder 7 extends forward, and the driving link A19 is pulled through the cylinder tie rod connection 15 and the drive link connection 12 to drive The connecting rod B20 moves forward.
  • the driving link A19 and the driving link B20 are connected to the cylindrical boss A102 and the cylindrical boss B202, respectively, the upper jaw A1, the lower jaw A2, the upper jaw B10, and the lower jaw B11 are connected to the upper bracket 3 and
  • the lower bracket 9 is hinged, so the driving link A19 and the driving link B20 rotate around the hinge joint with the driving link adapter 12 respectively; under the action of the driving link A19 and the driving link B20, the upper jaw A1 and the lower layer
  • the sandwich jaw A2, the upper jaw B10, and the lower jaw B11 rotate outwardly about the hinges that are hinged with the upper bracket 3 and the lower bracket 9 to complete the release action.

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Manipulator (AREA)

Abstract

The present invention relates to a clamping apparatus, and in particular to a compliant clamping device. One end of a linear air cylinder is provided with a robot arm tail end adapter, the other end thereof is connected to a bracket. One end of a left clamping jaw and one end of a right clamping jaw are respectively hinged to the bracket, and the other end of the left clamping jaw and the other end of the right clamping jaw are both clamping jaw finger ends. An output end of the linear air cylinder is connected to a drive connecting rod adapter, one end of a drive connecting rod A and one end of a drive connecting rod B are respectively hinged to the drive connecting rod adapter, and the other end of the drive connecting rod A and the other end of the drive connecting rod B are connected to the left clamping jaw and the right clamping jaw, respectively. The linear air cylinder drives, by means of the drive connecting rod adapter, the drive connecting rod A and the drive connecting rod B to respectively rotate around a hinge point of the drive connecting rod adapter, and thus drives the left clamping jaw and the right clamping jaw respectively around a hinge point between the two clamping jaws and the bracket to clamp or release a target object. The present invention is new in structure and flexibly controlled, has good compliance in a clamping process, and is suitable for capturing and grasping objects of different sizes in a water surface floating state or in other moving states.

Description

一种柔顺夹持器A supple gripper 技术领域Technical field
本发明涉及夹持设备,具体地说是一种柔顺夹持器。The invention relates to a clamping device, in particular to a compliant clamping device.
背景技术Background technique
近年来,为了满足各种民事、军事及科研需要,作为末端抓取夹持工具,在生产线以及其它自动化设备中针对不同的抓取对象研制相应的夹持器成为各个国家研究的热点。末端夹持器一般作为抓取工具安装在机械臂末端,通过手爪将物体抓取并夹持固定,随后从初始位置转移至目标位置或根据需要进行其它操作。伴随着科学技术的进步,夹持器正朝着灵巧性、柔顺性方向发展。In recent years, in order to meet various civil, military and scientific research needs, as an end gripping tool, developing corresponding grippers for different gripping objects in production lines and other automated equipment has become a research hotspot in various countries. The end gripper is generally installed as a gripping tool at the end of the robotic arm, grasps and grips the object with the claw, and then transfers from the initial position to the target position or performs other operations as needed. With the advancement of science and technology, the gripper is developing in the direction of dexterity and flexibility.
现有的夹持器大多采用液压、电机作为驱动源,存在夹持刚性过大、柔顺性不足的缺陷。此外,现有的夹持器只能完成一定尺寸范围内或固定位置物体的抓取,不具有捕获能力,对于移动目标不能实现捕获及抓取动作。Most of the existing grippers use hydraulic and electric motors as the driving source, which has the defects of excessive grip rigidity and insufficient flexibility. In addition, the existing gripper can only complete the grasping of objects within a certain size range or fixed position, and does not have the ability to capture. It cannot realize the capturing and grasping actions for moving targets.
发明内容Summary of the invention
针对现在夹持器存在的上述问题,本发明的目的在于提供一种柔顺夹持器。该柔顺夹持器具有较好的柔顺性,夹持范围大,特别适用于对水面漂浮或其他移动状态不同尺寸物体的捕获及抓取,控制灵活,结构新颖。In view of the above-mentioned problems with the current gripper, the object of the present invention is to provide a compliant gripper. The compliant gripper has good flexibility and a large gripping range, and is particularly suitable for capturing and grasping objects of different sizes floating on the water surface or in other moving states, with flexible control and novel structure.
本发明的目的是通过以下技术方案来实现的:The purpose of the present invention is achieved by the following technical solutions:
本发明包括左夹爪、右夹爪、支架、机械臂末端转接件、直线气缸、驱动连杆转接件、驱动连杆A及驱动连杆B,其中直线气缸的一端安装有机械臂末端转接件,另一端连接有支架,所述左夹爪及右夹爪的一端分别与支架铰接,另一端均为捕获并夹持目标物体的夹爪指端;所述直线气缸的输出端与驱动连杆转接件相连,所述驱动连杆A及驱动连杆B的一端分别铰接于该驱动连杆转接件上,另一端分别与所述左夹爪、右夹爪相连;所述直线气缸通过驱动连杆转接件带动驱动连杆A及驱动连杆B分别绕与驱动连杆转接件的铰接点转动,进而带动所述左夹爪、右夹爪分别绕与支架的铰接点夹持或释放目标物体;The invention includes a left clamping jaw, a right clamping jaw, a bracket, a mechanical arm end adapter, a linear cylinder, a driving link adapter, a driving link A and a driving link B, wherein one end of the linear cylinder is equipped with a mechanical arm end The adapter is connected to the bracket at the other end. One end of the left and right jaws is hinged to the bracket, and the other end is the finger end of the gripper to capture and hold the target object; the output end of the linear cylinder is The driving link adapter is connected, one end of the driving link A and the driving link B are hinged to the driving link adapter respectively, and the other end is connected to the left clamping jaw and the right clamping jaw, respectively; The linear cylinder drives the drive link A and the drive link B to rotate around the hinge point with the drive link adapter through the drive link adapter, thereby driving the left and right jaws to articulate around the support respectively Point to clamp or release the target object;
其中:所述左夹爪及右夹爪与支架铰接的铰接部上下设置,所述驱动连杆A及驱动连杆B位于两个铰接部之间、且上下设置;任意一个所述铰接部上开设有容置其中一个驱动连杆的开槽,该开槽的槽壁上设有限制驱动连杆转动的限位凸台A;Wherein: the hinge part where the left and right jaws are hinged to the bracket is arranged up and down, and the driving link A and the driving link B are located between the two hinge parts and are arranged up and down; any one of the hinge parts A slot for accommodating one of the driving links is provided, and a limiting boss A for restricting the rotation of the driving link is provided on the slot wall of the slot;
所述左夹爪及右夹爪另一端的夹爪指端分别沿长度方向开有凹槽,左夹爪的凹槽与右夹爪的凹槽交错设置;The fingers of the left jaw and the other end of the right jaw are respectively grooved along the length direction, the grooves of the left jaw and the grooves of the right jaw are staggered;
所述左夹爪及右夹爪均分为上、下层,即右夹爪分为上层夹爪A及下层夹爪A,左夹爪分为上层夹爪B及下层夹爪B,该上层夹爪A、下层夹爪A、上层夹爪 B及下层夹爪B的一端均为与支架分别铰接的铰接部,四个铰接部上下设置,另一端分别为捕获并夹持目标物体的上层夹爪指端A、下层夹爪指端A、上层夹爪指端B及下层夹爪指端B;The left jaw and the right jaw are divided into upper and lower layers, that is, the right jaw is divided into an upper jaw A and a lower jaw A, and the left jaw is divided into an upper jaw B and a lower jaw B. The upper jaw One end of the jaw A, the lower jaw A, the upper jaw B, and the lower jaw B are hinges respectively hinged with the bracket, the four hinges are provided up and down, and the other end is the upper jaw that captures and holds the target object Finger end A, lower jaw finger end A, upper jaw finger end B and lower jaw finger end B;
所述上层夹爪A与下层夹爪A之间通过螺钉相连,该上层夹爪A或下层夹爪A上设有圆柱凸台A;所述上层夹爪B与下层夹爪B之间通过螺钉相连,该上层夹爪B或下层夹爪B上设有圆柱凸台B;所述驱动连杆A及驱动连杆B位于上层夹爪A、上层夹爪B的铰接部与下层夹爪A、下层夹爪B的铰接部之间,并且上下设置,该驱动连杆A及驱动连杆B的另一端分别与所述圆柱凸台A、圆柱凸台B相连;所述位于中间的两个铰接部相对的一面分别开设有容置驱动连杆A、驱动连杆B的开槽,每个所述开槽的槽壁上均设有限制驱动连杆A或驱动连杆B转动的限位凸台A;The upper jaw A and the lower jaw A are connected by a screw, and the upper jaw A or the lower jaw A is provided with a cylindrical boss A; the upper jaw B and the lower jaw B are screwed. The upper jaw B or the lower jaw B is provided with a cylindrical boss B; the driving link A and the driving link B are located in the upper jaw A, the hinge part of the upper jaw B and the lower jaw A, Between the hinges of the lower jaw B, and arranged up and down, the other ends of the driving link A and the driving link B are respectively connected to the cylindrical boss A and the cylindrical boss B; the two hinges in the middle The opposite side of the part is respectively provided with slots for accommodating the driving link A and the driving link B, and each slot wall is provided with a limiting protrusion that restricts the rotation of the driving link A or the driving link B Taiwan A
所述上层夹爪指端A、下层夹爪指端A、上层夹爪指端B及下层夹爪指端B分别沿长度方向开有凹槽,上层夹爪指端A的凹槽与上层夹爪指端B的凹槽交错设置,下层夹爪指端A的凹槽与下层夹爪指端B的凹槽交错设置;The upper gripper finger end A, the lower gripper finger end A, the upper gripper finger end B and the lower gripper finger end B are respectively grooved along the length direction, and the groove of the upper gripper finger end A and the upper gripper The grooves at the finger end B are staggered, and the grooves at the finger end A of the lower layer and the grooves at the finger end B of the lower layer are staggered;
所述直线气缸的一端固接有气缸尾部连接件,所述机械臂末端转接件的一侧与该气缸尾部连接件相连,另一侧连接有机械臂末端示意件;所述直线气缸的另一端连接有气缸前部转接件,支架安装在该气缸前部转接件上;One end of the linear cylinder is fixed with a cylinder tail connector, one end of the mechanical arm end adapter is connected to the cylinder tail connector, and the other side is connected with a mechanical arm end indicator; the other of the linear cylinder One end is connected with the front adapter of the cylinder, and the bracket is installed on the front adapter of the cylinder;
所述气缸尾部连接件朝向直线气缸的一面设有保证与直线气缸可靠连接的限位凸台B,该气缸尾部连接件上还设有走线槽;所述气缸前部转接件朝向直线气缸的一面设有保证与直线气缸可靠连接的限位凸台C;The side of the cylinder tail connector facing the linear cylinder is provided with a limit boss B to ensure reliable connection with the linear cylinder, and the cable tail groove is also provided on the cylinder tail connector; the front adapter of the cylinder faces the linear cylinder One side is provided with limit boss C to ensure reliable connection with linear cylinder;
所述直线气缸的输出端开设有螺纹孔,该螺纹孔通过气缸轴端连接螺钉连接有气缸拉杆转接件,所述驱动连杆转接件的一侧与气缸拉杆转接件固接,另一侧分别与驱动连杆A及驱动连杆B的一端铰接;The output end of the linear cylinder is provided with a threaded hole, the threaded hole is connected with a cylinder rod adapter via a connecting screw on the cylinder shaft end, one side of the drive link adapter is fixedly connected to the cylinder rod adapter, and the other One side is hinged with one end of drive link A and drive link B respectively;
所述支架分为上层支架及下层支架,该上层支架与下层支架的一侧分别与所述直线气缸的另一端连接,另一侧分别与左夹爪及右夹爪的一端铰接。The bracket is divided into an upper bracket and a lower bracket. One side of the upper bracket and the lower bracket is respectively connected to the other end of the linear cylinder, and the other side is hinged to one end of the left and right jaws, respectively.
本发明的优点与积极效果为:The advantages and positive effects of the present invention are:
1.本发明采用直线气缸作为驱动源,夹持器具有较好的柔顺性,可以避免在夹持过程中对夹持目标的刚性的冲击以及对夹持目标的损坏。1. The present invention uses a linear cylinder as a driving source, the gripper has good flexibility, and can avoid the impact on the rigidity of the clamping target and the damage to the clamping target during the clamping process.
2.本发明的夹爪均设有较长的指端,从而可以实现对移动状态物体的捕获及抓取。2. The jaws of the present invention are provided with long finger tips, so that the objects in the moving state can be captured and grasped.
3.本发明的夹爪指端均设有左右互补的凹槽,从而可以实现对不同尺寸物体的抓取及夹持。3. The finger ends of the clamping jaws of the present invention are provided with left and right complementary grooves, so as to realize the grasping and clamping of objects of different sizes.
4.本发明采用直线气缸作为驱动源,控制简单,易于操作便于实施。4. The present invention uses a linear cylinder as a driving source, which is simple to control, easy to operate and easy to implement.
附图说明BRIEF DESCRIPTION
图1为本发明的立体结构示意图;FIG. 1 is a schematic diagram of a three-dimensional structure of the invention;
图2为本发明驱动部分的***状态前部结构示意图;2 is a schematic diagram of the front structure of the driving part of the present invention in an explosion state;
图3为本发明驱动部分的***状态后部结构示意图;3 is a schematic diagram of the rear structure of the driving part of the present invention in an explosion state;
图4为本发明夹持部分的上部***状态结构示意图;4 is a schematic diagram of the upper explosion state structure of the clamping portion of the present invention;
图5为本发明夹持部分的下部***状态结构示意图;5 is a schematic structural diagram of the lower explosion state of the clamping portion of the present invention;
其中:1为上层夹爪A,101为上层夹爪指端A,102为圆柱凸台A,103为限位凸台A,2为下层夹爪A,201为下层夹爪指端A,202为圆柱凸台B,3为上层支架,4为气缸尾部连接件,401为走线槽,402为限位凸台B,5为机械臂末端转接件,6为机械臂末端示意件,7为直线气缸,701为进气口A,702为进气口B,8为气缸前部转接件,801为限位凸台C,9为下层支架,10为下层夹爪B,1001为下层夹爪指端B,11为上层夹爪B,1101为上层夹爪指端B,12为驱动连杆转接件,13为上层支架固定螺钉,14为气缸轴端连接螺钉,15为气缸拉杆转接件,16为下层支架固定螺钉,17为机械臂末端固定螺钉,18为气缸尾部连接件固定螺钉,19为驱动连杆A,20为驱动连杆B,21为驱动连杆固定螺钉,22为气缸尾部固定螺钉,23为铰接部,24为开槽。Where: 1 is the upper jaw A, 101 is the upper jaw finger end A, 102 is the cylindrical boss A, 103 is the limit boss A, 2 is the lower jaw A, 201 is the lower jaw finger end A, 202 It is cylindrical boss B, 3 is the upper bracket, 4 is the cylinder tail connector, 401 is the cable trough, 402 is the limit boss B, 5 is the end adapter of the robot arm, 6 is the end of the robot arm, 7 It is a linear cylinder, 701 is the air inlet A, 702 is the air inlet B, 8 is the front adapter of the cylinder, 801 is the limit boss C, 9 is the lower bracket, 10 is the lower jaw B, and 1001 is the lower layer Claw finger end B, 11 is the upper jaw B, 1101 is the upper jaw finger end B, 12 is the drive link adapter, 13 is the upper bracket fixing screw, 14 is the cylinder shaft end connection screw, 15 is the cylinder tie rod Adapter, 16 is the fixing screw of the lower bracket, 17 is the fixing screw of the end of the mechanical arm, 18 is the fixing screw of the rear end of the cylinder, 19 is the driving link A, 20 is the driving link B, 21 is the driving link fixing screw, 22 is a fixing screw at the rear of the cylinder, 23 is a hinge, and 24 is a slot.
具体实施方式detailed description
下面结合附图对本发明作进一步详述。The present invention will be further described in detail below with reference to the drawings.
如图1~5所示,本发明包括左夹爪、右夹爪、支架、气缸尾部连接件4、机械臂末端转接件5、机械臂末端示意件6、直线气缸7、气缸前部转接件8、驱动连杆转接件12、气缸拉杆转接件15、驱动连杆A19及驱动连杆B20,其中直线气缸7的一端连接有气缸尾部连接件4,该气缸尾部连接件4通过气缸尾部固定螺钉22固定在直线气缸7的一端(尾部);机械臂末端转接件5的一侧通过气缸尾部连接件固定螺钉18与气缸尾部连接件4固连在一起,另一侧通过机械臂末端固定螺钉17与机械臂末端示意件6固连在一起。气缸尾部连接件4朝向直线气缸7的一面设有保证与直线气缸7可靠连接的限位凸台B402,该气缸尾部连接件4上还设有走线槽401。直线气缸7的另一端(前部)连接有气缸前部转接件8,该气缸前部转接件8朝向直线气缸7的一面设有保证与直线气缸7可靠连接的限位凸台C801。As shown in FIGS. 1 to 5, the present invention includes a left jaw, a right jaw, a bracket, a cylinder tail connector 4, a robot arm end adapter 5, a robot arm end indicator 6, a linear cylinder 7, a cylinder front turn Connection piece 8, drive connecting rod adapter 12, cylinder connecting rod adapter 15, drive connecting rod A19 and drive connecting rod B20, wherein one end of the linear cylinder 7 is connected with the cylinder tail connecting piece 4, the cylinder tail connecting piece 4 passes through The cylinder tail fixing screw 22 is fixed to one end (tail) of the linear cylinder 7; one side of the mechanical arm end adapter 5 is fixedly connected to the cylinder tail connecting piece 4 through the cylinder tail connecting piece fixing screw 18, and the other side is connected by a machine The arm end fixing screw 17 is fixedly connected with the mechanical arm end indicator 6. On the side of the cylinder tail connector 4 facing the linear cylinder 7, a limit boss B402 is provided to ensure reliable connection with the linear cylinder 7. The cylinder tail connector 4 is also provided with a wire groove 401. The other end (front part) of the linear cylinder 7 is connected with a cylinder front adaptor 8. A side of the cylinder front adaptor 8 facing the linear cylinder 7 is provided with a limit boss C801 to ensure reliable connection with the linear cylinder 7.
支架安装在气缸前部转接件8上。本实施例的支架分为上层支架3及下层支架9,该上层支架3与下层支架9的一侧分别通过上层支架固定螺钉13、下层支架固定螺钉16与气缸前部转接件8固连在一起,另一侧分别与左夹爪及右夹爪的一端铰接,左夹爪及右夹爪的另一端均为捕获并夹持目标物体的夹爪指端。The bracket is installed on the front adapter 8 of the cylinder. The bracket of this embodiment is divided into an upper bracket 3 and a lower bracket 9, one side of the upper bracket 3 and the lower bracket 9 are fixedly connected to the front adapter 8 of the cylinder by an upper bracket fixing screw 13, a lower bracket fixing screw 16 Together, the other side is hinged with one end of the left jaw and the right jaw, respectively, and the other end of the left jaw and the right jaw are the jaw finger ends that capture and hold the target object.
本发明的直线气缸7为复动型超薄气缸,从而降低夹持器的轴向尺寸;直线气缸7的输出端开设有螺纹孔,该螺纹孔通过气缸轴端连接螺钉14与气缸拉杆转接件15固连在一起。驱动连杆转接件12的一侧与气缸拉杆转接件15固接,另一侧分别与驱动连杆A19及驱动连杆B20的一端铰接,驱动连杆A19及驱动连 杆B20的另一端分别与左夹爪、右夹爪相连。左夹爪及右夹爪与上层支架3及下层支架9铰接的铰接部23上下设置,驱动连杆A19及驱动连杆B20位于两个铰接部23之间、且上下设置。任意一个铰接部23上开设有容置其中一个驱动连杆的开槽24,该开槽24的槽壁上设有限制驱动连杆转动的限位凸台A103。左夹爪及右夹爪另一端的夹爪指端分别沿长度方向开有凹槽,左夹爪的凹槽与右夹爪的凹槽互补,即左夹爪的凹槽与右夹爪的凹槽交错设置,夹持时一侧夹爪的夹爪指端***另一侧夹爪的凹槽中。The linear cylinder 7 of the present invention is a double-acting ultra-thin cylinder, thereby reducing the axial dimension of the gripper; the output end of the linear cylinder 7 is provided with a threaded hole, and the threaded hole is transferred to the cylinder rod through the cylinder shaft end connecting screw 14 The pieces 15 are fixed together. One side of the driving link adapter 12 is fixedly connected to the cylinder tie rod adapter 15 and the other side is hinged to one end of the driving link A19 and the driving link B20, respectively, and the other end of the driving link A19 and the driving link B20 Connected to the left and right jaws respectively. The left and right clamping jaws are hinged with the upper bracket 3 and the lower bracket 9, and the hinge part 23 is arranged up and down. The driving link A19 and the driving link B20 are located between the two hinge parts 23 and are arranged up and down. A slot 24 for accommodating one of the driving links is formed on any one of the hinge portions 23, and a limiting boss A103 for restricting the rotation of the driving link is provided on the slot wall of the slot 24. The fingers of the left jaw and the other end of the right jaw are respectively grooved along the length direction. The groove of the left jaw is complementary to the groove of the right jaw, that is, the groove of the left jaw is the same as that of the right jaw. The grooves are staggered, and the fingers of one jaw are inserted into the groove of the other jaw during clamping.
本实施例的左夹爪及右夹爪均分为上、下层,即右夹爪分为上层夹爪A1及下层夹爪A2,左夹爪分为上层夹爪B11及下层夹爪B10,该上层夹爪A1、下层夹爪A2、上层夹爪B11及下层夹爪B10的一端均为与上层支架3和下层支架9分别铰接的铰接部23,四个铰接部上下设置,另一端分别为捕获并夹持目标物体的上层夹爪指端A101、下层夹爪指端A201、上层夹爪指端B1101及下层夹爪指端B1001。上层夹爪指端A101、下层夹爪指端A201、上层夹爪指端B1101及下层夹爪指端B1001分别沿长度方向开有凹槽,上层夹爪指端A101的凹槽与上层夹爪指端B1101的凹槽交错设置,下层夹爪指端A201的凹槽与下层夹爪指端B1001的凹槽交错设置。上层夹爪A1与下层夹爪A2之间通过螺钉固连在一起,上层夹爪B11与下层夹爪B10之间通过螺钉固连在一起。上层夹爪A1或下层夹爪A2上设有圆柱凸台A102,上层夹爪B11或下层夹爪B10上设有圆柱凸台B202;驱动连杆A19及驱动连杆B20位于上层夹爪A1、上层夹爪B11的铰接部23与下层夹爪A2、下层夹爪B10的铰接部23之间,并且上下设置,该驱动连杆A19及驱动连杆B20的另一端分别与圆柱凸台A102、圆柱凸台B202固接。位于中间的两个铰接部23相对的一面分别开设有容置驱动连杆A19、驱动连杆B20的开槽24,每个开槽24的槽壁上均设有限制驱动连杆A19或驱动连杆B20转动的限位凸台A103,从而在驱动连杆A19、驱动连杆B20运动过程中起到限位作用。上层夹爪A1的铰接部23与上层夹爪B11的铰接部23中,有一个铰接部23上设有开槽24,另一端铰接部23上设有圆柱凸台A102;下层夹爪A2的铰接部23与下层夹爪B10的铰接部23中,有一个铰接部23上设有开槽24,另一端铰接部23上设有圆柱凸台B202。本实施例中,上层夹爪A1的铰接部23上设有圆柱凸台A102,上层夹爪B11的铰接部23上设有开槽24,圆柱凸台A102位于开槽24中、且与上层夹爪B11的铰接部23可相对转动;下层夹爪A2的铰接部23上设有圆柱凸台B202,下层夹爪B10的铰接部23上设有开槽24,圆柱凸台B202位于开槽24中、且与下层夹爪B10的铰接部23可相对转动。上层夹爪B11的铰接部23上的开槽24与下层夹爪B10的铰接部23上的开槽24上下相对,驱动连杆A19及驱动连杆B20位于这两个铰接部23之间。The left jaw and the right jaw of this embodiment are divided into upper and lower layers, that is, the right jaw is divided into an upper jaw A1 and a lower jaw A2, and the left jaw is divided into an upper jaw B11 and a lower jaw B10. One end of the upper jaw A1, the lower jaw A2, the upper jaw B11 and the lower jaw B10 are hinges 23 respectively hinged with the upper bracket 3 and the lower bracket 9, four hinges are arranged up and down, and the other ends are respectively captured The upper jaw finger end A101, the lower jaw finger end A201, the upper jaw finger end B1101 and the lower jaw finger end B1001 of the target object are clamped. The upper jaw finger end A101, the lower jaw finger end A201, the upper jaw finger end B1101, and the lower jaw finger end B1001 are respectively grooved along the length direction, the groove of the upper jaw finger end A101 and the upper jaw finger The grooves of the end B1101 are staggered, and the grooves of the lower jaw finger end A201 and the lower layer jaw finger end B1001 are staggered. The upper jaw A1 and the lower jaw A2 are fixed together by screws, and the upper jaw B11 and the lower jaw B10 are fixed together by screws. A cylindrical boss A102 is provided on the upper jaw A1 or the lower jaw A2, and a cylindrical boss B202 is provided on the upper jaw B11 or the lower jaw B10; the driving link A19 and the driving link B20 are located on the upper jaw A1 and the upper layer The hinge part 23 of the jaw B11 and the hinge part 23 of the lower jaw A2 and the lower jaw B10 are provided up and down. The other ends of the driving link A19 and the driving link B20 are respectively connected to the cylindrical boss A102 and the cylindrical boss Taiwan B202 is fixed. The opposite sides of the two hinge parts 23 in the middle are respectively provided with slots 24 for accommodating the driving link A19 and the driving link B20. Each slot 24 is provided with a limiting driving link A19 or a driving link on the slot wall. The limiting boss A103 of the rotation of the lever B20 plays a limiting role during the movement of the driving link A19 and the driving link B20. Among the hinge part 23 of the upper jaw A1 and the hinge part 23 of the upper jaw B11, one hinge part 23 is provided with a slot 24, and the other end hinge part 23 is provided with a cylindrical boss A102; the hinge of the lower jaw A2 Among the hinge portions 23 of the portion 23 and the lower jaw B10, one hinge portion 23 is provided with a slot 24, and the other end hinge portion 23 is provided with a cylindrical boss B202. In this embodiment, the hinge part 23 of the upper jaw A1 is provided with a cylindrical boss A102, the hinge part 23 of the upper jaw B11 is provided with a slot 24, the cylindrical boss A102 is located in the slot 24, and is in contact with the upper layer The hinge part 23 of the claw B11 can rotate relatively; the hinge part 23 of the lower jaw A2 is provided with a cylindrical boss B202, the hinge part 23 of the lower jaw B10 is provided with a slot 24, and the cylindrical boss B202 is located in the slot 24 And, the hinge portion 23 with the lower jaw B10 can rotate relatively. The slot 24 on the hinge portion 23 of the upper jaw B11 and the slot 24 on the hinge portion 23 of the lower jaw B10 face each other vertically, and the driving link A19 and the driving link B20 are located between the two hinge portions 23.
本发明的工作原理为:The working principle of the present invention is:
直线气缸7分别通过进气口A701、进气口B702与外部气源相连,外部设备 通过控制进气口A701和进气口B702的通断实现直线气缸7输出端的伸缩。The linear cylinder 7 is connected to an external air source through an air inlet A701 and an air inlet B702, respectively, and the external device realizes the expansion and contraction of the output end of the linear cylinder 7 by controlling the opening and closing of the air inlet A701 and the air inlet B702.
夹爪收缩过程:外部气源通过进气口A701对直线气缸7充气,直线气缸7输出端向后收缩,经气缸拉杆连接件15、驱动连杆连接件12拉动驱动连杆A19、驱动连杆B20向后运动。由于驱动连杆A19、驱动连杆B20分别与圆柱凸台A102、圆柱凸台B202相连,上层夹爪A1、下层夹层夹爪A2、上层夹爪B10及下层夹爪B11又分别与上层支架3和下层支架9铰接,所以驱动连杆A19、驱动连杆B20分别绕与驱动连杆转接件12的铰接处转动;在驱动连杆A19、驱动连杆B20的作用下,上层夹爪A1、下层夹层夹爪A2、上层夹爪B10及下层夹爪B11分别绕与上层支架3、下层支架9铰接的铰接处向内转动收缩,并通过各自的夹爪指端将目标物体捕获并夹持。Clamp contraction process: the external air source inflates the linear cylinder 7 through the air inlet A701, the output end of the linear cylinder 7 contracts backward, and the driving link A19 and the driving link are pulled through the cylinder tie rod connection 15 and the drive link connection 12 B20 moves backwards. Since the driving link A19 and the driving link B20 are connected to the cylindrical boss A102 and the cylindrical boss B202, respectively, the upper jaw A1, the lower jaw A2, the upper jaw B10, and the lower jaw B11 are connected to the upper bracket 3 and The lower bracket 9 is hinged, so the driving link A19 and the driving link B20 rotate around the hinge joint with the driving link adapter 12 respectively; under the action of the driving link A19 and the driving link B20, the upper jaw A1 and the lower layer The sandwich jaw A2, the upper jaw B10, and the lower jaw B11 rotate and contract inward around the hinges hinged with the upper bracket 3 and the lower bracket 9, respectively, and capture and hold the target object through the fingers of the respective jaws.
夹爪张开过程:外部气源通过进气口B702对直线气缸7充气,直线气缸7输出端向前伸出,经气缸拉杆连接件15、驱动连杆连接件12拉动驱动连杆A19、驱动连杆B20向前运动。由于驱动连杆A19、驱动连杆B20分别与圆柱凸台A102、圆柱凸台B202相连,上层夹爪A1、下层夹层夹爪A2、上层夹爪B10及下层夹爪B11又分别与上层支架3和下层支架9铰接,所以驱动连杆A19、驱动连杆B20分别绕与驱动连杆转接件12的铰接处转动;在驱动连杆A19、驱动连杆B20的作用下,上层夹爪A1、下层夹层夹爪A2、上层夹爪B10及下层夹爪B11分别绕与上层支架3、下层支架9铰接的铰接处向外转动张开,完成释放动作。Clamp opening process: the external air source inflates the linear cylinder 7 through the air inlet B702, the output end of the linear cylinder 7 extends forward, and the driving link A19 is pulled through the cylinder tie rod connection 15 and the drive link connection 12 to drive The connecting rod B20 moves forward. Since the driving link A19 and the driving link B20 are connected to the cylindrical boss A102 and the cylindrical boss B202, respectively, the upper jaw A1, the lower jaw A2, the upper jaw B10, and the lower jaw B11 are connected to the upper bracket 3 and The lower bracket 9 is hinged, so the driving link A19 and the driving link B20 rotate around the hinge joint with the driving link adapter 12 respectively; under the action of the driving link A19 and the driving link B20, the upper jaw A1 and the lower layer The sandwich jaw A2, the upper jaw B10, and the lower jaw B11 rotate outwardly about the hinges that are hinged with the upper bracket 3 and the lower bracket 9 to complete the release action.

Claims (10)

  1. 一种柔顺夹持器,其特征在于:包括左夹爪、右夹爪、支架、机械臂末端转接件(5)、直线气缸(7)、驱动连杆转接件(12)、驱动连杆A(19)及驱动连杆B(20),其中直线气缸(7)的一端安装有机械臂末端转接件(5),另一端连接有支架,所述左夹爪及右夹爪的一端分别与支架铰接,另一端均为捕获并夹持目标物体的夹爪指端;所述直线气缸(7)的输出端与驱动连杆转接件(12)相连,所述驱动连杆A(19)及驱动连杆B(20)的一端分别铰接于该驱动连杆转接件(12)上,另一端分别与所述左夹爪、右夹爪相连;所述直线气缸(7)通过驱动连杆转接件(12)带动驱动连杆A(19)及驱动连杆B(20)分别绕与驱动连杆转接件(12)的铰接点转动,进而带动所述左夹爪、右夹爪分别绕与支架的铰接点夹持或释放目标物体。A compliant gripper is characterized by comprising a left clamping jaw, a right clamping jaw, a bracket, a mechanical arm end adapter (5), a linear cylinder (7), a driving link adapter (12), a driving link Rod A (19) and drive link B (20), wherein one end of the linear cylinder (7) is equipped with a mechanical arm end adapter (5), the other end is connected with a bracket, the left and right jaws One end is hinged with the bracket, and the other end is the finger end of the gripper that catches and clamps the target object; the output end of the linear cylinder (7) is connected to the driving link adapter (12), the driving link A (19) and one end of the driving link B (20) are hinged to the driving link adapter (12) respectively, and the other end is respectively connected to the left and right clamping jaws; the linear cylinder (7) The drive link adapter (12) drives the drive link A (19) and the drive link B (20) to rotate around the hinge point with the drive link adapter (12), thereby driving the left jaw , The right gripper respectively grips or releases the target object around the hinge point with the bracket.
  2. 根据权利要求1所述的柔顺夹持器,其特征在于:所述左夹爪及右夹爪与支架铰接的铰接部(23)上下设置,所述驱动连杆A(19)及驱动连杆B(20)位于两个铰接部(23)之间、且上下设置;任意一个所述铰接部(23)上开设有容置其中一个驱动连杆的开槽(24),该开槽(24)的槽壁上设有限制驱动连杆转动的限位凸台A(103)。The compliant gripper according to claim 1, characterized in that: the hinge portion (23) where the left and right jaws are hinged to the bracket is provided up and down, and the driving link A (19) and the driving link B (20) is located between two hinge parts (23) and is arranged up and down; any one of the hinge parts (23) is provided with a slot (24) for accommodating one of the driving links, the slot (24) ) Is provided with a limiting boss A (103) for limiting the rotation of the driving link.
  3. 根据权利要求1所述的柔顺夹持器,其特征在于:所述左夹爪及右夹爪另一端的夹爪指端分别沿长度方向开有凹槽,左夹爪的凹槽与右夹爪的凹槽交错设置。The compliant gripper according to claim 1, wherein the finger ends of the other end of the left jaw and the right jaw are respectively provided with grooves along the length direction, and the groove of the left jaw and the right grip The claw grooves are staggered.
  4. 根据权利要求1所述的柔顺夹持器,其特征在于:所述左夹爪及右夹爪均分为上、下层,即右夹爪分为上层夹爪A(1)及下层夹爪A(2),左夹爪分为上层夹爪B(11)及下层夹爪B(10),该上层夹爪A(1)、下层夹爪A(2)、上层夹爪B(11)及下层夹爪B(10)的一端均为与支架分别铰接的铰接部(23),四个铰接部上下设置,另一端分别为捕获并夹持目标物体的上层夹爪指端A(101)、下层夹爪指端A(201)、上层夹爪指端B(1101)及下层夹爪指端B(1001)。The compliant gripper according to claim 1, wherein the left and right grippers are divided into upper and lower layers, that is, the right gripper is divided into upper gripper A (1) and lower gripper A (2), the left jaw is divided into upper jaw B (11) and lower jaw B (10), the upper jaw A (1), the lower jaw A (2), the upper jaw B (11) and One end of the lower jaw B (10) is an articulated portion (23) hinged with the support respectively, four hinged portions are arranged up and down, and the other end is the upper jaw finger end A (101) that captures and clamps the target object, The lower jaw finger end A (201), the upper jaw finger end B (1101), and the lower jaw finger end B (1001).
  5. 根据权利要求4所述的柔顺夹持器,其特征在于:所述上层夹爪A(1)与下层夹爪A(2)之间通过螺钉相连,该上层夹爪A(1)或下层夹爪A(2)上设有圆柱凸台A(102);所述上层夹爪B(11)与下层夹爪B(10)之间通过螺钉相连,该上层夹爪B(11)或下层夹爪B(10)上设有圆柱凸台B(202);所述驱动连杆A(19)及驱动连杆B(20)位于上层夹爪A(1)、上层夹爪B(11)的铰接部与下层夹爪A(2)、下层夹爪B(10)的铰接部之间,并且上下设置,该驱动连杆A(19)及驱动连杆B(20)的另一端分别与所述圆柱凸台A(102)、圆柱凸台B(202)相连;所述位于中间的两个铰接部(23)相对的一面分别开设有容置驱动连杆A(19)、驱动连杆B(20)的开槽(24),每个所述开槽(24)的槽壁上均设有限制驱动连杆A(19)或驱动连杆B(20)转动的限位凸台A(103)。The compliant gripper according to claim 4, characterized in that: the upper jaw A (1) and the lower jaw A (2) are connected by a screw, the upper jaw A (1) or the lower jaw A cylindrical boss A (102) is provided on the jaw A (2); the upper jaw B (11) and the lower jaw B (10) are connected by a screw. The upper jaw B (11) or the lower jaw A cylindrical boss B (202) is provided on the jaw B (10); the driving link A (19) and the driving link B (20) are located on the upper jaw A (1) and the upper jaw B (11) The hinge part is located between the hinge parts of the lower jaw A (2) and the lower jaw B (10), and is arranged up and down. The other ends of the driving link A (19) and the driving link B (20) are respectively The cylindrical boss A (102) and the cylindrical boss B (202) are connected; the opposite sides of the two hinged parts (23) in the middle are respectively provided with accommodating drive links A (19) and drive links B (20) of the slot (24), each slot wall of the slot (24) is provided with a limiting boss A (19) to limit the rotation of the driving link A (19) or the driving link B (20) 103).
  6. 根据权利要求4所述的柔顺夹持器,其特征在于:所述上层夹爪指端A(101)、下层夹爪指端A(201)、上层夹爪指端B(1101)及下层夹爪指端B(1001)分别沿长度方向开有凹槽,上层夹爪指端A(101)的凹槽与上层夹爪指端B(1101)的凹槽交错设置,下层夹爪指端A(201)的凹槽与下层夹爪指端B(1001)的凹槽交错设置。The compliant gripper according to claim 4, wherein the upper gripper finger end A (101), the lower gripper finger end A (201), the upper gripper finger end B (1101) and the lower gripper The claw finger end B (1001) has grooves along the length direction respectively, the groove of the upper jaw finger end A (101) and the groove of the upper jaw finger end B (1101) are staggered, and the lower jaw finger end A The groove of (201) is staggered with the groove of the finger end B (1001) of the lower jaw.
  7. 根据权利要求1所述的柔顺夹持器,其特征在于:所述直线气缸(7)的一端固接有气缸尾部连接件(4),所述机械臂末端转接件(5)的一侧与该气缸尾部连接件(4)相连,另一侧连接有机械臂末端示意件(6);所述直线气缸(7)的另一端连接有气缸前部转接件(8),支架安装在该气缸前部转接件(8)上。The compliant gripper according to claim 1, characterized in that: one end of the linear cylinder (7) is fixedly connected with a cylinder tail connecting member (4), and one side of the mechanical arm end adapter (5) It is connected to the cylinder rear connector (4), and the other end is connected to the mechanical arm end indicator (6); the other end of the linear cylinder (7) is connected to the cylinder front adapter (8), and the bracket is installed on The front adapter (8) of the cylinder.
  8. 根据权利要求7所述的柔顺夹持器,其特征在于:所述气缸尾部连接件(4)朝向直线气缸(7)的一面设有保证与直线气缸(7)可靠连接的限位凸台B(402),该气缸尾部连接件(4)上还设有走线槽(401);所述气缸前部转接件(8)朝向直线气缸(7)的一面设有保证与直线气缸(7)可靠连接的限位凸台C(801)。The compliant gripper according to claim 7, characterized in that: the side of the cylinder tail connecting member (4) facing the linear cylinder (7) is provided with a limit boss B to ensure reliable connection with the linear cylinder (7) (402), the rear connecting piece (4) of the cylinder is also provided with a wire groove (401); the front face adapter (8) of the cylinder facing the linear cylinder (7) is provided with a linear cylinder (7 ) Reliable connection limit boss C (801).
  9. 根据权利要求1所述的柔顺夹持器,其特征在于:所述直线气缸(7)的输出端开设有螺纹孔,该螺纹孔通过气缸轴端连接螺钉(14)连接有气缸拉杆转接件(15),所述驱动连杆转接件(12)的一侧与气缸拉杆转接件(15)固接,另一侧分别与驱动连杆A(19)及驱动连杆B(20)的一端铰接。The compliant holder according to claim 1, characterized in that: the output end of the linear cylinder (7) is provided with a threaded hole, and the threaded hole is connected with a cylinder rod adapter via a cylinder shaft end connecting screw (14) (15), one side of the driving link adapter (12) is fixedly connected to the cylinder rod adapter (15), and the other side is respectively connected to the driving link A (19) and the driving link B (20) Hinged at one end.
  10. 根据权利要求1所述的柔顺夹持器,其特征在于:所述支架分为上层支架(3)及下层支架(9),该上层支架(3)与下层支架(9)的一侧分别与所述直线气缸(7)的另一端连接,另一侧分别与左夹爪及右夹爪的一端铰接。The compliant holder according to claim 1, characterized in that the bracket is divided into an upper bracket (3) and a lower bracket (9), one side of the upper bracket (3) and the lower bracket (9) are respectively The other end of the linear cylinder (7) is connected, and the other side is hinged with one end of the left jaw and the right jaw, respectively.
PCT/CN2018/125206 2018-12-20 2018-12-29 Compliant clamping device WO2020124677A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811561487.5 2018-12-20
CN201811561487.5A CN109483583A (en) 2018-12-20 2018-12-20 A kind of submissive clamper

Publications (1)

Publication Number Publication Date
WO2020124677A1 true WO2020124677A1 (en) 2020-06-25

Family

ID=65710950

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/125206 WO2020124677A1 (en) 2018-12-20 2018-12-29 Compliant clamping device

Country Status (2)

Country Link
CN (1) CN109483583A (en)
WO (1) WO2020124677A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112140087A (en) * 2020-09-27 2020-12-29 北京航天发射技术研究所 Multifunctional vehicle-mounted automatic manipulator
IT202100030899A1 (en) * 2021-12-09 2023-06-09 Azionaria Costruzioni Acma Spa Transport crew holding and carrying a container

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109926271A (en) * 2019-04-10 2019-06-25 武汉锐科光纤激光技术股份有限公司 A kind of dispenser system
CN110093887A (en) * 2019-05-23 2019-08-06 巢湖学院 A kind of garbage picking and sorting machine people
CN110849526B (en) * 2019-11-25 2021-12-07 上海航天控制技术研究所 Mechanical arm force compliance algorithm test system and test method
CN114228962A (en) * 2021-12-22 2022-03-25 合肥工业大学 STM 32-based underwater intelligent device
CN114311011A (en) * 2021-12-26 2022-04-12 盐城旭捷自动化设备有限公司 Robot gripping apparatus of automobile welding production line

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3371953A (en) * 1967-03-16 1968-03-05 Leland F. Blatt Gripper
US4522439A (en) * 1983-08-12 1985-06-11 Walker-Neer Manufacturing Co., Inc. Automatic pipe elevator
US6361095B1 (en) * 2000-06-29 2002-03-26 Delaware Capital Formation, Inc. Adjustable stroke gripper assembly
US20020092731A1 (en) * 2000-11-09 2002-07-18 Osterfeld Gary J. Gripper mechanism for handling a cylindrical workpiece
CN205969098U (en) * 2016-08-23 2017-02-22 嘉兴市立丰机械制造有限公司 Follow -on manipulator clamping device
CN207359095U (en) * 2017-11-09 2018-05-15 广东鼎湖山泉有限公司 A kind of novel robot fixture

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB896424A (en) * 1959-12-08 1962-05-16 Dowty Rotol Ltd Improvements in gripping devices for cylindrical and like objects
SU812568A1 (en) * 1979-06-07 1981-03-15 Севастопольский Приборостроитель-Ный Институт Gripper for assembling electronic components
ITBS20030077A1 (en) * 2003-08-29 2005-02-28 Gimatic Spa ANGLE PNEUMATIC CLAMP.
CN102514014B (en) * 2011-11-28 2014-05-14 吉林大学 Multipoint mechanical hand for myriametre well drill
CN104589364B (en) * 2015-01-14 2017-09-01 佛山市诺尔贝机器人技术有限公司 A kind of robotic gripping apparatus
CN106516728A (en) * 2016-12-22 2017-03-22 福建新源重工有限公司 Vertical type clamp
CN207771415U (en) * 2018-01-02 2018-08-28 上海长园电子材料有限公司 A kind of combined type clamping jaw
CN209224087U (en) * 2018-12-20 2019-08-09 中国科学院沈阳自动化研究所 Submissive clamper

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3371953A (en) * 1967-03-16 1968-03-05 Leland F. Blatt Gripper
US4522439A (en) * 1983-08-12 1985-06-11 Walker-Neer Manufacturing Co., Inc. Automatic pipe elevator
US6361095B1 (en) * 2000-06-29 2002-03-26 Delaware Capital Formation, Inc. Adjustable stroke gripper assembly
US20020092731A1 (en) * 2000-11-09 2002-07-18 Osterfeld Gary J. Gripper mechanism for handling a cylindrical workpiece
CN205969098U (en) * 2016-08-23 2017-02-22 嘉兴市立丰机械制造有限公司 Follow -on manipulator clamping device
CN207359095U (en) * 2017-11-09 2018-05-15 广东鼎湖山泉有限公司 A kind of novel robot fixture

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112140087A (en) * 2020-09-27 2020-12-29 北京航天发射技术研究所 Multifunctional vehicle-mounted automatic manipulator
IT202100030899A1 (en) * 2021-12-09 2023-06-09 Azionaria Costruzioni Acma Spa Transport crew holding and carrying a container
EP4194371A1 (en) * 2021-12-09 2023-06-14 Azionaria Costruzioni Macchine Automatiche A.C.M.A. S.p.A. Conveying equipment for holding and transporting a container

Also Published As

Publication number Publication date
CN109483583A (en) 2019-03-19

Similar Documents

Publication Publication Date Title
WO2020124677A1 (en) Compliant clamping device
JP5713105B2 (en) End effector and robot
CN206357256U (en) A kind of flexible grabbing device of replaceable manipulator species
CN206367018U (en) Double pawl Pneumatic manipulators may be reversed in one kind
CN111687819B (en) Work tool for gripping workpiece including connector and robot device provided with work tool
JP2011000703A (en) Manipulator with camera
WO2020077602A1 (en) End effector and robot having same
JP2015226965A (en) Robot, robot system, control unit and control method
CN108147110A (en) A kind of fixture, automatic clamping device and production line
JP7133987B2 (en) End effector and construction robot equipped with the same
CN107932024B (en) Clamping jaw
WO2022199695A1 (en) Multi-degree-of-freedom instrument for robot
JP2020138292A5 (en)
CN209224087U (en) Submissive clamper
CN108726166A (en) A kind of adjustable conveying robot
CN215848211U (en) Manipulator for electronic machining
US4561506A (en) Pivoting driver with changeable bits
CN210879736U (en) Robot clamp
CN209319785U (en) A kind of underwater manipulator
CN207148418U (en) With the endoscope for salvaging function
CN213946483U (en) Mechanical clamping arm for machine manufacturing
CN213903746U (en) Sampling head for detecting off-line or open circuit of storage battery pack
CN207901187U (en) The controllable gripper of clamping force
CN112952531A (en) Wire clamping device and core wire positioning equipment
WO2020119237A1 (en) Visual positioning system-based multiple-degree of freedom barrel-type hazardous workpiece grasping mechanism

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18943455

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18943455

Country of ref document: EP

Kind code of ref document: A1