WO2020124521A1 - 对锂电池进行充电的方法及相关装置 - Google Patents

对锂电池进行充电的方法及相关装置 Download PDF

Info

Publication number
WO2020124521A1
WO2020124521A1 PCT/CN2018/122537 CN2018122537W WO2020124521A1 WO 2020124521 A1 WO2020124521 A1 WO 2020124521A1 CN 2018122537 W CN2018122537 W CN 2018122537W WO 2020124521 A1 WO2020124521 A1 WO 2020124521A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium battery
voltage
negative electrode
circuit
charging
Prior art date
Application number
PCT/CN2018/122537
Other languages
English (en)
French (fr)
Inventor
许柏皋
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to PCT/CN2018/122537 priority Critical patent/WO2020124521A1/zh
Priority to CN201880068446.4A priority patent/CN111279573A/zh
Publication of WO2020124521A1 publication Critical patent/WO2020124521A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0068Battery or charger load switching, e.g. concurrent charging and load supply
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the field of lithium battery charging, and more specifically, to a method and related device for charging a lithium battery.
  • Lithium batteries have the advantages of high energy density, long cycle life, low self-discharge rate, and no memory effect, and have become important driving power sources and energy storage components.
  • rapid charging methods have gradually attracted people's attention.
  • lithium ions are easily deposited on the surface of the negative electrode. With the polarization phenomenon, the positive electrode potential increases and the negative electrode potential decreases.
  • the negative electrode voltage is lower than the electrode potential of lithium precipitation, lithium ions accumulate on the surface of the negative electrode to form lithium precipitation. The formation of lithium dendrites can easily pierce the separator and cause the battery to short-circuit. s efficiency.
  • Chinese patent CN1815798A discloses a method for improving the safety of lithium-ion power batteries. By detecting the negative electrode potential, when the negative electrode potential approaches or reaches the condition of lithium metal precipitation, the charging current is reduced or cut off. This method can only slow down the rate of lithium deposition to a certain extent, and cannot prevent lithium deposition. At the same time, it will also cause an extension of the charging time.
  • the embodiments of the present application provide a method and a related device for charging a lithium battery, which can improve the charging efficiency while ensuring the safety performance of the battery.
  • a method for charging a lithium battery including: charging the lithium battery to be charged according to a first preset current; acquiring the negative voltage of the lithium battery; and determining the negative electrode according to the negative voltage Whether the voltage meets the first preset condition; if the negative electrode voltage meets the first preset condition, discharge the lithium battery according to the second preset current until the negative electrode voltage meets the second preset condition, Wherein, the second preset current is not greater than the first preset current; the above steps are repeated.
  • a circuit for charging a lithium battery including: a control circuit and a charge and discharge circuit; wherein the control circuit is used to: control the charge and discharge circuit to charge the lithium battery to be charged according to a first preset Current charging; obtaining the negative electrode voltage of the lithium battery; according to the negative electrode voltage, determining whether the negative electrode voltage satisfies the first preset condition; if the negative electrode voltage meets the first preset condition, controlling the charging
  • the discharge circuit discharges the lithium battery according to the second preset current until the negative electrode voltage meets the second preset condition, wherein the second preset current is not greater than the first preset current; repeat the above steps .
  • a charger including: a power output interface, a signal interface, and the circuit of the second aspect; wherein, the circuit is electrically connected to the power output interface and the signal interface, respectively, and the power supply
  • the output interface is used to output a charging signal
  • the signal interface is used to obtain charging information of the lithium battery.
  • a smart battery including: a battery case provided with a receiving cavity; a positive terminal and a negative terminal provided in the battery case, the positive terminal and the negative terminal are used for electrical connection with an external circuit; at least A lithium cell contained in the containing cavity; and a control component installed in the containing cavity, the control component including the circuit of the second aspect; wherein, the control component and the positive terminal, the The negative terminal and the lithium battery are electrically connected to control the state of the lithium battery, and the lithium battery is charged or discharged through the positive terminal and the negative terminal.
  • a controller for charging a lithium battery which includes: one or more processors, which work individually or together, and the processor is configured to: charge a lithium battery to be charged according to a first preset current; Obtain the negative voltage of the lithium battery; determine whether the negative voltage meets the first preset condition according to the negative voltage; if the negative voltage meets the first preset condition, control the lithium battery according to the first Two preset currents are discharged until the negative electrode voltage meets the second preset condition, wherein the second preset current is not greater than the first preset current; the above steps are repeated.
  • a movable platform including: one or more power devices configured to realize movement of the movable platform; and, the circuit of the second aspect, the circuit configured to the The charging of the movable platform is controlled.
  • a computer storage medium stores a program code, and the program code may be used to instruct to execute the method of the first aspect.
  • the technical solution of the embodiment of the present application controls the charging process of the lithium battery based on the negative electrode voltage, and can avoid lithium precipitation while fast charging, thereby improving the charging efficiency while ensuring the safety performance of the battery.
  • FIG. 1 is a schematic diagram of a lithium battery cell of a lithium battery according to an embodiment of the present application.
  • FIG. 2 is a schematic flowchart of a method for charging a lithium battery according to an embodiment of the present application.
  • FIG. 3 is a schematic diagram of an electrode joint of a lithium battery according to an embodiment of the present application.
  • FIG. 4 is a relationship diagram between current and time during charging of a lithium battery according to an embodiment of the present application.
  • FIG. 5 is a graph showing the relationship between negative electrode voltage and time during the charging process of a lithium battery according to an embodiment of the present application.
  • FIG. 6 is a schematic diagram of a circuit for charging a lithium battery according to an embodiment of the present application.
  • FIG. 7 is a schematic diagram of the charger of the embodiment of the present application.
  • FIG. 8 is a schematic diagram of a smart battery according to an embodiment of the present application.
  • FIG. 9 is a schematic diagram of a mobile platform according to an embodiment of the present application.
  • the embodiment of the invention discloses a method for charging a lithium battery.
  • the state parameters of the battery such as battery internal pressure, battery temperature, electrode voltage, remaining power, and other state parameters, can be detected to control the charging process of the lithium battery according to its state parameters.
  • the negative voltage of the lithium battery is obtained and detected, and the lithium battery is discharged according to the negative voltage until the negative voltage meets the preset conditions, and the lithium battery continues to be charged. To charge, repeat the above steps. Therefore, the negative electrode voltage is controlled to be higher than the potential for lithium evolution, which effectively avoids the problem of lithium evolution during the rapid charging of the lithium battery.
  • the protection board in the process of charging the lithium battery, it is determined whether the lithium battery is overcharged by acquiring and detecting the battery internal pressure of the lithium battery. If the internal pressure of the battery is higher than the preset value, the protection board is controlled to detect the open circuit voltage or charging current of the battery, and the charging process is controlled according to the detection result. So as to avoid damage or even explosion of the battery due to overcharging.
  • the charging process is controlled by acquiring and detecting the battery temperature of the lithium battery. If the battery temperature is higher than the preset value, reduce the charging rate, or stop charging. This prevents the battery from being damaged or exploding due to overheating.
  • the size of the sequence number of each process does not mean the order of execution, and the execution order of each process should be determined by its function and inherent logic, and should not be applied to the embodiments of this application
  • the implementation process constitutes no limitation.
  • the technical solutions of the embodiments of the present application may be applied to lithium batteries, including lithium ion batteries and lithium metal batteries, but the embodiments of the present application are not limited thereto.
  • FIG. 1 shows a schematic diagram of a lithium battery cell of a lithium battery according to an embodiment of the present application.
  • the lithium battery cell includes a battery cell assembly including a positive electrode 101, a negative electrode 102, a separator 103 spaced apart from the positive electrode 101 and the negative electrode 102, and a reference electrode 104.
  • a compound capable of reversibly intercalating and deintercalating lithium ions is used as the positive electrode 101 and the negative electrode 102.
  • the positive electrode generally selects a lithium-embedded transition metal oxide having a potential greater than 3 V relative to lithium and stable in air, for example, LiCoO 2 , LiNiO 2 , LiMn 2 O 4 , LiFePO 4 and the like.
  • the negative electrode generally selects a compound capable of intercalating lithium as close as possible to the potential of lithium, such as various carbon materials, including natural graphite, synthetic graphite, carbon fiber, mesophase pellet carbon, etc., and metal oxides, including: SnO, SnO 2 , Tin complex oxide, etc.
  • the reference electrode is used to indicate the voltage of the positive electrode 101 and/or the negative electrode 102.
  • the reference electrode 104 may be disposed in the middle of the separator 103 and wrapped by the separator 103 so as to be insulated from the positive electrode 101 and the negative electrode 102.
  • the reference electrode 104 may not be provided in the middle of the separator 103 as long as it is insulated from the positive electrode 101 and the negative electrode 102.
  • the reference electrode includes at least one of the following: a saturated calomel electrode, and a silver-silver chloride electrode.
  • the lithium battery cell further includes a housing 110, and the housing 110 has a receiving cavity for receiving the battery cell assembly.
  • the lithium battery further includes a positive electrode connector 121, a negative electrode connector 122 and a reference electrode connector 124 which are provided outside the casing 110.
  • the positive electrode connector 121, the negative electrode connector 122 and the reference electrode connector 124 are respectively connected to the positive electrode 101, the negative electrode 102 and the reference electrode 103, also used for electrical connection with external circuits.
  • the lithium battery cell further includes an electrolyte 130 filled in the battery cell assembly, and/or a space between the case 110 and the battery cell assembly.
  • controlling the charging process of the lithium battery based on the negative electrode voltage can improve the charging efficiency while ensuring the safety performance of the battery.
  • FIG. 2 shows a schematic flowchart of a method 200 for charging a lithium battery according to an embodiment of the present application.
  • the method 200 can charge at least one lithium battery, such as the lithium battery shown in FIG. 1.
  • the lithium battery to be charged is charged according to the first preset current.
  • the first preset current can use a larger current for faster charging.
  • the first preset current may use the maximum current that the lithium battery can accept, that is, the maximum current that does not generate an undesirable side reaction and does not adversely affect the life and performance of the battery cell. In this way, fast charging can be maximized.
  • the current range of the first preset current may be 1C-10C.
  • C is the battery capacity.
  • the current range of the first preset current may be 1000 mA-10 A.
  • the negative voltage of the lithium battery is obtained, and the charging process of the lithium battery is controlled based on the negative voltage (that is, the entire process from the start of charging to the completion of charging) .
  • the negative electrode voltage is the voltage between the negative electrode and the reference electrode.
  • the reference electrode is provided in the lithium battery.
  • a reference electrode is also provided in the lithium battery (as shown in FIG. 1).
  • the positive electrode voltage is the voltage between the positive electrode and the reference electrode; and the voltage between the positive electrode and the negative electrode is the terminal voltage of the battery.
  • the voltage between the positive connector 121 and the reference electrode connector 124 is a positive voltage; the voltage between the negative connector 122 and the reference electrode connector 124 is a negative voltage; the voltage between the positive connector 121 and the negative connector 122 is the terminal Voltage.
  • the negative voltage can be obtained directly, that is, the negative voltage of the lithium battery can be obtained by obtaining the voltage between the negative electrode of the lithium battery and the reference electrode.
  • the voltage between the negative electrode connector 122 and the reference electrode connector 124 in FIG. 1 can be directly obtained.
  • the negative voltage can also be obtained indirectly, that is, indirectly through the positive voltage and the terminal voltage.
  • obtaining the negative electrode voltage of the lithium battery may be determined based on the voltage between the positive electrode and the negative electrode of the lithium battery and the positive electrode voltage of the lithium battery.
  • the positive voltage, negative voltage, and terminal voltage of the battery can be measured through the positive electrode terminal 301, the negative electrode terminal 302, and the reference electrode terminal 303 of the lithium battery.
  • the negative voltage can be measured by the negative electrode connector 302 and the reference electrode connector 303;
  • the positive voltage can be measured by the positive electrode connector 301 and the reference electrode connector 303;
  • the terminal voltage can be measured by the positive electrode connector 301 and the negative electrode connector 302.
  • Any one of the positive voltage, the negative voltage, and the terminal voltage can be obtained indirectly through the other two voltages. Therefore, each voltage can be obtained either directly or indirectly.
  • the negative electrode voltage may be obtained in real time, and a subsequent process is performed based on the negative electrode voltage.
  • the negative electrode voltage can reflect the deposition of lithium ions on the negative electrode.
  • the deposition of lithium ions on the negative electrode can be known in time according to the negative electrode voltage, and the subsequent charging process can be effectively managed.
  • the negative electrode voltage may be obtained in real time after starting charging; or, after a certain condition is satisfied, for example, after receiving the obtaining instruction, the negative electrode voltage may be obtained in real time.
  • the instruction can be issued after a period of charging. At the beginning of charging, the negative electrode voltage has not dropped to a low level. After receiving the instruction, the negative electrode voltage can be obtained in real time to save certain processing resources.
  • the negative electrode voltage may be obtained after charging the lithium battery for a preset time, and then a subsequent process may be performed based on the negative electrode voltage. Since the negative electrode voltage does not change much at the beginning of charging, the negative electrode voltage can be obtained after charging for a preset time. The preset time can be obtained through experiment or training. This can also save processing resources to a greater extent.
  • step 204 is performed.
  • the lithium battery is discharged when the negative electrode voltage meets the first preset condition.
  • the discharge causes the negative electrode voltage to increase, thereby avoiding lithium evolution.
  • the battery is charged when the negative electrode voltage meets the second preset condition, that is, the above steps are repeated.
  • fast charging high current charging
  • fast charging may cause the deposition of lithium on the surface of the negative electrode, which lowers the potential of the negative electrode.
  • Discharge reverse charging
  • Each discharge process is to return the deposited lithium to the positive electrode. Therefore, the negative electrode voltage is increased, and the negative electrode potential is greater than the lithium deposition potential, thereby avoiding lithium deposition.
  • the lithium battery when the negative electrode voltage drops to a first voltage threshold, the lithium battery may be discharged until the negative electrode voltage rises to a second voltage threshold, where the second voltage threshold is greater than the first A voltage threshold.
  • the first voltage threshold may be the lowest voltage to avoid lithium evolution. In this way, when the negative electrode voltage drops to the first voltage threshold, discharging the lithium battery can prevent the negative electrode voltage from being too low to release lithium.
  • the second voltage threshold may be close to the voltage value of the negative electrode voltage of the lithium battery in the initial state of the previous charge; or, the second voltage threshold may be a voltage value when the negative electrode voltage no longer rises during discharge. In this way, by discharging, the negative electrode voltage is increased to a higher value, and then the next charge is performed, and the next charge can be performed for a longer time.
  • the first preset condition may include: the negative electrode voltage is close to a lithium evolution potential of the lithium battery. That is to say, when the negative electrode voltage is close to the lithium evolution potential of the lithium battery, the lithium battery may be discharged according to the second preset current.
  • the first preset condition may include: the negative electrode voltage is not greater than 0.05V.
  • the negative electrode voltage is close to 0V, lithium deposition may occur. Therefore, when the negative electrode voltage is not greater than 0.05V, the lithium battery may be discharged according to the second preset current to ensure that lithium deposition does not occur.
  • the second preset current used for discharging is not greater than the first preset current used for charging.
  • the current range of the second preset current may be 0.01C-1C.
  • the first preset current and the second preset current may be constant currents or variable currents.
  • Constant current means that the current is constant during each charge/discharge cycle.
  • Variable current refers to the current change in each charge/discharge cycle, for example, it can change from large to small.
  • charging the lithium battery according to the first preset current may be charging the lithium battery according to the first preset current for a preset time; or, charging the lithium battery according to the first preset current Charging until the lithium battery is discharged according to the second preset current.
  • the time for charging the lithium battery may be preset, and the lithium battery may be charged according to the preset time; or, the time for charging the lithium battery may not be preset, but whether to switch to discharge is judged only by the negative electrode voltage.
  • the former method can reduce the time for detecting voltage, while the latter method can ensure more accurate control.
  • the preset time to charge the lithium battery is greater than the time to discharge the lithium battery according to the second preset current.
  • first charge the lithium battery according to a relatively large current for example, 1C-10C.
  • the negative electrode voltage drops.
  • the negative electrode voltage meets the first preset condition
  • the lithium battery is discharged according to a small current (for example, 0.01C-1C).
  • the negative electrode voltage increases.
  • the negative electrode voltage meets the second preset condition. The lithium battery is charged according to a larger current, and the above process is repeated.
  • the negative electrode voltage can be obtained from the positive electrode voltage and the terminal voltage
  • the above-described operation based on the negative electrode voltage can be converted to the operation based on the positive electrode voltage and the terminal voltage.
  • the operation of discharging the lithium battery may be determined based on the positive voltage and the terminal voltage. For brevity, I will not repeat them here.
  • the technical solution of the embodiment of the present application uses a larger current to charge the lithium battery, and controls the charging process of the lithium battery based on the negative electrode voltage, discharges the lithium battery when the negative electrode voltage drops to a predetermined value, and again after the negative electrode voltage increases To charge the lithium battery, this method of cycling charge and discharge of the lithium battery based on the negative electrode voltage can realize rapid charging without avoiding the phenomenon of lithium evolution.
  • the voltage between the positive electrode and the negative electrode of the lithium battery may be obtained, and it is determined whether the lithium battery is fully charged according to the voltage between the positive electrode and the negative electrode of the lithium battery.
  • the negative voltage of the lithium battery is still very low after discharging the lithium battery, for example, close to zero volts, it can be determined that the battery performance has deteriorated, the charging process is stopped, and a safety accident is avoided.
  • the temperature of the lithium battery can also be considered, and the corresponding treatment is performed based on the temperature of the lithium battery. That is to say, in this case, the temperature of the lithium battery may also be detected, wherein the temperature of the lithium battery may be the temperature near the surface of the lithium battery and/or the tab.
  • the temperature of the lithium battery can be obtained through a sensor.
  • the technical solution of the embodiment of the present application controls the charging process of the lithium battery based on the negative electrode voltage, which can avoid lithium precipitation while fast charging, thereby improving the charging efficiency while ensuring the safety performance of the battery.
  • FIG. 6 shows a schematic diagram of a circuit 600 for charging a lithium battery according to an embodiment of the present application.
  • the circuit 600 may execute the method for charging a lithium battery described above in the embodiments of the present application.
  • the circuit 600 may include: a control circuit 610 and a charge and discharge circuit 620.
  • the control circuit 610 is used to:
  • the negative electrode voltage determine whether the negative electrode voltage meets the first preset condition
  • the charging and discharging circuit 620 is controlled to discharge the lithium battery according to the second preset current until the negative electrode voltage meets the second preset condition, wherein, The second preset current is not greater than the first preset current;
  • control circuit 610 may use a microcontroller (Microcontroller Unit, MCU).
  • MCU Microcontroller Unit
  • the charge and discharge circuit 620 is used to charge/discharge the lithium battery under the control of the control circuit 610.
  • the circuit 600 may further include: a detection circuit 630.
  • the detection circuit 630 is configured to detect the electrode voltage of the lithium battery and transmit the electrode voltage to the control circuit 610.
  • the detection circuit 630 may use an integrated circuit (Integrated Circuit, IC).
  • IC Integrated Circuit
  • the detection circuit 630 may include connecting wires for electrically connecting to the positive electrode, the negative electrode, and the reference electrode of the lithium battery, respectively.
  • the positive voltage can be detected through the connection line electrically connected to the positive electrode and the reference electrode of the lithium battery; the negative voltage can be detected through the connection line electrically connected to the negative electrode and the reference electrode of the lithium battery;
  • the connection line of the positive and negative electrodes of the lithium battery can detect the terminal voltage.
  • the detection circuit 630 There is a communication connection between the detection circuit 630 and the control circuit 610, and the detection circuit 630 can send the detected voltage to the control circuit 610.
  • control circuit 610 is used to control the charging and discharging circuit 620 to charge the lithium battery at a preset time according to the first preset current, or to charge the lithium The battery is charged according to the first preset current until the lithium battery is discharged according to the second preset current.
  • control circuit 610 is used to obtain the voltage between the negative electrode of the lithium battery and a reference electrode, where the reference electrode is provided in the lithium battery.
  • control circuit 610 is configured to determine the negative electrode voltage according to the voltage between the positive electrode and the negative electrode of the lithium battery and the positive electrode voltage of the lithium battery.
  • control circuit 610 is further configured to obtain the positive voltage according to the voltage between the positive electrode and the reference electrode of the lithium battery, wherein the reference electrode is provided at Inside the lithium battery.
  • control circuit 610 is further configured to obtain the voltage between the positive electrode and the negative electrode of the lithium battery.
  • control circuit 610 is used to obtain the negative electrode voltage in real time, or obtain the negative electrode voltage after charging the lithium battery for a preset time.
  • the preset time is greater than the time for discharging the lithium battery according to the second preset current.
  • control circuit 610 is used to control the charge-discharge circuit 620 to discharge the lithium battery until the negative electrode voltage drops to the first voltage threshold until all The negative electrode voltage rises to a second voltage threshold lithium battery, wherein the second voltage threshold is greater than the first voltage threshold.
  • the second voltage threshold is close to the voltage value of the negative electrode voltage of the lithium battery in the initial state of the previous charge.
  • the second voltage threshold is a voltage value when the negative electrode voltage no longer rises during discharge.
  • the first preset condition includes: the negative electrode voltage is close to a lithium evolution potential of the lithium battery.
  • the first preset condition includes: the negative electrode voltage is not greater than 0.05V.
  • the current range of the first preset current is 1C-10C.
  • the current range of the second preset current is 0.01C-1C.
  • the first preset current and the second preset current are constant current or variable current.
  • control circuit 610 is further used to obtain the voltage between the positive electrode and the negative electrode of the lithium battery, and determine the voltage based on the voltage between the positive electrode and the negative electrode of the lithium battery. Whether the lithium battery is fully charged.
  • control circuit 610 is further used to obtain the temperature of the lithium battery.
  • the circuit 600 may further include:
  • the sensor is used to detect the temperature of the lithium battery and transmit the temperature of the lithium battery to the control circuit.
  • the senor is used to detect the temperature near the surface of the lithium battery and/or the pole ear.
  • the temperature of the lithium battery is the temperature near the surface of the lithium battery and/or near the tab.
  • control circuit 610 is further used to:
  • the display circuit is triggered to display the temperature of the lithium battery, and the charging of the lithium battery is stopped.
  • FIG. 7 shows a schematic diagram of the charger 700 of the embodiment of the present application. As shown in FIG. 7, the charger 700 includes:
  • the circuit 600 is electrically connected to the power output interface 710 and the signal interface 720, respectively, the power output interface 710 is used to output a charging signal, and the signal interface 720 is used to obtain charging information of a lithium battery.
  • FIG. 8 shows a schematic diagram of a smart battery 800 according to an embodiment of the present application.
  • the smart battery 800 may include:
  • the battery casing 810 is provided with a containing cavity
  • At least one lithium battery core 820, housed in the receiving cavity, the lithium battery core 820 may be the lithium battery core shown in FIG. 1; and,
  • the control component 830 is installed in the accommodating cavity, and the control component includes the circuit 600 for charging the lithium battery described above in the embodiment of the present application.
  • the control component 830 is connected to the positive terminal 821, the negative terminal 822, and the lithium battery cell 820, for controlling the state of the lithium battery cell 820, the lithium battery cell 820 passes through the positive electrode terminal 821.
  • the negative terminal 822 is charged or discharged.
  • An embodiment of the present application also provides a controller for charging a lithium battery.
  • the controller includes one or more processors that work individually or together.
  • the processor is used to perform Charging method.
  • an embodiment of the present application further provides a movable platform 900, as shown in FIG. 9.
  • the movable platform 900 includes: one or more power devices 910 and the circuit 600 for charging a lithium battery according to the embodiment of the present application described above.
  • One or more power devices 910 are configured to realize the movement of the movable platform 900.
  • the circuit 600 is configured to control the charging of the movable platform 900.
  • the movable platform 900 may be an unmanned aerial vehicle, an unmanned boat, an autonomous vehicle, a robot, an aerial photography system, an aerial photography aircraft, or a handheld gimbal.
  • the circuit, charger, smart battery, controller, and movable platform for charging a lithium battery according to an embodiment of the present application may correspond to the main body of the method for charging a lithium battery according to the embodiment of the present application, and charge the lithium battery
  • the above-mentioned and other operations and/or functions of each module in the circuit, charger, smart battery, controller and movable platform in order to implement the corresponding processes of the foregoing methods, for the sake of brevity, will not be repeated here.
  • An embodiment of the present application also provides a computer storage medium, and the computer storage medium stores a program code, and the program code may be used to instruct to execute the method for charging the lithium battery according to the embodiment of the present application.
  • the term “and/or” is merely an association relationship describing an association object, and indicates that three types of relationships may exist.
  • a and/or B may indicate that there are three cases in which A exists alone, A and B exist simultaneously, and B exists alone.
  • the character "/" in this article generally indicates that the related objects before and after are in an "or” relationship.
  • the disclosed system, device, and method may be implemented in other ways.
  • the device embodiments described above are only schematic.
  • the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the displayed or discussed mutual couplings or direct couplings or communication connections may be indirect couplings or communication connections through some interfaces, devices, or units, and may also be electrical, mechanical, or other forms of connection.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place or may be distributed on multiple network units. Part or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments of the present application.
  • the functional units in the embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units are integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or software function unit.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it may be stored in a computer-readable storage medium.
  • the technical solution of the present application essentially or part of the contribution to the existing technology, or all or part of the technical solution can be embodied in the form of a software product
  • the computer software product is stored in a storage medium
  • several instructions are included to enable a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in the embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), magnetic disk or optical disk and other media that can store program code .

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

一种对锂电池进行充电的方法及相关装置。该方法包括:对待充电的锂电池按照第一预设电流充电(210);获取所述锂电池的负极电压(220);根据所述负极电压,确定所述负极电压是否满足第一预设条件(230);若所述负极电压满足所述第一预设条件,则对所述锂电池按照第二预设电流进行放电,直至所述负极电压满足第二预设条件(240),其中,所述第二预设电流不大于所述第一预设电流;重复上述步骤。该方法能够在保证电池的安全性能的同时提高充电的效率。

Description

对锂电池进行充电的方法及相关装置
版权申明
本专利文件披露的内容包含受版权保护的材料。该版权为版权所有人所有。版权所有人不反对任何人复制专利与商标局的官方记录和档案中所存在的该专利文件或者该专利披露。
技术领域
本申请涉及锂电池充电领域,并且更具体地,涉及一种对锂电池进行充电的方法及相关装置。
背景技术
锂电池具有能量密度高、循环寿命长、自放电率低、无记忆效应等优点,成为重要的驱动电源和储能元件。为了提高锂电池的充电速度,快速充电方法逐渐受到人们的关注。锂电池在快速充电过程中,锂离子容易沉积在负极表面,伴随着极化现象,正极电位升高,负极电位下降。负极电压低于析锂的电极电位时,锂离子聚集在负极表面形成负极析锂现象,锂枝晶的形成容易刺破隔膜导致电池正负极短路,进而引发电池安全可靠性问题,影响了充电的效率。
中国专利CN1815798A公开了一种提高锂离子动力电池安全性的方法,通过检测负极电位,当负极电位接近或者达到锂金属析出的条件时,就减小或者截断充电电流。这种方法只能在一定程度上减慢锂沉积的速度,无法防止锂沉积。同时,还会造成充电时间的延长。
因此,如何在锂电池快速充电过程中,有效避免负极析锂,在保证电池的安全性能的同时提高充电的效率,成为快速充电中一个亟待解决的技术问题。
发明内容
本申请实施例提供了一种对锂电池进行充电的方法及相关装置,能够在保证电池的安全性能的同时提高充电的效率。
第一方面,提供了一种对锂电池进行充电的方法,包括:对待充电的 锂电池按照第一预设电流充电;获取所述锂电池的负极电压;根据所述负极电压,确定所述负极电压是否满足第一预设条件;若所述负极电压满足所述第一预设条件,则对所述锂电池按照第二预设电流进行放电,直至所述负极电压满足第二预设条件,其中,所述第二预设电流不大于所述第一预设电流;重复上述步骤。
第二方面,提供了一种对锂电池进行充电的电路,包括:控制电路和充放电电路;其中,所述控制电路用于:控制所述充放电电路对待充电的锂电池按照第一预设电流充电;获取所述锂电池的负极电压;根据所述负极电压,确定所述负极电压是否满足第一预设条件;若所述负极电压满足所述第一预设条件,则控制所述充放电电路对所述锂电池按照第二预设电流进行放电,直至所述负极电压满足第二预设条件,其中,所述第二预设电流不大于所述第一预设电流;重复上述步骤。
第三方面,提供了一种充电器,包括:电源输出接口、信号接口以及第二方面的电路;其中,所述电路分别电性连接至所述电源输出接口以及所述信号接口,所述电源输出接口用于输出充电信号,所述信号接口用于获取锂电池的充电信息。
第四方面,提供了一种智能电池,包括:电池外壳,设有容纳腔;设于所述电池外壳的正极端子、负极端子,所述正极端子和负极端子用于与外部电路电连接;至少一个锂电芯,收容在所述容纳腔内;以及,控制组件,安装在所述容纳腔内,所述控制组件包括第二方面的电路;其中,所述控制组件与所述正极端子、所述负极端子、以及所述锂电芯电连接,用于对所述锂电芯的状态进行管控,所述锂电芯通过所述正极端子、所述负极端子进行充电或放电。
第五方面,提供了一种锂电池充电的控制器,包括:一个或多个处理器,单独地或共同地工作,所述处理器用于:对待充电的锂电池按照第一预设电流充电;获取所述锂电池的负极电压;根据所述负极电压,确定所述负极电压是否满足第一预设条件;若所述负极电压满足所述第一预设条件,则控制所述锂电池按照第二预设电流进行放电,直至所述负极电压满足第二预设条件,其中,所述第二预设电流不大于所述第一预设电流;重复上述步骤。
第六方面,提供了一种可移动平台,包括:一个或多个动力装置,其被配置为实现所述可移动平台的移动;以及,第二方面的电路,所述电路被 配置对所述可移动平台的充电进行控制。
第七方面,提供了一种计算机存储介质,该计算机存储介质中存储有程序代码,该程序代码可以用于指示执行上述第一方面的方法。
本申请实施例的技术方案,基于负极电压控制锂电池的充电过程,可以在快充的同时避免析锂现象,从而能够在保证电池的安全性能的同时提高充电的效率。
附图说明
图1是本申请实施例的锂电池的锂电芯的示意图。
图2是本申请实施例的对锂电池进行充电的方法的示意性流程图。
图3是本申请实施例的锂电池的电极接头的示意图。
图4是本申请一个实施例的对锂电池进行充电过程中的电流与时间的关系图。
图5是本申请一个实施例的对锂电池进行充电过程中的负极电压与时间的关系图。
图6是本申请实施例的对锂电池进行充电的电路的示意图。
图7是本申请实施例的充电器的示意图。
图8是本申请实施例的智能电池的示意图。
图9是本申请实施例的可移动平台的示意图。
具体实施方式
本发明实施例公开了一种对锂电池进行充电的方法。在对锂电池进行充电的过程中,可以通过检测电池的状态参数,如电池内压、电池温度、电极电压、剩余电量等状态参数,从而根据其状态参数对锂电池的充电过程进行控制。
在一些实施例中,在对锂电池进行快速充电的过程中,通过获取并检测锂电池的负极电压,并根据负极电压,对锂电池进行放电,直至负极电压满足预设条件,继续对锂电池进行充电,重复上述步骤。从而控制负极电压高于析锂电位,有效避免了锂电池快速充电过程中析锂的问题。
在一些实施例中,在对锂电池进行充电的过程中,通过获取并检测锂电池的电池内压,来判断锂电池是否存在过充。若电池内压高于预设值,则 控制保护板检测电池的开路电压或充电电流,并根据检测结果控制充电过程。从而避免电池因过充而导致的损坏甚至***。
在一些实施例中,在对锂电池进行充电的过程中,通过获取并检测锂电池的电池温度,来控制充电过程。若电池温度高于预设值,则减小充电倍率,或者停充。从而防止电池因过热而损坏或产生***的现象。
下面将结合附图,对本发明实施例的一些实施方式作详细说明。
应理解,本文中的具体的例子只是为了帮助本领域技术人员更好地理解本申请实施例,而非限制本申请实施例的范围。
还应理解,在本申请的各种实施例中,各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
还应理解,本说明书中描述的各种实施方式,既可以单独实施,也可以组合实施,本申请实施例对此并不限定。
本申请实施例的技术方案可以应用于锂电池,包括锂离子电池和锂金属电池,但本申请实施例对此并不限定。
图1示出了本申请实施例的锂电池的锂电芯的示意图。
如图1所示,锂电芯包括:电芯组件,电芯组件包括正极101、负极102、将正极101与负极102间隔设置的隔膜103,以及参比电极104。正极101与负极102采用能可逆地嵌入与脱嵌锂离子的化合物。正极一般选择相对于锂而言电位大于3V且在空气中稳定的嵌锂的过渡金属氧化物,例如,LiCoO 2、LiNiO 2、LiMn 2O 4、LiFePO 4等。负极一般选择电位尽可能接近锂电位的可嵌入锂的化合物,例如各种碳材料,包括天然石墨、合成石墨、碳纤维、中间相小球碳素等,以及金属氧化物,包括:SnO、SnO 2、锡复合氧化物等。在一些实施例中,参比电极用来指示正极101和/或负极102的电压。参比电极104可以设置于隔膜103中间,并被隔膜103包裹从而能够与正极101以及负极102绝缘。参比电极104也可以不设置在隔膜103中间,只要与正极101以及负极102绝缘即可。在一些实施例中,参比电极至少包括如下一种:饱和甘汞电极、银氯化银电极。
锂电芯还包括壳体110,壳体110具有一容纳腔,用于收容电芯组件。
锂电芯还包括设于壳体110外的正极接头121、负极接头122以及参比电极接头124,正极接头121、负极接头122以及参比电极接头124分别 连接于正极101、负极102以及参比电极103,还用于与外部电路电连接。
锂电芯还包括电解质130,电解质130填充于电芯组件内,和/或壳体110与电芯组件之间的空间。
如前所述,在对锂电池进行快速充电时,可能会出现析锂现象,引发电池安全可靠性问题。鉴于此,本申请实施例提供了一种改进的技术方案,针对例如图1所示的锂电池,基于负极电压控制锂电池的充电过程,能够在保证电池的安全性能的同时提高充电的效率。
图2示出了本申请实施例的对锂电池进行充电的方法200的示意性流程图。该方法200可以对至少一个锂电池,例如图1所示的锂电池,进行充电。
201,对待充电的锂电池按照第一预设电流充电。
第一预设电流可以采用较大的电流,以便较快的充电。具体地,第一预设电流可以采用锂电池能接受的最大电流,即,不会产生不应有的副反应,不会对电芯的寿命和性能造成不良影响的最大电流。这样,可以最大化的实现快速充电。例如,第一预设电流的电流范围可以为1C-10C。C为电池容量,例如,假设电池容量为1000mAh,则第一预设电流的电流范围可以为1000mA-10A。
202,获取所述锂电池的负极电压。
为了避免一直较大电流充电可能产生的析锂问题,在本申请实施例中,获取锂电池的负极电压,基于负极电压控制锂电池的充电过程(即,从开始充电到充电完成的整个过程)。
负极电压为负极与参比电极之间的电压。所述参比电极设置于所述锂电池内。也就是说,除了正极和负极外,锂电池内还设置有参比电极(如图1所示)。相应地,正极电压为正极与参比电极之间的电压;而正极与负极之间的电压为电池的端电压。例如,图1中,正极接头121与参比电极接头124间的电压为正极电压;负极接头122与参比电极接头124间的电压为负极电压;正极接头121与负极接头122间的电压为端电压。
可选地,负极电压的获取方式可以是直接获取的方式,也就是说,获取所述锂电池的负极电压,可以为获取所述锂电池的负极与参比电极之间的电压。例如,可以直接获取图1中,负极接头122与参比电极接头124间的电压。
可选地,负极电压的获取方式还可以是间接获取的方式,即通过正极电压和端电压间接获取。在这种情况下,获取所述锂电池的负极电压,可以为根据所述锂电池的正极与负极之间的电压、以及所述锂电池的正极电压,确定所述负极电压。相应地,在这种情况下,还需要根据所述锂电池的正极与参比电极之间的电压获取所述正极电压;以及,获取所述锂电池的正极与负极之间的电压。
例如,如图3所示,通过锂电池的正极接头301、负极接头302以及参比电极接头303可以测得电池的正极电压、负极电压和端电压。具体地,通过负极接头302和参比电极接头303可以测得负极电压;通过正极接头301和参比电极接头303可以测得正极电压;通过正极接头301和负极接头302可以测得端电压。正极电压、负极电压和端电压中的任意一个电压可以通过其他两个电压间接得到,因此,每个电压既可以通过直接方式获取,也可以通过间接方式获取。
可选地,可以实时获取所述负极电压,并基于所述负极电压进行后续流程。负极电压能够反映锂离子在负极的沉积情况,通过实时获取所述负极电压,从而能够及时根据负极电压得知锂离子在负极的沉积情况,对后续充电过程进行有效的管理。例如,可以在开始充电后就实时获取所述负极电压;或者,也可以在满足一定条件,如在接收到获取指令后,开始实时获取所述负极电压。例如,该指令可以在充电一段时间后发出。刚开始充电时负极电压还未降到很低,在收到指令后再实时获取负极电压可以节省一定的处理资源。
可选地,可以在对所述锂电池进行充电预设时间后获取所述负极电压,再基于所述负极电压进行后续流程。由于刚开始充电时,负极电压变化还不大,因此,可以在充电预设时间后再获取所述负极电压。该预设时间可以通过试验或训练得到。这样也可以较大限度的节省处理资源。
203,根据所述负极电压,确定所述负极电压是否满足第一预设条件。
若所述负极电压未满足所述第一预设条件,则继续获取所述负极电压并确定所述负极电压是否满足第一预设条件。在所述负极电压满足所述第一预设条件时,执行步骤204。
204,若所述负极电压满足所述第一预设条件,则对所述锂电池按照第二预设电流进行放电,直至所述负极电压满足第二预设条件,其中,所述 第二预设电流不大于所述第一预设电流。
由于一直较大电流充电可能产生的析锂问题,因此,在所述负极电压满足所述第一预设条件时,对所述锂电池进行放电。放电使得所述负极电压升高,从而避免析锂。放电到所述负极电压满足第二预设条件时再进行充电,即,重复上述步骤。
快充(大电流充电)与小电流充电相比,负极电压更容易到达析锂电位,这是因为快充可能会造成锂在负极表面的沉积,拉低了负极的电位。放电(反向充电)有利于使这部分沉积的锂至少部分回到正极,每一次的放电过程,都是为了使这部分沉积的锂回到正极。从而使得所述负极电压升高,负极电位大于析锂电位,从而避免析锂。
可选地,可以在所述负极电压下降到第一电压阈值时,对所述锂电池进行放电,直至所述负极电压上升到第二电压阈值,其中,所述第二电压阈值大于所述第一电压阈值。
第一电压阈值可以是避免析锂的最低电压。这样,在所述负极电压下降到第一电压阈值时,对所述锂电池进行放电可以避免负极电压太低而析锂。
第二电压阈值可以接近所述锂电池在上一次充电初始状态时的负极电压的电压值;或者,第二电压阈值可以为在放电过程中所述负极电压不再上升时的电压值。这样,通过放电使得所述负极电压升高到较高的值,再进行下一次充电,下一次充电能够进行较长的时间。
可选地,所述第一预设条件可以包括:所述负极电压接近于所述锂电池的析锂电位。也就是说,可以在所述负极电压接近于所述锂电池的析锂电位时,对所述锂电池按照第二预设电流进行放电。
可选地,所述第一预设条件可以包括:所述负极电压不大于0.05V。负极电压接近0V时,可能会发生析锂,因此,可以在所述负极电压不大于0.05V时,对所述锂电池按照第二预设电流进行放电,以确保不会发生析锂。
放电所采用的所述第二预设电流不大于充电所采用的所述第一预设电流。例如,所述第二预设电流的电流范围可以为0.01C-1C。
可选地,所述第一预设电流以及所述第二预设电流可以为恒电流,也可以为变电流。恒电流是指在每一个充电/放电周期电流恒定。变电流是指在每一个充电/放电周期电流变化,例如,可以从大到小变化。
可选地,对锂电池按照第一预设电流充电,可以是对所述锂电池按照 所述第一预设电流充电预设时间;或者,对所述锂电池按照所述第一预设电流充电直至对所述锂电池按照第二预设电流进行放电。
也就是说,可以预设对锂电池充电的时间,按照该预设时间对锂电池进行充电;或者,不预设对锂电池充电的时间,而是仅通过负极电压判断是否切换为放电。前一种方式可以减少检测电压的时间,而后一种方式可以确保更加准确的控制。
可选地,对锂电池充电的预设时间大于对所述锂电池按照所述第二预设电流进行放电的时间。
图4和图5分别示出了本申请一个实施例的对锂电池进行充电过程中的电流和负极电压与时间的关系图。
如图4和图5所示,先对锂电池按照一个较大电流(例如,1C-10C)进行充电,随着充电的进行,负极电压下降,在T1时刻,负极电压满足第一预设条件,这时对锂电池按照一个较小电流(例如,0.01C-1C)进行放电,随着放电的进行,负极电压升高,在T2时刻,负极电压满足第二预设条件,这时再对锂电池按照较大电流进行充电,重复上述过程。
应理解,由于负极电压可以由正极电压和端电压得到,上述基于负极电压的操作可以变换为基于正极电压和端电压的操作。也就是说,可以不获取负极电压,而直接基于正极电压和端电压进行相应的操作。例如,对锂电池进行放电的操作可以基于正极电压和端电压而确定。为了简洁,在此不再一一赘述。
本申请实施例的技术方案,采用较大电流对锂电池进行充电,并基于负极电压控制锂电池的充电过程,在负极电压降低到预定值时对锂电池进行放电,在负极电压升高后再次对锂电池进行充电,这种基于负极电压对锂电池循环充放电的方式,可以在避免析锂现象的情况下实现快速充电。
可选地,在本申请实施例中,可以获取所述锂电池的正极与负极之间的电压,根据所述锂电池的正极与负极之间的电压确定所述锂电池是否充满。
在锂电池的正极与负极之间的电压(端电压)达到预定值时,确定锂电池已充满,完成本次充电流程。
另外,若在对锂电池进行放电后,锂电池的负极电压仍然很低,例如接近零伏,则可以确定电池性能恶化,停止充电流程,避免发生安全事故。
在充电流程中,还可以考虑锂电池的温度,基于锂电池的温度进行相 应的处理。也就是说,在这种情况下,还可以检测锂电池的温度,其中,所述锂电池的温度可以为所述锂电池表面和/或极耳附近的温度。例如,可以通过传感器获取所述锂电池的温度。在所述锂电池的温度达到预定温度阈值时,对所述锂电池进行上述充电的方法;在所述锂电池的温度未达到所述预定阈值时,触发显示装置显示所述锂电池的温度,并停止对所述锂电池进行充电。
负极温度过低时,也容易发生析锂现象。结合温度控制对锂电池的充电流程,可以避免在负极温度过低的情况仍然对锂电池充电,从而能够更好地保证电池的安全性能。
本申请实施例的技术方案,基于负极电压控制锂电池的充电过程,可以在快充的同时避免析锂现象,从而能够在保证电池的安全性能的同时提高充电的效率。
上文中详细描述了本申请实施例的对锂电池进行充电的方法,下面将描述本申请实施例的对锂电池进行充电的电路、充电器、智能电池、控制器和可移动平台。
图6示出了本申请实施例的对锂电池进行充电的电路600的示意图。该电路600可以执行上述本申请实施例的对锂电池进行充电的方法。
如图6所示,该电路600可以包括:控制电路610和充放电电路620。
所述控制电路610用于:
控制所述充放电电路620对待充电的锂电池按照第一预设电流充电;
获取所述锂电池的负极电压;
根据所述负极电压,确定所述负极电压是否满足第一预设条件;
若所述负极电压满足所述第一预设条件,则控制所述充放电电路620对所述锂电池按照第二预设电流进行放电,直至所述负极电压满足第二预设条件,其中,所述第二预设电流不大于所述第一预设电流;
重复上述步骤。
可选地,控制电路610可以采用微控制单元(Microcontroller Unit,MCU)。
所述充放电电路620用于在所述控制电路610的控制下对所述锂电池进行充电/放电。
可选地,在本申请一个实施例中,如图6所示,所述电路600还可以包括:检测电路630。
检测电路630,用于检测所述锂电池的电极电压,并将所述电极电压传输给所述控制电路610。
可选地,检测电路630可以采用集成电路(Integrated Circuit,IC)。
所述检测电路630可以包括用于分别与所述锂电池的正极、负极和参比电极电连接的连接线。通过与所述锂电池的正极和参比电极电连接的连接线可以检测到正极电压;通过与所述锂电池的负极和参比电极电连接的连接线可以检测到负极电压;通过与所述锂电池的正极和负极电连接的连接线可以检测到端电压。
所述检测电路630与所述控制电路610之间具有通信连接,所述检测电路630可以将检测到的电压发送给所述控制电路610。
可选地,在本申请一个实施例中,所述控制电路610用于控制所述充放电电路620对所述锂电池按照所述第一预设电流充电预设时间,或者,对所述锂电池按照所述第一预设电流充电直至对所述锂电池按照第二预设电流进行放电。
可选地,在本申请一个实施例中,所述控制电路610用于获取所述锂电池的负极与参比电极之间的电压,其中,所述参比电极设置于所述锂电池内。
可选地,在本申请一个实施例中,所述控制电路610用于根据所述锂电池的正极与负极之间的电压、以及所述锂电池的正极电压,确定所述负极电压。
可选地,在本申请一个实施例中,所述控制电路610还用于根据所述锂电池的正极与参比电极之间的电压获取所述正极电压,其中,所述参比电极设置于所述锂电池内。
可选地,在本申请一个实施例中,所述控制电路610还用于获取所述锂电池的正极与负极之间的电压。
可选地,在本申请一个实施例中,所述控制电路610用于实时获取所述负极电压,或者在对所述锂电池进行充电预设时间后获取所述负极电压。
可选地,在本申请一个实施例中,所述预设时间大于对所述锂电池按照所述第二预设电流进行放电的时间。
可选地,在本申请一个实施例中,所述控制电路610用于控制所述充放电电路620,在所述负极电压下降到第一电压阈值时,对所述锂电池进行 放电,直至所述负极电压上升到第二电压阈值锂电池,其中,所述第二电压阈值大于所述第一电压阈值。
可选地,在本申请一个实施例中,所述第二电压阈值接近所述锂电池在上一次充电初始状态时的负极电压的电压值。
可选地,在本申请一个实施例中,所述第二电压阈值为在放电过程中所述负极电压不再上升时的电压值。
可选地,在本申请一个实施例中,所述第一预设条件包括:所述负极电压接近于所述锂电池的析锂电位。
可选地,在本申请一个实施例中,所述第一预设条件包括:所述负极电压不大于0.05V。
可选地,在本申请一个实施例中,所述第一预设电流的电流范围为1C-10C。
可选地,在本申请一个实施例中,所述第二预设电流的电流范围为0.01C-1C。
可选地,在本申请一个实施例中,所述第一预设电流以及所述第二预设电流为恒电流或变电流。
可选地,在本申请一个实施例中,所述控制电路610还用于获取所述锂电池的正极与负极之间的电压,根据所述锂电池的正极与负极之间的电压,确定所述锂电池是否充满。
可选地,在本申请一个实施例中,所述控制电路610还用于获取所述锂电池的温度。
可选地,在本申请一个实施例中,所述电路600还可以包括:
传感器,用于检测所述锂电池的温度,并将所述锂电池的温度传输给所述控制电路。
可选地,在本申请一个实施例中,所述传感器用于检测所述锂电池表面和/或极耳附近的温度。
可选地,在本申请一个实施例中,所述锂电池的温度为所述锂电池表面和/或极耳附近的温度。
可选地,在本申请一个实施例中,所述控制电路610还用于:
在所述锂电池的温度达到预定温度阈值时,控制所述充放电电路620对所述锂电池进行充电或放电;
在所述锂电池的温度未达到所述预定阈值时,触发显示电路显示所述锂电池的温度,并停止对所述锂电池进行充电。
可选地,在本申请一个实施例中,所述锂电池至少为一个。
在图6的基础上,图7示出了本申请实施例的充电器700的示意图。如图7所示,该充电器700包括:
电源输出接口710、信号接口720以及上述本申请实施例的对锂电池进行充电的电路600。
所述电路600分别电性连接至所述电源输出接口710以及所述信号接口720,所述电源输出接口710用于输出充电信号,所述信号接口720用于获取锂电池的充电信息。
在图6的基础上,图8示出了本申请实施例的智能电池800的示意图。如图8所示,该智能电池800可以包括:
电池外壳810,设有容纳腔;
设于所述电池外壳810的正极端子821、负极端子822,所述正极端子821和负极端子822用于与外部电路电连接;
至少一个锂电芯820,收容在所述容纳腔内,所述锂电芯820可以为图1所示的锂电芯;以及,
控制组件830,安装在所述容纳腔内,所述控制组件包括上述本申请实施例的对锂电池进行充电的电路600。
所述控制组件830与所述正极端子821、所述负极端子822、以及所述锂电芯电820连接,用于对所述锂电芯820的状态进行管控,所述锂电芯820通过所述正极端子821、所述负极端子822进行充电或放电。
本申请实施例还提供了一种锂电池充电的控制器,该控制器包括一个或多个处理器,单独地或共同地工作,所述处理器用于执行上述本申请实施例的对锂电池进行充电的方法。
在图6的基础上,本申请实施例还提供了一种可移动平台900,如图9所示。所述可移动平台900包括:一个或多个动力装置910以及上述本申请实施例的对锂电池进行充电的电路600。
一个或多个动力装置910,被配置为实现所述可移动平台900的移动。
所述电路600被配置对所述可移动平台900的充电进行控制。
例如,所述可移动平台900可以是无人机、无人驾驶船、自动驾驶车辆、机器人、航拍***、航拍飞行器或手持云台等,但本申请实施例对此并不限定。
本申请实施例的对锂电池进行充电的电路、充电器、智能电池、控制器和可移动平台可对应于本申请实施例的对锂电池进行充电的方法的执行主体,并且对锂电池进行充电的电路、充电器、智能电池、控制器和可移动平台中的各个模块的上述和其它操作和/或功能分别为了实现前述各个方法的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机存储介质,该计算机存储介质中存储有程序代码,该程序代码可以用于指示执行上述本申请实施例的对锂电池进行充电的方法。
应理解,在本申请实施例中,术语“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系。例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
在本申请所提供的几个实施例中,应该理解到,所揭露的***、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个***,或一些特征可以忽略,或不执行。另外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口、装置或单元的间接耦合或通信连接,也可以是电的,机械的或其它的形式连接。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个 地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本申请实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以是两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分,或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (51)

  1. 一种对锂电池进行充电的方法,其特征在于,包括:
    对待充电的锂电池按照第一预设电流充电;
    获取所述锂电池的负极电压;
    根据所述负极电压,确定所述负极电压是否满足第一预设条件;
    若所述负极电压满足所述第一预设条件,则对所述锂电池按照第二预设电流进行放电,直至所述负极电压满足第二预设条件,其中,所述第二预设电流不大于所述第一预设电流;
    重复上述步骤。
  2. 根据权利要求1所述的方法,其特征在于,所述对待充电的锂电池按照第一预设电流充电,包括:
    对所述锂电池按照所述第一预设电流充电预设时间;或者,
    对所述锂电池按照所述第一预设电流充电直至对所述锂电池按照第二预设电流进行放电。
  3. 根据权利要求1所述的方法,其特征在于,所述获取所述锂电池的负极电压,包括:
    获取所述锂电池的负极与参比电极之间的电压,其中,所述参比电极设置于所述锂电池内。
  4. 根据权利要求1所述的方法,其特征在于,所述获取所述锂电池的负极电压,包括:
    根据所述锂电池的正极与负极之间的电压、以及所述锂电池的正极电压,确定所述负极电压。
  5. 根据权利要求4所述的方法,其特征在于,还包括:
    根据所述锂电池的正极与参比电极之间的电压获取所述正极电压,其中,所述参比电极设置于所述锂电池内。
  6. 根据权利要求4所述的方法,其特征在于,在根据所述锂电池的正极与负极之间的电压、以及所述锂电池的正极电压,确定所述负极电压之前,包括:
    获取所述锂电池的正极与负极之间的电压。
  7. 根据权利要求1所述的方法,其特征在于,获取待充电的锂电池的 负极电压,包括:
    实时获取所述负极电压,或者在对所述锂电池进行充电预设时间后获取所述负极电压。
  8. 根据权利要求7所述的方法,其特征在于,所述预设时间大于对所述锂电池按照所述第二预设电流进行放电的时间。
  9. 根据权利要求1所述的方法,其特征在于,若所述负极电压满足所述第一预设条件,则对所述锂电池按照第二预设电流进行放电,直至所述负极电压满足第二预设条件,包括:
    在所述负极电压下降到第一电压阈值时,对所述锂电池进行放电,直至所述负极电压上升到第二电压阈值锂电池,其中,所述第二电压阈值大于所述第一电压阈值。
  10. 根据权利要求9所述的方法,其特征在于,所述第二电压阈值接近所述锂电池在上一次充电初始状态时的负极电压的电压值。
  11. 根据权利要求9或10所述的方法,其特征在于,所述第二电压阈值为在放电过程中所述负极电压不再上升时的电压值。
  12. 根据权利要求1所述的方法,其特征在于,所述第一预设条件包括:所述负极电压接近于所述锂电池的析锂电位。
  13. 根据权利要求1所述的方法,其特征在于,所述第一预设条件包括:所述负极电压不大于0.05V。
  14. 根据权利要求1所述的方法,其特征在于,所述第一预设电流的电流范围为1C-10C。
  15. 根据权利要求1所述的方法,其特征在于,所述第二预设电流的电流范围为0.01C-1C。
  16. 根据权利要求1所述的方法,其特征在于,所述第一预设电流以及所述第二预设电流为恒电流或变电流。
  17. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    获取所述锂电池的正极与负极之间的电压,根据所述锂电池的正极与负极之间的电压确定所述锂电池是否充满。
  18. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    获取所述锂电池的温度。
  19. 根据权利要求18所述的方法,其特征在于,所述获取所述锂电池 的温度,包括:
    获取所述锂电池表面和/或极耳附近的温度。
  20. 根据权利要求18所述的方法,其特征在于,所述获取所述锂电池的温度,包括:
    通过传感器获取所述锂电池的温度。
  21. 根据权利要求18所述的方法,其特征在于,所述方法还包括:
    在所述锂电池的温度达到预定温度阈值时,对所述锂电池进行权利要求1所述的充电的方法;
    在所述锂电池的温度未达到所述预定阈值时,触发显示装置显示所述锂电池的温度,并停止对所述锂电池进行充电。
  22. 根据权利要求1所述的方法,其特征在于,所述锂电池至少为一个。
  23. 一种对锂电池进行充电的电路,其特征在于,包括:控制电路和充放电电路;
    其中,所述控制电路用于:
    控制所述充放电电路对待充电的锂电池按照第一预设电流充电;
    获取所述锂电池的负极电压;
    根据所述负极电压,确定所述负极电压是否满足第一预设条件;
    若所述负极电压满足所述第一预设条件,则控制所述充放电电路对所述锂电池按照第二预设电流进行放电,直至所述负极电压满足第二预设条件,其中,所述第二预设电流不大于所述第一预设电流;
    重复上述步骤。
  24. 根据权利要求23所述的电路,其特征在于,所述电路还包括:
    检测电路,用于检测所述锂电池的电极电压,并将所述电极电压传输给所述控制电路。
  25. 根据权利要求24所述的电路,其特征在于,所述检测电路包括用于分别与所述锂电池的正极、负极和参比电极电连接的连接线。
  26. 根据权利要求23所述的电路,其特征在于,所述控制电路用于控制所述充放电电路对所述锂电池按照所述第一预设电流充电预设时间,或者,对所述锂电池按照所述第一预设电流充电直至对所述锂电池按照第二预设电流进行放电。
  27. 根据权利要求23所述的电路,其特征在于,所述控制电路用于获 取所述锂电池的负极与参比电极之间的电压,其中,所述参比电极设置于所述锂电池内。
  28. 根据权利要求23所述的电路,其特征在于,所述控制电路用于根据所述锂电池的正极与负极之间的电压、以及所述锂电池的正极电压,确定所述负极电压。
  29. 根据权利要求28所述的电路,其特征在于,所述控制电路还用于根据所述锂电池的正极与参比电极之间的电压获取所述正极电压,其中,所述参比电极设置于所述锂电池内。
  30. 根据权利要求28所述的方法,其特征在于,所述控制电路还用于获取所述锂电池的正极与负极之间的电压。
  31. 根据权利要求23所述的电路,其特征在于,所述控制电路用于实时获取所述负极电压,或者在对所述锂电池进行充电预设时间后获取所述负极电压。
  32. 根据权利要求31所述的电路,其特征在于,所述预设时间大于对所述锂电池按照所述第二预设电流进行放电的时间。
  33. 根据权利要求23所述的电路,其特征在于,所述控制电路用于控制所述充放电电路,在所述负极电压下降到第一电压阈值时,对所述锂电池进行放电,直至所述负极电压上升到第二电压阈值锂电池,其中,所述第二电压阈值大于所述第一电压阈值。
  34. 根据权利要求33所述的电路,其特征在于,所述第二电压阈值接近所述锂电池在上一次充电初始状态时的负极电压的电压值。
  35. 根据权利要求33或34所述的电路,其特征在于,所述第二电压阈值为在放电过程中所述负极电压不再上升时的电压值。
  36. 根据权利要求23所述的电路,其特征在于,所述第一预设条件包括:所述负极电压接近于所述锂电池的析锂电位。
  37. 根据权利要求23所述的电路,其特征在于,所述第一预设条件包括:所述负极电压不大于0.05V。
  38. 根据权利要求23所述的电路,其特征在于,所述第一预设电流的电流范围为1C-10C。
  39. 根据权利要求23所述的电路,其特征在于,所述第二预设电流的电流范围为0.01C-1C。
  40. 根据权利要求23所述的电路,其特征在于,所述第一预设电流以及所述第二预设电流为恒电流或变电流。
  41. 根据权利要求23所述的电路,其特征在于,所述控制电路还用于获取所述锂电池的正极与负极之间的电压,根据所述锂电池的正极与负极之间的电压,确定所述锂电池是否充满。
  42. 根据权利要求23所述的电路,其特征在于,所述控制电路还用于获取所述锂电池的温度。
  43. 根据权利要求42所述的电路,其特征在于,所述电路还包括:
    传感器,用于检测所述锂电池的温度,并将所述锂电池的温度传输给所述控制电路。
  44. 根据权利要求43所述的电路,其特征在于,所述传感器用于检测所述锂电池表面和/或极耳附近的温度。
  45. 根据权利要求42所述的电路,其特征在于,所述锂电池的温度为所述锂电池表面和/或极耳附近的温度。
  46. 根据权利要求42所述的电路,其特征在于,所述控制电路还用于:
    在所述锂电池的温度达到预定温度阈值时,控制所述充放电电路对所述锂电池进行充电或放电;
    在所述锂电池的温度未达到所述预定阈值时,触发显示电路显示所述锂电池的温度,并停止对所述锂电池进行充电。
  47. 根据权利要求23所述的电路,其特征在于,所述锂电池至少为一个。
  48. 一种充电器,其特征在于,包括:
    电源输出接口、信号接口以及如权利要求23-47中任一项所述的电路;
    其中,所述电路分别电性连接至所述电源输出接口以及所述信号接口,所述电源输出接口用于输出充电信号,所述信号接口用于获取锂电池的充电信息。
  49. 一种智能电池,其特征在于,包括:
    电池外壳,设有容纳腔;
    设于所述电池外壳的正极端子、负极端子,所述正极端子和负极端子用于与外部电路电连接;
    至少一个锂电芯,收容在所述容纳腔内;以及,
    控制组件,安装在所述容纳腔内,所述控制组件包括如权利要求23-47中任一项所述的电路;
    其中,所述控制组件与所述正极端子、所述负极端子、以及所述锂电芯电连接,用于对所述锂电芯的状态进行管控,所述锂电芯通过所述正极端子、所述负极端子进行充电或放电。
  50. 一种锂电池充电的控制器,其特征在于,包括:
    一个或多个处理器,单独地或共同地工作,所述处理器用于:
    对待充电的锂电池按照第一预设电流充电;
    获取所述锂电池的负极电压;
    根据所述负极电压,确定所述负极电压是否满足第一预设条件;
    若所述负极电压满足所述第一预设条件,则控制所述锂电池按照第二预设电流进行放电,直至所述负极电压满足第二预设条件,其中,所述第二预设电流不大于所述第一预设电流;
    重复上述步骤。
  51. 一种可移动平台,其特征在于,包括:
    一个或多个动力装置,其被配置为实现所述可移动平台的移动;以及,
    如权利要求23-47中任一项所述的电路,所述电路被配置对所述可移动平台的充电进行控制。
PCT/CN2018/122537 2018-12-21 2018-12-21 对锂电池进行充电的方法及相关装置 WO2020124521A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2018/122537 WO2020124521A1 (zh) 2018-12-21 2018-12-21 对锂电池进行充电的方法及相关装置
CN201880068446.4A CN111279573A (zh) 2018-12-21 2018-12-21 对锂电池进行充电的方法及相关装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/122537 WO2020124521A1 (zh) 2018-12-21 2018-12-21 对锂电池进行充电的方法及相关装置

Publications (1)

Publication Number Publication Date
WO2020124521A1 true WO2020124521A1 (zh) 2020-06-25

Family

ID=70999763

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/122537 WO2020124521A1 (zh) 2018-12-21 2018-12-21 对锂电池进行充电的方法及相关装置

Country Status (2)

Country Link
CN (1) CN111279573A (zh)
WO (1) WO2020124521A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4152552A4 (en) * 2021-07-29 2023-03-22 Contemporary Amperex Technology Co., Limited BATTERY CHARGING METHOD AND CHARGE AND DISCHARGE APPARATUS

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111613846B (zh) * 2020-07-10 2021-11-30 深圳传音控股股份有限公司 电池的充电方法、手持终端及可读存储介质
EP4071885A1 (en) 2021-02-09 2022-10-12 Contemporary Amperex Technology Co., Limited Battery charging method, controller, battery management system, battery, and electric apparatus
CN115642325A (zh) * 2021-07-20 2023-01-24 Oppo广东移动通信有限公司 电池充电方法及电路、多电芯电池、终端设备与电子设备
KR20230019401A (ko) * 2021-07-29 2023-02-08 컨템포러리 엠퍼렉스 테크놀로지 씨오., 리미티드 배터리 충전 방법, 배터리 관리 시스템 및 충방전 장치
KR20230098257A (ko) * 2021-09-08 2023-07-03 컨템포러리 엠퍼렉스 테크놀로지 씨오., 리미티드 파워 배터리 충전 방법 및 배터리 관리 시스템
CN114184966A (zh) * 2021-11-29 2022-03-15 维沃移动通信有限公司 电池检测方法、装置、电子设备和可读存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1815798A (zh) * 2006-01-19 2006-08-09 东莞新能源电子科技有限公司 一种提高锂离子动力电池安全性的方法
CN101051701A (zh) * 2007-03-01 2007-10-10 华为技术有限公司 一种蓄电池脉冲快速充电方法及充电***
CN104919642A (zh) * 2013-01-11 2015-09-16 株式会社半导体能源研究所 电子设备充电方法
CN104953087A (zh) * 2014-03-26 2015-09-30 联想(北京)有限公司 一种锂电池及其负极、电芯、负极电压监控方法
CN107104249A (zh) * 2016-02-23 2017-08-29 东莞新能源科技有限公司 锂离子电池充电方法
CN107516750A (zh) * 2017-08-03 2017-12-26 国联汽车动力电池研究院有限责任公司 一种确定锂离子电池安全充电条件的方法及装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7785740B2 (en) * 2004-04-09 2010-08-31 Air Products And Chemicals, Inc. Overcharge protection for electrochemical cells
CN103730702B (zh) * 2012-10-12 2016-01-13 北汽福田汽车股份有限公司 一种电动汽车的车载锂电池充电方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1815798A (zh) * 2006-01-19 2006-08-09 东莞新能源电子科技有限公司 一种提高锂离子动力电池安全性的方法
CN101051701A (zh) * 2007-03-01 2007-10-10 华为技术有限公司 一种蓄电池脉冲快速充电方法及充电***
CN104919642A (zh) * 2013-01-11 2015-09-16 株式会社半导体能源研究所 电子设备充电方法
CN104953087A (zh) * 2014-03-26 2015-09-30 联想(北京)有限公司 一种锂电池及其负极、电芯、负极电压监控方法
CN107104249A (zh) * 2016-02-23 2017-08-29 东莞新能源科技有限公司 锂离子电池充电方法
CN107516750A (zh) * 2017-08-03 2017-12-26 国联汽车动力电池研究院有限责任公司 一种确定锂离子电池安全充电条件的方法及装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4152552A4 (en) * 2021-07-29 2023-03-22 Contemporary Amperex Technology Co., Limited BATTERY CHARGING METHOD AND CHARGE AND DISCHARGE APPARATUS

Also Published As

Publication number Publication date
CN111279573A (zh) 2020-06-12

Similar Documents

Publication Publication Date Title
WO2020124521A1 (zh) 对锂电池进行充电的方法及相关装置
ES2833171T3 (es) Método y aparato de carga de baterías
US12015296B2 (en) Charging method and apparatus
US10680299B2 (en) Battery heating methods and systems
JP5723925B2 (ja) 二次電池の保護回路及びそれを備えた二次電池
JP6387415B2 (ja) リチウムイオン電池で構成されるユニバーサル充電池及びその制御方法
CN108777339B (zh) 一种锂离子电池脉冲放电自加热方法及装置
EP0948075B1 (en) Method for managing charge/discharge of secondary battery
US20090184685A1 (en) Battery pack and method of charging the same
US20220271358A1 (en) Method and system for determining parameters of battery pulsed heating
US7071653B2 (en) Method for charging a non-aqueous electrolyte secondary battery and charger therefor
US7701169B2 (en) Lithium secondary battery having internal protection circuit
US11909244B2 (en) Battery controller and method for suppression of lithium plating during charging
CN202121027U (zh) 一种带有高精度电流保护电路的电池
US11973364B2 (en) Circuit control method, battery and its controller and management system, and electrical apparatus
EP1455194B1 (en) Apparatus and method for charging battery cells
US11480619B2 (en) Estimation apparatus, estimation method, and computer program
JP6113523B2 (ja) 二次電池装置の制御方法および二次電池装置
JP4472415B2 (ja) 非水電解質二次電池の充電方法および充電器
CN111835056B (zh) 电池管理方法、应用其的供电电池以及供电***
WO2021142595A1 (zh) 充电控制方法、充电器、充电***及存储介质
KR20190054512A (ko) 배터리 충전 방법 및 배터리 충전 장치
JPH09163618A (ja) 電池の充電方法
CN210608578U (zh) 一种智能判断的自适应bms***板电路
WO2023184336A1 (zh) 电化学装置及其控制方法、电子设备和存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18943843

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18943843

Country of ref document: EP

Kind code of ref document: A1