WO2020122068A1 - Method for manufacturing fertilizer for natural water and fertilizer for natural water - Google Patents

Method for manufacturing fertilizer for natural water and fertilizer for natural water Download PDF

Info

Publication number
WO2020122068A1
WO2020122068A1 PCT/JP2019/048290 JP2019048290W WO2020122068A1 WO 2020122068 A1 WO2020122068 A1 WO 2020122068A1 JP 2019048290 W JP2019048290 W JP 2019048290W WO 2020122068 A1 WO2020122068 A1 WO 2020122068A1
Authority
WO
WIPO (PCT)
Prior art keywords
fertilizer
solid
natural water
phosphorus
liquid
Prior art date
Application number
PCT/JP2019/048290
Other languages
French (fr)
Japanese (ja)
Inventor
熙濬 金
Original Assignee
国立大学法人新潟大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人新潟大学 filed Critical 国立大学法人新潟大学
Priority to JP2020559254A priority Critical patent/JP7467798B2/en
Publication of WO2020122068A1 publication Critical patent/WO2020122068A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE
    • B09B5/00Operations not covered by a single other subclass or by a single other group in this subclass
    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05BPHOSPHATIC FERTILISERS
    • C05B13/00Fertilisers produced by pyrogenic processes from phosphatic materials
    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05DINORGANIC FERTILISERS NOT COVERED BY SUBCLASSES C05B, C05C; FERTILISERS PRODUCING CARBON DIOXIDE
    • C05D9/00Other inorganic fertilisers
    • C05D9/02Other inorganic fertilisers containing trace elements
    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05FORGANIC FERTILISERS NOT COVERED BY SUBCLASSES C05B, C05C, e.g. FERTILISERS FROM WASTE OR REFUSE
    • C05F7/00Fertilisers from waste water, sewage sludge, sea slime, ooze or similar masses
    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05GMIXTURES OF FERTILISERS COVERED INDIVIDUALLY BY DIFFERENT SUBCLASSES OF CLASS C05; MIXTURES OF ONE OR MORE FERTILISERS WITH MATERIALS NOT HAVING A SPECIFIC FERTILISING ACTIVITY, e.g. PESTICIDES, SOIL-CONDITIONERS, WETTING AGENTS; FERTILISERS CHARACTERISED BY THEIR FORM
    • C05G1/00Mixtures of fertilisers belonging individually to different subclasses of C05
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/20Fertilizers of biological origin, e.g. guano or fertilizers made from animal corpses

Definitions

  • the present invention relates to a method for producing a fertilizer for natural water and a fertilizer for natural water.
  • An object of the present invention is to provide a fertilizer for natural water, which contains phosphorus, silicon and iron, and has a sufficiently low heavy metal content while effectively utilizing sludge ash, and also to manufacture the fertilizer for natural water.
  • a fertilizer for natural water which contains phosphorus, silicon and iron, and has a sufficiently low heavy metal content while effectively utilizing sludge ash, and also to manufacture the fertilizer for natural water.
  • a method In particular, it is to provide a fertilizer for natural water in which the elution rate of fertilizer components is suitably controlled, and to provide a method for producing the fertilizer for natural water.
  • the method for producing a fertilizer for natural water of the present invention comprises a first dissolution step of mixing sludge ash and an acidic liquid to dissolve heavy metals and phosphorus contained in the sludge ash, A first solid-liquid separation step of separating and removing the first liquid in which the heavy metal and phosphorus are dissolved from the first solid; A reactive ionic substance adding step of adding a reactive ionic substance which is a hydroxide and/or a salt of an alkali metal and/or a Group 2 element to the first solid; And a firing step of subjecting the composition containing the first solid and the reactive ionic substance to a firing treatment.
  • the reactive ionic substance is preferably a hydroxide and/or salt containing Na and/or Ca.
  • the reactive ionic substance is one selected from the group consisting of Na 2 CO 3 , NaOH, CaCO 3 , Ca(OH) 2 , CaCl 2 and NaCl, or It is preferable that there are two or more kinds.
  • the firing temperature in the firing treatment is preferably 150°C or higher and 1100°C or lower.
  • the treatment time of the calcination treatment is 0.5 hours or more and 100 hours or less.
  • the method for producing a fertilizer for natural water of the present invention preferably has a reducing step in which a reducing agent is added to the first solid to carry out a reducing treatment.
  • the method for producing a fertilizer for natural water of the present invention preferably further comprises an N component addition step of adding a nitrogen-based fertilizer component into the system after the first solid-liquid separation step.
  • the method for producing a fertilizer for natural water of the present invention preferably further comprises a P component addition step of adding a phosphorus fertilizer component into the system after the first solid-liquid separation step.
  • the phosphorus-based fertilizer component is A first precipitation step in which the first liquid separated in the first solid-liquid separation step is mixed with a precipitant and the pH is raised, and a second solid containing the heavy metal and phosphorus is precipitated.
  • the phosphorus-based fertilizer component mixes the second liquid with a precipitating agent to lower the pH after the third solid-liquid separation step to reduce phosphorus. It is preferably obtained by using a method further having a second precipitation step of precipitating a third solid containing the same.
  • the pH of the liquid phase at the end of the second precipitation step is preferably 2.0 or more and 12.0 or less.
  • an acidic liquid having a pH of ⁇ 1.0 or more and 2.0 or less in the second precipitation step.
  • the fertilizer for natural water of the present invention uses sludge ash as a raw material, Contains phosphorus, silicon and iron, It is characterized in that the content of heavy metals is 1000 ppm or less.
  • the phosphorus content is 1.0% by mass or more and 10% by mass or less
  • the content of silicon is 10% by mass or more and 50% by mass or less
  • the iron content is preferably 1.0% by mass or more and 50% by mass or less.
  • the phosphorus content is XP [mass %]
  • the silicon content is X Si [mass %]
  • the iron content is X Fe [mass %] 1. It is preferable to satisfy the relations of 0 ⁇ X Si /X P ⁇ 50.0 and 0.9 ⁇ X Fe /X P ⁇ 50.0.
  • the present invention while effectively utilizing sludge ash, providing phosphorus, silicon and iron, and to provide a fertilizer for natural water having a sufficiently low content of heavy metals, also the production of the fertilizer for natural water A method can be provided.
  • FIG. 1 is a process diagram showing a preferred embodiment of the method for producing a fertilizer for natural water of the present invention.
  • FIG. 2 is a diagram schematically showing the relationship between the pH of the liquid phase at the end of the first precipitation step and the final phosphorus recovery rate.
  • FIG. 3 is a diagram showing changes over time in the elution rate of iron and the like when sludge ash (Comparative Example 1) is treated with hydrochloric acid.
  • FIG. 4 shows the relationship between the number of days elapsed from the addition of sodium carbonate to the aqueous solution of sodium chloride and the elution rate of phosphorus components with respect to the natural water fertilizers of Examples 1 to 5 and Comparative Example 1. It is a figure.
  • FIG. 1 is a process diagram showing a preferred embodiment of the method for producing a fertilizer for natural water of the present invention.
  • FIG. 2 is a diagram schematically showing the relationship between the pH of the liquid phase at the end of the first precipitation step and the final phospho
  • FIG. 5 is a diagram showing the correspondence between the pH of the liquid phase at the end of the first precipitation step and the X-ray diffraction (XRD) pattern of the precipitates for Examples 6, 7 and 8.
  • FIG. 6 shows the recovery rate of phosphorus and main metal elements (that is, the amount relative to the amount contained in sludge ash as a raw material) for the third solid obtained in the process for producing the fertilizer for natural water of Example 6.
  • 3 is a graph showing the ratio of the amount contained in the solid of No. 3).
  • FIG. 7 is a graph showing the results of the water solubility test and the water solubility test for the third solid obtained in the process of producing the fertilizer for natural water of Example 6.
  • FIG. 6 shows the recovery rate of phosphorus and main metal elements (that is, the amount relative to the amount contained in sludge ash as a raw material) for the third solid obtained in the process for producing the fertilizer for natural water of Example 6.
  • 3 is a graph showing the ratio of the amount contained in the
  • FIG. 8 is a flowchart showing a specific example of the method for producing a fertilizer for natural water of the present invention.
  • FIG. 9 is a graph showing the relationship between the number of days elapsed from addition to the aqueous sodium chloride solution and the elution rate of phosphorus components with respect to the fertilizers for natural water according to Examples 11 to 16 with respect to changes in firing temperature.
  • FIG. 10 is a diagram showing the relationship between the number of days elapsed from the addition to the sodium chloride aqueous solution and the elution rate of the phosphorus component with respect to the change in the addition amount of calcium carbonate in the fertilizers for natural water according to Examples 17 and 18.
  • FIG. 9 is a graph showing the relationship between the number of days elapsed from addition to the aqueous sodium chloride solution and the elution rate of phosphorus components with respect to the fertilizers for natural water according to Examples 11 to 16 with respect to changes in firing temperature.
  • FIG. 10 is a diagram showing the relationship between the
  • FIG. 11 is a diagram showing the relationship between the number of days elapsed from addition to the sodium chloride aqueous solution and the elution rate of phosphorus components with respect to changes in the firing time for the fertilizers for natural water according to Examples 19 and 20.
  • FIG. 12 is a diagram showing the relationship between the number of days elapsed from the addition to the sodium chloride aqueous solution and the elution rate of the iron component with respect to the presence or absence of addition of sodium hydroxide in the fertilizers for natural water according to Example 21 and Comparative Example 2. is there.
  • FIG. 12 is a diagram showing the relationship between the number of days elapsed from the addition to the sodium chloride aqueous solution and the elution rate of the iron component with respect to the presence or absence of addition of sodium hydroxide in the fertilizers for natural water according to Example 21 and Comparative Example 2. is there.
  • FIG. 12 is a diagram showing the relationship between the number of days elapsed from the addition to the sodium chloride aqueous
  • FIG. 13 is a figure which shows the relationship between the elapsed days after addition to the sodium chloride aqueous solution and the elution rate of an iron component with respect to the change of the addition amount of sodium hydroxide about the fertilizer for natural waters which concerns on Example 22 and 23. ..
  • FIG. 14 is a diagram showing the relationship between the number of days elapsed from addition to the aqueous sodium chloride solution and the elution rate of the iron component with respect to changes in the firing temperature for the fertilizers for natural water according to Examples 24 and 25.
  • FIG. 15 shows the relationship between the number of days elapsed from the addition of the reactive ionic substance to the sodium chloride aqueous solution and the elution rate of the silicon component with respect to the natural water fertilizers of Examples 26 to 28 and Comparative Example 3. It is a figure.
  • FIG. 16 is a diagram showing the relationship between the number of days elapsed from addition to the sodium chloride aqueous solution and the elution rate of silicon components with respect to changes in the firing temperature, for the fertilizers for natural water according to Examples 29 to 31.
  • FIG. 16 is a diagram showing the relationship between the number of days elapsed from addition to the sodium chloride aqueous solution and the elution rate of silicon components with respect to changes in the firing temperature, for the fertilizers for natural water according to Examples 29 to 31.
  • FIG. 17 is a diagram showing the relationship between the number of days elapsed from the addition to the sodium chloride aqueous solution and the elution rate of the silicon component with respect to the change in the addition amount of sodium ions in the fertilizers for natural water according to Examples 32 and 33.
  • FIG. 18 is a diagram showing the relationship between the number of days elapsed from the addition to the sodium chloride aqueous solution and the elution rate of the silicon component with respect to the change in the addition amount of calcium ions in the fertilizers for natural water according to Examples 34 and 35.
  • FIG. 1 is a process diagram showing a preferred embodiment of the method for producing a fertilizer for natural water of the present invention.
  • FIG. 2 is a diagram schematically showing the relationship between the pH of the liquid phase at the end of the first precipitation step and the final phosphorus recovery rate.
  • the method for producing a fertilizer for natural water of the present invention comprises mixing a sludge ash and an acidic liquid to dissolve a heavy metal and phosphorus contained in the sludge ash, and a first dissolving step in which the heavy metal and phosphorus are dissolved.
  • a first solid-liquid separation step of separating and removing the liquid of No. 1 from the first solid; and a reaction of being a hydroxide and/or salt of an alkali metal and/or a Group 2 element with respect to the first solid.
  • the method is characterized by including a reactive ionic substance addition step of adding a cationic ionic substance and a firing step of subjecting the composition containing the first solid and the reactive ionic substance to a firing treatment.
  • sludge ash As a raw material in this way, sludge ash that has been conventionally treated as industrial waste can be effectively used for unprecedented applications, and it is possible to save resources and to reclaim industrial waste. This is preferable from the viewpoints of securing a site and reducing the overall sludge ash treatment cost.
  • most of the sludge ash (for example, a portion occupying about 90% by volume) can be effectively used as a fertilizer for natural water, so the effect from the above viewpoint is very large.
  • the sludge ash also contains iron and silicon at a high content rate, and a fertilizer for natural water containing these components in a well-balanced manner can be suitably obtained.
  • the solubility of fertilizer components such as a silicon component and an iron component, in addition to the phosphorus component contained in the fertilizer for natural waters can be improved suitably.
  • the elution rate of fertilizer components from the fertilizer for natural water produced can be adjusted by adjusting the type and amount of reactive ionic substance used in the reactive ionic substance addition step and the firing treatment conditions in the firing step. It can be controlled appropriately.
  • the fertilizing effect of fertilizer components can be controlled over a wide range of several days to several years.
  • the amount of sodium carbonate added was changed from 15% by weight to 35% by weight, and natural water fertilizer sintered at 900° C. contained 50% phosphorus.
  • the time required for elution is 2 days at 35% by weight, but 350 days at 15%.
  • phosphorus elution rate 50% when the amount of calcium carbonate added to the first solid is 20% by weight and when 10% by weight is compared, It's 300 days. 10% requires 1500 days. That is, for example, by changing the production conditions within the above range, the fertilizing effect of the fertilizer component can be suitably controlled in a wide range of 2 days to 1500 days.
  • the elution rate of fertilizer components from natural water fertilizers can be made relatively small, and the sustainability of natural water fertilizers can be increased. ..
  • the elution rate of the fertilizer component from the fertilizer for natural water can be relatively increased, and the immediate effect of the fertilizer for natural water can be enhanced.
  • the sintering temperature is from 600° C. to 900° C.
  • the phosphorus elution rate increases with increasing temperature, but when it exceeds 900° C., the elution rate decreases.
  • the first liquid separated in the first solid-liquid separation step contains a high content of phosphorus, it is possible to suitably obtain a highly pure phosphorus compound by purifying the first liquid. You can Therefore, the phosphorus contained in the sludge ash can be used as a whole with particularly high efficiency.
  • a composition containing the heavy metal in a relatively high concentration It is possible to significantly reduce the volume, and it is preferable from the viewpoints of securing a site for treating industrial waste and controlling harmful substances.
  • the heavy metal means a metal having a specific gravity of 4 or more and excluding iron.
  • natural water includes sea, rivers, lakes, ponds, swamps, and other water that exists collectively in the natural world, and in addition, artificially created artificial ponds, reservoirs, The concept also includes water existing in a closed space that is not directly connected to the sea, rivers, lakes, ponds, swamps, etc., such as fishing ponds, aquariums, and farms.
  • natural water includes irrigation water.
  • the natural water may be any of fresh water, salt water, and brackish water.
  • the natural water to which the fertilizer for natural water according to the present invention is applied is preferably seawater.
  • the sea is prone to malnutrition and the so-called desertification of the sea is also progressing. Therefore, when the natural water is seawater, the effect of the present invention is more remarkably exhibited.
  • the ecosystem By stopping the desertification of the sea, the ecosystem can be restored.
  • the fertilizer for natural water according to the present invention it is possible to supply nutrients to the sea, improve the growth of seaweeds such as kelp and seaweed, and become a place for growing fish.
  • seaweed can be used as a feed for abalone, turban shell, etc.
  • the production amount of high-grade food such as abalone, turban shell, etc. will also increase. That is, it can contribute to the economic vitalization of the fishing village.
  • a N component addition step of adding a nitrogen-based fertilizer component into the system is further provided after the first solid-liquid separation step.
  • the content rate of the phosphorus-based fertilizer component in the fertilizer for natural water can be adjusted to a suitable value.
  • a fertilizer for natural water containing a plurality of phosphorus-based fertilizer components having different solubilities in water can be suitably prepared.
  • composition containing the phosphorus-based fertilizer component added to the first solid in the P component addition step will be described in detail later. Further, in the present embodiment, in the P component addition step, the composition containing the reactive ionic substance is added together with the phosphorus-based fertilizer component. In other words, the P component addition step also serves as the reactive ionic substance addition step.
  • the phosphorus-based fertilizer component can be supplied to the first solid while supplying the reactive ionic substance, and the productivity of the fertilizer for natural water can be made excellent, while the phosphorus-based fertilizer component can be supplied. It is possible to obtain a fertilizer for natural water, the content of which is controlled and the elution rate of fertilizer components being controlled more suitably.
  • the reactive ionic substance addition step may be performed directly on the first solid obtained in the first solid-liquid separation step, or in the first solid-liquid separation step. It may be performed after subjecting the solid to a predetermined treatment.
  • the step of adding the reactive ionic substance is performed before the firing step described in detail later.
  • the firing step is performed after the reactive ionic substance addition step.
  • the sparingly soluble components for example, phosphorus component, silicon component, iron component, etc.
  • the sparingly soluble components for example, phosphorus component, silicon component, iron component, etc.
  • the solubility of the phosphorus component, silicon component, iron component, etc. contained in the fertilizer for use can be more suitably adjusted.
  • x, y, z, l, m and n are integers of 1 or more.
  • the soluble salt is added to calcium-deficient hydroxyapatite, CaHPO 4 , Ca(H 2 PO 4 ) 2 , Ca 8 (HPO 4 ) 2 , Na. It can also be obtained as hydrogen phosphate such as 2 HPO 4 and NaH 2 PO 4 .
  • x, y, a, b, c, d and e are each an integer of 1 or more, and M is a metal element.
  • the reactive ionic substance added in the reactive ionic substance addition step is the one used in the second precipitation step described in detail later.
  • the method for producing a fertilizer for natural water of the present invention may have a reducing step in which a reducing agent is added to the first solid, which is a treated product of sludge ash, to carry out a reducing treatment.
  • the solubility of the phosphorus component, etc. contained in the fertilizer for natural water can be increased more suitably.
  • the first solid contains iron, silicon, etc.
  • the elution rate of fertilizer for natural water finally obtained can be suitably controlled.
  • the reduction step may be performed directly on the first solid obtained in the first solid-liquid separation step, or may be performed on the first solid obtained in the first solid-liquid separation step by a predetermined treatment. It may be performed after the above.
  • the reducing step can be performed using, for example, a reducing agent containing carbon, hydrogen and the like. Also, a method of mixing and reducing agricultural and forestry wastes such as rice husks and the like can be adopted.
  • the reducing agent containing carbon include graphite and carbon black.
  • the reducing step may be performed at any timing, but for example, it is preferable to perform it at a timing after the reducing agent addition process after elution and removal of heavy metals and phosphorus from sludge ash. Furthermore, the reduction step and the firing step may be performed simultaneously by performing the firing step in the absence of oxygen.
  • a firing step of performing a firing treatment on the composition containing the first solid and the reactive ionic substance is performed after the first solid-liquid separation step and the reactive ionic substance addition step. Have more.
  • the amount of water contained in the fertilizer for natural water can be suitably reduced.
  • the solubility and the like of the fertilizer for natural water in water can be suitably adjusted.
  • the P component addition step, the firing step and the N component addition step are performed in this order after the first solid-liquid separation step, but the order of these steps may be changed. Alternatively, a plurality of steps may be simultaneously performed.
  • First dissolution step In the first dissolution step, sludge ash and an acidic liquid are mixed. This dissolves heavy metals and phosphorus contained in the sludge ash.
  • phosphorus is usually contained in the form of oxides (P 2 O 5 etc.), phosphoric acid, phosphates and the like.
  • oxides P 2 O 5 etc.
  • phosphoric acid phosphoric acid
  • phosphates phosphates
  • a compound (including an ionic substance) containing phosphorus as an atom including these forms and a phosphorus atom contained in the compound may be simply referred to as phosphorus.
  • heavy metals are contained in the sludge ash in the form of metal oxides (including complex oxides), simple metals, alloys, metal salts, etc.
  • metal oxides including complex oxides
  • simple metals simple metals
  • alloys metal salts
  • a heavy metal atom contained in the compound may be simply referred to as a heavy metal.
  • Sludge ash used in this process (that is, sludge ash as a raw material for fertilizer for natural water) generally contains iron and silicon in addition to heavy metals and phosphorus. Then, in this step, while heavy metals can be efficiently dissolved, in addition to iron and silicon, part of phosphorus in the sludge ash remains in the solid content without being dissolved.
  • the sludge ash used in this step (that is, the sludge ash as a raw material for fertilizer for natural water) generally contains Al, Mg, etc. in addition to the above components.
  • metals other than heavy metals can be dissolved.
  • a part of iron contained in sludge ash is dissolved.
  • These components function as impurities in the first precipitation step, which will be described in detail later, and form crystals of phosphate (particularly, calcium hydrogen phosphate dihydrate, calcium phosphate such as calcium phosphate). Coarsening can be prevented more effectively.
  • the phosphate crystals that are formed are relatively unstable and are readily soluble in alkaline liquids.
  • the phosphate can be dissolved with higher selectivity in the second dissolution step described in detail later.
  • the acidic liquid used in this step is not particularly limited, but a strong acid having a pH (hydrogen ion index) of ⁇ 1.0 or more and 2.0 or less is preferable.
  • the amount of acidic liquid used can be suppressed and this process can be performed efficiently. Further, it is possible to effectively prevent the volume of the composition (that is, the mixture of sludge ash and acidic liquid) after the treatment in this step from becoming too large. It is also preferable from the viewpoint of ease of subsequent steps and reduction of the amount of waste liquid to be treated.
  • the pH of the acidic liquid used in this step is preferably -1.0 or more and 1.5 or less, more preferably -0.5 or more and 1.3 or less, and 0 or more and 1.0 or less.
  • the following is more preferable. As a result, the effects described above are more significantly exhibited.
  • the acidic liquid for example, sulfuric acid, nitric acid, acetic acid, hydrochloric acid, or a liquid containing two or more of these can be used.
  • the pH of the liquid phase (that is, the first liquid in which the heavy metal and phosphorus are dissolved) at the end of this step is preferably 0.5 or more and 6.8 or less, and particularly 1.0 or more and 6.5. It is more preferably the following or less, and even more preferably 1.5 or more and 6.0 or less.
  • the dissolution rate of phosphorus in the liquid phase at the end of this step is not particularly limited, but is preferably 10% or more and 99% or less, more preferably 15% or more and 90% or less, and 20% or more. It is more preferably 70% or less. As a result, phosphorus, which is a useful substance, can be recovered more efficiently.
  • this step is preferably performed while stirring the mixture of sludge ash and an acidic liquid.
  • the sludge ash and the acidic liquid can be brought into contact with each other more efficiently, and the heavy metal or the like can be dissolved more efficiently.
  • stirring devices and various mixing devices can be used for stirring the mixture of sludge ash and an acidic liquid.
  • this step may be performed in a batch system or a continuous system.
  • First solid-liquid separation step In the first solid-liquid separation step, the first liquid in which heavy metal and phosphorus are dissolved is separated and removed from the first solid which is a solid component.
  • the first solid in which the content of phosphorus is adjusted without substantially containing heavy metals. Further, such a first solid contains, in addition to phosphorus, silicon and iron derived from sludge ash. Therefore, the first solid can be preferably used as a fertilizer for natural water or a raw material thereof.
  • the method of solid-liquid separation is not particularly limited, and examples thereof include decantation, filtration, centrifugation and the like, and a plurality of methods may be combined.
  • the solid phase (that is, the first solid) once separated may be washed with water or the like, if necessary.
  • the ionic concentration of the acid component and the heavy metal content can be lowered.
  • the liquid used for washing the solid phase may be used in the first precipitation step, which will be described in detail later, after the recovery, together with the liquid phase obtained by the solid-liquid separation.
  • the phosphorus content in the solid-liquid separated solid phase is not particularly limited, but is preferably 1.0% by mass or more and 40% by mass or less, and 2.0% by mass or more and 20% by mass or less. It is more preferably 3.0% by mass or more and 10.0% by mass or less.
  • the content of heavy metals in the solid phase separated by solid-liquid separation (when plural kinds of heavy metal elements are contained, the total amount of these elements.
  • the same applies hereinafter) is not particularly limited, but is preferably 1% by mass or less. , 0.01 mass% or less is more preferable, and 0.0001 mass% or less is further preferable.
  • the phosphorus-based fertilizer component is added in the P component addition process to the solid phase (that is, the first solid) separated in the first solid-liquid separation process.
  • the composition containing the reactive ionic substance together with the phosphorus-based fertilizer component is added to the first solid.
  • Examples of the phosphorus-based fertilizer component include a phosphoric acid-based compound recovered from sludge ash, a commercially available phosphoric acid-based fertilizer, steel-making slag, biomass burning ash, and steel slag, and one or two selected from these. A combination of two or more species can be used.
  • the phosphorus-based fertilizer component may be added in a solid state, or may be added in a solution state or a paste state.
  • the preparation of the composition added to the first solid in the P component addition step, that is, the composition containing the phosphorus-based fertilizer component and the reactive ionic substance will be described in detail later.
  • the timing of the P component addition step is not particularly limited, and for example, the P component addition step may be performed at a timing later than the firing step.
  • the composition containing the first solid and the reactive ionic substance is subjected to a firing treatment.
  • the firing process is performed after the P component addition process.
  • the firing temperature in the firing treatment is not particularly limited, but is preferably 150° C. or higher and 1100° C. or lower, more preferably 200° C. or higher and 1000° C. or lower, and further preferably 250° C. or higher and 950° C. or lower.
  • the treatment time of the firing treatment is not particularly limited, but is preferably 0.5 hours or more and 100 hours or less, more preferably 1.5 hours or more and 90 hours or less, and 2 hours or more and 80 hours or less. Is more preferable.
  • N component addition step In the N component adding step, a nitrogen-based fertilizer component is added.
  • nitrogen-based fertilizer component examples include urea, lime nitrogen, sodium nitrate, ammonium nitrate, ammonium sulfate and the like, and one or more selected from these may be used in combination.
  • the addition amount of the nitrogen-based fertilizer component is not particularly limited, but in the finally obtained natural water fertilizer, the content of nitrogen with respect to 100 parts by mass of phosphorus atoms satisfies the following conditions. Is preferred. That is, the content of nitrogen with respect to 100 parts by mass of phosphorus atoms in the finally obtained fertilizer for natural water is not particularly limited, but is preferably 1.0 part by mass or more and 30.0 parts by mass or less. It is more preferably 0 part by mass or more and 20.0 parts by mass or less, and further preferably 3.0 parts by mass or more and 10.0 parts by mass or less.
  • the nitrogen-based fertilizer component may be added in the solid state, or may be added in the solution state or paste state.
  • composition added to the first solid in the P component addition step that is, the composition containing the phosphorus-based fertilizer component and the reactive ionic substance will be described in detail.
  • the phosphorus-based fertilizer component contained in the composition added in the P component addition step is not particularly limited, and, for example, a commercially available fertilizer may be used, but obtained through a method having the following steps. Is preferred.
  • the composition added to the first solid in the P component addition step mixes the first liquid separated in the first solid-liquid separation step with the precipitant and raises the pH, and contains a heavy metal and phosphorus.
  • a first precipitation step of precipitating a second solid, a second solid-liquid separation step of separating the second solid from a liquid component, and a step of dissolving phosphorus contained in the second solid with an alkaline liquid It is preferably separated by a method having a dissolution step of No. 2 and a third solid-liquid separation step of separating the second liquid in which phosphorus is dissolved from the solid component containing heavy metal.
  • the phosphorus-based fertilizer component contained in the composition added in the P component addition step can also be derived from sludge ash, and the utilization efficiency of sludge ash can be further enhanced. Further, such a phosphorus-based fertilizer component (a phosphorus-based fertilizer component contained in the composition added in the P component addition step) is more soluble in water than the phosphorus component contained in the first solid described above. Since it is highly soluble, the solubility of the phosphorus-based fertilizer component as the whole fertilizer for natural water can be suitably adjusted, and the immediate effect and the sustainability can be compatible at a higher level.
  • the phosphorus-based fertilizer component is, after the third solid-liquid separation step, the second precipitation step of mixing the second liquid with the precipitation agent and lowering the pH to precipitate the third solid containing phosphorus. It is preferably obtained by using a method further comprising
  • the phosphate can be preferably used as a phosphorus-based fertilizer component in the P component addition step. Further, since the phosphate has high purity, it is suitable for applications other than the phosphorus-based fertilizer component used in the P component addition step.
  • phosphorus can be treated as a solid substance phosphate (for example, calcium hydrogen phosphate dihydrate, calcium phosphate, etc.), and storage and transportation can be more suitably performed.
  • First deposition step In the first precipitation step, the first liquid separated from the first solid in the first solid-liquid separation step is mixed with a precipitant and the pH is raised to remove a second solid containing heavy metal and phosphorus. Precipitate.
  • phosphorus is deposited as a phosphate (eg, calcium hydrogen phosphate dihydrate, calcium phosphate, etc.).
  • the nucleation and growth of the phosphate can be suitably controlled, and the phosphate can be precipitated as microcrystals.
  • the phosphate salt can be easily dissolved, and phosphorus (dissolved state) can be suitably separated from heavy metal (solid state).
  • the first liquid usually contains Al, Mg, and the like together with heavy metals and phosphorus, so that in this step, coarsening of the crystals of the phosphate (particularly, the calcium salt of phosphoric acid) can be prevented. It can be effectively prevented.
  • the phosphate crystals that are formed are relatively unstable and are readily soluble in alkaline liquids. Therefore, in a later step, the phosphate can be dissolved with higher selectivity.
  • any substance or composition may be used as long as it can be mixed with the precipitant and raise the pH, but it is preferable to use an alkaline liquid having a pH of 10 or more.
  • the pH of the mixture can be raised more suitably, and the second solid containing the heavy metal and phosphorus can be more efficiently precipitated.
  • the precipitant may have a function of promoting the precipitation of phosphate or the like, and examples thereof include Ca-based substances such as CaCl 2 , Ca(OH) 2 and CaCO 3 , Al-based substances such as Al salts, and Fe. Fe-based substances such as salts and Mg-based substances such as Mg salts can be used, but Ca-based substances are preferably used.
  • phosphorus can be precipitated as a calcium salt of phosphoric acid (for example, calcium hydrogen phosphate dihydrate, calcium phosphate, etc.), and the subsequent steps can be more suitably performed.
  • an alkaline liquid having a pH of 10 or more but the pH of the alkaline liquid is not particularly limited, but is preferably 11 or more, more preferably 12 or more and 14 or less.
  • an alkaline calcium compound which is selected from the group consisting of CaCl 2 , Ca(OH) 2 , CaCO 3 and chlorides having Al, Mg and Fe components. It is more preferable to use one kind or two or more kinds, and it is more preferable to use one kind or two or more kinds selected from the group consisting of CaCl 2 , Ca(OH) 2 and CaCO 3, and it is preferable to use CaCl 2. Most preferred.
  • the pH of the mixture can be appropriately adjusted while efficiently supplying the calcium component, which is a part of the calcium salt of phosphoric acid, into the system.
  • the amount of the substance mixed with the first liquid can be suppressed, and this step can proceed efficiently.
  • the balance between the calcium content and the pH in the mixture in this step can be suitably adjusted, and the content of impurities in the first liquid can be improved while improving the precipitation efficiency of heavy metals and phosphorus. Can be lowered.
  • the pH of the liquid phase at the end of this step is not particularly limited, but is preferably 1.0 or more and 12 or less, more preferably 1.5 or more and 9.0 or less, and 2.0 or more and 8. It is more preferably 0 or less.
  • the amount of phosphorus and heavy metals remaining in the liquid phase can be further reduced while preventing the amount of the material used to raise the pH from unnecessarily increasing.
  • FIG. 2 is a diagram schematically showing the relationship between the pH of the liquid phase at the end of the first precipitation step and the final phosphorus recovery rate.
  • this step it is preferable to add calcium so as to satisfy the following conditions. That is, when the amount of phosphorus in the system at the end of this step is X P [mol] and the amount of calcium in the system is X Ca [mol], 1.0 ⁇ X Ca /X P ⁇ 4.0 It is preferable that the relationship be satisfied, more preferable that the relationship 1.3 ⁇ X Ca /X P ⁇ 3.0 be satisfied, and that the relationship 1.5 ⁇ X Ca /X P ⁇ 2.5 be satisfied. Is more preferable.
  • the phosphorus contained in the first liquid can be more favorably precipitated as a calcium salt of phosphoric acid (for example, it can be deposited to almost 100%), and phosphorus remaining in the liquid phase in a dissolved state can be precipitated.
  • the ratio of can be made particularly low.
  • Such liquid phase (that is, liquid phase that does not substantially contain heavy metals and has a sufficiently low phosphorus content) has a small impact on the environment and can be drained without any problem. Further, the liquid phase obtained by solid-liquid separation may be reused in the above step. As a result, a liquid containing calcium at a relatively high content can be reused, which is preferable from the viewpoint of further effective use of resources.
  • the method of solid-liquid separation is not particularly limited, and examples thereof include decantation, filtration, centrifugation and the like, and a plurality of methods may be combined.
  • the solid phase once separated may be washed with water or the like, if necessary.
  • the phosphorus content in the solid-liquid separated liquid phase is not particularly limited, but is preferably 1000 ppm or less, more preferably 100 ppm or less, and further preferably 10 ppm or less.
  • the content of heavy metals in the liquid phase subjected to solid-liquid separation is not particularly limited, but is preferably 10,000 ppm or less, more preferably 1000 ppm or less, and further preferably 0.1 ppm or less.
  • ⁇ Second dissolution step> In the second dissolution step, phosphorus contained in the second solid is dissolved in the alkaline liquid.
  • phosphorus can be selectively dissolved while preventing the heavy metal contained in the second solid from being dissolved.
  • the nucleation and growth of the phosphate are appropriately controlled, and the phosphate is converted to alkali. It is easily dissolved.
  • heavy metals are generally difficult to dissolve in alkaline liquids.
  • phosphorus a phosphorus-based fertilizer component that can be suitably used in the P component addition step
  • the final solid waste as a useful substance that can be used for fertilizers and the like can be favorably separated from heavy metals.
  • the final solid waste (industrial waste) can be reduced.
  • the pH of the alkaline liquid used in this step is not particularly limited, but is preferably 10 or more, more preferably 11 or more and 14 or less, and further preferably 12 or more and 14 or less.
  • phosphorus phosphate
  • redissolution of heavy metals it is possible to more reliably prevent the phosphorus from being unintentionally deposited before the completion of the third solid-liquid separation step that is performed later.
  • the alkaline liquid may be any liquid that exhibits alkalinity as a whole, and examples of the alkaline substance contained in the alkaline liquid include NaOH, KOH, Mg(OH) 2 , Ca(OH) 2 , Al(OH ) 3 metal hydroxide, CaCO 3, MgCO 3 or the like of metal carbonates, ammonia, triethylamine, and amine-based materials such as aniline and the like.
  • the alkaline liquid used in this step preferably contains a metal hydroxide as an alkaline substance, more preferably contains a hydroxide of an alkali metal, and further contains NaOH. preferable.
  • phosphorus contained in the second solid can be more efficiently dissolved while preventing the redissolution of heavy metals more effectively.
  • an alkaline substance is inexpensive and easily available, and is preferable also from the viewpoint of cost reduction, stable treatment, and the like.
  • the pH of the liquid phase at the end of this step is not particularly limited, but is preferably 10 or higher, more preferably 11 or higher and 14 or lower, and even more preferably 12 or higher and 14 or lower.
  • phosphorus contained in the second solid can be more efficiently dissolved while more effectively preventing the redissolution of heavy metals, and the amount of the material used to raise the pH is increased more than necessary. While preventing this, the amount of phosphorus remaining in the liquid phase can be further reduced. In addition, it is possible to more reliably prevent undesired precipitation of phosphorus and unintentional dissolution of heavy metals before the completion of the third solid-liquid separation step later.
  • phosphorus and heavy metals can be separated.
  • heavy metals that require strict treatment can be handled as solids, handling of heavy metals becomes easy.
  • the volume of the material containing the heavy metal can be greatly reduced, for example, even when treating as industrial waste, the treatment becomes easy.
  • the separated liquid phase does not need to be treated as industrial waste because it does not substantially contain heavy metals.
  • the method of solid-liquid separation is not particularly limited, and examples thereof include decantation, filtration, centrifugation and the like, and a plurality of methods may be combined.
  • the solid phase once separated may be washed with water or the like, if necessary. As a result, the phosphorus content in the solid can be lowered.
  • liquid used for washing the solid phase may be combined with the liquid phase obtained by the above solid-liquid separation after recovery.
  • the amount of phosphorus in the solid phase separated by solid-liquid separation is not particularly limited, but is 30% by mass or less of the phosphorus content of the sludge ash used as a raw material (that is, the sludge ash used in the first dissolution step). Is preferable, 10% by mass or less is more preferable, and 2% by mass or less is further preferable. Further, the phosphorus content in the solid phase separated by solid-liquid separation is preferably 50% by mass or more, more preferably 90% by mass or more, and further preferably 99% by mass or more.
  • the content of heavy metals in the liquid phase subjected to solid-liquid separation is not particularly limited, but is preferably 1000 ppm or less, more preferably 10 ppm or less, and further preferably 0.01 ppm or less.
  • ⁇ Second deposition step> In the present embodiment, after the above-described third solid-liquid separation step, a second precipitation step of mixing the second liquid with the precipitation agent and lowering the pH to precipitate the third solid containing phosphorus is further performed.
  • the phosphate can be preferably used as a phosphorus-based fertilizer component in the P component addition step. it can. Further, since the phosphate has high purity, it is suitable for applications other than the phosphorus-based fertilizer component used in the P component addition step.
  • phosphorus can be treated as a solid substance phosphate (for example, calcium hydrogen phosphate dihydrate, calcium phosphate, etc.), and storage and transportation can be more suitably performed.
  • any substance or composition may be used as long as it can be mixed with the precipitant and can lower the pH, but it is preferable to use an acidic liquid having a pH of ⁇ 1.0 or more and 2.0 or less. preferable.
  • the pH of the mixture can be suitably lowered, and the third solid containing phosphorus can be more efficiently precipitated.
  • an acidic liquid having a pH of ⁇ 1.0 or more and 2 or less it is preferable to use an acidic liquid having a pH of ⁇ 1.0 or more and 2 or less, but the pH of the acidic liquid is more preferably ⁇ 0.5 or more and 1.3 or less, and 0.0 or more. It is more preferably 1.0 or less.
  • the precipitating agent one having a function of promoting the precipitation of phosphate or the like may be used, but a reactive ionic substance which is a hydroxide and/or a salt of an alkali metal and/or a Group 2 element. Preference is given to using substances.
  • the reactive ionic substance is preferably a hydroxide and/or salt containing Na and/or Ca.
  • the effects described above are more significantly exhibited.
  • this step it is preferable to use one or more selected from the group consisting of Na 2 CO 3 , NaOH, CaCO 3 , Ca(OH) 2 , CaCl 2 and NaCl.
  • the pH of the mixture can be adjusted appropriately.
  • the amount of the substance mixed with the second liquid can be suppressed, and this process can proceed efficiently.
  • the solubility of the phosphorus component and the like contained in the fertilizer for natural water can be adjusted more suitably.
  • the fertilizer for natural water finally obtained is provided with a salt containing Na or Ca as a soluble salt of phosphorus (alkali metal salt of phosphoric acid compound and/or salt of Group 2 element).
  • a salt containing Na or Ca as a soluble salt of phosphorus (alkali metal salt of phosphoric acid compound and/or salt of Group 2 element).
  • a salt include salts represented by Na x P y O z and Ca x P y O z (wherein each of x, y, and z is an integer of 1 or more), CaHPO 4 , and the like.
  • Examples thereof include salts of hydrogen phosphate compounds such as Ca(H 2 PO 4 ) 2 , NaH 2 PO 4 , and Na 2 HPO 4 .
  • the salt contains one or more selected from the group consisting of Na 3 PO 4 , Na 4 P 2 O 7 , and Ca 3 (PO 4 ) 2 .
  • the reactive ionic substance it is preferable to use a hydroxide and/or salt containing Na and a hydroxide and/or salt containing Ca in combination.
  • the fertilizer for natural water finally obtained can contain both the sodium salt of a phosphoric acid compound and the calcium salt of a phosphoric acid compound. Since the sodium salt of a phosphoric acid compound and the calcium salt of a phosphoric acid compound have different solubilities in water, by combining them, the solubility in natural water can be adjusted more preferably. For example, while the elution amount of the phosphorus component (soluble salt) in the initial stage after application to natural water is relatively high, the phosphorus component (solubility The elution amount of (salt) can also be made relatively high.
  • the pH of the liquid phase at the end of this step is not particularly limited, but is preferably 2.0 or more and 12.0 or less, more preferably 2.5 or more and 10.0 or less, and 3.0 or more. It is more preferably 8.0 or less.
  • this step it is preferable to add calcium so as to satisfy the following conditions. That is, when the amount of phosphorus in the system at the end of this step is X P [mol] and the amount of calcium in the system is X Ca [mol], 1.0 ⁇ X Ca /X P ⁇ 4.0 It is preferable that the relationship be satisfied, more preferable that the relationship 1.3 ⁇ X Ca /X P ⁇ 3.0 be satisfied, and that the relationship 1.5 ⁇ X Ca /X P ⁇ 2.5 be satisfied. Is more preferable.
  • the phosphorus contained in the second liquid can be more favorably precipitated as the calcium salt of phosphoric acid, and the proportion of phosphorus remaining in the liquid phase in the dissolved state can be made particularly low.
  • the separated liquid phase does not substantially contain heavy metals, there is no need to treat it as an industrial waste liquid. Moreover, since the separated liquid phase has a sufficiently low phosphorus content, even if the liquid phase is discarded, there is no disadvantage from the viewpoint of effective utilization of useful resources.
  • the separated third solid contains phosphate in a high purity and has an extremely low content of heavy metals, and thus is suitable for fertilizers (particularly, phosphorus-based fertilizer components added in the P component addition step). Can be used. In particular, even if the post-treatment or the like is not performed, or even when the post-treatment is performed, it can be suitably used for fertilizers and the like with a simple treatment.
  • the method of solid-liquid separation is not particularly limited, and examples thereof include decantation, filtration, centrifugation and the like, and a plurality of methods may be combined.
  • the solid phase once separated may be washed with water or the like, if necessary. As a result, the content of ions (cations and anions) in the solid can be lowered.
  • liquid used for washing the solid phase may be combined with the liquid phase obtained by the above solid-liquid separation after recovery.
  • the content of the heavy metal in the solid-liquid separated solid phase (second solid) is not particularly limited, but is preferably 1000 ppm or less, more preferably 500 ppm or less, and further preferably 10 ppm or less. preferable.
  • FIG. 8 shows a flowchart of a specific example of the method for producing a fertilizer for natural water of the present invention.
  • the fertilizer for natural water of the present invention is made of sludge ash as a raw material, contains phosphorus (P), silicon (Si), and iron (Fe), and is characterized by a heavy metal content of 1000 ppm or less.
  • Such a fertilizer for natural water of the present invention can be suitably produced by the method described above.
  • the content of heavy metals in the fertilizer for natural water of the present invention may be 5000 ppm or less, preferably 500 ppm or less, more preferably 100 ppm or less, and further preferably 10 ppm or less. As a result, the effects described above are more significantly exhibited.
  • the concentration of dissolved heavy metal in the fertilizer for natural water of the present invention is preferably 1 ppm or less, more preferably 100 ppb or less. As a result, the effects described above are more significantly exhibited.
  • the content of phosphorus (P) in the fertilizer for natural water of the present invention is not particularly limited, but is preferably 1.0% by mass or more and 20% by mass or less, and 1.5% by mass or more and 9.0% by mass. It is more preferable that the amount is not more than 2.0%, and further preferable that it is not less than 2.0% by mass and not more than 8.0% by mass.
  • the natural water to which the fertilizer for natural water is applied can be eutrophied at a more appropriate concentration and for a longer period of time while more effectively preventing excessive eutrophication.
  • Fertilizer can be provided.
  • the content of silicon (Si) in the fertilizer for natural water of the present invention is not particularly limited, but the content of silicon is preferably 10% by mass or more and 50% by mass or less, and 15% by mass or more and 45% by mass or less. Is more preferable, and 20% by mass or more and 40% by mass or less is further preferable.
  • the natural water to which the fertilizer for natural water is applied can be eutrophied at a more appropriate concentration and for a longer period of time while more effectively preventing excessive eutrophication.
  • Fertilizer can be provided.
  • the content of iron (Fe) in the fertilizer for natural water of the present invention is not particularly limited, but the content of iron is preferably 1.0% by mass or more and 50% by mass or less, and 4.0% by mass or more. It is more preferably 12 mass% or less, and further preferably 5.0 mass% or more and 10 mass% or less.
  • the natural water to which the fertilizer for natural water is applied can be eutrophied at a more appropriate concentration and for a longer period of time while more effectively preventing excessive eutrophication.
  • Fertilizer can be provided.
  • the content of phosphorus in natural water for fertilizer of the present invention X P [wt%], when the content of silicon in natural water for fertilizer of the present invention was X Si [wt%], 1.0 ⁇ X It is preferable to satisfy the relationship of Si /X P ⁇ 50.0, more preferably 3.0 ⁇ X Si /X P ⁇ 30.0, and 4.0 ⁇ X Si /X P ⁇ It is more preferable to satisfy the relationship of 15.0.
  • the content of phosphorus in natural water for fertilizer of the present invention X P [wt%], when the content of iron in natural water for fertilizer of the present invention was X Fe [wt%], 0.9 ⁇ X It is preferable that the relationship of Fe 2 /X P ⁇ 50.0 is satisfied, and it is more preferable that the relationship of 1.0 ⁇ X 2 Fe /X P ⁇ 30.0 is satisfied, and 1.2 ⁇ X Fe 2 /X P ⁇ It is more preferable to satisfy the relationship of 15.0.
  • the sum of the content of Fe and the content of Al in the fertilizer for natural water is X A [mass %], and the sum of the content of alkali metal and the content of Group 2 element in the fertilizer for natural water.
  • X B [mass %] it is preferable that the relationship of 0.01 ⁇ X B /X A ⁇ 20 is satisfied, and it is more preferable that the relationship of 0.1 ⁇ X B /X A ⁇ 10 is satisfied. It is more preferable to satisfy the relationship of 0.5 ⁇ X B /X A ⁇ 3.
  • the fertilizer components can be more suitably eluted over a long period of time, and the effect as a fertilizer for natural water can be more suitably exerted over a long period of time.
  • the fertilizer for natural water may have any shape, but it is preferably granular. This makes it easier to handle fertilizers for natural water.
  • the particle size can be adjusted according to the purpose and environment in which the fertilizer for natural water is used. By changing the particle size of the fertilizer for natural water and the form of administration into natural water, the dissolution period, the balance between immediate effect and sustainability, etc. can be adjusted more suitably.
  • the average particle diameter is preferably 1 ⁇ m or more and 1.0 m or less, and preferably 2 mm or more and 500 mm or less, although it depends on the required duration of the fertilizer for natural water and the like. Is more preferable.
  • the form of administration of the fertilizer for natural water into natural water is not particularly limited as long as it is administered in a state of contacting with natural water, and for example, the fertilizer for natural water is directly put into natural water as it is. It is administered by mixing fertilizer for soil with soil or gravel and laying it on the seabed.
  • the fertilizer for natural water may be applied to natural water in a state of being stored in a container having an opening smaller than the size of the fertilizer for natural water.
  • a bag having a mesh may be used.
  • the constituent material of the bag is not particularly limited, but is preferably a biodegradable material such as iron or polylactic acid.
  • Fertilizers for natural water are, for example, reef blocks, wave-dissipating blocks, artificial fish reefs, levees, and other structures that are installed in contact with natural water, especially large concrete fixed objects or entire structures. Alternatively, it may be used in a state where it is partially included.
  • the fertilizer for natural water may be contained in the entire structure, or may be contained only in a part of the structure (where it can come into contact with natural water).
  • the structure may have the surface thereof coated with a composition containing fertilizer for natural water.
  • the fertilizer for natural water (the structure) may be used by being buried in the ground as long as it can come into contact with natural water.
  • the present invention is preferably applied to a structure already installed at a site that can come into contact with natural water, or a structure that has already been manufactured and has not yet been installed (for example, a structure that is being prepared for installation).
  • a structure that is being prepared for installation is advantageous from the viewpoint of cost and labor.
  • the natural water fertilizer can be extended for a desired period by reattaching the composition containing the fertilizer for natural water.
  • the amount of the fertilizer component when applied to natural water and the growth conditions such as seaweed can be adjusted to adjust the amount of the composition containing the fertilizer for natural water and the composition of the composition, thereby creating a more preferable environment. Can be built up. Further, in the unlikely event that the amount of fertilizer components eluted is excessive, the remaining fertilizer for natural water can be relatively easily recovered.
  • composition containing the fertilizer for natural water can be suitably attached to the structure serving as the base material by, for example, a coating method.
  • the method for producing a fertilizer for natural water of the present invention may have steps (eg, pretreatment step, intermediate treatment step, posttreatment step, etc.) other than the steps described above.
  • it may have a step of easily solubilizing at least a part of constituent components (for example, phosphorus component) of the treated sludge ash.
  • the reactive ionic substance addition step when it has a reducing step together with the reactive ionic substance addition step, it is possible to more suitably enhance the solubility of the phosphorus component or the like contained in the fertilizer for natural water, and iron, silicon.
  • the reactive ionic substance addition step is omitted, that is, at least the first dissolution step, the first solid-liquid separation step, and the reduction step are described.
  • the method including the step of baking and the firing step it is possible to provide a fertilizer for natural water in which the solubilities of fertilizer components, particularly iron components and silicon components, are suitably adjusted.
  • the reducing step includes a step of adding a reducing agent.
  • the solubility of the fertilizer component contained in the fertilizer for natural water can be more suitably increased.
  • the method for producing a fertilizer for natural water of the present invention may have a first dissolution step, a first solid-liquid separation step, a reactive ionic substance addition step, and a firing step, The other steps may not be included.
  • the reactive ionic substance in the second deposition step by using the reactive ionic substance in the second deposition step, a typical case of adding the reactive ionic substance to the first solid in the P component adding step is shown.
  • the reactive ionic substance may be added to the first solid in a form other than this.
  • the method for producing a fertilizer for natural water of the present invention does not have a P component addition step and directly adds a reactive ionic substance to the first solid separated in the first solid-liquid separation step. You may.
  • the method for producing a fertilizer for natural water of the present invention only needs to have a first dissolution step, a first solid-liquid separation step, an ionic substance addition step, and a firing step in this order.
  • the order of the other steps is not limited to that described in the above embodiment, and the order may be changed. For example, you may have a P component addition process after a baking process.
  • the fertilizer for natural water of the present invention is made of sludge ash as a raw material, contains phosphorus, silicon and iron, and the elution rate of heavy metals is 1000 ppm or less, and is not limited to the one produced by the above-mentioned method.
  • sludge ash was prepared and dried at 110° C. for 2 hours to make the water content 0%.
  • This sludge ash contained phosphorus, silicon, iron, aluminum, magnesium, and heavy metals.
  • the filter paper was set in the filter to perform solid-liquid separation between the first solid that is a solid phase and the first liquid that is a liquid phase (first solid-liquid separation step). ..
  • the first liquid which was the solid-liquid separated filtrate (liquid phase), was filled up to make a sample liquid.
  • the sample solution was diluted, the phosphorus concentration was measured by the molybdenum blue absorbance method, and the phosphorus dissolution rate was calculated from the measurement results.
  • a UV spectrophotometer was used to analyze the eluate.
  • concentrations of the metal and heavy metal in the sample liquid are obtained using ICP-AES and ICP-MS, and the amount of the metal and heavy metal contained in the solid phase (first solid) and the liquid phase (first liquid) And the amount contained in.
  • a firing process was performed (firing process).
  • the temperature was raised from room temperature to 200° C. at a temperature raising rate of 10° C./min, held at 200° C. for 2 hours, and then raised to 800° C. (maximum firing temperature): 20° C./min.
  • the temperature is raised in minutes and kept at 800° C. (maximum firing temperature) for 2 hours, then to 200° C. at a temperature decrease rate of 5° C./min, and kept at 200° C. for 2 hours, and then to room temperature.
  • Speed The temperature was lowered at 10°C/min. Thereby, fertilizer for natural water was obtained.
  • Example 5 A fertilizer for natural water was prepared in the same manner as in Example 1 except that the ratio of sodium carbonate (reactive ionic substance) added to 100 parts by mass of the first solid was changed as shown in Table 1. Manufactured.
  • Example 6 To the sample liquid prepared using the first liquid in the same manner as in Example 1, calcium chloride was added so that the ratio of the amount of eluted phosphorus substance to the amount of eluted calcium substance was 1:2, The pH was measured using a pH meter while adding a 1 M NaOH solution, and phosphorus and heavy metals were deposited while stirring (first deposition step). At this time, phosphorus was mainly deposited as a phosphate.
  • the solid-liquid separated filtrate (liquid phase) was measured up.
  • the diluted filtrate was diluted at a specific ratio, the phosphorus concentration was measured by the molybdenum blue absorbance method, and the phosphorus precipitation rate was calculated from the measurement results.
  • a UV spectrophotometer was used to measure the phosphorus concentration.
  • concentrations of metals and heavy metals in the filtrate were obtained using ICP-AES and ICP-MS, and the amounts of metals and heavy metals contained in the solid phase and the liquid phase were calculated.
  • the solid phase obtained in the second solid-liquid separation step was dried at 105° C. for 2 hours, powdered, and analyzed by XRD.
  • the solid phase After drying the solid phase obtained in the second solid-liquid separation step, the solid phase was put into an Erlenmeyer flask containing 200 mL of 1.0 M NaOH aqueous solution and stirred at 60° C. for 20 minutes. As a result, phosphorus was eluted again (second dissolution step).
  • the second liquid (liquid phase) in which phosphorus was dissolved was subjected to solid-liquid separation with filter paper, and separated from the solid component (solid phase) containing heavy metals (third solid-liquid separation step).
  • the third solid obtained in the fourth solid-liquid separation step was added as a phosphorus-based fertilizer component to the first solid separated in the first solid-liquid separation step at a predetermined ratio (P Component addition step). ..
  • the temperature was raised from room temperature to 200° C. at a temperature raising rate of 10° C./min, held at 200° C. for 2 hours, and then raised to 800° C. (maximum firing temperature): 20° C./min.
  • the temperature is raised in minutes and kept at 800° C. (maximum firing temperature) for 2 hours, then to 200° C. at a temperature decrease rate of 5° C./min, and kept at 200° C. for 2 hours, and then to room temperature.
  • Speed The temperature was lowered at 10°C/min.
  • Example 7 A fertilizer for natural water was produced in the same manner as in Example 6 except that the pH at the end of the first precipitation step was changed as shown in Table 1.
  • sludge ash was prepared and dried at 110° C. for 2 hours to make the water content 0%.
  • This sludge ash contained phosphorus, silicon, iron, aluminum, magnesium, and heavy metals.
  • the filter paper was set in the filter to perform solid-liquid separation between the first solid that is a solid phase and the first liquid that is a liquid phase (first solid-liquid separation step). ..
  • the first liquid which was the solid-liquid separated filtrate (liquid phase), was filled up to make a sample liquid.
  • the sample solution was diluted, the phosphorus concentration was measured by the molybdenum blue absorbance method, and the phosphorus dissolution rate was calculated from the measurement results.
  • a UV spectrophotometer was used to analyze the eluate.
  • concentrations of the metal and heavy metal in the sample liquid are obtained using ICP-AES and ICP-MS, and the amount of the metal and heavy metal contained in the solid phase (first solid) and the liquid phase (first liquid) And the amount contained in.
  • sodium hydroxide as a reactive ionic substance was added at a ratio of 25 parts by mass to 100 parts by mass of the first solid (reactive ionic substance addition step).
  • a firing process was performed (firing process).
  • the temperature was raised from room temperature to 200° C. at a temperature raising rate of 10° C./min, held at 200° C. for 2 hours, and then raised to 900° C. (maximum firing temperature) at a temperature raising rate of 20° C./
  • the temperature is raised in minutes and kept at 900° C. (maximum firing temperature) for 2 hours, then to 200° C. at a rate of temperature decrease of 5° C./min and kept at 200° C. for 2 hours, and then to room temperature.
  • Speed The temperature was lowered at 10°C/min. Thereby, fertilizer for natural water was obtained.
  • Example 12 A fertilizer for natural water was produced in the same manner as in Example 11 except that the maximum firing temperature was changed to 600°C.
  • Example 13 A fertilizer for natural water was produced in the same manner as in Example 11 except that the maximum firing temperature was changed to 700°C.
  • Example 14 A fertilizer for natural water was produced in the same manner as in Example 11 except that the maximum firing temperature was changed to 800°C.
  • Example 15 A fertilizer for natural water was produced in the same manner as in Example 11 except that the maximum firing temperature was changed to 1000°C.
  • Example 16 A fertilizer for natural water was produced in the same manner as in Example 11 except that the maximum firing temperature was changed to 1100°C.
  • sludge ash was prepared and dried at 110° C. for 2 hours to make the water content 0%.
  • This sludge ash contained phosphorus, silicon, iron, aluminum, magnesium, and heavy metals.
  • the filter paper was set in the filter to perform solid-liquid separation between the first solid that is a solid phase and the first liquid that is a liquid phase (first solid-liquid separation step). ..
  • the first liquid which was the solid-liquid separated filtrate (liquid phase), was filled up to make a sample liquid.
  • the sample solution was diluted, the phosphorus concentration was measured by the molybdenum blue absorbance method, and the phosphorus dissolution rate was calculated from the measurement results.
  • a UV spectrophotometer was used to analyze the eluate.
  • concentrations of the metal and heavy metal in the sample liquid are obtained using ICP-AES and ICP-MS, and the amount of the metal and heavy metal contained in the solid phase (first solid) and the liquid phase (first liquid) And the amount contained in.
  • a firing process was performed (firing process).
  • the temperature was raised from room temperature to 200° C. at a temperature raising rate of 10° C./min, held at 200° C. for 2 hours, and then raised to 900° C. (maximum firing temperature) at a temperature raising rate of 20° C./
  • the temperature is raised in minutes and kept at 900° C. (maximum firing temperature) for 2 hours, then to 200° C. at a rate of temperature decrease of 5° C./min and kept at 200° C. for 2 hours, and then to room temperature.
  • Speed The temperature was lowered at 10°C/min. Thereby, fertilizer for natural water was obtained.
  • Example 18 A fertilizer for natural water was produced in the same manner as in Example 17 except that the ratio of calcium carbonate (reactive ionic substance) added to 100 parts by mass of the first solid was changed to 20 parts by mass.
  • sludge ash was prepared and dried at 110° C. for 2 hours to make the water content 0%.
  • This sludge ash contained phosphorus, silicon, iron, aluminum, magnesium, and heavy metals.
  • the filter paper was set in the filter to perform solid-liquid separation between the first solid that is a solid phase and the first liquid that is a liquid phase (first solid-liquid separation step). ..
  • the first liquid which was the solid-liquid separated filtrate (liquid phase), was filled up to make a sample liquid.
  • the sample solution was diluted, the phosphorus concentration was measured by the molybdenum blue absorbance method, and the phosphorus dissolution rate was calculated from the measurement results.
  • a UV spectrophotometer was used to analyze the eluate.
  • concentrations of the metal and heavy metal in the sample liquid are obtained using ICP-AES and ICP-MS, and the amount of the metal and heavy metal contained in the solid phase (first solid) and the liquid phase (first liquid) And the amount contained in.
  • sodium hydroxide as a reactive ionic substance was added at a ratio of 25 parts by mass to 100 parts by mass of the first solid (reactive ionic substance addition step).
  • a firing process was performed (firing process).
  • the temperature was raised from room temperature to 200° C. at a temperature raising rate of 10° C./min, held at 200° C. for 2 hours, and then raised to 900° C. (maximum firing temperature) at a temperature raising rate of 20° C./
  • the temperature is raised in minutes and kept at 900° C. (maximum firing temperature) for 1 hour, then to 200° C. at a temperature lowering rate of 5° C./min, and kept at 200° C. for 2 hours, and then to room temperature.
  • Speed The temperature was lowered at 10°C/min. Thereby, fertilizer for natural water was obtained.
  • Example 20 A fertilizer for natural water was produced in the same manner as in Example 19 except that the holding time at the maximum firing temperature (900°C) in the firing step was changed to 3 hours.
  • Example 21 First, sludge ash was prepared and dried at 110° C. for 2 hours to make the water content 0%. This sludge ash contained phosphorus, silicon, iron, aluminum, magnesium, and heavy metals.
  • the filter paper was set in the filter to perform solid-liquid separation between the first solid that is a solid phase and the first liquid that is a liquid phase (first solid-liquid separation step). ..
  • the first liquid which was the solid-liquid separated filtrate (liquid phase), was filled up to make a sample liquid.
  • the sample solution was diluted, the phosphorus concentration was measured by the molybdenum blue absorbance method, and the phosphorus dissolution rate was calculated from the measurement results.
  • a UV spectrophotometer was used to analyze the eluate.
  • concentrations of the metal and heavy metal in the sample liquid are obtained using ICP-AES and ICP-MS, and the amount of the metal and heavy metal contained in the solid phase (first solid) and the liquid phase (first liquid) And the amount contained in.
  • carbon black (reducing agent) was added at a ratio of 10 parts by mass to 100 parts by mass of the first solid (reducing agent adding step).
  • sodium hydroxide as a reactive ionic substance was added at a ratio of 20 parts by mass to 100 parts by mass of the first solid (reactive ionic substance addition step).
  • the firing treatment is performed by first heating in a nitrogen atmosphere from room temperature to 200° C. at a heating rate of 10° C./min, holding at 200° C. for 2 hours, and then raising the temperature to 900° C. (maximum firing temperature). : The temperature was raised at 20° C./min, and the temperature was kept at 900° C. (maximum firing temperature) for 2 hours, then to 200° C., the temperature was lowered at a rate of 5° C./min, and the temperature was kept at 200° C. for 2 hours. The temperature was decreased to room temperature at a temperature decrease rate of 10° C./min. Thereby, fertilizer for natural water was obtained.
  • the phosphorus content (5% by mass) of the residue was converted into a mole with respect to the amount of the reactive ionic substance added, and the amount of the reactive ionic substance added was also converted into a mole, and the ratio thereof was calculated. showed that.
  • the amount of reducing agent is based on the mass of the residue. The same applies to each of the following examples.
  • sludge ash was prepared and dried at 110° C. for 2 hours to make the water content 0%.
  • This sludge ash contained phosphorus, silicon, iron, aluminum, magnesium, and heavy metals.
  • the filter paper was set in the filter to perform solid-liquid separation between the first solid that is a solid phase and the first liquid that is a liquid phase (first solid-liquid separation step). ..
  • the first liquid which was the solid-liquid separated filtrate (liquid phase), was filled up to make a sample liquid.
  • the sample solution was diluted, the phosphorus concentration was measured by the molybdenum blue absorbance method, and the phosphorus dissolution rate was calculated from the measurement results.
  • a UV spectrophotometer was used to analyze the eluate.
  • concentrations of the metal and heavy metal in the sample liquid are obtained using ICP-AES and ICP-MS, and the amount of the metal and heavy metal contained in the solid phase (first solid) and the liquid phase (first liquid) And the amount contained in.
  • carbon black (reducing agent) was added at a ratio of 10 parts by mass to 100 parts by mass of the first solid (reducing agent adding step).
  • the phosphorus content of the first solid is converted into moles (mol) per unit mass of the first solid, and the molar ratio of 1 is sufficient as the reactive ionic substance with respect to the moles of phosphorus contained.
  • the firing treatment is performed by first heating in a nitrogen atmosphere from room temperature to 200° C. at a heating rate of 10° C./min, holding at 200° C. for 2 hours, and then raising the temperature to 900° C. (maximum firing temperature). : The temperature was raised at 20° C./min, and the temperature was kept at 900° C. (maximum firing temperature) for 2 hours, then to 200° C., the temperature was lowered at a rate of 5° C./min, and the temperature was kept at 200° C. for 2 hours. The temperature was decreased to room temperature at a temperature decrease rate of 10° C./min. Thereby, fertilizer for natural water was obtained.
  • Example 23 A fertilizer for natural water was produced in the same manner as in Example 22 except that the ratio of sodium hydroxide as the reactive ionic substance was changed from 1 to the same amount (1:1).
  • sludge ash was prepared and dried at 110° C. for 2 hours to make the water content 0%.
  • This sludge ash contained phosphorus, silicon, iron, aluminum, magnesium, and heavy metals.
  • the filter paper was set in the filter to perform solid-liquid separation between the first solid that is a solid phase and the first liquid that is a liquid phase (first solid-liquid separation step). ..
  • the first liquid which was the solid-liquid separated filtrate (liquid phase), was filled up to make a sample liquid.
  • the sample solution was diluted, the phosphorus concentration was measured by the molybdenum blue absorbance method, and the phosphorus dissolution rate was calculated from the measurement results.
  • a UV spectrophotometer was used to analyze the eluate.
  • concentrations of the metal and heavy metal in the sample liquid are obtained using ICP-AES and ICP-MS, and the amount of the metal and heavy metal contained in the solid phase (first solid) and the liquid phase (first liquid) And the amount contained in.
  • carbon black (reducing agent) was added at a ratio of 10 parts by mass to 100 parts by mass of the first solid (reducing agent adding step).
  • the phosphorus content of the first solid is converted into mol (mol) per unit mass of the first solid, and the reactive ion is added at the same ratio (1:1) to the mol of phosphorus contained.
  • Sodium hydroxide as a volatile substance was added (reactive ionic substance addition step).
  • the firing treatment is performed by first heating in a nitrogen atmosphere from room temperature to 200° C. at a heating rate of 10° C./min, holding at 200° C. for 2 hours, and then raising the temperature to 500° C. (maximum firing temperature). : The temperature was raised at 20° C./min, and the temperature was kept at 500° C. (maximum firing temperature) for 2 hours, then to 200° C., the temperature was lowered at a rate of 5° C./min, and the temperature was kept at 200° C. for 2 hours, then The temperature was decreased to room temperature at a temperature decrease rate of 10° C./min. Thereby, fertilizer for natural water was obtained.
  • Example 25 A fertilizer for natural water was produced in the same manner as in Example 24 except that the maximum firing temperature in the firing step was changed from 500°C to 900°C.
  • sludge ash was prepared and dried at 110° C. for 2 hours to make the water content 0%.
  • This sludge ash contained phosphorus, silicon, iron, aluminum, magnesium, and heavy metals.
  • the filter paper was set in the filter to perform solid-liquid separation between the first solid that is a solid phase and the first liquid that is a liquid phase (first solid-liquid separation step). ..
  • the first liquid which was the solid-liquid separated filtrate (liquid phase), was filled up to make a sample liquid.
  • the sample solution was diluted, the phosphorus concentration was measured by the molybdenum blue absorbance method, and the phosphorus dissolution rate was calculated from the measurement results.
  • a UV spectrophotometer was used to analyze the eluate.
  • concentrations of the metal and heavy metal in the sample liquid are obtained using ICP-AES and ICP-MS, and the amount of the metal and heavy metal contained in the solid phase (first solid) and the liquid phase (first liquid) And the amount contained in.
  • carbon black (reducing agent) was added at a ratio of 10 parts by mass to 100 parts by mass of the first solid (reducing agent adding step).
  • the phosphorus content of the first solid is converted into mol (mol) per unit mass of the first solid, and the reactive ion is added at the same ratio (1:1) to the mol of phosphorus contained.
  • Sodium hydroxide as a volatile substance was added (reactive ionic substance addition step).
  • the firing treatment is performed by first heating in a nitrogen atmosphere from room temperature to 200° C. at a heating rate of 10° C./min, holding at 200° C. for 2 hours, and then raising the temperature to 900° C. (maximum firing temperature). : The temperature was raised at 20° C./min, and the temperature was kept at 900° C. (maximum firing temperature) for 2 hours, then to 200° C., the temperature was lowered at a rate of 5° C./min, and the temperature was kept at 200° C. for 2 hours. The temperature was decreased to room temperature at a temperature decrease rate of 10° C./min. Thereby, fertilizer for natural water was obtained.
  • Example 27 A fertilizer for natural water was produced in the same manner as in Example 26 except that sodium hydroxide was changed to calcium hydroxide as the reactive ionic substance in the step of adding the reactive ionic substance.
  • Example 28 In the step of adding the reactive ionic substance, sodium hydroxide (0.5) and calcium hydroxide (0.5) were combined as the reactive ionic substance to the same amount (1:1) as the molar amount of phosphorus contained. A fertilizer for natural water was produced in the same manner as in Example 26 except for the above.
  • sludge ash was prepared and dried at 110° C. for 2 hours to make the water content 0%.
  • This sludge ash contained phosphorus, silicon, iron, aluminum, magnesium, and heavy metals.
  • the filter paper was set in the filter to perform solid-liquid separation between the first solid that is a solid phase and the first liquid that is a liquid phase (first solid-liquid separation step). ..
  • the first liquid which was the solid-liquid separated filtrate (liquid phase), was filled up to make a sample liquid.
  • the sample solution was diluted, the phosphorus concentration was measured by the molybdenum blue absorbance method, and the phosphorus dissolution rate was calculated from the measurement results.
  • a UV spectrophotometer was used to analyze the eluate.
  • concentrations of the metal and heavy metal in the sample liquid are obtained using ICP-AES and ICP-MS, and the amount of the metal and heavy metal contained in the solid phase (first solid) and the liquid phase (first liquid) And the amount contained in.
  • carbon black (reducing agent) was added at a ratio of 20 parts by mass to 100 parts by mass of the first solid (reducing agent adding step).
  • the phosphorus content of the first solid is converted into moles (mol) per unit mass of the first solid, and water is added as the reactive ionic substance at a ratio of 5 times the mole of phosphorus contained.
  • Sodium oxide was added (reactive ionic substance addition step).
  • the firing treatment is performed by first heating in a nitrogen atmosphere from room temperature to 200° C. at a heating rate of 10° C./min, holding at 200° C. for 2 hours, and then raising the temperature to 500° C. (maximum firing temperature). : The temperature was raised at 20° C./min, and the temperature was kept at 500° C. (maximum firing temperature) for 2 hours, then to 200° C., the temperature was lowered at a rate of 5° C./min, and the temperature was kept at 200° C. for 2 hours, then The temperature was decreased to room temperature at a temperature decrease rate of 10° C./min. Thereby, fertilizer for natural water was obtained.
  • Example 30 A fertilizer for natural water was produced in the same manner as in Example 29 except that the maximum firing temperature in the firing step was changed to 700°C.
  • Example 31 A fertilizer for natural water was produced in the same manner as in Example 30 except that the maximum firing temperature in the firing step was changed to 900°C.
  • sludge ash was prepared and dried at 110° C. for 2 hours to make the water content 0%.
  • This sludge ash contained phosphorus, silicon, iron, aluminum, magnesium, and heavy metals.
  • the filter paper was set in the filter to perform solid-liquid separation between the first solid that is a solid phase and the first liquid that is a liquid phase (first solid-liquid separation step). ..
  • the first liquid which was the solid-liquid separated filtrate (liquid phase), was filled up to make a sample liquid.
  • the sample solution was diluted, the phosphorus concentration was measured by the molybdenum blue absorbance method, and the phosphorus dissolution rate was calculated from the measurement results.
  • a UV spectrophotometer was used to analyze the eluate.
  • concentrations of the metal and heavy metal in the sample liquid are obtained using ICP-AES and ICP-MS, and the amount of the metal and heavy metal contained in the solid phase (first solid) and the liquid phase (first liquid) And the amount contained in.
  • carbon black (reducing agent) was added at a ratio of 20 parts by mass to 100 parts by mass of the first solid (reducing agent adding step).
  • the phosphorus content of the first solid is converted into mol (mol) per unit mass of the first solid, and as a reactive ionic substance at a ratio of 0.1 times the mol of phosphorus contained. Was added (reactive ionic substance addition step).
  • a firing process was performed (firing process).
  • the temperature was raised from room temperature to 200° C. at a temperature raising rate of 10° C./min, held at 200° C. for 2 hours, and then raised to 900° C. (maximum firing temperature) at a temperature raising rate of 20° C./
  • the temperature is raised in minutes and kept at 900° C. (maximum firing temperature) for 2 hours, then to 200° C. at a rate of temperature decrease of 5° C./min and kept at 200° C. for 2 hours, and then to room temperature.
  • Speed The temperature was lowered at 10°C/min. Thereby, fertilizer for natural water was obtained.
  • Example 33 Converting the phosphorus content of the first solid to a mole (mol) per unit mass of the first solid, the sodium hydroxide was added at a ratio of 5 times the mole of phosphorus contained, except that the sodium hydroxide was added.
  • a fertilizer for natural water was produced in the same manner as in Example 32.
  • sludge ash was prepared and dried at 110° C. for 2 hours to make the water content 0%.
  • This sludge ash contained phosphorus, silicon, iron, aluminum, magnesium, and heavy metals.
  • the filter paper was set in the filter to perform solid-liquid separation between the first solid that is a solid phase and the first liquid that is a liquid phase (first solid-liquid separation step). ..
  • the first liquid which was the solid-liquid separated filtrate (liquid phase), was filled up to make a sample liquid.
  • the sample solution was diluted, the phosphorus concentration was measured by the molybdenum blue absorbance method, and the phosphorus dissolution rate was calculated from the measurement results.
  • a UV spectrophotometer was used to analyze the eluate.
  • concentrations of the metal and heavy metal in the sample liquid are obtained using ICP-AES and ICP-MS, and the amount of the metal and heavy metal contained in the solid phase (first solid) and the liquid phase (first liquid) And the amount contained in.
  • carbon black (reducing agent) was added at a ratio of 10 parts by mass to 100 parts by mass of the first solid (reducing agent adding step).
  • the phosphorus content of the first solid is converted into mol (mol) per unit mass of the first solid, and as a reactive ionic substance at a ratio of 0.1 times the mol of phosphorus contained.
  • Calcium hydroxide was added (reactive ionic substance addition step).
  • a firing process was performed (firing process).
  • the temperature was raised from room temperature to 200° C. at a heating rate of 10° C./min in a nitrogen atmosphere, held at 200° C. for 2 hours, and then raised to 900° C. (maximum firing temperature).
  • the temperature is raised at 20° C./min, the temperature is kept at 900° C. (maximum firing temperature) for 2 hours, then the temperature is lowered to 200° C. at a temperature decrease rate of 5° C./min, and the temperature is kept at 200° C. for 2 hours, and then at room temperature. Up to 10° C./min. Thereby, fertilizer for natural water was obtained.
  • Example 35 Changed the ratio of calcium hydroxide (reactive ionic substance) to be added to 10 times the moles of phosphorus contained in the first solid, which was calculated by converting the phosphorus content of the first solid into moles per unit mass.
  • a fertilizer for natural water was produced in the same manner as in Example 34 except for the above.
  • Example 2 A fertilizer for natural water was produced in the same manner as in Example 21 except that the reducing step and the step of adding a reactive ionic substance were omitted.
  • Example 3 A fertilizer for natural water was produced in the same manner as in Example 26 except that sodium carbonate was not used as the reactive ionic substance.
  • the phosphorus content in the first solid separated in the first solid-liquid separation step is 1.0% by mass or more and 10.0% by mass or less.
  • the content of heavy metal in the first solid separated in the first solid-liquid separation step was 3% or less of the initial content.
  • the phosphorus content in the liquid phase separated in the second solid-liquid separation step is 1% by mass or less, and the phosphorus content in the second solid-liquid separation step is
  • the content of heavy metals in the liquid phase thus prepared is 0.1% by mass or less, and the content of phosphorus in the solid phase separated in the third solid-liquid separation step is 95% by mass. %, and the content of heavy metals in the solid phase separated in the third solid-liquid separation step was 90% or more of the initial content, and was separated in the fourth solid-liquid separation step.
  • the content of heavy metals in the solid phase (third solid) was 1.0% or less of the initial content, and the solid phase (third solid) separated in the fourth solid-liquid separation step was used.
  • the phosphorus recovery rate in each case was 50% or more of the initial content rate (the maximum was 85%).
  • the phosphorus content is in the range of 1.0% by mass or more and 10% by mass or less, and the silicon content is 10% by mass or more and 50% by mass or less.
  • the iron content was in the range of 3.0 mass% or more and 50.0 mass% or less, and the heavy metal content was 100 ppm or less.
  • Example The fertilizers for natural water of 1 to 10 all satisfied the relationship of 4.0 ⁇ X Si /X P ⁇ 15 and the relationship of 3 ⁇ X Fe /X P ⁇ 20.0.
  • the fertilizers for natural water of Examples 1 to 10 were analyzed for components by X-ray diffraction (XRD), it was confirmed that all of them contained sodium phosphate.
  • all the fertilizers for natural water obtained in Examples 1 to 10 were granular, and the average particle size thereof was 3 mm or more and 10 mm or less.
  • the fertilizers for natural water obtained in Examples 1 to 10 all had a soluble salt content (alkali metal salt of phosphoric acid compound and/or salt of Group 2 element) of 3.0 mass. % Or more.
  • the content of heavy metals in the fertilizer for natural water of Comparative Example 1 was 1000 ppm or less, and the dissolved concentration was 100 ppb or less.
  • FIG. 4 is a diagram showing the relationship between the number of days elapsed from addition to the aqueous sodium chloride solution and the elution rate of phosphorus components in the fertilizers for natural water according to Examples 1 to 5 and Comparative Example 1.
  • the amount of reactive ionic substances used it is possible to control the elution rate of phosphorus components from fertilizers for natural water, for example, depending on the usage pattern of natural water fertilizers, places of use, etc. It can be said that the balance between immediate effect and sustainability can be adjusted so as to correspond to the characteristics to be achieved.
  • the heating temperature of the heat treatment is changed within the range of 150° C. or higher and 1500° C. or lower, and the treatment time of the heat treatment (heating time at a temperature of 150° C. or higher) is within the range of 1 hour or more and 100 hours or less.
  • the elution amount and precipitation amount of phosphorus were calculated from the results of quantifying the phosphoric acid concentration by the molybdenum blue absorptiometry.
  • the behavior of the metal and heavy metal at the time of elution and precipitation was calculated by ICP spectroscopic analysis (ICP-AES), ICP mass spectrometry (ICP-MS), and elemental analysis equipment.
  • ICP-AES ICP spectroscopic analysis
  • ICP-MS ICP mass spectrometry
  • elemental analysis equipment ICP spectrometry
  • the identification of the precipitate was performed using the X-ray diffraction (XRD) method and the ICP-MS method. The results are summarized in Table 2.
  • FIG. 5 shows the correspondence between the pH of the liquid phase at the end of the first precipitation step and the X-ray diffraction (XRD) pattern of the precipitates of Examples 6, 7 and 8.
  • XRD X-ray diffraction
  • FIG. 6 shows the ratio of the amount contained in (1).
  • the arsenic (As) recovery rate in the third solid is higher than that of other heavy metals, the arsenic content in the third solid is 46.4 mg/kg, which is a standard value for fertilizers. It is significantly lower than 1400 mg/kg, and it is considered that there is no problem in safety.
  • the sample (third solid) 0.15 g
  • the amount of solvent (water) was 12 mL
  • the mixture was stirred at room temperature for 30 minutes, solid-liquid separated, and the dissolved phosphorus concentration was determined by molybdenum blue absorptiometry. And the phosphorus elution rate was calculated.
  • the citric acid solution used here is a solution obtained by dissolving 100 g of citric acid monohydrate in 100 mL of water and diluting the solution 5 times.
  • FIG. 7 shows the results of the water solubility test and the water solubility test for the third solid obtained in the process of producing the fertilizer for natural water of Example 6.
  • FIG. 9 is a diagram showing the relationship between the number of days elapsed from the addition to the aqueous sodium chloride solution and the dissolution rate of the phosphorus component in the fertilizers for natural water according to Examples 11 to 16.
  • the elution rate of the phosphorus component of the fertilizer for natural water can be changed by changing the firing temperature in the firing process. From this, it is possible to control the elution rate of the phosphorus component from the fertilizer for natural water by the firing temperature in the firing step, for example, the required characteristics depending on the usage form of the fertilizer for natural water, the place of use, etc. It can be said that the balance between immediate effect and sustainability can be adjusted so as to correspond to.
  • FIG. 10 is a graph showing the relationship between the number of days elapsed from addition to the aqueous sodium chloride solution and the elution rate of phosphorus components in the fertilizers for natural water according to Examples 17 and 18.
  • FIG. 11 is a diagram showing the relationship between the number of days elapsed from the addition to the aqueous sodium chloride solution and the elution rate of the phosphorus component in the fertilizers for natural water according to Examples 19 and 20.
  • the elution rate of the phosphorus component of the fertilizer for natural water can be changed by changing the firing time in the firing process. From this, by the firing time in the firing process, it is possible to control the elution rate of phosphorus components from the fertilizer for natural water, for example, the required characteristics, depending on the use form, place of use, etc. of the fertilizer for natural water. It can be said that the balance between immediate effect and sustainability can be adjusted so as to correspond to.
  • FIG. 12 is a diagram showing the relationship between the number of days elapsed from the addition to the aqueous sodium chloride solution and the elution rate of the iron component in the fertilizers for natural water according to Example 21 and Comparative Example 2.
  • the elution rate of the iron component is significantly improved by performing the reducing step using the reducing agent together with the reactive ionic substance adding step. From this, it can be said that the iron component contained in the sludge ash as a raw material is changed into a highly soluble state by the reduction process.
  • FIG. 13 is a diagram showing the relationship between the number of days elapsed from the addition to the aqueous sodium chloride solution and the elution rate of the iron component in the fertilizers for natural water according to Examples 22 and 23.
  • the elution rate of the iron component from the fertilizer for natural water finally changes depending on the amount of the reducing agent used in the reduction process. From this, the amount of reducing agent used, it is possible to control the elution rate of the iron component from the fertilizer for natural water, for example, depending on the usage pattern of the fertilizer for natural water, the place of use, etc. It can be said that the balance between immediate effect and sustainability can be adjusted accordingly.
  • FIG. 14 is a diagram showing the relationship between the number of days elapsed from the addition to the aqueous sodium chloride solution and the elution rate of the iron component in the fertilizers for natural water according to Examples 24 and 25.
  • the elution rate of the iron component from the fertilizer for natural water finally changes depending on the firing temperature in the firing process. From this, it is possible to control the elution rate of the iron component from the fertilizer for natural water by the firing temperature. For example, in order to respond to the required characteristics according to the usage form, place of use, etc. of the fertilizer for natural water. Moreover, it can be said that the balance between immediate effect and sustainability can be adjusted.
  • FIG. 15 is a diagram showing the relationship between the number of days elapsed from the addition to the aqueous sodium chloride solution and the elution rate of the silicon component in the fertilizers for natural water according to Examples 26 to 28 and Comparative Example 3.
  • the amount of reactive ionic substances used it is possible to control the elution rate of silicon components from fertilizers for natural water, for example, depending on the usage pattern of fertilizers for natural water, place of use, etc. It can be said that the balance between immediate effect and sustainability can be adjusted so as to correspond to the characteristics to be achieved.
  • FIG. 16 is a diagram showing the relationship between the number of days elapsed from the addition to the aqueous sodium chloride solution and the elution rate of the silicon component in the fertilizers for natural water according to Examples 29 to 31.
  • the elution rate of the silicon component from the fertilizer for natural water finally changes depending on the firing temperature in the firing process. From this, it is possible to control the elution rate of the silicon component from the fertilizer for natural water depending on the firing temperature. For example, according to the usage form of the fertilizer for natural water, the place of use, etc. Moreover, it can be said that the balance between immediate effect and sustainability can be adjusted.
  • FIG. 17 is a diagram showing the relationship between the number of days elapsed from the addition to the aqueous sodium chloride solution and the elution rate of the silicon component in the fertilizers for natural water according to Examples 32 and 33.
  • the elution rate of the silicon component of the fertilizer for natural water can be changed by changing the concentration of the reactive ionic substance. From this, the amount of reactive ionic substances used, it is possible to control the elution rate of silicon components from fertilizers for natural water, for example, depending on the usage pattern of fertilizers for natural water, place of use, etc. It can be said that the balance between immediate effect and sustainability can be adjusted so as to correspond to the characteristics to be achieved.
  • FIG. 18 is a diagram showing the relationship between the number of days elapsed from the addition to the aqueous sodium chloride solution and the elution rate of the silicon component in the fertilizers for natural water according to Examples 34 and 35.
  • a sludge ash and an acidic liquid are mixed to dissolve a heavy metal and phosphorus contained in the sludge ash, and the heavy metal and phosphorus are dissolved.
  • a first solid-liquid separation step of separating and removing the first liquid from the first solid; and a hydroxide and/or salt of an alkali metal and/or a Group 2 element with respect to the first solid.
  • the method includes a reactive ionic substance addition step of adding a reactive ionic substance, and a firing step of subjecting the composition containing the first solid and the reactive ionic substance to a firing treatment.
  • the fertilizer for natural water of the present invention is made of sludge ash as a raw material, contains phosphorus, silicon and iron, and has a heavy metal content of 1000 ppm or less. Therefore, while effectively utilizing sludge ash, to provide a fertilizer for natural water, which contains phosphorus, silicon and iron, and has a sufficiently low content of heavy metals, and a method for producing the fertilizer for natural water. be able to.

Abstract

This method for manufacturing a fertilizer for natural water is characterized by including: a first dissolving step of mixing sludge ash with an acidic liquid to dissolve heavy metals and phosphorus contained in the sludge ash; a first solid-liquid separation step of separating and removing a first liquid in which the heavy metals and phosphorus are dissolved from a first solid; a reactive ionic substance adding step of adding, to the first solid, a reactive ionic substance which is an alkali metal and/or a Group II hydroxide and/or a salt; and a firing step of subjecting a composition including the first solid and the reactive ionic substance to firing. The present invention can provide: a fertilizer for natural water which effectively uses sludge ash and comprises phosphorus, silicon, and iron and has a sufficiently low content of heavy metals; and the method for manufacturing the fertilizer for natural water. In particular, the present invention can provide a fertilizer for natural water for which the dissolution rate of a fertilizer component is suitably controlled and can provide the method for manufacturing the fertilizer for natural water.

Description

自然水用肥料の製造方法および自然水用肥料Method for producing fertilizer for natural water and fertilizer for natural water
 本発明は、自然水用肥料の製造方法および自然水用肥料に関する。 The present invention relates to a method for producing a fertilizer for natural water and a fertilizer for natural water.
 地球温暖化による海水温度の変化や、汚泥等の有機廃棄物質の海洋投棄が禁じられていることにより、海の貧栄養化、特に、リンの不足が進行し、海藻の生育に支障が出ている。それに伴って、漁獲量の減少や、高級食材でもあるアワビやサザエ等の水棲生物の採集量の減少等を引き起こす、いわゆる海の砂漠化も進んでいる。さらに養殖にも大きな影響が出ている。 The change in seawater temperature due to global warming and the prohibition of dumping of organic waste substances such as sludge into the ocean are hampering the nutrition of the sea, especially the lack of phosphorus, which hinders the growth of seaweed. There is. Along with this, the so-called desertification of the sea is progressing, which causes a decrease in the amount of fish caught and a decrease in the amount of aquatic organisms such as abalone and turban shells that are also high-grade foods. Furthermore, it has a great impact on aquaculture.
 海に栄養源を与える試みとしては、鉄鋼スラグと有機廃棄物を発酵させた腐植土をまぜて、海の中に埋め立てることで、鉄分の供給により海藻の生育状況がよくなったとの報告がある(例えば、特許文献1参照。)。しかし、これは、鉄分の供給源とすることを目的としており、リン不足による問題を緩和、解消することができるものではなかった。 In an attempt to provide nutrients to the sea, it has been reported that the growth of seaweed has improved due to the supply of iron by mixing the humus soil fermented with steel slag and organic waste and filling it into the sea. (For example, refer to Patent Document 1.). However, this was intended to serve as a source of iron, and it was not possible to alleviate or eliminate the problems caused by phosphorus deficiency.
特開2014-068594公報JP, 2014-068594, A
 本発明の目的は、汚泥灰を有効利用しつつ、リン、ケイ素および鉄を含み、かつ、重金属の含有率が十分に低い自然水用肥料を提供すること、また、当該自然水用肥料の製造方法を提供することにある。特に、肥料成分の溶出速度が好適に制御された自然水用肥料を提供すること、また、当該自然水用肥料の製造方法を提供することにある。 An object of the present invention is to provide a fertilizer for natural water, which contains phosphorus, silicon and iron, and has a sufficiently low heavy metal content while effectively utilizing sludge ash, and also to manufacture the fertilizer for natural water. To provide a method. In particular, it is to provide a fertilizer for natural water in which the elution rate of fertilizer components is suitably controlled, and to provide a method for producing the fertilizer for natural water.
 このような目的は、下記の本発明により達成される。
 本発明の自然水用肥料の製造方法は、汚泥灰と酸性の液体とを混合し、前記汚泥灰中に含まれる重金属およびリンを溶解させる第1の溶解工程と、
 前記重金属およびリンが溶解した第1の液体を第1の固体から分離除去する第1の固液分離工程と、
 前記第1の固体に対して、アルカリ金属および/または第2族元素の水酸化物および/または塩である反応性イオン性物質を添加する反応性イオン性物質添加工程と、
 前記第1の固体および前記反応性イオン性物質を含む組成物に対し焼成処理を施す焼成工程とを有することを特徴とする。
Such an object is achieved by the present invention described below.
The method for producing a fertilizer for natural water of the present invention comprises a first dissolution step of mixing sludge ash and an acidic liquid to dissolve heavy metals and phosphorus contained in the sludge ash,
A first solid-liquid separation step of separating and removing the first liquid in which the heavy metal and phosphorus are dissolved from the first solid;
A reactive ionic substance adding step of adding a reactive ionic substance which is a hydroxide and/or a salt of an alkali metal and/or a Group 2 element to the first solid;
And a firing step of subjecting the composition containing the first solid and the reactive ionic substance to a firing treatment.
 本発明の自然水用肥料の製造方法では、前記反応性イオン性物質は、Naおよび/またはCaを含む水酸化物および/または塩であることが好ましい。 In the method for producing a fertilizer for natural water of the present invention, the reactive ionic substance is preferably a hydroxide and/or salt containing Na and/or Ca.
 本発明の自然水用肥料の製造方法では、前記反応性イオン性物質は、NaCO、NaOH、CaCO、Ca(OH)、CaClおよびNaClよりなる群から選択される1種または2種以上であることが好ましい。 In the method for producing a fertilizer for natural water of the present invention, the reactive ionic substance is one selected from the group consisting of Na 2 CO 3 , NaOH, CaCO 3 , Ca(OH) 2 , CaCl 2 and NaCl, or It is preferable that there are two or more kinds.
 本発明の自然水用肥料の製造方法では、前記焼成処理における焼成温度は、150℃以上1100℃以下であることが好ましい。 In the method for producing a fertilizer for natural water of the present invention, the firing temperature in the firing treatment is preferably 150°C or higher and 1100°C or lower.
 本発明の自然水用肥料の製造方法では、前記焼成処理の処理時間は、0.5時間以上100時間以下であることが好ましい。 In the method for producing a fertilizer for natural water of the present invention, it is preferable that the treatment time of the calcination treatment is 0.5 hours or more and 100 hours or less.
 本発明の自然水用肥料の製造方法では、前記第1の固体に対して、還元剤を添加して、還元処理を施す還元工程を有することが好ましい。 The method for producing a fertilizer for natural water of the present invention preferably has a reducing step in which a reducing agent is added to the first solid to carry out a reducing treatment.
 本発明の自然水用肥料の製造方法では、前記第1の固液分離工程よりも後に、系内に窒素系の肥料成分を添加するN成分添加工程をさらに有することが好ましい。 The method for producing a fertilizer for natural water of the present invention preferably further comprises an N component addition step of adding a nitrogen-based fertilizer component into the system after the first solid-liquid separation step.
 本発明の自然水用肥料の製造方法では、前記第1の固液分離工程よりも後に、系内にリン系の肥料成分を添加するP成分添加工程をさらに有することが好ましい。 The method for producing a fertilizer for natural water of the present invention preferably further comprises a P component addition step of adding a phosphorus fertilizer component into the system after the first solid-liquid separation step.
 本発明の自然水用肥料の製造方法では、前記リン系の肥料成分は、
 前記第1の固液分離工程で分離された前記第1の液体を析出剤と混合するとともにpHを上昇させ、前記重金属およびリンを含む第2の固体を析出させる第1の析出工程と、
 前記第2の固体を液体成分と分離する第2の固液分離工程と、
 前記第2の固体中に含まれるリンをアルカリ性の液体で溶解させる第2の溶解工程と、
 リンが溶解した第2の液体を、前記重金属を含む固体成分と分離する第3の固液分離工程とを有する方法により、分離されたものであることが好ましい。
In the method for producing a fertilizer for natural water of the present invention, the phosphorus-based fertilizer component is
A first precipitation step in which the first liquid separated in the first solid-liquid separation step is mixed with a precipitant and the pH is raised, and a second solid containing the heavy metal and phosphorus is precipitated.
A second solid-liquid separation step of separating the second solid from a liquid component;
A second dissolving step of dissolving phosphorus contained in the second solid with an alkaline liquid;
It is preferably separated by a method including a third solid-liquid separation step of separating the second liquid in which phosphorus is dissolved from the solid component containing the heavy metal.
 本発明の自然水用肥料の製造方法では、前記リン系の肥料成分は、前記第3の固液分離工程の後に、前記第2の液体を析出剤と混合するとともにpHを低下させ、リンを含む第3の固体を析出させる第2の析出工程をさらに有する方法を用いて得られたものであることが好ましい。 In the method for producing a fertilizer for natural water according to the present invention, the phosphorus-based fertilizer component mixes the second liquid with a precipitating agent to lower the pH after the third solid-liquid separation step to reduce phosphorus. It is preferably obtained by using a method further having a second precipitation step of precipitating a third solid containing the same.
 本発明の自然水用肥料の製造方法では、前記第2の析出工程の終了時における液相のpHが2.0以上12.0以下であることが好ましい。 In the method for producing a fertilizer for natural water of the present invention, the pH of the liquid phase at the end of the second precipitation step is preferably 2.0 or more and 12.0 or less.
 本発明の自然水用肥料の製造方法では、前記第2の析出工程で、pHが-1.0以上2.0以下の酸性液体を用いることが好ましい。 In the method for producing a fertilizer for natural water of the present invention, it is preferable to use an acidic liquid having a pH of −1.0 or more and 2.0 or less in the second precipitation step.
 本発明の自然水用肥料の製造方法では、前記第2の析出工程で、前記反応性イオン性物質を用いることが好ましい。 In the method for producing a fertilizer for natural water of the present invention, it is preferable to use the reactive ionic substance in the second precipitation step.
 本発明の自然水用肥料は、汚泥灰を原料とし、
 リンとケイ素と鉄とを含み、
 重金属の含有率が1000ppm以下であることを特徴とする。
The fertilizer for natural water of the present invention uses sludge ash as a raw material,
Contains phosphorus, silicon and iron,
It is characterized in that the content of heavy metals is 1000 ppm or less.
 本発明の自然水用肥料では、リンの含有率が1.0質量%以上10質量%以下であり、
 ケイ素の含有率が10質量%以上50質量%以下であり、
 鉄の含有率が1.0質量%以上50質量%以下であることが好ましい。
In the fertilizer for natural water of the present invention, the phosphorus content is 1.0% by mass or more and 10% by mass or less,
The content of silicon is 10% by mass or more and 50% by mass or less,
The iron content is preferably 1.0% by mass or more and 50% by mass or less.
 本発明の自然水用肥料では、リンの含有率をX[質量%]、ケイ素の含有率をXSi[質量%]、鉄の含有率をXFe[質量%]としたとき、1.0≦XSi/X≦50.0、および、0.9≦XFe/X≦50.0の関係を満足することが好ましい。 In the fertilizer for natural water of the present invention, when the phosphorus content is XP [mass %], the silicon content is X Si [mass %], and the iron content is X Fe [mass %], 1. It is preferable to satisfy the relations of 0≦X Si /X P ≦50.0 and 0.9≦X Fe /X P ≦50.0.
 本発明によれば、汚泥灰を有効利用しつつ、リン、ケイ素および鉄を含み、かつ、重金属の含有率が十分に低い自然水用肥料を提供すること、また、当該自然水用肥料の製造方法を提供することができる。特に、肥料成分の溶出速度が好適に制御された自然水用肥料を提供すること、また、当該自然水用肥料の製造方法を提供することができる。 According to the present invention, while effectively utilizing sludge ash, providing phosphorus, silicon and iron, and to provide a fertilizer for natural water having a sufficiently low content of heavy metals, also the production of the fertilizer for natural water A method can be provided. In particular, it is possible to provide a fertilizer for natural water in which the elution rate of fertilizer components is suitably controlled, and a method for producing the fertilizer for natural water.
図1は、本発明の自然水用肥料の製造方法の好適な実施形態を示す工程図である。FIG. 1 is a process diagram showing a preferred embodiment of the method for producing a fertilizer for natural water of the present invention. 図2は、第1の析出工程の終了時における液相のpHと、最終的なリンの回収率との関係を模式的に示す図である。FIG. 2 is a diagram schematically showing the relationship between the pH of the liquid phase at the end of the first precipitation step and the final phosphorus recovery rate. 図3は、汚泥灰(比較例1)を塩酸で処理した場合の鉄等の溶出率の経時変化を示す図である。FIG. 3 is a diagram showing changes over time in the elution rate of iron and the like when sludge ash (Comparative Example 1) is treated with hydrochloric acid. 図4は、実施例1~5および比較例1に係る自然水用肥料について、炭酸ナトリウムの添加量の変化に対する塩化ナトリウム水溶液への添加からの経過日数とリン成分の溶出率との関係を示す図である。FIG. 4 shows the relationship between the number of days elapsed from the addition of sodium carbonate to the aqueous solution of sodium chloride and the elution rate of phosphorus components with respect to the natural water fertilizers of Examples 1 to 5 and Comparative Example 1. It is a figure. 図5は、実施例6、7および8についての、第1の析出工程の終了時における液相のpHと、析出物のX線回折(XRD)パターンとの対応を示す図である。FIG. 5 is a diagram showing the correspondence between the pH of the liquid phase at the end of the first precipitation step and the X-ray diffraction (XRD) pattern of the precipitates for Examples 6, 7 and 8. 図6は、実施例6の自然水用肥料の製造過程で得られた第3の固体について、リンおよび主要金属元素の回収率(すなわち、原料としての汚泥灰中に含まれていた量に対する第3の固体中に含まれている量の比率)を示すグラフである。FIG. 6 shows the recovery rate of phosphorus and main metal elements (that is, the amount relative to the amount contained in sludge ash as a raw material) for the third solid obtained in the process for producing the fertilizer for natural water of Example 6. 3 is a graph showing the ratio of the amount contained in the solid of No. 3). 図7は、実施例6の自然水用肥料の製造過程で得られた第3の固体についての、水溶性試験、ク溶性試験の結果を示すグラフである。FIG. 7 is a graph showing the results of the water solubility test and the water solubility test for the third solid obtained in the process of producing the fertilizer for natural water of Example 6. 図8は、本発明の自然水用肥料の製造方法の具体的な一例を示すフローチャートである。FIG. 8 is a flowchart showing a specific example of the method for producing a fertilizer for natural water of the present invention. 図9は、実施例11~16に係る自然水用肥料について、焼成温度の変化に対する塩化ナトリウム水溶液への添加からの経過日数とリン成分の溶出率との関係を示す図である。FIG. 9 is a graph showing the relationship between the number of days elapsed from addition to the aqueous sodium chloride solution and the elution rate of phosphorus components with respect to the fertilizers for natural water according to Examples 11 to 16 with respect to changes in firing temperature. 図10は、実施例17、18に係る自然水用肥料について、炭酸カルシウムの添加量の変化に対する塩化ナトリウム水溶液への添加からの経過日数とリン成分の溶出率との関係を示す図である。FIG. 10 is a diagram showing the relationship between the number of days elapsed from the addition to the sodium chloride aqueous solution and the elution rate of the phosphorus component with respect to the change in the addition amount of calcium carbonate in the fertilizers for natural water according to Examples 17 and 18. 図11は、実施例19、20に係る自然水用肥料について、焼成時間の変化に対する塩化ナトリウム水溶液への添加からの経過日数とリン成分の溶出率との関係を示す図である。FIG. 11 is a diagram showing the relationship between the number of days elapsed from addition to the sodium chloride aqueous solution and the elution rate of phosphorus components with respect to changes in the firing time for the fertilizers for natural water according to Examples 19 and 20. 図12は、実施例21および比較例2に係る自然水用肥料について、水酸化ナトリウムの添加有無に対する、塩化ナトリウム水溶液への添加からの経過日数と鉄成分の溶出率との関係を示す図である。FIG. 12 is a diagram showing the relationship between the number of days elapsed from the addition to the sodium chloride aqueous solution and the elution rate of the iron component with respect to the presence or absence of addition of sodium hydroxide in the fertilizers for natural water according to Example 21 and Comparative Example 2. is there. 図13は、実施例22、23に係る自然水用肥料について、水酸化ナトリウムの添加量の変化に対する塩化ナトリウム水溶液への添加からの経過日数と鉄成分の溶出率との関係を示す図である。FIG. 13: is a figure which shows the relationship between the elapsed days after addition to the sodium chloride aqueous solution and the elution rate of an iron component with respect to the change of the addition amount of sodium hydroxide about the fertilizer for natural waters which concerns on Example 22 and 23. .. 図14は、実施例24、25に係る自然水用肥料について、焼成温度の変化に対する塩化ナトリウム水溶液への添加からの経過日数と鉄成分の溶出率との関係を示す図である。FIG. 14 is a diagram showing the relationship between the number of days elapsed from addition to the aqueous sodium chloride solution and the elution rate of the iron component with respect to changes in the firing temperature for the fertilizers for natural water according to Examples 24 and 25. 図15は、実施例26~28および比較例3に係る自然水用肥料について、反応性イオン性物質の添加に対する塩化ナトリウム水溶液への添加からの経過日数とケイ素成分の溶出率との関係を示す図である。FIG. 15 shows the relationship between the number of days elapsed from the addition of the reactive ionic substance to the sodium chloride aqueous solution and the elution rate of the silicon component with respect to the natural water fertilizers of Examples 26 to 28 and Comparative Example 3. It is a figure. 図16は、実施例29~31に係る自然水用肥料について、焼成温度の変化に対する塩化ナトリウム水溶液への添加からの経過日数とケイ素成分の溶出率との関係を示す図である。FIG. 16 is a diagram showing the relationship between the number of days elapsed from addition to the sodium chloride aqueous solution and the elution rate of silicon components with respect to changes in the firing temperature, for the fertilizers for natural water according to Examples 29 to 31. 図17は、実施例32、33に係る自然水用肥料について、ナトリウムイオンの添加量の変化に対する塩化ナトリウム水溶液への添加からの経過日数とケイ素成分の溶出率との関係を示す図である。FIG. 17 is a diagram showing the relationship between the number of days elapsed from the addition to the sodium chloride aqueous solution and the elution rate of the silicon component with respect to the change in the addition amount of sodium ions in the fertilizers for natural water according to Examples 32 and 33. 図18は、実施例34、35に係る自然水用肥料について、カルシウムイオンの添加量の変化に対する塩化ナトリウム水溶液への添加からの経過日数とケイ素成分の溶出率との関係を示す図である。FIG. 18 is a diagram showing the relationship between the number of days elapsed from the addition to the sodium chloride aqueous solution and the elution rate of the silicon component with respect to the change in the addition amount of calcium ions in the fertilizers for natural water according to Examples 34 and 35.
 以下、本発明の好適な実施形態について詳細に説明する。
 [自然水用肥料の製造方法]
 まず、本発明の自然水用肥料の製造方法について説明する。
Hereinafter, preferred embodiments of the present invention will be described in detail.
[Manufacturing method of fertilizer for natural water]
First, the method for producing a fertilizer for natural water of the present invention will be described.
 図1は、本発明の自然水用肥料の製造方法の好適な実施形態を示す工程図である。図2は、第1の析出工程の終了時における液相のpHと、最終的なリンの回収率との関係を模式的に示す図である。 FIG. 1 is a process diagram showing a preferred embodiment of the method for producing a fertilizer for natural water of the present invention. FIG. 2 is a diagram schematically showing the relationship between the pH of the liquid phase at the end of the first precipitation step and the final phosphorus recovery rate.
 本発明の自然水用肥料の製造方法は、汚泥灰と酸性の液体とを混合し、前記汚泥灰中に含まれる重金属およびリンを溶解させる第1の溶解工程と、重金属およびリンが溶解した第1の液体を第1の固体から分離除去する第1の固液分離工程と、前記第1の固体に対して、アルカリ金属および/または第2族元素の水酸化物および/または塩である反応性イオン性物質を添加する反応性イオン性物質添加工程と、前記第1の固体および前記反応性イオン性物質を含む組成物に対し焼成処理を施す焼成工程とを有することを特徴とする。 The method for producing a fertilizer for natural water of the present invention comprises mixing a sludge ash and an acidic liquid to dissolve a heavy metal and phosphorus contained in the sludge ash, and a first dissolving step in which the heavy metal and phosphorus are dissolved. A first solid-liquid separation step of separating and removing the liquid of No. 1 from the first solid; and a reaction of being a hydroxide and/or salt of an alkali metal and/or a Group 2 element with respect to the first solid. The method is characterized by including a reactive ionic substance addition step of adding a cationic ionic substance and a firing step of subjecting the composition containing the first solid and the reactive ionic substance to a firing treatment.
 このように汚泥灰を原料として用いることにより、従来では産業廃棄物として取り扱われてきた汚泥灰を、従来にはない用途で有効利用することができ、省資源の観点や、産業廃棄物の埋め立て用地の確保、全体としての汚泥灰の処理コストの削減等の観点から好ましい。特に、汚泥灰の大部分(例えば、約90体積%を占める部分)を、自然水用肥料として有効利用することができるため、上記のような観点からの効果は非常に大きい。また、汚泥灰には、リンに加えて、鉄、ケイ素も高い含有率で含んでおり、これらの成分をバランスよく含む自然水用肥料を好適に得ることができる。また、反応性イオン性物質添加工程および焼成工程を有することにより、自然水用肥料中に含まれるリン成分に加え、ケイ素成分、鉄成分等の肥料成分の溶解性を好適に高めることができる。特に、反応性イオン性物質添加工程で用いる反応性イオン性物質の種類や使用量、焼成工程での焼成処理条件を調整することにより、製造される自然水用肥料からの肥料成分の溶出速度を好適に制御することができる。例えば、肥料成分の施肥効果を、数日間から数年間という広い範囲で制御することができる。より具体的には、例えば、前記第1の固体に対して、炭酸ナトリウムの添加量を15重量%から35質量%まで変化し、900℃で焼結した自然水肥料では、含有リンを50%溶出させるのに必要な時間は35重量%では2日間であるが、15%では350日間が必要である。同様な条件で(焼結温度900℃、リン溶出率50%)、前記第1の固体に対して、炭酸カルシウムの添加量が20重量%の場合と10重量%を比較すると、20重量%では300日間である。10%では1500日間が必要である。すなわち、例えば、製造条件を、上記のような範囲内で変更することにより、肥料成分の施肥効果を2日間~1500日間程度という、広い範囲で好適に制御することができる。また、焼結時間を長くすること、イオン性物質の添加量少なくすることにより、自然水用肥料からの肥料成分の溶出速度を比較的小さくし、自然水用肥料の持続性を高めることができる。焼結時間を短くすること、イオン性物質の添加量多くすることにより、自然水用肥料からの肥料成分の溶出速度を比較的大きくし、自然水用肥料の即効性を高めることができる。例えば、焼結温度が600℃から900℃までは温度の増加とともに、リン溶出率が増加するが、900℃を超えると溶出率はさがる。また、第1の溶解工程で、汚泥灰から重金属を効率よく除去することができるため、安全性の高い自然水用肥料を得ることができる。また、第1の固液分離工程で分離される第1の液体には、リンが高い含有率で含まれるため、第1の液体を精製することにより、高純度のリン化合物を好適に得ることができる。したがって、汚泥灰に含まれるリンを全体として特に高効率で利用することができる。また、重金属は、第1の固液分離工程で分離される第1の液体に、選択的に、かつ、比較的高い含有率で含まれているため、重金属を比較的高濃度で含む組成物の体積を大幅に低減させることができ、産業廃棄物の処理用地の確保や、有害物質の管理の観点からも好ましい。 By using sludge ash as a raw material in this way, sludge ash that has been conventionally treated as industrial waste can be effectively used for unprecedented applications, and it is possible to save resources and to reclaim industrial waste. This is preferable from the viewpoints of securing a site and reducing the overall sludge ash treatment cost. In particular, most of the sludge ash (for example, a portion occupying about 90% by volume) can be effectively used as a fertilizer for natural water, so the effect from the above viewpoint is very large. In addition to phosphorus, the sludge ash also contains iron and silicon at a high content rate, and a fertilizer for natural water containing these components in a well-balanced manner can be suitably obtained. Moreover, by having a reactive ionic substance addition process and a calcination process, the solubility of fertilizer components, such as a silicon component and an iron component, in addition to the phosphorus component contained in the fertilizer for natural waters can be improved suitably. In particular, the elution rate of fertilizer components from the fertilizer for natural water produced can be adjusted by adjusting the type and amount of reactive ionic substance used in the reactive ionic substance addition step and the firing treatment conditions in the firing step. It can be controlled appropriately. For example, the fertilizing effect of fertilizer components can be controlled over a wide range of several days to several years. More specifically, for example, with respect to the first solid, the amount of sodium carbonate added was changed from 15% by weight to 35% by weight, and natural water fertilizer sintered at 900° C. contained 50% phosphorus. The time required for elution is 2 days at 35% by weight, but 350 days at 15%. Under the same conditions (sintering temperature 900° C., phosphorus elution rate 50%), when the amount of calcium carbonate added to the first solid is 20% by weight and when 10% by weight is compared, It's 300 days. 10% requires 1500 days. That is, for example, by changing the production conditions within the above range, the fertilizing effect of the fertilizer component can be suitably controlled in a wide range of 2 days to 1500 days. Also, by increasing the sintering time and decreasing the amount of ionic substances added, the elution rate of fertilizer components from natural water fertilizers can be made relatively small, and the sustainability of natural water fertilizers can be increased. .. By shortening the sintering time and increasing the addition amount of the ionic substance, the elution rate of the fertilizer component from the fertilizer for natural water can be relatively increased, and the immediate effect of the fertilizer for natural water can be enhanced. For example, when the sintering temperature is from 600° C. to 900° C., the phosphorus elution rate increases with increasing temperature, but when it exceeds 900° C., the elution rate decreases. In addition, since heavy metals can be efficiently removed from sludge ash in the first dissolution step, a highly safe fertilizer for natural water can be obtained. Further, since the first liquid separated in the first solid-liquid separation step contains a high content of phosphorus, it is possible to suitably obtain a highly pure phosphorus compound by purifying the first liquid. You can Therefore, the phosphorus contained in the sludge ash can be used as a whole with particularly high efficiency. Further, since the heavy metal is contained in the first liquid separated in the first solid-liquid separation step selectively and at a relatively high content rate, a composition containing the heavy metal in a relatively high concentration It is possible to significantly reduce the volume, and it is preferable from the viewpoints of securing a site for treating industrial waste and controlling harmful substances.
 なお、本発明において、重金属とは、比重が4以上の金属であって、鉄を除く金属のことを指す。また、本明細書において、自然水とは、海、河川、湖、池、沼等、自然界においてまとまって存在する水のことを含み、加えて、人工的に作られた、人工池、貯水池、釣り堀、水槽、養殖場等、前記海、河川、湖、池、沼等とは直接つながらない、閉じた空間にまとまって存在する水のことも含む概念とする。また、本発明において、自然水には、用水路水も含まれるものとする。また、自然水は、淡水、塩水および汽水のいずれであってもよい。 In the present invention, the heavy metal means a metal having a specific gravity of 4 or more and excluding iron. Further, in the present specification, the term "natural water" includes sea, rivers, lakes, ponds, swamps, and other water that exists collectively in the natural world, and in addition, artificially created artificial ponds, reservoirs, The concept also includes water existing in a closed space that is not directly connected to the sea, rivers, lakes, ponds, swamps, etc., such as fishing ponds, aquariums, and farms. Further, in the present invention, natural water includes irrigation water. The natural water may be any of fresh water, salt water, and brackish water.
 中でも、本発明に係る自然水用肥料が適用される自然水は、海水であるのが好ましい。
 海は、貧栄養の問題が生じやすく、いわゆる海の砂漠化も進んでいる。したがって、自然水が海水である場合に、本発明による効果がより顕著に発揮される。
Among them, the natural water to which the fertilizer for natural water according to the present invention is applied is preferably seawater.
The sea is prone to malnutrition and the so-called desertification of the sea is also progressing. Therefore, when the natural water is seawater, the effect of the present invention is more remarkably exhibited.
 海の砂漠化を食い止めることで、生態系を回復できる。例えば、本発明に係る自然水用肥料を用いることで、海に栄養分を供給することができ、コンブ、ワカメ等の海藻の生育が良くなり、また魚の生育の場になる。さらに、海藻は、アワビ、サザエ等の餌にもなるので、高級食材でもあるアワビ、サザエ等の生産量も増える。すなわち、漁村の経済活性化に貢献することができる。  By stopping the desertification of the sea, the ecosystem can be restored. For example, by using the fertilizer for natural water according to the present invention, it is possible to supply nutrients to the sea, improve the growth of seaweeds such as kelp and seaweed, and become a place for growing fish. Further, since seaweed can be used as a feed for abalone, turban shell, etc., the production amount of high-grade food such as abalone, turban shell, etc. will also increase. That is, it can contribute to the economic vitalization of the fishing village.
 特に、本実施形態では、第1の固液分離工程よりも後に、系内に窒素系の肥料成分を添加するN成分添加工程をさらに有する。 Particularly, in the present embodiment, a N component addition step of adding a nitrogen-based fertilizer component into the system is further provided after the first solid-liquid separation step.
 これにより、汚泥灰由来の肥料では不足しがちな窒素系の肥料成分を好適な割合で含有する自然水用肥料を好適に調製することができる。 With this, it is possible to suitably prepare a fertilizer for natural water containing a nitrogen-based fertilizer component, which tends to be insufficient in a fertilizer derived from sludge ash, in a suitable ratio.
 また、本実施形態では、第1の固液分離工程よりも後に、系内にリン系の肥料成分を添加するP成分添加工程を有する。 Further, in the present embodiment, after the first solid-liquid separation step, there is a P component addition step of adding a phosphorus-based fertilizer component into the system.
 これにより、例えば、自然水用肥料中におけるリン系の肥料成分の含有率を好適な値に調整することができる。また、水に対する溶解性の異なる複数種のリン系の肥料成分を含む自然水用肥料(特に、これらの成分を好適な比率で含有する自然水用肥料)を好適に調製することができる。 With this, for example, the content rate of the phosphorus-based fertilizer component in the fertilizer for natural water can be adjusted to a suitable value. Further, a fertilizer for natural water containing a plurality of phosphorus-based fertilizer components having different solubilities in water (particularly, a fertilizer for natural water containing these components in a suitable ratio) can be suitably prepared.
 なお、P成分添加工程で第1の固体に添加するリン系の肥料成分を含む組成物については、後に詳述する。
 また、本実施形態では、P成分添加工程において、リン系の肥料成分とともに、反応性イオン性物質を含む組成物を添加する。言い換えると、P成分添加工程が反応性イオン性物質添加工程を兼ねている。
The composition containing the phosphorus-based fertilizer component added to the first solid in the P component addition step will be described in detail later.
Further, in the present embodiment, in the P component addition step, the composition containing the reactive ionic substance is added together with the phosphorus-based fertilizer component. In other words, the P component addition step also serves as the reactive ionic substance addition step.
 これにより、第1の固体に、反応性イオン性物質を供給しつつ、リン系の肥料成分を供給することができ、自然水用肥料の生産性を優れたものとしつつ、リン系の肥料成分の含有量や肥料成分の溶出速度がより好適に制御された自然水用肥料を得ることができる。 As a result, the phosphorus-based fertilizer component can be supplied to the first solid while supplying the reactive ionic substance, and the productivity of the fertilizer for natural water can be made excellent, while the phosphorus-based fertilizer component can be supplied. It is possible to obtain a fertilizer for natural water, the content of which is controlled and the elution rate of fertilizer components being controlled more suitably.
 なお、反応性イオン性物質添加工程は、第1の固液分離工程で得られた第1の固体に対して直接行ってもよいし、第1の固液分離工程で得られた第1の固体に所定の処理を施した後に行うものであってもよい。 The reactive ionic substance addition step may be performed directly on the first solid obtained in the first solid-liquid separation step, or in the first solid-liquid separation step. It may be performed after subjecting the solid to a predetermined treatment.
 特に、反応性イオン性物質添加工程は、後に詳述する焼成工程前に行う。言い換えると、反応性イオン性物質添加工程の後に、焼成工程を行う。 Especially, the step of adding the reactive ionic substance is performed before the firing step described in detail later. In other words, the firing step is performed after the reactive ionic substance addition step.
 これにより、前記汚泥灰の処理物中に含まれる難溶性の成分(例えば、リン成分、ケイ素成分、鉄成分等)と反応性イオン性物質とを好適に反応させ、最終的に得られる自然水用肥料中に含まれるリン成分、ケイ素成分、鉄成分等の溶解性をさらに好適に調整することができる。 As a result, the sparingly soluble components (for example, phosphorus component, silicon component, iron component, etc.) contained in the treated sludge ash and the reactive ionic substance are appropriately reacted, and finally the natural water is obtained. The solubility of the phosphorus component, silicon component, iron component, etc. contained in the fertilizer for use can be more suitably adjusted.
 以下に、反応性イオン性物質を用いた場合に進行する化学反応の一例を示す。なお、式中、x,y,z,l,m,nはそれぞれ1以上の整数である。 Below is an example of the chemical reactions that proceed when a reactive ionic substance is used. In the formula, x, y, z, l, m and n are integers of 1 or more.
(1)被処理物である汚泥灰の処理物に含まれる、難溶性のリン成分が、リン酸鉄(FePO)である場合
 (1-1)NaCOとの反応:
 FePO+3/2NaCO → NaPO+3/2CO+1/2Fe
 2FePO+2NaCO → Na + 2CO +Fe + 1/2O
 Fe +NaCO → Na +mCO +lFe
(1) When the sparingly soluble phosphorus component contained in the treated sludge ash that is the object to be treated is iron phosphate (FePO 4 ) (1-1) Reaction with Na 2 CO 3 :
FePO 4 +3/2Na 2 CO 3 →Na 3 PO 4 +3/2CO 2 +1/2Fe 2 O 3
2FePO 4 +2Na 2 CO 3 →Na 4 P 2 O 6 +2CO 2 +Fe 2 O 3 + 1/2O 2
Fe x P y O z +Na 2 CO 3 →Na x P y O z +mCO 2 +lFe 2 O 3
 (1-2)CaCOとの反応:
 2FePO + 3CaCO → Ca(PO + 3CO + FeCO
 Fe +3CaCO → Ca +mCO +nFe
(1-2) Reaction with CaCO 3 :
2FePO 4 + 3CaCO 3 → Ca 3 (PO 4 ) 2 + 3CO 2 + FeCO 3
Fe x P y O z + 3CaCO 3 → Ca x P y O z + mCO 2 + nFe 2 O 3
(2)被処理物である汚泥灰の処理物に含まれる、難溶性のリン成分が、リン酸アルミニウム(AlPO)である場合
 (2-1)NaCOとの反応:
 AlPO +3/2NaCO → NaPO +3/2CO +1/2Al
 2AlPO + 2NaCO → Na + 2CO +Al +1/2O
 Al +NaCO → Na + mCO + lAl
(2) When the sparingly soluble phosphorus component contained in the treated sludge ash that is the object to be treated is aluminum phosphate (AlPO 4 ). (2-1) Reaction with Na 2 CO 3 :
AlPO 4 +3/2Na 2 CO 3 →Na 3 PO 4 +3/2CO 2 +1/2Al 2 O 3
2AlPO 4 +2Na 2 CO 3 →Na 4 P 2 O 6 +2CO 2 +Al 2 O 3 +1/2O 2
Al x P y O z + Na 2 CO 3 → Na x P y O z + mCO 2 + lAl 2 O 3
 (2-2)CaCOとの反応:
 2AlPO + 3CaCO → Ca(PO + 3CO +Al
 Al + 3CaCO → Ca + mCO + nAl
(2-2) Reaction with CaCO 3 :
2AlPO 4 + 3CaCO 3 → Ca 3 (PO 4 ) 2 + 3CO 2 + Al 2 O 3
Al x P y O z + 3CaCO 3 → Ca x P y O z + mCO 2 + nAl 2 O 3
 また、例えば、反応に寄与する各成分の比率を調整すること等により、溶解性塩を、カルシウム欠損ハイドロキシアパタイト、CaHPO、Ca(HPO、Ca(HPO、NaHPO、NaHPO等のリン酸水素塩として得ることもできる。 Further, for example, by adjusting the ratio of each component that contributes to the reaction, the soluble salt is added to calcium-deficient hydroxyapatite, CaHPO 4 , Ca(H 2 PO 4 ) 2 , Ca 8 (HPO 4 ) 2 , Na. It can also be obtained as hydrogen phosphate such as 2 HPO 4 and NaH 2 PO 4 .
 このようなリン酸水素塩が得られる化学反応の一例を以下に示す。なお、式中、x,y,a,b,c,d,eはそれぞれ1以上の整数であり、Mは金属元素である。 An example of a chemical reaction that yields such a hydrogen phosphate is shown below. In the formula, x, y, a, b, c, d and e are each an integer of 1 or more, and M is a metal element.
 CaPyO + M(OH) → Ca
 NaPyO + M(OH) → Na
Ca x PyO z + M(OH) a → Ca b H c P d O e
Na x PyO z + M(OH) a → Na b H c P d O e
 特に、本実施形態では、反応性イオン性物質添加工程で添加される反応性イオン性物質は、後に詳述する第2の析出工程で用いられたものである。 In particular, in the present embodiment, the reactive ionic substance added in the reactive ionic substance addition step is the one used in the second precipitation step described in detail later.
 これにより、自然水用肥料の製造過程におけるリン成分の不本意な溶解等の不都合を防止し、自然水用肥料の生産性や自然水用肥料の組成をより確実に好適なものとしつつ、自然水用肥料中に含まれるリン成分等の溶解性をより好適に高めることができる。 This prevents inconveniences such as undesired dissolution of phosphorus components in the process of producing fertilizers for natural water, while ensuring the productivity of fertilizers for natural water and the composition of fertilizers for natural water more reliably, The solubility of the phosphorus component or the like contained in the water fertilizer can be increased more suitably.
 また、本発明の自然水用肥料の製造方法は、汚泥灰の処理物である第1の固体に対して、還元剤を添加して還元処理を施す還元工程を有していてもよい。 Further, the method for producing a fertilizer for natural water of the present invention may have a reducing step in which a reducing agent is added to the first solid, which is a treated product of sludge ash, to carry out a reducing treatment.
 これにより、自然水用肥料中に含まれるリン成分等の溶解性をより好適に高めることができる。また、第1の固体が鉄、ケイ素等を含む場合に、最終的に得られる自然水用肥料において、これらについての溶出速度も好適に制御することができる。 ∙ By doing so, the solubility of the phosphorus component, etc. contained in the fertilizer for natural water can be increased more suitably. In addition, when the first solid contains iron, silicon, etc., the elution rate of fertilizer for natural water finally obtained can be suitably controlled.
 なお、還元工程は、第1の固液分離工程で得られた第1の固体に対して直接行ってもよいし、第1の固液分離工程で得られた第1の固体に所定の処理を施した後に行うものであってもよい。 The reduction step may be performed directly on the first solid obtained in the first solid-liquid separation step, or may be performed on the first solid obtained in the first solid-liquid separation step by a predetermined treatment. It may be performed after the above.
 還元工程は、例えば、炭素、水素等を含む還元剤を用いて行うことができる。また、稲等のモミガラ等の農林業の廃棄物を混合して還元する方法を採用することもできる。炭素を含む還元剤としては、例えば、黒鉛、カーボンブラック等が挙げられる。 The reducing step can be performed using, for example, a reducing agent containing carbon, hydrogen and the like. Also, a method of mixing and reducing agricultural and forestry wastes such as rice husks and the like can be adopted. Examples of the reducing agent containing carbon include graphite and carbon black.
 還元工程は、いかなるタイミングで行ってもよいが、例えば、汚泥灰から重金属、リンを溶出除去した後、還元剤の添加プロセス後のタイミングで行うのが好ましい。さらに、無酸素で焼成工程を行うことで、還元工程と焼成工程を同時に行ってもよい。 The reducing step may be performed at any timing, but for example, it is preferable to perform it at a timing after the reducing agent addition process after elution and removal of heavy metals and phosphorus from sludge ash. Furthermore, the reduction step and the firing step may be performed simultaneously by performing the firing step in the absence of oxygen.
 また、本実施形態では、第1の固液分離工程、反応性イオン性物質添加工程よりも後に、第1の固体および反応性イオン性物質を含む組成物に対して焼成処理を施す焼成工程をさらに有する。 In addition, in the present embodiment, a firing step of performing a firing treatment on the composition containing the first solid and the reactive ionic substance is performed after the first solid-liquid separation step and the reactive ionic substance addition step. Have more.
 これにより、例えば、自然水用肥料中に含まれる水分量を好適に低減させることができる。また、例えば、自然水用肥料の水に対する溶解性等が好適なものとなるように好適に調整することができる。 With this, for example, the amount of water contained in the fertilizer for natural water can be suitably reduced. Further, for example, the solubility and the like of the fertilizer for natural water in water can be suitably adjusted.
 なお、図1に示す構成では、第1の固液分離工程の後に、P成分添加工程、焼成工程およびN成分添加工程を、この順に行っているが、これらの工程の順番は入れ替えてもよく、また、複数の工程を同時進行的に行ってもよい。 In the configuration shown in FIG. 1, the P component addition step, the firing step and the N component addition step are performed in this order after the first solid-liquid separation step, but the order of these steps may be changed. Alternatively, a plurality of steps may be simultaneously performed.
 <第1の溶解工程>
 第1の溶解工程では、汚泥灰と、酸性の液体とを混合する。
 これにより、汚泥灰中に含まれる重金属およびリンを溶解させる。
<First dissolution step>
In the first dissolution step, sludge ash and an acidic liquid are mixed.
This dissolves heavy metals and phosphorus contained in the sludge ash.
 なお、汚泥灰中において、リンは、通常、酸化物(P等)やリン酸、リン酸塩等の形態で含まれている。以下の説明では、これらの形態を含めて原子としてのリンを含む化合物(イオン性物質を含む)や当該化合物中に含まれるリン原子のことを、単にリンということがある。 In the sludge ash, phosphorus is usually contained in the form of oxides (P 2 O 5 etc.), phosphoric acid, phosphates and the like. In the following description, a compound (including an ionic substance) containing phosphorus as an atom including these forms and a phosphorus atom contained in the compound may be simply referred to as phosphorus.
 また、汚泥灰中において、重金属は、金属酸化物(複酸化物を含む)や単体金属、合金、金属塩等の形態で含まれている。以下の説明では、これらの形態を含めて原子としての重金属を含む化合物(イオン性物質を含む)や当該化合物中に含まれる重金属原子のことを、単に重金属ということがある。 Also, heavy metals are contained in the sludge ash in the form of metal oxides (including complex oxides), simple metals, alloys, metal salts, etc. In the following description, a compound containing a heavy metal as an atom (including an ionic substance) including these forms and a heavy metal atom contained in the compound may be simply referred to as a heavy metal.
 本工程で用いる汚泥灰(すなわち、自然水用肥料の原料としての汚泥灰)は、一般に、重金属およびリンに加え、鉄およびケイ素を含んでいる。そして、本工程では、重金属を効率よく溶解することができる一方で、鉄およびケイ素に加え、汚泥灰中のリンの一部は、溶解せずに、固形分中に残存する。 Sludge ash used in this process (that is, sludge ash as a raw material for fertilizer for natural water) generally contains iron and silicon in addition to heavy metals and phosphorus. Then, in this step, while heavy metals can be efficiently dissolved, in addition to iron and silicon, part of phosphorus in the sludge ash remains in the solid content without being dissolved.
 これにより、最終的に得られる自然水用肥料中に、重金属が残存することを防止、リン、鉄およびケイ素を好適に含有させることができる。 By this, it is possible to prevent the heavy metal from remaining in the finally obtained fertilizer for natural water, and to suitably contain phosphorus, iron and silicon.
 また、本工程で用いる汚泥灰(すなわち、自然水用肥料の原料としての汚泥灰)は、一般に、上記の成分に加えて、Al、Mg等を含んでいる。 The sludge ash used in this step (that is, the sludge ash as a raw material for fertilizer for natural water) generally contains Al, Mg, etc. in addition to the above components.
 これにより、本工程において、汚泥灰中に含まれる重金属およびリンとともに、重金属以外の金属等を溶解させることができる。例えば、汚泥灰中に含まれる鉄の一部が溶解する。これらの成分は、後に詳述する第1の析出工程において、不純物として機能し、リン酸塩(特に、例えば、リン酸水素カルシウム2水和物、リン酸カルシウム等のリン酸のカルシウム塩)の結晶の粗大化をより効果的に防止することができる。その結果、形成されるリン酸塩の結晶は、比較的不安定で、アルカリ性の液体で溶解しやすくなる。その結果、後に詳述する第2の溶解工程で、より高い選択性で、リン酸塩を溶解させることができる。 By this, in this process, along with heavy metals and phosphorus contained in sludge ash, metals other than heavy metals can be dissolved. For example, a part of iron contained in sludge ash is dissolved. These components function as impurities in the first precipitation step, which will be described in detail later, and form crystals of phosphate (particularly, calcium hydrogen phosphate dihydrate, calcium phosphate such as calcium phosphate). Coarsening can be prevented more effectively. As a result, the phosphate crystals that are formed are relatively unstable and are readily soluble in alkaline liquids. As a result, the phosphate can be dissolved with higher selectivity in the second dissolution step described in detail later.
 本工程で用いる酸性の液体は、特に限定されないが、pH(水素イオン指数)が-1.0以上2.0以下の強酸であるのが好ましい。 The acidic liquid used in this step is not particularly limited, but a strong acid having a pH (hydrogen ion index) of −1.0 or more and 2.0 or less is preferable.
 これにより、安全性を確保しつつ、酸性の液体の使用量を抑制し、本工程を効率よく行うことができる。また、本工程での処理後の組成物(すなわち、汚泥灰と酸性の液体との混合物)の体積が大きくなりすぎることを効果的に防止することができる。また、その後の工程のし易さ、処理すべき廃液量の削減の観点からも好ましい。 By doing this, while ensuring safety, the amount of acidic liquid used can be suppressed and this process can be performed efficiently. Further, it is possible to effectively prevent the volume of the composition (that is, the mixture of sludge ash and acidic liquid) after the treatment in this step from becoming too large. It is also preferable from the viewpoint of ease of subsequent steps and reduction of the amount of waste liquid to be treated.
 本工程で用いる酸性の液体のpHは、-1.0以上1.5以下であるのが好ましいが、特に、-0.5以上1.3以下であるのがより好ましく、0以上1.0以下であるのがさらに好ましい。
 これにより、前述した効果がより顕著に発揮される。
The pH of the acidic liquid used in this step is preferably -1.0 or more and 1.5 or less, more preferably -0.5 or more and 1.3 or less, and 0 or more and 1.0 or less. The following is more preferable.
As a result, the effects described above are more significantly exhibited.
 酸性の液体としては、例えば、硫酸、硝酸、酢酸、塩酸や、これらのうちの2種以上を含む液体等を用いることができる。 As the acidic liquid, for example, sulfuric acid, nitric acid, acetic acid, hydrochloric acid, or a liquid containing two or more of these can be used.
 本工程の終了時における液相(すなわち、重金属およびリンが溶解した第1の液体)のpHは、0.5以上6.8以下であるのが好ましいが、特に、1.0以上6.5以下であるのがより好ましく、1.5以上6.0以下であるのがさらに好ましい。 The pH of the liquid phase (that is, the first liquid in which the heavy metal and phosphorus are dissolved) at the end of this step is preferably 0.5 or more and 6.8 or less, and particularly 1.0 or more and 6.5. It is more preferably the following or less, and even more preferably 1.5 or more and 6.0 or less.
 これにより、重金属をより効率よく溶出させることができ、本工程の終了時における固相中における重金属の残存量をより確実に少なくすることができる。また、適度な割合で、リンを溶出させることができ、最終的に得られる自然水用肥料中におけるリンの含有率を好適な範囲に調整しやすくなる。また、後の第1の析出工程より前に重金属や過剰なリンが不本意に析出することをより確実に防止することができる。 With this, heavy metals can be eluted more efficiently, and the amount of heavy metals remaining in the solid phase at the end of this step can be reliably reduced. Further, phosphorus can be eluted at an appropriate ratio, and the content of phosphorus in the finally obtained fertilizer for natural water can be easily adjusted to a suitable range. In addition, it is possible to more reliably prevent the inadvertent deposition of heavy metals and excess phosphorus prior to the subsequent first deposition step.
 本工程の終了時における液相中へのリンの溶解率は、特に限定されないが、10%以上99%以下であるのが好ましく、15%以上90%以下であるのがより好ましく、20%以上70%以下であるのがさらに好ましい。
 これにより、有用物質であるリンをより効率よく回収することができる。
The dissolution rate of phosphorus in the liquid phase at the end of this step is not particularly limited, but is preferably 10% or more and 99% or less, more preferably 15% or more and 90% or less, and 20% or more. It is more preferably 70% or less.
As a result, phosphorus, which is a useful substance, can be recovered more efficiently.
 また、本工程は、汚泥灰と酸性の液体との混合物を撹拌しつつ行うのが好ましい。
 これにより、汚泥灰と酸性の液体とをより効率よく接触させることができ、より効率よく、重金属等を溶解させることができる。
In addition, this step is preferably performed while stirring the mixture of sludge ash and an acidic liquid.
Thereby, the sludge ash and the acidic liquid can be brought into contact with each other more efficiently, and the heavy metal or the like can be dissolved more efficiently.
 汚泥灰と酸性の液体との混合物の撹拌には、各種撹拌装置、各種混合装置を用いることができる。
 また、本工程は、バッチ式で行ってもよいし、連続式で行ってもよい。
Various stirring devices and various mixing devices can be used for stirring the mixture of sludge ash and an acidic liquid.
In addition, this step may be performed in a batch system or a continuous system.
 <第1の固液分離工程>
 第1の固液分離工程では、重金属およびリンが溶解した第1の液体を固体成分である第1の固体から分離除去する。
<First solid-liquid separation step>
In the first solid-liquid separation step, the first liquid in which heavy metal and phosphorus are dissolved is separated and removed from the first solid which is a solid component.
 これにより、重金属を実質的に含まず、リンの含有率が調整された固体(すなわち、第1の固体)を得ることができる。また、このような第1の固体は、リンに加え、汚泥灰由来のケイ素、鉄を含んでいる。したがって、第1の固体を自然水用肥料またはその原料として好適に用いることができる。 With this, it is possible to obtain a solid (that is, the first solid) in which the content of phosphorus is adjusted without substantially containing heavy metals. Further, such a first solid contains, in addition to phosphorus, silicon and iron derived from sludge ash. Therefore, the first solid can be preferably used as a fertilizer for natural water or a raw material thereof.
 固液分離の方法は、特に限定されないが、例えば、デカンテーション、ろ過、遠心分離等が挙げられ、複数の方法を組み合わせて行ってもよい。 The method of solid-liquid separation is not particularly limited, and examples thereof include decantation, filtration, centrifugation and the like, and a plurality of methods may be combined.
 また、本工程では、必要に応じて、一旦分離された固相(すなわち、第1の固体)を水等により洗浄してもよい。 In this step, the solid phase (that is, the first solid) once separated may be washed with water or the like, if necessary.
 これにより、例えば、酸成分のイオン濃度、重金属の含有率をより低くすることができる。 With this, for example, the ionic concentration of the acid component and the heavy metal content can be lowered.
 なお、固相の洗浄に用いた液体は、回収後、先の固液分離により得られた液相と合わせて、後に詳述する第1の析出工程に用いてもよい。 The liquid used for washing the solid phase may be used in the first precipitation step, which will be described in detail later, after the recovery, together with the liquid phase obtained by the solid-liquid separation.
 固液分離された固相中におけるリンの含有率は、特に限定されないが、1.0質量%以上40質量%以下であるのが好ましく、2.0質量%以上20質量%以下であるのがより好ましく、3.0質量%以上10.0質量%以下であるのがさらに好ましい。 The phosphorus content in the solid-liquid separated solid phase is not particularly limited, but is preferably 1.0% by mass or more and 40% by mass or less, and 2.0% by mass or more and 20% by mass or less. It is more preferably 3.0% by mass or more and 10.0% by mass or less.
 固液分離された固相中における重金属の含有率(複数種の重金属元素を含む場合には、これらの総量。以下、同様。)は、特に限定されないが、1質量%以下であるのが好ましく、0.01質量%以下であるのがより好ましく、0.0001質量%以下であるのがさらに好ましい。 The content of heavy metals in the solid phase separated by solid-liquid separation (when plural kinds of heavy metal elements are contained, the total amount of these elements. The same applies hereinafter) is not particularly limited, but is preferably 1% by mass or less. , 0.01 mass% or less is more preferable, and 0.0001 mass% or less is further preferable.
 <P成分添加工程>
 本実施形態では、第1の固液分離工程で分離された固相(すなわち、第1の固体)に対して、P成分添加工程で、リン系の肥料成分を添加する。特に、本実施形態では、P成分添加工程において、リン系の肥料成分とともに反応性イオン性物質を含む組成物を第1の固体に添加する。
<P component addition step>
In the present embodiment, the phosphorus-based fertilizer component is added in the P component addition process to the solid phase (that is, the first solid) separated in the first solid-liquid separation process. Particularly, in the present embodiment, in the P component adding step, the composition containing the reactive ionic substance together with the phosphorus-based fertilizer component is added to the first solid.
 リン系の肥料成分としては、例えば、汚泥灰から回収したリン酸系化合物、市販のリン酸系肥料、製鋼スラグ、バイオマス燃焼灰、鉄鋼スラグ等が挙げられ、これらから選択される1種または2種以上を組み合わせて用いることができる。 Examples of the phosphorus-based fertilizer component include a phosphoric acid-based compound recovered from sludge ash, a commercially available phosphoric acid-based fertilizer, steel-making slag, biomass burning ash, and steel slag, and one or two selected from these. A combination of two or more species can be used.
 リン系の肥料成分は、固体状態で添加するものであってもよいし、溶液状態やペースト状態で添加するものであってもよい。
 P成分添加工程で、第1の固体に添加する組成物、すなわち、リン系の肥料成分とともに反応性イオン性物質を含む組成物の調製については、後に詳述する。なお、P成分添加工程のタイミングは、特に限定されず、例えば、P成分添加工程は、焼成工程よりも後のタイミングで行ってもよい。
The phosphorus-based fertilizer component may be added in a solid state, or may be added in a solution state or a paste state.
The preparation of the composition added to the first solid in the P component addition step, that is, the composition containing the phosphorus-based fertilizer component and the reactive ionic substance will be described in detail later. The timing of the P component addition step is not particularly limited, and for example, the P component addition step may be performed at a timing later than the firing step.
 <焼成工程>
 焼成工程では、第1の固体および反応性イオン性物質を含む組成物に対し焼成処理を施す。
<Firing process>
In the firing step, the composition containing the first solid and the reactive ionic substance is subjected to a firing treatment.
 特に、本実施形態では、P成分添加工程の後に焼成工程を行う。 Particularly, in the present embodiment, the firing process is performed after the P component addition process.
 焼成処理における焼成温度は、特に限定されないが、150℃以上1100℃以下であるのが好ましく、200℃以上1000℃以下であるのがより好ましく、250℃以上950℃以下であるのがさらに好ましい。 The firing temperature in the firing treatment is not particularly limited, but is preferably 150° C. or higher and 1100° C. or lower, more preferably 200° C. or higher and 1000° C. or lower, and further preferably 250° C. or higher and 950° C. or lower.
 これにより、自然水用肥料からの各成分の溶解性をさらに好適に調整することができる。 By this, the solubility of each component from the fertilizer for natural water can be adjusted more suitably.
 焼成処理の処理時間は、特に限定されないが、0.5時間以上100時間以下であるのが好ましく、1.5時間以上90時間以下であるのがより好ましく、2時間以上80時間以下であるのがさらに好ましい。 The treatment time of the firing treatment is not particularly limited, but is preferably 0.5 hours or more and 100 hours or less, more preferably 1.5 hours or more and 90 hours or less, and 2 hours or more and 80 hours or less. Is more preferable.
 これにより、自然水用肥料からの各成分の溶解性をさらに好適に調整することができる。 By this, the solubility of each component from the fertilizer for natural water can be adjusted more suitably.
 <N成分添加工程>
 N成分添加工程では、窒素系の肥料成分を添加する。
<N component addition step>
In the N component adding step, a nitrogen-based fertilizer component is added.
 窒素系の肥料成分としては、例えば、尿素、石灰窒素、硝酸ナトリウム、硝酸アンモニウム、硫酸アンモニウム等が挙げられ、これらから選択される1種または2種以上を組み合わせて用いることができる。 Examples of the nitrogen-based fertilizer component include urea, lime nitrogen, sodium nitrate, ammonium nitrate, ammonium sulfate and the like, and one or more selected from these may be used in combination.
 窒素系の肥料成分の添加量は、特に限定されないが、最終的に得られる自然水用肥料中において、リン原子100質量部に対する窒素の含有量が以下の条件を満足するような量であるのが好ましい。すなわち、最終的に得られる自然水用肥料中におけるリン原子100質量部に対する窒素の含有量は、特に限定されないが、1.0質量部以上30.0質量部以下であるのが好ましく、2.0質量部以上20.0質量部以下であるのがより好ましく、3.0質量部以上10.0質量部以下であるのがさらに好ましい。 The addition amount of the nitrogen-based fertilizer component is not particularly limited, but in the finally obtained natural water fertilizer, the content of nitrogen with respect to 100 parts by mass of phosphorus atoms satisfies the following conditions. Is preferred. That is, the content of nitrogen with respect to 100 parts by mass of phosphorus atoms in the finally obtained fertilizer for natural water is not particularly limited, but is preferably 1.0 part by mass or more and 30.0 parts by mass or less. It is more preferably 0 part by mass or more and 20.0 parts by mass or less, and further preferably 3.0 parts by mass or more and 10.0 parts by mass or less.
 これにより、自然水用肥料中に含まれるリン原子と窒素原子とのバランスをより好適なものとすることができる。 By doing so, the balance between phosphorus atoms and nitrogen atoms contained in fertilizer for natural water can be made more suitable.
 窒素系の肥料成分は、固体状態で添加するものであってもよいし、溶液状態やペースト状態で添加するものであってもよい。 The nitrogen-based fertilizer component may be added in the solid state, or may be added in the solution state or paste state.
 <P成分添加工程で第1の固体に添加する組成物について>
 以下、P成分添加工程で第1の固体に添加する組成物、すなわち、リン系の肥料成分および反応性イオン性物質を含む組成物について詳細に説明する。
<Regarding the composition added to the first solid in the P component addition step>
Hereinafter, the composition added to the first solid in the P component addition step, that is, the composition containing the phosphorus-based fertilizer component and the reactive ionic substance will be described in detail.
 P成分添加工程で添加する組成物中に含まれるリン系の肥料成分は、特に限定されず、例えば、市販の肥料を用いてもよいが、以下の各工程を有する方法を経て得られたものであるのが好ましい。 The phosphorus-based fertilizer component contained in the composition added in the P component addition step is not particularly limited, and, for example, a commercially available fertilizer may be used, but obtained through a method having the following steps. Is preferred.
 すなわち、P成分添加工程で第1の固体に添加する組成物は、第1の固液分離工程で分離された第1の液体を析出剤と混合するとともにpHを上昇させ、重金属およびリンを含む第2の固体を析出させる第1の析出工程と、第2の固体を液体成分と分離する第2の固液分離工程と、第2の固体中に含まれるリンをアルカリ性の液体で溶解させる第2の溶解工程と、リンが溶解した第2の液体を、重金属を含む固体成分と分離する第3の固液分離工程とを有する方法により、分離されたものであるのが好ましい。 That is, the composition added to the first solid in the P component addition step mixes the first liquid separated in the first solid-liquid separation step with the precipitant and raises the pH, and contains a heavy metal and phosphorus. A first precipitation step of precipitating a second solid, a second solid-liquid separation step of separating the second solid from a liquid component, and a step of dissolving phosphorus contained in the second solid with an alkaline liquid It is preferably separated by a method having a dissolution step of No. 2 and a third solid-liquid separation step of separating the second liquid in which phosphorus is dissolved from the solid component containing heavy metal.
 これにより、P成分添加工程で添加する組成物中に含まれるリン系の肥料成分も汚泥灰由来のものとすることができ、汚泥灰の利用効率をさらに高めることができる。また、このようなリン系の肥料成分(P成分添加工程で添加する組成物中に含まれるリン系の肥料成分)は、前述した第1の固体に含まれるリン成分に比べて、水に対する溶解性が高いものであるため、自然水用肥料全体としてのリン系の肥料成分の溶解性を好適に調整することができ、即効性と持続性とをより高いレベルで両立することができる。 With this, the phosphorus-based fertilizer component contained in the composition added in the P component addition step can also be derived from sludge ash, and the utilization efficiency of sludge ash can be further enhanced. Further, such a phosphorus-based fertilizer component (a phosphorus-based fertilizer component contained in the composition added in the P component addition step) is more soluble in water than the phosphorus component contained in the first solid described above. Since it is highly soluble, the solubility of the phosphorus-based fertilizer component as the whole fertilizer for natural water can be suitably adjusted, and the immediate effect and the sustainability can be compatible at a higher level.
 特に、リン系の肥料成分は、第3の固液分離工程の後に、第2の液体を析出剤と混合するとともにpHを低下させ、リンを含む第3の固体を析出させる第2の析出工程をさらに有する方法を用いて得られたものであるのが好ましい。 In particular, the phosphorus-based fertilizer component is, after the third solid-liquid separation step, the second precipitation step of mixing the second liquid with the precipitation agent and lowering the pH to precipitate the third solid containing phosphorus. It is preferably obtained by using a method further comprising
 これにより、重金属を実質的にほぼ含まない純度の高いリン酸塩を得ることができ、当該リン酸塩を、P成分添加工程でリン系の肥料成分として好適に用いることができる。また、当該リン酸塩は、純度の高いものであるため、P成分添加工程で用いるリン系の肥料成分以外の用途にも好適である。また、リンを固体状物質であるリン酸塩(例えば、リン酸水素カルシウム2水和物、リン酸カルシウム等)として取り扱うことができ、保管や輸送等をより好適に行うことができる。 By this, it is possible to obtain a highly pure phosphate that contains substantially no heavy metals, and the phosphate can be preferably used as a phosphorus-based fertilizer component in the P component addition step. Further, since the phosphate has high purity, it is suitable for applications other than the phosphorus-based fertilizer component used in the P component addition step. In addition, phosphorus can be treated as a solid substance phosphate (for example, calcium hydrogen phosphate dihydrate, calcium phosphate, etc.), and storage and transportation can be more suitably performed.
 <第1の析出工程>
 第1の析出工程では、第1の固液分離工程で第1の固体から分離された第1の液体を、析出剤と混合するとともにpHを上昇させ、重金属およびリンを含む第2の固体を析出させる。特に、リンをリン酸塩(例えば、リン酸水素カルシウム2水和物、リン酸カルシウム等)として析出させる。
<First deposition step>
In the first precipitation step, the first liquid separated from the first solid in the first solid-liquid separation step is mixed with a precipitant and the pH is raised to remove a second solid containing heavy metal and phosphorus. Precipitate. In particular, phosphorus is deposited as a phosphate (eg, calcium hydrogen phosphate dihydrate, calcium phosphate, etc.).
 これにより、後の工程における、重金属およびリン以外を含む物質の取り扱いが容易となる。また、重金属およびリン以外を含む物質中における重金属およびリン以外の成分の含有率を低下させることができ、リン回収工程における不純物の混入量を低下させることができる。 This will facilitate the handling of substances containing other than heavy metals and phosphorus in the subsequent steps. In addition, the content of components other than heavy metals and phosphorus in substances other than heavy metals and phosphorus can be reduced, and the amount of impurities mixed in the phosphorus recovery step can be reduced.
 また、このような条件でリン酸塩を析出させることにより、当該リン酸塩の核生成および成長を好適に制御することができ、当該リン酸塩を微結晶として析出させることができる。その結果、後の第2の溶解工程において、当該リン酸塩を溶解させやすくすることができ、リン(溶解状態)を重金属(固体状態)から好適に分離することができる。 Further, by precipitating the phosphate under such a condition, the nucleation and growth of the phosphate can be suitably controlled, and the phosphate can be precipitated as microcrystals. As a result, in the subsequent second dissolution step, the phosphate salt can be easily dissolved, and phosphorus (dissolved state) can be suitably separated from heavy metal (solid state).
 また、第1の液体は、通常、重金属およびリンとともに、Al、Mg等を含んでおり、これにより、本工程において、リン酸塩(特に、リン酸のカルシウム塩)の結晶の粗大化をより効果的に防止することができる。その結果、形成されるリン酸塩の結晶は、比較的不安定で、アルカリ性の液体で溶解しやすくなる。したがって、後の工程で、より高い選択性で、リン酸塩を溶解させることができる。 In addition, the first liquid usually contains Al, Mg, and the like together with heavy metals and phosphorus, so that in this step, coarsening of the crystals of the phosphate (particularly, the calcium salt of phosphoric acid) can be prevented. It can be effectively prevented. As a result, the phosphate crystals that are formed are relatively unstable and are readily soluble in alkaline liquids. Therefore, in a later step, the phosphate can be dissolved with higher selectivity.
 本工程では、析出剤と混合するとともにpHを上昇させることができれば、どのような物質、組成物を用いてもよいが、pHが10以上のアルカリ性液体を用いるのが好ましい。 In this step, any substance or composition may be used as long as it can be mixed with the precipitant and raise the pH, but it is preferable to use an alkaline liquid having a pH of 10 or more.
 これにより、混合物のpHをより好適に上昇させることができ、重金属およびリンを含む第2の固体をより効率よく析出させることができる。また、後の第2の固液分離工程の完了前にリンや重金属が不本意に再溶解してしまうことをより確実に防止することができる。また、本工程において析出する析出物中に含まれるリン酸塩の結晶が粗大化することをより効果的に防止することができる。 With this, the pH of the mixture can be raised more suitably, and the second solid containing the heavy metal and phosphorus can be more efficiently precipitated. In addition, it is possible to more reliably prevent unintended re-dissolution of phosphorus and heavy metals before the completion of the second solid-liquid separation step later. Further, it is possible to more effectively prevent the crystals of the phosphate contained in the precipitates precipitated in this step from becoming coarse.
 析出剤は、リン酸塩等の析出を促進する機能を有していればよく、例えば、CaCl、Ca(OH)、CaCO等のCa系物質、Al塩等のAl系物質、Fe塩等のFe系物質、Mg塩等のMg系物質等を用いることができるが、Ca系物質を用いるのが好ましい。これにより、本工程で、リンをリン酸のカルシウム塩(例えば、リン酸水素カルシウム2水和物、リン酸カルシウム等)として析出させることができ、後の工程をより好適に行うことができる。 The precipitant may have a function of promoting the precipitation of phosphate or the like, and examples thereof include Ca-based substances such as CaCl 2 , Ca(OH) 2 and CaCO 3 , Al-based substances such as Al salts, and Fe. Fe-based substances such as salts and Mg-based substances such as Mg salts can be used, but Ca-based substances are preferably used. Thereby, in this step, phosphorus can be precipitated as a calcium salt of phosphoric acid (for example, calcium hydrogen phosphate dihydrate, calcium phosphate, etc.), and the subsequent steps can be more suitably performed.
 本工程では、pHが10以上のアルカリ性液体を用いるのが好ましいが、当該アルカリ性液体のpHは、特に限定されないが、11以上であるのがより好ましく、12以上14以下であるのがさらに好ましい。 In this step, it is preferable to use an alkaline liquid having a pH of 10 or more, but the pH of the alkaline liquid is not particularly limited, but is preferably 11 or more, more preferably 12 or more and 14 or less.
 これにより、前述したような効果がより顕著に発揮されるとともに、当該アルカリ性液体を容易かつ安定的に入手または調製することができる。 By this, the above-mentioned effects can be more remarkably exhibited, and the alkaline liquid can be easily or stably obtained or prepared.
 また、本工程で、アルカリ性カルシウム化合物(イオン性物質)を用いるのが好ましく、CaCl、Ca(OH)、CaCOおよび、Al、Mg、Fe成分を持つ塩化物よりなる群から選択される1種または2種以上を用いるのがより好ましく、CaCl、Ca(OH)およびCaCOよりなる群から選択される1種または2種以上を用いるのがさらに好ましく、CaClを用いるのがもっとも好ましい。 In this step, it is preferable to use an alkaline calcium compound (ionic substance), which is selected from the group consisting of CaCl 2 , Ca(OH) 2 , CaCO 3 and chlorides having Al, Mg and Fe components. It is more preferable to use one kind or two or more kinds, and it is more preferable to use one kind or two or more kinds selected from the group consisting of CaCl 2 , Ca(OH) 2 and CaCO 3, and it is preferable to use CaCl 2. Most preferred.
 これらのカルシウム化合物は、析出剤としてより好適に機能する。したがって、リン酸のカルシウム塩の一部となるカルシウム成分を系内に効率よく供給しつつ、混合物のpHを好適に調整することができる。その結果、本工程で、第1の液体に混合される物質の使用量を抑制し、本工程を効率よく進行させることができる。また、本工程での混合物中における、カルシウム含有率とpHとのバランスを好適に調整することができ、重金属およびリンの析出効率を向上させつつ、第1の液体中における不純物の含有率をより低くすることができる。また、後の第2の固液分離工程の完了前にリンや重金属が不本意に再溶解してしまうことをより確実に防止することができる。  These calcium compounds function better as a precipitant. Therefore, the pH of the mixture can be appropriately adjusted while efficiently supplying the calcium component, which is a part of the calcium salt of phosphoric acid, into the system. As a result, in this step, the amount of the substance mixed with the first liquid can be suppressed, and this step can proceed efficiently. In addition, the balance between the calcium content and the pH in the mixture in this step can be suitably adjusted, and the content of impurities in the first liquid can be improved while improving the precipitation efficiency of heavy metals and phosphorus. Can be lowered. In addition, it is possible to more reliably prevent unintended re-dissolution of phosphorus and heavy metals before the completion of the second solid-liquid separation step later.
 本工程の終了時における液相のpHは、特に限定されないが、1.0以上12以下であるのが好ましく、1.5以上9.0以下であるのがより好ましく、2.0以上8.0以下であるのがさらに好ましい。 The pH of the liquid phase at the end of this step is not particularly limited, but is preferably 1.0 or more and 12 or less, more preferably 1.5 or more and 9.0 or less, and 2.0 or more and 8. It is more preferably 0 or less.
 これにより、後の第2の固液分離工程の完了前にリンや重金属が不本意に再溶解してしまうことをより確実に防止することができる。 With this, it is possible to more reliably prevent unintended redissolution of phosphorus and heavy metals before the completion of the subsequent second solid-liquid separation step.
 また、pHの上昇に用いる材料の使用量が必要以上に多くなることを防止しつつ、液相中に残存するリン、重金属の量をより少なくすることができる。 Also, the amount of phosphorus and heavy metals remaining in the liquid phase can be further reduced while preventing the amount of the material used to raise the pH from unnecessarily increasing.
 また、粒径が適度に小さく、不安定なリン酸塩の結晶を多く含む析出物を得ることができる。その結果、後の第2の溶解工程で、リン酸塩をより効率よく溶解させることができる。 Also, it is possible to obtain a precipitate containing a large amount of unstable phosphate crystals with an appropriately small particle size. As a result, the phosphate can be more efficiently dissolved in the subsequent second dissolution step.
 これに対し、本工程の終了時における液相のpHが低すぎると、リンの析出率が低下して最終的なリンの回収率が低下する。 On the other hand, if the pH of the liquid phase at the end of this step is too low, the precipitation rate of phosphorus will decrease and the final phosphorus recovery rate will decrease.
 また、本工程の終了時における液相のpHが高すぎると、本工程で得られる析出物(第2の固体)中に含まれるリンのアルカリ性の液体への溶解度、溶解速度が低くなり、最終的なリンの回収率が低下する。 Further, if the pH of the liquid phase at the end of this step is too high, the solubility and dissolution rate of phosphorus contained in the precipitate (second solid) obtained in this step in the alkaline liquid will be low, and the final Recovery of phosphorus is reduced.
 図2は、第1の析出工程の終了時における液相のpHと、最終的なリンの回収率との関係を模式的に示す図である。 FIG. 2 is a diagram schematically showing the relationship between the pH of the liquid phase at the end of the first precipitation step and the final phosphorus recovery rate.
 本工程では、以下の条件を満足するように、カルシウムを加えるのが好ましい。すなわち、本工程の終了時における系内のリンの物質量をX[mol]、カルシウムの物質量をXCa[mol]としたとき、1.0≦XCa/X≦4.0の関係を満足するのが好ましく、1.3≦XCa/X≦3.0の関係を満足するのがより好ましく、1.5≦XCa/X≦2.5の関係を満足するのがさらに好ましい。 In this step, it is preferable to add calcium so as to satisfy the following conditions. That is, when the amount of phosphorus in the system at the end of this step is X P [mol] and the amount of calcium in the system is X Ca [mol], 1.0≦X Ca /X P ≦4.0 It is preferable that the relationship be satisfied, more preferable that the relationship 1.3≦X Ca /X P ≦3.0 be satisfied, and that the relationship 1.5≦X Ca /X P ≦2.5 be satisfied. Is more preferable.
 これにより、第1の液体中に含まれていたリンをリン酸のカルシウム塩としてより好適に析出させること(例えば、ほぼ100%析出させること)ができ、溶解状態で液相中に残存するリンの割合を特に低くさせることができる。また、本工程において析出する析出物中に含まれるリン酸のカルシウム塩の結晶が粗大化することをより効果的に防止することができる。 As a result, the phosphorus contained in the first liquid can be more favorably precipitated as a calcium salt of phosphoric acid (for example, it can be deposited to almost 100%), and phosphorus remaining in the liquid phase in a dissolved state can be precipitated. The ratio of can be made particularly low. In addition, it is possible to more effectively prevent the crystals of the calcium salt of phosphoric acid contained in the precipitate deposited in this step from becoming coarse.
 <第2の固液分離工程>
 第2の固液分離工程では、リンおよび重金属を含む第2の固体を、液体成分と分離する。
<Second solid-liquid separation step>
In the second solid-liquid separation step, the second solid containing phosphorus and heavy metal is separated from the liquid component.
 これにより、高濃度のリンおよび重金属を含む固体(第2の固体)と、重金属を実質的に含まない液相とに分離することができる。また、一般に、液相中に含まれるリンの含有量は十分に少ない。 By this, it is possible to separate into a solid containing a high concentration of phosphorus and heavy metals (second solid) and a liquid phase containing substantially no heavy metals. Further, generally, the phosphorus content in the liquid phase is sufficiently low.
 このような液相(すなわち、重金属を実質的に含まず、リンの含有量が十分に少ない液相)は、環境に対する負荷が小さく、排水しても問題がない。また、固液分離された液相は、前記工程に再利用してもよい。これにより、カルシウムを比較的高い含有率で含む液体を再利用することができ、資源のさらなる有効利用の観点から好ましい。 Such liquid phase (that is, liquid phase that does not substantially contain heavy metals and has a sufficiently low phosphorus content) has a small impact on the environment and can be drained without any problem. Further, the liquid phase obtained by solid-liquid separation may be reused in the above step. As a result, a liquid containing calcium at a relatively high content can be reused, which is preferable from the viewpoint of further effective use of resources.
 固液分離の方法は、特に限定されないが、例えば、デカンテーション、ろ過、遠心分離等が挙げられ、複数の方法を組み合わせて行ってもよい。 The method of solid-liquid separation is not particularly limited, and examples thereof include decantation, filtration, centrifugation and the like, and a plurality of methods may be combined.
 また、本工程では、必要に応じて、一旦分離された固相を水等により洗浄してもよい。
 固液分離された液相中におけるリンの含有率は、特に限定されないが、1000ppm以下であるのが好ましく、100ppm以下であるのがより好ましく、10ppm以下であるのがさらに好ましい。
In this step, the solid phase once separated may be washed with water or the like, if necessary.
The phosphorus content in the solid-liquid separated liquid phase is not particularly limited, but is preferably 1000 ppm or less, more preferably 100 ppm or less, and further preferably 10 ppm or less.
 固液分離された液相中における重金属の含有率は、特に限定されないが、10000ppm以下であるのが好ましく、1000ppm以下であるのがより好ましく、0.1ppm以下であるのがさらに好ましい。 The content of heavy metals in the liquid phase subjected to solid-liquid separation is not particularly limited, but is preferably 10,000 ppm or less, more preferably 1000 ppm or less, and further preferably 0.1 ppm or less.
 <第2の溶解工程>
 第2の溶解工程では、第2の固体中に含まれるリンをアルカリ性の液体で溶解させる。
<Second dissolution step>
In the second dissolution step, phosphorus contained in the second solid is dissolved in the alkaline liquid.
 このようにアルカリ性の液体を用いることにより、第2の固体中に含まれる重金属の溶解を防止しつつ、リンを選択的に溶解させることができる。特に、前述したように、第1の析出工程では、所定の条件でリン酸塩を析出させているため、当該リン酸塩の核生成および成長が好適に制御され、当該リン酸塩がアルカリに溶解しやすい状態になっている。その一方で、重金属は、一般に、アルカリ性の液体には、溶解しにくい。その結果、肥料等に利用可能な有用物質としてのリン(特に、P成分添加工程で好適に用いることができるリン系の肥料成分)と、重金属とを好適に分離することができる。また、最終的な固体廃棄物(産業廃棄物)を少なくすることができる。 By using an alkaline liquid in this way, phosphorus can be selectively dissolved while preventing the heavy metal contained in the second solid from being dissolved. In particular, as described above, in the first precipitation step, since the phosphate is precipitated under predetermined conditions, the nucleation and growth of the phosphate are appropriately controlled, and the phosphate is converted to alkali. It is easily dissolved. On the other hand, heavy metals are generally difficult to dissolve in alkaline liquids. As a result, phosphorus (a phosphorus-based fertilizer component that can be suitably used in the P component addition step) as a useful substance that can be used for fertilizers and the like can be favorably separated from heavy metals. In addition, the final solid waste (industrial waste) can be reduced.
 本工程で用いるアルカリ性の液体のpHは、特に限定されないが、10以上であるのが好ましく、11以上14以下であるのがより好ましく、12以上14以下であるのがさらに好ましい。 The pH of the alkaline liquid used in this step is not particularly limited, but is preferably 10 or more, more preferably 11 or more and 14 or less, and further preferably 12 or more and 14 or less.
 これにより、重金属の再溶解を防止しつつ、リン(リン酸塩)をより効率よく溶解させることができる。また、後の第3の固液分離工程の完了前にリンが不本意に析出してしまうことをより確実に防止することができる。 With this, phosphorus (phosphate) can be dissolved more efficiently while preventing redissolution of heavy metals. In addition, it is possible to more reliably prevent the phosphorus from being unintentionally deposited before the completion of the third solid-liquid separation step that is performed later.
 アルカリ性の液体は、液体全体としてアルカリ性を呈するものであればよく、アルカリ性の液体中に含まれるアルカリ性物質としては、例えば、NaOH、KOH、Mg(OH)、Ca(OH)、Al(OH)等の金属水酸化物、CaCO、MgCO等の金属炭酸塩、アンモニア、トリエチルアミン、アニリン等のアミン系物質等が挙げられる。 The alkaline liquid may be any liquid that exhibits alkalinity as a whole, and examples of the alkaline substance contained in the alkaline liquid include NaOH, KOH, Mg(OH) 2 , Ca(OH) 2 , Al(OH ) 3 metal hydroxide, CaCO 3, MgCO 3 or the like of metal carbonates, ammonia, triethylamine, and amine-based materials such as aniline and the like.
 中でも、本工程で用いるアルカリ性の液体は、アルカリ性物質として、金属水酸化物を含んでいるのが好ましく、アルカリ金属の水酸化物を含んでいるのがより好ましく、NaOHを含んでいるのがさらに好ましい。 Among them, the alkaline liquid used in this step preferably contains a metal hydroxide as an alkaline substance, more preferably contains a hydroxide of an alkali metal, and further contains NaOH. preferable.
 これにより、重金属の再溶解をより効果的に防止しつつ、第2の固体中に含まれるリンをより効率よく溶解させることができる。また、このようなアルカリ性物質は、安価でかつ入手が容易であり、コスト削減、安定的な処理等の観点からも好ましい。 With this, phosphorus contained in the second solid can be more efficiently dissolved while preventing the redissolution of heavy metals more effectively. Further, such an alkaline substance is inexpensive and easily available, and is preferable also from the viewpoint of cost reduction, stable treatment, and the like.
 本工程の終了時における液相のpHは、特に限定されないが、10以上であるのが好ましく、11以上14以下であるのがより好ましく、12以上14以下であるのがさらに好ましい。 The pH of the liquid phase at the end of this step is not particularly limited, but is preferably 10 or higher, more preferably 11 or higher and 14 or lower, and even more preferably 12 or higher and 14 or lower.
 これにより、重金属の再溶解をより効果的に防止しつつ、第2の固体中に含まれるリンをより効率よく溶解させることができ、pHの上昇に用いる材料の使用量が必要以上に多くなることを防止しつつ、液相中に残存するリンの量をより少なくすることができる。また、後の第3の固液分離工程の完了前にリンが不本意に析出してしまうことや重金属が不本意に溶解してしまうことをより確実に防止することができる。 As a result, phosphorus contained in the second solid can be more efficiently dissolved while more effectively preventing the redissolution of heavy metals, and the amount of the material used to raise the pH is increased more than necessary. While preventing this, the amount of phosphorus remaining in the liquid phase can be further reduced. In addition, it is possible to more reliably prevent undesired precipitation of phosphorus and unintentional dissolution of heavy metals before the completion of the third solid-liquid separation step later.
 <第3の固液分離工程>
 第3の固液分離工程では、リンが溶解した第2の液体を、重金属を含む固体成分と分離する。
<Third solid-liquid separation step>
In the third solid-liquid separation step, the second liquid in which phosphorus is dissolved is separated from the solid component containing heavy metal.
 これにより、リンと重金属とを分離することができる。また、厳重な処理が求められる重金属を固体として取り扱うことができるため、重金属の取り扱いが容易となる。また、重金属を含む材料の体積を大幅に減少させることができるため、例えば、産業廃棄物として処理する場合であってもその処理が容易となる。また、分離された液相は、重金属を実質的に含んでいないため、産業廃棄物として処理する必要がない。 By this, phosphorus and heavy metals can be separated. In addition, since heavy metals that require strict treatment can be handled as solids, handling of heavy metals becomes easy. Further, since the volume of the material containing the heavy metal can be greatly reduced, for example, even when treating as industrial waste, the treatment becomes easy. Further, the separated liquid phase does not need to be treated as industrial waste because it does not substantially contain heavy metals.
 固液分離の方法は、特に限定されないが、例えば、デカンテーション、ろ過、遠心分離等が挙げられ、複数の方法を組み合わせて行ってもよい。 The method of solid-liquid separation is not particularly limited, and examples thereof include decantation, filtration, centrifugation and the like, and a plurality of methods may be combined.
 また、本工程では、必要に応じて、一旦分離された固相を水等により洗浄してもよい。
 これにより、固体中のリンの含有率をより低くすることができる。
In this step, the solid phase once separated may be washed with water or the like, if necessary.
As a result, the phosphorus content in the solid can be lowered.
 なお、固相の洗浄に用いた液体は、回収後、先の固液分離により得られた液相と合わせてもよい。 Note that the liquid used for washing the solid phase may be combined with the liquid phase obtained by the above solid-liquid separation after recovery.
 固液分離された固相中におけるリンの量は、特に限定されないが、原料として用いる汚泥灰(すなわち、第1の溶解工程に供される汚泥灰)のリン含有量の30質量%以下であるのが好ましく、10質量%以下であるのがより好ましく、2質量%以下であるのがさらに好ましい。また、固液分離された固相中におけるリン含有量は50質量%以上が好ましく、90質量%以上であるのがより好ましく、99質量%以上であるのがさらに好ましい。 The amount of phosphorus in the solid phase separated by solid-liquid separation is not particularly limited, but is 30% by mass or less of the phosphorus content of the sludge ash used as a raw material (that is, the sludge ash used in the first dissolution step). Is preferable, 10% by mass or less is more preferable, and 2% by mass or less is further preferable. Further, the phosphorus content in the solid phase separated by solid-liquid separation is preferably 50% by mass or more, more preferably 90% by mass or more, and further preferably 99% by mass or more.
 固液分離された液相中における重金属の含有率は、特に限定されないが、1000ppm以下であるのが好ましく、10ppm以下であるのがより好ましく、0.01ppm以下であるのがさらに好ましい。 The content of heavy metals in the liquid phase subjected to solid-liquid separation is not particularly limited, but is preferably 1000 ppm or less, more preferably 10 ppm or less, and further preferably 0.01 ppm or less.
 <第2の析出工程>
 本実施形態では、前述した第3の固液分離工程の後に、第2の液体を析出剤と混合するとともにpHを低下させ、リンを含む第3の固体を析出させる第2の析出工程をさらに有している。
<Second deposition step>
In the present embodiment, after the above-described third solid-liquid separation step, a second precipitation step of mixing the second liquid with the precipitation agent and lowering the pH to precipitate the third solid containing phosphorus is further performed. Have
 これにより、重金属を実質的にほぼ含まない純度の高いリン酸塩を第3の固体として得ることができ、当該リン酸塩を、P成分添加工程でリン系の肥料成分として好適に用いることができる。また、当該リン酸塩は、純度の高いものであるため、P成分添加工程で用いるリン系の肥料成分以外の用途にも好適である。また、リンを固体状物質であるリン酸塩(例えば、リン酸水素カルシウム2水和物、リン酸カルシウム等)として取り扱うことができ、保管や輸送等をより好適に行うことができる。 This makes it possible to obtain a highly pure phosphate substantially free of heavy metals as the third solid, and the phosphate can be preferably used as a phosphorus-based fertilizer component in the P component addition step. it can. Further, since the phosphate has high purity, it is suitable for applications other than the phosphorus-based fertilizer component used in the P component addition step. In addition, phosphorus can be treated as a solid substance phosphate (for example, calcium hydrogen phosphate dihydrate, calcium phosphate, etc.), and storage and transportation can be more suitably performed.
 本工程では、析出剤と混合するとともにpHを下降させることができれば、どのような物質、組成物を用いてもよいが、pHが-1.0以上2.0以下の酸性液体を用いるのが好ましい。 In this step, any substance or composition may be used as long as it can be mixed with the precipitant and can lower the pH, but it is preferable to use an acidic liquid having a pH of −1.0 or more and 2.0 or less. preferable.
 これにより、混合物のpHを好適に低下させることができ、リンを含む第3の固体をより効率よく析出させることができる。また、後の第4の固液分離工程の完了前にリンが不本意に再溶解してしまうことをより確実に防止することができる。 With this, the pH of the mixture can be suitably lowered, and the third solid containing phosphorus can be more efficiently precipitated. In addition, it is possible to more reliably prevent the phosphorus from being unintentionally redissolved before the completion of the subsequent fourth solid-liquid separation step.
 本工程では、pHが-1.0以上2以下の酸性液体を用いるのが好ましいが、当該酸性液体のpHは、-0.5以上1.3以下であるのがより好ましく、0.0以上1.0以下であるのがさらに好ましい。 In this step, it is preferable to use an acidic liquid having a pH of −1.0 or more and 2 or less, but the pH of the acidic liquid is more preferably −0.5 or more and 1.3 or less, and 0.0 or more. It is more preferably 1.0 or less.
 これにより、前述したような効果がより顕著に発揮されるとともに、当該酸性液体を容易かつ安定的に入手または調製することができる。 With this, the above-mentioned effects are more significantly exhibited, and the acidic liquid can be easily or stably obtained or prepared.
 本工程では、析出剤として、リン酸塩等の析出を促進する機能を有するものを用いればよいが、アルカリ金属および/または第2族元素の水酸化物および/または塩である反応性イオン性物質を用いるのが好ましい。 In this step, as the precipitating agent, one having a function of promoting the precipitation of phosphate or the like may be used, but a reactive ionic substance which is a hydroxide and/or a salt of an alkali metal and/or a Group 2 element. Preference is given to using substances.
 これにより、アルカリ溶液での溶解性能を調節可能になり、さらに、リン酸塩を、肥料等に特に有用なリン酸金属塩として得ることができる。また、自然水用肥料中に含まれるリン成分等の溶解性をより好適に高めることができる。 This makes it possible to adjust the dissolution performance in an alkaline solution, and further to obtain the phosphate as a metal phosphate, which is particularly useful for fertilizers and the like. In addition, the solubility of the phosphorus component or the like contained in the fertilizer for natural water can be increased more suitably.
 特に、反応性イオン性物質は、Naおよび/またはCaを含む水酸化物および/または塩であるのが好ましい。
 これにより、前述したような効果がより顕著に発揮される。
In particular, the reactive ionic substance is preferably a hydroxide and/or salt containing Na and/or Ca.
As a result, the effects described above are more significantly exhibited.
 中でも、本工程では、NaCO、NaOH、CaCO、Ca(OH)、CaClおよびNaClよりなる群から選択される1種または2種以上を用いるのが好ましい。 Among them, in this step, it is preferable to use one or more selected from the group consisting of Na 2 CO 3 , NaOH, CaCO 3 , Ca(OH) 2 , CaCl 2 and NaCl.
 これにより、混合物のpHを好適に調整することができる。その結果、本工程で、第2の液体に混合される物質の使用量を抑制し、本工程を効率よく進行させることができる。また、リンの析出効率を向上させつつ、第3の固体中における不純物の含有率をより低くすることができる。また、後の第4の固液分離工程の完了前にリンが不本意に再溶解してしまうことをより確実に防止することができる。また、自然水用肥料中に含まれるリン成分等の溶解性をさらに好適に調整することができる。 With this, the pH of the mixture can be adjusted appropriately. As a result, in this process, the amount of the substance mixed with the second liquid can be suppressed, and this process can proceed efficiently. Further, it is possible to further reduce the content rate of impurities in the third solid while improving the precipitation efficiency of phosphorus. In addition, it is possible to more reliably prevent the phosphorus from being unintentionally redissolved before the completion of the subsequent fourth solid-liquid separation step. Further, the solubility of the phosphorus component and the like contained in the fertilizer for natural water can be adjusted more suitably.
 特に、最終的に得られる自然水用肥料を、リンの溶解性塩(リン酸系化合物のアルカリ金属塩および/または第2族元素塩)として、NaまたはCaを含む塩を含むものと据えることができる。このような塩としては、例えば、Na、Caで表される塩(式中、x,y,zはそれぞれ1以上の整数である。)やCaHPO、Ca(HPO、NaHPO、NaHPO等のリン酸水素系化合物の塩等が挙げられる。中でも、当該塩として、NaPO、Na、Ca(POよりなる群から選ばれる1種または2種以上を含むのが好ましい。 In particular, the fertilizer for natural water finally obtained is provided with a salt containing Na or Ca as a soluble salt of phosphorus (alkali metal salt of phosphoric acid compound and/or salt of Group 2 element). You can Examples of such a salt include salts represented by Na x P y O z and Ca x P y O z (wherein each of x, y, and z is an integer of 1 or more), CaHPO 4 , and the like. Examples thereof include salts of hydrogen phosphate compounds such as Ca(H 2 PO 4 ) 2 , NaH 2 PO 4 , and Na 2 HPO 4 . Among them, it is preferable that the salt contains one or more selected from the group consisting of Na 3 PO 4 , Na 4 P 2 O 7 , and Ca 3 (PO 4 ) 2 .
 また、反応性イオン性物質としては、Naを含む水酸化物および/または塩と、Caを含む水酸化物および/または塩とを併用するのが好ましい。 Also, as the reactive ionic substance, it is preferable to use a hydroxide and/or salt containing Na and a hydroxide and/or salt containing Ca in combination.
 これにより、最終的に得られる自然水用肥料を、リン酸系化合物のナトリウム塩と、リン酸系化合物のカルシウム塩との両方を含むものとすることができる。リン酸系化合物のナトリウム塩と、リン酸系化合物のカルシウム塩とは、水に対する溶解性が異なるため、これらを組み合わせることで、自然水に対する溶解性の調整をより好適に行うことができる。例えば、自然水への適用後の初期段階におけるリン成分(溶解性塩)の溶出量を比較的高いものとしつつ、自然水への適用後から比較的長期間経過した後のリン成分(溶解性塩)の溶出量も比較的高くすることができる。 By this, the fertilizer for natural water finally obtained can contain both the sodium salt of a phosphoric acid compound and the calcium salt of a phosphoric acid compound. Since the sodium salt of a phosphoric acid compound and the calcium salt of a phosphoric acid compound have different solubilities in water, by combining them, the solubility in natural water can be adjusted more preferably. For example, while the elution amount of the phosphorus component (soluble salt) in the initial stage after application to natural water is relatively high, the phosphorus component (solubility The elution amount of (salt) can also be made relatively high.
 本工程の終了時における液相のpHは、特に限定されないが、2.0以上12.0以下であるのが好ましく、2.5以上10.0以下であるのがより好ましく、3.0以上8.0以下であるのがさらに好ましい。 The pH of the liquid phase at the end of this step is not particularly limited, but is preferably 2.0 or more and 12.0 or less, more preferably 2.5 or more and 10.0 or less, and 3.0 or more. It is more preferably 8.0 or less.
 これにより、後の第4の固液分離工程の完了前にリンが不本意に再溶解してしまうことをより確実に防止することができる。また、pHの上昇に用いる材料の使用量が必要以上に多くなることを防止しつつ、液相中に残存するリンの量をより少なくすることができる。 With this, it is possible to more reliably prevent the phosphorus from being unintentionally redissolved before the completion of the subsequent fourth solid-liquid separation step. Further, the amount of phosphorus remaining in the liquid phase can be further reduced while preventing the amount of the material used for increasing the pH from being increased more than necessary.
 本工程では、以下の条件を満足するように、カルシウムを加えるのが好ましい。すなわち、本工程の終了時における系内のリンの物質量をX[mol]、カルシウムの物質量をXCa[mol]としたとき、1.0≦XCa/X≦4.0の関係を満足するのが好ましく、1.3≦XCa/X≦3.0の関係を満足するのがより好ましく、1.5≦XCa/X≦2.5の関係を満足するのがさらに好ましい。 In this step, it is preferable to add calcium so as to satisfy the following conditions. That is, when the amount of phosphorus in the system at the end of this step is X P [mol] and the amount of calcium in the system is X Ca [mol], 1.0≦X Ca /X P ≦4.0 It is preferable that the relationship be satisfied, more preferable that the relationship 1.3≦X Ca /X P ≦3.0 be satisfied, and that the relationship 1.5≦X Ca /X P ≦2.5 be satisfied. Is more preferable.
 これにより、第2の液体中に含まれていたリンをリン酸のカルシウム塩としてより好適に析出させることができ、溶解状態で液相中に残存するリンの割合を特に低くさせることができる。 With this, the phosphorus contained in the second liquid can be more favorably precipitated as the calcium salt of phosphoric acid, and the proportion of phosphorus remaining in the liquid phase in the dissolved state can be made particularly low.
 <第4の固液分離工程>
 本実施形態では、前述した第2の析出工程の後に、リンを含む第3の固体(固相)と液体成分(液相)とを分離する第4の固液分離工程を有している。
<Fourth solid-liquid separation step>
In the present embodiment, after the above-mentioned second precipitation step, there is a fourth solid-liquid separation step of separating the third solid (solid phase) containing phosphorus and the liquid component (liquid phase).
 これにより、リンを含む材料を固体として扱うことができ、その取扱いが容易となる。なお、分離された液相は、重金属を実質的に含んでいないため、産業廃棄液として処理する必要がない。また、分離された液相は、リンの含有率が十分に低いため、当該液相を廃棄しても、有用資源の有効利用の観点から不利ではない。また、分離された第3の固体は、リン酸塩を高純度で含み、重金属の含有率が極めて低いため、肥料等(特に、P成分添加工程で添加するリン系の肥料成分)に好適に用いることができる。特に、後処理等を行わなくても、また、後処理を行う場合であっても、簡易な処理で、肥料等に好適に用いることができる。 -This allows the material containing phosphorus to be handled as a solid and facilitates its handling. Since the separated liquid phase does not substantially contain heavy metals, there is no need to treat it as an industrial waste liquid. Moreover, since the separated liquid phase has a sufficiently low phosphorus content, even if the liquid phase is discarded, there is no disadvantage from the viewpoint of effective utilization of useful resources. In addition, the separated third solid contains phosphate in a high purity and has an extremely low content of heavy metals, and thus is suitable for fertilizers (particularly, phosphorus-based fertilizer components added in the P component addition step). Can be used. In particular, even if the post-treatment or the like is not performed, or even when the post-treatment is performed, it can be suitably used for fertilizers and the like with a simple treatment.
 固液分離の方法は、特に限定されないが、例えば、デカンテーション、ろ過、遠心分離等が挙げられ、複数の方法を組み合わせて行ってもよい。 The method of solid-liquid separation is not particularly limited, and examples thereof include decantation, filtration, centrifugation and the like, and a plurality of methods may be combined.
 また、本工程では、必要に応じて、一旦分離された固相を水等により洗浄してもよい。
 これにより、固体中のイオン(陽イオンおよび陰イオン)の含有率をより低くすることができる。
In this step, the solid phase once separated may be washed with water or the like, if necessary.
As a result, the content of ions (cations and anions) in the solid can be lowered.
 なお、固相の洗浄に用いた液体は、回収後、先の固液分離により得られた液相と合わせてもよい。 Note that the liquid used for washing the solid phase may be combined with the liquid phase obtained by the above solid-liquid separation after recovery.
 固液分離された固相(第2の固体)中における重金属の含有率は、特に限定されないが、1000ppm以下であるのが好ましく、500ppm以下であるのがより好ましく、10ppm以下であるのがさらに好ましい。 The content of the heavy metal in the solid-liquid separated solid phase (second solid) is not particularly limited, but is preferably 1000 ppm or less, more preferably 500 ppm or less, and further preferably 10 ppm or less. preferable.
 図8に、本発明の自然水用肥料の製造方法の具体的な一例のフローチャートを示す。 FIG. 8 shows a flowchart of a specific example of the method for producing a fertilizer for natural water of the present invention.
 [自然水用肥料]
 次に、本発明の自然水用肥料について説明する。
[Natural water fertilizer]
Next, the fertilizer for natural water of the present invention will be described.
 本発明の自然水用肥料は、汚泥灰を原料とし、リン(P)とケイ素(Si)と鉄(Fe)とを含み、重金属の含有率が1000ppm以下であることを特徴とする。 The fertilizer for natural water of the present invention is made of sludge ash as a raw material, contains phosphorus (P), silicon (Si), and iron (Fe), and is characterized by a heavy metal content of 1000 ppm or less.
 これにより、汚泥灰を有効利用しつつ、リン、ケイ素および鉄を含み、かつ、重金属の含有率が十分に低い自然水用肥料を提供することができる。特に、肥料成分の溶出速度が好適に制御された自然水用肥料を提供することができる。 With this, it is possible to provide a fertilizer for natural water which contains phosphorus, silicon and iron and has a sufficiently low heavy metal content while effectively utilizing sludge ash. In particular, it is possible to provide a fertilizer for natural water in which the elution rate of fertilizer components is controlled appropriately.
 このような本発明の自然水用肥料は、前述した方法により好適に製造することができる。 Such a fertilizer for natural water of the present invention can be suitably produced by the method described above.
 本発明の自然水用肥料中における重金属の含有率は、5000ppm以下であればよいが、500ppm以下であるのが好ましく、100ppm以下であるのがより好ましく、10ppm以下であるのがさらに好ましい。
 これにより、前述した効果がより顕著に発揮される。
The content of heavy metals in the fertilizer for natural water of the present invention may be 5000 ppm or less, preferably 500 ppm or less, more preferably 100 ppm or less, and further preferably 10 ppm or less.
As a result, the effects described above are more significantly exhibited.
 本発明の自然水用肥料中における重金属の溶解濃度は、1ppm以下であるのが好ましく、100ppb以下であるのがより好ましい。
 これにより、前述した効果がより顕著に発揮される。
The concentration of dissolved heavy metal in the fertilizer for natural water of the present invention is preferably 1 ppm or less, more preferably 100 ppb or less.
As a result, the effects described above are more significantly exhibited.
 本発明の自然水用肥料中におけるリン(P)の含有率は、特に限定されないが、1.0質量%以上20質量%以下であるのが好ましく、1.5質量%以上9.0質量%以下であるのがより好ましく、2.0質量%以上8.0質量%以下であるのがさらに好ましい。 The content of phosphorus (P) in the fertilizer for natural water of the present invention is not particularly limited, but is preferably 1.0% by mass or more and 20% by mass or less, and 1.5% by mass or more and 9.0% by mass. It is more preferable that the amount is not more than 2.0%, and further preferable that it is not less than 2.0% by mass and not more than 8.0% by mass.
 これにより、自然水用肥料が適用される自然水を、過剰に富栄養化させることをより効果的に防止しつつ、より適切な濃度でかつより長期間にわたって富栄養化させることができる自然水用肥料を提供することができる。また、自然水用肥料中における他の栄養成分とのバランスをより好適なものに調整しやすくなる。 As a result, the natural water to which the fertilizer for natural water is applied can be eutrophied at a more appropriate concentration and for a longer period of time while more effectively preventing excessive eutrophication. Fertilizer can be provided. In addition, it becomes easy to adjust the balance with other nutrients in the fertilizer for natural water to a more suitable one.
 本発明の自然水用肥料中におけるケイ素(Si)の含有率は、特に限定されないが、ケイ素の含有率が10質量%以上50質量%以下であるのが好ましく、15質量%以上45質量%以下であるのがより好ましく、20質量%以上40質量%以下であるのがさらに好ましい。 The content of silicon (Si) in the fertilizer for natural water of the present invention is not particularly limited, but the content of silicon is preferably 10% by mass or more and 50% by mass or less, and 15% by mass or more and 45% by mass or less. Is more preferable, and 20% by mass or more and 40% by mass or less is further preferable.
 これにより、自然水用肥料が適用される自然水を、過剰に富栄養化させることをより効果的に防止しつつ、より適切な濃度でかつより長期間にわたって富栄養化させることができる自然水用肥料を提供することができる。また、自然水用肥料中における他の栄養成分とのバランスをより好適なものに調整しやすくなる。 As a result, the natural water to which the fertilizer for natural water is applied can be eutrophied at a more appropriate concentration and for a longer period of time while more effectively preventing excessive eutrophication. Fertilizer can be provided. In addition, it becomes easy to adjust the balance with other nutrients in the fertilizer for natural water to a more suitable one.
 本発明の自然水用肥料中における鉄(Fe)の含有率は、特に限定されないが、鉄の含有率が1.0質量%以上50質量%以下であるのが好ましく、4.0質量%以上12質量%以下であるのがより好ましく、5.0質量%以上10質量%以下であるのがさらに好ましい。 The content of iron (Fe) in the fertilizer for natural water of the present invention is not particularly limited, but the content of iron is preferably 1.0% by mass or more and 50% by mass or less, and 4.0% by mass or more. It is more preferably 12 mass% or less, and further preferably 5.0 mass% or more and 10 mass% or less.
 これにより、自然水用肥料が適用される自然水を、過剰に富栄養化させることをより効果的に防止しつつ、より適切な濃度でかつより長期間にわたって富栄養化させることができる自然水用肥料を提供することができる。また、自然水用肥料中における他の栄養成分とのバランスをより好適なものに調整しやすくなる。 As a result, the natural water to which the fertilizer for natural water is applied can be eutrophied at a more appropriate concentration and for a longer period of time while more effectively preventing excessive eutrophication. Fertilizer can be provided. In addition, it becomes easy to adjust the balance with other nutrients in the fertilizer for natural water to a more suitable one.
 特に、上記3成分が、いずれも、上記の含有率についての条件を満足するのが好ましい。 Especially, it is preferable that all of the above three components satisfy the above conditions regarding the content rate.
 これにより、各成分のバランスがより好適なものとなり、前述した効果がより顕著に発揮される。 Due to this, the balance of each component becomes more suitable, and the above-mentioned effects are more significantly exhibited.
 本発明の自然水用肥料中におけるリンの含有率をX[質量%]、本発明の自然水用肥料中におけるケイ素の含有率をXSi[質量%]としたとき、1.0≦XSi/X≦50.0の関係を満足するのが好ましく、3.0≦XSi/X≦30.0の関係を満足するのがより好ましく、4.0≦XSi/X≦15.0の関係を満足するのがさらに好ましい。 The content of phosphorus in natural water for fertilizer of the present invention X P [wt%], when the content of silicon in natural water for fertilizer of the present invention was X Si [wt%], 1.0 ≦ X It is preferable to satisfy the relationship of Si /X P ≦50.0, more preferably 3.0≦X Si /X P ≦30.0, and 4.0≦X Si /X P ≦ It is more preferable to satisfy the relationship of 15.0.
 これにより、自然水用肥料中におけるリンの含有率とケイ素の含有率とのバランスがより好適なものとなる。 This will make the balance between the phosphorus content rate and the silicon content rate in the fertilizer for natural water more favorable.
 本発明の自然水用肥料中におけるリンの含有率をX[質量%]、本発明の自然水用肥料中における鉄の含有率をXFe[質量%]としたとき、0.9≦XFe/X≦50.0の関係を満足するのが好ましく、1.0≦XFe/X≦30.0の関係を満足するのがより好ましく、1.2≦XFe/X≦15.0の関係を満足するのがさらに好ましい。 The content of phosphorus in natural water for fertilizer of the present invention X P [wt%], when the content of iron in natural water for fertilizer of the present invention was X Fe [wt%], 0.9 ≦ X It is preferable that the relationship of Fe 2 /X P ≦50.0 is satisfied, and it is more preferable that the relationship of 1.0≦X 2 Fe /X P ≦30.0 is satisfied, and 1.2≦X Fe 2 /X P ≦ It is more preferable to satisfy the relationship of 15.0.
 これにより、自然水用肥料中におけるリンの含有率と鉄の含有率とのバランスがより好適なものとなる。 This will make the balance between the phosphorus content and iron content in the fertilizer for natural water more favorable.
 特に、XSi/X、XFe/X、の両方の条件を満足するのが好ましい。
 これにより、各成分のバランスがより好適なものとなり、前述した効果がより顕著に発揮される。
In particular, it is preferable that both conditions of X Si /X P and X Fe /X P are satisfied.
As a result, the balance of the respective components becomes more preferable, and the above-mentioned effects are more remarkably exhibited.
 自然水用肥料中における、Naの含有率をXNa[mol%]、自然水用肥料中におけるCaの含有率をXCa[mol%]としたとき、0.01≦XCa/XNa≦100の関係を満足するのが好ましく、0.1≦XCa/XNa≦10の関係を満足するのがより好ましい。
 これにより、上述した効果がより顕著に発揮される。
When the Na content in the fertilizer for natural water is X Na [mol%] and the Ca content in the fertilizer for natural water is X Ca [mol%], 0.01≦X Ca /X Na ≦ It is preferable to satisfy the relation of 100, and it is more preferable to satisfy the relation of 0.1≦X Ca /X Na ≦10.
As a result, the effects described above are more significantly exhibited.
 また、自然水用肥料中におけるFeの含有率とAlの含有率との和をX[質量%]、自然水用肥料中におけるアルカリ金属の含有率と第2族元素の含有率との和をX[質量%]としたとき、0.01≦X/X≦20の関係を満足するのが好ましく、0.1≦X/X≦10の関係を満足するのがより好ましく、0.5≦X/X≦3の関係を満足するのがさらに好ましい。 In addition, the sum of the content of Fe and the content of Al in the fertilizer for natural water is X A [mass %], and the sum of the content of alkali metal and the content of Group 2 element in the fertilizer for natural water. Is expressed as X B [mass %], it is preferable that the relationship of 0.01≦X B /X A ≦20 is satisfied, and it is more preferable that the relationship of 0.1≦X B /X A ≦10 is satisfied. It is more preferable to satisfy the relationship of 0.5≦X B /X A ≦3.
 これにより、長期間にわたってさらに好適に肥料成分を溶出することができ、自然水用肥料としての効果を長期間にわたってさらに好適に発揮することができる。 With this, the fertilizer components can be more suitably eluted over a long period of time, and the effect as a fertilizer for natural water can be more suitably exerted over a long period of time.
 自然水用肥料は、いかなる形状であってもよいが、粒状をなしているのが好ましい。
 これにより、自然水用肥料の取り扱いがより容易となる。
The fertilizer for natural water may have any shape, but it is preferably granular.
This makes it easier to handle fertilizers for natural water.
 自然水用肥料が粒状をなしている場合、自然水用肥料が用いられる目的および環境によって、粒径を調節することができる。自然水用肥料の粒径や、自然水中への投与形態を変えることによって、溶出期間、即効性と持続性とのバランス等をより好適に調節することができる。 When the fertilizer for natural water is granular, the particle size can be adjusted according to the purpose and environment in which the fertilizer for natural water is used. By changing the particle size of the fertilizer for natural water and the form of administration into natural water, the dissolution period, the balance between immediate effect and sustainability, etc. can be adjusted more suitably.
 自然水用肥料が粒状をなす場合、要求される自然水用肥料の持続時間等によって異なるが、その平均粒径は、1μm以上1.0m以下であるのが好ましく、2mm以上500mm以下であるのがより好ましい。 When the fertilizer for natural water is in the form of granules, the average particle diameter is preferably 1 μm or more and 1.0 m or less, and preferably 2 mm or more and 500 mm or less, although it depends on the required duration of the fertilizer for natural water and the like. Is more preferable.
 これにより、自然水中における自然水用肥料の溶解速度、即効性と持続性とのバランス等をより好適に調整することができる。 By this, the dissolution rate of natural water fertilizer in natural water, the balance between immediate effect and sustainability, etc. can be adjusted more suitably.
 自然水用肥料の自然水中への投与形態は、自然水と接触する状態で投与されるものであれば特に限定されず、例えば、自然水用肥料をそのまま自然水中に直接投入すること、自然水用肥料を土または砂利等に混ぜて海底等に敷設すること等により投与される。 The form of administration of the fertilizer for natural water into natural water is not particularly limited as long as it is administered in a state of contacting with natural water, and for example, the fertilizer for natural water is directly put into natural water as it is. It is administered by mixing fertilizer for soil with soil or gravel and laying it on the seabed.
 また、自然水用肥料は、自然水用肥料の大きさよりも小さい開口部を有する容器に収容した状態で、自然水に適用してもよい。 Also, the fertilizer for natural water may be applied to natural water in a state of being stored in a container having an opening smaller than the size of the fertilizer for natural water.
 これにより、例えば、水流等の影響で、固体状の自然水用肥料が必要以上に広範囲に拡散してしまい、所望の領域において十分な効果が得られなくなってしまうことをより確実に防止することができる。
 前記容器としては、例えば、メッシュを有する袋体を用いてもよい。
With this, for example, it is possible to more reliably prevent the solid fertilizer for natural water from spreading over a wider area than necessary due to the influence of water flow and the like, and it is not possible to obtain a sufficient effect in a desired region. You can
As the container, for example, a bag having a mesh may be used.
 袋体の構成材料は、特に限定されないが、鉄やポリ乳酸等の生分解性材料であるのが好ましい。 The constituent material of the bag is not particularly limited, but is preferably a biodegradable material such as iron or polylactic acid.
 また、自然水用肥料は、例えば、護岸ブロック、消波ブロック、人工魚礁、堤防等の、自然水に接した状態で設置される構造体、特に、コンクリート製の大型固定物または建造物の全体または一部に含まれた状態で用いられるものであってもよい。 Fertilizers for natural water are, for example, reef blocks, wave-dissipating blocks, artificial fish reefs, levees, and other structures that are installed in contact with natural water, especially large concrete fixed objects or entire structures. Alternatively, it may be used in a state where it is partially included.
 これにより、自然水用肥料が海流、水流等で流されることがより効果的に防止される。また、コンクリート等に含まれることによって、徐々に溶解する性質をさらに効果的に発揮することができ、さらに長期間にわたって効果を持続させることができる。 This will prevent the fertilizer for natural water from being washed away by ocean currents, water currents, etc. more effectively. Further, by being contained in concrete or the like, the property of gradually dissolving can be more effectively exerted, and the effect can be maintained for a long period of time.
 自然水用肥料は、前記構造体の全体に含まれていてもよいし、前記構造体の一部(ただし、自然水と接触し得る部位)のみに含まれていてもよい。 The fertilizer for natural water may be contained in the entire structure, or may be contained only in a part of the structure (where it can come into contact with natural water).
 構造体を製造する際に、原料となるコンクリート等に混合することにより、自然水用肥料が混合された構造体とすることができる。  When manufacturing a structure, it can be mixed with concrete, which is a raw material, to form a structure containing fertilizer for natural water.
 また、前記構造体は、その表面に、自然水用肥料を含む組成物を付着させたものであってもよい。また、自然水用肥料(前記構造体)は、自然水と接触し得るものであれば、地中に埋設して用いるものであってもよい。 Also, the structure may have the surface thereof coated with a composition containing fertilizer for natural water. The fertilizer for natural water (the structure) may be used by being buried in the ground as long as it can come into contact with natural water.
 これにより、例えば、自然水に接触し得る部位にすでに設置されている構造体や、すでに製造された設置前の構造体(例えば、設置準備中の構造体等)等にも、好適に適用することができ、コストや手間の観点からも有利である。また、肥料成分の溶出が進み、自然水用肥料としての効果が低下してきた場合にも、自然水用肥料を含む組成物を再付着させることにより、所望の期間だけ、自然水用肥料を延長させることができる。また、自然水に適用した場合の肥料成分の溶出量や海藻等の生育条件によって、自然水用肥料を含む組成物の付着量や組成物の組成の調整を行うことができ、より好ましい環境を作り上げることができる。また、万が一、肥料成分の溶出量が過剰となった場合に、残存する自然水用肥料の回収も比較的容易に行うことができる。 Accordingly, for example, the present invention is preferably applied to a structure already installed at a site that can come into contact with natural water, or a structure that has already been manufactured and has not yet been installed (for example, a structure that is being prepared for installation). This is advantageous from the viewpoint of cost and labor. In addition, even when the elution of fertilizer components has progressed and the effect as a fertilizer for natural water has declined, the natural water fertilizer can be extended for a desired period by reattaching the composition containing the fertilizer for natural water. Can be made In addition, the amount of the fertilizer component when applied to natural water and the growth conditions such as seaweed can be adjusted to adjust the amount of the composition containing the fertilizer for natural water and the composition of the composition, thereby creating a more preferable environment. Can be built up. Further, in the unlikely event that the amount of fertilizer components eluted is excessive, the remaining fertilizer for natural water can be relatively easily recovered.
 また、母材となる構造体への、自然水用肥料を含む組成物の付着は、例えば、塗装法により好適に行うことができる。 Further, the composition containing the fertilizer for natural water can be suitably attached to the structure serving as the base material by, for example, a coating method.
 以上、本発明の好適な実施形態について説明したが、本発明は、これらに限定されるものではない。 The preferred embodiments of the present invention have been described above, but the present invention is not limited to these.
 例えば、本発明の自然水用肥料の製造方法は、前述した工程以外の工程(例えば、前処理工程、中間処理工程、後処理工程等)を有していてもよい。 For example, the method for producing a fertilizer for natural water of the present invention may have steps (eg, pretreatment step, intermediate treatment step, posttreatment step, etc.) other than the steps described above.
 より具体的には、例えば、汚泥灰の処理物の構成成分の少なくとも一部(例えば、リン成分)を易溶化する工程を有していてもよい。 More specifically, for example, it may have a step of easily solubilizing at least a part of constituent components (for example, phosphorus component) of the treated sludge ash.
 また、前述した実施形態では、反応性イオン性物質添加工程とともに還元工程を有する場合に、自然水用肥料中に含まれるリン成分等の溶解性をより好適に高めることができるとともに、鉄、ケイ素についての溶出速度も好適に制御することができるものとして説明したが、反応性イオン性物質添加工程を省略した場合、すなわち、少なくとも、第1の溶解工程と第1の固液分離工程と還元工程と焼成工程とを有する方法により、肥料成分、特に、鉄成分およびケイ素成分の溶解性が好適に調整された自然水用肥料を提供することができる。(ただし、還元工程には還元剤を添加する工程を含む。) Further, in the above-described embodiment, when it has a reducing step together with the reactive ionic substance addition step, it is possible to more suitably enhance the solubility of the phosphorus component or the like contained in the fertilizer for natural water, and iron, silicon. However, when the reactive ionic substance addition step is omitted, that is, at least the first dissolution step, the first solid-liquid separation step, and the reduction step are described. By the method including the step of baking and the firing step, it is possible to provide a fertilizer for natural water in which the solubilities of fertilizer components, particularly iron components and silicon components, are suitably adjusted. (However, the reducing step includes a step of adding a reducing agent.)
 これにより、自然水用肥料中に含まれる肥料成分の溶解性をより好適に高めることができる。 ∙ By this, the solubility of the fertilizer component contained in the fertilizer for natural water can be more suitably increased.
 また、本発明の自然水用肥料の製造方法は、第1の溶解工程と、第1の固液分離工程と、反応性イオン性物質添加工程と、焼成工程とを有していればよく、他の工程は有していなくてもよい。 Further, the method for producing a fertilizer for natural water of the present invention may have a first dissolution step, a first solid-liquid separation step, a reactive ionic substance addition step, and a firing step, The other steps may not be included.
 また、前述した実施形態では、反応性イオン性物質を第2の析出工程で用いることにより、P成分添加工程で、第1の固体に対して、反応性イオン性物質を添加する場合について代表的に説明したが、反応性イオン性物質は、これ以外の形態で、第1の固体に添加してもよい。例えば、本発明の自然水用肥料の製造方法は、P成分添加工程を有さず、第1の固液分離工程で分離された第1の固体に対して、反応性イオン性物質を直接添加してもよい。 Further, in the above-described embodiment, by using the reactive ionic substance in the second deposition step, a typical case of adding the reactive ionic substance to the first solid in the P component adding step is shown. As described above, the reactive ionic substance may be added to the first solid in a form other than this. For example, the method for producing a fertilizer for natural water of the present invention does not have a P component addition step and directly adds a reactive ionic substance to the first solid separated in the first solid-liquid separation step. You may.
 また、本発明の自然水用肥料の製造方法は、第1の溶解工程と、第1の固液分離工程と、イオン性物質添加工程と、焼成工程とをこの順番で有していればよく、その他の工程の順番は、前述した実施形態で説明したものに限定されず、順番を入れ替えて行ってもよい。例えば、P成分添加工程を焼成工程の後に有してもよい。 Further, the method for producing a fertilizer for natural water of the present invention only needs to have a first dissolution step, a first solid-liquid separation step, an ionic substance addition step, and a firing step in this order. The order of the other steps is not limited to that described in the above embodiment, and the order may be changed. For example, you may have a P component addition process after a baking process.
 また、本発明の自然水用肥料は、汚泥灰を原料とし、リンとケイ素と鉄とを含み、重金属の溶出率が1000ppm以下であればよく、前述した方法で製造されたものに限定されない。 Further, the fertilizer for natural water of the present invention is made of sludge ash as a raw material, contains phosphorus, silicon and iron, and the elution rate of heavy metals is 1000 ppm or less, and is not limited to the one produced by the above-mentioned method.
 以下、本発明を具体的な実施例に基づいて詳細に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be described in detail based on specific examples, but the present invention is not limited thereto.
 《1》自然水用肥料の製造
(実施例1)
 まず、汚泥灰を用意し、これに110℃で2時間の乾燥処理を施し、含水率を0%にした。この汚泥灰は、リンとケイ素と鉄とアルミニウムとマグネシウムと重金属とを含んでいた。
<<1>> Manufacture of fertilizer for natural water (Example 1)
First, sludge ash was prepared and dried at 110° C. for 2 hours to make the water content 0%. This sludge ash contained phosphorus, silicon, iron, aluminum, magnesium, and heavy metals.
 次に、300mLの三角フラスコに1Mの塩酸200mLを入れ、80℃で加熱した後、汚泥灰10gをこの三角フラスコ内に添加し、マグネットスターラーを用いて40分間撹拌した。これにより、汚泥中の酸化リンをリン酸イオンとして溶出させた(第1の溶解工程)。 Next, 200 mL of 1 M hydrochloric acid was placed in a 300 mL Erlenmeyer flask, heated at 80° C., 10 g of sludge ash was added to this Erlenmeyer flask, and the mixture was stirred for 40 minutes using a magnetic stirrer. As a result, phosphorus oxide in the sludge was eluted as phosphate ions (first dissolution step).
 60分間撹拌を行った後、ろ紙を濾過器にセットし、固相である第1の固体と、液相である第1の液体とを、固液分離した(第1の固液分離工程)。 After stirring for 60 minutes, the filter paper was set in the filter to perform solid-liquid separation between the first solid that is a solid phase and the first liquid that is a liquid phase (first solid-liquid separation step). ..
 500mLメスフラスコを用いて、固液分離した濾液(液相)である第1の液体をメスアップし、サンプル液をした。 Using a 500 mL volumetric flask, the first liquid, which was the solid-liquid separated filtrate (liquid phase), was filled up to make a sample liquid.
 サンプル液を希釈し、モリブデン青吸光度法にてリン濃度を測定し、測定結果から、リンの溶出率を算出した。溶出液の分析には、UV分光分析器を用いた。 The sample solution was diluted, the phosphorus concentration was measured by the molybdenum blue absorbance method, and the phosphorus dissolution rate was calculated from the measurement results. A UV spectrophotometer was used to analyze the eluate.
 また、ICP-AES、ICP-MSを用いてサンプル液中の金属・重金属の濃度を求め、金属・重金属について、固相(第1の固体)に含まれる量と液相(第1の液体)に含まれる量とを算出した。 Further, the concentrations of the metal and heavy metal in the sample liquid are obtained using ICP-AES and ICP-MS, and the amount of the metal and heavy metal contained in the solid phase (first solid) and the liquid phase (first liquid) And the amount contained in.
 次に、第1の固体100質量部に対し、15質量部の割合で、反応性イオン性物質としての炭酸ナトリウムを添加した(反応性イオン性物質添加工程)。 Next, 15 parts by mass of sodium carbonate as a reactive ionic substance was added to 100 parts by mass of the first solid (reactive ionic substance addition step).
 その後、焼成処理を施した(焼成工程)。焼成処理は、まず、室温から200℃までは昇温速度:10℃/分で昇温し、200℃で2時間保持し、次いで、800℃(最高焼成温度)まで昇温速度:20℃/分で昇温し、800℃(最高焼成温度)で2時間保持し、次いで、200℃まで、降温速度:5℃/分で降温し、200℃で2時間保持し、その後、室温まで、降温速度:10℃/分で降温することにより行った。
 これにより、自然水用肥料を得た。
Then, a firing process was performed (firing process). In the firing treatment, first, the temperature was raised from room temperature to 200° C. at a temperature raising rate of 10° C./min, held at 200° C. for 2 hours, and then raised to 800° C. (maximum firing temperature): 20° C./min. The temperature is raised in minutes and kept at 800° C. (maximum firing temperature) for 2 hours, then to 200° C. at a temperature decrease rate of 5° C./min, and kept at 200° C. for 2 hours, and then to room temperature. Speed: The temperature was lowered at 10°C/min.
Thereby, fertilizer for natural water was obtained.
(実施例2~5)
 第1の固体100質量部に対して添加する炭酸ナトリウム(反応性イオン性物質)の割合を、表1に示すように変更した以外は、前記実施例1と同様にして、自然水用肥料を製造した。
(Examples 2 to 5)
A fertilizer for natural water was prepared in the same manner as in Example 1 except that the ratio of sodium carbonate (reactive ionic substance) added to 100 parts by mass of the first solid was changed as shown in Table 1. Manufactured.
(実施例6)
 前記実施例1と同様にして第1の液体を用いて調製したサンプル液に対し、溶出したリンの物質量とカルシウムの物質量との比が1:2となるように塩化カルシウムを添加し、1MのNaOH溶液を添加しながら、pHメーターを用いてpHを測定し、撹拌を行いながらリンおよび重金属を析出させた(第1の析出工程)。このとき、リンは、主にリン酸塩として析出した。
(Example 6)
To the sample liquid prepared using the first liquid in the same manner as in Example 1, calcium chloride was added so that the ratio of the amount of eluted phosphorus substance to the amount of eluted calcium substance was 1:2, The pH was measured using a pH meter while adding a 1 M NaOH solution, and phosphorus and heavy metals were deposited while stirring (first deposition step). At this time, phosphorus was mainly deposited as a phosphate.
 pHを4に調整した後、さらに30分撹拌し、その後、ろ紙を濾過機にセットし、真空ポンプを用いて固液分離を行った(第2の固液分離工程)。 After adjusting the pH to 4, stirring was continued for 30 minutes, then the filter paper was set in the filter and solid-liquid separation was performed using the vacuum pump (second solid-liquid separation step).
 500mLメスフラスコを用いて、固液分離した濾液(液相)をメスアップした。
 メスアップした濾液を特定の割合で希釈し、モリブデン青吸光度法によりリン濃度を測定し、測定結果から、リンの析出率を算出した。リン濃度の測定には、UV分光分析器を用いた。
Using a 500 mL volumetric flask, the solid-liquid separated filtrate (liquid phase) was measured up.
The diluted filtrate was diluted at a specific ratio, the phosphorus concentration was measured by the molybdenum blue absorbance method, and the phosphorus precipitation rate was calculated from the measurement results. A UV spectrophotometer was used to measure the phosphorus concentration.
 また、ICP-AES、ICP-MSを用いて濾液中の金属・重金属の濃度を求め、金属・重金属について、固相に含まれる量と液相に含まれる量とを算出した。 Also, the concentrations of metals and heavy metals in the filtrate were obtained using ICP-AES and ICP-MS, and the amounts of metals and heavy metals contained in the solid phase and the liquid phase were calculated.
 また、第2の固液分離工程で得られた固相については、105℃で2時間乾燥した後に、粉末にし、XRDによる分析も行った。 Also, the solid phase obtained in the second solid-liquid separation step was dried at 105° C. for 2 hours, powdered, and analyzed by XRD.
 第2の固液分離工程で得られた固相を、乾燥した後、200mLの1.0MのNaOH水溶液が入っている三角フラスコに投入し、60℃で20分間撹拌した。これにより、リンを再溶出させた(第2の溶解工程)。 After drying the solid phase obtained in the second solid-liquid separation step, the solid phase was put into an Erlenmeyer flask containing 200 mL of 1.0 M NaOH aqueous solution and stirred at 60° C. for 20 minutes. As a result, phosphorus was eluted again (second dissolution step).
 リンが溶解した第2の液体(液相)をろ紙で固液分離し、重金属を含む固体成分(固相)と分離した(第3の固液分離工程)。 The second liquid (liquid phase) in which phosphorus was dissolved was subjected to solid-liquid separation with filter paper, and separated from the solid component (solid phase) containing heavy metals (third solid-liquid separation step).
 次に、固液分離した第2の液体に対し、第2の液体中のリンの物質量と、添加するカルシウムの物質量との比が1:2となるように塩化カルシウムを添加し、1Mの塩酸を添加しながら、pHメーターを用いてpHを測定し、撹拌を行いながら、リン酸のカルシウム塩を析出させた(第2の析出工程)。本工程は、液温が20℃以上80℃以下となるようにして行った。 Next, calcium chloride was added to the solid-liquid separated second liquid so that the ratio of the amount of phosphorus substance in the second liquid to the amount of calcium substance to be added was 1:2, and 1M The pH was measured using a pH meter while adding the hydrochloric acid in Example 1 and the calcium salt of phosphoric acid was precipitated while stirring (second precipitation step). This step was performed so that the liquid temperature was 20° C. or higher and 80° C. or lower.
 pHを2.0~12の間で調整しながら、さらに60分間撹拌した後、固液分離を行い、主としてリン酸のカルシウム塩で構成された固体(第3の固体)を得た(第4の固液分離工程)。 After further stirring for 60 minutes while adjusting the pH between 2.0 and 12, solid-liquid separation was performed to obtain a solid mainly composed of calcium salt of phosphoric acid (third solid) (fourth solid). Solid-liquid separation step).
 その後、第1の固液分離工程で分離された第1の固体に対し、リン系の肥料成分として第4の固液分離工程で得られた第3の固体を所定の割合で添加した(P成分添加工程)。  Then, the third solid obtained in the fourth solid-liquid separation step was added as a phosphorus-based fertilizer component to the first solid separated in the first solid-liquid separation step at a predetermined ratio (P Component addition step). ‥
 その後、焼成処理を施した(焼成工程)。焼成処理は、まず、室温から200℃までは昇温速度:10℃/分で昇温し、200℃で2時間保持し、次いで、800℃(最高焼成温度)まで昇温速度:20℃/分で昇温し、800℃(最高焼成温度)で2時間保持し、次いで、200℃まで、降温速度:5℃/分で降温し、200℃で2時間保持し、その後、室温まで、降温速度:10℃/分で降温することにより行った。 After that, it was baked (baking process). In the firing treatment, first, the temperature was raised from room temperature to 200° C. at a temperature raising rate of 10° C./min, held at 200° C. for 2 hours, and then raised to 800° C. (maximum firing temperature): 20° C./min. The temperature is raised in minutes and kept at 800° C. (maximum firing temperature) for 2 hours, then to 200° C. at a temperature decrease rate of 5° C./min, and kept at 200° C. for 2 hours, and then to room temperature. Speed: The temperature was lowered at 10°C/min.
 その後、窒素系の肥料成分としての硝酸ナトリウムを所定の割合で添加した(N成分添加工程)。
 これにより、自然水用肥料を得た。
Then, sodium nitrate as a nitrogen-based fertilizer component was added at a predetermined ratio (N component addition step).
Thereby, fertilizer for natural water was obtained.
(実施例7~10)
 第1の析出工程の終了時におけるpHを表1に示すように変更した以外は、前記実施例6と同様にして、自然水用肥料を製造した。
(Examples 7 to 10)
A fertilizer for natural water was produced in the same manner as in Example 6 except that the pH at the end of the first precipitation step was changed as shown in Table 1.
(実施例11)
 まず、汚泥灰を用意し、これに110℃で2時間の乾燥処理を施し、含水率を0%にした。この汚泥灰は、リンとケイ素と鉄とアルミニウムとマグネシウムと重金属とを含んでいた。
(Example 11)
First, sludge ash was prepared and dried at 110° C. for 2 hours to make the water content 0%. This sludge ash contained phosphorus, silicon, iron, aluminum, magnesium, and heavy metals.
 次に、300mLの三角フラスコに1Mの塩酸200mLを入れ、80℃で加熱した後、汚泥灰10gをこの三角フラスコ内に添加し、マグネットスターラーを用いて40分間撹拌した。これにより、汚泥中の酸化リンをリン酸イオンとして溶出させた(第1の溶解工程)。 Next, 200 mL of 1 M hydrochloric acid was placed in a 300 mL Erlenmeyer flask, heated at 80° C., 10 g of sludge ash was added to this Erlenmeyer flask, and the mixture was stirred for 40 minutes using a magnetic stirrer. As a result, phosphorus oxide in the sludge was eluted as phosphate ions (first dissolution step).
 60分間撹拌を行った後、ろ紙を濾過器にセットし、固相である第1の固体と、液相である第1の液体とを、固液分離した(第1の固液分離工程)。 After stirring for 60 minutes, the filter paper was set in the filter to perform solid-liquid separation between the first solid that is a solid phase and the first liquid that is a liquid phase (first solid-liquid separation step). ..
 500mLメスフラスコを用いて、固液分離した濾液(液相)である第1の液体をメスアップし、サンプル液をした。 Using a 500 mL volumetric flask, the first liquid, which was the solid-liquid separated filtrate (liquid phase), was filled up to make a sample liquid.
 サンプル液を希釈し、モリブデン青吸光度法にてリン濃度を測定し、測定結果から、リンの溶出率を算出した。溶出液の分析には、UV分光分析器を用いた。 The sample solution was diluted, the phosphorus concentration was measured by the molybdenum blue absorbance method, and the phosphorus dissolution rate was calculated from the measurement results. A UV spectrophotometer was used to analyze the eluate.
 また、ICP-AES、ICP-MSを用いてサンプル液中の金属・重金属の濃度を求め、金属・重金属について、固相(第1の固体)に含まれる量と液相(第1の液体)に含まれる量とを算出した。 Further, the concentrations of the metal and heavy metal in the sample liquid are obtained using ICP-AES and ICP-MS, and the amount of the metal and heavy metal contained in the solid phase (first solid) and the liquid phase (first liquid) And the amount contained in.
 次に、第1の固体100質量部に対し、25質量部の割合で、反応性イオン性物質としての水酸化ナトリウムを添加した(反応性イオン性物質添加工程)。 Next, sodium hydroxide as a reactive ionic substance was added at a ratio of 25 parts by mass to 100 parts by mass of the first solid (reactive ionic substance addition step).
 その後、焼成処理を施した(焼成工程)。焼成処理は、まず、室温から200℃までは昇温速度:10℃/分で昇温し、200℃で2時間保持し、次いで、900℃(最高焼成温度)まで昇温速度:20℃/分で昇温し、900℃(最高焼成温度)で2時間保持し、次いで、200℃まで、降温速度:5℃/分で降温し、200℃で2時間保持し、その後、室温まで、降温速度:10℃/分で降温することにより行った。
 これにより、自然水用肥料を得た。
Then, a firing process was performed (firing process). In the firing treatment, first, the temperature was raised from room temperature to 200° C. at a temperature raising rate of 10° C./min, held at 200° C. for 2 hours, and then raised to 900° C. (maximum firing temperature) at a temperature raising rate of 20° C./ The temperature is raised in minutes and kept at 900° C. (maximum firing temperature) for 2 hours, then to 200° C. at a rate of temperature decrease of 5° C./min and kept at 200° C. for 2 hours, and then to room temperature. Speed: The temperature was lowered at 10°C/min.
Thereby, fertilizer for natural water was obtained.
(実施例12)
 最高焼成温度を600℃に変更した以外は、前記実施例11と同様にして、自然水用肥料を製造した。
(Example 12)
A fertilizer for natural water was produced in the same manner as in Example 11 except that the maximum firing temperature was changed to 600°C.
(実施例13)
 最高焼成温度を700℃に変更した以外は、前記実施例11と同様にして、自然水用肥料を製造した。
(Example 13)
A fertilizer for natural water was produced in the same manner as in Example 11 except that the maximum firing temperature was changed to 700°C.
(実施例14)
 最高焼成温度を800℃に変更した以外は、前記実施例11と同様にして、自然水用肥料を製造した。
(Example 14)
A fertilizer for natural water was produced in the same manner as in Example 11 except that the maximum firing temperature was changed to 800°C.
(実施例15)
 最高焼成温度を1000℃に変更した以外は、前記実施例11と同様にして、自然水用肥料を製造した。
(Example 15)
A fertilizer for natural water was produced in the same manner as in Example 11 except that the maximum firing temperature was changed to 1000°C.
(実施例16)
 最高焼成温度を1100℃に変更した以外は、前記実施例11と同様にして、自然水用肥料を製造した。
(Example 16)
A fertilizer for natural water was produced in the same manner as in Example 11 except that the maximum firing temperature was changed to 1100°C.
(実施例17)
 まず、汚泥灰を用意し、これに110℃で2時間の乾燥処理を施し、含水率を0%にした。この汚泥灰は、リンとケイ素と鉄とアルミニウムとマグネシウムと重金属とを含んでいた。
(Example 17)
First, sludge ash was prepared and dried at 110° C. for 2 hours to make the water content 0%. This sludge ash contained phosphorus, silicon, iron, aluminum, magnesium, and heavy metals.
 次に、300mLの三角フラスコに1Mの塩酸200mLを入れ、80℃で加熱した後、汚泥灰10gをこの三角フラスコ内に添加し、マグネットスターラーを用いて40分間撹拌した。これにより、汚泥中の酸化リンをリン酸イオンとして溶出させた(第1の溶解工程)。 Next, 200 mL of 1 M hydrochloric acid was placed in a 300 mL Erlenmeyer flask, heated at 80° C., 10 g of sludge ash was added to this Erlenmeyer flask, and the mixture was stirred for 40 minutes using a magnetic stirrer. As a result, phosphorus oxide in the sludge was eluted as phosphate ions (first dissolution step).
 60分間撹拌を行った後、ろ紙を濾過器にセットし、固相である第1の固体と、液相である第1の液体とを、固液分離した(第1の固液分離工程)。 After stirring for 60 minutes, the filter paper was set in the filter to perform solid-liquid separation between the first solid that is a solid phase and the first liquid that is a liquid phase (first solid-liquid separation step). ..
 500mLメスフラスコを用いて、固液分離した濾液(液相)である第1の液体をメスアップし、サンプル液をした。 Using a 500 mL volumetric flask, the first liquid, which was the solid-liquid separated filtrate (liquid phase), was filled up to make a sample liquid.
 サンプル液を希釈し、モリブデン青吸光度法にてリン濃度を測定し、測定結果から、リンの溶出率を算出した。溶出液の分析には、UV分光分析器を用いた。 The sample solution was diluted, the phosphorus concentration was measured by the molybdenum blue absorbance method, and the phosphorus dissolution rate was calculated from the measurement results. A UV spectrophotometer was used to analyze the eluate.
 また、ICP-AES、ICP-MSを用いてサンプル液中の金属・重金属の濃度を求め、金属・重金属について、固相(第1の固体)に含まれる量と液相(第1の液体)に含まれる量とを算出した。 Further, the concentrations of the metal and heavy metal in the sample liquid are obtained using ICP-AES and ICP-MS, and the amount of the metal and heavy metal contained in the solid phase (first solid) and the liquid phase (first liquid) And the amount contained in.
 次に、第1の固体100質量部に対し、10質量部の割合で、反応性イオン性物質としての炭酸カルシウムを添加した(反応性イオン性物質添加工程)。 Next, calcium carbonate as a reactive ionic substance was added at a ratio of 10 parts by mass to 100 parts by mass of the first solid (reactive ionic substance addition step).
 その後、焼成処理を施した(焼成工程)。焼成処理は、まず、室温から200℃までは昇温速度:10℃/分で昇温し、200℃で2時間保持し、次いで、900℃(最高焼成温度)まで昇温速度:20℃/分で昇温し、900℃(最高焼成温度)で2時間保持し、次いで、200℃まで、降温速度:5℃/分で降温し、200℃で2時間保持し、その後、室温まで、降温速度:10℃/分で降温することにより行った。
 これにより、自然水用肥料を得た。
Then, a firing process was performed (firing process). In the firing treatment, first, the temperature was raised from room temperature to 200° C. at a temperature raising rate of 10° C./min, held at 200° C. for 2 hours, and then raised to 900° C. (maximum firing temperature) at a temperature raising rate of 20° C./ The temperature is raised in minutes and kept at 900° C. (maximum firing temperature) for 2 hours, then to 200° C. at a rate of temperature decrease of 5° C./min and kept at 200° C. for 2 hours, and then to room temperature. Speed: The temperature was lowered at 10°C/min.
Thereby, fertilizer for natural water was obtained.
(実施例18)
 第1の固体100質量部に対して添加する炭酸カルシウム(反応性イオン性物質)の割合を20質量部に変更した以外は、前記実施例17と同様にして、自然水用肥料を製造した。
(Example 18)
A fertilizer for natural water was produced in the same manner as in Example 17 except that the ratio of calcium carbonate (reactive ionic substance) added to 100 parts by mass of the first solid was changed to 20 parts by mass.
(実施例19)
 まず、汚泥灰を用意し、これに110℃で2時間の乾燥処理を施し、含水率を0%にした。この汚泥灰は、リンとケイ素と鉄とアルミニウムとマグネシウムと重金属とを含んでいた。
(Example 19)
First, sludge ash was prepared and dried at 110° C. for 2 hours to make the water content 0%. This sludge ash contained phosphorus, silicon, iron, aluminum, magnesium, and heavy metals.
 次に、300mLの三角フラスコに1Mの塩酸200mLを入れ、80℃で加熱した後、汚泥灰10gをこの三角フラスコ内に添加し、マグネットスターラーを用いて40分間撹拌した。これにより、汚泥中の酸化リンをリン酸イオンとして溶出させた(第1の溶解工程)。 Next, 200 mL of 1 M hydrochloric acid was placed in a 300 mL Erlenmeyer flask, heated at 80° C., 10 g of sludge ash was added to this Erlenmeyer flask, and the mixture was stirred for 40 minutes using a magnetic stirrer. As a result, phosphorus oxide in the sludge was eluted as phosphate ions (first dissolution step).
 60分間撹拌を行った後、ろ紙を濾過器にセットし、固相である第1の固体と、液相である第1の液体とを、固液分離した(第1の固液分離工程)。 After stirring for 60 minutes, the filter paper was set in the filter to perform solid-liquid separation between the first solid that is a solid phase and the first liquid that is a liquid phase (first solid-liquid separation step). ..
 500mLメスフラスコを用いて、固液分離した濾液(液相)である第1の液体をメスアップし、サンプル液をした。 Using a 500 mL volumetric flask, the first liquid, which was the solid-liquid separated filtrate (liquid phase), was filled up to make a sample liquid.
 サンプル液を希釈し、モリブデン青吸光度法にてリン濃度を測定し、測定結果から、リンの溶出率を算出した。溶出液の分析には、UV分光分析器を用いた。 The sample solution was diluted, the phosphorus concentration was measured by the molybdenum blue absorbance method, and the phosphorus dissolution rate was calculated from the measurement results. A UV spectrophotometer was used to analyze the eluate.
 また、ICP-AES、ICP-MSを用いてサンプル液中の金属・重金属の濃度を求め、金属・重金属について、固相(第1の固体)に含まれる量と液相(第1の液体)に含まれる量とを算出した。 Further, the concentrations of the metal and heavy metal in the sample liquid are obtained using ICP-AES and ICP-MS, and the amount of the metal and heavy metal contained in the solid phase (first solid) and the liquid phase (first liquid) And the amount contained in.
 次に、第1の固体100質量部に対し、25質量部の割合で、反応性イオン性物質としての水酸化ナトリウムを添加した(反応性イオン性物質添加工程)。 Next, sodium hydroxide as a reactive ionic substance was added at a ratio of 25 parts by mass to 100 parts by mass of the first solid (reactive ionic substance addition step).
 その後、焼成処理を施した(焼成工程)。焼成処理は、まず、室温から200℃までは昇温速度:10℃/分で昇温し、200℃で2時間保持し、次いで、900℃(最高焼成温度)まで昇温速度:20℃/分で昇温し、900℃(最高焼成温度)で1時間保持し、次いで、200℃まで、降温速度:5℃/分で降温し、200℃で2時間保持し、その後、室温まで、降温速度:10℃/分で降温することにより行った。
 これにより、自然水用肥料を得た。
Then, a firing process was performed (firing process). In the firing treatment, first, the temperature was raised from room temperature to 200° C. at a temperature raising rate of 10° C./min, held at 200° C. for 2 hours, and then raised to 900° C. (maximum firing temperature) at a temperature raising rate of 20° C./ The temperature is raised in minutes and kept at 900° C. (maximum firing temperature) for 1 hour, then to 200° C. at a temperature lowering rate of 5° C./min, and kept at 200° C. for 2 hours, and then to room temperature. Speed: The temperature was lowered at 10°C/min.
Thereby, fertilizer for natural water was obtained.
(実施例20)
 焼成工程の最高焼成温度(900℃)での保持時間を3時間に変更した以外は、前記実施例19と同様にして、自然水用肥料を製造した。
(Example 20)
A fertilizer for natural water was produced in the same manner as in Example 19 except that the holding time at the maximum firing temperature (900°C) in the firing step was changed to 3 hours.
(実施例21)
 まず、汚泥灰を用意し、これに110℃で2時間の乾燥処理を施し、含水率を0%にした。この汚泥灰は、リンとケイ素と鉄とアルミニウムとマグネシウムと重金属とを含んでいた。
(Example 21)
First, sludge ash was prepared and dried at 110° C. for 2 hours to make the water content 0%. This sludge ash contained phosphorus, silicon, iron, aluminum, magnesium, and heavy metals.
 次に、300mLの三角フラスコに1Mの塩酸200mLを入れ、80℃で加熱した後、汚泥灰10gをこの三角フラスコ内に添加し、マグネットスターラーを用いて40分間撹拌した。これにより、汚泥中の酸化リンをリン酸イオンとして溶出させた(第1の溶解工程)。 Next, 200 mL of 1 M hydrochloric acid was placed in a 300 mL Erlenmeyer flask, heated at 80° C., 10 g of sludge ash was added to this Erlenmeyer flask, and the mixture was stirred for 40 minutes using a magnetic stirrer. As a result, phosphorus oxide in the sludge was eluted as phosphate ions (first dissolution step).
 60分間撹拌を行った後、ろ紙を濾過器にセットし、固相である第1の固体と、液相である第1の液体とを、固液分離した(第1の固液分離工程)。 After stirring for 60 minutes, the filter paper was set in the filter to perform solid-liquid separation between the first solid that is a solid phase and the first liquid that is a liquid phase (first solid-liquid separation step). ..
 500mLメスフラスコを用いて、固液分離した濾液(液相)である第1の液体をメスアップし、サンプル液をした。 Using a 500 mL volumetric flask, the first liquid, which was the solid-liquid separated filtrate (liquid phase), was filled up to make a sample liquid.
 サンプル液を希釈し、モリブデン青吸光度法にてリン濃度を測定し、測定結果から、リンの溶出率を算出した。溶出液の分析には、UV分光分析器を用いた。 The sample solution was diluted, the phosphorus concentration was measured by the molybdenum blue absorbance method, and the phosphorus dissolution rate was calculated from the measurement results. A UV spectrophotometer was used to analyze the eluate.
 また、ICP-AES、ICP-MSを用いてサンプル液中の金属・重金属の濃度を求め、金属・重金属について、固相(第1の固体)に含まれる量と液相(第1の液体)に含まれる量とを算出した。 Further, the concentrations of the metal and heavy metal in the sample liquid are obtained using ICP-AES and ICP-MS, and the amount of the metal and heavy metal contained in the solid phase (first solid) and the liquid phase (first liquid) And the amount contained in.
 次に、第1の固体100質量部に対し、10質量部の割合で、カーボンブラック(還元剤)を添加した(還元剤添加工程)。 Next, carbon black (reducing agent) was added at a ratio of 10 parts by mass to 100 parts by mass of the first solid (reducing agent adding step).
 次に、第1の固体100質量部に対し、20質量部の割合で、反応性イオン性物質としての水酸化ナトリウムを添加した(反応性イオン性物質添加工程)。 Next, sodium hydroxide as a reactive ionic substance was added at a ratio of 20 parts by mass to 100 parts by mass of the first solid (reactive ionic substance addition step).
 その後、焼成処理を施した(焼成工程)。焼成処理は、まず、窒素雰囲気で、室温から200℃までは昇温速度:10℃/分で昇温し、200℃で2時間保持し、次いで、900℃(最高焼成温度)まで昇温速度:20℃/分で昇温し、900℃(最高焼成温度)で2時間保持し、次いで、200℃まで、降温速度:5℃/分で降温し、200℃で2時間保持し、その後、室温まで、降温速度:10℃/分で降温することにより行った。
 これにより、自然水用肥料を得た。
 なお、本実施例では、反応性イオン性物質の添加量について、残渣のリン含有率(5質量%)をモルに換算して、反応性イオン性物質添加量もモルに換算して、その比率を示した。還元剤の量は、残渣の質量基準である。以下の各実施例についても同様である。
Then, a firing process was performed (firing process). The firing treatment is performed by first heating in a nitrogen atmosphere from room temperature to 200° C. at a heating rate of 10° C./min, holding at 200° C. for 2 hours, and then raising the temperature to 900° C. (maximum firing temperature). : The temperature was raised at 20° C./min, and the temperature was kept at 900° C. (maximum firing temperature) for 2 hours, then to 200° C., the temperature was lowered at a rate of 5° C./min, and the temperature was kept at 200° C. for 2 hours. The temperature was decreased to room temperature at a temperature decrease rate of 10° C./min.
Thereby, fertilizer for natural water was obtained.
In addition, in this example, the phosphorus content (5% by mass) of the residue was converted into a mole with respect to the amount of the reactive ionic substance added, and the amount of the reactive ionic substance added was also converted into a mole, and the ratio thereof was calculated. showed that. The amount of reducing agent is based on the mass of the residue. The same applies to each of the following examples.
(実施例22)
 まず、汚泥灰を用意し、これに110℃で2時間の乾燥処理を施し、含水率を0%にした。この汚泥灰は、リンとケイ素と鉄とアルミニウムとマグネシウムと重金属とを含んでいた。
(Example 22)
First, sludge ash was prepared and dried at 110° C. for 2 hours to make the water content 0%. This sludge ash contained phosphorus, silicon, iron, aluminum, magnesium, and heavy metals.
 次に、300mLの三角フラスコに1Mの塩酸200mLを入れ、80℃で加熱した後、汚泥灰10gをこの三角フラスコ内に添加し、マグネットスターラーを用いて40分間撹拌した。これにより、汚泥中の酸化リンをリン酸イオンとして溶出させた(第1の溶解工程)。 Next, 200 mL of 1 M hydrochloric acid was placed in a 300 mL Erlenmeyer flask, heated at 80° C., 10 g of sludge ash was added to this Erlenmeyer flask, and the mixture was stirred for 40 minutes using a magnetic stirrer. As a result, phosphorus oxide in the sludge was eluted as phosphate ions (first dissolution step).
 60分間撹拌を行った後、ろ紙を濾過器にセットし、固相である第1の固体と、液相である第1の液体とを、固液分離した(第1の固液分離工程)。 After stirring for 60 minutes, the filter paper was set in the filter to perform solid-liquid separation between the first solid that is a solid phase and the first liquid that is a liquid phase (first solid-liquid separation step). ..
 500mLメスフラスコを用いて、固液分離した濾液(液相)である第1の液体をメスアップし、サンプル液をした。 Using a 500 mL volumetric flask, the first liquid, which was the solid-liquid separated filtrate (liquid phase), was filled up to make a sample liquid.
 サンプル液を希釈し、モリブデン青吸光度法にてリン濃度を測定し、測定結果から、リンの溶出率を算出した。溶出液の分析には、UV分光分析器を用いた。 The sample solution was diluted, the phosphorus concentration was measured by the molybdenum blue absorbance method, and the phosphorus dissolution rate was calculated from the measurement results. A UV spectrophotometer was used to analyze the eluate.
 また、ICP-AES、ICP-MSを用いてサンプル液中の金属・重金属の濃度を求め、金属・重金属について、固相(第1の固体)に含まれる量と液相(第1の液体)に含まれる量とを算出した。 Further, the concentrations of the metal and heavy metal in the sample liquid are obtained using ICP-AES and ICP-MS, and the amount of the metal and heavy metal contained in the solid phase (first solid) and the liquid phase (first liquid) And the amount contained in.
 次に、第1の固体100質量部に対し、10質量部の割合で、カーボンブラック(還元剤)を添加した(還元剤添加工程)。 Next, carbon black (reducing agent) was added at a ratio of 10 parts by mass to 100 parts by mass of the first solid (reducing agent adding step).
 次に、第1の固体のリン含有率を第1の固体の単位質量あたりモル(mol)に換算して、含有リンのモルに対して十分の1のモル割合で、反応性イオン性物質としての水酸化ナトリウムを添加した(反応性イオン性物質添加工程)。 Next, the phosphorus content of the first solid is converted into moles (mol) per unit mass of the first solid, and the molar ratio of 1 is sufficient as the reactive ionic substance with respect to the moles of phosphorus contained. Was added (reactive ionic substance addition step).
 その後、焼成処理を施した(焼成工程)。焼成処理は、まず、窒素雰囲気で、室温から200℃までは昇温速度:10℃/分で昇温し、200℃で2時間保持し、次いで、900℃(最高焼成温度)まで昇温速度:20℃/分で昇温し、900℃(最高焼成温度)で2時間保持し、次いで、200℃まで、降温速度:5℃/分で降温し、200℃で2時間保持し、その後、室温まで、降温速度:10℃/分で降温することにより行った。
 これにより、自然水用肥料を得た。
Then, a firing process was performed (firing process). The firing treatment is performed by first heating in a nitrogen atmosphere from room temperature to 200° C. at a heating rate of 10° C./min, holding at 200° C. for 2 hours, and then raising the temperature to 900° C. (maximum firing temperature). : The temperature was raised at 20° C./min, and the temperature was kept at 900° C. (maximum firing temperature) for 2 hours, then to 200° C., the temperature was lowered at a rate of 5° C./min, and the temperature was kept at 200° C. for 2 hours. The temperature was decreased to room temperature at a temperature decrease rate of 10° C./min.
Thereby, fertilizer for natural water was obtained.
(実施例23)
 反応性イオン性物質としての水酸化ナトリウムの比率を、十分の1から同量(1:1)に変更した以外は、前記実施例22と同様にして、自然水用肥料を製造した。
(Example 23)
A fertilizer for natural water was produced in the same manner as in Example 22 except that the ratio of sodium hydroxide as the reactive ionic substance was changed from 1 to the same amount (1:1).
(実施例24)
 まず、汚泥灰を用意し、これに110℃で2時間の乾燥処理を施し、含水率を0%にした。この汚泥灰は、リンとケイ素と鉄とアルミニウムとマグネシウムと重金属とを含んでいた。
(Example 24)
First, sludge ash was prepared and dried at 110° C. for 2 hours to make the water content 0%. This sludge ash contained phosphorus, silicon, iron, aluminum, magnesium, and heavy metals.
 次に、300mLの三角フラスコに1Mの塩酸200mLを入れ、80℃で加熱した後、汚泥灰10gをこの三角フラスコ内に添加し、マグネットスターラーを用いて40分間撹拌した。これにより、汚泥中の酸化リンをリン酸イオンとして溶出させた(第1の溶解工程)。 Next, 200 mL of 1 M hydrochloric acid was placed in a 300 mL Erlenmeyer flask, heated at 80° C., 10 g of sludge ash was added to this Erlenmeyer flask, and the mixture was stirred for 40 minutes using a magnetic stirrer. As a result, phosphorus oxide in the sludge was eluted as phosphate ions (first dissolution step).
 60分間撹拌を行った後、ろ紙を濾過器にセットし、固相である第1の固体と、液相である第1の液体とを、固液分離した(第1の固液分離工程)。 After stirring for 60 minutes, the filter paper was set in the filter to perform solid-liquid separation between the first solid that is a solid phase and the first liquid that is a liquid phase (first solid-liquid separation step). ..
 500mLメスフラスコを用いて、固液分離した濾液(液相)である第1の液体をメスアップし、サンプル液をした。 Using a 500 mL volumetric flask, the first liquid, which was the solid-liquid separated filtrate (liquid phase), was filled up to make a sample liquid.
 サンプル液を希釈し、モリブデン青吸光度法にてリン濃度を測定し、測定結果から、リンの溶出率を算出した。溶出液の分析には、UV分光分析器を用いた。 The sample solution was diluted, the phosphorus concentration was measured by the molybdenum blue absorbance method, and the phosphorus dissolution rate was calculated from the measurement results. A UV spectrophotometer was used to analyze the eluate.
 また、ICP-AES、ICP-MSを用いてサンプル液中の金属・重金属の濃度を求め、金属・重金属について、固相(第1の固体)に含まれる量と液相(第1の液体)に含まれる量とを算出した。 Further, the concentrations of the metal and heavy metal in the sample liquid are obtained using ICP-AES and ICP-MS, and the amount of the metal and heavy metal contained in the solid phase (first solid) and the liquid phase (first liquid) And the amount contained in.
 次に、第1の固体100質量部に対し、10質量部の割合で、カーボンブラック(還元剤)を添加した(還元剤添加工程)。 Next, carbon black (reducing agent) was added at a ratio of 10 parts by mass to 100 parts by mass of the first solid (reducing agent adding step).
 次に、第1の固体のリン含有率を第1の固体の単位質量あたりモル(mol)に換算して、含有リンのモルに対して同量(1:1)の割合で、反応性イオン性物質としての水酸化ナトリウムを添加した(反応性イオン性物質添加工程)。 Next, the phosphorus content of the first solid is converted into mol (mol) per unit mass of the first solid, and the reactive ion is added at the same ratio (1:1) to the mol of phosphorus contained. Sodium hydroxide as a volatile substance was added (reactive ionic substance addition step).
 その後、焼成処理を施した(焼成工程)。焼成処理は、まず、窒素雰囲気で、室温から200℃までは昇温速度:10℃/分で昇温し、200℃で2時間保持し、次いで、500℃(最高焼成温度)まで昇温速度:20℃/分で昇温し、500℃(最高焼成温度)で2時間保持し、次いで、200℃まで、降温速度:5℃/分で降温し、200℃で2時間保持し、その後、室温まで、降温速度:10℃/分で降温することにより行った。
 これにより、自然水用肥料を得た。
Then, a firing process was performed (firing process). The firing treatment is performed by first heating in a nitrogen atmosphere from room temperature to 200° C. at a heating rate of 10° C./min, holding at 200° C. for 2 hours, and then raising the temperature to 500° C. (maximum firing temperature). : The temperature was raised at 20° C./min, and the temperature was kept at 500° C. (maximum firing temperature) for 2 hours, then to 200° C., the temperature was lowered at a rate of 5° C./min, and the temperature was kept at 200° C. for 2 hours, then The temperature was decreased to room temperature at a temperature decrease rate of 10° C./min.
Thereby, fertilizer for natural water was obtained.
(実施例25)
 焼成工程の最高焼成温度を500℃から900℃に変更した以外は、前記実施例24と同様にして、自然水用肥料を製造した。
(Example 25)
A fertilizer for natural water was produced in the same manner as in Example 24 except that the maximum firing temperature in the firing step was changed from 500°C to 900°C.
(実施例26)
 まず、汚泥灰を用意し、これに110℃で2時間の乾燥処理を施し、含水率を0%にした。この汚泥灰は、リンとケイ素と鉄とアルミニウムとマグネシウムと重金属とを含んでいた。
(Example 26)
First, sludge ash was prepared and dried at 110° C. for 2 hours to make the water content 0%. This sludge ash contained phosphorus, silicon, iron, aluminum, magnesium, and heavy metals.
 次に、300mLの三角フラスコに1Mの塩酸200mLを入れ、80℃で加熱した後、汚泥灰10gをこの三角フラスコ内に添加し、マグネットスターラーを用いて40分間撹拌した。これにより、汚泥中の酸化リンをリン酸イオンとして溶出させた(第1の溶解工程)。 Next, 200 mL of 1 M hydrochloric acid was placed in a 300 mL Erlenmeyer flask, heated at 80° C., 10 g of sludge ash was added to this Erlenmeyer flask, and the mixture was stirred for 40 minutes using a magnetic stirrer. As a result, phosphorus oxide in the sludge was eluted as phosphate ions (first dissolution step).
 60分間撹拌を行った後、ろ紙を濾過器にセットし、固相である第1の固体と、液相である第1の液体とを、固液分離した(第1の固液分離工程)。 After stirring for 60 minutes, the filter paper was set in the filter to perform solid-liquid separation between the first solid that is a solid phase and the first liquid that is a liquid phase (first solid-liquid separation step). ..
 500mLメスフラスコを用いて、固液分離した濾液(液相)である第1の液体をメスアップし、サンプル液をした。 Using a 500 mL volumetric flask, the first liquid, which was the solid-liquid separated filtrate (liquid phase), was filled up to make a sample liquid.
 サンプル液を希釈し、モリブデン青吸光度法にてリン濃度を測定し、測定結果から、リンの溶出率を算出した。溶出液の分析には、UV分光分析器を用いた。 The sample solution was diluted, the phosphorus concentration was measured by the molybdenum blue absorbance method, and the phosphorus dissolution rate was calculated from the measurement results. A UV spectrophotometer was used to analyze the eluate.
 また、ICP-AES、ICP-MSを用いてサンプル液中の金属・重金属の濃度を求め、金属・重金属について、固相(第1の固体)に含まれる量と液相(第1の液体)に含まれる量とを算出した。 Further, the concentrations of the metal and heavy metal in the sample liquid are obtained using ICP-AES and ICP-MS, and the amount of the metal and heavy metal contained in the solid phase (first solid) and the liquid phase (first liquid) And the amount contained in.
 次に、第1の固体100質量部に対し、10質量部の割合で、カーボンブラック(還元剤)を添加した(還元剤添加工程)。 Next, carbon black (reducing agent) was added at a ratio of 10 parts by mass to 100 parts by mass of the first solid (reducing agent adding step).
 次に、第1の固体のリン含有率を第1の固体の単位質量あたりモル(mol)に換算して、含有リンのモルに対して同量(1:1)の割合で、反応性イオン性物質としての水酸化ナトリウムを添加した(反応性イオン性物質添加工程)。 Next, the phosphorus content of the first solid is converted into mol (mol) per unit mass of the first solid, and the reactive ion is added at the same ratio (1:1) to the mol of phosphorus contained. Sodium hydroxide as a volatile substance was added (reactive ionic substance addition step).
 その後、焼成処理を施した(焼成工程)。焼成処理は、まず、窒素雰囲気で、室温から200℃までは昇温速度:10℃/分で昇温し、200℃で2時間保持し、次いで、900℃(最高焼成温度)まで昇温速度:20℃/分で昇温し、900℃(最高焼成温度)で2時間保持し、次いで、200℃まで、降温速度:5℃/分で降温し、200℃で2時間保持し、その後、室温まで、降温速度:10℃/分で降温することにより行った。
 これにより、自然水用肥料を得た。
Then, a firing process was performed (firing process). The firing treatment is performed by first heating in a nitrogen atmosphere from room temperature to 200° C. at a heating rate of 10° C./min, holding at 200° C. for 2 hours, and then raising the temperature to 900° C. (maximum firing temperature). : The temperature was raised at 20° C./min, and the temperature was kept at 900° C. (maximum firing temperature) for 2 hours, then to 200° C., the temperature was lowered at a rate of 5° C./min, and the temperature was kept at 200° C. for 2 hours. The temperature was decreased to room temperature at a temperature decrease rate of 10° C./min.
Thereby, fertilizer for natural water was obtained.
(実施例27)
 反応性イオン性物質添加工程において、反応性イオン性物質として、水酸化ナトリウムを水酸化カルシウムに変更した以外は、前記実施例26と同様にして、自然水用肥料を製造した。
(Example 27)
A fertilizer for natural water was produced in the same manner as in Example 26 except that sodium hydroxide was changed to calcium hydroxide as the reactive ionic substance in the step of adding the reactive ionic substance.
(実施例28)
 反応性イオン性物質添加工程において、反応性イオン性物質として、水酸化ナトリウム(0.5)と水酸化カルシウム(0.5)を合わせて、含有リンのモルと同量(1:1)にした以外は、前記実施例26と同様にして、自然水用肥料を製造した。
(Example 28)
In the step of adding the reactive ionic substance, sodium hydroxide (0.5) and calcium hydroxide (0.5) were combined as the reactive ionic substance to the same amount (1:1) as the molar amount of phosphorus contained. A fertilizer for natural water was produced in the same manner as in Example 26 except for the above.
(実施例29)
 まず、汚泥灰を用意し、これに110℃で2時間の乾燥処理を施し、含水率を0%にした。この汚泥灰は、リンとケイ素と鉄とアルミニウムとマグネシウムと重金属とを含んでいた。
(Example 29)
First, sludge ash was prepared and dried at 110° C. for 2 hours to make the water content 0%. This sludge ash contained phosphorus, silicon, iron, aluminum, magnesium, and heavy metals.
 次に、300mLの三角フラスコに1Mの塩酸200mLを入れ、80℃で加熱した後、汚泥灰10gをこの三角フラスコ内に添加し、マグネットスターラーを用いて40分間撹拌した。これにより、汚泥中の酸化リンをリン酸イオンとして溶出させた(第1の溶解工程)。 Next, 200 mL of 1 M hydrochloric acid was placed in a 300 mL Erlenmeyer flask, heated at 80° C., 10 g of sludge ash was added to this Erlenmeyer flask, and the mixture was stirred for 40 minutes using a magnetic stirrer. As a result, phosphorus oxide in the sludge was eluted as phosphate ions (first dissolution step).
 60分間撹拌を行った後、ろ紙を濾過器にセットし、固相である第1の固体と、液相である第1の液体とを、固液分離した(第1の固液分離工程)。 After stirring for 60 minutes, the filter paper was set in the filter to perform solid-liquid separation between the first solid that is a solid phase and the first liquid that is a liquid phase (first solid-liquid separation step). ..
 500mLメスフラスコを用いて、固液分離した濾液(液相)である第1の液体をメスアップし、サンプル液をした。 Using a 500 mL volumetric flask, the first liquid, which was the solid-liquid separated filtrate (liquid phase), was filled up to make a sample liquid.
 サンプル液を希釈し、モリブデン青吸光度法にてリン濃度を測定し、測定結果から、リンの溶出率を算出した。溶出液の分析には、UV分光分析器を用いた。 The sample solution was diluted, the phosphorus concentration was measured by the molybdenum blue absorbance method, and the phosphorus dissolution rate was calculated from the measurement results. A UV spectrophotometer was used to analyze the eluate.
 また、ICP-AES、ICP-MSを用いてサンプル液中の金属・重金属の濃度を求め、金属・重金属について、固相(第1の固体)に含まれる量と液相(第1の液体)に含まれる量とを算出した。 Further, the concentrations of the metal and heavy metal in the sample liquid are obtained using ICP-AES and ICP-MS, and the amount of the metal and heavy metal contained in the solid phase (first solid) and the liquid phase (first liquid) And the amount contained in.
 次に、第1の固体100質量部に対し、20質量部の割合で、カーボンブラック(還元剤)を添加した(還元剤添加工程)。 Next, carbon black (reducing agent) was added at a ratio of 20 parts by mass to 100 parts by mass of the first solid (reducing agent adding step).
 次に、第1の固体のリン含有率を第1の固体の単位質量あたりモル(mol)に換算して、含有リンのモルに対して5倍の割合で、反応性イオン性物質としての水酸化ナトリウムを添加した(反応性イオン性物質添加工程)。 Next, the phosphorus content of the first solid is converted into moles (mol) per unit mass of the first solid, and water is added as the reactive ionic substance at a ratio of 5 times the mole of phosphorus contained. Sodium oxide was added (reactive ionic substance addition step).
 その後、焼成処理を施した(焼成工程)。焼成処理は、まず、窒素雰囲気で、室温から200℃までは昇温速度:10℃/分で昇温し、200℃で2時間保持し、次いで、500℃(最高焼成温度)まで昇温速度:20℃/分で昇温し、500℃(最高焼成温度)で2時間保持し、次いで、200℃まで、降温速度:5℃/分で降温し、200℃で2時間保持し、その後、室温まで、降温速度:10℃/分で降温することにより行った。
 これにより、自然水用肥料を得た。
Then, a firing process was performed (firing process). The firing treatment is performed by first heating in a nitrogen atmosphere from room temperature to 200° C. at a heating rate of 10° C./min, holding at 200° C. for 2 hours, and then raising the temperature to 500° C. (maximum firing temperature). : The temperature was raised at 20° C./min, and the temperature was kept at 500° C. (maximum firing temperature) for 2 hours, then to 200° C., the temperature was lowered at a rate of 5° C./min, and the temperature was kept at 200° C. for 2 hours, then The temperature was decreased to room temperature at a temperature decrease rate of 10° C./min.
Thereby, fertilizer for natural water was obtained.
(実施例30)
 焼成工程での最高焼成温度を700℃に変更以外は、前記実施例29と同様にして、自然水用肥料を製造した。
(Example 30)
A fertilizer for natural water was produced in the same manner as in Example 29 except that the maximum firing temperature in the firing step was changed to 700°C.
(実施例31)
 焼成工程での最高焼成温度を900℃に変更以外は、前記実施例30と同様にして、自然水用肥料を製造した。
(Example 31)
A fertilizer for natural water was produced in the same manner as in Example 30 except that the maximum firing temperature in the firing step was changed to 900°C.
(実施例32)
 まず、汚泥灰を用意し、これに110℃で2時間の乾燥処理を施し、含水率を0%にした。この汚泥灰は、リンとケイ素と鉄とアルミニウムとマグネシウムと重金属とを含んでいた。
(Example 32)
First, sludge ash was prepared and dried at 110° C. for 2 hours to make the water content 0%. This sludge ash contained phosphorus, silicon, iron, aluminum, magnesium, and heavy metals.
 次に、300mLの三角フラスコに1Mの塩酸200mLを入れ、80℃で加熱した後、汚泥灰10gをこの三角フラスコ内に添加し、マグネットスターラーを用いて40分間撹拌した。これにより、汚泥中の酸化リンをリン酸イオンとして溶出させた(第1の溶解工程)。 Next, 200 mL of 1 M hydrochloric acid was placed in a 300 mL Erlenmeyer flask, heated at 80° C., 10 g of sludge ash was added to this Erlenmeyer flask, and the mixture was stirred for 40 minutes using a magnetic stirrer. As a result, phosphorus oxide in the sludge was eluted as phosphate ions (first dissolution step).
 60分間撹拌を行った後、ろ紙を濾過器にセットし、固相である第1の固体と、液相である第1の液体とを、固液分離した(第1の固液分離工程)。 After stirring for 60 minutes, the filter paper was set in the filter to perform solid-liquid separation between the first solid that is a solid phase and the first liquid that is a liquid phase (first solid-liquid separation step). ..
 500mLメスフラスコを用いて、固液分離した濾液(液相)である第1の液体をメスアップし、サンプル液をした。 Using a 500 mL volumetric flask, the first liquid, which was the solid-liquid separated filtrate (liquid phase), was filled up to make a sample liquid.
 サンプル液を希釈し、モリブデン青吸光度法にてリン濃度を測定し、測定結果から、リンの溶出率を算出した。溶出液の分析には、UV分光分析器を用いた。 The sample solution was diluted, the phosphorus concentration was measured by the molybdenum blue absorbance method, and the phosphorus dissolution rate was calculated from the measurement results. A UV spectrophotometer was used to analyze the eluate.
 また、ICP-AES、ICP-MSを用いてサンプル液中の金属・重金属の濃度を求め、金属・重金属について、固相(第1の固体)に含まれる量と液相(第1の液体)に含まれる量とを算出した。 Further, the concentrations of the metal and heavy metal in the sample liquid are obtained using ICP-AES and ICP-MS, and the amount of the metal and heavy metal contained in the solid phase (first solid) and the liquid phase (first liquid) And the amount contained in.
 次に、第1の固体100質量部に対し、20質量部の割合で、カーボンブラック(還元剤)を添加した(還元剤添加工程)。 Next, carbon black (reducing agent) was added at a ratio of 20 parts by mass to 100 parts by mass of the first solid (reducing agent adding step).
 次に、第1の固体のリン含有率を第1の固体の単位質量あたりモル(mol)に換算して、含有リンのモルに対して0.1倍の割合で、反応性イオン性物質としての水酸化ナトリウムを添加した(反応性イオン性物質添加工程)。 Next, the phosphorus content of the first solid is converted into mol (mol) per unit mass of the first solid, and as a reactive ionic substance at a ratio of 0.1 times the mol of phosphorus contained. Was added (reactive ionic substance addition step).
 その後、焼成処理を施した(焼成工程)。焼成処理は、まず、室温から200℃までは昇温速度:10℃/分で昇温し、200℃で2時間保持し、次いで、900℃(最高焼成温度)まで昇温速度:20℃/分で昇温し、900℃(最高焼成温度)で2時間保持し、次いで、200℃まで、降温速度:5℃/分で降温し、200℃で2時間保持し、その後、室温まで、降温速度:10℃/分で降温することにより行った。
 これにより、自然水用肥料を得た。
Then, a firing process was performed (firing process). In the firing treatment, first, the temperature was raised from room temperature to 200° C. at a temperature raising rate of 10° C./min, held at 200° C. for 2 hours, and then raised to 900° C. (maximum firing temperature) at a temperature raising rate of 20° C./ The temperature is raised in minutes and kept at 900° C. (maximum firing temperature) for 2 hours, then to 200° C. at a rate of temperature decrease of 5° C./min and kept at 200° C. for 2 hours, and then to room temperature. Speed: The temperature was lowered at 10°C/min.
Thereby, fertilizer for natural water was obtained.
(実施例33)
 第1の固体のリン含有率を第1の固体の単位質量あたりモル(mol)に換算して、含有リンのモルに対して5倍の割合で、水酸化ナトリウムを添加した以外は、前記実施例32と同様にして、自然水用肥料を製造した。
(Example 33)
Converting the phosphorus content of the first solid to a mole (mol) per unit mass of the first solid, the sodium hydroxide was added at a ratio of 5 times the mole of phosphorus contained, except that the sodium hydroxide was added. A fertilizer for natural water was produced in the same manner as in Example 32.
(実施例34)
 まず、汚泥灰を用意し、これに110℃で2時間の乾燥処理を施し、含水率を0%にした。この汚泥灰は、リンとケイ素と鉄とアルミニウムとマグネシウムと重金属とを含んでいた。
(Example 34)
First, sludge ash was prepared and dried at 110° C. for 2 hours to make the water content 0%. This sludge ash contained phosphorus, silicon, iron, aluminum, magnesium, and heavy metals.
 次に、300mLの三角フラスコに1Mの塩酸200mLを入れ、80℃で加熱した後、汚泥灰10gをこの三角フラスコ内に添加し、マグネットスターラーを用いて40分間撹拌した。これにより、汚泥中の酸化リンをリン酸イオンとして溶出させた(第1の溶解工程)。 Next, 200 mL of 1 M hydrochloric acid was placed in a 300 mL Erlenmeyer flask, heated at 80° C., 10 g of sludge ash was added to this Erlenmeyer flask, and the mixture was stirred for 40 minutes using a magnetic stirrer. As a result, phosphorus oxide in the sludge was eluted as phosphate ions (first dissolution step).
 60分間撹拌を行った後、ろ紙を濾過器にセットし、固相である第1の固体と、液相である第1の液体とを、固液分離した(第1の固液分離工程)。 After stirring for 60 minutes, the filter paper was set in the filter to perform solid-liquid separation between the first solid that is a solid phase and the first liquid that is a liquid phase (first solid-liquid separation step). ..
 500mLメスフラスコを用いて、固液分離した濾液(液相)である第1の液体をメスアップし、サンプル液をした。 Using a 500 mL volumetric flask, the first liquid, which was the solid-liquid separated filtrate (liquid phase), was filled up to make a sample liquid.
 サンプル液を希釈し、モリブデン青吸光度法にてリン濃度を測定し、測定結果から、リンの溶出率を算出した。溶出液の分析には、UV分光分析器を用いた。 The sample solution was diluted, the phosphorus concentration was measured by the molybdenum blue absorbance method, and the phosphorus dissolution rate was calculated from the measurement results. A UV spectrophotometer was used to analyze the eluate.
 また、ICP-AES、ICP-MSを用いてサンプル液中の金属・重金属の濃度を求め、金属・重金属について、固相(第1の固体)に含まれる量と液相(第1の液体)に含まれる量とを算出した。 Further, the concentrations of the metal and heavy metal in the sample liquid are obtained using ICP-AES and ICP-MS, and the amount of the metal and heavy metal contained in the solid phase (first solid) and the liquid phase (first liquid) And the amount contained in.
 次に、第1の固体100質量部に対し、10質量部の割合で、カーボンブラック(還元剤)を添加した(還元剤添加工程)。 Next, carbon black (reducing agent) was added at a ratio of 10 parts by mass to 100 parts by mass of the first solid (reducing agent adding step).
 次に、第1の固体のリン含有率を第1の固体の単位質量あたりモル(mol)に換算して、含有リンのモルに対して0.1倍の割合で、反応性イオン性物質としての水酸化カルシウムを添加した(反応性イオン性物質添加工程)。 Next, the phosphorus content of the first solid is converted into mol (mol) per unit mass of the first solid, and as a reactive ionic substance at a ratio of 0.1 times the mol of phosphorus contained. Calcium hydroxide was added (reactive ionic substance addition step).
 その後、焼成処理を施した(焼成工程)。焼成処理は、まず、窒素雰囲気で室温から200℃までは昇温速度:10℃/分で昇温し、200℃で2時間保持し、次いで、900℃(最高焼成温度)まで昇温速度:20℃/分で昇温し、900℃(最高焼成温度)で2時間保持し、次いで、200℃まで、降温速度:5℃/分で降温し、200℃で2時間保持し、その後、室温まで、降温速度:10℃/分で降温することにより行った。
 これにより、自然水用肥料を得た。
Then, a firing process was performed (firing process). In the firing treatment, first, the temperature was raised from room temperature to 200° C. at a heating rate of 10° C./min in a nitrogen atmosphere, held at 200° C. for 2 hours, and then raised to 900° C. (maximum firing temperature). The temperature is raised at 20° C./min, the temperature is kept at 900° C. (maximum firing temperature) for 2 hours, then the temperature is lowered to 200° C. at a temperature decrease rate of 5° C./min, and the temperature is kept at 200° C. for 2 hours, and then at room temperature. Up to 10° C./min.
Thereby, fertilizer for natural water was obtained.
(実施例35)
 第1の固体のリン含有率を第1の固体の単位質量あたりモル(mol)に換算した含有リンのモルに対して添加する水酸化カルシウム(反応性イオン性物質)の割合を10倍に変更した以外は、前記実施例34と同様にして、自然水用肥料を製造した。
(Example 35)
Changed the ratio of calcium hydroxide (reactive ionic substance) to be added to 10 times the moles of phosphorus contained in the first solid, which was calculated by converting the phosphorus content of the first solid into moles per unit mass. A fertilizer for natural water was produced in the same manner as in Example 34 except for the above.
(比較例1)
 汚泥灰をそのまま自然水用肥料とした。
(Comparative Example 1)
Sludge ash was directly used as a fertilizer for natural water.
(比較例2)
 還元工程と反応性イオン性物質添加工程を省略した以外は、前記実施例21と同様にして、自然水用肥料を製造した。
(Comparative example 2)
A fertilizer for natural water was produced in the same manner as in Example 21 except that the reducing step and the step of adding a reactive ionic substance were omitted.
(比較例3)
 反応性イオン性物質としての炭酸ナトリウムを用いなかった以外は、前記実施例26と同様にして、自然水用肥料を製造した。
(Comparative example 3)
A fertilizer for natural water was produced in the same manner as in Example 26 except that sodium carbonate was not used as the reactive ionic substance.
 前記実施例1~10および前記比較例1について、反応性イオン性物質添加工程で添加した炭酸ナトリウム(反応性イオン性物質)の第1の固体100質量部に対する割合、第1の溶解工程、第1の析出工程での処理条件を表1にまとめて示す。なお、前記実施例1~10では、第1の固液分離工程で分離された第1の固体中におけるリンの含有率は、いずれも、1.0質量%以上10.0質量%以下であり、第1の固液分離工程で分離された第1の固体中における重金属の含有率は、いずれも、初期含有率の3%以下であった。また、前記実施例6~10では、第2の固液分離工程で分離された液相中におけるリンの含有率は、いずれも、1質量%以下であり、第2の固液分離工程で分離された液相中における重金属の含有率は、いずれも、0.1質量%以下であり、第3の固液分離工程で分離された固相中におけるリンの含有率は、いずれも、95質量%以上であり、第3の固液分離工程で分離された固相中における重金属の含有率は、いずれも、初期含有率の90%以上であり、第4の固液分離工程で分離された固相(第3の固体)中における重金属の含有率は、いずれも、初期含有率の1.0%以下であり、第4の固液分離工程で分離された固相(第3の固体)中におけるリンの回収率は、いずれも、初期含有率の50%以上であった(最高は85%)。前記実施例1~10の自然水用肥料では、いずれも、リンの含有率が1.0質量%以上10質量%以下の範囲内であり、ケイ素の含有率が10質量%以上50質量%以下の範囲内であり、鉄の含有率が3.0質量%以上50.0質量%以下の範囲内であり、重金属の含有率が100ppm以下であった。また、自然水用肥料中におけるリンの含有率をX[質量%]、ケイ素の含有率をXSi[質量%]、鉄の含有率をXFe[質量%]としたとき、前記実施例1~10の自然水用肥料は、いずれも、4.0≦XSi/X≦15の関係、および、3≦XFe/X≦20.0の関係を満足していた。また、前記実施例1~10の自然水用肥料について、X線回折(XRD)にて成分の分析を行ったところ、いずれも、リン酸ナトリウムが含まれていることが確認された。また、前記実施例1~10で得られた自然水用肥料は、いずれも、粒状をしており、その平均粒径は、いずれも、3mm以上10mm以下であった。また、前記実施例1~10で得られた自然水用肥料は、いずれも、溶解性塩(リン酸系化合物のアルカリ金属塩および/または第2族元素塩)の含有率が3.0質量%以上であった。一方、比較例1の自然水用肥料中における重金属の含有率は、1000ppm以下で、溶解濃度は100ppb以下であった。 Regarding Examples 1 to 10 and Comparative Example 1, the ratio of sodium carbonate (reactive ionic substance) added in the reactive ionic substance addition step to 100 parts by mass of the first solid, the first dissolution step, Table 1 shows the processing conditions in the precipitation step of No. 1 collectively. In each of Examples 1 to 10, the phosphorus content in the first solid separated in the first solid-liquid separation step is 1.0% by mass or more and 10.0% by mass or less. The content of heavy metal in the first solid separated in the first solid-liquid separation step was 3% or less of the initial content. In each of Examples 6 to 10, the phosphorus content in the liquid phase separated in the second solid-liquid separation step is 1% by mass or less, and the phosphorus content in the second solid-liquid separation step is The content of heavy metals in the liquid phase thus prepared is 0.1% by mass or less, and the content of phosphorus in the solid phase separated in the third solid-liquid separation step is 95% by mass. %, and the content of heavy metals in the solid phase separated in the third solid-liquid separation step was 90% or more of the initial content, and was separated in the fourth solid-liquid separation step. The content of heavy metals in the solid phase (third solid) was 1.0% or less of the initial content, and the solid phase (third solid) separated in the fourth solid-liquid separation step was used. The phosphorus recovery rate in each case was 50% or more of the initial content rate (the maximum was 85%). In all of the fertilizers for natural water of Examples 1 to 10, the phosphorus content is in the range of 1.0% by mass or more and 10% by mass or less, and the silicon content is 10% by mass or more and 50% by mass or less. , The iron content was in the range of 3.0 mass% or more and 50.0 mass% or less, and the heavy metal content was 100 ppm or less. Further, X P [wt%] of the content of phosphorus in natural water for fertilizers, the content of silicon X Si [mass%], when the content of iron was X Fe [wt%], Example The fertilizers for natural water of 1 to 10 all satisfied the relationship of 4.0≦X Si /X P ≦15 and the relationship of 3≦X Fe /X P ≦20.0. In addition, when the fertilizers for natural water of Examples 1 to 10 were analyzed for components by X-ray diffraction (XRD), it was confirmed that all of them contained sodium phosphate. Further, all the fertilizers for natural water obtained in Examples 1 to 10 were granular, and the average particle size thereof was 3 mm or more and 10 mm or less. The fertilizers for natural water obtained in Examples 1 to 10 all had a soluble salt content (alkali metal salt of phosphoric acid compound and/or salt of Group 2 element) of 3.0 mass. % Or more. On the other hand, the content of heavy metals in the fertilizer for natural water of Comparative Example 1 was 1000 ppm or less, and the dissolved concentration was 100 ppb or less.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 《2》評価
 《2-1》汚泥灰からの鉄等の溶出率の確認
 まず、汚泥灰(比較例1の自然水用肥料)10gを、1Mの塩酸200mLに加えて十分に撹拌した後の鉄等の溶出率を確認した。
 その結果を、図3に示す。
<<2>> Evaluation <<2-1>> Confirmation of elution rate of iron or the like from sludge ash First, 10 g of sludge ash (fertilizer for natural water of Comparative Example 1) was added to 200 mL of 1 M hydrochloric acid and sufficiently stirred. The elution rate of iron etc. was confirmed.
The result is shown in FIG.
 図3から明らかなように、60分以内での汚泥灰からの鉄の溶出率は20%以下であり、この結果から、製造過程において酸(塩酸)で処理した前記実施例の自然水用肥料中には、高い含有率で鉄が含まれている(残存している)ことが分かる。 As is clear from FIG. 3, the elution rate of iron from sludge ash within 60 minutes was 20% or less, and from this result, the fertilizer for natural water of the above-mentioned example treated with acid (hydrochloric acid) in the production process. It can be seen that iron is contained (remains) in a high content rate.
 《2-2》リンの溶出率の評価
 前記実施例1~10および前記比較例1の自然水用肥料1gを、それぞれ、500mLの3.5質量%塩化ナトリウム水溶液に添加して、25℃で静置した。
 この際の、自然水用肥料中に含まれるリンの溶出率を30日間にわたって測定した。
<<2-2>> Evaluation of Dissolution Rate of Phosphorus 1 g of the fertilizer for natural water of each of Examples 1 to 10 and Comparative Example 1 was added to 500 mL of a 3.5 mass% sodium chloride aqueous solution, and the mixture was added at 25°C. I let it stand.
At this time, the dissolution rate of phosphorus contained in the fertilizer for natural water was measured for 30 days.
 図4は、実施例1~5および比較例1に係る自然水用肥料について、塩化ナトリウム水溶液への添加からの経過日数とリン成分の溶出率との関係を示す図である。 FIG. 4 is a diagram showing the relationship between the number of days elapsed from addition to the aqueous sodium chloride solution and the elution rate of phosphorus components in the fertilizers for natural water according to Examples 1 to 5 and Comparative Example 1.
 図4から明らかなように、汚泥灰をそのまま用いた比較例1では、30日間でのリン成分の溶出率は約0.5%であったのに対し、前記実施例1~5では、いずれも溶解度が向上していることがわかる。また、反応性イオン性物質の濃度を変えることによって、自然水用肥料のリンの溶出率を変更できることがわかる。より具体的には、実施例1~5で行った範囲では、反応性イオン性物質の比率を上げることにより、溶出率を上げることができ、5%~50%程度の範囲でリンの溶出率を調節可能であった。このことから、反応性イオン性物質の使用量により、自然水用肥料からのリン成分の溶出速度を制御することができ、例えば、自然水用肥料の使用形態、使用場所等に応じて、求められる特性に対応するように、即効性と持続性とのバランスを調整することができると言える。 As is clear from FIG. 4, in Comparative Example 1 in which the sludge ash was used as it was, the elution rate of the phosphorus component in 30 days was about 0.5%, whereas in Examples 1 to 5, It can be seen that the solubility is improved. Further, it can be seen that the elution rate of phosphorus in the fertilizer for natural water can be changed by changing the concentration of the reactive ionic substance. More specifically, in the range of Examples 1 to 5, the elution rate can be increased by increasing the ratio of the reactive ionic substance, and the elution rate of phosphorus in the range of about 5% to 50%. Was adjustable. From this, the amount of reactive ionic substances used, it is possible to control the elution rate of phosphorus components from fertilizers for natural water, for example, depending on the usage pattern of natural water fertilizers, places of use, etc. It can be said that the balance between immediate effect and sustainability can be adjusted so as to correspond to the characteristics to be achieved.
 また、前記実施例1~5では、30日経過以降もリンの溶出率が増加していくことが確認された。このことから、試算では2年間にわたってリン成分の溶出が可能であり、この場合、汚泥灰に含まれているリンの約80%を溶出させることができると推測される。 In addition, in the above-mentioned Examples 1 to 5, it was confirmed that the elution rate of phosphorus increased after 30 days. From this, it is estimated that the phosphorus component can be eluted over a period of two years by trial calculation, and in this case, about 80% of phosphorus contained in the sludge ash can be eluted.
 また、第2の析出工程で反応性イオン性物質(CaCl)を用いた前記実施例6~10についても、前記実施例1~5と同様に優れた結果が得られた。 Also, as for Examples 6 to 10 using the reactive ionic substance (CaCl 2 ) in the second precipitation step, excellent results were obtained as in Examples 1 to 5.
 また、反応性イオン性物質として、NaCO、CaClの代わりに、CaCO、NaOH、Ca(OH)およびNaClを用いた以外は、前記実施例1~10と同様にして自然水用肥料を製造したところ、いずれも優れた結果が得られた。 Further, natural water was prepared in the same manner as in Examples 1 to 10 except that CaCO 3 , NaOH, Ca(OH) 2 and NaCl were used as the reactive ionic substance instead of Na 2 CO 3 and CaCl 2. When the fertilizer was manufactured, excellent results were obtained.
 また、加熱処理の加熱温度を、150℃以上1500℃以下の範囲内で変更するとともに、加熱処理の処理時間(150℃以上の温度での加熱時間)を、1時間以上100時間以下の範囲内で変更した以外は、前記実施例1~10と同様にして自然水用肥料を製造したところ、いずれも優れた結果が得られた。 In addition, the heating temperature of the heat treatment is changed within the range of 150° C. or higher and 1500° C. or lower, and the treatment time of the heat treatment (heating time at a temperature of 150° C. or higher) is within the range of 1 hour or more and 100 hours or less. When fertilizers for natural water were produced in the same manner as in Examples 1 to 10 except that the above was changed, excellent results were obtained.
 また、第1の溶解工程で用いる酸性の液体を、pHが-1.0以上1.5以下の範囲で変更した以外は、前記実施例1~10と同様の方法を行ったところ、いずれも優れた結果が得られた。 Further, the same method as in Examples 1 to 10 was carried out except that the acidic liquid used in the first dissolution step was changed in the range of −1.0 to 1.5 inclusive. Excellent results have been obtained.
 また、前記実施例6~10について、原料としての汚泥灰中に含まれていたリンの総量に対する抽出されたリンの比率(第4の固液分離工程で分離された第3の固体として回収されたリンの比率)を求めた。 Further, in Examples 6 to 10, the ratio of extracted phosphorus to the total amount of phosphorus contained in the sludge ash as a raw material (recovered as the third solid separated in the fourth solid-liquid separation step) The ratio of phosphorus was calculated.
 また、上記のようにしてリンの抽出量を求めた対象物(第4の固液分離工程で分離された第3の固体)に含まれる全固形分に対する重金属の含有率を求めた。 Also, the content ratio of heavy metals with respect to the total solid content contained in the object (third solid separated in the fourth solid-liquid separation step) whose phosphorus extraction amount was calculated as described above was calculated.
 なお、リンの溶出量、析出量は、モリブデン青吸光光度法によりリン酸濃度を定量し、その結果から算出した。また、溶出、析出時の金属・重金属の挙動は、ICP分光分析(ICP-AES)・ICP質量分析(ICP-MS)・元素分析機器により算出した。また、析出物の同定は、X線回折(XRD)法とICP-MS法を用いて行った。
 これらの結果を表2にまとめて示す。
The elution amount and precipitation amount of phosphorus were calculated from the results of quantifying the phosphoric acid concentration by the molybdenum blue absorptiometry. The behavior of the metal and heavy metal at the time of elution and precipitation was calculated by ICP spectroscopic analysis (ICP-AES), ICP mass spectrometry (ICP-MS), and elemental analysis equipment. In addition, the identification of the precipitate was performed using the X-ray diffraction (XRD) method and the ICP-MS method.
The results are summarized in Table 2.
 なお、実施例6、7および8についての、第1の析出工程の終了時における液相のpHと、析出物のX線回折(XRD)パターンとの対応を図5に示した。 Incidentally, FIG. 5 shows the correspondence between the pH of the liquid phase at the end of the first precipitation step and the X-ray diffraction (XRD) pattern of the precipitates of Examples 6, 7 and 8.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 また、実施例6の自然水用肥料の製造過程で得られた第3の固体について、リンおよび主要金属元素の回収率(原料としての汚泥灰中に含まれていた量に対する第3の固体中に含まれている量の比率)を図6に示す。なお、第3の固体中におけるヒ素(As)回収率は、他の重金属に比べると高いが、第3の固体中におけるヒ素の含有率は46.4mg/kgであり、肥料の基準値である1400mg/kgを大幅に下回っており、安全性に問題はないと考えられる。 Further, with respect to the third solid obtained in the process for producing the fertilizer for natural water of Example 6, the recovery rates of phosphorus and main metal elements (in the third solid relative to the amount contained in the sludge ash as a raw material) FIG. 6 shows the ratio of the amount contained in (1). Although the arsenic (As) recovery rate in the third solid is higher than that of other heavy metals, the arsenic content in the third solid is 46.4 mg/kg, which is a standard value for fertilizers. It is significantly lower than 1400 mg/kg, and it is considered that there is no problem in safety.
 また、前記実施例6~10の自然水用肥料の製造過程で得られた第3の固体について、肥料としての適性を評価する目的で、独立行政法人農林水産消費安全技術センター(FAMIC)により定められている肥料分析法を参考に、水溶性試験およびク溶性試験を行った。 In addition, for the purpose of evaluating the suitability as a fertilizer for the third solid obtained in the process of manufacturing fertilizers for natural water of Examples 6 to 10, it was determined by the Agriculture, Forestry and Fisheries Consumption Safety Technology Center (FAMIC). The water solubility test and the water solubility test were conducted with reference to the existing fertilizer analysis method.
 水溶性試験では、試料(第3の固体):0.15gに対し溶媒(水)量を12mLとし、常温で30分間撹拌した後、固液分離し、溶解したリン濃度をモリブデン青吸光光度法で測定し、リン溶出率を算出した。 In the water solubility test, the sample (third solid): 0.15 g, the amount of solvent (water) was 12 mL, the mixture was stirred at room temperature for 30 minutes, solid-liquid separated, and the dissolved phosphorus concentration was determined by molybdenum blue absorptiometry. And the phosphorus elution rate was calculated.
 ク溶性試験では、試料(第3の固体):0.10gに対しクエン酸水溶液8mLを添加し、30℃で60分間撹拌しながら溶出を行った。ここで、用いたクエン酸溶液は、100gのクエン酸一水和物を水100mLに溶かし、その溶液を5倍希釈したものである。 In the solubility test, 8 mL of an aqueous citric acid solution was added to 0.10 g of the sample (third solid), and elution was performed at 30° C. for 60 minutes while stirring. The citric acid solution used here is a solution obtained by dissolving 100 g of citric acid monohydrate in 100 mL of water and diluting the solution 5 times.
 その結果、前記実施例6~10で得られた第3の固体は、いずれも、水での溶出量が少ない一方で、クエン酸溶出量が多かった。 As a result, all of the third solids obtained in Examples 6 to 10 had a small elution amount with water, but a large elution amount with citric acid.
 代表的に、実施例6の自然水用肥料の製造過程で得られた第3の固体についての、水溶性試験、ク溶性試験の結果を図7に示す。 Typically, FIG. 7 shows the results of the water solubility test and the water solubility test for the third solid obtained in the process of producing the fertilizer for natural water of Example 6.
 また、第1の析出工程の終了時おける液相のpHが2.0以上10以下となるようにアルカリ性液体の使用量を変更した以外は、前記実施例6~10と同様の方法を行ったところ、前記と同様の結果が得られた。 Further, the same method as in Examples 6 to 10 was performed except that the amount of the alkaline liquid used was changed so that the pH of the liquid phase at the end of the first precipitation step was 2.0 or more and 10 or less. However, the same result as the above was obtained.
 また、第1の析出工程の終了時における系内のリンの物質量をX[mol]、カルシウムの物質量をXCa[mol]としたとき、XCa/Xの値が1.3以上3.0以下となるように析出剤の使用量を変更した以外は、前記実施例6~10と同様の方法を行ったところ、前記と同様の結果が得られた。 Further, the substance amount of phosphorus in the system at the end of the first precipitation step X P [mol], when the substance amount of calcium was X Ca [mol], the value of X Ca / X P 1.3 When the same method as in Examples 6 to 10 was performed, except that the amount of the precipitant used was changed to 3.0 or less, the same results as above were obtained.
 また、第2の析出工程の終了時における液相のpHが2.0以上12.0以下となるように酸性液体の使用量を変更した以外は、前記実施例6~10と同様の方法を行ったところ、前記と同様の結果が得られた。 Further, the same method as in Examples 6 to 10 was performed except that the amount of the acidic liquid used was changed so that the pH of the liquid phase at the end of the second precipitation step was 2.0 or more and 12.0 or less. When carried out, the same result as the above was obtained.
 また、第2の析出工程で用いる酸性液体を、pHが-1.0以上2以下の範囲で変更した以外は、前記実施例6~10と同様の方法を行ったところ、前記と同様の結果が得られた。 Further, the same method as in Examples 6 to 10 was carried out except that the pH of the acidic liquid used in the second precipitation step was changed within the range of -1.0 or more and 2 or less. was gotten.
 また、第2の析出工程の終了時における系内のリンの物質量をX[mol]、カルシウムの物質量をXCa[mol]としたとき、XCa/Xの値が1.3以上3.0以下となるように析出剤の使用量を変更した以外は、前記実施例6~10と同様の方法を行ったところ、前記と同様の結果が得られた。 Further, the substance amount of phosphorus in the system at the end of the second precipitation step X P [mol], when the substance amount of calcium was X Ca [mol], the value of X Ca / X P 1.3 When the same method as in Examples 6 to 10 was performed, except that the amount of the precipitant used was changed to 3.0 or less, the same results as above were obtained.
 また、第1の析出工程、第2の析出工程で、CaClの代わりに、Ca(OH)およびCaCOを用いた以外は、前記実施例6~10と同様の方法を行ったところ、前記と同様の結果が得られた。 Further, the same method as in Examples 6 to 10 was performed except that Ca(OH) 2 and CaCO 3 were used in place of CaCl 2 in the first precipitation step and the second precipitation step, Similar results were obtained.
 図9は、実施例11~16に係る自然水用肥料について、塩化ナトリウム水溶液への添加からの経過日数とリン成分の溶出率との関係を示す図である。 FIG. 9 is a diagram showing the relationship between the number of days elapsed from the addition to the aqueous sodium chloride solution and the dissolution rate of the phosphorus component in the fertilizers for natural water according to Examples 11 to 16.
 図9から明らかなように、焼成工程での焼成温度を変えることによって、自然水用肥料のリン成分の溶出率を変更できることがわかる。このことから、焼成工程での焼成温度により、自然水用肥料からのリン成分の溶出速度を制御することができ、例えば、自然水用肥料の使用形態、使用場所等に応じて、求められる特性に対応するように、即効性と持続性とのバランスを調整することができると言える。 As is clear from FIG. 9, it can be seen that the elution rate of the phosphorus component of the fertilizer for natural water can be changed by changing the firing temperature in the firing process. From this, it is possible to control the elution rate of the phosphorus component from the fertilizer for natural water by the firing temperature in the firing step, for example, the required characteristics depending on the usage form of the fertilizer for natural water, the place of use, etc. It can be said that the balance between immediate effect and sustainability can be adjusted so as to correspond to.
 図10は、実施例17、18に係る自然水用肥料について、塩化ナトリウム水溶液への添加からの経過日数とリン成分の溶出率との関係を示す図である。 FIG. 10 is a graph showing the relationship between the number of days elapsed from addition to the aqueous sodium chloride solution and the elution rate of phosphorus components in the fertilizers for natural water according to Examples 17 and 18.
 図10から明らかなように、反応性イオン性物質として炭酸ナトリウムを用いた実施例1~5の結果を示す図4と同様に、反応性イオン性物質として炭酸カルシウムを用いた場合でも、反応性イオン性物質の濃度を変えることによって、自然水用肥料のリン成分の溶出率を変更できることがわかる。このことから、反応性イオン性物質の使用量により、自然水用肥料からのリン成分の溶出速度を制御することができ、例えば、自然水用肥料の使用形態、使用場所等に応じて、求められる特性に対応するように、即効性と持続性とのバランスを調整することができると言える。 As is clear from FIG. 10, even when calcium carbonate is used as the reactive ionic substance, the reactivity is the same as in FIG. 4 showing the results of Examples 1 to 5 in which sodium carbonate is used as the reactive ionic substance. It can be seen that the elution rate of the phosphorus component of the fertilizer for natural water can be changed by changing the concentration of the ionic substance. From this, the amount of reactive ionic substances used, it is possible to control the elution rate of phosphorus components from fertilizers for natural water, for example, depending on the usage pattern of natural water fertilizers, places of use, etc. It can be said that the balance between immediate effect and sustainability can be adjusted so as to correspond to the characteristics to be achieved.
 図11は、実施例19、20に係る自然水用肥料について、塩化ナトリウム水溶液への添加からの経過日数とリン成分の溶出率との関係を示す図である。 FIG. 11 is a diagram showing the relationship between the number of days elapsed from the addition to the aqueous sodium chloride solution and the elution rate of the phosphorus component in the fertilizers for natural water according to Examples 19 and 20.
 図11から明らかなように、焼成工程での焼成時間を変えることによって、自然水用肥料のリン成分の溶出率を変更できることがわかる。このことから、焼成工程での焼成時間により、自然水用肥料からのリン成分の溶出速度を制御することができ、例えば、自然水用肥料の使用形態、使用場所等に応じて、求められる特性に対応するように、即効性と持続性とのバランスを調整することができると言える。 As is clear from Fig. 11, it is understood that the elution rate of the phosphorus component of the fertilizer for natural water can be changed by changing the firing time in the firing process. From this, by the firing time in the firing process, it is possible to control the elution rate of phosphorus components from the fertilizer for natural water, for example, the required characteristics, depending on the use form, place of use, etc. of the fertilizer for natural water. It can be said that the balance between immediate effect and sustainability can be adjusted so as to correspond to.
 図12は、実施例21および比較例2に係る自然水用肥料について、塩化ナトリウム水溶液への添加からの経過日数と鉄成分の溶出率との関係を示す図である。 FIG. 12 is a diagram showing the relationship between the number of days elapsed from the addition to the aqueous sodium chloride solution and the elution rate of the iron component in the fertilizers for natural water according to Example 21 and Comparative Example 2.
 図12から明らかなように、反応性イオン性物質添加工程とともに、還元剤を用いた還元工程を行うことにより、鉄成分の溶出率が大幅に向上している。このことから、原料としての汚泥灰中に含まれていた鉄成分が、還元工程により、可溶性の高い状態に変化していると言える。 As is apparent from FIG. 12, the elution rate of the iron component is significantly improved by performing the reducing step using the reducing agent together with the reactive ionic substance adding step. From this, it can be said that the iron component contained in the sludge ash as a raw material is changed into a highly soluble state by the reduction process.
 図13は、実施例22、23に係る自然水用肥料について、塩化ナトリウム水溶液への添加からの経過日数と鉄成分の溶出率との関係を示す図である。 FIG. 13 is a diagram showing the relationship between the number of days elapsed from the addition to the aqueous sodium chloride solution and the elution rate of the iron component in the fertilizers for natural water according to Examples 22 and 23.
 図13から明らかなように、還元工程での還元剤の使用量により、最終的に自然水用肥料からの鉄成分の溶出速度が変化している。このことから、還元剤の使用量により、自然水用肥料からの鉄成分の溶出速度を制御することができ、例えば、自然水用肥料の使用形態、使用場所等に応じて、求められる特性に対応するように、即効性と持続性とのバランスを調整することができると言える。 As is clear from Fig. 13, the elution rate of the iron component from the fertilizer for natural water finally changes depending on the amount of the reducing agent used in the reduction process. From this, the amount of reducing agent used, it is possible to control the elution rate of the iron component from the fertilizer for natural water, for example, depending on the usage pattern of the fertilizer for natural water, the place of use, etc. It can be said that the balance between immediate effect and sustainability can be adjusted accordingly.
 図14は、実施例24、25に係る自然水用肥料について、塩化ナトリウム水溶液への添加からの経過日数と鉄成分の溶出率との関係を示す図である。 FIG. 14 is a diagram showing the relationship between the number of days elapsed from the addition to the aqueous sodium chloride solution and the elution rate of the iron component in the fertilizers for natural water according to Examples 24 and 25.
 図14から明らかなように、焼成工程での焼成温度により、最終的に自然水用肥料からの鉄成分の溶出速度が変化している。このことから、焼成温度により、自然水用肥料からの鉄成分の溶出速度を制御することができ、例えば、自然水用肥料の使用形態、使用場所等に応じて、求められる特性に対応するように、即効性と持続性とのバランスを調整することができると言える。 As is clear from FIG. 14, the elution rate of the iron component from the fertilizer for natural water finally changes depending on the firing temperature in the firing process. From this, it is possible to control the elution rate of the iron component from the fertilizer for natural water by the firing temperature. For example, in order to respond to the required characteristics according to the usage form, place of use, etc. of the fertilizer for natural water. Moreover, it can be said that the balance between immediate effect and sustainability can be adjusted.
 図15は、実施例26~28および比較例3に係る自然水用肥料について、塩化ナトリウム水溶液への添加からの経過日数とケイ素成分の溶出率との関係を示す図である。 FIG. 15 is a diagram showing the relationship between the number of days elapsed from the addition to the aqueous sodium chloride solution and the elution rate of the silicon component in the fertilizers for natural water according to Examples 26 to 28 and Comparative Example 3.
 図15から明らかなように、反応性イオン性物質を用いなかった比較例3では、ケイ素の溶出率が低いのに対し、反応性イオン性物質を用いた実施例27~29では、ケイ素成分の溶出率が向上している。このことから、原料としての汚泥灰中に含まれていたケイ素成分が、反応性イオン性物質の使用により、可溶性の高い状態に変化していると言える。また、実施例27~29からは、反応性イオン性物質の種類によって、自然水用肥料のケイ素成分の溶出率を変更できることがわかる。このことから、反応性イオン性物質の使用量により、自然水用肥料からのケイ素成分の溶出速度を制御することができ、例えば、自然水用肥料の使用形態、使用場所等に応じて、求められる特性に対応するように、即効性と持続性とのバランスを調整することができると言える。 As is clear from FIG. 15, in Comparative Example 3 in which the reactive ionic substance was not used, the elution rate of silicon was low, whereas in Examples 27 to 29 in which the reactive ionic substance was used, the silicon component The dissolution rate is improved. From this, it can be said that the silicon component contained in the sludge ash as a raw material is changed to a highly soluble state by using the reactive ionic substance. Further, it is understood from Examples 27 to 29 that the elution rate of the silicon component of the fertilizer for natural water can be changed depending on the type of the reactive ionic substance. From this, the amount of reactive ionic substances used, it is possible to control the elution rate of silicon components from fertilizers for natural water, for example, depending on the usage pattern of fertilizers for natural water, place of use, etc. It can be said that the balance between immediate effect and sustainability can be adjusted so as to correspond to the characteristics to be achieved.
 図16は、実施例29~31に係る自然水用肥料について、塩化ナトリウム水溶液への添加からの経過日数とケイ素成分の溶出率との関係を示す図である。 FIG. 16 is a diagram showing the relationship between the number of days elapsed from the addition to the aqueous sodium chloride solution and the elution rate of the silicon component in the fertilizers for natural water according to Examples 29 to 31.
 図16から明らかなように、焼成工程での焼成温度により、最終的に自然水用肥料からのケイ素成分の溶出速度が変化している。このことから、焼成温度により、自然水用肥料からのケイ素成分の溶出速度を制御することができ、例えば、自然水用肥料の使用形態、使用場所等に応じて、求められる特性に対応するように、即効性と持続性とのバランスを調整することができると言える。 As is clear from FIG. 16, the elution rate of the silicon component from the fertilizer for natural water finally changes depending on the firing temperature in the firing process. From this, it is possible to control the elution rate of the silicon component from the fertilizer for natural water depending on the firing temperature. For example, according to the usage form of the fertilizer for natural water, the place of use, etc. Moreover, it can be said that the balance between immediate effect and sustainability can be adjusted.
 図17は、実施例32、33に係る自然水用肥料について、塩化ナトリウム水溶液への添加からの経過日数とケイ素成分の溶出率との関係を示す図である。 FIG. 17 is a diagram showing the relationship between the number of days elapsed from the addition to the aqueous sodium chloride solution and the elution rate of the silicon component in the fertilizers for natural water according to Examples 32 and 33.
 図17から明らかなように、反応性イオン性物質の濃度を変えることによって、自然水用肥料のケイ素成分の溶出率を変更できることがわかる。このことから、反応性イオン性物質の使用量により、自然水用肥料からのケイ素成分の溶出速度を制御することができ、例えば、自然水用肥料の使用形態、使用場所等に応じて、求められる特性に対応するように、即効性と持続性とのバランスを調整することができると言える。 As is clear from FIG. 17, it is understood that the elution rate of the silicon component of the fertilizer for natural water can be changed by changing the concentration of the reactive ionic substance. From this, the amount of reactive ionic substances used, it is possible to control the elution rate of silicon components from fertilizers for natural water, for example, depending on the usage pattern of fertilizers for natural water, place of use, etc. It can be said that the balance between immediate effect and sustainability can be adjusted so as to correspond to the characteristics to be achieved.
 図18は、実施例34、35に係る自然水用肥料について、塩化ナトリウム水溶液への添加からの経過日数とケイ素成分の溶出率との関係を示す図である。 FIG. 18 is a diagram showing the relationship between the number of days elapsed from the addition to the aqueous sodium chloride solution and the elution rate of the silicon component in the fertilizers for natural water according to Examples 34 and 35.
 図18から明らかなように、反応性イオン性物質として水酸化ナトリウムを用いた実施例32、33の結果を示す図17と同様に、反応性イオン性物質として水酸化カルシウムを用いた場合でも、反応性イオン性物質の濃度を変えることによって、自然水用肥料のケイ素成分の溶出率を変更できることがわかる。このことから、反応性イオン性物質の使用量により、自然水用肥料からのケイ素成分の溶出速度を制御することができ、例えば、自然水用肥料の使用形態、使用場所等に応じて、求められる特性に対応するように、即効性と持続性とのバランスを調整することができると言える。 As is clear from FIG. 18, even when calcium hydroxide is used as the reactive ionic substance, as in FIG. 17 showing the results of Examples 32 and 33 in which sodium hydroxide is used as the reactive ionic substance, It can be seen that the elution rate of the silicon component of the fertilizer for natural water can be changed by changing the concentration of the reactive ionic substance. From this, the amount of reactive ionic substances used, it is possible to control the elution rate of silicon components from fertilizers for natural water, for example, depending on the usage pattern of fertilizers for natural water, place of use, etc. It can be said that the balance between immediate effect and sustainability can be adjusted so as to correspond to the characteristics to be achieved.
 本発明の自然水用肥料の製造方法は、汚泥灰と酸性の液体とを混合し、前記汚泥灰中に含まれる重金属およびリンを溶解させる第1の溶解工程と、前記重金属およびリンが溶解した第1の液体を第1の固体から分離除去する第1の固液分離工程と、前記第1の固体に対して、アルカリ金属および/または第2族元素の水酸化物および/または塩である反応性イオン性物質を添加する反応性イオン性物質添加工程と、前記第1の固体および前記反応性イオン性物質を含む組成物に対し焼成処理を施す焼成工程とを有する。また、本発明の自然水用肥料は、汚泥灰を原料とし、リンとケイ素と鉄とを含み、重金属の含有率が1000ppm以下である。そのため、汚泥灰を有効利用しつつ、リン、ケイ素および鉄を含み、かつ、重金属の含有率が十分に低い自然水用肥料を提供すること、また、当該自然水用肥料の製造方法を提供することができる。特に、肥料成分の溶出速度が好適に制御された自然水用肥料を提供すること、また、当該自然水用肥料の製造方法を提供することができる。したがって、本発明の自然水用肥料の製造方法、自然水用肥料は、産業上の利用可能性を有する。 In the method for producing a fertilizer for natural water of the present invention, a sludge ash and an acidic liquid are mixed to dissolve a heavy metal and phosphorus contained in the sludge ash, and the heavy metal and phosphorus are dissolved. A first solid-liquid separation step of separating and removing the first liquid from the first solid; and a hydroxide and/or salt of an alkali metal and/or a Group 2 element with respect to the first solid. The method includes a reactive ionic substance addition step of adding a reactive ionic substance, and a firing step of subjecting the composition containing the first solid and the reactive ionic substance to a firing treatment. The fertilizer for natural water of the present invention is made of sludge ash as a raw material, contains phosphorus, silicon and iron, and has a heavy metal content of 1000 ppm or less. Therefore, while effectively utilizing sludge ash, to provide a fertilizer for natural water, which contains phosphorus, silicon and iron, and has a sufficiently low content of heavy metals, and a method for producing the fertilizer for natural water. be able to. In particular, it is possible to provide a fertilizer for natural water in which the elution rate of fertilizer components is suitably controlled, and a method for producing the fertilizer for natural water. Therefore, the method for producing a fertilizer for natural water and the fertilizer for natural water according to the present invention have industrial applicability.

Claims (16)

  1.  汚泥灰と酸性の液体とを混合し、前記汚泥灰中に含まれる重金属およびリンを溶解させる第1の溶解工程と、
     前記重金属およびリンが溶解した第1の液体を第1の固体から分離除去する第1の固液分離工程と、
     前記第1の固体に対して、アルカリ金属および/または第2族元素の水酸化物および/または塩である反応性イオン性物質を添加する反応性イオン性物質添加工程と、
     前記第1の固体および前記反応性イオン性物質を含む組成物に対し焼成処理を施す焼成工程とを有することを特徴とする自然水用肥料の製造方法。
    A first melting step of mixing sludge ash and an acidic liquid to dissolve heavy metals and phosphorus contained in the sludge ash;
    A first solid-liquid separation step of separating and removing the first liquid in which the heavy metal and phosphorus are dissolved from the first solid;
    A reactive ionic substance adding step of adding a reactive ionic substance which is a hydroxide and/or a salt of an alkali metal and/or a Group 2 element to the first solid;
    A method for producing a fertilizer for natural water, comprising: a firing step of subjecting the composition containing the first solid and the reactive ionic substance to a firing treatment.
  2.  前記反応性イオン性物質は、Naおよび/またはCaを含む水酸化物および/または塩である請求項1に記載の自然水用肥料の製造方法。 The method for producing a fertilizer for natural water according to claim 1, wherein the reactive ionic substance is a hydroxide and/or salt containing Na and/or Ca.
  3.  前記反応性イオン性物質は、NaCO、NaOH、CaCO、Ca(OH)、CaClおよびNaClよりなる群から選択される1種または2種以上である請求項2に記載の自然水用肥料の製造方法。 The natural substance according to claim 2 , wherein the reactive ionic substance is one or more selected from the group consisting of Na 2 CO 3 , NaOH, CaCO 3 , Ca(OH) 2 , CaCl 2 and NaCl. Water fertilizer manufacturing method.
  4.  前記焼成処理における焼成温度は、150℃以上1100℃以下である請求項1ないし3のいずれか1項に記載の自然水用肥料の製造方法。 The method for producing a fertilizer for natural water according to any one of claims 1 to 3, wherein a firing temperature in the firing treatment is 150°C or higher and 1100°C or lower.
  5.  前記焼成処理の処理時間は、0.5時間以上100時間以下である請求項1ないし4のいずれか1項に記載の自然水用肥料の製造方法。 The method for producing a fertilizer for natural water according to any one of claims 1 to 4, wherein a treatment time of the calcination treatment is 0.5 hour or more and 100 hours or less.
  6.  前記第1の固体に対して、還元剤を添加して、還元処理を施す還元工程を有する請求項1ないし5のいずれか1項に記載の自然水用肥料の製造方法。 The method for producing a fertilizer for natural water according to any one of claims 1 to 5, further comprising a reducing step of adding a reducing agent to the first solid to carry out a reducing treatment.
  7.  前記第1の固液分離工程よりも後に、系内に窒素系の肥料成分を添加するN成分添加工程をさらに有する請求項1ないし6のいずれか1項に記載の自然水用肥料の製造方法。 The method for producing a fertilizer for natural water according to any one of claims 1 to 6, further comprising an N component addition step of adding a nitrogen-based fertilizer component into the system after the first solid-liquid separation step. ..
  8.  前記第1の固液分離工程よりも後に、系内にリン系の肥料成分を添加するP成分添加工程をさらに有する請求項1ないし7のいずれか1項に記載の自然水用肥料の製造方法。 The method for producing a fertilizer for natural water according to any one of claims 1 to 7, further comprising a P component addition step of adding a phosphorus-based fertilizer component into the system after the first solid-liquid separation step. ..
  9.  前記リン系の肥料成分は、
     前記第1の固液分離工程で分離された前記第1の液体を析出剤と混合するとともにpHを上昇させ、前記重金属およびリンを含む第2の固体を析出させる第1の析出工程と、
     前記第2の固体を液体成分と分離する第2の固液分離工程と、
     前記第2の固体中に含まれるリンをアルカリ性の液体で溶解させる第2の溶解工程と、
     リンが溶解した第2の液体を、前記重金属を含む固体成分と分離する第3の固液分離工程とを有する方法により、分離されたものである請求項8に記載の自然水用肥料の製造方法。
    The phosphorus-based fertilizer component is
    A first precipitation step in which the first liquid separated in the first solid-liquid separation step is mixed with a precipitant and the pH is raised, and a second solid containing the heavy metal and phosphorus is precipitated.
    A second solid-liquid separation step of separating the second solid from a liquid component;
    A second dissolving step of dissolving phosphorus contained in the second solid with an alkaline liquid;
    The method for producing a fertilizer for natural water according to claim 8, which is separated by a method including a third solid-liquid separation step of separating the second liquid in which phosphorus is dissolved from the solid component containing the heavy metal. Method.
  10.  前記リン系の肥料成分は、前記第3の固液分離工程の後に、前記第2の液体を析出剤と混合するとともにpHを低下させ、リンを含む第3の固体を析出させる第2の析出工程をさらに有する方法を用いて得られたものである請求項9に記載の自然水用肥料の製造方法。 The phosphorus-based fertilizer component, after the third solid-liquid separation step, mixes the second liquid with a precipitant and lowers the pH to precipitate a third solid containing phosphorus. The method for producing a fertilizer for natural water according to claim 9, which is obtained by using a method further comprising a step.
  11.  前記第2の析出工程の終了時における液相のpHが2.0以上12.0以下である請求項10に記載の自然水用肥料の製造方法。 The method for producing a fertilizer for natural water according to claim 10, wherein the pH of the liquid phase at the end of the second precipitation step is 2.0 or more and 12.0 or less.
  12.  前記第2の析出工程で、pHが-1.0以上2.0以下の酸性液体を用いる請求項10または11に記載の自然水用肥料の製造方法。 The method for producing a fertilizer for natural water according to claim 10 or 11, wherein an acidic liquid having a pH of −1.0 or more and 2.0 or less is used in the second precipitation step.
  13.  前記第2の析出工程で、前記反応性イオン性物質を用いる請求項10ないし12のいずれか1項に記載の自然水用肥料の製造方法。 The method for producing a fertilizer for natural water according to any one of claims 10 to 12, wherein the reactive ionic substance is used in the second precipitation step.
  14.  汚泥灰を原料とし、
     リンとケイ素と鉄とを含み、
     重金属の含有率が1000ppm以下であることを特徴とする自然水用肥料。
    Made from sludge ash,
    Contains phosphorus, silicon and iron,
    A fertilizer for natural water, characterized in that the content of heavy metals is 1000 ppm or less.
  15.  リンの含有率が1.0質量%以上10質量%以下であり、
     ケイ素の含有率が10質量%以上50質量%以下であり、
     鉄の含有率が1.0質量%以上50質量%以下である請求項14に記載の自然水用肥料。
    The phosphorus content is 1.0% by mass or more and 10% by mass or less,
    The content of silicon is 10% by mass or more and 50% by mass or less,
    The fertilizer for natural water according to claim 14, wherein the iron content is 1.0% by mass or more and 50% by mass or less.
  16.  リンの含有率をX[質量%]、ケイ素の含有率をXSi[質量%]、鉄の含有率をXFe[質量%]としたとき、1.0≦XSi/X≦50.0、および、0.9≦XFe/X≦50.0の関係を満足する請求項14または15に記載の自然水用肥料。 1.0≦X Si /X P ≦50, where phosphorus content is X P [mass %], silicon content is X Si [mass %], and iron content is X Fe [mass %]. 0.0 and the fertilizer for natural water according to claim 14 or 15, which satisfies the relationship of 0.9≦X Fe /X P ≦50.0.
PCT/JP2019/048290 2018-12-11 2019-12-10 Method for manufacturing fertilizer for natural water and fertilizer for natural water WO2020122068A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020559254A JP7467798B2 (en) 2018-12-11 2019-12-10 Manufacturing method of natural water fertilizer and natural water fertilizer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-232023 2018-12-11
JP2018232023 2018-12-11

Publications (1)

Publication Number Publication Date
WO2020122068A1 true WO2020122068A1 (en) 2020-06-18

Family

ID=71077254

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/048290 WO2020122068A1 (en) 2018-12-11 2019-12-10 Method for manufacturing fertilizer for natural water and fertilizer for natural water

Country Status (2)

Country Link
JP (1) JP7467798B2 (en)
WO (1) WO2020122068A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001130903A (en) * 1999-08-23 2001-05-15 Nkk Plant Engineering Corp Method for recovering phosphate salt
JP2007246360A (en) * 2006-03-17 2007-09-27 Ngk Insulators Ltd Method of manufacturing fertilizer by using sewage sludge incineration ash as raw material
JP2010132465A (en) * 2008-12-02 2010-06-17 Hiroshima Univ Method for recovering phosphorus from incineration ash of organic material and method for producing fertilizer

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2725001B1 (en) 2011-06-27 2019-10-02 Taiheiyo Cement Corporation Phosphate fertilizer, and method for producing phosphate fertilizer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001130903A (en) * 1999-08-23 2001-05-15 Nkk Plant Engineering Corp Method for recovering phosphate salt
JP2007246360A (en) * 2006-03-17 2007-09-27 Ngk Insulators Ltd Method of manufacturing fertilizer by using sewage sludge incineration ash as raw material
JP2010132465A (en) * 2008-12-02 2010-06-17 Hiroshima Univ Method for recovering phosphorus from incineration ash of organic material and method for producing fertilizer

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ORIHARA, YUUYA ET AL.: "Development of highly efficient phosphorus recovery method from sewage sludge ash and heavy metal removal", PROGRAMS OF THE 80TH ANNUAL CONFERENCE OF SCEJ, vol. 11, March 2015 (2015-03-01), pages 1 - 5 *

Also Published As

Publication number Publication date
JP7467798B2 (en) 2024-04-16
JPWO2020122068A1 (en) 2021-11-25

Similar Documents

Publication Publication Date Title
JP6600639B2 (en) Phosphate source for agriculture and food industry
KR101093557B1 (en) Method for treating phosphorus and nitrogen comprised in sewage or wastewater using iron ore wastewater
ZA200504383B (en) Fertiliser.
WO2008096988A1 (en) Chemical reagent for the purpose of simultaneous treatment of n, p and microalgae for prevention eutrophication of water bodies
CN109020630B (en) Guanite and its extracting method
CN108569684B (en) Method for producing ammonium magnesium phosphate by using seawater or bittern
JP2002514505A (en) Method for treating water, soil, sediment and / or silt
WO2020122068A1 (en) Method for manufacturing fertilizer for natural water and fertilizer for natural water
JP6805934B2 (en) Phosphorus adsorbent in environmental water and its manufacturing method, quality control method of phosphorus adsorbent, and method of removing phosphorus in environmental water using phosphorus adsorbent
Lu et al. Phosphorus removal and recovery from wastewater by highly efficient struvite crystallization in an improved fluidized bed reactor
JP7331329B2 (en) Method for producing liquid fertilizer
JPWO2018225638A1 (en) How to separate heavy metals
JP7320310B2 (en) Manufacturing method of natural water fertilizer
JP6818286B1 (en) Method of insolubilizing fluorine and / or arsenic contained in mud and earth and sand
JP2013215184A (en) Civil engineering material for use in marine area
JP6891844B2 (en) Phosphorus supply materials for water bodies and their manufacturing methods
JP2019156686A (en) Method of producing fertilizer for use in natural water, and fertilizer for use in natural water
JP3466270B2 (en) Phosphorus removal method using shell and method of using hydroxyapatite
JP6812182B2 (en) Material for promoting algae growth
JP2009529484A (en) Soluble and solubilizing free-flowing solid fertilizer composition and its preparation
JP2004089931A (en) Dephosphorization and ammonia-removal method, manufacturing method for ammonia fertilizer and manufacturing method for molten solidified matter
JP6901807B1 (en) Treatment method of water containing selenate ion
JP7442971B2 (en) Slag molded bodies and environmental repair materials
KR101661643B1 (en) Agent for preventing germination of aquatic plants
JP6090665B2 (en) Sediment improvement and fertilizer and its usage

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19894416

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020559254

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19894416

Country of ref document: EP

Kind code of ref document: A1