WO2020122006A1 - Probe - Google Patents

Probe Download PDF

Info

Publication number
WO2020122006A1
WO2020122006A1 PCT/JP2019/048058 JP2019048058W WO2020122006A1 WO 2020122006 A1 WO2020122006 A1 WO 2020122006A1 JP 2019048058 W JP2019048058 W JP 2019048058W WO 2020122006 A1 WO2020122006 A1 WO 2020122006A1
Authority
WO
WIPO (PCT)
Prior art keywords
elastic body
plunger
connector
probe
elastic
Prior art date
Application number
PCT/JP2019/048058
Other languages
French (fr)
Japanese (ja)
Inventor
知明 小出
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2020560095A priority Critical patent/JP7095753B2/en
Priority to CN201980082659.7A priority patent/CN113167817B/en
Publication of WO2020122006A1 publication Critical patent/WO2020122006A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes

Definitions

  • the present invention relates to a probe for inspecting the characteristics of a connector.
  • Patent Document 1 a probe for inspecting the characteristics of a connector, which is an object to be inspected, has been disclosed (for example, see Patent Document 1).
  • the probe of Patent Document 1 is a probe for inspecting the characteristics of a coaxial connector, and in particular, it inspects the characteristics of a multi-pole connector provided with a plurality of terminals so as to pass a plurality of signals.
  • the probe of Patent Document 1 includes a plurality of center conductors that can simultaneously contact a plurality of terminals of a multipolar connector.
  • an object of the present invention is to provide a probe capable of more accurately inspecting the characteristics of a connector terminal.
  • the probe of the present invention is a probe for inspecting the characteristics of a connector, in which a flange having a through hole is formed, and a base end portion which is one end portion and the other end portion.
  • a housing that has a tip portion that is an end portion, is inserted into the through hole of the flange, and that the base end portion can be fitted into the through hole, and that includes a coaxial cable and extends in the axial direction;
  • a first plunger attached to the tip end side of the housing with respect to the through hole, and a first plunger attached between the first plunger and the flange and capable of urging the first plunger and the flange in directions away from each other.
  • the first elastic body and the second elastic body are arranged so as to partially overlap each other in the axial direction of the housing, and the first plunger Has a partition wall that partitions a portion where the first elastic body and the second elastic body overlap.
  • the characteristics of the connector terminals can be inspected more accurately.
  • FIG. 1 is a schematic perspective view of a probe according to Embodiment 1.
  • FIG. Schematic side view of the probe in the first embodiment
  • FIG. 2 is a schematic vertical sectional view around the tip of the probe pin according to the first embodiment.
  • FIG. 3 is a schematic vertical sectional view showing an operation of arranging the connector in the recess according to the first embodiment (a partially enlarged view of FIG. 3)
  • FIG. 6B is a schematic vertical cross-sectional view showing the operation of arranging the connector in the recess according to the first embodiment (enlarged view of portion H in FIG. 6B).
  • Schematic longitudinal sectional view showing the operation of disposing the connector in the recess in the first embodiment.
  • FIG. 7B is a schematic vertical sectional view showing the operation of arranging the connector in the concave portion according to the first embodiment (enlarged view of portion I in FIG. 7B).
  • FIG. 8B is a schematic vertical sectional view showing the operation of arranging the connector in the concave portion according to the first embodiment (enlarged view of portion J in FIG. 8B).
  • FIG. 8B is a schematic vertical sectional view showing the operation of disposing the connector in the recess in the first embodiment.
  • FIG. 9B is a schematic vertical cross-sectional view showing the operation of arranging the connector in the recess according to the first embodiment (enlarged view of portion K in FIG. 9B).
  • Schematic vertical cross-sectional view of the probe in the first embodiment Schematic side view of the probe in the second embodiment
  • Enlarged view of part F of FIG. 12A Schematic longitudinal sectional view showing the operation of disposing the connector in the recess according to the second embodiment.
  • FIG. 13A is a schematic vertical cross-sectional view showing the operation of arranging the connector in the recess according to the second embodiment (enlarged view of G part in FIG. 13A).
  • FIG. 15A is a schematic vertical cross-sectional view showing the operation of arranging the connector in the recess according to the second embodiment (enlarged view of portion I in FIG. 15A).
  • FIG. 16A is a schematic vertical cross-sectional view showing an operation of arranging the connector in the recess according to the second embodiment (enlarged view of J portion in FIG. 16A).
  • a probe for inspecting the characteristics of a connector which includes a flange having a through hole, a base end which is an end on one side, and an end on the other side.
  • a second plunger attached to the distal end of the housing and held so as to be movable relative to the first plunger; and a second plunger attached between the second plunger and the first plunger, A second elastic body capable of urging the second plunger in a direction away from the first plunger, and an opening through which a probe pin electrically connected to the coaxial cable is inserted in a bottom portion of the second plunger.
  • the second plunger has a first position where the tip of the probe pin projects from the opening, and a second position where the tip of the probe pin is located closer to the base end than the opening.
  • the first elastic body and the second elastic body are arranged so as to partially overlap each other in the axial direction of the housing, and the first plunger is provided with the first elastic body.
  • a probe having a partition wall that partitions a portion where one elastic body and the second elastic body overlap.
  • the total length of the probe can be shortened.
  • the overall length of the probe it is possible to prevent the tip of the probe from shifting in a direction intersecting the axial direction when the connector contacts the bottom portion of the second plunger.
  • the probe pin and the terminal of the connector can be brought into contact with each other with higher accuracy, and the characteristic inspection of the terminal of the connector can be performed with higher accuracy.
  • the first elastic body is arranged inside the second elastic body at a position where the first elastic body and the second elastic body overlap with each other.
  • a probe To provide a probe.
  • the first plunger has an inward protrusion that protrudes inward from the partition wall to receive the first elastic body, and the second elastic body protrudes outward from the partition wall.
  • the probe according to the second aspect is provided, further comprising: an outer protrusion that receives the inner protrusion, and the inner protrusion is provided closer to the tip portion of the housing than the outer protrusion.
  • the first elastic body is arranged outside the second elastic body at a position where the first elastic body and the second elastic body overlap with each other.
  • the first elastic body is arranged outside the second elastic body at a position where the first elastic body and the second elastic body overlap with each other.
  • the first plunger has an outer protrusion protruding outward from the partition wall to receive the first elastic body, and the second elastic body protruding inward from the partition wall.
  • the probe according to the fourth aspect further comprising an inward projection that receives the inward projection, wherein the inward projection is provided closer to the base end portion of the housing than the outward projection.
  • the length by which the first elastic body and the second elastic body overlap in the axial direction is The probe according to any one of the first to fifth aspects, which is set to be longer than the axial length of the two elastic bodies that does not overlap with the first elastic body. With such a configuration, the total length of the probe can be further shortened.
  • the length by which the first elastic body and the second elastic body overlap in the axial direction is The probe according to any one of the first to sixth aspects, which is 1 ⁇ 3 or more of the length of one elastic body and 1 ⁇ 3 or more of the length of the second elastic body. With such a configuration, the total length of the probe can be further shortened.
  • the second plunger in a state before the connector is brought into contact with the bottom portion of the second plunger, the second plunger is in the second position, and the elastic force of the first elastic body is set.
  • the first elastic body starts compression before the second elastic body.
  • the elastic coefficient of the first elastic body is set to be larger than the elastic coefficient of the second elastic body, according to any one of the first to eighth aspects.
  • the probe according to any one of the first to ninth aspects wherein the first elastic body and the second elastic body are both springs.
  • the spring load and the length can be easily adjusted, and the degree of freedom in design is high.
  • the first elastic body and the second elastic body are in a compressed state shorter than their natural lengths in a state in which the second plunger is in the second position.
  • a probe according to any one of the first to tenth aspects is provided. According to such a configuration, by setting the respective elastic bodies in the compressed state, the first elastic body and the second elastic body can be compared with the case where either the first elastic body or the second elastic body has a natural length. It is possible to hold the elastic body in a precisely positioned state.
  • FIG. 1 to 3 are diagrams showing a schematic configuration of the probe 2 according to the first embodiment. 1 is a perspective view of the probe 2, FIG. 2 is a side view of the probe 2, and FIG. 3 is a vertical cross-sectional view of the probe 2.
  • the probe 2 is an inspection tool that inspects the characteristics of the connector 3.
  • the connector 3 of the first embodiment is a multipolar connector having a plurality of terminals.
  • the probe 2 includes a plunger 4, a coaxial cable 6, a flange 8, a housing 9, a first elastic body 10, a second elastic body 12, and a measurement connector 13.
  • the plunger 4 includes a first plunger 14, a second plunger 16, and a third plunger 23 (FIG. 3).
  • the first plunger 14, the second plunger 16, and the third plunger 23 are all members mounted around the housing 9.
  • the first plunger 14 is a member that partitions the first elastic body 10 and the second elastic body 12. As shown in FIG. 3, the first plunger 14 includes a partition wall 14A, an inner protruding portion 14B, and an outer protruding portion 14C.
  • the partition wall 14A is a portion that partitions the first elastic body 10 and the second elastic body 12, and has a cylindrical shape extending parallel to the axial direction A of the housing 9.
  • the inward protruding portion 14B is a portion protruding inward in the radial direction from the partition wall 14A.
  • the inner side in the radial direction means the inner side in the lateral direction (the direction orthogonal to the axial direction A in the first embodiment) which is the direction intersecting the axial direction A.
  • the outward projecting portion 14C is a portion that projects radially outward from the partition wall 14A.
  • the outer side in the radial direction means the outer side in the lateral direction that is a direction intersecting the axial direction A.
  • the inward protruding portion 14B is provided closer to the tip end portion in the axial direction A than the outward protruding portion 14C.
  • the inner protrusion 14B is provided at the tip of the partition wall 14A
  • the outer protrusion 14C is provided at the base end of the partition wall 14A.
  • the second plunger 16 is a member held in a relatively movable state with respect to the first plunger 14 on the tip side in the axial direction A with respect to the first plunger 14.
  • the second plunger 16 is attached to the distal end portion 21 of the housing 9 via the third plunger 23.
  • the second plunger 16 includes a fitting portion 16A and a connecting portion 16B.
  • the fitting portion 16A is a member for fitting with the connector 3.
  • the fitting portion 16A has a bottom portion 32 that fits with the connector 3.
  • the connecting portion 16B is a member for connecting the fitting portion 16A to the third plunger 23.
  • the fitting portion 16A is press-fitted into the connecting portion 16B and is movable integrally with the connecting portion 16B.
  • a recess 17 for fitting the connector 3 is formed on the bottom 32 of the fitting portion 16A. The detailed configuration around the recess 17 will be described later.
  • a plurality of coaxial cables 6 are inserted inside the housing 9.
  • the coaxial cable 6 is a rod-shaped member that is electrically connected to the measurement connector 13 described above.
  • the coaxial cable 6 is also electrically connected to a probe pin 18 described later, and has a function of passing a signal between the probe pin 18 and the measurement connector 13.
  • Flange 8 is a member for attaching probe 2 to a predetermined facility (not shown).
  • the equipment includes, for example, a sorter for sorting the printed circuit board on which the connector 3 is mounted based on the result of the characteristic inspection of the connector 3.
  • a housing 9 is inserted and fitted in the flange 8.
  • the flange 8 is formed with a through hole 20 having an inclined surface that is inclined so as to be narrowed inward toward the lower side, and the base end portion 22 of the housing 9 is fitted into the through hole 20. ..
  • the housing 9 is a member that is inserted into the through hole 20 of the flange 8 and fitted therein, and holds the above-described first plunger 14 and the like.
  • the housing 9 is formed in a tubular shape that extends in the axial direction A while enclosing the coaxial cable 6, and includes a distal end portion 21, a proximal end portion 22, and a tubular portion 24.
  • the third plunger 23 is press-fitted into the tip portion 21.
  • the second plunger 16 is held by the distal end portion 21 via the third plunger 23.
  • the base end portion 22 is a portion which is inserted into and fitted into the through hole 20 of the flange 8.
  • the base end portion 22 has an outer surface which is inclined so as to be constricted inward toward the lower side in accordance with the inclined surface of the flange 8 forming the through hole 20.
  • the tubular portion 24 is a portion extending between the distal end portion 21 and the proximal end portion 22.
  • the first elastic body 10 is attached to the outer peripheral portion of the tubular portion 24.
  • the first elastic body 10 is an elastic body provided between the flange 8 and the first plunger 14.
  • the first elastic body 10 urges the flange 8 and the first plunger 14 in a direction away from each other (axial direction A).
  • the first elastic body 10 in the first embodiment is in a state of being compressed in the axial direction A in the state shown in FIG. 3, and is shorter than its natural length.
  • the first elastic body 10 in the compressed state has an elastic force F1 that tends to extend toward the natural length.
  • the elastic force F1 acts as an urging force that urges the flange 8 and the first plunger 14 in the directions away from each other.
  • the base end of the first elastic body 10 is press-fitted and fixed in a recess provided in the lower surface of the flange 8.
  • the tip portion of the first elastic body 10 is in contact with the inward protruding portion 14B of the first plunger 14.
  • the second elastic body 12 is an elastic body provided between the first plunger 14 and the second plunger 16.
  • the second elastic body 12 biases the second plunger 16 in a direction away from the first plunger 14 (axial direction A). Similar to the first elastic body 10, the second elastic body 12 is compressed in the axial direction A in the state shown in FIG. 3 and is shorter than its natural length.
  • the second elastic body 12 in the compressed state has an elastic force F2 that tends to extend toward the natural length, and the elastic force F2 urges the second plunger 16 in a direction away from the first plunger 14. It acts as a biasing force.
  • the base end portion of the second elastic body 12 is in contact with the outward protruding portion 14C of the first plunger 14.
  • the tip portion of the second elastic body 12 is in contact with the fitting portion 16A of the second plunger 16.
  • the first elastic body 10 and the second elastic body 12 are arranged so as to partially overlap with each other in the axial direction A of the housing 9. Thereby, the total length of the probe 2 can be shortened.
  • the first elastic body 10 is arranged inside the second elastic body 12.
  • Both the first elastic body 10 and the second elastic body 12 in the first embodiment are spiral springs. Both the first elastic body 10 and the second elastic body 12 have elastic coefficients k1 and k2, respectively, and are contracted by a contraction amount x1 and x2 from the natural length in the fitted state shown in FIG.
  • the elastic force F1 of the first elastic body 10 described above can be roughly estimated as a value obtained by multiplying the elastic coefficient k1 and the shrinkage amount x1.
  • the elastic force F2 of the second elastic body 12 can be roughly estimated as a value obtained by multiplying the elastic coefficient k2 and the shrinkage amount x2.
  • the elastic modulus may be referred to as “elastic modulus” and “elastic constant”.
  • a load is gradually applied to the first elastic body 10 and the second elastic body 12, and which is displaced first. It can be determined by seeing. For example, when the first elastic body 10 is displaced first, it can be determined that the elastic force F1 of the first elastic body 10 is smaller than the elastic force F2 of the second elastic body 12.
  • the elastic force F1 of the first elastic body 10 is set to be smaller than the elastic force F2 of the second elastic body 12.
  • the elastic coefficient k1, the contraction amount x1, the elastic coefficient k2 and the contraction amount x2 of the second elastic body 12 are set so that the elastic force F1 becomes smaller than the elastic force F2.
  • the probe pin 18 is a member that comes into contact with the terminal of the connector 3 and is electrically conductive.
  • the probe pin 18 is arranged inside the third plunger 23.
  • the periphery of the probe pin 18 is surrounded by the resin 27, and the probe pin 18 is positioned inside the third plunger 23.
  • the portions other than the tips of the probe pins 18 are hidden by the resin 27, but in different cross sections, the probe pins 18 extend to the position where they are connected to the substrate 26 located above.
  • the board 26 is a member that electrically connects the probe pin 18 and the coaxial cable 6.
  • the board 26 has wiring for electrically connecting the coaxial cable 6 and the probe pin 18 when the pitch is different from the pitch of the coaxial cable 6, and the coaxial cable 6 and the probe pin 18 are connected to the wiring. ..
  • the pitch and the number of coaxial cables 6 are the same as the pitch and the number of probe pins 18, the coaxial cable 6 and the probe pins 18 may be directly contacted without providing the substrate 26.
  • the other end (tip) of the probe pin 18 is arranged in the vicinity of the opening 28 provided in the bottom 32 of the second plunger 16.
  • the opening 28 is an opening formed in the recess 17.
  • the tip of the probe pin 18 is arranged inside the opening 28 and is not exposed to the outside from the opening 28.
  • the second plunger 16 described above has a first position where the tip of the probe pin 18 projects from the opening 28 and a second position where the tip of the probe pin 18 is located inside the opening 28 (on the side of the proximal end 22). Can be moved between positions. In FIG. 3, the second plunger 16 is shown in the second position.
  • the measurement connector 13 is a connector for connecting the coaxial cable 6 to an external measuring device (not shown).
  • a plurality of measurement connectors 13 are provided.
  • FIG. 4 is an enlarged vertical cross-sectional view around the tip of the probe pin 18, and corresponds to the initial state in which the base end portion 22 of the housing 9 is fitted into the through hole 20 of the flange 8 as shown in FIG. ..
  • the connector 3 is provided with a plurality of terminals 3a.
  • the position of the probe pin 18 is set so that the tip of the probe pin 18 can come into contact with the terminal 3a when the connector 3 is placed in the recess 17. This makes it possible to bring the plurality of probe pins 18 into contact with the plurality of terminals 3a of the connector 3 at the same time and simultaneously perform the characteristic inspection of the respective terminals 3a.
  • a concave portion 17 for fitting the connector 3 is formed in the bottom portion 32 of the second plunger 16. Due to the recess 17, the bottom portion 32 of the second plunger 16 has an inwardly recessed outer shape.
  • the recess 17 of the first embodiment is formed by the bottom wall 34, the first side wall 36, and the second side wall 38 of the second plunger 16.
  • the bottom wall 34 is a wall portion of the second plunger 16 that forms the bottom surface of the recess 17.
  • the first side wall 36 is a side wall that rises from the periphery of the bottom wall 34 so as to be orthogonal to the bottom wall 34.
  • the second side wall 38 is a side wall rising from the periphery of the first side wall 36.
  • the second side wall 38 in the first embodiment extends so as to radially spread outward in the direction away from the first side wall 36.
  • the second side wall 38 having such a shape functions as a guide portion that guides the connector 3 to the inside of the recess 17.
  • FIGS. 5 to 9B are vertical sectional views showing the operation of disposing the connector 3 in the recess 17.
  • 5, 6A, 7A, 8A, and 9A are enlarged views of FIGS. 3, 5B, 6B, 7B, 8B, and 9B, respectively.
  • the connector 3 is brought close to the recess 17 (arrow B). From this, as shown in FIG. 6A, the connector 3 starts contact with the second side wall 38 of the second plunger 16 (right side in the figure).
  • the second side wall 38 has a tapered shape that is inclined so as to be narrowed inward. As a result, the connector 3 in contact with the second side wall 38 is guided toward the inside of the recess 17 (arrow C).
  • an upward external force Fp acts on the second plunger 16.
  • the external force Fp acts as a force that further compresses the second elastic body 12 that is in contact with the fitting portion 16A of the second plunger 16, and further the first elastic body 10 that is in contact with the first plunger 14. It acts simultaneously as a compressing force.
  • the first elastic body 10 and the second elastic body 12 both have elastic forces F1 and F2 in a compressed state.
  • the elastic force F1 of the first elastic body 10 is set to be smaller than the elastic force F2 of the second elastic body 12. Therefore, the first elastic body 10 starts to compress before the second elastic body 12.
  • FIG. 6B The state in which the first elastic body 10 is compressed is shown in FIG. 6B.
  • members such as the housing 9, the first plunger 14, the second plunger 16 and the third plunger 23 are integrally lifted with respect to the flange 8 as shown in FIG. 6B. (Arrow D).
  • the housing 9 and the members around the housing 9 can change their postures according to the position of the connector 3. Specifically, the housing 9 and the members around the housing 9 can rotate in the circumferential direction R around the axial direction A.
  • the second plunger 16 does not move relative to the first plunger 14 and the third plunger 23, and maintains the state of being supported by the third plunger 23.
  • the second plunger 16 is in the second position with respect to the first plunger 14. That is, the probe pin 18 is arranged inside the opening 28 of the recess 17 described above, and does not project to the outside of the opening 28. As a result, the tip of the probe pin 18 cannot contact the terminal 3a of the connector 3. With such a configuration, it is possible to prevent the probe pin 18 from being damaged by the contact with the connector 3 during the guiding of the connector 3 in the recess 17.
  • the connector 3 is positioned at a predetermined measurement position in the recess 17. More specifically, the connector 3 is arranged at a position surrounded by the bottom wall 34 and the first side wall 36 shown in FIG. 4, and is adjacent to the opening 28.
  • FIGS. 8A and 8B A state in which the second elastic body 12 is compressed is shown in FIGS. 8A and 8B.
  • the second plunger 16 moves and rises in the axial direction A so as to approach the first plunger 14 (arrow E).
  • the connecting portion 16B of the second plunger 16 that is in contact with the third plunger 23 moves upward so as to separate from the third plunger 23.
  • the probe pin 18 is held integrally with the substrate 26 and the third plunger 23 against the rise of the second plunger 16, and the vertical position of the probe pin 18 is maintained.
  • the second plunger 16 moves from a second position where the tip of the probe pin 18 is arranged inside the opening 28 to a first position where the tip of the probe pin 18 projects from the opening 28. Become.
  • the tip of the probe pin 18 is exposed from the opening 28 of the recess 17 and is in contact with the terminal 3 a of the connector 3 as the second plunger 16 is lifted. In this way, the probe pin 18 comes into contact with the terminal 3a of the connector 3, whereby the coaxial cable 6 is electrically connected to the plurality of terminals 3a of the connector 3 through the probe pin 18, and the characteristic inspection of each terminal 3a is performed simultaneously. be able to.
  • FIGS. 9A and 9B The state in which the second plunger 16 is further raised is shown in FIGS. 9A and 9B.
  • the bottom portion of the third plunger 23 is in contact with the connector 3.
  • the upward load of the connector 3 acts not only on the second plunger 16 but also on the third plunger 23.
  • the elastic coefficient k1 of the first elastic body 10 is set to be larger than the elastic coefficient k2 of the second elastic body 12. According to such a setting, after the compression of the second elastic body 12 is started, the second elastic body 12 having a smaller elastic coefficient k2 is smaller than the first elastic body 10 having a large elastic coefficient k1. Compressed preferentially. In this way, the compression of the second elastic body 12 can be generated preferentially to the compression of the first elastic body 10, and the probe pin 18 can be more reliably brought into contact with the terminal 3a of the connector 3.
  • the respective lengths of the first elastic body 10 and the second elastic body 12 are devised. The details will be described with reference to FIG.
  • FIG. 10 is a vertical sectional view showing an initial state before the connector 3 is placed in the recess 17.
  • the first elastic body 10 has a length D1 and the second elastic body has a length D2.
  • the length D1 is a length obtained by subtracting the shrinkage amount x1 from the natural length of the first elastic body 10
  • the length D2 is a length obtained by subtracting the shrinkage amount x2 from the natural length of the second elastic body 12.
  • the first elastic body 10 and the second elastic body 12 are arranged so as to partially overlap each other in the axial direction A, and the overlapping length thereof is D3. In this way, by providing the overlapping length D3 of the first elastic body 10 and the second elastic body 12, the total length of the probe 2 can be shortened as compared with the case where the overlapping length D3 is not provided.
  • the tip of the probe 2 is likely to be displaced in the lateral direction when the connector 3 is placed in the recess 17, which makes positioning of the connector 3 difficult.
  • the tip of the probe 2 is likely to be displaced in the lateral direction when the connector 3 is placed in the recess 17, which makes positioning of the connector 3 difficult.
  • the first elastic body 10 and the second elastic body 12 in the axial direction A and shortening the total length of the probe 2, positioning of the connector 3 is facilitated. Thereby, the accuracy of the characteristic inspection of the terminal 3a of the connector 3 can be improved.
  • the overlapping length D3 of the first elastic body 10 and the second elastic body 12 is set to be longer than the length D4 of the second elastic body 12 that does not overlap the first elastic body 10. .. With such a length setting, the total length of the probe 2 can be further shortened.
  • the overlapping length D3 When setting the overlapping length D3, it may be set to 1/3 or more of the length D1 of the first elastic body 10 and 1/3 or more of the length D2 of the second elastic body 12. Alternatively, it may be set to 1/3 or more of the natural length (>D1) of the first elastic body 10 and 1/3 or more of the natural length (>D2) of the second elastic body 12. Even with such a length setting, the total length of the probe 2 can be shortened.
  • the first elastic body 10 is arranged inside the second elastic body 12 at the position where the first elastic body 10 and the second elastic body 12 overlap in the axial direction A. There is. According to such a design, it is possible to reduce the size of the first elastic body 10 in the horizontal direction while shortening the length of the second elastic body 12 in the vertical direction. Further, since the outward projecting portion 14C of the first plunger 14 can be arranged far away from the flange 8, the first elastic body 10 is compressed and the housing 9 and the like rises relative to the flange 8. At this time, it is possible to secure a sufficient movement distance.
  • the design of lengthening the first elastic body 10 becomes easier.
  • lengthening the first elastic body 10 it is possible to secure a longer sliding amount of the entire probe 2 due to expansion and contraction of the first elastic body 10. Further, since the inward protruding portion 14C is unlikely to interfere with the first elastic body 10, the probe 2 can easily slide smoothly.
  • the probe 2 includes the flange 8, the housing 9, the first elastic body 10, the second elastic body 12, the first plunger 14, and the second plunger 16.
  • the bottom portion 32 of the second plunger 16 is formed with an opening 28 through which the probe pin 18 electrically connected to the coaxial cable 6 is inserted.
  • the second plunger 16 is axially arranged between a first position where the tip of the probe pin 18 projects from the opening 28 and a second position where the tip of the probe pin 18 is arranged inside the opening 28. You can move to A.
  • first elastic body 10 and the second elastic body 12 are arranged so as to partially overlap with each other in the axial direction A of the housing 9, and the first plunger 14 includes the first elastic body 10 and the second elastic body 12. It has a partition wall 14A for partitioning the overlapping portion.
  • the total length of the probe 2 can be shortened.
  • the probe pin 18 and the terminal 3a of the connector 3 can be brought into contact with each other with higher accuracy, and the characteristic inspection of the terminal 3a of the connector 3 can be performed with higher accuracy.
  • the first plunger 14 has an inward projection 14B that projects inward from the partition wall 14A to receive the first elastic body 10, and an outward projection 14C that projects outward from the partition wall 14A to receive the second elastic body 12.
  • the inward protruding portion 14B is provided closer to the distal end portion 21 side of the housing 9 than the outward protruding portion 14C.
  • the connector 3 is arranged in the recess 17 of the second plunger 16. Then, when the second plunger 16 is pressed, the first elastic body 10 is compressed first. As a result, the fitting between the housing 9 and the flange 8 is released, and the connector 3 can be guided inside the recess 17 while bringing the housing 9 closer to a desired posture. Further, by delaying the compression of the second elastic body 12 with respect to the compression of the first elastic body 10, the timing at which the probe pin 18 contacts the terminal 3 a of the connector 3 is delayed. This can prevent the probe pin 18 from being accidentally damaged by the contact with the connector 3 when guiding the connector 3 while suppressing the positional displacement between the terminal 3a of the connector 3 and the probe pin 18.
  • FIGS. 11 to 16B A probe 40 according to the second embodiment of the present invention will be described with reference to FIGS. 11 to 16B.
  • the second embodiment will mainly describe differences from the first embodiment. Moreover, the same or equivalent configurations are denoted by the same reference numerals, and description thereof will be omitted.
  • FIGS. 11 to 12B are side views of the probe 40 according to the second embodiment
  • FIG. 12A is a vertical sectional view of the probe 40
  • FIG. 12B is a partially enlarged view of FIG. 12A.
  • the probe 40 of the second embodiment differs from the probe 2 of the first embodiment mainly in that the first elastic body 42 is arranged outside the second elastic body 44.
  • the first plunger 46 has a partition wall 46A, an outer protruding portion 46B, and an inner protruding portion 46C.
  • the partition wall 46A is a portion extending in the axial direction A of the housing 48 so as to partition a portion where the first elastic body 42 and the second elastic body 44 overlap.
  • the outer projecting portion 46B is a portion that projects radially outward from the partition wall 46A
  • the inner projecting portion 46C is a portion that projects radially inward from the partition wall 46A.
  • the outer protrusion 46B is provided at the tip of the partition wall 14A, and the inner protrusion 46C is provided at the base end of the partition wall 14A. That is, the inward protrusion 46C is provided closer to the base end side in the axial direction A than the outward protrusion 46B.
  • the first elastic body 42 is provided between the flange 8 and the first plunger 46.
  • the first elastic body 42 is in a state of being compressed in the axial direction A in the state shown in FIG. 12A, and has an elastic force F3 that tends to extend toward the natural length.
  • the elastic force F3 can be roughly estimated as a value obtained by multiplying the elastic coefficient k3 and the shrinkage amount x3.
  • the base end of the first elastic body 42 is press-fitted and fixed in a recess provided on the lower surface of the flange 8.
  • the tip portion of the first elastic body 42 is in contact with the outer protruding portion 46B of the first plunger 46.
  • the second elastic body 44 is provided between the first plunger 46 and the second plunger 16.
  • the second elastic body 44 is compressed in the axial direction A in the state shown in FIG. 12A and has an elastic force F4 that tends to extend toward the natural length.
  • the elastic force F4 can be roughly estimated as a value obtained by multiplying the elastic coefficient k4 and the shrinkage amount x4.
  • the base end portion of the second elastic body 44 is in contact with the inward protruding portion 46C of the first plunger 46.
  • the tip portion of the second elastic body 44 is in contact with the connecting portion 16B of the second plunger 16.
  • the elastic coefficient k3, the amount of contraction x3, and the second amount of contraction of the first elastic body 42 are set so that the elastic force F3 of the first elastic body 42 becomes smaller than the elastic force F4 of the second elastic body 44.
  • the elastic coefficient k4 and the shrinkage amount x4 of the elastic body 44 are set.
  • the probe 40 of the second embodiment can operate similarly to the probe 2 of the first embodiment. Specifically, description will be made with reference to FIGS. 13A to 16B.
  • 13A to 16B are vertical sectional views showing the operation of disposing the connector 3 in the recess 17.
  • 13B, 14B, 15B, and 16B are partially enlarged views of FIGS. 13A, 14A, 15A, and 16A, respectively.
  • the connector 3 does not contact the bottom portion 32 of the second plunger 16, and neither the first elastic body 42 nor the second elastic body 44 receives the compressive load from the connector 3.
  • the second plunger 16 is in the second position in which the tip of the probe pin 18 is arranged inside the opening 28.
  • the connector 3 is brought close to the recess 17 (arrow F). From this, as shown in FIG. 13B, the connector 3 starts contact with the second side wall 38 of the second plunger 16 (right side in the figure).
  • the connector 3 in contact with the second side wall 38 is guided toward the inside of the recess 17 (arrow G).
  • the external force Fq acts as a force that further compresses the second elastic body 44 that is in contact with the fitting portion 16A of the second plunger 16, and further causes the first elastic body 42 that is in contact with the first plunger 46. It acts simultaneously as a compressing force.
  • the elastic force F3 of the first elastic body 42 is set to be smaller than the elastic force F4 of the second elastic body 44 as in the first embodiment. Therefore, the first elastic body 42 starts to compress before the second elastic body 44.
  • FIG. 13A The compressed state of the first elastic body 42 is shown in FIG. 13A.
  • members such as the housing 48, the first plunger 46, the second plunger 16 and the third plunger 23 are integrally raised with respect to the flange 8. (Arrow H).
  • the housing 48 is lifted to release the fitting between the base end portion 22 of the housing 48 and the through hole 20 of the flange 8. Thereby, the housing 48 and the members around the housing 48 can change their postures according to the position of the connector 3. Specifically, the housing 48 and the members around the housing 48 can rotate in the circumferential direction R around the axial direction A.
  • the second plunger 16 does not move relative to the first plunger 46 and the third plunger 23, and maintains the state of being supported by the third plunger 23.
  • the second plunger 16 is in the second position with respect to the first plunger 46. That is, the probe pin 18 is arranged inside the opening 28 of the recess 17 described above, and does not project to the outside of the opening 28. As a result, the tip of the probe pin 18 cannot contact the terminal 3a of the connector 3. With such a configuration, it is possible to prevent the probe pin 18 from being damaged by the contact with the connector 3 while the connector 3 is being guided in the recess 17.
  • the connector 3 is positioned at a predetermined measurement position in the recess 17.
  • FIGS. 15A and 15B A state in which the second elastic body 44 is compressed is shown in FIGS. 15A and 15B.
  • the second plunger 16 moves and rises in the axial direction A so as to approach the first plunger 46 (arrow I).
  • the connecting portion 16B of the second plunger 16 that is in contact with the third plunger 23 moves upward so as to separate from the third plunger 23.
  • the probe pin 18 is held integrally with the substrate 26 and the third plunger 23 against the rise of the second plunger 16, and the vertical position of the probe pin 18 is maintained.
  • the second plunger 16 moves from a second position where the tip of the probe pin 18 is arranged inside the opening 28 to a first position where the tip of the probe pin 18 projects from the opening 28. Become.
  • the tip of the probe pin 18 is exposed from the opening 28 of the recess 17 and is in contact with the terminal 3 a of the connector 3 as the second plunger 16 is lifted. In this way, the probe pin 18 comes into contact with the terminal 3a of the connector 3, whereby the coaxial cable 6 is electrically connected to the plurality of terminals 3a of the connector 3 through the probe pin 18, and the characteristic inspection of each terminal 3a is performed simultaneously. be able to.
  • FIGS. 16A and 16B The state where the second plunger 16 is further raised is shown in FIGS. 16A and 16B. In the state shown in FIGS. 16A and 16B, the bottom portion of the third plunger 23 is in contact with the connector 3. In this state, the upward load of the connector 3 acts not only on the second plunger 16 but also on the third plunger 23.
  • the connector 3 is disposed in the recess 17 of the second plunger 16 and When the second plunger 16 is pressed, the first elastic body 42 is compressed first. As a result, the fitting between the housing 48 and the flange 8 is released, and the connector 3 can be guided inside the recess 17 while bringing the housing 48 closer to a desired posture. Further, by delaying the compression of the second elastic body 44 with respect to the compression of the first elastic body 42, the timing at which the probe pin 18 contacts the terminal 3a of the connector 3 is delayed. This can prevent the probe pin 18 from being accidentally damaged by the contact with the connector 3 when guiding the connector 3 while suppressing the positional displacement between the terminal 3a of the connector 3 and the probe pin 18.
  • the total length of the probe 2 can be shortened. This can prevent the tip of the probe 40 from shifting in a direction intersecting the axial direction A when the connector 3 contacts the bottom portion 32 of the second plunger 16. Thereby, the probe pin 18 and the terminal 3a of the connector 3 can be brought into contact with each other with higher accuracy, and the characteristic inspection of the terminal 3a of the connector 3 can be performed with higher accuracy.
  • the first elastic body 42 is arranged outside the second elastic body 44. According to such a design, it is possible to reduce the size of the second elastic body 44 in the horizontal direction while shortening the length of the first elastic body 42 in the vertical direction. Since the lateral dimension of the first elastic body 42 is larger than the lateral dimension of the second elastic body 44, the verticality of the housing 48 can be more accurately ensured by the first elastic body 42. .. That is, as compared with the configuration in which the first elastic body 10 is arranged inside the second elastic body 12 as in the first embodiment, the area in which the first elastic body 42 contacts the flange 8 becomes larger, It is difficult for the entire probe 40 to tilt in the lateral direction.
  • the first plunger 46 projects outward from the partition wall 46A to receive the first elastic body 42, and the outward projecting portion 46B projects from the partition wall 46A to receive the second elastic body 44. It has an inward projection 46C.
  • the inner protrusion 46C is provided closer to the base end of the housing 48 than the outer protrusion 46B.
  • the present invention has been described with reference to the above-described first and second embodiments, the present invention is not limited to the above-described first and second embodiments.
  • the case where the plurality of coaxial cables 6 and the plurality of probe pins 18 are provided and the characteristic inspection of the corresponding terminals 3a of the connector 3 is performed at the same time has been described.
  • the number of coaxial cables 6 and probe pins 18 different from those in the first and second embodiments may be provided according to the number of terminals 3a for which the characteristic inspection is desired in the connector 3.
  • the connector 3 is not limited to a multipolar connector having a plurality of terminals 3a, and may be a single polar connector having only one terminal.
  • the present invention is not limited to such a case.
  • a projection may be provided instead of the recess 17, and the projection may be inserted into a gap provided in the connector 3 to fit the connector 3 in any desired form.
  • the first side wall 36 extends vertically with respect to the bottom wall 34, and the second side wall 38 narrows inward.
  • the inclined surface is completely inclined
  • the present invention is not limited to such a case.
  • the inclined surface like the second side wall 38 may not be provided. Even in such a case, it is possible to arrange the connector 3 at a predetermined measurement position in the recess 17 and perform the characteristic inspection of the terminal 3a.
  • the case where the elastic coefficient k1 of the first elastic body 10 is set to be larger than the elastic coefficient k2 of the second elastic body has been described, but the case is not limited to such a case. If the elastic force F1 of the first elastic body 10 is smaller than the elastic force F2 of the second elastic body 12, the elastic coefficient k1 of the first elastic body 10 and the elastic coefficient k2 of the second elastic body are set to arbitrary values. Good. The same applies to the second embodiment.
  • the present invention is not limited to such a case, and any elastic body other than springs may be used. ..
  • any elastic body other than springs may be used. ..
  • the spring load and length can be easily adjusted, so the degree of freedom in design is high.
  • the sliding distance can be made larger than that of the elastic rubber, the stroke related to the sliding of the entire housing 9 can be lengthened. The same applies to the second embodiment.
  • the first elastic body 10 and the second elastic body 12 are compressed to be shorter than their natural lengths before the connector 3 is placed in the recess 17 of the second plunger 16.
  • the case where the vehicle is in the open state has been described, but the case is not limited to such a case. If the elastic force F1 of the first elastic body 10 is smaller than the elastic force F2 of the second elastic body 12, each of the first elastic body 10 and the second elastic body 12 has a natural length and is not compressed. Good. The same applies to the second embodiment.
  • the present invention is applicable to any probe that inspects the characteristics of a connector.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Leads Or Probes (AREA)

Abstract

This probe for connector-characteristic inspection comprises a flange, housing, first plunger, first elastic body, second plunger, and second elastic body. In the bottom of the second plunger, an opening is formed that allows the passage therethrough of a probe pin that is electrically connected to a coaxial cable. The second plunger is capable of moving between a first position where the distal end of the probe pin is made to protrude from the opening and a second position where the distal end of the probe pin is disposed closer to the side of a proximal part than the opening. The first elastic body and second elastic body are disposed so as to partially overlap each other in the axial direction of the housing. The first plunger has a partitioning wall for partitioning the locations where the first elastic body and second elastic body overlap.

Description

プローブprobe
 本発明は、コネクタの特性検査を行うためのプローブに関する。 The present invention relates to a probe for inspecting the characteristics of a connector.
 従来より、被検査体であるコネクタの特性検査を行うためのプローブが開示されている(例えば、特許文献1参照)。 Conventionally, a probe for inspecting the characteristics of a connector, which is an object to be inspected, has been disclosed (for example, see Patent Document 1).
 特許文献1のプローブは、同軸コネクタの特性検査を行うためのプローブであり、特に、複数信号を流すように複数の端子が設けられた多極コネクタの特性検査を行うものである。特許文献1のプローブは、多極コネクタの複数の端子に対して同時に接触可能な複数の中心導体を備えている。 The probe of Patent Document 1 is a probe for inspecting the characteristics of a coaxial connector, and in particular, it inspects the characteristics of a multi-pole connector provided with a plurality of terminals so as to pass a plurality of signals. The probe of Patent Document 1 includes a plurality of center conductors that can simultaneously contact a plurality of terminals of a multipolar connector.
国際公開第2016/072193号公報International Publication No. 2016/072193
 コネクタのプローブにおいては、端子の特性検査の精度を向上させることが求められている。特許文献1のプローブのように、複数の端子に対して複数の中心導体を同時に接触させる場合には、端子と中心導体の位置ずれが生じて、特性検査の精度が低下しやすい。特許文献1に開示されるようなプローブを含めて、端子の特性検査をより精度良く行うことができる技術の開発が求められている。 -It is required for the connector probe to improve the accuracy of the terminal characteristic inspection. When a plurality of central conductors are brought into contact with a plurality of terminals at the same time as in the probe of Patent Document 1, the terminals and the central conductors are displaced from each other, and the accuracy of the characteristic inspection is likely to deteriorate. There is a demand for the development of a technique capable of more accurately inspecting the characteristics of terminals, including the probe disclosed in Patent Document 1.
 従って、本発明の目的は、コネクタの端子の特性検査をより精度良く行うことができるプローブを提供することにある。 Therefore, an object of the present invention is to provide a probe capable of more accurately inspecting the characteristics of a connector terminal.
 上記目的を達成するために、本発明のプローブは、コネクタの特性検査を行うためのプローブであって、貫通孔が形成されたフランジと、一方側の端部である基端部と他方側の端部である先端部とを有し、前記フランジの前記貫通孔に挿通され、前記基端部が前記貫通孔に嵌合可能であり、同軸ケーブルを内包して軸方向に延びるハウジングと、前記貫通孔よりも前記ハウジングの前記先端部側に取り付けられた第1プランジャと、前記第1プランジャと前記フランジの間に取り付けられ、前記第1プランジャと前記フランジを互いに離れる方向に付勢可能な第1弾性体と、前記ハウジングの前記先端部に取り付けられ、前記第1プランジャに対して相対的に移動可能な状態で保持された第2プランジャと、前記第2プランジャと前記第1プランジャの間に取り付けられ、前記第2プランジャを前記第1プランジャから離れる方向に付勢可能な第2弾性体と、を備え、前記第2プランジャの底部には、前記同軸ケーブルと電気的に接続されたプローブピンを通す開口部が形成されており、前記第2プランジャは、前記プローブピンの先端を前記開口部から突出させる第1の位置と、前記プローブピンの先端を前記開口部よりも前記基端部側に配置する第2の位置の間で移動可能であり、前記第1弾性体と前記第2弾性体は前記ハウジングの前記軸方向に互いに部分的に重なるように配置されており、前記第1プランジャは、前記第1弾性体と前記第2弾性体が重なる箇所を仕切る仕切壁を有する。 In order to achieve the above-mentioned object, the probe of the present invention is a probe for inspecting the characteristics of a connector, in which a flange having a through hole is formed, and a base end portion which is one end portion and the other end portion. A housing that has a tip portion that is an end portion, is inserted into the through hole of the flange, and that the base end portion can be fitted into the through hole, and that includes a coaxial cable and extends in the axial direction; A first plunger attached to the tip end side of the housing with respect to the through hole, and a first plunger attached between the first plunger and the flange and capable of urging the first plunger and the flange in directions away from each other. 1 elastic body, a second plunger attached to the distal end portion of the housing and held so as to be movable relative to the first plunger, and between the second plunger and the first plunger A second elastic body attached to the second plunger and capable of urging the second plunger in a direction away from the first plunger; and a probe pin electrically connected to the coaxial cable at a bottom portion of the second plunger. An opening is formed to allow the second plunger to project the tip of the probe pin from the opening, and the tip of the probe pin is closer to the base end than the opening. Is movable between second positions, the first elastic body and the second elastic body are arranged so as to partially overlap each other in the axial direction of the housing, and the first plunger Has a partition wall that partitions a portion where the first elastic body and the second elastic body overlap.
 本発明のプローブによれば、コネクタの端子の特性検査をより精度良く行うことができる。 According to the probe of the present invention, the characteristics of the connector terminals can be inspected more accurately.
実施の形態1におけるプローブの概略斜視図1 is a schematic perspective view of a probe according to Embodiment 1. FIG. 実施の形態1におけるプローブの概略側面図Schematic side view of the probe in the first embodiment 実施の形態1におけるプローブの概略縦断面図Schematic vertical cross-sectional view of the probe in the first embodiment 実施の形態1におけるプローブピンの先端部周辺の概略縦断面図FIG. 2 is a schematic vertical sectional view around the tip of the probe pin according to the first embodiment. 実施の形態1におけるコネクタを凹部に配置する動作を示す概略縦断面図(図3の一部拡大図)FIG. 3 is a schematic vertical sectional view showing an operation of arranging the connector in the recess according to the first embodiment (a partially enlarged view of FIG. 3) 実施の形態1におけるコネクタを凹部に配置する動作を示す概略縦断面図(図6BのH部の拡大図)FIG. 6B is a schematic vertical cross-sectional view showing the operation of arranging the connector in the recess according to the first embodiment (enlarged view of portion H in FIG. 6B). 実施の形態1におけるコネクタを凹部に配置する動作を示す概略縦断面図Schematic longitudinal sectional view showing the operation of disposing the connector in the recess in the first embodiment. 実施の形態1におけるコネクタを凹部に配置する動作を示す概略縦断面図Schematic longitudinal sectional view showing the operation of disposing the connector in the recess in the first embodiment. 実施の形態1におけるコネクタを凹部に配置する動作を示す概略縦断面図(図7BのI部の拡大図)FIG. 7B is a schematic vertical sectional view showing the operation of arranging the connector in the concave portion according to the first embodiment (enlarged view of portion I in FIG. 7B). 実施の形態1におけるコネクタを凹部に配置する動作を示す概略縦断面図Schematic longitudinal sectional view showing the operation of disposing the connector in the recess in the first embodiment. 実施の形態1におけるコネクタを凹部に配置する動作を示す概略縦断面図(図8BのJ部の拡大図)FIG. 8B is a schematic vertical sectional view showing the operation of arranging the connector in the concave portion according to the first embodiment (enlarged view of portion J in FIG. 8B). 実施の形態1におけるコネクタを凹部に配置する動作を示す概略縦断面図Schematic longitudinal sectional view showing the operation of disposing the connector in the recess in the first embodiment. 実施の形態1におけるコネクタを凹部に配置する動作を示す概略縦断面図(図9BのK部の拡大図)FIG. 9B is a schematic vertical cross-sectional view showing the operation of arranging the connector in the recess according to the first embodiment (enlarged view of portion K in FIG. 9B). 実施の形態1におけるプローブの概略縦断面図Schematic vertical cross-sectional view of the probe in the first embodiment 実施の形態2におけるプローブの概略側面図Schematic side view of the probe in the second embodiment 実施の形態2におけるプローブの概略縦断面図(初期状態)Schematic vertical cross-sectional view of the probe in the second embodiment (initial state) 図12AのF部の拡大図Enlarged view of part F of FIG. 12A 実施の形態2におけるコネクタを凹部に配置する動作を示す概略縦断面図Schematic longitudinal sectional view showing the operation of disposing the connector in the recess according to the second embodiment. 実施の形態2におけるコネクタを凹部に配置する動作を示す概略縦断面図(図13AのG部の拡大図)FIG. 13A is a schematic vertical cross-sectional view showing the operation of arranging the connector in the recess according to the second embodiment (enlarged view of G part in FIG. 13A). 実施の形態2におけるコネクタを凹部に配置する動作を示す概略縦断面図Schematic longitudinal sectional view showing the operation of disposing the connector in the recess according to the second embodiment. 実施の形態2におけるコネクタを凹部に配置する動作を示す概略縦断面図(図14AのH部の拡大図)Schematic vertical cross-sectional view showing an operation of disposing the connector in the recess according to the second embodiment (enlarged view of a portion H in FIG. 14A). 実施の形態2におけるコネクタを凹部に配置する動作を示す概略縦断面図Schematic longitudinal sectional view showing the operation of disposing the connector in the recess according to the second embodiment. 実施の形態2におけるコネクタを凹部に配置する動作を示す概略縦断面図(図15AのI部の拡大図)FIG. 15A is a schematic vertical cross-sectional view showing the operation of arranging the connector in the recess according to the second embodiment (enlarged view of portion I in FIG. 15A). 実施の形態2におけるコネクタを凹部に配置する動作を示す概略縦断面図Schematic longitudinal sectional view showing the operation of disposing the connector in the recess according to the second embodiment. 実施の形態2におけるコネクタを凹部に配置する動作を示す概略縦断面図(図16AのJ部の拡大図)FIG. 16A is a schematic vertical cross-sectional view showing an operation of arranging the connector in the recess according to the second embodiment (enlarged view of J portion in FIG. 16A).
 本発明の第1態様によれば、コネクタの特性検査を行うためのプローブであって、貫通孔が形成されたフランジと、一方側の端部である基端部と他方側の端部である先端部とを有し、前記フランジの前記貫通孔に挿通され、前記基端部が前記貫通孔に嵌合可能であり、同軸ケーブルを内包して軸方向に延びるハウジングと、前記貫通孔よりも前記ハウジングの前記先端部側に取り付けられた第1プランジャと、前記第1プランジャと前記フランジの間に取り付けられ、前記第1プランジャと前記フランジを互いに離れる方向に付勢可能な第1弾性体と、前記ハウジングの前記先端部に取り付けられ、前記第1プランジャに対して相対的に移動可能な状態で保持された第2プランジャと、前記第2プランジャと前記第1プランジャの間に取り付けられ、前記第2プランジャを前記第1プランジャから離れる方向に付勢可能な第2弾性体と、を備え、前記第2プランジャの底部には、前記同軸ケーブルと電気的に接続されたプローブピンを通す開口部が形成されており、前記第2プランジャは、前記プローブピンの先端を前記開口部から突出させる第1の位置と、前記プローブピンの先端を前記開口部よりも前記基端部側に配置する第2の位置の間で移動可能であり、前記第1弾性体と前記第2弾性体は前記ハウジングの前記軸方向に互いに部分的に重なるように配置されており、前記第1プランジャは、前記第1弾性体と前記第2弾性体が重なる箇所を仕切る仕切壁を有する、プローブを提供する。 According to the first aspect of the present invention, there is provided a probe for inspecting the characteristics of a connector, which includes a flange having a through hole, a base end which is an end on one side, and an end on the other side. A housing that has a tip portion, is inserted into the through hole of the flange, and the base end portion can be fitted into the through hole, and includes a housing that includes a coaxial cable and extends in the axial direction; A first plunger attached to the tip end side of the housing; and a first elastic body attached between the first plunger and the flange and capable of urging the first plunger and the flange in directions away from each other. A second plunger attached to the distal end of the housing and held so as to be movable relative to the first plunger; and a second plunger attached between the second plunger and the first plunger, A second elastic body capable of urging the second plunger in a direction away from the first plunger, and an opening through which a probe pin electrically connected to the coaxial cable is inserted in a bottom portion of the second plunger. The second plunger has a first position where the tip of the probe pin projects from the opening, and a second position where the tip of the probe pin is located closer to the base end than the opening. Is movable between two positions, the first elastic body and the second elastic body are arranged so as to partially overlap each other in the axial direction of the housing, and the first plunger is provided with the first elastic body. There is provided a probe having a partition wall that partitions a portion where one elastic body and the second elastic body overlap.
 このような構成によれば、第1弾性体と第2弾性体をハウジングの軸方向に重なるように配置することで、プローブの全長を短くすることができる。プローブの全長を短くすることで、第2プランジャの底部にコネクタが接触した際にプローブの先端が軸方向に交差する方向へずれるのを抑制することができる。これにより、プローブピンとコネクタの端子をより精度良く接触させることができ、コネクタの端子の特性検査をより精度良く行うことができる。 According to such a configuration, by arranging the first elastic body and the second elastic body so as to overlap with each other in the axial direction of the housing, the total length of the probe can be shortened. By shortening the overall length of the probe, it is possible to prevent the tip of the probe from shifting in a direction intersecting the axial direction when the connector contacts the bottom portion of the second plunger. Thereby, the probe pin and the terminal of the connector can be brought into contact with each other with higher accuracy, and the characteristic inspection of the terminal of the connector can be performed with higher accuracy.
 本発明の第2態様によれば、前記第1弾性体と前記第2弾性体が重なる箇所において、前記第1弾性体は前記第2弾性体よりも内側に配置される、第1態様に記載のプローブを提供する。このような構成によれば、第1弾性体の横方向の寸法を小さくしながら、第2弾性体の縦方向の長さを短くする設計が可能となる。また、第1弾性体が第2弾性体よりも外側に配置される構成と比較して、第1弾性体を長くする設計が容易になる。第1弾性体を長くすることで、第1弾性体の伸縮によるプローブ全体の摺動量をより長く確保することができる。 According to a second aspect of the present invention, the first elastic body is arranged inside the second elastic body at a position where the first elastic body and the second elastic body overlap with each other. To provide a probe. According to such a configuration, it is possible to reduce the lateral dimension of the first elastic body while shortening the longitudinal length of the second elastic body. Further, as compared with the configuration in which the first elastic body is arranged outside the second elastic body, it is easy to design the first elastic body to be long. By lengthening the first elastic body, it is possible to secure a longer sliding amount of the entire probe due to expansion and contraction of the first elastic body.
 本発明の第3態様によれば、前記第1プランジャは、前記仕切壁から内側に突出して前記第1弾性体を受ける内方突出部と、前記仕切壁から外側に突出して前記第2弾性体を受ける外方突出部とを有し、前記内方突出部は、前記外方突出部よりも前記ハウジングの前記先端部側に設けられる、第2態様に記載のプローブを提供する。このような構成によれば、簡単な構成によって第1弾性体と第2弾性体を受けながら第1弾性体と第2弾性体を互いに仕切ることができる。 According to a third aspect of the present invention, the first plunger has an inward protrusion that protrudes inward from the partition wall to receive the first elastic body, and the second elastic body protrudes outward from the partition wall. The probe according to the second aspect is provided, further comprising: an outer protrusion that receives the inner protrusion, and the inner protrusion is provided closer to the tip portion of the housing than the outer protrusion. With such a configuration, the first elastic body and the second elastic body can be partitioned from each other while receiving the first elastic body and the second elastic body with a simple configuration.
 本発明の第4態様によれば、前記第1弾性体と前記第2弾性体が重なる箇所において、前記第1弾性体は前記第2弾性体よりも外側に配置される、第1態様に記載のプローブを提供する。このような構成によれば、第2弾性体の横方向の寸法を小さくしながら、第1弾性体の縦方向の長さを短くする設計が可能となる。また、第1弾性体が第2弾性体よりも内側に配置される構成と比較して、第1弾性体がフランジと接触する面積が大きくなるため、プローブ全体が軸方向に交差する方向に傾きにくくなる。 According to a fourth aspect of the present invention, the first elastic body is arranged outside the second elastic body at a position where the first elastic body and the second elastic body overlap with each other. To provide a probe. With such a configuration, it is possible to reduce the lateral dimension of the second elastic body while shortening the longitudinal length of the first elastic body. Further, as compared with the configuration in which the first elastic body is arranged inside the second elastic body, the area in which the first elastic body comes into contact with the flange becomes large, so that the entire probe tilts in the direction intersecting the axial direction. It gets harder.
 本発明の第5態様によれば、前記第1プランジャは、前記仕切壁から外側に突出して前記第1弾性体を受ける外方突出部と、前記仕切壁から内側に突出して前記第2弾性体を受ける内方突出部とを有し、前記内方突出部は、前記外方突出部よりも前記ハウジングの前記基端部側に設けられる、第4態様に記載のプローブを提供する。このような構成によれば、簡単な構成によって第1弾性体と第2弾性体を受けながら第1弾性体と第2弾性体を互いに仕切ることができる。 According to a fifth aspect of the present invention, the first plunger has an outer protrusion protruding outward from the partition wall to receive the first elastic body, and the second elastic body protruding inward from the partition wall. The probe according to the fourth aspect, further comprising an inward projection that receives the inward projection, wherein the inward projection is provided closer to the base end portion of the housing than the outward projection. With such a configuration, the first elastic body and the second elastic body can be partitioned from each other while receiving the first elastic body and the second elastic body with a simple configuration.
 本発明の第6態様によれば、前記第2プランジャの前記底部にコネクタを接触させる前の状態において、前記第1弾性体と前記第2弾性体が前記軸方向に重なる長さは、前記第2弾性体のうち前記第1弾性体と重ならない前記軸方向の長さよりも長く設定される、第1態様から第5態様のいずれか1つに記載のプローブを提供する。このような構成によれば、プローブの全長をより短くすることができる。 According to the sixth aspect of the present invention, in a state before the connector is brought into contact with the bottom portion of the second plunger, the length by which the first elastic body and the second elastic body overlap in the axial direction is The probe according to any one of the first to fifth aspects, which is set to be longer than the axial length of the two elastic bodies that does not overlap with the first elastic body. With such a configuration, the total length of the probe can be further shortened.
 本発明の第7態様によれば、前記第2プランジャの前記底部にコネクタを接触させる前の状態において、前記第1弾性体と前記第2弾性体が前記軸方向に重なる長さは、前記第1弾性体の長さの1/3以上、かつ、前記第2弾性体の長さの1/3以上である、第1態様から第6態様のいずれか1つに記載のプローブを提供する。このような構成によれば、プローブの全長をより短くすることができる。 According to the seventh aspect of the present invention, in a state before the connector is brought into contact with the bottom portion of the second plunger, the length by which the first elastic body and the second elastic body overlap in the axial direction is The probe according to any one of the first to sixth aspects, which is ⅓ or more of the length of one elastic body and ⅓ or more of the length of the second elastic body. With such a configuration, the total length of the probe can be further shortened.
 本発明の第8態様によれば、前記第2プランジャの前記底部にコネクタを接触させる前の状態において、前記第2プランジャは前記第2の位置にあり、かつ、前記第1弾性体の弾性力が前記第2弾性体の弾性力よりも小さくなるように設定されている、第1態様から第7態様のいずれか1つに記載のプローブを提供する。このような構成によれば、第1弾性体の方が第2弾性体よりも先に圧縮を開始する。第1弾性体の圧縮に対して第2弾性体の圧縮を遅らせることで、第2プランジャの開口部からプローブピンが突出するタイミングを遅らせることができる。これにより、コネクタの端子とプローブピンの位置ずれが抑制でき、コネクタの誘導時にコネクタとの接触によってプローブピンが誤って傷付くことを抑制でき、コネクタの端子の特性検査をより精度良く行うことができる。 According to the eighth aspect of the present invention, in a state before the connector is brought into contact with the bottom portion of the second plunger, the second plunger is in the second position, and the elastic force of the first elastic body is set. The probe according to any one of the first aspect to the seventh aspect, in which is set to be smaller than the elastic force of the second elastic body. According to such a configuration, the first elastic body starts compression before the second elastic body. By delaying the compression of the second elastic body with respect to the compression of the first elastic body, the timing at which the probe pin projects from the opening of the second plunger can be delayed. As a result, misalignment between the connector terminal and the probe pin can be suppressed, the probe pin can be prevented from being accidentally scratched due to contact with the connector when the connector is guided, and the characteristics of the connector terminal can be inspected more accurately. it can.
 本発明の第9態様によれば、前記第1弾性体の弾性係数は、前記第2弾性体の弾性係数よりも大きく設定されている、第1態様から第8態様のいずれか1つに記載のプローブを提供する。このような構成によれば、第2弾性体の圧縮が始まって以降、第2弾性体の圧縮を第1弾性体の圧縮に対して優先的に生じさせることができる。 According to a ninth aspect of the present invention, the elastic coefficient of the first elastic body is set to be larger than the elastic coefficient of the second elastic body, according to any one of the first to eighth aspects. To provide a probe. With such a configuration, after the compression of the second elastic body is started, the compression of the second elastic body can be generated preferentially to the compression of the first elastic body.
 本発明の第10態様によれば、前記第1弾性体および前記第2弾性体はともにスプリングである、第1態様から第9態様のいずれか1つに記載のプローブを提供する。このような構成によれば、ばね荷重および長さの調節を容易に行うことができ、設計の自由度が高い。 According to a tenth aspect of the present invention, there is provided the probe according to any one of the first to ninth aspects, wherein the first elastic body and the second elastic body are both springs. With such a configuration, the spring load and the length can be easily adjusted, and the degree of freedom in design is high.
 本発明の第11態様によれば、前記第1弾性体および前記第2弾性体は、前記第2プランジャが前記第2の位置にある状態において、それぞれの自然長よりも短く圧縮された状態にある、第1態様から第10態様のいずれか1つに記載のプローブを提供する。このような構成によれば、それぞれの弾性体を圧縮状態とすることで、第1弾性体および第2弾性体のいずれかが自然長である場合と比較して、第1弾性体および第2弾性体を精度良く位置決めした状態で保持することができる。 According to the eleventh aspect of the present invention, the first elastic body and the second elastic body are in a compressed state shorter than their natural lengths in a state in which the second plunger is in the second position. A probe according to any one of the first to tenth aspects is provided. According to such a configuration, by setting the respective elastic bodies in the compressed state, the first elastic body and the second elastic body can be compared with the case where either the first elastic body or the second elastic body has a natural length. It is possible to hold the elastic body in a precisely positioned state.
 以下に、本発明にかかる実施の形態を図面に基づいて詳細に説明する。 Embodiments according to the present invention will be described below in detail with reference to the drawings.
(実施の形態1)
 図1―図3は、実施の形態1におけるプローブ2の概略構成を示す図である。図1は、プローブ2の斜視図であり、図2は、プローブ2の側面図であり、図3は、プローブ2の縦断面図である。
(Embodiment 1)
1 to 3 are diagrams showing a schematic configuration of the probe 2 according to the first embodiment. 1 is a perspective view of the probe 2, FIG. 2 is a side view of the probe 2, and FIG. 3 is a vertical cross-sectional view of the probe 2.
 プローブ2は、コネクタ3の特性検査を行う検査器具である。実施の形態1のコネクタ3は、複数の端子を有する多極コネクタである。プローブ2は、プランジャ4と、同軸ケーブル6と、フランジ8と、ハウジング9と、第1弾性体10と、第2弾性体12と、測定コネクタ13とを備える。 The probe 2 is an inspection tool that inspects the characteristics of the connector 3. The connector 3 of the first embodiment is a multipolar connector having a plurality of terminals. The probe 2 includes a plunger 4, a coaxial cable 6, a flange 8, a housing 9, a first elastic body 10, a second elastic body 12, and a measurement connector 13.
 プランジャ4は、第1プランジャ14と、第2プランジャ16と、第3プランジャ23(図3)とを備える。第1プランジャ14、第2プランジャ16、第3プランジャ23はいずれも、ハウジング9の周囲に取り付けられた部材である。 The plunger 4 includes a first plunger 14, a second plunger 16, and a third plunger 23 (FIG. 3). The first plunger 14, the second plunger 16, and the third plunger 23 are all members mounted around the housing 9.
 第1プランジャ14は、第1弾性体10と第2弾性体12を仕切る部材である。図3に示すように、第1プランジャ14は、仕切壁14Aと、内方突出部14Bと、外方突出部14Cとを備える。 The first plunger 14 is a member that partitions the first elastic body 10 and the second elastic body 12. As shown in FIG. 3, the first plunger 14 includes a partition wall 14A, an inner protruding portion 14B, and an outer protruding portion 14C.
 仕切壁14Aは、第1弾性体10と第2弾性体12を仕切る部分であり、ハウジング9の軸方向Aに平行に延びる円筒状の形状を有する。内方突出部14Bは、仕切壁14Aから径方向内側に突出した部分である。径方向内側とは、軸方向Aに交差する方向である横方向(実施の形態1では軸方向Aに直交する方向)の内側を意味する。外方突出部14Cは、仕切壁14Aから径方向外側に突出した部分である。径方向外側とは、軸方向Aに交差する方向である横方向の外側を意味する。内方突出部14Bは、外方突出部14Cよりも軸方向Aの先端部側に設けられる。実施の形態1では、内方突出部14Bは仕切壁14Aの先端部に設けられ、外方突出部14Cは仕切壁14Aの基端部に設けられる。 The partition wall 14A is a portion that partitions the first elastic body 10 and the second elastic body 12, and has a cylindrical shape extending parallel to the axial direction A of the housing 9. The inward protruding portion 14B is a portion protruding inward in the radial direction from the partition wall 14A. The inner side in the radial direction means the inner side in the lateral direction (the direction orthogonal to the axial direction A in the first embodiment) which is the direction intersecting the axial direction A. The outward projecting portion 14C is a portion that projects radially outward from the partition wall 14A. The outer side in the radial direction means the outer side in the lateral direction that is a direction intersecting the axial direction A. The inward protruding portion 14B is provided closer to the tip end portion in the axial direction A than the outward protruding portion 14C. In the first embodiment, the inner protrusion 14B is provided at the tip of the partition wall 14A, and the outer protrusion 14C is provided at the base end of the partition wall 14A.
 第2プランジャ16は、第1プランジャ14よりも軸方向Aの先端側において、第1プランジャ14に対して相対的に移動可能な状態で保持された部材である。第2プランジャ16は、第3プランジャ23を介してハウジング9の先端部21に取り付けられる。 The second plunger 16 is a member held in a relatively movable state with respect to the first plunger 14 on the tip side in the axial direction A with respect to the first plunger 14. The second plunger 16 is attached to the distal end portion 21 of the housing 9 via the third plunger 23.
 第2プランジャ16は、嵌合部16Aと、接続部16Bとを備える。嵌合部16Aは、コネクタ3と嵌合するための部材である。嵌合部16Aは、コネクタ3と嵌合する底部32を有する。接続部16Bは、嵌合部16Aを第3プランジャ23に接続するための部材である。嵌合部16Aは接続部16Bに圧入されており、接続部16Bと一体的に移動可能である。 The second plunger 16 includes a fitting portion 16A and a connecting portion 16B. The fitting portion 16A is a member for fitting with the connector 3. The fitting portion 16A has a bottom portion 32 that fits with the connector 3. The connecting portion 16B is a member for connecting the fitting portion 16A to the third plunger 23. The fitting portion 16A is press-fitted into the connecting portion 16B and is movable integrally with the connecting portion 16B.
 嵌合部16Aの底部32には、コネクタ3を嵌合させるための凹部17が形成されている。凹部17周辺の詳細な構成については後述する。 A recess 17 for fitting the connector 3 is formed on the bottom 32 of the fitting portion 16A. The detailed configuration around the recess 17 will be described later.
 ハウジング9の内側には、複数の同軸ケーブル6が挿通されている。同軸ケーブル6は、前述した測定コネクタ13に電気的に接続される棒状の部材である。同軸ケーブル6は、後述するプローブピン18とも電気的に接続されており、プローブピン18と測定コネクタ13の間で信号を通す機能を有する。 A plurality of coaxial cables 6 are inserted inside the housing 9. The coaxial cable 6 is a rod-shaped member that is electrically connected to the measurement connector 13 described above. The coaxial cable 6 is also electrically connected to a probe pin 18 described later, and has a function of passing a signal between the probe pin 18 and the measurement connector 13.
 フランジ8は、プローブ2を所定の設備(図示せず)に取り付けるための部材である。設備としては例えば、コネクタ3が実装されたプリント基板をコネクタ3の特性検査の結果に基づいて選別するための選別機などがある。図3に示すように、フランジ8にはハウジング9が挿通されて嵌合している。具体的には、フランジ8には下方に向かって内側に窄まるように傾斜した傾斜面による貫通孔20が形成されており、貫通孔20にハウジング9の基端部22が嵌合している。 Flange 8 is a member for attaching probe 2 to a predetermined facility (not shown). The equipment includes, for example, a sorter for sorting the printed circuit board on which the connector 3 is mounted based on the result of the characteristic inspection of the connector 3. As shown in FIG. 3, a housing 9 is inserted and fitted in the flange 8. Specifically, the flange 8 is formed with a through hole 20 having an inclined surface that is inclined so as to be narrowed inward toward the lower side, and the base end portion 22 of the housing 9 is fitted into the through hole 20. ..
 ハウジング9は、フランジ8の貫通孔20に挿通されて嵌合するとともに、前述した第1プランジャ14などを保持する部材である。ハウジング9は、同軸ケーブル6を内包しながら軸方向Aに延びる筒状に形成されており、先端部21と、基端部22と、筒状部24とを備える。 The housing 9 is a member that is inserted into the through hole 20 of the flange 8 and fitted therein, and holds the above-described first plunger 14 and the like. The housing 9 is formed in a tubular shape that extends in the axial direction A while enclosing the coaxial cable 6, and includes a distal end portion 21, a proximal end portion 22, and a tubular portion 24.
 先端部21には、第3プランジャ23が圧入されている。第3プランジャ23を介して、先端部21に第2プランジャ16が保持される。 The third plunger 23 is press-fitted into the tip portion 21. The second plunger 16 is held by the distal end portion 21 via the third plunger 23.
 基端部22は、フランジ8の貫通孔20に挿通されて嵌合する部分である。基端部22は、貫通孔20を形成するフランジ8の傾斜面に応じて、下方に向かって内側に窄まるように傾斜した外面を有する。 The base end portion 22 is a portion which is inserted into and fitted into the through hole 20 of the flange 8. The base end portion 22 has an outer surface which is inclined so as to be constricted inward toward the lower side in accordance with the inclined surface of the flange 8 forming the through hole 20.
 筒状部24は、先端部21と基端部22の間に延びる部分である。筒状部24の外周部には、第1弾性体10が取り付けられている。 The tubular portion 24 is a portion extending between the distal end portion 21 and the proximal end portion 22. The first elastic body 10 is attached to the outer peripheral portion of the tubular portion 24.
 第1弾性体10は、フランジ8と第1プランジャ14の間に設けられた弾性体である。第1弾性体10は、フランジ8と第1プランジャ14を互いに離れる方向(軸方向A)に付勢する。実施の形態1における第1弾性体10は、図3に示す状態において軸方向Aに圧縮された状態にあり、自然長よりも短くなっている。圧縮状態にある第1弾性体10は、自然長に向かって延びようとする弾性力F1を有している。弾性力F1は、フランジ8と第1プランジャ14を互いに離れる方向に付勢する付勢力として作用している。 The first elastic body 10 is an elastic body provided between the flange 8 and the first plunger 14. The first elastic body 10 urges the flange 8 and the first plunger 14 in a direction away from each other (axial direction A). The first elastic body 10 in the first embodiment is in a state of being compressed in the axial direction A in the state shown in FIG. 3, and is shorter than its natural length. The first elastic body 10 in the compressed state has an elastic force F1 that tends to extend toward the natural length. The elastic force F1 acts as an urging force that urges the flange 8 and the first plunger 14 in the directions away from each other.
 第1弾性体10の基端部は、フランジ8の下面に設けられた凹部に圧入して固定されている。第1弾性体10の先端部は、第1プランジャ14の内方突出部14Bに当接している。 The base end of the first elastic body 10 is press-fitted and fixed in a recess provided in the lower surface of the flange 8. The tip portion of the first elastic body 10 is in contact with the inward protruding portion 14B of the first plunger 14.
 第2弾性体12は、第1プランジャ14と第2プランジャ16の間に設けられた弾性体である。第2弾性体12は、第2プランジャ16を第1プランジャ14から離れる方向(軸方向A)に付勢する。第1弾性体10と同様に、第2弾性体12は、図3に示す状態において軸方向Aに圧縮されており、自然長よりも短くなっている。圧縮状態にある第2弾性体12は、自然長に向かって延びようとする弾性力F2を有しており、弾性力F2は、第2プランジャ16を第1プランジャ14から離れる方向に付勢する付勢力として作用している。 The second elastic body 12 is an elastic body provided between the first plunger 14 and the second plunger 16. The second elastic body 12 biases the second plunger 16 in a direction away from the first plunger 14 (axial direction A). Similar to the first elastic body 10, the second elastic body 12 is compressed in the axial direction A in the state shown in FIG. 3 and is shorter than its natural length. The second elastic body 12 in the compressed state has an elastic force F2 that tends to extend toward the natural length, and the elastic force F2 urges the second plunger 16 in a direction away from the first plunger 14. It acts as a biasing force.
 第2弾性体12の基端部は、第1プランジャ14の外方突出部14Cに当接している。第2弾性体12の先端部は、第2プランジャ16の嵌合部16Aに当接している。 The base end portion of the second elastic body 12 is in contact with the outward protruding portion 14C of the first plunger 14. The tip portion of the second elastic body 12 is in contact with the fitting portion 16A of the second plunger 16.
 図3に示すように、第1弾性体10と第2弾性体12はハウジング9の軸方向Aに部分的に重なるように配置されている。これにより、プローブ2の全長を短くすることができる。実施の形態1では、第1弾性体10が第2弾性体12の内側に配置されている。 As shown in FIG. 3, the first elastic body 10 and the second elastic body 12 are arranged so as to partially overlap with each other in the axial direction A of the housing 9. Thereby, the total length of the probe 2 can be shortened. In the first embodiment, the first elastic body 10 is arranged inside the second elastic body 12.
 実施の形態1における第1弾性体10および第2弾性体12はともに、らせん状のスプリングである。第1弾性体10および第2弾性体12はともに、弾性係数k1、k2をそれぞれ有し、図3に示す嵌合状態において、自然長よりも縮み量x1、x2だけ縮んでいる。前述した第1弾性体10の弾性力F1は、弾性係数k1と縮み量x1を乗じた値として概算することができる。同様に、第2弾性体12の弾性力F2は、弾性係数k2と縮み量x2を乗じた値として概算することができる。なお、弾性係数は、「弾性率」、「弾性定数」と称してもよい。第1弾性体10の弾性力F1および第2弾性体12の弾性力F2の大小は、例えば、第1弾性体10および第2弾性体12に対して荷重を徐々に加え、どちらが先に変位するかを見ることにより判定することができる。例えば、第1弾性体10が先に変位した場合、第1弾性体10の弾性力F1は、第2弾性体12の弾性力F2よりも小さいと判定することができる。 Both the first elastic body 10 and the second elastic body 12 in the first embodiment are spiral springs. Both the first elastic body 10 and the second elastic body 12 have elastic coefficients k1 and k2, respectively, and are contracted by a contraction amount x1 and x2 from the natural length in the fitted state shown in FIG. The elastic force F1 of the first elastic body 10 described above can be roughly estimated as a value obtained by multiplying the elastic coefficient k1 and the shrinkage amount x1. Similarly, the elastic force F2 of the second elastic body 12 can be roughly estimated as a value obtained by multiplying the elastic coefficient k2 and the shrinkage amount x2. The elastic modulus may be referred to as “elastic modulus” and “elastic constant”. Regarding the magnitude of the elastic force F1 of the first elastic body 10 and the elastic force F2 of the second elastic body 12, for example, a load is gradually applied to the first elastic body 10 and the second elastic body 12, and which is displaced first. It can be determined by seeing. For example, when the first elastic body 10 is displaced first, it can be determined that the elastic force F1 of the first elastic body 10 is smaller than the elastic force F2 of the second elastic body 12.
 スプリングの場合、弾性力および長さの調節を容易に行うことができ、設計の自由度が高く、利便性を向上させることができる。なお、スプリングの弾性係数は「ばね定数」で代用することもできる。 In the case of a spring, elastic force and length can be easily adjusted, the degree of freedom in design is high, and convenience can be improved. The elastic coefficient of the spring may be replaced by the "spring constant".
 実施の形態1では特に、第1弾性体10の弾性力F1が第2弾性体12の弾性力F2よりも小さくなるように設定されている。具体的には、弾性力F1が弾性力F2よりも小さくなるように、第1弾性体10の弾性係数k1、縮み量x1および第2弾性体12の弾性係数k2、縮み量x2が設定されている。このような設定によれば、後述するようにコネクタ3を凹部17に配置して第2プランジャ16に嵌合させる際に、第1弾性体10を先に圧縮させてハウジング9全体を摺動させ、その後に遅れて第2弾性体12の圧縮が生じてプローブピン18を突出させる。これにより、プローブピン18がコネクタ3に接触するタイミングを遅らせることができ、プローブピン18がコネクタ3との接触によって誤って損傷することを抑制することができる。詳細については後述する。 In the first embodiment, in particular, the elastic force F1 of the first elastic body 10 is set to be smaller than the elastic force F2 of the second elastic body 12. Specifically, the elastic coefficient k1, the contraction amount x1, the elastic coefficient k2 and the contraction amount x2 of the second elastic body 12 are set so that the elastic force F1 becomes smaller than the elastic force F2. There is. With such a setting, when the connector 3 is arranged in the recess 17 and fitted into the second plunger 16 as described later, the first elastic body 10 is first compressed and the entire housing 9 is slid. After that, the compression of the second elastic body 12 occurs after a while, and the probe pin 18 is projected. As a result, the timing at which the probe pin 18 contacts the connector 3 can be delayed, and it is possible to prevent the probe pin 18 from being accidentally damaged due to contact with the connector 3. Details will be described later.
 プローブピン18は、コネクタ3の端子に接触して電気的に導通する部材である。プローブピン18は、第3プランジャ23の内側に配置されている。プローブピン18の周囲は樹脂27によって囲まれており、第3プランジャ23の内側でプローブピン18が位置決めされている。図3等に示す断面では、プローブピン18の先端以外の部分が樹脂27に隠れているが、異なる断面では、プローブピン18は上方にある基板26に接続される位置まで延びている。 The probe pin 18 is a member that comes into contact with the terminal of the connector 3 and is electrically conductive. The probe pin 18 is arranged inside the third plunger 23. The periphery of the probe pin 18 is surrounded by the resin 27, and the probe pin 18 is positioned inside the third plunger 23. In the cross section shown in FIG. 3 and the like, the portions other than the tips of the probe pins 18 are hidden by the resin 27, but in different cross sections, the probe pins 18 extend to the position where they are connected to the substrate 26 located above.
 基板26は、プローブピン18と同軸ケーブル6を電気的に導通させる部材である。基板26は、同軸ケーブル6のピッチとプローブピン18のピッチが異なる場合に両者を電気的に接続するための配線を有しており、同軸ケーブル6およびプローブピン18は当該配線に接続されている。同軸ケーブル6のピッチ・本数とプローブピン18のピッチ・本数が同じである場合等には、基板26を設けずに、同軸ケーブル6とプローブピン18を直接接触させてもよい。 The board 26 is a member that electrically connects the probe pin 18 and the coaxial cable 6. The board 26 has wiring for electrically connecting the coaxial cable 6 and the probe pin 18 when the pitch is different from the pitch of the coaxial cable 6, and the coaxial cable 6 and the probe pin 18 are connected to the wiring. .. When the pitch and the number of coaxial cables 6 are the same as the pitch and the number of probe pins 18, the coaxial cable 6 and the probe pins 18 may be directly contacted without providing the substrate 26.
 プローブピン18の他方側の端部(先端)は、第2プランジャ16の底部32に設けられた開口部28の近傍に配置されている。開口部28は凹部17に形成された開口である。図3に示す状態では、プローブピン18の先端は開口部28の内側に配置されており、開口部28から外側に露出していない。 The other end (tip) of the probe pin 18 is arranged in the vicinity of the opening 28 provided in the bottom 32 of the second plunger 16. The opening 28 is an opening formed in the recess 17. In the state shown in FIG. 3, the tip of the probe pin 18 is arranged inside the opening 28 and is not exposed to the outside from the opening 28.
 前述した第2プランジャ16は、プローブピン18の先端を開口部28から突出させる第1の位置と、プローブピン18の先端を開口部28よりも内側(基端部22側)に配置する第2の位置の間で移動可能である。図3では、第2プランジャ16が第2の位置にある状態が示される。 The second plunger 16 described above has a first position where the tip of the probe pin 18 projects from the opening 28 and a second position where the tip of the probe pin 18 is located inside the opening 28 (on the side of the proximal end 22). Can be moved between positions. In FIG. 3, the second plunger 16 is shown in the second position.
 図1に戻ると、測定コネクタ13は、同軸ケーブル6を外部の測定器(図示せず)に接続するためのコネクタである。実施の形態1では、複数の測定コネクタ13が設けられている。 Returning to FIG. 1, the measurement connector 13 is a connector for connecting the coaxial cable 6 to an external measuring device (not shown). In the first embodiment, a plurality of measurement connectors 13 are provided.
 次に、図4を用いて、プローブピン18とコネクタ3の端子との関係について説明する。図4は、プローブピン18の先端周辺の拡大縦断面図であって、図3に示すようなハウジング9の基端部22がフランジ8の貫通孔20に嵌合した初期状態に対応している。 Next, the relationship between the probe pin 18 and the terminal of the connector 3 will be described with reference to FIG. FIG. 4 is an enlarged vertical cross-sectional view around the tip of the probe pin 18, and corresponds to the initial state in which the base end portion 22 of the housing 9 is fitted into the through hole 20 of the flange 8 as shown in FIG. ..
 図4に示すように、コネクタ3には、複数の端子3aが設けられている。コネクタ3が凹部17に配置されたときに、プローブピン18の先端が端子3aに接触可能なように、プローブピン18の位置が設定されている。これにより、コネクタ3の複数の端子3aに対して同時に複数のプローブピン18を接触させて、それぞれの端子3aの特性検査を同時に行うことができる。 As shown in FIG. 4, the connector 3 is provided with a plurality of terminals 3a. The position of the probe pin 18 is set so that the tip of the probe pin 18 can come into contact with the terminal 3a when the connector 3 is placed in the recess 17. This makes it possible to bring the plurality of probe pins 18 into contact with the plurality of terminals 3a of the connector 3 at the same time and simultaneously perform the characteristic inspection of the respective terminals 3a.
 図4に示すように、第2プランジャ16の底部32には、コネクタ3を嵌合させるための凹部17が形成されている。凹部17によって、第2プランジャ16の底部32は内側に凹んだ外形を有する。 As shown in FIG. 4, a concave portion 17 for fitting the connector 3 is formed in the bottom portion 32 of the second plunger 16. Due to the recess 17, the bottom portion 32 of the second plunger 16 has an inwardly recessed outer shape.
 実施の形態1の凹部17は、第2プランジャ16の底壁34、第1の側壁36および第2の側壁38によって形成される。底壁34は、凹部17の底面を構成する第2プランジャ16の壁部である。第1の側壁36は、底壁34の周囲から底壁34に対して直交するように立ち上がる側壁である。第2の側壁38は、第1の側壁36の周囲から立ち上がる側壁である。実施の形態1における第2の側壁38は、第1の側壁36から離れる方向に向かって放射状に外側に広がるように延在している。このような形状を有する第2の側壁38は、コネクタ3を凹部17の内側に誘導するガイド部として機能する。 The recess 17 of the first embodiment is formed by the bottom wall 34, the first side wall 36, and the second side wall 38 of the second plunger 16. The bottom wall 34 is a wall portion of the second plunger 16 that forms the bottom surface of the recess 17. The first side wall 36 is a side wall that rises from the periphery of the bottom wall 34 so as to be orthogonal to the bottom wall 34. The second side wall 38 is a side wall rising from the periphery of the first side wall 36. The second side wall 38 in the first embodiment extends so as to radially spread outward in the direction away from the first side wall 36. The second side wall 38 having such a shape functions as a guide portion that guides the connector 3 to the inside of the recess 17.
 次に、コネクタ3を凹部17に配置して端子3aの特性検査を行う方法について、図5-図9Bを用いて説明する。図5―図9Bは、コネクタ3を凹部17に配置する動作を示す縦断面図である。図5、図6A、図7A、図8A、図9Aはそれぞれ、図3、図5B、図6B、図7B、図8B、図9Bの拡大図である。 Next, a method of arranging the connector 3 in the recess 17 and inspecting the characteristics of the terminal 3a will be described with reference to FIGS. 5 to 9B. 5 to 9B are vertical sectional views showing the operation of disposing the connector 3 in the recess 17. 5, 6A, 7A, 8A, and 9A are enlarged views of FIGS. 3, 5B, 6B, 7B, 8B, and 9B, respectively.
 図5に示すように、まず、コネクタ3を凹部17に近付ける(矢印B)。これより、図6Aに示すように、コネクタ3は、第2プランジャ16の第2の側壁38との接触を開始する(図中右側)。 First, as shown in FIG. 5, the connector 3 is brought close to the recess 17 (arrow B). From this, as shown in FIG. 6A, the connector 3 starts contact with the second side wall 38 of the second plunger 16 (right side in the figure).
 前述したように、第2の側壁38は、内側に窄まるように傾斜したテーパ形状を有する。これにより、第2の側壁38に接触したコネクタ3は、凹部17の内側に向かって誘導される(矢印C)。 As described above, the second side wall 38 has a tapered shape that is inclined so as to be narrowed inward. As a result, the connector 3 in contact with the second side wall 38 is guided toward the inside of the recess 17 (arrow C).
 このとき、コネクタ3との接触によって、第2プランジャ16には上方への外力Fpが作用する。外力Fpは、第2プランジャ16の嵌合部16Aに当接している第2弾性体12をさらに圧縮する力として作用し、かつ、第1プランジャ14に当接している第1弾性体10をさらに圧縮する力として同時に作用する。 At this time, due to the contact with the connector 3, an upward external force Fp acts on the second plunger 16. The external force Fp acts as a force that further compresses the second elastic body 12 that is in contact with the fitting portion 16A of the second plunger 16, and further the first elastic body 10 that is in contact with the first plunger 14. It acts simultaneously as a compressing force.
 ここで、第1弾性体10および第2弾性体12はともに圧縮された状態で弾性力F1、F2をそれぞれ有している。前述した外力Fpが弾性力F1と弾性力F2のいずれかより大きくなったときに、第1弾性体10と第2弾性体12のいずれか一方がさらに圧縮し始める。前述したように実施の形態1では、第1弾性体10の弾性力F1の方が第2弾性体12の弾性力F2よりも小さく設定されている。このため、第1弾性体10の方が第2弾性体12よりも先に圧縮を開始する。 Here, the first elastic body 10 and the second elastic body 12 both have elastic forces F1 and F2 in a compressed state. When the above-mentioned external force Fp becomes larger than either the elastic force F1 or the elastic force F2, one of the first elastic body 10 and the second elastic body 12 starts to further compress. As described above, in the first embodiment, the elastic force F1 of the first elastic body 10 is set to be smaller than the elastic force F2 of the second elastic body 12. Therefore, the first elastic body 10 starts to compress before the second elastic body 12.
 第1弾性体10が圧縮した状態を図6Bに示す。第1弾性体10が圧縮されると、図6Bに示すように、フランジ8に対して、ハウジング9、第1プランジャ14、第2プランジャ16および第3プランジャ23などの部材が一体的に上昇する(矢印D)。 The state in which the first elastic body 10 is compressed is shown in FIG. 6B. When the first elastic body 10 is compressed, members such as the housing 9, the first plunger 14, the second plunger 16 and the third plunger 23 are integrally lifted with respect to the flange 8 as shown in FIG. 6B. (Arrow D).
 ハウジング9が上昇することにより、ハウジング9の基端部22とフランジ8の貫通孔20との嵌合が解除される。これにより、ハウジング9およびその周囲の部材が、コネクタ3の位置に応じて姿勢を変更することができる。具体的には、ハウジング9およびその周囲の部材が、軸方向Aを中心とする周方向Rに回転可能となる。 By ascending the housing 9, the fitting between the base end portion 22 of the housing 9 and the through hole 20 of the flange 8 is released. Thereby, the housing 9 and the members around the housing 9 can change their postures according to the position of the connector 3. Specifically, the housing 9 and the members around the housing 9 can rotate in the circumferential direction R around the axial direction A.
 一方で、前述した外力Fpが第1弾性体10の弾性力F1より大きいものの、第2弾性体12の弾性力F2よりも小さい段階では、第2弾性体12の圧縮は生じていない。このため、第2プランジャ16は、第1プランジャ14および第3プランジャ23に対して相対的に移動しておらず、第3プランジャ23によって支持された状態を維持している。 On the other hand, when the external force Fp described above is larger than the elastic force F1 of the first elastic body 10 but smaller than the elastic force F2 of the second elastic body 12, the second elastic body 12 is not compressed. Therefore, the second plunger 16 does not move relative to the first plunger 14 and the third plunger 23, and maintains the state of being supported by the third plunger 23.
 このとき、第2プランジャ16は第1プランジャ14に対して第2の位置にある。すなわち、プローブピン18は前述した凹部17の開口部28の内側に配置されており、開口部28の外側に突出していない。これにより、プローブピン18の先端はコネクタ3の端子3aに接触できない状態にある。このような構成により、凹部17におけるコネクタ3の誘導中に、プローブピン18がコネクタ3との接触によって損傷することを防止することができる。 At this time, the second plunger 16 is in the second position with respect to the first plunger 14. That is, the probe pin 18 is arranged inside the opening 28 of the recess 17 described above, and does not project to the outside of the opening 28. As a result, the tip of the probe pin 18 cannot contact the terminal 3a of the connector 3. With such a configuration, it is possible to prevent the probe pin 18 from being damaged by the contact with the connector 3 during the guiding of the connector 3 in the recess 17.
 その後、図7A、図7Bに示すように、コネクタ3は、凹部17の所定の測定位置に位置決めされる。より具体的には、図4に示す底壁34および第1の側壁36によって囲まれる位置にコネクタ3が配置され、開口部28に隣接している。 After that, as shown in FIGS. 7A and 7B, the connector 3 is positioned at a predetermined measurement position in the recess 17. More specifically, the connector 3 is arranged at a position surrounded by the bottom wall 34 and the first side wall 36 shown in FIG. 4, and is adjacent to the opening 28.
 この状態でコネクタ3を第2プランジャ16に対してさらに上方に押圧すると、前述した外力Fpがさらに大きくなり、第2弾性体12の弾性力F2を上回る。これにより、第2弾性体12の圧縮が始まる。 When the connector 3 is further pushed upward against the second plunger 16 in this state, the above-mentioned external force Fp further increases and exceeds the elastic force F2 of the second elastic body 12. As a result, the compression of the second elastic body 12 starts.
 第2弾性体12が圧縮された状態を図8A、図8Bに示す。第2弾性体12が圧縮されると、第2プランジャ16が第1プランジャ14に対して近付くように軸方向Aに移動・上昇する(矢印E)。これにより、第3プランジャ23に当接していた第2プランジャ16の接続部16Bが第3プランジャ23から離れるように上方へ移動する。 A state in which the second elastic body 12 is compressed is shown in FIGS. 8A and 8B. When the second elastic body 12 is compressed, the second plunger 16 moves and rises in the axial direction A so as to approach the first plunger 14 (arrow E). As a result, the connecting portion 16B of the second plunger 16 that is in contact with the third plunger 23 moves upward so as to separate from the third plunger 23.
 第2プランジャ16の上昇に対して、プローブピン18は基板26および第3プランジャ23とともに一体的に保持されており、プローブピン18の上下位置は維持されている。第2プランジャ16は、プローブピン18の先端を開口部28よりも内側に配置した第2の位置から、プローブピン18の先端を開口部28から突出させる第1の位置に向かって移動することとなる。 The probe pin 18 is held integrally with the substrate 26 and the third plunger 23 against the rise of the second plunger 16, and the vertical position of the probe pin 18 is maintained. The second plunger 16 moves from a second position where the tip of the probe pin 18 is arranged inside the opening 28 to a first position where the tip of the probe pin 18 projects from the opening 28. Become.
 図8Aに示すように、第2プランジャ16の上昇によって、プローブピン18の先端が凹部17の開口部28から露出するとともに、コネクタ3の端子3aに当接している。このように、プローブピン18がコネクタ3の端子3aと接触することにより、同軸ケーブル6がプローブピン18を介してコネクタ3の複数の端子3aと導通し、それぞれの端子3aの特性検査を同時に行うことができる。 As shown in FIG. 8A, the tip of the probe pin 18 is exposed from the opening 28 of the recess 17 and is in contact with the terminal 3 a of the connector 3 as the second plunger 16 is lifted. In this way, the probe pin 18 comes into contact with the terminal 3a of the connector 3, whereby the coaxial cable 6 is electrically connected to the plurality of terminals 3a of the connector 3 through the probe pin 18, and the characteristic inspection of each terminal 3a is performed simultaneously. be able to.
 図8Aに示す状態では、第2プランジャ16の嵌合部16Aの内側において、第3プランジャ23の底部はコネクタ3に接触していない。 In the state shown in FIG. 8A, the bottom portion of the third plunger 23 is not in contact with the connector 3 inside the fitting portion 16A of the second plunger 16.
 第2プランジャ16をさらに上昇させた状態を図9A、図9Bに示す。図9A、図9Bに示す状態では、第3プランジャ23の底部がコネクタ3に接触している。この状態では、コネクタ3による上方向への荷重が第2プランジャ16だけでなく第3プランジャ23にも作用する。 The state in which the second plunger 16 is further raised is shown in FIGS. 9A and 9B. In the state shown in FIGS. 9A and 9B, the bottom portion of the third plunger 23 is in contact with the connector 3. In this state, the upward load of the connector 3 acts not only on the second plunger 16 but also on the third plunger 23.
 実施の形態1では特に、第1弾性体10の弾性係数k1を、第2弾性体12の弾性係数k2よりも大きく設定している。このような設定によれば、第2弾性体12の圧縮が始まって以降、弾性係数k2の値が小さい第2弾性体12の方が、弾性係数k1の値が大きい第1弾性体10よりも優先的に圧縮される。このようにして、第2弾性体12の圧縮を第1弾性体10の圧縮に対して優先的に生じさせることができ、プローブピン18をコネクタ3の端子3aにより確実に接触させることができる。 In Embodiment 1, in particular, the elastic coefficient k1 of the first elastic body 10 is set to be larger than the elastic coefficient k2 of the second elastic body 12. According to such a setting, after the compression of the second elastic body 12 is started, the second elastic body 12 having a smaller elastic coefficient k2 is smaller than the first elastic body 10 having a large elastic coefficient k1. Compressed preferentially. In this way, the compression of the second elastic body 12 can be generated preferentially to the compression of the first elastic body 10, and the probe pin 18 can be more reliably brought into contact with the terminal 3a of the connector 3.
 さらに実施の形態1のプローブ2では、第1弾性体10と第2弾性体12のそれぞれの長さについて工夫を行っている。具体的には、図10を用いて説明する。 Further, in the probe 2 of the first embodiment, the respective lengths of the first elastic body 10 and the second elastic body 12 are devised. The details will be described with reference to FIG.
 図10は、コネクタ3が凹部17に配置される前の初期状態を示す縦断面図である。図10に示すように、軸方向Aの長さに関して、第1弾性体10は長さD1を有し、第2弾性体は長さD2を有する。長さD1は、第1弾性体10の自然長から縮み量x1を減算した長さであり、長さD2は、第2弾性体12の自然長から縮み量x2を減算した長さである。前述したように、第1弾性体10と第2弾性体12は軸方向Aに部分的に重複して配置されており、その重複長さはD3である。このように、第1弾性体10と第2弾性体12の重複長さD3を設けることで、重複長さD3を設けない場合に比べてプローブ2の全長を短くすることができる。 FIG. 10 is a vertical sectional view showing an initial state before the connector 3 is placed in the recess 17. As shown in FIG. 10, regarding the length in the axial direction A, the first elastic body 10 has a length D1 and the second elastic body has a length D2. The length D1 is a length obtained by subtracting the shrinkage amount x1 from the natural length of the first elastic body 10, and the length D2 is a length obtained by subtracting the shrinkage amount x2 from the natural length of the second elastic body 12. As described above, the first elastic body 10 and the second elastic body 12 are arranged so as to partially overlap each other in the axial direction A, and the overlapping length thereof is D3. In this way, by providing the overlapping length D3 of the first elastic body 10 and the second elastic body 12, the total length of the probe 2 can be shortened as compared with the case where the overlapping length D3 is not provided.
 プローブ2の全長が長くなると、コネクタ3が凹部17に配置されたときにプローブ2の先端が横方向にずれやすくなり、コネクタ3の位置決めが難しくなる。これに対して、第1弾性体10と第2弾性体12を軸方向Aに部分的に重複させてプローブ2の全長を短くすることで、コネクタ3の位置決めが容易になる。これにより、コネクタ3の端子3aの特性検査の精度を向上させることができる。 If the total length of the probe 2 is long, the tip of the probe 2 is likely to be displaced in the lateral direction when the connector 3 is placed in the recess 17, which makes positioning of the connector 3 difficult. On the other hand, by partially overlapping the first elastic body 10 and the second elastic body 12 in the axial direction A and shortening the total length of the probe 2, positioning of the connector 3 is facilitated. Thereby, the accuracy of the characteristic inspection of the terminal 3a of the connector 3 can be improved.
 さらに実施の形態1では、第1弾性体10と第2弾性体12の重複長さD3は、第2弾性体12のうち第1弾性体10と重ならない長さD4よりも長く設定されている。このような長さの設定によれば、プローブ2の全長をより短くすることができる。 Further, in the first embodiment, the overlapping length D3 of the first elastic body 10 and the second elastic body 12 is set to be longer than the length D4 of the second elastic body 12 that does not overlap the first elastic body 10. .. With such a length setting, the total length of the probe 2 can be further shortened.
 重複長さD3を設定する際には、第1弾性体10の長さD1の1/3以上、第2弾性体12の長さD2の1/3以上と設定してもよい。あるいは、第1弾性体10の自然長(>D1)の1/3以上、第2弾性体12の自然長(>D2)の1/3以上と設定してもよい。このような長さの設定であっても、プローブ2の全長を短くすることができる。 When setting the overlapping length D3, it may be set to 1/3 or more of the length D1 of the first elastic body 10 and 1/3 or more of the length D2 of the second elastic body 12. Alternatively, it may be set to 1/3 or more of the natural length (>D1) of the first elastic body 10 and 1/3 or more of the natural length (>D2) of the second elastic body 12. Even with such a length setting, the total length of the probe 2 can be shortened.
 また実施の形態1では、前述したように、第1弾性体10と第2弾性体12が軸方向Aに重なる箇所において、第1弾性体10は第2弾性体12よりも内側に配置されている。このような設計によれば、第1弾性体10の横方向の寸法を小さくしながら、第2弾性体12の縦方向の長さを短くする設計が可能となる。さらに、第1プランジャ14の外方突出部14Cをフランジ8から遠くに離して配置することができるため、第1弾性体10が圧縮してハウジング9等がフランジ8に対して相対的に上昇する際に、移動距離を十分に確保することができる。また、第1弾性体10が第2弾性体12よりも外側に配置される構成と比較して、第1弾性体10を長くする設計が容易になる。第1弾性体10を長くすることで、第1弾性体10の伸縮によるプローブ2全体の摺動量をより長く確保することができる。さらに内方突出部14Cが第1弾性体10と干渉しにくいため、プローブ2が円滑に摺動しやすくなる。 Further, in the first embodiment, as described above, the first elastic body 10 is arranged inside the second elastic body 12 at the position where the first elastic body 10 and the second elastic body 12 overlap in the axial direction A. There is. According to such a design, it is possible to reduce the size of the first elastic body 10 in the horizontal direction while shortening the length of the second elastic body 12 in the vertical direction. Further, since the outward projecting portion 14C of the first plunger 14 can be arranged far away from the flange 8, the first elastic body 10 is compressed and the housing 9 and the like rises relative to the flange 8. At this time, it is possible to secure a sufficient movement distance. Further, as compared with the configuration in which the first elastic body 10 is arranged outside the second elastic body 12, the design of lengthening the first elastic body 10 becomes easier. By lengthening the first elastic body 10, it is possible to secure a longer sliding amount of the entire probe 2 due to expansion and contraction of the first elastic body 10. Further, since the inward protruding portion 14C is unlikely to interfere with the first elastic body 10, the probe 2 can easily slide smoothly.
 上述したように、実施の形態1のプローブ2は、フランジ8と、ハウジング9と、第1弾性体10と、第2弾性体12と、第1プランジャ14と、第2プランジャ16とを備える。このような構成において、第2プランジャ16の底部32には、同軸ケーブル6と電気的に接続されたプローブピン18を通す開口部28が形成されている。さらに、第2プランジャ16は、プローブピン18の先端を開口部28から突出させる第1の位置と、プローブピン18の先端を開口部28よりも内側に配置する第2の位置の間で軸方向Aに移動可能である。さらに、第1弾性体10と第2弾性体12はハウジング9の軸方向Aに互いに部分的に重なるように配置されており、第1プランジャ14は、第1弾性体10と第2弾性体12の重なる箇所を仕切る仕切壁14Aを有する。 As described above, the probe 2 according to the first embodiment includes the flange 8, the housing 9, the first elastic body 10, the second elastic body 12, the first plunger 14, and the second plunger 16. In such a structure, the bottom portion 32 of the second plunger 16 is formed with an opening 28 through which the probe pin 18 electrically connected to the coaxial cable 6 is inserted. Further, the second plunger 16 is axially arranged between a first position where the tip of the probe pin 18 projects from the opening 28 and a second position where the tip of the probe pin 18 is arranged inside the opening 28. You can move to A. Further, the first elastic body 10 and the second elastic body 12 are arranged so as to partially overlap with each other in the axial direction A of the housing 9, and the first plunger 14 includes the first elastic body 10 and the second elastic body 12. It has a partition wall 14A for partitioning the overlapping portion.
 このような構成によれば、第1弾性体10と第2弾性体12を軸方向Aに重なるように配置することで、プローブ2の全長を短くすることができる。プローブ2の全長を短くすることで、第2プランジャ16の底部32にコネクタ3が接触した際にプローブ2の先端が軸方向Aに交差する方向へずれてしまうのを抑制することができる。これにより、プローブピン18とコネクタ3の端子3aをより精度良く接触させることができ、コネクタ3の端子3aの特性検査をより精度良く行うことができる。 According to such a configuration, by disposing the first elastic body 10 and the second elastic body 12 so as to overlap each other in the axial direction A, the total length of the probe 2 can be shortened. By shortening the total length of the probe 2, it is possible to prevent the tip of the probe 2 from shifting in a direction intersecting the axial direction A when the connector 3 contacts the bottom portion 32 of the second plunger 16. Thereby, the probe pin 18 and the terminal 3a of the connector 3 can be brought into contact with each other with higher accuracy, and the characteristic inspection of the terminal 3a of the connector 3 can be performed with higher accuracy.
 さらに、第1プランジャ14は、仕切壁14Aから内側に突出して第1弾性体10を受ける内方突出部14Bと、仕切壁14Aから外側に突出して第2弾性体12を受ける外方突出部14Cとを有する。内方突出部14Bは、外方突出部14Cよりもハウジング9の先端部21側に設けられる。このような構成によれば、簡単な構成によって第1弾性体10と第2弾性体12を受けながら第1弾性体10と第2弾性体12を互いに仕切ることができる。 Further, the first plunger 14 has an inward projection 14B that projects inward from the partition wall 14A to receive the first elastic body 10, and an outward projection 14C that projects outward from the partition wall 14A to receive the second elastic body 12. Have and. The inward protruding portion 14B is provided closer to the distal end portion 21 side of the housing 9 than the outward protruding portion 14C. With such a configuration, the first elastic body 10 and the second elastic body 12 can be partitioned from each other while receiving the first elastic body 10 and the second elastic body 12 with a simple configuration.
 さらに、コネクタ3を第2プランジャ16の凹部17に配置する前の状態(ハウジング9とフランジ8の嵌合状態)において、第2プランジャ16は第2の位置にあり、かつ、第2弾性体12の弾性力F2が第1弾性体10の弾性力F1よりも大きく設定されている。 Further, in the state before the connector 3 is placed in the recess 17 of the second plunger 16 (the fitting state of the housing 9 and the flange 8), the second plunger 16 is at the second position, and the second elastic body 12 is provided. Elastic force F2 is set to be larger than the elastic force F1 of the first elastic body 10.
 このような構成によれば、第2弾性体12の弾性力F2を第1弾性体10の弾性力F1よりも大きくなるように設定することで、第2プランジャ16の凹部17にコネクタ3を配置して第2プランジャ16を押圧していくと、第1弾性体10の方が先に圧縮される。これにより、ハウジング9とフランジ8の嵌合が解除され、ハウジング9を所望の姿勢に近付けながらコネクタ3を凹部17の内側に誘導することができる。また、第1弾性体10の圧縮に対して第2弾性体12の圧縮を遅らせることで、プローブピン18がコネクタ3の端子3aに接触するタイミングを遅らせている。これにより、コネクタ3の端子3aとプローブピン18の位置ずれを抑制しながら、コネクタ3の誘導時にコネクタ3との接触によってプローブピン18が誤って傷付くことを防止することができる。 According to such a configuration, by setting the elastic force F2 of the second elastic body 12 to be larger than the elastic force F1 of the first elastic body 10, the connector 3 is arranged in the recess 17 of the second plunger 16. Then, when the second plunger 16 is pressed, the first elastic body 10 is compressed first. As a result, the fitting between the housing 9 and the flange 8 is released, and the connector 3 can be guided inside the recess 17 while bringing the housing 9 closer to a desired posture. Further, by delaying the compression of the second elastic body 12 with respect to the compression of the first elastic body 10, the timing at which the probe pin 18 contacts the terminal 3 a of the connector 3 is delayed. This can prevent the probe pin 18 from being accidentally damaged by the contact with the connector 3 when guiding the connector 3 while suppressing the positional displacement between the terminal 3a of the connector 3 and the probe pin 18.
(実施の形態2)
 本発明に係る実施の形態2のプローブ40について、図11~図16Bを用いて説明する。なお、実施の形態2では、主に実施の形態1と異なる点について説明する。また、同一又は同等の構成については同じ符号を付して説明を省略する。
(Embodiment 2)
A probe 40 according to the second embodiment of the present invention will be described with reference to FIGS. 11 to 16B. The second embodiment will mainly describe differences from the first embodiment. Moreover, the same or equivalent configurations are denoted by the same reference numerals, and description thereof will be omitted.
 まず、プローブ40の構成について、図11-図12Bを用いて説明する。図11は、実施の形態2のプローブ40の側面図であり、図12Aは、プローブ40の縦断面図であり、図12Bは、図12Aの一部拡大図である。 First, the configuration of the probe 40 will be described with reference to FIGS. 11 to 12B. 11 is a side view of the probe 40 according to the second embodiment, FIG. 12A is a vertical sectional view of the probe 40, and FIG. 12B is a partially enlarged view of FIG. 12A.
 実施の形態2のプローブ40は、主に、第1弾性体42が第2弾性体44の外側に配置されているという点が、実施の形態1のプローブ2と異なる。 The probe 40 of the second embodiment differs from the probe 2 of the first embodiment mainly in that the first elastic body 42 is arranged outside the second elastic body 44.
 図12Aに示すように、第1弾性体42と第2弾性体44は、第1プランジャ46によって仕切られている。第1プランジャ46は、仕切壁46Aと、外方突出部46Bと、内方突出部46Cとを有する。仕切壁46Aは、第1弾性体42と第2弾性体44が重なる箇所を仕切るようにハウジング48の軸方向Aに延びる部分である。外方突出部46Bは、仕切壁46Aから径方向外側に突出した部分であり、内方突出部46Cは、仕切壁46Aから径方向内側に突出した部分である。外方突出部46Bは、仕切壁14Aの先端部に設けられ、内方突出部46Cは、仕切壁14Aの基端部に設けられている。すなわち、内方突出部46Cは、外方突出部46Bよりも軸方向Aの基端部側に設けられる。 As shown in FIG. 12A, the first elastic body 42 and the second elastic body 44 are separated by a first plunger 46. The first plunger 46 has a partition wall 46A, an outer protruding portion 46B, and an inner protruding portion 46C. The partition wall 46A is a portion extending in the axial direction A of the housing 48 so as to partition a portion where the first elastic body 42 and the second elastic body 44 overlap. The outer projecting portion 46B is a portion that projects radially outward from the partition wall 46A, and the inner projecting portion 46C is a portion that projects radially inward from the partition wall 46A. The outer protrusion 46B is provided at the tip of the partition wall 14A, and the inner protrusion 46C is provided at the base end of the partition wall 14A. That is, the inward protrusion 46C is provided closer to the base end side in the axial direction A than the outward protrusion 46B.
 第1弾性体42は、フランジ8と第1プランジャ46の間に設けられている。第1弾性体42は、図12Aに示す状態において軸方向Aに圧縮された状態にあり、自然長に向かって延びようとする弾性力F3を有している。弾性力F3は、弾性係数k3と縮み量x3を乗じた値として概算することができる。 The first elastic body 42 is provided between the flange 8 and the first plunger 46. The first elastic body 42 is in a state of being compressed in the axial direction A in the state shown in FIG. 12A, and has an elastic force F3 that tends to extend toward the natural length. The elastic force F3 can be roughly estimated as a value obtained by multiplying the elastic coefficient k3 and the shrinkage amount x3.
 第1弾性体42の基端部は、フランジ8の下面に設けられた凹部に圧入して固定されている。第1弾性体42の先端部は、第1プランジャ46の外方突出部46Bに当接している。 The base end of the first elastic body 42 is press-fitted and fixed in a recess provided on the lower surface of the flange 8. The tip portion of the first elastic body 42 is in contact with the outer protruding portion 46B of the first plunger 46.
 第2弾性体44は、第1プランジャ46と第2プランジャ16の間に設けられている。第2弾性体44は、図12Aに示す状態において軸方向Aに圧縮されており、自然長に向かって延びようとする弾性力F4を有している。弾性力F4は、弾性係数k4と縮み量x4を乗じた値として概算することができる。 The second elastic body 44 is provided between the first plunger 46 and the second plunger 16. The second elastic body 44 is compressed in the axial direction A in the state shown in FIG. 12A and has an elastic force F4 that tends to extend toward the natural length. The elastic force F4 can be roughly estimated as a value obtained by multiplying the elastic coefficient k4 and the shrinkage amount x4.
 第2弾性体44の基端部は、第1プランジャ46の内方突出部46Cに当接している。第2弾性体44の先端部は、第2プランジャ16の接続部16Bに当接している。 The base end portion of the second elastic body 44 is in contact with the inward protruding portion 46C of the first plunger 46. The tip portion of the second elastic body 44 is in contact with the connecting portion 16B of the second plunger 16.
 実施の形態2でも同様に、第1弾性体42の弾性力F3が第2弾性体44の弾性力F4よりも小さくなるように、第1弾性体42の弾性係数k3、縮み量x3および第2弾性体44の弾性係数k4、縮み量x4が設定されている。 Similarly in the second embodiment, the elastic coefficient k3, the amount of contraction x3, and the second amount of contraction of the first elastic body 42 are set so that the elastic force F3 of the first elastic body 42 becomes smaller than the elastic force F4 of the second elastic body 44. The elastic coefficient k4 and the shrinkage amount x4 of the elastic body 44 are set.
 上述したような構成によれば、実施の形態2のプローブ40は、実施の形態1のプローブ2と同様に動作することができる。具体的には、図13A-図16Bを用いて説明する。図13A―図16Bは、コネクタ3を凹部17に配置する動作を示す縦断面図である。図13B、図14B、図15B、図16Bはそれぞれ、図13A、図14A、図15A、図16Aの一部拡大図である。 According to the configuration as described above, the probe 40 of the second embodiment can operate similarly to the probe 2 of the first embodiment. Specifically, description will be made with reference to FIGS. 13A to 16B. 13A to 16B are vertical sectional views showing the operation of disposing the connector 3 in the recess 17. 13B, 14B, 15B, and 16B are partially enlarged views of FIGS. 13A, 14A, 15A, and 16A, respectively.
 図12A、図12Bに示す初期状態では、コネクタ3が第2プランジャ16の底部32に接触せず、第1弾性体42、第2弾性体44ともにコネクタ3からの圧縮荷重は受けていない。このとき、第2プランジャ16はプローブピン18の先端を開口部28よりも内側に配置した第2の位置にある。 In the initial state shown in FIGS. 12A and 12B, the connector 3 does not contact the bottom portion 32 of the second plunger 16, and neither the first elastic body 42 nor the second elastic body 44 receives the compressive load from the connector 3. At this time, the second plunger 16 is in the second position in which the tip of the probe pin 18 is arranged inside the opening 28.
 図12Bに示すように、まず、コネクタ3を凹部17に近付ける(矢印F)。これより、図13Bに示すように、コネクタ3は、第2プランジャ16の第2の側壁38との接触を開始する(図中右側)。 As shown in FIG. 12B, first, the connector 3 is brought close to the recess 17 (arrow F). From this, as shown in FIG. 13B, the connector 3 starts contact with the second side wall 38 of the second plunger 16 (right side in the figure).
 第2の側壁38に接触したコネクタ3は、凹部17の内側に向かって誘導される(矢印G)。 The connector 3 in contact with the second side wall 38 is guided toward the inside of the recess 17 (arrow G).
 このとき、コネクタ3との接触によって、第2プランジャ16には上方への外力Fqが作用する。外力Fqは、第2プランジャ16の嵌合部16Aに当接している第2弾性体44をさらに圧縮する力として作用し、かつ、第1プランジャ46に当接している第1弾性体42をさらに圧縮する力として同時に作用する。 At this time, the contact with the connector 3 causes an upward external force Fq to act on the second plunger 16. The external force Fq acts as a force that further compresses the second elastic body 44 that is in contact with the fitting portion 16A of the second plunger 16, and further causes the first elastic body 42 that is in contact with the first plunger 46. It acts simultaneously as a compressing force.
 前述したように実施の形態2では、実施の形態1と同様に第1弾性体42の弾性力F3の方が第2弾性体44の弾性力F4よりも小さく設定されている。このため、第1弾性体42の方が第2弾性体44よりも先に圧縮を開始する。 As described above, in the second embodiment, the elastic force F3 of the first elastic body 42 is set to be smaller than the elastic force F4 of the second elastic body 44 as in the first embodiment. Therefore, the first elastic body 42 starts to compress before the second elastic body 44.
 第1弾性体42が圧縮した状態を図13Aに示す。第1弾性体42が圧縮されると、図13Aに示すように、フランジ8に対して、ハウジング48、第1プランジャ46、第2プランジャ16および第3プランジャ23などの部材が一体的に上昇する(矢印H)。 The compressed state of the first elastic body 42 is shown in FIG. 13A. When the first elastic body 42 is compressed, as shown in FIG. 13A, members such as the housing 48, the first plunger 46, the second plunger 16 and the third plunger 23 are integrally raised with respect to the flange 8. (Arrow H).
 ハウジング48が上昇することにより、ハウジング48の基端部22とフランジ8の貫通孔20との嵌合が解除される。これにより、ハウジング48およびその周囲の部材が、コネクタ3の位置に応じて姿勢を変更することができる。具体的には、ハウジング48およびその周囲の部材が、軸方向Aを中心とする周方向Rに回転可能となる。 The housing 48 is lifted to release the fitting between the base end portion 22 of the housing 48 and the through hole 20 of the flange 8. Thereby, the housing 48 and the members around the housing 48 can change their postures according to the position of the connector 3. Specifically, the housing 48 and the members around the housing 48 can rotate in the circumferential direction R around the axial direction A.
 一方で、前述した外力Fqが第1弾性体42の弾性力F3より大きいものの、第2弾性体44の弾性力F4よりも小さい段階では、第2弾性体44の圧縮は生じていない。このため、第2プランジャ16は、第1プランジャ46および第3プランジャ23に対して相対的に移動しておらず、第3プランジャ23によって支持された状態を維持している。 On the other hand, when the external force Fq is larger than the elastic force F3 of the first elastic body 42 but smaller than the elastic force F4 of the second elastic body 44, the second elastic body 44 is not compressed. Therefore, the second plunger 16 does not move relative to the first plunger 46 and the third plunger 23, and maintains the state of being supported by the third plunger 23.
 このとき、第2プランジャ16は第1プランジャ46に対して第2の位置にある。すなわち、プローブピン18は前述した凹部17の開口部28の内側に配置されており、開口部28の外側に突出していない。これにより、プローブピン18の先端はコネクタ3の端子3aに接触できない状態にある。このような構成により、凹部17におけるコネクタ3の誘導中に、プローブピン18がコネクタ3との接触によって損傷することを防止することができる。 At this time, the second plunger 16 is in the second position with respect to the first plunger 46. That is, the probe pin 18 is arranged inside the opening 28 of the recess 17 described above, and does not project to the outside of the opening 28. As a result, the tip of the probe pin 18 cannot contact the terminal 3a of the connector 3. With such a configuration, it is possible to prevent the probe pin 18 from being damaged by the contact with the connector 3 while the connector 3 is being guided in the recess 17.
 その後、図14A、図14Bに示すように、コネクタ3は、凹部17の所定の測定位置に位置決めされる。 After that, as shown in FIGS. 14A and 14B, the connector 3 is positioned at a predetermined measurement position in the recess 17.
 この状態でコネクタ3を第2プランジャ16に対してさらに上方に押圧すると、前述した外力Fqがさらに大きくなり、第2弾性体44の弾性力F4を上回る。これにより、第2弾性体44の圧縮が始まる。 When the connector 3 is further pushed upward against the second plunger 16 in this state, the above-mentioned external force Fq further increases and exceeds the elastic force F4 of the second elastic body 44. As a result, the compression of the second elastic body 44 starts.
 第2弾性体44が圧縮された状態を図15A、図15Bに示す。第2弾性体44が圧縮されると、第2プランジャ16が第1プランジャ46に対して近付くように軸方向Aに移動・上昇する(矢印I)。これにより、第3プランジャ23に当接していた第2プランジャ16の接続部16Bが第3プランジャ23から離れるように上方へ移動する。 A state in which the second elastic body 44 is compressed is shown in FIGS. 15A and 15B. When the second elastic body 44 is compressed, the second plunger 16 moves and rises in the axial direction A so as to approach the first plunger 46 (arrow I). As a result, the connecting portion 16B of the second plunger 16 that is in contact with the third plunger 23 moves upward so as to separate from the third plunger 23.
 第2プランジャ16の上昇に対して、プローブピン18は基板26および第3プランジャ23とともに一体的に保持されており、プローブピン18の上下位置は維持されている。第2プランジャ16は、プローブピン18の先端を開口部28よりも内側に配置した第2の位置から、プローブピン18の先端を開口部28から突出させる第1の位置に向かって移動することとなる。 The probe pin 18 is held integrally with the substrate 26 and the third plunger 23 against the rise of the second plunger 16, and the vertical position of the probe pin 18 is maintained. The second plunger 16 moves from a second position where the tip of the probe pin 18 is arranged inside the opening 28 to a first position where the tip of the probe pin 18 projects from the opening 28. Become.
 図15Aに示すように、第2プランジャ16の上昇によって、プローブピン18の先端が凹部17の開口部28から露出するとともに、コネクタ3の端子3aに当接している。このように、プローブピン18がコネクタ3の端子3aと接触することにより、同軸ケーブル6がプローブピン18を介してコネクタ3の複数の端子3aと導通し、それぞれの端子3aの特性検査を同時に行うことができる。 As shown in FIG. 15A, the tip of the probe pin 18 is exposed from the opening 28 of the recess 17 and is in contact with the terminal 3 a of the connector 3 as the second plunger 16 is lifted. In this way, the probe pin 18 comes into contact with the terminal 3a of the connector 3, whereby the coaxial cable 6 is electrically connected to the plurality of terminals 3a of the connector 3 through the probe pin 18, and the characteristic inspection of each terminal 3a is performed simultaneously. be able to.
 図15Bに示す状態では、第2プランジャ16の嵌合部16Aの内側において、第3プランジャ23の底部はコネクタ3に接触していない。 In the state shown in FIG. 15B, the bottom portion of the third plunger 23 is not in contact with the connector 3 inside the fitting portion 16A of the second plunger 16.
 第2プランジャ16をさらに上昇させた状態を図16A、図16Bに示す。図16A、図16Bに示す状態では、第3プランジャ23の底部がコネクタ3に接触している。この状態では、コネクタ3による上方向への荷重が第2プランジャ16だけでなく第3プランジャ23にも作用する。 The state where the second plunger 16 is further raised is shown in FIGS. 16A and 16B. In the state shown in FIGS. 16A and 16B, the bottom portion of the third plunger 23 is in contact with the connector 3. In this state, the upward load of the connector 3 acts not only on the second plunger 16 but also on the third plunger 23.
 上述したように、第2弾性体44の弾性力F4を第1弾性体42の弾性力F3よりも大きくなるように設定することで、第2プランジャ16の凹部17にコネクタ3を配置して第2プランジャ16を押圧していくと、第1弾性体42の方が先に圧縮される。これにより、ハウジング48とフランジ8の嵌合が解除され、ハウジング48を所望の姿勢に近付けながらコネクタ3を凹部17の内側に誘導することができる。また、第1弾性体42の圧縮に対して第2弾性体44の圧縮を遅らせることで、プローブピン18がコネクタ3の端子3aに接触するタイミングを遅らせている。これにより、コネクタ3の端子3aとプローブピン18の位置ずれを抑制しながら、コネクタ3の誘導時にコネクタ3との接触によってプローブピン18が誤って傷付くことを防止することができる。 As described above, by setting the elastic force F4 of the second elastic body 44 to be larger than the elastic force F3 of the first elastic body 42, the connector 3 is disposed in the recess 17 of the second plunger 16 and When the second plunger 16 is pressed, the first elastic body 42 is compressed first. As a result, the fitting between the housing 48 and the flange 8 is released, and the connector 3 can be guided inside the recess 17 while bringing the housing 48 closer to a desired posture. Further, by delaying the compression of the second elastic body 44 with respect to the compression of the first elastic body 42, the timing at which the probe pin 18 contacts the terminal 3a of the connector 3 is delayed. This can prevent the probe pin 18 from being accidentally damaged by the contact with the connector 3 when guiding the connector 3 while suppressing the positional displacement between the terminal 3a of the connector 3 and the probe pin 18.
 また実施の形態1と同様に、第1弾性体42と第2弾性体44を軸方向Aに部分的に重なるように配置することで、プローブ2の全長を短くすることができる。これにより、第2プランジャ16の底部32にコネクタ3が接触した際にプローブ40の先端が軸方向Aに交差する方向へずれてしまうのを抑制することができる。これにより、プローブピン18とコネクタ3の端子3aをより精度良く接触させることができ、コネクタ3の端子3aの特性検査をより精度良く行うことができる。 Also, as in the first embodiment, by disposing the first elastic body 42 and the second elastic body 44 so as to partially overlap in the axial direction A, the total length of the probe 2 can be shortened. This can prevent the tip of the probe 40 from shifting in a direction intersecting the axial direction A when the connector 3 contacts the bottom portion 32 of the second plunger 16. Thereby, the probe pin 18 and the terminal 3a of the connector 3 can be brought into contact with each other with higher accuracy, and the characteristic inspection of the terminal 3a of the connector 3 can be performed with higher accuracy.
 さらに実施の形態2では、第1弾性体42は第2弾性体44よりも外側に配置されている。このような設計によれば、第2弾性体44を横方向の寸法を小さくしながら、第1弾性体42の縦方向の長さを短くする設計が可能となる。なお、第1弾性体42の横方向の寸法が第2弾性体44の横方向の寸法よりも大きくなることで、第1弾性体42によってハウジング48の鉛直性をより精度良く担保することができる。すなわち、実施の形態1のように第1弾性体10が第2弾性体12よりも内側に配置される構成と比較して、第1弾性体42がフランジ8と接触する面積が大きくなるため、プローブ40全体が横方向に傾きにくくなる。 Further, in the second embodiment, the first elastic body 42 is arranged outside the second elastic body 44. According to such a design, it is possible to reduce the size of the second elastic body 44 in the horizontal direction while shortening the length of the first elastic body 42 in the vertical direction. Since the lateral dimension of the first elastic body 42 is larger than the lateral dimension of the second elastic body 44, the verticality of the housing 48 can be more accurately ensured by the first elastic body 42. .. That is, as compared with the configuration in which the first elastic body 10 is arranged inside the second elastic body 12 as in the first embodiment, the area in which the first elastic body 42 contacts the flange 8 becomes larger, It is difficult for the entire probe 40 to tilt in the lateral direction.
 さらに実施の形態2では、第1プランジャ46は、仕切壁46Aから外側に突出して第1弾性体42を受ける外方突出部46Bと、仕切壁46Aから内側に突出して第2弾性体44を受ける内方突出部46Cとを有する。内方突出部46Cは、外方突出部46Bよりもハウジング48の基端部側に設けられる。このような構成によれば、簡単な構成によって第1弾性体42と第2弾性体44を受けながら第1弾性体42と第2弾性体44を互いに仕切ることができる。 Further, in the second embodiment, the first plunger 46 projects outward from the partition wall 46A to receive the first elastic body 42, and the outward projecting portion 46B projects from the partition wall 46A to receive the second elastic body 44. It has an inward projection 46C. The inner protrusion 46C is provided closer to the base end of the housing 48 than the outer protrusion 46B. With such a configuration, the first elastic body 42 and the second elastic body 44 can be partitioned from each other while receiving the first elastic body 42 and the second elastic body 44 with a simple configuration.
 以上、上述の実施の形態1、2を挙げて本発明を説明したが、本発明は上述の実施の形態1、2に限定されない。例えば、上記実施の形態1、2では、複数の同軸ケーブル6および複数のプローブピン18を設けて、コネクタ3の対応する端子3aの特性検査を同時に実施する場合について説明したが、このような場合に限らない。コネクタ3において特性検査が望まれる端子3aの数に応じて、実施の形態1、2とは異なる数の同軸ケーブル6およびプローブピン18を設けてもよい。コネクタ3についても、複数の端子3aを有する多極コネクタに限らず、1つの端子のみを有する単極コネクタであってもよい。 Although the present invention has been described with reference to the above-described first and second embodiments, the present invention is not limited to the above-described first and second embodiments. For example, in the above-described first and second embodiments, the case where the plurality of coaxial cables 6 and the plurality of probe pins 18 are provided and the characteristic inspection of the corresponding terminals 3a of the connector 3 is performed at the same time has been described. Not limited to The number of coaxial cables 6 and probe pins 18 different from those in the first and second embodiments may be provided according to the number of terminals 3a for which the characteristic inspection is desired in the connector 3. The connector 3 is not limited to a multipolar connector having a plurality of terminals 3a, and may be a single polar connector having only one terminal.
 また、上記実施の形態1、2では、凹部17にコネクタ3を誘導する場合について説明したが、このような場合に限らない。例えば、凹部17の代わりに突起を設け、当該突起をコネクタ3に設けられた隙間に挿入してコネクタ3を嵌合させる等、任意の嵌合形態を採用してもよい。 Further, in the above-described first and second embodiments, the case where the connector 3 is guided to the recess 17 has been described, but the present invention is not limited to such a case. For example, a projection may be provided instead of the recess 17, and the projection may be inserted into a gap provided in the connector 3 to fit the connector 3 in any desired form.
 また、上記実施の形態1、2では、図4で説明したように、凹部17において、第1の側壁36が底壁34に対して鉛直に延び、第2の側壁38が内側に向かって窄まるように傾斜した傾斜面である場合について説明したが、このような場合に限らない。例えば、第2の側壁38のような傾斜面を設けなくてもよい。このような場合であっても、コネクタ3を凹部17の所定の測定位置に配置して端子3aの特性検査を実施することができる。 Further, in the first and second embodiments, as described with reference to FIG. 4, in the recess 17, the first side wall 36 extends vertically with respect to the bottom wall 34, and the second side wall 38 narrows inward. Although the case has been described in which the inclined surface is completely inclined, the present invention is not limited to such a case. For example, the inclined surface like the second side wall 38 may not be provided. Even in such a case, it is possible to arrange the connector 3 at a predetermined measurement position in the recess 17 and perform the characteristic inspection of the terminal 3a.
 また、上記実施の形態1では、第1弾性体10の弾性係数k1が第2弾性体の弾性係数k2よりも大きく設定される場合について説明したが、このような場合に限らない。第1弾性体10の弾性力F1が第2弾性体12の弾性力F2よりも小さければ、第1弾性体10の弾性係数k1および第2弾性体の弾性係数k2は任意の値に設定してもよい。実施の形態2でも同様である。 In the first embodiment, the case where the elastic coefficient k1 of the first elastic body 10 is set to be larger than the elastic coefficient k2 of the second elastic body has been described, but the case is not limited to such a case. If the elastic force F1 of the first elastic body 10 is smaller than the elastic force F2 of the second elastic body 12, the elastic coefficient k1 of the first elastic body 10 and the elastic coefficient k2 of the second elastic body are set to arbitrary values. Good. The same applies to the second embodiment.
 また、上記実施の形態1では、第1弾性体10および第2弾性体12がスプリングである場合について説明したが、このような場合に限らず、スプリング以外の任意の弾性体であってもよい。ただし、スプリングであれば、ばね荷重および長さの調節がしやすいため、設計の自由度が高い。また弾性ゴムと比較して、摺動距離を大きくとることができるため、ハウジング9全体の摺動に関わるストロークを長くすることができる。実施の形態2でも同様である。 In the first embodiment, the case where the first elastic body 10 and the second elastic body 12 are springs has been described, but the present invention is not limited to such a case, and any elastic body other than springs may be used. .. However, if a spring is used, the spring load and length can be easily adjusted, so the degree of freedom in design is high. Further, since the sliding distance can be made larger than that of the elastic rubber, the stroke related to the sliding of the entire housing 9 can be lengthened. The same applies to the second embodiment.
 また、上記実施の形態1では、第1弾性体10および第2弾性体12は、コネクタ3が第2プランジャ16の凹部17に配置される前の状態において、それぞれの自然長よりも短く圧縮された状態にある場合について説明したが、このような場合に限らない。第1弾性体10の弾性力F1が第2弾性体12の弾性力F2よりも小さければ、第1弾性体10と第2弾性体12のそれぞれは自然長で圧縮されていない状態であってもよい。実施の形態2でも同様である。 In the first embodiment, the first elastic body 10 and the second elastic body 12 are compressed to be shorter than their natural lengths before the connector 3 is placed in the recess 17 of the second plunger 16. The case where the vehicle is in the open state has been described, but the case is not limited to such a case. If the elastic force F1 of the first elastic body 10 is smaller than the elastic force F2 of the second elastic body 12, each of the first elastic body 10 and the second elastic body 12 has a natural length and is not compressed. Good. The same applies to the second embodiment.
 本開示は、添付図面を参照しながら好ましい実施の形態に関連して充分に記載されているが、この技術の熟練した人々にとっては種々の変形や修正は明白である。そのような変形や修正は、添付した特許請求の範囲による本開示の範囲から外れない限りにおいて、その中に含まれると理解されるべきである。また、各実施の形態における要素の組合せや順序の変化は、本開示の範囲及び思想を逸脱することなく実現し得るものである。 Although the present disclosure has been fully described in connection with the preferred embodiments with reference to the accompanying drawings, various variations and modifications will be apparent to those skilled in the art. It is to be understood that such variations and modifications are included within the scope of the present disclosure as defined by the appended claims. In addition, the combination of elements and the change in order in each embodiment can be realized without departing from the scope and concept of the present disclosure.
 なお、上記様々な実施の形態1、2および変形例のうちの任意の実施の形態あるいは変形例を適宜組み合わせることにより、それぞれの有する効果を奏するようにすることができる。 It is to be noted that, by properly combining the arbitrary embodiments or modified examples of the above-mentioned various first and second embodiments and modified examples, the effects possessed by them can be produced.
 本発明は、コネクタの特性検査を行うプローブであれば適用可能である。 The present invention is applicable to any probe that inspects the characteristics of a connector.
 2 プローブ
 3 コネクタ
 3a 端子
 4 プランジャ
 6 同軸ケーブル
 8 フランジ
 9 ハウジング
10 第1弾性体
12 第2弾性体
13 測定コネクタ
14 第1プランジャ
14A 仕切壁
14B 内方突出部
14C 外方突出部
16 第2プランジャ
16A 嵌合部
16B 接続部
17 凹部
18 プローブピン
20 貫通孔
21 先端部
22 基端部
23 第3プランジャ
24 筒状部
26 基板
27 樹脂
28 開口部
32 底部
34 底壁
36 第1の側壁
38 第2の側壁
40 プローブ
42 第1弾性体
44 第2弾性体
46 第1プランジャ
46A 仕切壁
46B 外方突出部
46C 内方突出部
48 ハウジング
k1、k2、k3、k4 弾性係数
x1、x2、x3、x4 縮み量
F1、F2、F3、F4 弾性力
Fp 外力
2 probe 3 connector 3a terminal 4 plunger 6 coaxial cable 8 flange 9 housing 10 first elastic body 12 second elastic body 13 measurement connector 14 first plunger 14A partition wall 14B inward protrusion 14C outward protrusion 16 second plunger 16A Fitting portion 16B Connection portion 17 Recessed portion 18 Probe pin 20 Through hole 21 Tip portion 22 Base end portion 23 Third plunger 24 Cylindrical portion 26 Substrate 27 Resin 28 Opening portion 32 Bottom portion 34 Bottom wall 36 First sidewall 38 Second Side wall 40 Probe 42 First elastic body 44 Second elastic body 46 First plunger 46A Partition wall 46B Outer protruding portion 46C Inner protruding portion 48 Housing k1, k2, k3, k4 Elastic coefficient x1, x2, x3, x4 Shrinkage amount F1, F2, F3, F4 Elastic force Fp External force

Claims (11)

  1.  コネクタの特性検査を行うためのプローブであって、
     貫通孔が形成されたフランジと、
     一方側の端部である基端部と他方側の端部である先端部とを有し、前記フランジの前記貫通孔に挿通され、前記基端部が前記貫通孔に嵌合可能であり、同軸ケーブルを内包して軸方向に延びるハウジングと、
     前記貫通孔よりも前記ハウジングの前記先端部側に取り付けられた第1プランジャと、
     前記第1プランジャと前記フランジの間に取り付けられ、前記第1プランジャと前記フランジを互いに離れる方向に付勢可能な第1弾性体と、
     前記ハウジングの前記先端部に取り付けられ、前記第1プランジャに対して相対的に移動可能な状態で保持された第2プランジャと、
     前記第2プランジャと前記第1プランジャの間に取り付けられ、前記第2プランジャを前記第1プランジャから離れる方向に付勢可能な第2弾性体と、を備え、
     前記第2プランジャの底部には、前記同軸ケーブルと電気的に接続されたプローブピンを通す開口部が形成されており、
     前記第2プランジャは、前記プローブピンの先端を前記開口部から突出させる第1の位置と、前記プローブピンの先端を前記開口部よりも前記基端部側に配置する第2の位置の間で移動可能であり、
     前記第1弾性体と前記第2弾性体は前記ハウジングの前記軸方向に互いに部分的に重なるように配置されており、前記第1プランジャは、前記第1弾性体と前記第2弾性体が重なる箇所を仕切る仕切壁を有する、プローブ。
    A probe for inspecting the characteristics of a connector,
    A flange having a through hole,
    It has a base end part that is an end part on one side and a tip part that is an end part on the other side, is inserted into the through hole of the flange, and the base end part can be fitted into the through hole. A housing that contains the coaxial cable and extends in the axial direction,
    A first plunger attached to the tip end side of the housing with respect to the through hole;
    A first elastic body mounted between the first plunger and the flange, capable of urging the first plunger and the flange in directions away from each other;
    A second plunger attached to the tip of the housing and held so as to be movable relative to the first plunger;
    A second elastic body attached between the second plunger and the first plunger and capable of urging the second plunger in a direction away from the first plunger;
    The bottom of the second plunger is formed with an opening through which a probe pin electrically connected to the coaxial cable is inserted.
    The second plunger is provided between a first position where the tip of the probe pin projects from the opening and a second position where the tip of the probe pin is located closer to the base end than the opening. Is movable,
    The first elastic body and the second elastic body are arranged so as to partially overlap each other in the axial direction of the housing, and the first plunger overlaps the first elastic body and the second elastic body. A probe that has a partition wall that divides parts.
  2.  前記第1弾性体と前記第2弾性体が重なる箇所において、前記第1弾性体は前記第2弾性体よりも内側に配置される、請求項1に記載のプローブ。 The probe according to claim 1, wherein the first elastic body is arranged inside the second elastic body at a position where the first elastic body and the second elastic body overlap each other.
  3.  前記第1プランジャは、前記仕切壁から内側に突出して前記第1弾性体を受ける内方突出部と、前記仕切壁から外側に突出して前記第2弾性体を受ける外方突出部とを有し、前記内方突出部は、前記外方突出部よりも前記ハウジングの前記先端部側に設けられる、請求項2に記載のプローブ。 The first plunger has an inward projection that projects inward from the partition wall to receive the first elastic body, and an outer projection that projects outward from the partition wall to receive the second elastic body. The probe according to claim 2, wherein the inward protruding portion is provided closer to the distal end portion side of the housing than the outward protruding portion.
  4.  前記第1弾性体と前記第2弾性体が重なる箇所において、前記第1弾性体は前記第2弾性体よりも外側に配置される、請求項1に記載のプローブ。 The probe according to claim 1, wherein the first elastic body is arranged outside the second elastic body at a position where the first elastic body and the second elastic body overlap each other.
  5.  前記第1プランジャは、前記仕切壁から外側に突出して前記第1弾性体を受ける外方突出部と、前記仕切壁から内側に突出して前記第2弾性体を受ける内方突出部とを有し、前記内方突出部は、前記外方突出部よりも前記ハウジングの前記基端部側に設けられる、請求項4に記載のプローブ。 The first plunger has an outer protrusion protruding outward from the partition wall to receive the first elastic body, and an inner protrusion protruding inward from the partition wall to receive the second elastic body. The probe according to claim 4, wherein the inward protruding portion is provided closer to the base end portion side of the housing than the outward protruding portion.
  6.  前記第2プランジャの前記底部にコネクタを接触させる前の状態において、前記第1弾性体と前記第2弾性体が前記軸方向に重なる長さは、前記第2弾性体のうち前記第1弾性体と重ならない前記軸方向の長さよりも長く設定される、請求項1から5のいずれか1つに記載のプローブ。 In the state before the connector is brought into contact with the bottom portion of the second plunger, the length by which the first elastic body and the second elastic body overlap in the axial direction is the first elastic body of the second elastic body. The probe according to any one of claims 1 to 5, which is set to be longer than the length in the axial direction that does not overlap with.
  7.  前記第2プランジャの前記底部にコネクタを接触させる前の状態において、前記第1弾性体と前記第2弾性体が前記軸方向に重なる長さは、前記第1弾性体の長さの1/3以上、かつ、前記第2弾性体の長さの1/3以上である、請求項1から6のいずれか1つに記載のプローブ。 In the state before the connector is brought into contact with the bottom portion of the second plunger, the length by which the first elastic body and the second elastic body overlap in the axial direction is 1/3 of the length of the first elastic body. The probe according to any one of claims 1 to 6, which is equal to or more than 1/3 of the length of the second elastic body.
  8.  前記第2プランジャの前記底部にコネクタを接触させる前の状態において、前記第2プランジャは前記第2の位置にあり、かつ、前記第1弾性体の弾性力が前記第2弾性体の弾性力よりも小さくなるように設定されている、請求項1から7のいずれか1つに記載のプローブ。 In a state before the connector is brought into contact with the bottom portion of the second plunger, the second plunger is at the second position, and the elastic force of the first elastic body is greater than the elastic force of the second elastic body. The probe according to any one of claims 1 to 7, which is set to be smaller.
  9.  前記第1弾性体の弾性係数は、前記第2弾性体の弾性係数よりも大きく設定されている、請求項1から8のいずれか1つに記載のプローブ。 The probe according to any one of claims 1 to 8, wherein the elastic coefficient of the first elastic body is set to be larger than the elastic coefficient of the second elastic body.
  10.  前記第1弾性体および前記第2弾性体はともにスプリングである、請求項1から9のいずれか1つに記載のプローブ。 The probe according to any one of claims 1 to 9, wherein both the first elastic body and the second elastic body are springs.
  11.  前記第1弾性体および前記第2弾性体は、前記第2プランジャが前記第2の位置にある状態において、それぞれの自然長よりも短く圧縮された状態にある、請求項1から10のいずれか1つに記載のプローブ。 The first elastic body and the second elastic body are in a compressed state shorter than their natural lengths in a state in which the second plunger is in the second position, respectively. The probe according to item 1.
PCT/JP2019/048058 2018-12-13 2019-12-09 Probe WO2020122006A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020560095A JP7095753B2 (en) 2018-12-13 2019-12-09 probe
CN201980082659.7A CN113167817B (en) 2018-12-13 2019-12-09 Probe with a probe tip

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-233743 2018-12-13
JP2018233743 2018-12-13

Publications (1)

Publication Number Publication Date
WO2020122006A1 true WO2020122006A1 (en) 2020-06-18

Family

ID=71076362

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/048058 WO2020122006A1 (en) 2018-12-13 2019-12-09 Probe

Country Status (3)

Country Link
JP (1) JP7095753B2 (en)
CN (1) CN113167817B (en)
WO (1) WO2020122006A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113848515A (en) * 2021-05-17 2021-12-28 昆山德普福电子科技有限公司 Detector
WO2022091931A1 (en) * 2020-10-27 2022-05-05 株式会社ヨコオ Inspection jig
WO2022113489A1 (en) * 2020-11-27 2022-06-02 I-Pex株式会社 Probe
JP7236110B2 (en) 2018-05-28 2023-03-09 国立研究開発法人理化学研究所 Acquisition method of tomographic image data by oversampling, acquisition device, and control program
WO2023084888A1 (en) * 2021-11-12 2023-05-19 株式会社村田製作所 Measurement probe

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004247494A (en) * 2003-02-13 2004-09-02 Tdk Corp Probing device and inspecting system using it
JP2008191079A (en) * 2007-02-07 2008-08-21 Hioki Ee Corp Contact probe
US20140030918A1 (en) * 2012-07-27 2014-01-30 Chin Nan Precision Electronics Co., Ltd. Coaxial probe
JP2016125841A (en) * 2014-12-26 2016-07-11 ヒロセ電機株式会社 Coaxial probe
CN206573619U (en) * 2017-03-28 2017-10-20 江苏金帆新动能源科技有限公司 A kind of battery charging and discharging detection probe
WO2018116568A1 (en) * 2016-12-22 2018-06-28 株式会社村田製作所 Probe structure
WO2019069576A1 (en) * 2017-10-06 2019-04-11 株式会社村田製作所 Probe

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4667253B2 (en) * 2006-01-17 2011-04-06 大西電子株式会社 Four-probe measurement coaxial probe and probe jig provided with the same
JP5291585B2 (en) * 2008-11-07 2013-09-18 株式会社日本マイクロニクス Contactor and electrical connection device
JP2011012992A (en) * 2009-06-30 2011-01-20 Nidai Seiko:Kk Method of manufacturing spring probe
KR101307365B1 (en) * 2010-02-05 2013-09-11 가부시키가이샤 니혼 마이크로닉스 Contact and Electrical Connection Device
JPWO2012067126A1 (en) * 2010-11-17 2014-05-12 日本発條株式会社 Contact probe and probe unit
JP6040532B2 (en) * 2012-01-26 2016-12-07 日本電産リード株式会社 Probe and connecting jig
JP2014123482A (en) * 2012-12-21 2014-07-03 Murata Mfg Co Ltd Coaxial connector for inspection
KR101492242B1 (en) * 2014-07-17 2015-02-13 주식회사 아이에스시 Contact device for test and test socket
CN107148575B (en) * 2014-11-07 2021-03-12 株式会社村田制作所 Probe needle
KR101597484B1 (en) * 2015-01-14 2016-02-24 주식회사 타이스일렉 Probe for testing secondary battery
JP6892277B2 (en) * 2017-02-10 2021-06-23 株式会社日本マイクロニクス Probes and electrical connections

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004247494A (en) * 2003-02-13 2004-09-02 Tdk Corp Probing device and inspecting system using it
JP2008191079A (en) * 2007-02-07 2008-08-21 Hioki Ee Corp Contact probe
US20140030918A1 (en) * 2012-07-27 2014-01-30 Chin Nan Precision Electronics Co., Ltd. Coaxial probe
JP2016125841A (en) * 2014-12-26 2016-07-11 ヒロセ電機株式会社 Coaxial probe
WO2018116568A1 (en) * 2016-12-22 2018-06-28 株式会社村田製作所 Probe structure
CN206573619U (en) * 2017-03-28 2017-10-20 江苏金帆新动能源科技有限公司 A kind of battery charging and discharging detection probe
WO2019069576A1 (en) * 2017-10-06 2019-04-11 株式会社村田製作所 Probe

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7236110B2 (en) 2018-05-28 2023-03-09 国立研究開発法人理化学研究所 Acquisition method of tomographic image data by oversampling, acquisition device, and control program
WO2022091931A1 (en) * 2020-10-27 2022-05-05 株式会社ヨコオ Inspection jig
WO2022113489A1 (en) * 2020-11-27 2022-06-02 I-Pex株式会社 Probe
CN113848515A (en) * 2021-05-17 2021-12-28 昆山德普福电子科技有限公司 Detector
WO2023084888A1 (en) * 2021-11-12 2023-05-19 株式会社村田製作所 Measurement probe

Also Published As

Publication number Publication date
JP7095753B2 (en) 2022-07-05
JPWO2020122006A1 (en) 2021-09-27
CN113167817B (en) 2024-04-23
CN113167817A (en) 2021-07-23

Similar Documents

Publication Publication Date Title
JP6711469B2 (en) probe
WO2020122006A1 (en) Probe
US8669774B2 (en) Probe pin and an IC socket with the same
US8550838B2 (en) Electrical connector having poke-in wire contact
TWI706138B (en) Probe
KR101894965B1 (en) Probe pin and ic socket
KR20150088262A (en) Probes with spring mechanisms for impeding unwanted movement in guide-holes
WO2011096067A1 (en) Contact and electrical connection device
JP4614434B2 (en) probe
WO2013100064A1 (en) Electrical contact and electrical part socket
JP5486760B2 (en) Contact pin and socket for electrical parts
JP2008175700A (en) Inspection device or inspection method for semiconductor device
JP6013731B2 (en) Contact probe and manufacturing method thereof
JP2013140059A (en) Probe pin and socket for electric component
US20210223287A1 (en) Contact probe and probe unit
JP7040641B2 (en) probe
KR101183809B1 (en) Coaxial connector for inspection
KR101471652B1 (en) Insert and Apparatus for testing semiconductor package including the same
KR101627172B1 (en) Socket With One Piece Housing
JP2023007843A (en) Contact probe and assembly method therefor
JP7327663B2 (en) probe
WO2021065702A1 (en) Probe
CN217425649U (en) Detector
KR101910063B1 (en) Probe for the test device
JP2023107531A (en) probe

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19896600

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020560095

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19896600

Country of ref document: EP

Kind code of ref document: A1