WO2020121738A1 - Soil grouting material, cured product thereof, soil improvement method, and powder material for soil grouting - Google Patents

Soil grouting material, cured product thereof, soil improvement method, and powder material for soil grouting Download PDF

Info

Publication number
WO2020121738A1
WO2020121738A1 PCT/JP2019/045025 JP2019045025W WO2020121738A1 WO 2020121738 A1 WO2020121738 A1 WO 2020121738A1 JP 2019045025 W JP2019045025 W JP 2019045025W WO 2020121738 A1 WO2020121738 A1 WO 2020121738A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
ground injection
injection material
powder material
ground
Prior art date
Application number
PCT/JP2019/045025
Other languages
French (fr)
Japanese (ja)
Inventor
佐々木 崇
田中 秀弘
Original Assignee
デンカ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デンカ株式会社 filed Critical デンカ株式会社
Priority to JP2020559871A priority Critical patent/JP7374926B2/en
Publication of WO2020121738A1 publication Critical patent/WO2020121738A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B22/00Use of inorganic materials as active ingredients for mortars, concrete or artificial stone, e.g. accelerators, shrinkage compensating agents
    • C04B22/08Acids or salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B22/00Use of inorganic materials as active ingredients for mortars, concrete or artificial stone, e.g. accelerators, shrinkage compensating agents
    • C04B22/08Acids or salts thereof
    • C04B22/14Acids or salts thereof containing sulfur in the anion, e.g. sulfides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/04Carboxylic acids; Salts, anhydrides or esters thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K17/00Soil-conditioning materials or soil-stabilising materials
    • C09K17/02Soil-conditioning materials or soil-stabilising materials containing inorganic compounds only
    • C09K17/06Calcium compounds, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K17/00Soil-conditioning materials or soil-stabilising materials
    • C09K17/02Soil-conditioning materials or soil-stabilising materials containing inorganic compounds only
    • C09K17/08Aluminium compounds, e.g. aluminium hydroxide
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K17/00Soil-conditioning materials or soil-stabilising materials
    • C09K17/02Soil-conditioning materials or soil-stabilising materials containing inorganic compounds only
    • C09K17/10Cements, e.g. Portland cement
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D3/00Improving or preserving soil or rock, e.g. preserving permafrost soil
    • E02D3/12Consolidating by placing solidifying or pore-filling substances in the soil

Definitions

  • the present invention relates to a ground injection material, a cured product thereof, a ground improvement method, and a ground injection powder material.
  • a chemical solution injection method of injecting a curable drug into the ground is known.
  • various ground injection materials for use in this method are known.
  • the chemical solution injection method using the ground injection material can be improved without disturbing the ground as much as possible, and the advantages of compact equipment etc. Have. Therefore, there are many achievements.
  • Patent Document 1 describes a two-liquid type ground injection agent of a rapid hardening material slurry and a cement slurry.
  • the rapid hardening agent slurry contains SiO 2 and MgO as chemical components, the content molar ratio of Al 2 O 3 and MgO (Al 2 O 3 /MgO) is 17 to 60, and the content of SiO 2 and MgO is It contains calcium aluminate having a molar ratio (SiO 2 /MgO) of 2.0 to 7.5, gypsum, alkali metal carbonate, sodium aluminate, set retarder and water.
  • the cement slurry also contains cement and water.
  • Patent Document 2 describes that an aqueous slurry A and an aqueous slurry B are mixed to form a ground injection material.
  • the aqueous slurry A is one or more selected from the group consisting of 100 parts by mass of calcium aluminate, 20 to 300 parts by mass of gypsum, alkali metal carbonate, hydrogen carbonate or sulfate, and 0.5 to 15 parts by mass.
  • Sodium aluminate 0.5 to 15 parts by mass and a setting retarder 0.1 to 10 parts by mass.
  • the aqueous slurry B contains 100 to 2200 parts by mass of cement with respect to 100 parts by mass of calcium aluminate in the aqueous slurry A.
  • the "two-liquid type” ground injection material as described in the above patent documents usually has sufficient fluidity before mixing the two liquids, but quickly cures after mixing the two liquids. Is designed to move forward.
  • the inventors of the present invention provide a new two-liquid type ground injection material that immediately exhibits the ground improvement effect immediately after the ground injection and can secure a sufficient pot life before the ground injection.
  • Various studies were conducted as one of the purposes.
  • liquids containing liquid A which is a mixed slurry of powder material A containing calcium aluminate and carboxylate and water
  • liquid B which is a mixed slurry of powder material B containing cement and water
  • a ground injection material having a gel time of 1 second or more and 30 seconds or less which is measured by the following steps (1) to (5) when the solution A and the solution B are mixed, Will be provided.
  • a cured product obtained by mixing the liquid A and the liquid B in the ground injection material Will be provided.
  • Ground improvement method for improving the ground by the cured product Will be provided.
  • a ground injection powder material comprising the powder material A and the powder material B, Will be provided.
  • a new two-liquid type ground injection material in which the ground improvement effect is immediately exhibited immediately after the ground injection and a sufficient pot life can be secured before the ground injection.
  • the ground injection material of the present embodiment is a liquid A which is a mixed slurry of powder material A containing calcium aluminate and carboxylate and water, and a mixed slurry of powder material B containing cement and water. It is a two-liquid type containing a certain liquid B.
  • Solution A contains calcium aluminate and carboxylate. Further, the gel time when the liquid A and the liquid B are mixed is 1 second or more and 30 seconds or less. By injecting such a two-liquid type ground injection material into the ground, the ground improvement effect can be obtained immediately after the ground injection, while the pot life of the liquid A before mixing with the liquid B is improved. Can be made Even if the solution A contains calcium aluminate and carboxylate, if the gel time is less than 1 second, the actual ground injection work will be hindered. Further, if the gel time is more than 30 seconds, it becomes difficult to obtain an early ground improvement effect as a ground injection material.
  • the ground injection material of the present embodiment is excellent in that it is a two-liquid system containing the specific liquid A and liquid B, and the gel time when the liquid A and liquid B are mixed is the specific time. It has a great effect.
  • the later-described carboxylic acid salt having a relatively small number of carbon atoms (such as a metal salt) is included in the A liquid, or the carboxylic acid in the A liquid is contained. It is easy to design the gel time after mixing the liquids A and B to 30 seconds or less by appropriately adjusting the amount of the salt. As a result, it is easy to prolong the pot life of the liquid A. Although not an essential component, it is easy to design the gel time after mixing the liquids A and B with an appropriate value by adding an appropriate amount of alum to the liquid B.
  • the gel time is calculated based on the following procedure.
  • (2) After the operation of (1) above, hold the paper cup with the line connecting the center of the bottom surface and the center of the upper end surface of the paper cup inclined by 60° with respect to the vertical plane, and the interface between the mixture and air flows. Change or the interface is immovable.
  • the paper cup is placed on the horizontal surface again.
  • the above (2) and (3) are repeated until the state where the interface becomes immobile in the above (2).
  • the gel time is the time from when the mixing of the liquids A and B in (1) above is started to the time when the interface becomes immobile in (2) above.
  • the mixing ratio of the liquid A and the liquid B is usually set to an equal volume of 500 mL each.
  • a preliminary experiment is carried out to grasp the approximate gel time, and then the main test is carried out, (ii) measurement is carried out with only one paper cup instead of this, it is also possible to collect the mixture in a plurality of paper cups in the above (1) and tilt a new paper cup containing the mixture every second.
  • Gel time is 1 second to 30 seconds, preferably 3 seconds to 20 seconds.
  • the soft and easily deformable ground can be better improved.
  • the gel time is moderately long, a working time for injecting the mixture of the liquid A and the liquid B into the ground is created, which facilitates the ground improvement work.
  • the ground injection material of the present embodiment tends to have a high gel strength and a high initial strength after mixing the liquids A and B.
  • the high gel strength means that the mixture obtained by mixing the liquid A and the liquid B does not sufficiently harden and has fluidity, so that the deformation against external force is small and the external force is small. It means that it can fully counter.
  • a ground injection material having a high gel strength and a high initial strength can be preferably used, for example, for improving a soft ground containing a large amount of water.
  • the powder material A contains calcium aluminate and carboxylate.
  • the powder material A preferably further contains gypsum, a setting modifier, and the like.
  • the liquid A is prepared by mixing the powder material A with water to form a slurry.
  • the constituents of the powder material A or the liquid A and the properties of the liquid A will be described.
  • a carboxylic acid salt refers to a compound in which the proton of the carboxy group of a carboxylic acid is substituted with a cation.
  • the carboxylic acid salt can be obtained, for example, by preparing a carboxylic acid as a starting material and reacting it with a suitable basic substance (neutralization reaction).
  • the “carboxylic acid” in other words, the carboxylic acid as the “starting material”) in the carboxylate preferably has a relatively small number of carbon atoms.
  • the inventors of the present invention have found that when the number of carbon atoms of the carboxylic acid in the carboxylic acid salt is relatively small, the pot life of the liquid A is likely to be long and the curing progress after mixing the liquid A and the liquid B is further improved. Easy to hasten.
  • the carboxylic acid salt is preferably a salt of a carboxylic acid having 10 or less carbon atoms, that is, a compound in which the proton of the carboxy group of the carboxylic acid having 10 or less carbon atoms is substituted with a cation.
  • the carbon number here is more preferably 1 or more and 10 or less, still more preferably 1 or more and 8 or less, particularly preferably 1 or more and 5 or less, particularly preferably 1 or more and 3 or less, and most preferably 1 or 2.
  • the “carboxylic acid” in the carboxylic acid salt may be a monocarboxylic acid or a polycarboxylic acid (for example, a dicarboxylic acid or a tricarboxylic acid). From the viewpoint of cost and the like, monocarboxylic acid is preferable.
  • carboxylic acid examples include formic acid, acetic acid, propionic acid, butyric acid, valeric acid, lauric acid, palmitic acid, stearic acid, oxalic acid, succinic acid, adipic acid, and hydroxycarboxylic acid (carboxylic acid having a hydroxy group).
  • formic acid or acetic acid is preferable as the carboxylic acid in consideration of availability, cost, effect, and the like. That is, the carboxylic acid “salt” preferably includes acetate and/or formate. From the viewpoint of obtaining a more remarkable effect, it is preferable that the carboxylic acid is not a hydroxycarboxylic acid (carboxylic acid having a hydroxy group).
  • the carboxylic acid salt preferably contains a carboxylic acid metal salt.
  • the carboxylic acid salt may be a carboxylic acid lithium salt, sodium salt, potassium salt, magnesium salt, calcium salt, barium salt, or the like. More preferably, the carboxylic acid salt comprises a carboxylic acid calcium salt.
  • the amount of the carboxylic acid salt in the powder material A may be appropriately adjusted in consideration of the balance such as the desired pot life of the liquid A and the speed of curing after mixing with the liquid B.
  • the amount of the carboxylate in the powder material A is, for example, 0.01% by mass or more and 3% by mass or less, preferably 0.03% by mass or more and 2% by mass or less, more preferably 0.05% by mass or more and 1% by mass. It is below.
  • the amount of the carboxylate with respect to the calcium aluminate is preferably 0.1 parts by mass or more and 50 parts by mass or less, more preferably 0.1 parts by mass or more and 25 parts by mass with respect to 100 parts by mass of calcium aluminate. Parts or less, more preferably 0.15 parts by mass or more and 10 parts by mass or less.
  • the powder material A may contain only one kind of carboxylate or two kinds or more. In the latter case, the total amount of all carboxylates is preferably within the above numerical range.
  • Calcium aluminate is a general term for substances having a hydration activity, which contain aluminum oxide (Al 2 O 3 ) and calcium oxide (CaO) as main components in the technical field of hydraulic materials. ..
  • the "main component” means that the total content of aluminum oxide and calcium oxide in the entire calcium aluminate is, for example, 50% by mass or more, preferably 70% by mass or more, and more preferably 90% by mass or more. means.
  • Calcium aluminate is typically a mixture of aluminum oxide (Al 2 O 3 ) and calcium oxide (CaO), and in some cases silica (SiO 2 ), and the like, and the mixture is baked and/or melted. It can be obtained by cooling and cooling. A rotary kiln, an electric furnace, or the like can be used for firing/melting.
  • the CaO raw material include calcium carbonate such as limestone and shells, calcium hydroxide such as slaked lime, and calcium oxide such as quick lime.
  • the Al 2 O 3 raw material include bauxite, an industrial by-product called aluminum residual ash, and aluminum powder.
  • Both crystalline and amorphous calcium aluminate can be used. From the viewpoint of further increasing the curability after mixing the liquid A with the liquid B, an amorphous one, for example, an amorphous calcium aluminate produced by quenching after melting is preferable.
  • the CaO/Al 2 O 3 molar ratio in the calcium aluminate is preferably 1.0 or more and 3.0 or less, more preferably 1.7 or more and 2.5 or less.
  • the content of impurities (components other than CaO and Al 2 O 3 ) in calcium aluminate is preferably 15% by mass or less, more preferably 10% by mass or less.
  • the amount of impurities is 15% by mass or less, the curing after mixing the liquid A with the liquid B can be further accelerated, and the ground improvement effect can be easily obtained earlier.
  • the impurities silicon oxide, magnesium oxide, sulfur oxide and the like are typically mentioned.
  • the impurities are not limited to these.
  • the vitrification rate of calcium aluminate is preferably 70% or more, more preferably 90% or more, from the viewpoint of reaction activity. By making this value appropriate, it is easy to obtain the ground improvement effect earlier.
  • the particle size of the calcium aluminate, in terms of initial strength development is preferably more than Blaine specific surface area 3000cm 2 / g, 5000cm 2 / g or more is more preferable.
  • the upper limit is, for example, 9000 cm 2 /g or less.
  • calcium aluminate examples include alumina cement. That is, commercially available alumina cement or the like may be used as the calcium aluminate raw material for producing the liquid A.
  • Specific examples of the alumina cement include alumina cement No. 1 and alumina cement No. 2. These can be purchased from Denka Corporation or AGC Corporation
  • the powder material A may contain only one kind of calcium aluminate, or may contain two or more kinds of calcium aluminate having different properties/physical properties and the like.
  • the amount of calcium aluminate in the powder material A is, for example, 10 mass% or more and 80 mass% or less, preferably 20 mass% or more and 75 mass% or less, and more preferably 25 mass% or more and 70 mass% or less.
  • the powder material A preferably further contains gypsum.
  • gypsum By including gypsum, it is easy to design the pot life of solution A before mixing with solution B to be longer.
  • the gypsum that can be used is not particularly limited. Also, the combined use of different types of gypsum is not excluded. Examples of gypsum include hemihydrate gypsum and anhydrous gypsum. Anhydrite is preferable from the viewpoint of strength development. More specific examples of anhydrous gypsum include anhydrous gypsum by-product of hydrofluoric acid and natural anhydrous gypsum.
  • the pH of the gypsum when immersed in water is preferably weak alkali to pH 8 or less and acidic. When this pH is appropriately low, the solubility of the gypsum component can be lowered, and the initial strength development can be further enhanced.
  • the pH is more preferably 3 or more and 8 or less, still more preferably 5 or more and 7 or less.
  • the particle size of the gypsum, and liquid A -B-liquid mixture after the initial strength development, the more long pot of life point of view of the liquid A preferably 3000 cm 2 / g or more in Blaine specific surface area value, 5000 cm 2 / g or more More preferable. From the viewpoint of longer pot life, this value is preferably from 30000cm 2 / g, more preferably at most 20000 cm 2 / g.
  • the amount of gypsum in the powder material A is 10% by mass or more and 80% by mass or less, preferably 20% by mass or more and 75% by mass or less, and more preferably 25% by mass or more and 70% by mass or less.
  • the amount of gypsum relative to calcium aluminate is preferably 50 parts by mass or more and 250 parts by mass or less, more preferably 70 parts by mass or more and 200 parts by mass with respect to 100 parts by mass of calcium aluminate. It is below.
  • the amount of plaster it is possible to obtain a longer pot life of the liquid A.
  • the initial strength of a cured product obtained by mixing the liquids A and B can be increased. That is, it is easy to obtain the ground improvement effect earlier.
  • the powder material A and/or the A liquid may contain a coagulation modifier for the purpose of adjusting the pot life of the A liquid and adjusting the curability when mixed with the B liquid.
  • the coagulation modifier may be contained in the powder material A in advance, or may be prepared separately from the powder material A and added when the solution A is prepared.
  • aluminates such as sodium aluminate and potassium aluminate
  • carbonates such as sodium carbonate and potassium carbonate
  • hydroxides such as sodium hydroxide and potassium hydroxide
  • aluminum sulfate and iron (III) sulfate Silicates such as sodium silicate and potassium silicate
  • phosphates such as sodium phosphate, calcium phosphate, magnesium phosphate
  • inorganic salts such as borate such as lithium borate and sodium borate
  • sugars Be done.
  • a commercially available product may be used as the setting regulator.
  • Examples of commercially available products include Denka Setter D-100 and D-300 manufactured by Denka Corporation.
  • the amount of the coagulation modifier is, for example, 0.01% by mass or more and 2% by mass or less, preferably 0.03% by mass or more and 1.5% by mass or less, based on all components other than water in the liquid A. It is preferable to use it so as to be 0.05% by mass or more and 1% by mass or less. That is, when the powder material A contains a coagulation modifier in advance, the amount of the coagulation modifier with respect to the entire powder material A is preferably set to the above range. When the coagulation modifier is prepared separately from the powder material A, it is preferable that the total amount of the coagulation modifier including the powder material A and the coagulation modifier is within the above range.
  • the liquid A is a slurry in which the powder material A is mixed with water. It is considered that at least part of the carboxylate in the liquid A is dissolved in water.
  • the amount of water used when the powder material A is mixed with water to form the liquid A may be appropriately adjusted depending on the desired fluidity, pumpability with a pump, injection property into the ground, and the like.
  • the amount of water can be adjusted to be, for example, 50% by mass or more and 95% by mass or less, preferably 60% by mass or more and 90% by mass or less, in the entire liquid A.
  • the long pot life of the liquid A specifically “hard to generate solids” means that when the liquid A is obtained by mixing the powder material A and water, The liquid A, which has been left for a certain period of time with the start time of mixing with water being 0 minutes, is passed through a sieve having an opening of 4.0 mm, and it can be evaluated whether or not there is a solid content that cannot pass through the sieve. Specifically, when the powder material A and water are mixed to obtain the liquid A, after the mixing, preferably 30 minutes, more preferably 45 minutes, and still more preferably 60 minutes have passed, and the mesh size is 4. The sieve residue with a 0 mm sieve is 0.1% by mass or less based on the total amount of the powder material A.
  • the mixing ratio of the powder material A and water can be arbitrary. That is, the powder material and water are mixed at the actual mixing ratio at the time of ground injection to prepare the liquid A, and the pot life of the liquid A can be evaluated as described above.
  • the amount of water is, for example, 50% by mass or more and 95% by mass or less, preferably 60% by mass or more and 90% by mass or less in the entire liquid A.
  • the pot life of solution A obtained by mixing as described above can be evaluated as described above.
  • the powdered material is commercially available and the recommended mixing ratio with water is indicated, the amount of water may be followed.
  • the method for producing liquid A is not particularly limited.
  • the powder material A may be poured into water and mixed to prepare.
  • solution A contains a coagulation regulator in terms of production stability and prevention of unintended coagulation and gelation, first add the coagulation regulator to water and then add other components to the water. It is preferable to obtain the solution A in the order of charging the solution.
  • Various mixers and the like known in the present technical field can be used for mixing.
  • the powder material B contains cement as described above.
  • the powder material B may preferably further contain alum or the like.
  • the liquid B is obtained by mixing the powder material B with water to form a slurry.
  • Liquid B is usually present in a state of not being in contact with or mixing with liquid A until immediately before use. The components constituting the powder material B or the liquid B will be described below.
  • the cement that can be used is not particularly limited.
  • various kinds of Portland cement such as normal, early strength, super early strength, low heat or moderate heat, mixed cement in which these cements are mixed with blast furnace slag, fly ash, silica fume, etc., blast furnace cement, incineration of municipal waste.
  • Examples include environmentally friendly cement (eco-cement) produced from ash and sewage sludge incineration ash as raw materials, and commercially available fine particle cement (the alumina cement, which means calcium aluminate, is preferably Excluded from cement).
  • cements and various mixed cements may be used after being made into fine powder. Further, it is also possible to use the one prepared by increasing or decreasing the amount of the component (eg gypsum) usually used for cement. Cement may be used alone or in combination of two or more kinds. Among these, blast furnace cement is preferable because it has a low hexavalent chromium content.
  • the powder material B or B solution preferably contains alum.
  • the inventors of the present invention have found that the powder material B or the liquid B contains alum, whereby the curing after mixing the liquid A and the liquid B can be accelerated. And the ground improvement effect can be obtained more quickly.
  • Alum that can be used is not particularly limited.
  • various alums such as potassium alum, chrome alum, iron alum and the like can be mentioned.
  • alum stone is a natural product showing a component range of [(K,Na)(Al,Fe) 3 (SO 4 ) 2 (OH) 6 ].
  • Some alums contain anhydrous salt or water of crystallization, but any of them can be used as they are.
  • the amount of alum in the powder material B or the liquid B is, for example, 0.3 parts by mass or more and 10 parts by mass or less, preferably 0.5 parts by mass or more and 5 parts by mass or less, relative to 100 parts by mass of cement.
  • the liquid B can be obtained by mixing the powder material B with water (kneading the powder material B with water).
  • alum may be included in the powder material B in advance, or alum may be added as a different material from the powder material B when preparing the liquid B.
  • Various mixers and the like known in the present technical field can be used for mixing.
  • the amount of water may be appropriately adjusted according to the type of cement in the powder material B, the hardening property of the cement, the desired hardness, the pumping property with a pump, the pouring property into the ground, and the like.
  • the amount of water is, for example, about 100 parts by mass to about 500 parts by mass, preferably about 100 parts by mass to about 300 parts by mass with respect to 100 parts by mass of the powder material B.
  • the powder material B or the liquid B may contain components other than cement, water, and alum as long as the effects of the invention are not excessively reduced.
  • the “other components” include carbonates, heavy metal carbonates, calcium hydroxide, magnesium hydroxide, alkali hydroxides, sulfates, sulfites and the like.
  • the powder material B or the liquid B preferably contains no carboxylate or calcium aluminate.
  • a cured product can be obtained by mixing the above-mentioned liquid A and the above-mentioned liquid B. Further, the ground can be improved by the cured product.
  • the method of mixing the liquids A and B and the specific procedure for improving the ground by the liquids A and B are not particularly limited, and various methods known in the technical field of ground improvement can be applied.
  • a so-called two-shot method in which the liquid A and the liquid B are combined and mixed at the tip end using a double pipe and injected into the ground
  • the liquid A and the liquid B are injected from the injection pump into the injection pipe.
  • a so-called 1.5-shot method in which they are mixed and injected on the way
  • a 1-shot method in which the liquid A and the liquid B are mixed in a mixing tank such as (iii) mixer can be adopted.
  • a publicly known infusion pump or the like can be used when implementing these methods.
  • a liquid and B liquid may be mixed before the ground injection to form a mixture, and the mixture may be injected into the ground, or (2) A liquid and B liquid may be separately pumped. Alternatively, both may be mixed at the moment of injection into the ground or after the ground injection.
  • the mixing ratio of the liquid A and the liquid B may be appropriately adjusted depending on the desired curing speed, pumpability, and the like.
  • the mixing ratio of liquid A: liquid B is typically 20:80 to 80:20, preferably about 30:70 to 70:30 by volume.
  • Embodiments of the present invention will be described in detail based on examples and comparative examples.
  • the present invention is not limited to the embodiments.
  • the gel time is the time from when the mixing of the liquids A and B in (1) above is started to the time when the interface becomes immobile in (2) above.
  • the strength was measured according to JIS R5201. Specifically, a test body measuring 4 cm in length ⁇ 4 cm in width ⁇ 16 cm in height was prepared using the composition of solutions A and B, and 30 minutes, 1 hour and 1 after mixing solution A and solution B, respectively. The compressive strength after day was measured.
  • the CaO/Al 2 O 3 molar ratio of calcium carbonate and aluminum oxide was 2.2, silica was added, and the mixture was melted at 1650° C. and rapidly cooled to a vitrification rate of 97%,
  • the pulverized product had a Blaine specific surface area value of 5000 cm 2 /g.
  • the gypsum natural anhydrous gypsum having a Blaine specific surface area value of 5000 cm 2 /g was used.
  • the Portland cement ordinary Portland cement (manufactured by Denka Co., Ltd.) was used.
  • the ground injection material containing the specific liquid A and liquid B and having a gel time of 1 second to 30 seconds after mixing the liquids A and B has a gel strength of It was good, and the initial strength (for example, 1day strength) was sufficiently large. In other words, it was confirmed that the ground injection material has preferable performance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Soil Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Agronomy & Crop Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Mining & Mineral Resources (AREA)
  • Paleontology (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)
  • Soil Conditioners And Soil-Stabilizing Materials (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

Provided is a two-part soil grouting material which comprises a liquid A which is a mixed slurry of water and a powder material A containing calcium aluminate and carboxylate, and a liquid B which is a mixed slurry of water and a powder material B containing cement. The gelling time measured by a specific procedure after mixing the liquid A and the liquid B is 1 to 30 seconds.

Description

地盤注入材、その硬化物、地盤改良方法および地盤注入用粉体材料Ground injection material, cured product thereof, ground improvement method and ground injection powder material
 本発明は、地盤注入材、その硬化物、地盤改良方法および地盤注入用粉体材料に関する。 The present invention relates to a ground injection material, a cured product thereof, a ground improvement method, and a ground injection powder material.
 地盤改良方法の一種として、硬化性の薬剤を地盤中に注入する薬液注入工法が知られている。また、この工法に用いるための様々な地盤注入材が知られている。
 地盤注入材を用いた薬液注入工法は、ジェットグラウト工法のような高圧の噴流によって地盤を乱しながら改良する工法と異なり、極力地盤を乱さないで改良できること、設備がコンパクトであること等のメリットを有する。よって、多くの実績がある。
As a kind of ground improvement method, a chemical solution injection method of injecting a curable drug into the ground is known. Also, various ground injection materials for use in this method are known.
Unlike the method of improving the ground by disturbing the ground with a high-pressure jet such as the jet grout method, the chemical solution injection method using the ground injection material can be improved without disturbing the ground as much as possible, and the advantages of compact equipment etc. Have. Therefore, there are many achievements.
 これまで、様々な地盤注入材が公知となっている。例えば、特定の2液(2液のうち一方はセメントを含む)を混合して混合物とし、その混合物を地盤注入材として地盤に注入する技術が知られている。 Until now, various ground injection materials have been publicly known. For example, a technique is known in which specific two liquids (one of the two liquids contains cement) are mixed to form a mixture, and the mixture is injected into the ground as a ground injection material.
 一つの例として、特許文献1には、急硬材スラリーと、セメントスラリーとの2液タイプの地盤注入剤が記載されている。ここで、急硬剤スラリーは、化学成分としてSiOとMgOを含有し、AlとMgOの含有モル比(Al/MgO)が17~60、かつSiOとMgOの含有モル比(SiO/MgO)が2.0~7.5であるカルシウムアルミネート、石膏、アルカリ金属の炭酸塩、アルミン酸ナトリウム、凝結遅延剤および水を含有する。また、セメントスラリーは、セメントおよび水を含有する。 As one example, Patent Document 1 describes a two-liquid type ground injection agent of a rapid hardening material slurry and a cement slurry. Here, the rapid hardening agent slurry contains SiO 2 and MgO as chemical components, the content molar ratio of Al 2 O 3 and MgO (Al 2 O 3 /MgO) is 17 to 60, and the content of SiO 2 and MgO is It contains calcium aluminate having a molar ratio (SiO 2 /MgO) of 2.0 to 7.5, gypsum, alkali metal carbonate, sodium aluminate, set retarder and water. The cement slurry also contains cement and water.
 別の例として、特許文献2には、水性スラリーAと水性スラリーBとを混合して地盤注入材とすることが記載されている。ここで、水性スラリーAは、カルシウムアルミネート100質量部、石膏類20~300質量部、アルカリ金属の炭酸塩、炭酸水素塩又は硫酸塩の群から選ばれる1種以上0.5~15質量部、アルミン酸ナトリウム0.5~15質量部および凝結遅延剤0.1~10質量部を含有する。また、水性スラリーBは、水性スラリーA中のカルシウムアルミネート100質量部に対してセメント100~2200質量部を含有する。 As another example, Patent Document 2 describes that an aqueous slurry A and an aqueous slurry B are mixed to form a ground injection material. Here, the aqueous slurry A is one or more selected from the group consisting of 100 parts by mass of calcium aluminate, 20 to 300 parts by mass of gypsum, alkali metal carbonate, hydrogen carbonate or sulfate, and 0.5 to 15 parts by mass. , Sodium aluminate 0.5 to 15 parts by mass and a setting retarder 0.1 to 10 parts by mass. Further, the aqueous slurry B contains 100 to 2200 parts by mass of cement with respect to 100 parts by mass of calcium aluminate in the aqueous slurry A.
特開2017-154948号公報JP, 2017-154948, A 特開2014-109012号公報JP, 2014-109012, A
 上記特許文献に記載されているような「2液タイプ」の地盤注入材は、通常、2液の混合前において各液は十分な流動性を有するが、2液の混合後においては速やかに硬化が進むことを意図して設計される。 The "two-liquid type" ground injection material as described in the above patent documents usually has sufficient fluidity before mixing the two liquids, but quickly cures after mixing the two liquids. Is designed to move forward.
 しかし、本発明者らの知見によれば、従来、2液の混合後の速やかな硬化を優先して地盤注入材を設計した場合、そのトレードオフとして、2液のうちの少なくとも一方の液の可使時間が短くなりがちであった。例えば、従来の2液タイプの地盤注入材においては、2液のうちの少なくとも一方の液が、他方の液と混合する前に、比較的短時間でゲル化または硬化してしまいがちであった。 However, according to the knowledge of the present inventors, conventionally, when a ground injection material is designed by prioritizing rapid hardening after mixing two liquids, the trade-off is that at least one of the two liquids is The pot life tended to be short. For example, in a conventional two-liquid type ground injection material, at least one of the two liquids tends to gel or harden in a relatively short time before being mixed with the other liquid. .
 よって、本発明者らは、地盤注入直後から速やかに地盤改良効果が発現するとともに、地盤注入前においては充分な可使時間を確保できる、新たな2液タイプの地盤注入材を提供することを目的の1つとして、様々な検討を行った。 Therefore, the inventors of the present invention provide a new two-liquid type ground injection material that immediately exhibits the ground improvement effect immediately after the ground injection and can secure a sufficient pot life before the ground injection. Various studies were conducted as one of the purposes.
 本発明者らは、鋭意検討の結果、以下に提供される発明を完成させ、上記課題を解決した。 As a result of intensive studies, the present inventors have completed the inventions provided below and solved the above problems.
 すなわち、本発明によれば、
 カルシウムアルミネートおよびカルボン酸塩を含有する粉体材料Aと水との混合スラリーであるA液と、セメントを含有する粉体材料Bと水との混合スラリーであるB液と、を含む2液型の地盤注入材であって、
 前記A液と前記B液とを混合した際の、以下の手順(1)から(5)により測定されるゲルタイムが1秒以上30秒以下である地盤注入材、
が提供される。
That is, according to the present invention,
Two liquids containing liquid A, which is a mixed slurry of powder material A containing calcium aluminate and carboxylate and water, and liquid B, which is a mixed slurry of powder material B containing cement and water Type ground injection material,
A ground injection material having a gel time of 1 second or more and 30 seconds or less, which is measured by the following steps (1) to (5) when the solution A and the solution B are mixed,
Will be provided.
[手順]
(1)A液とB液とを混合して混合物を得た後、得られた混合物の少なくとも一部を水平面に載置した円錐台形状の紙コップの中に採取する。採取する量は、紙コップの容量の70%以下の量とする。紙コップとしては、底面内径5.3cm、上端面内径7.5cm、高さ8.8cmのものを用いる。
(2)前記(1)の操作の後、前記紙コップの底面中心および上端面中心を結ぶ線が鉛直面に対して60°傾斜した状態で前記紙コップを保持し、混合物と空気の界面が流動して変化するか、あるいは前記界面が不動であるかを判別する。
(3)上記(2)の確認後、紙コップを再び水平面に載置する。
(4)上記(2)で界面が不動となる状態に至るまで上記(2)および(3)を繰り返す。
(5)上記(2)で界面が不動となった状態に至るまでの時間をゲルタイムとする。
[procedure]
(1) After mixing the solutions A and B to obtain a mixture, at least a part of the obtained mixture is collected in a truncated cone-shaped paper cup placed on a horizontal surface. The amount to be collected shall be 70% or less of the capacity of the paper cup. As the paper cup, one having a bottom surface inner diameter of 5.3 cm, an upper end surface inner diameter of 7.5 cm and a height of 8.8 cm is used.
(2) After the operation of (1) above, hold the paper cup with the line connecting the center of the bottom surface and the center of the upper end surface of the paper cup inclined by 60° with respect to the vertical plane, and let the interface between the mixture and the air. It is discriminated whether it changes by flowing or the interface is immovable.
(3) After checking the above (2), the paper cup is placed on the horizontal surface again.
(4) The above (2) and (3) are repeated until the state where the interface becomes immobile in the above (2).
(5) The gel time is the time until the interface becomes immobile in (2) above.
 また、本発明によれば、
 前記地盤注入材における前記A液と前記B液とを混合して得られる硬化物、
が提供される。
Further, according to the present invention,
A cured product obtained by mixing the liquid A and the liquid B in the ground injection material,
Will be provided.
 また、本発明によれば、
 前記硬化物により地盤を改良する地盤改良方法、
が提供される。
Further, according to the present invention,
Ground improvement method for improving the ground by the cured product,
Will be provided.
 また、本発明によれば、
 前記粉体材料Aおよび前記粉体材料Bからなる、地盤注入用粉体材料、
が提供される。
Further, according to the present invention,
A ground injection powder material comprising the powder material A and the powder material B,
Will be provided.
 本発明によれば、地盤注入直後から速やかに地盤改良効果が発現するとともに、地盤注入前においては充分な可使時間を確保できる、新たな2液タイプの地盤注入材が提供される。 According to the present invention, a new two-liquid type ground injection material is provided in which the ground improvement effect is immediately exhibited immediately after the ground injection and a sufficient pot life can be secured before the ground injection.
 以下、本発明の実施形態について、詳細に説明する。
 本明細書中、温度条件により変動しうる値については、特に断りの無い限り、20℃の条件下での値を採用するものとする。
Hereinafter, embodiments of the present invention will be described in detail.
In the present specification, values that can change depending on temperature conditions are values under the conditions of 20° C. unless otherwise specified.
<地盤注入材>
 本実施形態の地盤注入材は、カルシウムアルミネートおよびカルボン酸塩を含有する粉体材料Aと水との混合スラリーであるA液と、セメントを含有する粉体材料Bと水との混合スラリーであるB液と、を含む2液型のものである。
<Ground injection material>
The ground injection material of the present embodiment is a liquid A which is a mixed slurry of powder material A containing calcium aluminate and carboxylate and water, and a mixed slurry of powder material B containing cement and water. It is a two-liquid type containing a certain liquid B.
 A液はカルシウムアルミネートとカルボン酸塩を含んでいる。また、A液とB液とを混合した際のゲルタイムは1秒以上30秒以下である。このような2液型の地盤注入材を地盤に注入することで、地盤注入直後から速やかに地盤改良効果を得ることができ、一方ではB液と混合する前のA液の可使時間を向上させることができる。
 たとえA液がカルシウムアルミネートとカルボン酸塩を含んでいたとしても、上記ゲルタイムが1秒未満であると、実際の地盤注入作業に支障を来してしまう。また、上記ゲルタイムが30秒超であると、地盤注入材として早期の地盤改良効果を得づらくなってしまう。
 さらに、上記ゲルタイムが1秒以上30秒以下であったとしても、例えばA液がカルボン酸塩を含まない場合は、A液の可使時間が短くなりがちであり、実用上望ましくない。
 以上、本実施形態の地盤注入材は、特定のA液とB液を含む2液系であり、かつ、A液とB液とを混合した際のゲルタイムが特定時間であるという構成により、優れた効果を奏するものである。
Solution A contains calcium aluminate and carboxylate. Further, the gel time when the liquid A and the liquid B are mixed is 1 second or more and 30 seconds or less. By injecting such a two-liquid type ground injection material into the ground, the ground improvement effect can be obtained immediately after the ground injection, while the pot life of the liquid A before mixing with the liquid B is improved. Can be made
Even if the solution A contains calcium aluminate and carboxylate, if the gel time is less than 1 second, the actual ground injection work will be hindered. Further, if the gel time is more than 30 seconds, it becomes difficult to obtain an early ground improvement effect as a ground injection material.
Further, even if the gel time is 1 second or more and 30 seconds or less, for example, when the solution A does not contain a carboxylate, the pot life of the solution A tends to be short, which is not desirable in practice.
As described above, the ground injection material of the present embodiment is excellent in that it is a two-liquid system containing the specific liquid A and liquid B, and the gel time when the liquid A and liquid B are mixed is the specific time. It has a great effect.
 なお、本発明者らの知見として、特に、カルボン酸塩として、後述の、炭素数が比較的少ないカルボン酸の塩(金属塩など)をA液に含めることや、A液中のそのカルボン酸の塩の量を適切に調整することなどにより、A液とB液との混合後のゲルタイムを30秒以下に設計しやすい。そして、その結果としてA液の可使時間を長くしやすい。また、必須成分ではないが、B液にミョウバンを適量加えることによっても、A液とB液との混合後のゲルタイムを適切な数値に設計しやすい。 In addition, as a finding of the present inventors, in particular, as a carboxylic acid salt, the later-described carboxylic acid salt having a relatively small number of carbon atoms (such as a metal salt) is included in the A liquid, or the carboxylic acid in the A liquid is contained. It is easy to design the gel time after mixing the liquids A and B to 30 seconds or less by appropriately adjusting the amount of the salt. As a result, it is easy to prolong the pot life of the liquid A. Although not an essential component, it is easy to design the gel time after mixing the liquids A and B with an appropriate value by adding an appropriate amount of alum to the liquid B.
(ゲルタイム)
 本実施形態の地盤注入材におけるゲルタイムとは、A液とB液とを混合して混合物とする際、混合開始時を起点(t=0)として、混合物が著しく増粘して流動が困難になるまでの時間を意味する。
(Geltime)
The gel time in the ground injection material of the present embodiment means that when the liquid A and the liquid B are mixed to form a mixture, the mixture is remarkably thickened to make the flow difficult with the starting point of mixing (t=0). It means the time to become.
 具体的には、ゲルタイムは、以下手順に基づき求められる。
[手順]
(1)A液とB液とを混合して混合物を得た後、得られた混合物の少なくとも一部を水平面に載置した円錐台形状の紙コップの中に採取する。採取する量は、紙コップの容量の70%以下の量とする。紙コップは、底面内径5.3cm、上端面内径7.5cm、高さ8.8cmのものを用いる。
(2)上記(1)の操作の後、紙コップの底面中心および上端面中心を結ぶ線が鉛直面に対して60°傾斜した状態で紙コップを保持し、混合物と空気の界面が流動して変化するか、あるいはその界面が不動であるかを判別する。
(3)上記(2)の確認後、紙コップを再び水平面に載置する。
(4)上記(2)で界面が不動となる状態に至るまで上記(2)および(3)を繰り返す。
(5)上記(1)のA液とB液の混合開始時を起点として、上記(2)で界面が不動となった状態に至るまでの時間をゲルタイムとする。
Specifically, the gel time is calculated based on the following procedure.
[procedure]
(1) After mixing the solutions A and B to obtain a mixture, at least a part of the obtained mixture is collected in a truncated cone-shaped paper cup placed on a horizontal surface. The amount to be collected shall be 70% or less of the capacity of the paper cup. A paper cup having a bottom surface inner diameter of 5.3 cm, a top end surface inner diameter of 7.5 cm and a height of 8.8 cm is used.
(2) After the operation of (1) above, hold the paper cup with the line connecting the center of the bottom surface and the center of the upper end surface of the paper cup inclined by 60° with respect to the vertical plane, and the interface between the mixture and air flows. Change or the interface is immovable.
(3) After checking the above (2), the paper cup is placed on the horizontal surface again.
(4) The above (2) and (3) are repeated until the state where the interface becomes immobile in the above (2).
(5) The gel time is the time from when the mixing of the liquids A and B in (1) above is started to the time when the interface becomes immobile in (2) above.
 なお、上記(1)において、A液とB液の混合比率は、通常、500mLずつの等体積とする。
 また、ゲルタイムを一層正確に測定するため、例えば、(i)予備実験を行っておおよそのゲルタイムを把握しておき、その後に本試験を行う、(ii)1つのみの紙コップで測定を行うのではなく、上記(1)で複数の紙コップに混合物を採取し、1秒ごとに、混合物が入った新たな紙コップを傾ける、等の工夫をしてもよい。
In addition, in the above (1), the mixing ratio of the liquid A and the liquid B is usually set to an equal volume of 500 mL each.
Further, in order to measure the gel time more accurately, for example, (i) a preliminary experiment is carried out to grasp the approximate gel time, and then the main test is carried out, (ii) measurement is carried out with only one paper cup Instead of this, it is also possible to collect the mixture in a plurality of paper cups in the above (1) and tilt a new paper cup containing the mixture every second.
 ゲルタイムは、1秒以上30秒以下、好ましくは3秒以上20秒以下である。ゲルタイムが適度に短いことで、軟弱で変形しやすい地盤をより良好に改良することができる。また、ゲルタイムが適度に長いことで、A液とB液の混合物を地盤に注入する際の作業時間に余裕が生まれ、地盤改良の作業がしやすくなる。 Gel time is 1 second to 30 seconds, preferably 3 seconds to 20 seconds. When the gel time is appropriately short, the soft and easily deformable ground can be better improved. Further, since the gel time is moderately long, a working time for injecting the mixture of the liquid A and the liquid B into the ground is created, which facilitates the ground improvement work.
 本実施形態の地盤注入材は、A液とB液の混合後のゲル強度や初期強度が大きい傾向を有する。ここで、ゲル強度が大きいということは、A液とB液を混合して得た混合物が、まだ十分硬化せずに流動性が残っている程度の段階においても、外力に対する変形が少なく、外力に十分に対抗できることを意味する。
 特に、ゲル強度や初期強度が大きい地盤注入材は、例えば、水分を多く含み軟弱な地盤の改良に好ましく用いることができる。
The ground injection material of the present embodiment tends to have a high gel strength and a high initial strength after mixing the liquids A and B. Here, the high gel strength means that the mixture obtained by mixing the liquid A and the liquid B does not sufficiently harden and has fluidity, so that the deformation against external force is small and the external force is small. It means that it can fully counter.
In particular, a ground injection material having a high gel strength and a high initial strength can be preferably used, for example, for improving a soft ground containing a large amount of water.
(粉体材料A、A液)
 前述のように、粉体材料Aは、カルシウムアルミネートおよびカルボン酸塩を含む。粉体材料Aは、好ましくは、さらに、石膏、凝結調整剤などを含む。また、A液は、この粉体材料Aを、水と混合してスラリー状としたものである。
 以下、粉体材料AまたはA液を構成する成分、A液の性状などについて説明する。
(Powder material A, liquid A)
As described above, the powder material A contains calcium aluminate and carboxylate. The powder material A preferably further contains gypsum, a setting modifier, and the like. Further, the liquid A is prepared by mixing the powder material A with water to form a slurry.
Hereinafter, the constituents of the powder material A or the liquid A and the properties of the liquid A will be described.
・カルボン酸塩
 カルボン酸塩は、カルボン酸のカルボキシ基のプロトンが、陽イオンで置換された化合物のことをいう。換言すると、カルボン酸塩は、例えば、出発物質としてカルボン酸を準備し、これを適当な塩基性物質などと反応(中和反応)させて得ることができる。
-Carboxylic acid salt A carboxylic acid salt refers to a compound in which the proton of the carboxy group of a carboxylic acid is substituted with a cation. In other words, the carboxylic acid salt can be obtained, for example, by preparing a carboxylic acid as a starting material and reacting it with a suitable basic substance (neutralization reaction).
 本実施形態において、カルボン酸塩における「カルボン酸」(換言すると、上記の「出発物質」としてのカルボン酸)としては、炭素数が比較的少ないものが好ましい。本発明者らの知見として、カルボン酸塩におけるカルボン酸の炭素数が比較的少ない方が、A液の可使時間を長くしやすく、かつ、A液とB液の混合後の硬化進行を一層早めやすい。
 具体的には、カルボン酸塩は、炭素数10以下のカルボン酸の塩、すなわち、炭素数10以下のカルボン酸のカルボキシ基のプロトンが、陽イオンで置換された化合物であることが好ましい。ここでの炭素数については、より好ましくは1以上10以下、さらに好ましくは1以上8以下、特に好ましくは1以上5以下、とりわけ好ましくは1以上3以下、最も好ましくは1または2である。
In the present embodiment, the “carboxylic acid” (in other words, the carboxylic acid as the “starting material”) in the carboxylate preferably has a relatively small number of carbon atoms. The inventors of the present invention have found that when the number of carbon atoms of the carboxylic acid in the carboxylic acid salt is relatively small, the pot life of the liquid A is likely to be long and the curing progress after mixing the liquid A and the liquid B is further improved. Easy to hasten.
Specifically, the carboxylic acid salt is preferably a salt of a carboxylic acid having 10 or less carbon atoms, that is, a compound in which the proton of the carboxy group of the carboxylic acid having 10 or less carbon atoms is substituted with a cation. The carbon number here is more preferably 1 or more and 10 or less, still more preferably 1 or more and 8 or less, particularly preferably 1 or more and 5 or less, particularly preferably 1 or more and 3 or less, and most preferably 1 or 2.
 カルボン酸塩における「カルボン酸」は、モノカルボン酸であってもよいし、ポリカルボン酸(例えばジカルボン酸やトリカルボン酸)であってもよい。コスト等の観点からはモノカルボン酸であることが好ましい。 The “carboxylic acid” in the carboxylic acid salt may be a monocarboxylic acid or a polycarboxylic acid (for example, a dicarboxylic acid or a tricarboxylic acid). From the viewpoint of cost and the like, monocarboxylic acid is preferable.
 カルボン酸としては、ギ酸、酢酸、プロピオン酸、酪酸、吉草酸、ラウリン酸、パルミチン酸、ステアリン酸、シュウ酸、コハク酸、アジピン酸、ヒドロキシカルボン酸(ヒドロキシ基を有するカルボン酸)などを挙げることができる。
 これらのうち、入手容易性、コスト、効果等の兼ね合いから、カルボン酸はギ酸または酢酸が好ましい。すなわち、カルボン酸「塩」は、酢酸塩および/またはギ酸塩を含むことが好ましい。
 なお、より顕著な効果を得る点では、カルボン酸は、ヒドロキシカルボン酸(ヒドロキシ基を有するカルボン酸)ではないことが好ましい。
Examples of the carboxylic acid include formic acid, acetic acid, propionic acid, butyric acid, valeric acid, lauric acid, palmitic acid, stearic acid, oxalic acid, succinic acid, adipic acid, and hydroxycarboxylic acid (carboxylic acid having a hydroxy group). You can
Of these, formic acid or acetic acid is preferable as the carboxylic acid in consideration of availability, cost, effect, and the like. That is, the carboxylic acid “salt” preferably includes acetate and/or formate.
From the viewpoint of obtaining a more remarkable effect, it is preferable that the carboxylic acid is not a hydroxycarboxylic acid (carboxylic acid having a hydroxy group).
 カルボン酸塩は、カルボン酸金属塩を含むことが好ましい。具体的には、カルボン酸塩は、カルボン酸リチウム塩、ナトリウム塩、カリウム塩、マグネシウム塩、カルシウム塩、バリウム塩などでありうる。
 カルボン酸塩は、カルボン酸カルシウム塩を含むことがより好ましい。
The carboxylic acid salt preferably contains a carboxylic acid metal salt. Specifically, the carboxylic acid salt may be a carboxylic acid lithium salt, sodium salt, potassium salt, magnesium salt, calcium salt, barium salt, or the like.
More preferably, the carboxylic acid salt comprises a carboxylic acid calcium salt.
 粉体材料A中のカルボン酸塩の量は、所望するA液の可使時間や、B液との混合後の硬化の早さなどのバランスを考慮して適宜調整すればよい。
 粉体材料A中のカルボン酸塩の量は、例えば0.01質量%以上3質量%以下、好ましくは0.03質量%以上2質量%以下、より好ましくは0.05質量%以上1質量%以下である。
The amount of the carboxylic acid salt in the powder material A may be appropriately adjusted in consideration of the balance such as the desired pot life of the liquid A and the speed of curing after mixing with the liquid B.
The amount of the carboxylate in the powder material A is, for example, 0.01% by mass or more and 3% by mass or less, preferably 0.03% by mass or more and 2% by mass or less, more preferably 0.05% by mass or more and 1% by mass. It is below.
 粉体材料A中、カルシウムアルミネートに対するカルボン酸塩の量は、カルシウムアルミネート100質量部に対し、好ましくは0.1質量部以上50質量部以下、より好ましくは0.1質量部以上25質量部以下、さらに好ましくは0.15質量部以上10質量部以下である。
 カルボン酸塩の量を適切に調整することで、B液との混合前のA液の可使時間の長さと、B液との混合後の硬化の早さとのバランスを一層良好とすることができる。
In the powder material A, the amount of the carboxylate with respect to the calcium aluminate is preferably 0.1 parts by mass or more and 50 parts by mass or less, more preferably 0.1 parts by mass or more and 25 parts by mass with respect to 100 parts by mass of calcium aluminate. Parts or less, more preferably 0.15 parts by mass or more and 10 parts by mass or less.
By appropriately adjusting the amount of the carboxylate, it is possible to further improve the balance between the pot life of the solution A before mixing with the solution B and the speed of curing after mixing with the solution B. it can.
 粉体材料Aは、カルボン酸塩を1種のみ含んでも、2種以上含んでもよい。後者の場合、全てのカルボン酸塩の合計量が上記数値範囲内であることが好ましい。 The powder material A may contain only one kind of carboxylate or two kinds or more. In the latter case, the total amount of all carboxylates is preferably within the above numerical range.
・カルシウムアルミネート
 カルシウムアルミネートとは、水硬性材料の技術分野において、酸化アルミニウム(Al)と酸化カルシウム(CaO)を主成分として含み、水和活性を有する物質を総称するものである。ここで、「主成分」とは、カルシウムアルミネート全体中の酸化アルミニウムと酸化カルシウムの合計含量が、例えば50質量%以上、好ましくは70質量%以上、より好ましくは90質量%以上であることを意味する。
Calcium aluminate Calcium aluminate is a general term for substances having a hydration activity, which contain aluminum oxide (Al 2 O 3 ) and calcium oxide (CaO) as main components in the technical field of hydraulic materials. .. Here, the "main component" means that the total content of aluminum oxide and calcium oxide in the entire calcium aluminate is, for example, 50% by mass or more, preferably 70% by mass or more, and more preferably 90% by mass or more. means.
 カルシウムアルミネートは、典型的には、酸化アルミニウム(Al)と酸化カルシウム(CaO)、場合によってはさらにシリカ(SiO)等を混合して混合物とし、その混合物を焼成かつ/または溶融し、そして冷却することで得ることができる。
 焼成/溶融には、ロータリーキルンや電気炉等を用いることができる。
 CaO原料としては、例えば、石灰石や貝殻等の炭酸カルシウム、消石灰等の水酸化カルシウム、及び生石灰等の酸化カルシウムを挙げることができる。
 Al原料としては、例えば、ボーキサイト、アルミ残灰と呼ばれる産業副産物、アルミ粉等を挙げることができる。
Calcium aluminate is typically a mixture of aluminum oxide (Al 2 O 3 ) and calcium oxide (CaO), and in some cases silica (SiO 2 ), and the like, and the mixture is baked and/or melted. It can be obtained by cooling and cooling.
A rotary kiln, an electric furnace, or the like can be used for firing/melting.
Examples of the CaO raw material include calcium carbonate such as limestone and shells, calcium hydroxide such as slaked lime, and calcium oxide such as quick lime.
Examples of the Al 2 O 3 raw material include bauxite, an industrial by-product called aluminum residual ash, and aluminum powder.
 カルシウムアルミネートとしては、結晶質、非晶質のいずれも使用可能である。A液をB液と混合した後の硬化性をより高める観点からは、非晶質のもの、例えば、溶融後に急冷して製造した非晶質カルシウムアルミネートが好ましい。 Both crystalline and amorphous calcium aluminate can be used. From the viewpoint of further increasing the curability after mixing the liquid A with the liquid B, an amorphous one, for example, an amorphous calcium aluminate produced by quenching after melting is preferable.
 カルシウムアルミネート中のCaO/Alモル比は、好ましくは1.0以上3.0以下、より好ましくは1.7以上2.5以下である。このモル比を適切に調整することで、A液をB液と混合した後の硬化を一層早めることができ、また、早期に地盤改良効果を得ることができる。 The CaO/Al 2 O 3 molar ratio in the calcium aluminate is preferably 1.0 or more and 3.0 or less, more preferably 1.7 or more and 2.5 or less. By properly adjusting this molar ratio, the curing after mixing the liquid A with the liquid B can be further accelerated, and the ground improvement effect can be obtained early.
 カルシウムアルミネート中の不純物(CaOとAl以外の成分)の含有率は、好ましくは15質量%以下、より好ましくは10質量%以下である。不純物が15質量%以下であることで、A液をB液と混合した後の硬化を一層早めることができ、また、より早期に地盤改良効果を得やすい。
 ここで、不純物としては、酸化ケイ素、酸化マグネシウム、酸化硫黄などが代表的に挙げられる。その他、有機物、アルカリ金属酸化物、アルカリ土類金属酸化物、酸化チタン、酸化鉄、アルカリ金属ハロゲン化物、アルカリ土類金属ハロゲン化物、アルカリ金属硫酸塩、これらがCaOやAlの一部に置換又は固溶したものなども不純物として挙げられる。もちろん、不純物はこれらのみに限定されない。
The content of impurities (components other than CaO and Al 2 O 3 ) in calcium aluminate is preferably 15% by mass or less, more preferably 10% by mass or less. When the amount of impurities is 15% by mass or less, the curing after mixing the liquid A with the liquid B can be further accelerated, and the ground improvement effect can be easily obtained earlier.
Here, as the impurities, silicon oxide, magnesium oxide, sulfur oxide and the like are typically mentioned. In addition, organic substances, alkali metal oxides, alkaline earth metal oxides, titanium oxide, iron oxide, alkali metal halides, alkaline earth metal halides, alkali metal sulfates, these are some of CaO and Al 2 O 3 . Those substituted with or solid-dissolved in are also mentioned as impurities. Of course, the impurities are not limited to these.
 カルシウムアルミネートのガラス化率は、反応活性の面で70%以上が好ましく、90%以上がより好ましい。この値を適切とすることで、より早期に地盤改良効果を得やすい。
 ガラス化率は、測定サンプルについて、粉末X線回折法により結晶鉱物のメインピーク面積Sを予め測定し、その後1000℃で2時間加熱後、(1から10℃)/分の冷却速度で徐冷し、粉末X線回折法による加熱後の結晶鉱物のメインピーク面積Sを求め、これらのS及びSの値を用い、次の式を用いてガラス化率χを算出する。
 ガラス化率χ(%)=100×(1-S/S
The vitrification rate of calcium aluminate is preferably 70% or more, more preferably 90% or more, from the viewpoint of reaction activity. By making this value appropriate, it is easy to obtain the ground improvement effect earlier.
For the vitrification rate, the main peak area S of the crystalline mineral was measured in advance by a powder X-ray diffraction method for the measurement sample, and then heated at 1000° C. for 2 hours and then gradually cooled at a cooling rate of (1 to 10° C.)/min. Then, the main peak area S 0 of the crystalline mineral after heating by the powder X-ray diffraction method is obtained, and the vitrification rate χ is calculated using the following formula using the values of these S 0 and S.
Vitrification rate χ (%) = 100 x (1-S/S 0 )
 カルシウムアルミネートの粒度は、初期強度発現性の面で、ブレーン比表面積値3000cm/g以上が好ましく、5000cm/g以上がより好ましい。上限は、例えば9000cm/g以下である。この値を適度に大きくすることで、A液をB液と混合した後の硬化を一層早めることができ、そしてより早期に地盤改良効果を得やすい。また、この値を適度に小さくすることで、A液の可使時間を一層長くしうる。 The particle size of the calcium aluminate, in terms of initial strength development is preferably more than Blaine specific surface area 3000cm 2 / g, 5000cm 2 / g or more is more preferable. The upper limit is, for example, 9000 cm 2 /g or less. By appropriately increasing this value, it is possible to further accelerate the curing after mixing the liquid A with the liquid B, and it is easy to obtain the ground improvement effect earlier. Moreover, the pot life of the liquid A can be further lengthened by appropriately reducing this value.
 カルシウムアルミネートの具体例として、アルミナセメントを挙げることができる。すなわち、A液を製造するためのカルシウムアルミネート原料として、市販のアルミナセメントなどを利用してもよい。
 アルミナセメントの具体例としては、アルミナセメント1号、アルミナセメント2号などを挙げることができる。これらは、デンカ株式会社やAGC株式会社から購入可能である
Specific examples of calcium aluminate include alumina cement. That is, commercially available alumina cement or the like may be used as the calcium aluminate raw material for producing the liquid A.
Specific examples of the alumina cement include alumina cement No. 1 and alumina cement No. 2. These can be purchased from Denka Corporation or AGC Corporation
 粉体材料Aは、1種のみのカルシウムアルミネートを含んでもよいし、性状/物性等が異なる2種以上のカルシウムアルミネートを含んでもよい。
 粉体材料A中のカルシウムアルミネートの量は、例えば10質量%以上80質量%以下、好ましくは20質量%以上75質量%以下、より好ましくは25質量%以上70質量%以下である。カルシウムアルミネートの量を適切に調整することで、B液との混合前のA液の可使時間の長さと、B液との混合後の硬化の早さとのバランスなどを一層良好としうる。また、早期の地盤改良効果を一層得やすい。
The powder material A may contain only one kind of calcium aluminate, or may contain two or more kinds of calcium aluminate having different properties/physical properties and the like.
The amount of calcium aluminate in the powder material A is, for example, 10 mass% or more and 80 mass% or less, preferably 20 mass% or more and 75 mass% or less, and more preferably 25 mass% or more and 70 mass% or less. By appropriately adjusting the amount of calcium aluminate, it is possible to further improve the balance between the length of the pot life of solution A before mixing with solution B and the speed of curing after mixing with solution B. In addition, it is easier to obtain an early ground improvement effect.
・石膏
 粉体材料Aは、好ましくは、さらに石膏を含む。石膏を含むことにより、B液と混合する前のA液の可使時間をより長く設計しやすい。
-Gypsum The powder material A preferably further contains gypsum. By including gypsum, it is easy to design the pot life of solution A before mixing with solution B to be longer.
 使用可能な石膏は特に限定されない。また、種類の異なる石膏を併用することも排除されない。
 石膏の例としては、半水石膏や無水石膏を挙げることができる。強度発現性の面では無水石膏が好ましい。無水石膏としてより具体的には、弗酸副生無水石膏や天然無水石膏を挙げることができる。
 石膏を水に浸漬させたときのpHについては、pH8以下の弱アルカリから酸性のものが好ましい。このpHが適度に低いことで、石膏成分の溶解度を低くすることができ、初期の強度発現性をより高めることができる。なお、ここでのpHは、石膏/イオン交換水=1g/100gの20℃における希釈スラリーのpHをイオン交換電極等により測定したものである。pHは、3以上8以下がより好ましく、5以上7以下がさらに好ましい。
The gypsum that can be used is not particularly limited. Also, the combined use of different types of gypsum is not excluded.
Examples of gypsum include hemihydrate gypsum and anhydrous gypsum. Anhydrite is preferable from the viewpoint of strength development. More specific examples of anhydrous gypsum include anhydrous gypsum by-product of hydrofluoric acid and natural anhydrous gypsum.
The pH of the gypsum when immersed in water is preferably weak alkali to pH 8 or less and acidic. When this pH is appropriately low, the solubility of the gypsum component can be lowered, and the initial strength development can be further enhanced. The pH here is the pH of a diluted slurry of gypsum/ion-exchanged water=1 g/100 g at 20° C. measured with an ion-exchange electrode or the like. The pH is more preferably 3 or more and 8 or less, still more preferably 5 or more and 7 or less.
 石膏の粒度は、A液-B液混合後の初期強度発現性と、A液の一層長い可使時間の観点から、ブレーン比表面積値で3000cm/g以上が好ましく、5000cm/g以上がより好ましい。また、一層長い可使時間の観点から、この値は30000cm/g以下が好ましく、20000cm/g以下がより好ましい。 The particle size of the gypsum, and liquid A -B-liquid mixture after the initial strength development, the more long pot of life point of view of the liquid A, preferably 3000 cm 2 / g or more in Blaine specific surface area value, 5000 cm 2 / g or more More preferable. From the viewpoint of longer pot life, this value is preferably from 30000cm 2 / g, more preferably at most 20000 cm 2 / g.
 粉体材料A中の石膏の量は、10質量%以上80質量%以下、好ましくは20質量%以上75質量%以下、より好ましくは25質量%以上70質量%以下である。
 別観点として、粉体材料A中、カルシウムアルミネートに対する石膏の量は、カルシウムアルミネート100質量部に対して、好ましくは50質量部以上250質量部以下、より好ましくは70質量部以上200質量部以下である。
 石膏の量を適度に多くすることで、A液のより長い可使時間を得ることができる。また、石膏の量を適度に少なくすることで、A液とB液とを混合して得られる硬化物の初期強度を高めうる。すなわち、より早期に地盤改良効果を得やすい。
The amount of gypsum in the powder material A is 10% by mass or more and 80% by mass or less, preferably 20% by mass or more and 75% by mass or less, and more preferably 25% by mass or more and 70% by mass or less.
As another point of view, in the powder material A, the amount of gypsum relative to calcium aluminate is preferably 50 parts by mass or more and 250 parts by mass or less, more preferably 70 parts by mass or more and 200 parts by mass with respect to 100 parts by mass of calcium aluminate. It is below.
By appropriately increasing the amount of plaster, it is possible to obtain a longer pot life of the liquid A. Further, by appropriately reducing the amount of gypsum, the initial strength of a cured product obtained by mixing the liquids A and B can be increased. That is, it is easy to obtain the ground improvement effect earlier.
・凝結調整剤 
 粉体材料Aおよび/またはA液は、A液の可使時間の調整や、B液と混合したときの硬化性の調整などを目的として、凝結調整剤を含んでもよい。
 なお、特に、凝結調整剤は、粉体材料Aの中に予め含めておいてもよいし、粉体材料Aとは別途準備しておいてA液を調製する際に添加してもよい。
・Coagulation regulator
The powder material A and/or the A liquid may contain a coagulation modifier for the purpose of adjusting the pot life of the A liquid and adjusting the curability when mixed with the B liquid.
In addition, in particular, the coagulation modifier may be contained in the powder material A in advance, or may be prepared separately from the powder material A and added when the solution A is prepared.
 凝結調整剤としては、アルミン酸ナトリウム、アルミン酸カリウムなどのアルミン酸塩、炭酸ナトリウム、炭酸カリウムなどの炭酸塩、水酸化ナトリウムや水酸化カリウムなどの水酸化物、硫酸アルミニウム、硫酸鉄(III)、ケイ酸ナトリウム、ケイ酸カリウムなどのケイ酸塩、リン酸ナトリウム、リン酸カルシウム、リン酸マグネシウムなどのリン酸塩、ホウ酸リチウムやホウ酸ナトリウムなどのホウ酸塩等の無機塩類、糖類等が挙げられる。 As the coagulation modifier, aluminates such as sodium aluminate and potassium aluminate, carbonates such as sodium carbonate and potassium carbonate, hydroxides such as sodium hydroxide and potassium hydroxide, aluminum sulfate and iron (III) sulfate. , Silicates such as sodium silicate and potassium silicate, phosphates such as sodium phosphate, calcium phosphate, magnesium phosphate, inorganic salts such as borate such as lithium borate and sodium borate, and sugars. Be done.
 凝結調整剤としては、市販品を用いてもよい。市販品としては、例えば、デンカ株式会社のデンカセッターD-100、D-300などを挙げることができる。 A commercially available product may be used as the setting regulator. Examples of commercially available products include Denka Setter D-100 and D-300 manufactured by Denka Corporation.
 粉体材料Aおよび/またはA液が凝結調整剤を含む場合、その量は、A液の所望の可使時間や、B液と混合後の硬化性などに基づき適宜調整すればよい。
 具体的には、凝結調整剤の量は、A液の水以外の全成分中、例えば0.01質量%以上2質量%以下、好ましくは0.03質量%以上1.5質量%以下、より好ましくは0.05質量%以上1質量%以下となるように用いることが好ましい。すなわち、粉体材料A中に予め凝結調整剤を含めておく場合は、粉体材料A全体に対する凝結調整剤の量は上記程度とすることが好ましい。また、粉体材料Aとは別に凝結調整剤を準備する場合には、粉体材料Aと凝結調整剤を合わせた全体中の凝結調整剤の量が上記程度となるようにすることが好ましい。
When the powder material A and/or the liquid A contains a coagulation modifier, the amount thereof may be appropriately adjusted based on the desired pot life of the liquid A, the curability after mixing with the liquid B, and the like.
Specifically, the amount of the coagulation modifier is, for example, 0.01% by mass or more and 2% by mass or less, preferably 0.03% by mass or more and 1.5% by mass or less, based on all components other than water in the liquid A. It is preferable to use it so as to be 0.05% by mass or more and 1% by mass or less. That is, when the powder material A contains a coagulation modifier in advance, the amount of the coagulation modifier with respect to the entire powder material A is preferably set to the above range. When the coagulation modifier is prepared separately from the powder material A, it is preferable that the total amount of the coagulation modifier including the powder material A and the coagulation modifier is within the above range.
・水
 前述のように、A液は、粉体材料Aを水と混合したスラリー状のものである。なお、A液中、カルボン酸塩の少なくとも一部は水に溶解していると考えられる。
 粉体材料Aを水と混合してA液とする際の水の量は、所望の流動性、ポンプでの圧送性、地盤への注入性などにより適宜調整すればよい。水の量は、A液全体中、例えば50質量%以上95質量%以下、好ましくは60質量%以上90質量%以下となるような量で調整することができる。
-Water As described above, the liquid A is a slurry in which the powder material A is mixed with water. It is considered that at least part of the carboxylate in the liquid A is dissolved in water.
The amount of water used when the powder material A is mixed with water to form the liquid A may be appropriately adjusted depending on the desired fluidity, pumpability with a pump, injection property into the ground, and the like. The amount of water can be adjusted to be, for example, 50% by mass or more and 95% by mass or less, preferably 60% by mass or more and 90% by mass or less, in the entire liquid A.
・A液の可使時間/固形分について
 前述のように、A液をB液と混合する前において、A液の可使時間は比較的長い(地盤注入前においては充分な可使時間を確保できる)。A液は水硬性のカルシウムアルミネートを含むものの、それとカルボン酸塩とを併用することにより、A液自体は固形分が生成しにくい。
・About pot life/solid content of solution A As mentioned above, the pot life of solution A is relatively long before mixing solution A with solution B (enough pot life is secured before ground injection). it can). Although the liquid A contains hydraulic calcium aluminate, the solid content of the liquid A itself is unlikely to be generated by using it together with the carboxylate.
 ここで、A液の可使時間が長いこと、具体的には「固形分が生成しにくい」ことは、粉体材料Aと水とを混合してA液を得るにあたり、粉体材料Aと水との混合開始時点を0分として一定時間放置したA液を、目開き4.0mmの篩に通して、篩を通過できない固形分が存在するか否かにより評価することができる。
 具体的には、粉体材料Aと水とを混合してA液を得るにあたり、混合後、好ましくは30分、より好ましくは45分、さらに好ましくは60分経過した時点における、目開き4.0mmの篩による篩残分が、粉体材料Aの全体量を基準として0.1質量%以下である。
Here, the long pot life of the liquid A, specifically “hard to generate solids” means that when the liquid A is obtained by mixing the powder material A and water, The liquid A, which has been left for a certain period of time with the start time of mixing with water being 0 minutes, is passed through a sieve having an opening of 4.0 mm, and it can be evaluated whether or not there is a solid content that cannot pass through the sieve.
Specifically, when the powder material A and water are mixed to obtain the liquid A, after the mixing, preferably 30 minutes, more preferably 45 minutes, and still more preferably 60 minutes have passed, and the mesh size is 4. The sieve residue with a 0 mm sieve is 0.1% by mass or less based on the total amount of the powder material A.
 なお、上記の篩による評価にあたり、水を含むA液全体としての可使時間を評価する場合、粉体材料Aと水との混合比は任意とすることができる。すなわち、実際の地盤注入の際の混合比で、粉体材料と水とを混合してA液を調製し、そのA液の可使時間を上記のようにして評価することができる。
 一方、例えば、粉体材料A自体の性質として、水と混合したときの可使時間の長さを評価したい場合、より具体的には、組成等が異なる粉体材料A1とA2のどちらがより長い可視時間を有するかを、一律の基準の下に評価したい場合は、水の量が、A液全体中、例えば50質量%以上95質量%以下、好ましくは60質量%以上90質量%以下となるように混合して得たA液の可使時間を、上記のようにして評価することができる。あるいは、粉体材料が市販品であり、水との推奨混合比が示されている場合には、水の量はそれに従ってもよい。
When the pot life of the entire liquid A containing water is evaluated in the evaluation using the above-mentioned sieve, the mixing ratio of the powder material A and water can be arbitrary. That is, the powder material and water are mixed at the actual mixing ratio at the time of ground injection to prepare the liquid A, and the pot life of the liquid A can be evaluated as described above.
On the other hand, for example, when it is desired to evaluate the length of the pot life when mixed with water as the property of the powder material A itself, more specifically, which of the powder materials A1 and A2 having a different composition is longer When it is desired to evaluate whether or not it has a visible time under a uniform standard, the amount of water is, for example, 50% by mass or more and 95% by mass or less, preferably 60% by mass or more and 90% by mass or less in the entire liquid A. The pot life of solution A obtained by mixing as described above can be evaluated as described above. Alternatively, if the powdered material is commercially available and the recommended mixing ratio with water is indicated, the amount of water may be followed.
・A液の製法
 A液の製造方法は特に限定されない。粉体材料Aを水に投入し、混合して調製すればよい。
 なお、製造安定性や、意図せぬ凝固やゲル化の防止などの点で、A液が凝結調整剤を含む場合は、まず、凝結調整剤を水に投入し、その後、他の成分を水に投入するという順序でA液を得ることが好ましい。
 混合には、本技術分野で公知の各種ミキサー等を用いることができる。
-Method for producing liquid A The method for producing liquid A is not particularly limited. The powder material A may be poured into water and mixed to prepare.
When solution A contains a coagulation regulator in terms of production stability and prevention of unintended coagulation and gelation, first add the coagulation regulator to water and then add other components to the water. It is preferable to obtain the solution A in the order of charging the solution.
Various mixers and the like known in the present technical field can be used for mixing.
(粉体材料B、B液)
 粉体材料Bは、前述のように、セメントを含む。粉体材料Bは、好ましくは、さらに、ミョウバンなどを含みうる。また、B液は、この粉体材料Bを、水と混合してスラリー状としたものである。
 B液は、通常、使用直前までA液と接触または混合していない状態で存在する。
 以下、粉体材料BまたはB液を構成する成分などについて説明する。
(Powder material B, B liquid)
The powder material B contains cement as described above. The powder material B may preferably further contain alum or the like. Further, the liquid B is obtained by mixing the powder material B with water to form a slurry.
Liquid B is usually present in a state of not being in contact with or mixing with liquid A until immediately before use.
The components constituting the powder material B or the liquid B will be described below.
・セメント
 使用可能なセメントは、特に限定されない。具体的には、普通、早強、超早強、低熱若しくは中庸熱等の各種のポルトランドセメント、これらのセメントに高炉スラグやフライアッシュやシリカフュームなどを混合した各種混合セメント、高炉セメント、都市ゴミ焼却灰や下水汚泥焼却灰を原料として製造された環境調和型セメント(エコセメント)、市販されている微粒子セメントなどが挙げられる(なお、カルシウムアルミネートを意味するアルミナセメントは、好ましくは、ここでのセメントからは除かれる)。
-Cement The cement that can be used is not particularly limited. Concretely, various kinds of Portland cement such as normal, early strength, super early strength, low heat or moderate heat, mixed cement in which these cements are mixed with blast furnace slag, fly ash, silica fume, etc., blast furnace cement, incineration of municipal waste. Examples include environmentally friendly cement (eco-cement) produced from ash and sewage sludge incineration ash as raw materials, and commercially available fine particle cement (the alumina cement, which means calcium aluminate, is preferably Excluded from cement).
 各種セメントや各種混合セメントは、微粉末化して使用してもよい。また、通常セメントに使用されている成分(例えば石膏等)の量を増減して調製されたものも使用可能である。
 セメントは、単独で用いてもよいし、2種以上を併用してもよい。これらの中では、高炉セメントが、六価クロム含有量が低いため好ましい。
Various cements and various mixed cements may be used after being made into fine powder. Further, it is also possible to use the one prepared by increasing or decreasing the amount of the component (eg gypsum) usually used for cement.
Cement may be used alone or in combination of two or more kinds. Among these, blast furnace cement is preferable because it has a low hexavalent chromium content.
・ミョウバン
 粉体材料BまたはB液は、好ましくはミョウバンを含む。本発明者らの知見として、粉体材料BまたはB液がミョウバンを含むことにより、A液とB液の混合後の硬化をより早めることができる。そして、より早く地盤改良効果を得ることができる。
-Alum The powder material B or B solution preferably contains alum. The inventors of the present invention have found that the powder material B or the liquid B contains alum, whereby the curing after mixing the liquid A and the liquid B can be accelerated. And the ground improvement effect can be obtained more quickly.
 使用可能なミョウバンは特に限定されない。例えば、カリウムミョウバン、クロムミョウバン、鉄ミョウバン等の各種ミョウバンを挙げることができる。
 また、ミョウバン石を挙げることもできる。ここで、ミョウバン石とは、[(K,Na)(Al,Fe)(SO(OH)]の成分範囲を示す天然物である。さらに、ミョウバン石を粉砕した生ミョウバン石粉末や、ミョウバン石を800℃以下の温度で仮焼して粉砕した仮焼ミョウバン石粉末なども使用可能である。
 ミョウバンとしては、一般に市販されているカリウムミョウバンや仮焼ミョウバン石粉末の使用が好ましい。また、ミョウバンには無水塩や結晶水を含むものがあるが、いずれもそのまま使用可能である。
Alum that can be used is not particularly limited. For example, various alums such as potassium alum, chrome alum, iron alum and the like can be mentioned.
Another example is alum stone. Here, alum stone is a natural product showing a component range of [(K,Na)(Al,Fe) 3 (SO 4 ) 2 (OH) 6 ]. Further, it is also possible to use raw alum stone powder obtained by crushing alum stone, or calcined alum stone powder obtained by calcining alum stone at a temperature of 800° C. or lower and crushing.
As alum, it is preferable to use generally commercially available potassium alum or calcined alum stone powder. Some alums contain anhydrous salt or water of crystallization, but any of them can be used as they are.
 粉体材料BまたはB液中のミョウバンの量は、セメント100質量部に対し、例えば0.3質量部以上10質量部以下、好ましくは0.5質量部以上5質量部以下である。適度に多くの量のミョウバンを用いることで、A液とB液の混合後の硬化をより早めることができる。また、適度に少ない量のミョウバンを用いることで、B液の意図せぬ経時変化(例えば、A液と混合する前の流動性の低下や硬化)などを抑えることができる。 The amount of alum in the powder material B or the liquid B is, for example, 0.3 parts by mass or more and 10 parts by mass or less, preferably 0.5 parts by mass or more and 5 parts by mass or less, relative to 100 parts by mass of cement. By using an appropriately large amount of alum, the curing after mixing the liquids A and B can be accelerated. Further, by using an appropriately small amount of alum, it is possible to suppress unintended changes with time of the liquid B (for example, deterioration of fluidity and hardening before mixing with the liquid A).
・B液の製法/水、水分量
 B液は、粉体材料Bを水と混合する(粉体材料Bを水で練る)ことで得ることができる。ミョウバンを用いる際は、予め粉体材料B中にミョウバンを含めておいてもよいし、B液の調製の際に、粉体材料Bとは別材料としてミョウバンを加えてもよい。
 混合には、本技術分野で公知の各種ミキサー等を用いることができる。
Method for producing liquid B/water, water content The liquid B can be obtained by mixing the powder material B with water (kneading the powder material B with water). When using alum, alum may be included in the powder material B in advance, or alum may be added as a different material from the powder material B when preparing the liquid B.
Various mixers and the like known in the present technical field can be used for mixing.
 水の量は、粉体材料B中のセメントの種類、セメントの硬化性、所望の硬度、ポンプでの圧送性、地盤への注入性などに応じて適宜調整すればよい。一例として、水の量は、粉体材料B100質量部に対して、例えば100質量部から500質量部程度、好ましくは100質量部から300質量部程度である。 The amount of water may be appropriately adjusted according to the type of cement in the powder material B, the hardening property of the cement, the desired hardness, the pumping property with a pump, the pouring property into the ground, and the like. As an example, the amount of water is, for example, about 100 parts by mass to about 500 parts by mass, preferably about 100 parts by mass to about 300 parts by mass with respect to 100 parts by mass of the powder material B.
 なお、発明の効果を過度に貶めない範囲において、粉体材料BまたはB液は、セメント、水およびミョウバン以外の他の成分を含んでもよい。「他の成分」としては、例えば、炭酸塩、重金属炭酸塩、水酸化カルシウム、水酸化マグネシウム、水酸化アルカリ、硫酸塩、亜硫酸塩などを挙げることができる。
 ただし、粉体材料BまたはB液は、好ましくは、カルボン酸塩やカルシウムアルミネートを含まない。
In addition, the powder material B or the liquid B may contain components other than cement, water, and alum as long as the effects of the invention are not excessively reduced. Examples of the "other components" include carbonates, heavy metal carbonates, calcium hydroxide, magnesium hydroxide, alkali hydroxides, sulfates, sulfites and the like.
However, the powder material B or the liquid B preferably contains no carboxylate or calcium aluminate.
<硬化物、地盤改良方法>
 上述のA液と、上述のB液とを混合することで、硬化物を得ることができる。また、その硬化物により地盤を改良することができる。
<Cured product, ground improvement method>
A cured product can be obtained by mixing the above-mentioned liquid A and the above-mentioned liquid B. Further, the ground can be improved by the cured product.
 A液とB液を混合する方法や、A液とB液により地盤を改良する具体的な手順は特に限定されず、地盤改良の技術分野で知られている各種方法を応用することができる。
 例えば、(i)二重管を用いて、先端部でA液とB液を合流混合させて地盤に注入するいわゆる2ショット方式、(ii)A液とB液を、注入ポンプから注入管に至る途中で混合させて注入するいわゆる1.5ショット方式、(iii)ミキサー等の調合槽でA液とB液を混合する1ショット方式、などを採用することができる。これら方式の実施の際には、公知の注入ポンプ等を用いることができる。
The method of mixing the liquids A and B and the specific procedure for improving the ground by the liquids A and B are not particularly limited, and various methods known in the technical field of ground improvement can be applied.
For example, (i) a so-called two-shot method in which the liquid A and the liquid B are combined and mixed at the tip end using a double pipe and injected into the ground, (ii) the liquid A and the liquid B are injected from the injection pump into the injection pipe. A so-called 1.5-shot method in which they are mixed and injected on the way, and a 1-shot method in which the liquid A and the liquid B are mixed in a mixing tank such as (iii) mixer can be adopted. A publicly known infusion pump or the like can be used when implementing these methods.
 換言すると、(1)A液とB液を地盤注入の前に混合して混合物とし、その混合物を地盤に注入してもよいし、または、(2)A液とB液を別々に圧送し、地盤に注入される瞬間または地盤注入後に地盤中で両者が混合されるようにしてもよい。 In other words, (1) A liquid and B liquid may be mixed before the ground injection to form a mixture, and the mixture may be injected into the ground, or (2) A liquid and B liquid may be separately pumped. Alternatively, both may be mixed at the moment of injection into the ground or after the ground injection.
 A液とB液の混合比率は、所望の硬化の早さ、圧送性などにより適宜調整すればよい。A液:B液の混合比率は、体積比で、典型的には20:80から80:20、好ましくは30:70から70:30程度である。 The mixing ratio of the liquid A and the liquid B may be appropriately adjusted depending on the desired curing speed, pumpability, and the like. The mixing ratio of liquid A: liquid B is typically 20:80 to 80:20, preferably about 30:70 to 70:30 by volume.
 以上、本発明の実施形態について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することができる。また、本発明は上述の実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良等は本発明に含まれる。 The embodiments of the present invention have been described above, but these are examples of the present invention, and various configurations other than the above can be adopted. Further, the present invention is not limited to the above-described embodiments, and modifications, improvements, etc. within the scope of achieving the object of the present invention are included in the present invention.
 本発明の実施態様を、実施例および比較例に基づき詳細に説明する。なお、本発明は実施例に限定されるものではない。 Embodiments of the present invention will be described in detail based on examples and comparative examples. The present invention is not limited to the embodiments.
<実施例1-1~1-4および比較例1>
(粉体材料A、A液の調製)
 まず、後掲の表1の「粉体材料A」の欄に示された各成分を、プロシェアミキサ(WB型、太平洋機工株式会社製)を用いて混合し、粉体材料Aを調製した。
 その後、水中に、凝結調整剤(デンカ株式会社製、デンカセッターD-100)、および、上記の粉体材料Aをこの順に投入し、十分に練り合わせ、A液を得た。
 A液中の各成分の量は表1に記載のとおりである。
<Examples 1-1 to 1-4 and Comparative Example 1>
(Preparation of powder material A and liquid A)
First, each component shown in the column of "Powder material A" in Table 1 below is mixed using a proshear mixer (WB type, manufactured by Taihei Kiki Co., Ltd.) to prepare powder material A. ..
After that, a setting regulator (Denka Setter D-100, manufactured by Denka Co., Ltd.) and the above-mentioned powder material A were added in this order and kneaded sufficiently to obtain a liquid A.
The amount of each component in the liquid A is as shown in Table 1.
(粉体材料B、B液の調製)
 後掲の表1の「B液」の欄に示された各成分を、表1に示された量混合し、B液を得た。
(Preparation of powder materials B and B liquid)
The respective components shown in the column of "B liquid" in Table 1 below were mixed in the amounts shown in Table 1 to obtain B liquid.
(A液-B液混合後のゲルタイムの測定)
 以下手順で測定した。
(1)A液とB液、体積で500mLずつの等量を混合して混合物を得た。その後、得られた混合物のうち60mLを、水平面に載置した円錐台形状の紙コップの中に採取した。紙コップとしては、底面内径5.3cm、上端面内径7.5cm、高さ8.8cmのものを用いた。
(2)上記(1)の操作の後、紙コップの底面中心および上端面中心を結ぶ線が鉛直面に対して60°傾斜した状態で紙コップを保持し、混合物と空気の界面が流動して変化するか、あるいはその界面が不動であるかを判別した。
(3)上記(2)の確認後、紙コップを再び水平面に載置した。
(4)上記(2)で界面が不動となる状態に至るまで上記(2)および(3)を繰り返した。
(5)上記(1)のA液とB液の混合開始時を起点として、上記(2)で界面が不動となった状態に至るまでの時間をゲルタイムとした。
(Measurement of gel time after mixing liquid A and liquid B)
The following procedure was used for measurement.
(1) Liquid A and liquid B were mixed in equal amounts of 500 mL each to obtain a mixture. Then, 60 mL of the obtained mixture was collected in a truncated cone-shaped paper cup placed on a horizontal surface. The paper cup used had a bottom surface inner diameter of 5.3 cm, a top surface inner diameter of 7.5 cm, and a height of 8.8 cm.
(2) After the operation of (1) above, hold the paper cup with the line connecting the center of the bottom surface and the center of the upper end surface of the paper cup inclined by 60° with respect to the vertical plane, and the interface between the mixture and air flows. It was determined whether the interface changed or the interface was immobile.
(3) After checking the above (2), the paper cup was placed on the horizontal surface again.
(4) The above (2) and (3) were repeated until the interface was immobile in the above (2).
(5) The gel time is the time from when the mixing of the liquids A and B in (1) above is started to the time when the interface becomes immobile in (2) above.
(A液の可使時間の評価)
 A液を、水に粉体材料Aを投入したときを起点(0分)として、調製後30分放置した。その後、A液を、目開き4.0mmの篩に通し、篩を通過できない固形分(粗大粒子)の量を調べた。
 粉体材料Aの全体量を基準として、篩を通過できない固形分の量が0.1質量%以下であった場合を「篩残分なし」、そうでなかった場合を「篩残分あり」とした。
(Evaluation of pot life of liquid A)
The liquid A was allowed to stand for 30 minutes after preparation, starting from the point when the powder material A was added to water (0 minutes). Then, the liquid A was passed through a sieve having an opening of 4.0 mm, and the amount of solid content (coarse particles) which could not pass through the sieve was examined.
Based on the total amount of the powder material A, when the amount of solids that cannot pass through the sieve is 0.1% by mass or less, "no sieve residue", and when not, "with sieve residue" And
(ゲル強度)
 A液とB液の混合直後のセメント組成物を、縦4cm×横4cm×高さ16cmの型枠に流し込んだ。そして、未だ硬化が十分進行していない段階での強度を指触で測定した。そして、以下4段階で評価した。
 ◎(優):型枠を脱型しても形は崩れず、また、セメント組成物を指で押しても凹まなかった。
 ○(良):型枠を脱型しても形は崩れなかったが、セメント組成物を指で押すとやや凹む状態であった。
 △(可):型枠を脱型しても形は崩れなかったが、セメント組成物を指で押すと凹む状態であった。
 ×(不可):型枠を脱型すると形が崩れてしまう状態であった。
(Gel strength)
Immediately after mixing the liquid A and the liquid B, the cement composition was poured into a mold having a length of 4 cm, a width of 4 cm, and a height of 16 cm. Then, the strength at the stage when the curing has not yet proceeded sufficiently was measured by touch with a finger. Then, the evaluation was made in the following four stages.
⊚ (excellent): The shape did not collapse even when the mold was demolded, and the cement composition did not dent when pressed with a finger.
Good (Good): The shape did not collapse even when the mold was removed from the mold, but the cement composition was slightly depressed when pressed with a finger.
Δ (OK): The shape did not collapse even when the mold was removed from the mold, but it was in a state of being depressed when the cement composition was pressed with a finger.
X (Not possible): The shape was lost when the mold was removed from the mold.
(初期強度)
 JIS R 5201に準じて強度を測定した。具体的には、A液とB液の組成物を用いて、縦4cm×横4cm×高さ16cmの試験体を作製し、A液とB液の混合から30分後、1時間後および1日後の圧縮強度を測定した。
(Initial strength)
The strength was measured according to JIS R5201. Specifically, a test body measuring 4 cm in length×4 cm in width×16 cm in height was prepared using the composition of solutions A and B, and 30 minutes, 1 hour and 1 after mixing solution A and solution B, respectively. The compressive strength after day was measured.
 A液および粉体材料A、ならびに、B液および粉体材料Bの組成、上記の測定/評価結果などを、表1および表2にまとめて示す。 Compositions of liquid A and powder material A, and liquid B and powder material B, the above measurement/evaluation results, etc. are summarized in Tables 1 and 2.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 上表において、カルシウムアルミネートとしては、炭酸カルシウムと酸化アルミニウムのCaO/Alモル比を2.2とし、シリカを加えて、1650℃で溶融し急冷してガラス化率97%とし、粉砕してブレーン比表面積値を5000cm/gにしたものを用いた。
 また、石膏としては、天然無水石膏、ブレーン比表面積値5000cm/gのものを用いた。
 また、ポルトランドセメントとしては、普通ポルトランドセメント(デンカ株式会社製)を用いた。
In the above table, as the calcium aluminate, the CaO/Al 2 O 3 molar ratio of calcium carbonate and aluminum oxide was 2.2, silica was added, and the mixture was melted at 1650° C. and rapidly cooled to a vitrification rate of 97%, The pulverized product had a Blaine specific surface area value of 5000 cm 2 /g.
As the gypsum, natural anhydrous gypsum having a Blaine specific surface area value of 5000 cm 2 /g was used.
As the Portland cement, ordinary Portland cement (manufactured by Denka Co., Ltd.) was used.
 表2に示されるとおり、A液の調製30分後に固形分の生成は認められなかった。すなわち、A液の可使時間は長かった。ちなみに、調製から30分以降も固形分(篩を通過できない成分)の生成有無を観察し続けたところ、130分程度になってはじめて、一定量の固形分の生成が認められた。
 すなわち、本実施形態の地盤注入材のうち、特にA液は、B液との混合前の可使時間が長いことが示された。
As shown in Table 2, no solid content was observed after 30 minutes from the preparation of the liquid A. That is, the pot life of the liquid A was long. By the way, when the presence or absence of solid content (a component that cannot pass through the sieve) was continuously observed after 30 minutes from the preparation, a certain amount of solid content was observed only after about 130 minutes.
That is, it was shown that, among the ground injection materials of the present embodiment, the solution A, in particular, had a long pot life before mixing with the solution B.
 また、表2に示されるとおり、特定のA液とB液の2液を含み、かつ、A液-B液混合後のゲルタイムが1秒以上30秒以下である地盤注入材は、ゲル強度が良好であり、また、初期強度(例えば1day強度)が十分大きかった。つまり、地盤注入材として好ましい性能を奏することが確認された。 Further, as shown in Table 2, the ground injection material containing the specific liquid A and liquid B and having a gel time of 1 second to 30 seconds after mixing the liquids A and B has a gel strength of It was good, and the initial strength (for example, 1day strength) was sufficiently large. In other words, it was confirmed that the ground injection material has preferable performance.
<実施例2-1~2-10、比較例2>
 追加の実施例により、本実施形態の地盤注入材の有用性をさらに示す。
<Examples 2-1 to 2-10, Comparative example 2>
Additional examples further demonstrate the utility of the ground pouring material of this embodiment.
(粉体材料A、A液の調製)
 まず、後掲の表3の「粉体材料A」の欄に示された各成分を、プロシェアミキサ(WB型、太平洋機工株式会社製)を用いて混合して混合物を得た。
 その後、水中に、凝結調整剤(デンカ株式会社製、デンカセッターD-100)、および、上記の粉体材料Aをこの順に投入し、十分に練り合わせ、A液を得た。
 A液中の各成分の量は表3に記載のとおりである。
(Preparation of powder material A and liquid A)
First, the components shown in the column of "Powder material A" in Table 3 below were mixed using a proshear mixer (WB type, manufactured by Taikai Kiko Co., Ltd.) to obtain a mixture.
After that, a setting regulator (Denka Setter D-100, manufactured by Denka Co., Ltd.) and the above-mentioned powder material A were added in this order and kneaded sufficiently to obtain a liquid A.
The amount of each component in the liquid A is as shown in Table 3.
(粉体材料B、B液の調製)
 後掲の表3の「B液」の欄に示された各成分を、表2に示された量混合し、B液を得た。
(Preparation of powder materials B and B liquid)
The components shown in the column of "B liquid" in Table 3 below were mixed in the amounts shown in Table 2 to obtain a B liquid.
(A液-B液混合後のゲルタイムの測定)および(A液の可使時間の評価)
 実施例1-1等と同様にして測定した。
(Measurement of gel time after mixing solution A and solution B) and (Evaluation of pot life of solution A)
The measurement was performed in the same manner as in Example 1-1.
 以上について、まとめて表3に示す。
 なお、表3において、カルシウムアルミネート、石膏およびポルトランドセメントは、表1のものと同じである。
 表3に示されるように、実施例2-1~2-10において、A液の可使時間は良好であった。
The above is summarized in Table 3.
In Table 3, calcium aluminate, gypsum and Portland cement are the same as those in Table 1.
As shown in Table 3, in Examples 2-1 to 2-10, the pot life of solution A was good.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 実施例2-1~2-10の地盤注入材についても、ゲル強度や初期強度を評価した。実施例1-1~1-4と同程度の良好な結果であった。 The gel strength and initial strength of the ground injection materials of Examples 2-1 to 2-10 were also evaluated. The results were as good as those of Examples 1-1 to 1-4.
 この出願は、2018年12月10日に出願された日本出願特願2018-231152号を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority based on Japanese Patent Application No. 2018-231152 filed on Dec. 10, 2018, and incorporates all of the disclosure thereof.

Claims (14)

  1.  カルシウムアルミネートおよびカルボン酸塩を含有する粉体材料Aと水との混合スラリーであるA液と、セメントを含有する粉体材料Bと水との混合スラリーであるB液と、を含む2液型の地盤注入材であって、
     前記A液と前記B液とを混合した際の、以下の手順(1)から(5)により測定されるゲルタイムが1秒以上30秒以下である地盤注入材。
    [手順]
    (1)A液とB液とを混合して混合物を得た後、得られた混合物の少なくとも一部を水平面に載置した円錐台形状の紙コップの中に採取する。採取する量は、紙コップの容量の70%以下の量とする。紙コップとしては、底面内径5.3cm、上端面内径7.5cm、高さ8.8cmのものを用いる。
    (2)前記(1)の操作の後、前記紙コップの底面中心および上端面中心を結ぶ線が鉛直面に対して60°傾斜した状態で前記紙コップを保持し、混合物と空気の界面が流動して変化するか、あるいは前記界面が不動であるかを判別する。
    (3)上記(2)の確認後、前記紙コップを再び水平面に載置する。
    (4)上記(2)で界面が不動となる状態に至るまで上記(2)および(3)を繰り返す。
    (5)上記(1)のA液とB液の混合開始時を起点として、上記(2)で界面が不動となった状態に至るまでの時間をゲルタイムとする。
    Two liquids containing liquid A, which is a mixed slurry of powder material A containing calcium aluminate and carboxylate and water, and liquid B, which is a mixed slurry of powder material B containing cement and water Type ground injection material,
    A ground injection material having a gel time of 1 second or more and 30 seconds or less, which is measured by the following procedures (1) to (5) when the solution A and the solution B are mixed.
    [procedure]
    (1) After mixing the solutions A and B to obtain a mixture, at least a part of the obtained mixture is collected in a truncated cone-shaped paper cup placed on a horizontal surface. The amount to be collected shall be 70% or less of the capacity of the paper cup. As the paper cup, one having a bottom surface inner diameter of 5.3 cm, an upper end surface inner diameter of 7.5 cm and a height of 8.8 cm is used.
    (2) After the operation of (1) above, hold the paper cup with the line connecting the center of the bottom surface and the center of the upper end surface of the paper cup inclined by 60° with respect to the vertical plane, and let the interface between the mixture and the air. It is discriminated whether it changes by flowing or the interface is immovable.
    (3) After checking the above (2), the paper cup is placed on the horizontal surface again.
    (4) The above (2) and (3) are repeated until the state where the interface becomes immobile in the above (2).
    (5) The gel time is the time from when the mixing of the liquids A and B in (1) above is started to the time when the interface becomes immobile in (2) above.
  2.  請求項1に記載の地盤注入材であって、
     前記粉体材料Aと水とを混合して前記A液を得るにあたり、前記粉体材料Aと水との混合後30分経過した時点における目開き4.0mmの篩による篩残分が、前記粉体材料Aの全体量を基準として0.1質量%以下である地盤注入材。
    The ground injection material according to claim 1,
    In mixing the powder material A and water to obtain the liquid A, the sieve residue by a sieve having an opening of 4.0 mm at a time point of 30 minutes after mixing the powder material A and water is A ground injection material that is 0.1 mass% or less based on the total amount of the powder material A.
  3.  請求項1または2に記載の地盤注入材であって、
     前記カルシウムアルミネート中のCaO/Alモル比が1.0以上3.0以下である地盤注入材。
    The ground injection material according to claim 1 or 2, wherein
    The ground injection material in which the CaO/Al 2 O 3 molar ratio in the calcium aluminate is 1.0 or more and 3.0 or less.
  4.  請求項1から3のいずれか1項に記載の地盤注入材であって、
     前記粉体材料Aが、さらに石膏を含む地盤注入材。
    The ground injection material according to any one of claims 1 to 3,
    The ground injection material in which the powder material A further contains gypsum.
  5.  請求項1から4のいずれか1項に記載の地盤注入材であって、
     前記A液が、さらに凝結調整剤を含む地盤注入材。
    The ground injection material according to any one of claims 1 to 4,
    The ground injection material in which the liquid A further contains a setting regulator.
  6.  請求項1から5のいずれか1項に記載の地盤注入材であって、
     前記粉体材料Bが、さらにミョウバンを含む地盤注入材。
    The ground injection material according to any one of claims 1 to 5,
    The ground injection material in which the powder material B further contains alum.
  7.  請求項1から6のいずれか1項に記載の地盤注入材であって、
     前記カルボン酸塩が、カルボン酸金属塩を含む地盤注入材。
    The ground injection material according to any one of claims 1 to 6,
    The ground injection material in which the carboxylate contains a metal carboxylate.
  8.  請求項1から7のいずれか1項に記載の地盤注入材であって、
     前記カルボン酸塩が、カルボン酸カルシウム塩を含む地盤注入材。
    The ground injection material according to any one of claims 1 to 7,
    The ground injection material in which the carboxylate contains a carboxylate calcium salt.
  9.  請求項1から8のいずれか1項に記載の地盤注入材であって、
     前記カルボン酸塩が、炭素数1以上5以下のカルボン酸の塩を含む地盤注入材。
    The ground injection material according to any one of claims 1 to 8,
    The ground injection material in which the carboxylic acid salt contains a salt of a carboxylic acid having 1 to 5 carbon atoms.
  10.  請求項1から9のいずれか1項に記載の地盤注入材であって、
     前記カルボン酸塩が、酢酸塩およびギ酸塩からなる群より選ばれる少なくとも1種の化合物を含む地盤注入材。
    The ground injection material according to any one of claims 1 to 9,
    A ground injection material in which the carboxylate contains at least one compound selected from the group consisting of acetate and formate.
  11.  請求項1から10のいずれか1項に記載の地盤注入材であって、
     前記A液中の、前記カルシウムアルミネート100質量部に対する前記カルボン酸塩の量が0.1質量部以上50質量部以下である地盤注入材。
    The ground injection material according to any one of claims 1 to 10,
    The ground injection material in which the amount of the carboxylate is 0.1 part by mass or more and 50 parts by mass or less based on 100 parts by mass of the calcium aluminate in the liquid A.
  12.  請求項1から11のいずれか1項に記載の地盤注入材における前記A液と前記B液とを混合して得られる硬化物。 A cured product obtained by mixing the liquid A and the liquid B in the ground injection material according to any one of claims 1 to 11.
  13.  請求項12に記載の硬化物により地盤を改良する地盤改良方法。 A ground improvement method for improving the ground with the cured product according to claim 12.
  14.  請求項1から13のいずれか1項における粉体材料Aおよび粉体材料Bからなる、地盤注入用粉体材料。 A powder material for ground injection, comprising the powder material A and the powder material B according to any one of claims 1 to 13.
PCT/JP2019/045025 2018-12-10 2019-11-18 Soil grouting material, cured product thereof, soil improvement method, and powder material for soil grouting WO2020121738A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020559871A JP7374926B2 (en) 2018-12-10 2019-11-18 Ground injection material, its cured product, ground improvement method, and powder material for ground injection

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018231152 2018-12-10
JP2018-231152 2018-12-10

Publications (1)

Publication Number Publication Date
WO2020121738A1 true WO2020121738A1 (en) 2020-06-18

Family

ID=71076882

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/045025 WO2020121738A1 (en) 2018-12-10 2019-11-18 Soil grouting material, cured product thereof, soil improvement method, and powder material for soil grouting

Country Status (2)

Country Link
JP (1) JP7374926B2 (en)
WO (1) WO2020121738A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6938742B1 (en) * 2020-09-30 2021-09-22 デンカ株式会社 Ground improvement material slurry, ground improvement material cured product, and ground improvement method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0597491A (en) * 1991-10-04 1993-04-20 Denki Kagaku Kogyo Kk Cement admixture and quick setting executing method therefor
JPH08310845A (en) * 1995-05-12 1996-11-26 Denki Kagaku Kogyo Kk Quick hardening cement admixture and quick hardening cement composition
JP2014109012A (en) * 2012-12-04 2014-06-12 Taiheiyo Material Kk Soil injection material
JP2017154948A (en) * 2016-03-04 2017-09-07 太平洋マテリアル株式会社 Grouting material

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09100471A (en) * 1995-10-03 1997-04-15 Chichibu Onoda Cement Corp Injecting agent for soil improvement
JPH11140444A (en) * 1997-11-13 1999-05-25 Japan Highway Public Corp Grouting of cement-based grounting material
JP5046472B2 (en) * 2003-09-16 2012-10-10 電気化学工業株式会社 Cement admixture and cement composition
JP5783633B2 (en) * 2012-01-12 2015-09-24 電気化学工業株式会社 Injection method
JP6424045B2 (en) * 2014-08-19 2018-11-14 宇部興産建材株式会社 Manufacturing method of reinforced structure
JP6544155B2 (en) * 2015-09-03 2019-07-17 住友大阪セメント株式会社 Method of adding setting accelerator to cement composition

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0597491A (en) * 1991-10-04 1993-04-20 Denki Kagaku Kogyo Kk Cement admixture and quick setting executing method therefor
JPH08310845A (en) * 1995-05-12 1996-11-26 Denki Kagaku Kogyo Kk Quick hardening cement admixture and quick hardening cement composition
JP2014109012A (en) * 2012-12-04 2014-06-12 Taiheiyo Material Kk Soil injection material
JP2017154948A (en) * 2016-03-04 2017-09-07 太平洋マテリアル株式会社 Grouting material

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6938742B1 (en) * 2020-09-30 2021-09-22 デンカ株式会社 Ground improvement material slurry, ground improvement material cured product, and ground improvement method
WO2022070761A1 (en) * 2020-09-30 2022-04-07 デンカ株式会社 Ground-improving material slurry, ground-improving material cured product, and ground improvement method
JP2022056880A (en) * 2020-09-30 2022-04-11 デンカ株式会社 Ground improvement material slurry, ground improvement material cured product, and ground improvement method
KR20230075404A (en) 2020-09-30 2023-05-31 덴카 주식회사 Ground improvement material slurry, ground improvement material cured product and ground improvement method

Also Published As

Publication number Publication date
JPWO2020121738A1 (en) 2021-10-21
JP7374926B2 (en) 2023-11-07

Similar Documents

Publication Publication Date Title
JP4902356B2 (en) Composition for ground improvement material, injection material using the same, and method of using the same
JP6803370B2 (en) Long-workability calcium aluminates cement with curability promoted by increasing temperature and its use
JP6234748B2 (en) Continuous kneading method using super-hard hard grout material
WO2015182170A1 (en) Admixture for rapid setting
JP7155972B2 (en) Hardening material, hardening material liquid, soil stabilization chemical, method for producing the chemical, and ground stabilization method
JP7529731B2 (en) Hardening agent and cement composition
WO2020121738A1 (en) Soil grouting material, cured product thereof, soil improvement method, and powder material for soil grouting
JP6026799B2 (en) Cement composition and cement mortar using the same
JP6209655B2 (en) Powdered dental cement composition
JP6938742B1 (en) Ground improvement material slurry, ground improvement material cured product, and ground improvement method
JP5783633B2 (en) Injection method
JP5107557B2 (en) Cement composition
JP6368406B1 (en) Dental Portland cement powder
JP4157546B2 (en) Quick hardening cement concrete and quick setting cement concrete
JP2018184344A (en) Plastic injection material, production method thereof, and execution method thereof
JP2007217212A (en) Quick-hardening cement concrete and its construction method
WO1991019687A1 (en) Rapid curing composition
JP5603016B2 (en) Cement quick setting agent and cement composition
JPH06157099A (en) Cement composition
JP6380847B2 (en) Plastic injection material, plastic injection material manufacturing method, and plastic injection material construction method
JPH04164847A (en) Cement admixture and cement composition
JP4718336B2 (en) Grout cement composition and grout material
WO2023234041A1 (en) Cement material, cement composition, and hardened article
JP2003138259A (en) Injecting material for improvement of ground
JPH09100471A (en) Injecting agent for soil improvement

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19897003

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020559871

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19897003

Country of ref document: EP

Kind code of ref document: A1