WO2020121368A1 - Motor drive device and motor drive method - Google Patents

Motor drive device and motor drive method Download PDF

Info

Publication number
WO2020121368A1
WO2020121368A1 PCT/JP2018/045253 JP2018045253W WO2020121368A1 WO 2020121368 A1 WO2020121368 A1 WO 2020121368A1 JP 2018045253 W JP2018045253 W JP 2018045253W WO 2020121368 A1 WO2020121368 A1 WO 2020121368A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
period
dead time
switching element
side switching
Prior art date
Application number
PCT/JP2018/045253
Other languages
French (fr)
Japanese (ja)
Inventor
哲也 西嶋
Original Assignee
サンケン電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by サンケン電気株式会社 filed Critical サンケン電気株式会社
Priority to PCT/JP2018/045253 priority Critical patent/WO2020121368A1/en
Publication of WO2020121368A1 publication Critical patent/WO2020121368A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/16Circuit arrangements for detecting position
    • H02P6/18Circuit arrangements for detecting position without separate position detecting elements
    • H02P6/182Circuit arrangements for detecting position without separate position detecting elements using back-emf in windings

Definitions

  • the present invention relates to a motor drive device and a motor drive method for driving a brushless motor without a sensor.
  • the drive control of a brushless motor that combines a permanent magnet rotor and a stator winding must be performed by relating the position of the permanent magnet rotor and the position of the stator winding to be energized.
  • a sensorless method that uses a back electromotive force (BEMF) induced in the stator winding by interaction with the permanent magnet rotor is used (for example, Patent Document 1 and 2).
  • the rotor position is detected by detecting the zero-cross of the phase voltage in the non-energized period, but when the brushless motor is driven by the PWM method, the counter electromotive force is generated due to the switching of other phases.
  • the power zero crossing is not correctly detected. For example, in the case of the 120-degree conduction method, even if the U phase is in the non-conduction state, switching is performed in the V phase or the W phase, and the zero cross may be erroneously detected due to the influence of noise caused by this switching.
  • An object of the present invention is to solve the above problems of the prior art, and to provide a motor drive device and a motor drive method capable of correctly detecting the zero-cross of the back electromotive force without being affected by switching of other phases. It is in.
  • a motor drive device of the present invention is a motor drive device that detects a rotational position of a rotor at a timing when a back electromotive force is zero-crossed to drive a multi-phase motor, and includes a high-side switching element and a low-side switching element.
  • Inverter circuits that respectively include arms configured to have the plurality of phases, and that apply AC power converted from DC power to the plurality of phases, respectively, the high-side switching element and the low-side switching element.
  • a PWM generation unit that generates a PWM control signal that is driven by upper and lower complementary switching across a dead time
  • a back electromotive force detection unit that detects the phase voltages of the plurality of phases, and a mask period that includes the dead time.
  • the motor driving method of the present invention is a motor driving method for driving a multi-phase motor by detecting the rotational position of the rotor at the timing when the back electromotive force is zero-crossed, and includes a high-side switching element and a low-side switching element.
  • an inverter circuit respectively provided with the arm configured with and corresponding to each of the plurality of phases, AC power converted from DC power is supplied to each of the plurality of phases, the control unit for controlling the inverter circuit, A PWM control signal for driving the high-side switching element and the low-side switching element by upper and lower complementary switching with a dead time interposed is generated, a mask period including the dead time is generated, and a phase voltage of a non-conduction period is generated. Based on the above, the zero cross of the back electromotive force is detected during a period other than the mask period.
  • the present invention at the time of zero-cross detection of the back electromotive force in the detection phase, by masking the noise caused by the switching of the phase other than the detection phase, it is possible to minimize the external filter circuit, switching to other phases. Since the zero cross of the back electromotive force can be detected accurately and at high speed without being affected, the position and speed of the rotor can be accurately estimated.
  • FIG. 3 is an enlarged view of a period Ta shown in FIG. 2.
  • FIG. 5 is an enlarged view of a period Tb shown in FIG. 4.
  • the motor drive device 1 of the present embodiment is a device for driving a motor 2 having a plurality of phases, and referring to FIG. 1, an inverter circuit 3, a back electromotive force detection circuit 4, a control unit 5, and a drive circuit 6 are provided. With.
  • the motor 2 is a U-phase, V-phase, and W-phase three-phase motor that does not have a sensor for detecting the rotational position, and the switching of the current by the rotor equipped with a magnet and the stator winding is replaced by switching by an electronic circuit. It is a 3-phase sensorless brushless motor.
  • the motor 2 has three-phase stator coils 21 U , 21 V , and 21 W including U-phase, V-phase, and W-phase that generate a magnetic field for applying a rotational force to the permanent magnet type rotor.
  • One end of each of the stator coils 21 U , 21 V , and 21 W is Y-connected to the neutral point, and the other end is connected to the inverter circuit 3.
  • the inverter circuit 3 converts the power supply power supplied from the DC power supply 7 into AC power based on the PWM control signal from the control unit 5, and supplies the AC power to the stator coils 21 U , 21 V , and 21 W of the motor 2.
  • the inverter circuit 3 is provided between the positive side and the negative side of the DC power source 7, the high-side switching element Q UH, Q VH, Q WH and low-side switching element Q UL, Q VL, and Q WL, respectively It constitutes a half-bridge circuit having arms connected in series.
  • Each switching element of the inverter circuit 3 is composed of a power MOSFET, an IGBT and the like.
  • Counter electromotive force detecting circuit 4 includes a U-phase, V-phase, comparator CP U provided for each W-phase, CP V, CP W.
  • the inverting input terminal of the comparator CP U, the other end of the stator coil 21 V, 21 W are connected via a detection resistor, V-phase, the phase voltage of the W-phase are inputted to synthesize.
  • the inverting input terminal of the comparator CP U, the other end of the stator coil 21 V, 21 W are connected via a detection resistor, V-phase, the phase voltage of the W-phase are inputted to synthesize.
  • the inverting input terminal of the comparator CP V, the other end of the stator coil 21 U, 21 W are connected via a detection resistor, U-phase, the phase voltage of the W-phase are inputted to synthesize.
  • the other ends of the stator coils 21 U and 21 V are connected via a detection resistor to the inverting input terminal of the comparator CP W , and the phase voltages of the U phase and V phase are combined and input.
  • An output terminal of the comparator CP U, CP V, CP W is connected to the control unit 5, the comparator CP U, CP V, the output of the CP W is input to the controller 5 as a phase voltage comparison signal.
  • the control unit 5 is an information processing device that operates by program control or a hardware logic circuit, and is configured by, for example, a microcomputer or HDL (Hardware Description Language).
  • the control unit 5 performs control calculation based on the phase and cycle of the rotor obtained from the speed command input from an external unit (not shown) and the phase voltage comparison signal input from the back electromotive force detection circuit 4, and the inverter A PWM control signal that controls switching of each switching element of the circuit 3 is generated and output.
  • the drive circuit 6 generates a drive signal for each switching element of the inverter circuit 3 based on the PWM control signal output from the control unit 5, and supplies the drive signal to the control terminal (gate) of each switching element.
  • the control unit 5 functions as a zero cross detection unit 51, a speed calculation unit 52, an adder 53, a PWM generation unit 54, a dead time detection unit 55, and a mask generation unit 56.
  • the zero-cross detector 51 detects the timing of zero-crossing of the back electromotive force (back electromotive force thickness phase) based on the phase voltage comparison signal in the non-energized period, and detects the rotational position of the rotor.
  • the zero-cross detector 51 outputs the timing at which the zero-cross is detected to the speed calculator 52 and the PWM generator 54 as a zero-cross detection signal.
  • the counter electromotive force is used to detect the rotor position during rotation of the motor, the switching of all the switching elements of the inverter circuit 3 or the switching elements of the phase to be detected is turned off for the rotating motor 2.
  • the counter electromotive force can be detected by setting the stator coils 21 U , 21 V , and 21 W to Hi-Z (high impedance).
  • zero-cross detecting unit 51 detects the timing at which the output of the comparator CP U is inverted as the zero crossing of the counter electromotive force.
  • the zero-cross detection unit 51 sets the mask period generated by the mask generation unit 56 to the dead zone (ignored) in the zero-cross detection of the back electromotive force. That is, the zero-cross detector 51 detects the zero-cross of the back electromotive force during the period other than the mask period generated by the mask generator 56.
  • the speed calculator 52 calculates the rotation speed of the motor 2 based on the zero-cross detection signal output from the zero-cross detector 51.
  • the adder 53 generates a speed control signal based on the speed command input from an external unit (not shown) and the rotation speed calculated by the speed calculator 52, and outputs the generated speed control signal to the PWM generator 54. To do.
  • the PWM generation unit 54 determines the drive timing (commutation timing) for switching the switching element of each phase based on the zero-cross detection signal input from the zero-cross detection unit 51, and the speed control signal input from the adder 53. Based on the above, a PWM control signal for switching the phase switching element, which is the drive timing, is generated and output.
  • the PWM generation unit 54 vertically complements the high-side switching element and the low-side switching element with a dead time (a period in which both the high-side switching element and the low-side switching element are off). A PWM control signal driven by switching is generated. Note that, in the present embodiment, an example in which the dead time is generated by software has been shown, but it may be generated by hardware by HDL.
  • the dead time detector 55 detects the dead time in the PWM control signal generated by the PWM generator 54, and outputs the detected dead time to the mask generator 56 as a dead time signal.
  • the mask generation unit 56 generates and generates a mask signal in which the dead time detected by the dead time detection unit 55 and a preset extension period subsequent to the dead time are set as a mask period (dead time+extension period).
  • the mask signal is output to the zero-cross detector 51.
  • the detection phase in which the zero-cross detector 51 detects the zero-cross of the back electromotive force is the non-energization period. Therefore, the mask period is generated based on the dead time in the PWM control signal of a phase other than the detection phase (for example, V and W phases when the zero-cross of the back electromotive force is detected in the U phase).
  • FIG. 2 shows the U-phase phase voltage waveform and the V-phase and W-phase PWM control signal waveforms during the non-energization period.
  • FIG. 3A shows a result of NOR (negative OR) the PWM control signal waveforms (Q VH , Q VL ) of the V phase in the enlarged view of the phase voltage waveform of the U phase in the period Ta shown in FIG. 2. Shows the results of NOR (negative OR) the W-phase PWM control signal waveforms (Q WH , Q WL ). Referring to FIGS. 2 and 3, it can be seen that even in the vicinity of the zero-cross of the U-phase voltage, the V-phase and the W-phase are switching with the dead time Td in between.
  • FIG. 4 is a phase voltage waveform of the U phase when the motor 2 is driven by the 120-degree conduction method.
  • the phase voltage waveform of the detection phase (U phase) includes the back electromotive force and noise caused by switching of phases other than the detection phase (V phase, W phase). You can see that they are superimposed.
  • the dead time detecting unit 55 detects the dead time Td of the PWM control signal in the phases other than the detection phase (V phase, W phase), and the mask generating unit 56 , A dead time Td and a preset extension period ⁇ subsequent to the dead time Td as a mask period (Td+ ⁇ ). Then, the zero-cross detection unit 51 sets the mask period (Td+ ⁇ ) generated by the mask generation unit 56 to the dead zone (ignored) in the zero-cross detection of the back electromotive force. As a result, it is possible to prevent erroneous detection due to noise caused by switching of phases (V phase, W phase) other than the detection phase, and it is possible to correctly detect the zero cross of the back electromotive force at high speed.
  • the dead time Td is set by hardware or software. Therefore, even if the switching frequency of PWM changes, the information of the dead time Td can be easily used.
  • the mask generation unit 56 may control the length of the extension period ⁇ according to the output current of the inverter circuit 3, or the rotation speed of the motor 2 and the duty ratio of the PWM control signal that are correlated with the output current. .. In this case, the mask generation unit 56 controls so that the extension period ⁇ becomes longer as the output current increases.
  • the 120-degree energization method has been described, but it is also effective in other modulation modes and the non-energization period can be shortened.
  • the dead time detection unit 55 may detect the rise of the dead time, and the mask generation unit 56 may set a preset mask period from the rise of the dead time.
  • the motor drive device 1 that detects the rotational position of the rotor at the timing when the back electromotive force crosses zero and drives the motor 2 of a plurality of phases (U phase, V phase, W phase).
  • an arm configured to include the high-side switching elements Q UH , Q VH , and Q WH and the low-side switching elements Q UL , Q VL , and Q WL corresponds to a plurality of phases of the motor 2.
  • An inverter circuit 3 for respectively supplying AC power converted from DC power to the plurality of phases, a high-side switching element Q UL , Q VL , Q WL and a low-side switching element Q UH , Q VH , Includes a PWM generation unit 54 that generates a PWM control signal that drives Q WH by vertical complementary switching across the dead time Td, a counter electromotive force detection circuit 4 that detects phase voltages of a plurality of phases, and a dead time Td.
  • a mask generation unit 56 that generates a mask period and a zero-cross detection unit 51 that detects a zero-cross of the back electromotive force in a period other than the mask period based on the phase voltage of the non-energized period are provided.
  • the dead time Td is set by hardware or software. Therefore, even if the PWM switching frequency changes, the information on the dead time Td can be easily used.
  • the mask generation unit 56 generates the dead time Td and the extension period ⁇ subsequent to the dead time Td as the mask period.
  • the extension period ⁇ subsequent to the dead time Td serves as the mask period, so that erroneous detection can be further reduced.
  • the mask generation unit 56 generates a longer mask period according to the output current of the inverter circuit 3 as the output current increases.
  • a current detection circuit (not shown) may be provided in the inverter circuit 3 and the current signal detected by the current detection circuit may be output to the mask generation unit 56.
  • the rotation speed of the motor 2 and the duty ratio of the PWM control signal which are correlated with the output current of the inverter circuit 3, may be output to the mask generation unit 56.
  • the present embodiment is a motor driving method in which the rotational position of the rotor is detected at the timing when the counter electromotive force is zero-crossed to drive the motor 2 of a plurality of phases (U phase, V phase, W phase).
  • the arm is configured to have a Q WL corresponding to the plurality of phases of the motor 2
  • the control unit 5 that controls the inverter circuit 3 by energizing the plurality of phases of the motor 2 with the AC power converted from the DC power by the inverter circuits 3 provided respectively, controls the high-side switching elements QUH , QVH , Q.
  • a PWM control signal for driving the switching elements Q UL , Q VL , and Q WL on the WH side and the low side by vertical complementary switching across the dead time Td is generated, and a mask period including the dead time Td is generated to turn off the current. Based on the phase voltage of the period, the zero-cross of the back electromotive force is detected during the period other than the mask period.
  • controller 6 drive circuit 7 the DC power source 21 U, 21 V, 21 W stator coil 51 zero-cross detector 52 speed calculator 53 an adder 54 PWM generator 55 dead time detecting unit 56 mask generator CP U, CP V, CP W comparator Q UH, Q VH, Q WH , Q UL, Q VL, Q WL switching element Td dead time ⁇ extended period

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

Provided are a motor drive device and a motor drive method capable of correctly detecting a zero cross of back electromotive force without being affected by switching of another phase. The motor drive device is provided with: an inverter circuit (3) equipped with arms corresponding to a plurality of respective phases of a motor (2), said arms being configured by having high-side switching elements QUH, QVH, QWH and low-side switching elements QUL, QVL, QWL; a PWM generation unit (54) for generating PWM control signals for driving the high-side switching elements QUL, QVL, QWL and the low-side switching elements QUH, QVH, QWH by upper/lower complementary switching with a dead time Td in between; a mask generation unit (56) for generating a mask period including the dead time Td; and a zero cross detection unit (51) for detecting a zero cross of back electromotive force in a period other than the mask period on the basis of the phase voltage in a non-conduction period.

Description

モータ駆動装置及びモータ駆動方法Motor drive device and motor drive method
 本発明は、ブラシレスモータをセンサレスで駆動するモータ駆動装置及びモータ駆動方法に関する。 The present invention relates to a motor drive device and a motor drive method for driving a brushless motor without a sensor.
 永久磁石回転子と固定子巻線を組み合わせたブラシレスモータの駆動制御は、永久磁石回転子の位置と通電すべき固定子巻線の位置とを関係付けて行うことが必要である。回転子の位置検出には、永久磁石回転子との相互作用で固定子巻線に誘起される逆起電力(BEMF:Back Electromotive Force)を利用するセンサレス方式が採用されている(例えば、特許文献1、2参照)。 The drive control of a brushless motor that combines a permanent magnet rotor and a stator winding must be performed by relating the position of the permanent magnet rotor and the position of the stator winding to be energized. In order to detect the position of the rotor, a sensorless method that uses a back electromotive force (BEMF) induced in the stator winding by interaction with the permanent magnet rotor is used (for example, Patent Document 1 and 2).
特開平11-299283号公報JP, 11-299283, A 特開2000-92886号公報JP-A-2000-92886
 しかしながら、従来技術では、非通電期間の相電圧のゼロクロスを検出することで、回転子の位置検出を行っているが、PWM方式でブラシレスモータを駆動する場合、他の相のスイッチングによって、逆起電力のゼロクロスが正しく検出されないという問題がある。例えば、120度通電方式の場合、U相が無通電状態であっても、V相もしくはW相でスイッチングが行われ、このスイッチングに起因するノイズの影響により、ゼロクロスを誤検出することがある。 However, in the conventional technique, the rotor position is detected by detecting the zero-cross of the phase voltage in the non-energized period, but when the brushless motor is driven by the PWM method, the counter electromotive force is generated due to the switching of other phases. There is a problem that the power zero crossing is not correctly detected. For example, in the case of the 120-degree conduction method, even if the U phase is in the non-conduction state, switching is performed in the V phase or the W phase, and the zero cross may be erroneously detected due to the influence of noise caused by this switching.
 本発明の目的は、従来技術の上記問題を解決し、他の相のスイッチングに影響されることなく、逆起電力のゼロクロスを正しく検出することができるモータ駆動装置及びモータ駆動方法を提供することにある。 An object of the present invention is to solve the above problems of the prior art, and to provide a motor drive device and a motor drive method capable of correctly detecting the zero-cross of the back electromotive force without being affected by switching of other phases. It is in.
 本発明のモータ駆動装置は、逆起電力がゼロクロスするタイミングによってロータの回転位置を検出して複数相のモータを駆動するモータ駆動装置であって、ハイサイド側スイッチング素子とローサイド側スイッチング素子とを有して構成されたアームを前記複数相に対応してそれぞれ備え、直流電力から変換した交流電力を前記複数相にそれぞれ通電するインバータ回路と、前記ハイサイド側スイッチング素子及び前記ローサイド側スイッチング素子を、デットタイムを挟んだ上下相補スイッチングで駆動するPWM制御信号を生成するPWM生成部と、前記複数相の相電圧をそれぞれ検知する逆起電力検知部と、前記デットタイムを含むマスク期間を生成するマスク生成部と、非通電期間の前記相電圧に基づいて、前記マスク期間以外の期間に前記逆起電力のゼロクロスを検出するゼロクロス検出部と、を具備することを特徴とする。
 また、本発明のモータ駆動方法は、逆起電力がゼロクロスするタイミングによってロータの回転位置を検出して複数相のモータを駆動するモータ駆動方法であって、ハイサイド側スイッチング素子とローサイド側スイッチング素子とを有して構成されたアームを前記複数相に対応してそれぞれ備えたインバータ回路によって、直流電力から変換した交流電力を前記複数相にそれぞれ通電し、前記インバータ回路を制御する制御部は、前記ハイサイド側スイッチング素子及び前記ローサイド側スイッチング素子を、デットタイムを挟んだ上下相補スイッチングで駆動するPWM制御信号を生成し、前記デットタイムを含むマスク期間を生成し、非通電期間の相電圧に基づいて、前記マスク期間以外の期間に前記逆起電力のゼロクロスを検出することを特徴とする。
A motor drive device of the present invention is a motor drive device that detects a rotational position of a rotor at a timing when a back electromotive force is zero-crossed to drive a multi-phase motor, and includes a high-side switching element and a low-side switching element. Inverter circuits that respectively include arms configured to have the plurality of phases, and that apply AC power converted from DC power to the plurality of phases, respectively, the high-side switching element and the low-side switching element. , A PWM generation unit that generates a PWM control signal that is driven by upper and lower complementary switching across a dead time, a back electromotive force detection unit that detects the phase voltages of the plurality of phases, and a mask period that includes the dead time. A mask generation unit and a zero-cross detection unit that detects a zero-cross of the back electromotive force in a period other than the mask period based on the phase voltage in the non-energized period.
The motor driving method of the present invention is a motor driving method for driving a multi-phase motor by detecting the rotational position of the rotor at the timing when the back electromotive force is zero-crossed, and includes a high-side switching element and a low-side switching element. By an inverter circuit respectively provided with the arm configured with and corresponding to each of the plurality of phases, AC power converted from DC power is supplied to each of the plurality of phases, the control unit for controlling the inverter circuit, A PWM control signal for driving the high-side switching element and the low-side switching element by upper and lower complementary switching with a dead time interposed is generated, a mask period including the dead time is generated, and a phase voltage of a non-conduction period is generated. Based on the above, the zero cross of the back electromotive force is detected during a period other than the mask period.
 本発明によれば、検出相における逆起電力のゼロクロス検出に際し、検出相以外の相のスイッチングに起因するノイズをマスクすることで、外部のフィルタ回路を最小限にでき、他の相のスイッチングに影響されることなく、逆起電力のゼロクロスを正しく、高速で検出することができるため、回転子の位置と速度を正確に推定できるという効果を奏する。 According to the present invention, at the time of zero-cross detection of the back electromotive force in the detection phase, by masking the noise caused by the switching of the phase other than the detection phase, it is possible to minimize the external filter circuit, switching to other phases. Since the zero cross of the back electromotive force can be detected accurately and at high speed without being affected, the position and speed of the rotor can be accurately estimated.
本発明に係るモータ駆動装置の実施の形態の構成を示す回路ブロック図である。It is a circuit block diagram which shows the structure of embodiment of the motor drive device which concerns on this invention. 図1に示すU相のオフ期間における相電圧波形を示す波形図である。It is a waveform diagram which shows the phase voltage waveform in the OFF period of the U phase shown in FIG. 図2に示す期間Taの拡大図である。FIG. 3 is an enlarged view of a period Ta shown in FIG. 2. 図1に示すU相の相電圧波形を示す波形図である。It is a waveform diagram which shows the phase voltage waveform of U phase shown in FIG. 図4に示す期間Tbの拡大図である。FIG. 5 is an enlarged view of a period Tb shown in FIG. 4.
 以下、図を参照して本発明の実施の形態を詳細に説明する。なお、以下の実施の形態において、同様の機能を示す構成には、同一の符号を付して適宜説明を省略する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. It should be noted that in the following embodiments, configurations having similar functions are designated by the same reference numerals, and description thereof will be appropriately omitted.
 本実施の形態のモータ駆動装置1は、複数相のモータ2を駆動する装置であり、図1を参照すると、インバータ回路3と、逆起電力検知回路4と、制御部5と、駆動回路6とを備える。 The motor drive device 1 of the present embodiment is a device for driving a motor 2 having a plurality of phases, and referring to FIG. 1, an inverter circuit 3, a back electromotive force detection circuit 4, a control unit 5, and a drive circuit 6 are provided. With.
 モータ2は、U相、V相、W相による3相モータであり、回転位置検出用のセンサを持たず、磁石を備えたロータとステータ巻き線による電流の切替えを電子回路による切替えに置き換えた3相センサレスブラシレスモータである。モータ2は、永久磁石型のロータに回転力を与えるための磁界を発生させるU相、V相、W相からなる3相のステータコイル21、21、21を有している。ステータコイル21、21、21の一端は中性点にY結線され、他端はインバータ回路3に接続されている。 The motor 2 is a U-phase, V-phase, and W-phase three-phase motor that does not have a sensor for detecting the rotational position, and the switching of the current by the rotor equipped with a magnet and the stator winding is replaced by switching by an electronic circuit. It is a 3-phase sensorless brushless motor. The motor 2 has three- phase stator coils 21 U , 21 V , and 21 W including U-phase, V-phase, and W-phase that generate a magnetic field for applying a rotational force to the permanent magnet type rotor. One end of each of the stator coils 21 U , 21 V , and 21 W is Y-connected to the neutral point, and the other end is connected to the inverter circuit 3.
 インバータ回路3は、直流電源7から供給される電源電力を、制御部5からのPWM制御信号に基づいて交流電力に変換してモータ2のステータコイル21、21、21に供給する。インバータ回路3は、直流電源7のプラス側とマイナス側との間に、ハイサイド側のスイッチング素子QUH、QVH、QWHとローサイド側のスイッチング素子QUL、QVL、QWLとをそれぞれ直列に接続したアームを備えるハーフブリッジ回路を構成している。そして、スイッチング素子QUHとスイッチング素子QULとの接続点がステータコイル21の他端に、スイッチング素子QVHとスイッチング素子QVLとの接続点がステータコイル21の他端に、スイッチング素子QWHとスイッチング素子QWLとの接続点がステータコイル21の他端にそれぞれ接続されている。インバータ回路3の各スイッチング素子は、パワーMOSFET、IGBT等で構成される。 The inverter circuit 3 converts the power supply power supplied from the DC power supply 7 into AC power based on the PWM control signal from the control unit 5, and supplies the AC power to the stator coils 21 U , 21 V , and 21 W of the motor 2. The inverter circuit 3 is provided between the positive side and the negative side of the DC power source 7, the high-side switching element Q UH, Q VH, Q WH and low-side switching element Q UL, Q VL, and Q WL, respectively It constitutes a half-bridge circuit having arms connected in series. Then, the other end of the switching element Q UH and the switching element Q UL and the connection point stator coils 21 U, the other end of the switching element Q VH and the switching element Q VL and the connection point stator coil 21 V, the switching element The connection point between Q WH and the switching element Q WL is connected to the other end of the stator coil 21 W , respectively. Each switching element of the inverter circuit 3 is composed of a power MOSFET, an IGBT and the like.
 逆起電力検知回路4は、U相、V相、W相ごとに設けられたコンパレータCP、CP、CPを有している。コンパレータCP、CP、CPの非反転入力端子には、ステータコイル21、21、21の他端がそれぞれ検出抵抗を介して接続され、U相、V相、W相の相電圧がそれぞれ入力される。コンパレータCPの反転入力端子には、ステータコイル21、21の他端が検出抵抗を介して接続され、V相、W相の相電圧が合成して入力される。コンパレータCPの反転入力端子には、ステータコイル21、21の他端が検出抵抗を介して接続され、V相、W相の相電圧が合成して入力される。コンパレータCPの反転入力端子には、ステータコイル21、21の他端が検出抵抗を介して接続され、U相、W相の相電圧が合成して入力される。コンパレータCPの反転入力端子には、ステータコイル21、21の他端が検出抵抗を介して接続され、U相、V相の相電圧が合成して入力される。コンパレータCP、CP、CPの出力端子は、制御部5に接続され、コンパレータCP、CP、CPの出力が相電圧比較信号として制御部5に入力される。 Counter electromotive force detecting circuit 4 includes a U-phase, V-phase, comparator CP U provided for each W-phase, CP V, CP W. Comparator CP U, CP V, to the non-inverting input terminal of the CP W, the other end of the stator coil 21 U, 21 V, 21 W are connected via a detection resistor, respectively, U-phase, V-phase, W-phase phase Each voltage is input. The inverting input terminal of the comparator CP U, the other end of the stator coil 21 V, 21 W are connected via a detection resistor, V-phase, the phase voltage of the W-phase are inputted to synthesize. The inverting input terminal of the comparator CP U, the other end of the stator coil 21 V, 21 W are connected via a detection resistor, V-phase, the phase voltage of the W-phase are inputted to synthesize. The inverting input terminal of the comparator CP V, the other end of the stator coil 21 U, 21 W are connected via a detection resistor, U-phase, the phase voltage of the W-phase are inputted to synthesize. The other ends of the stator coils 21 U and 21 V are connected via a detection resistor to the inverting input terminal of the comparator CP W , and the phase voltages of the U phase and V phase are combined and input. An output terminal of the comparator CP U, CP V, CP W is connected to the control unit 5, the comparator CP U, CP V, the output of the CP W is input to the controller 5 as a phase voltage comparison signal.
 制御部5は、プログラム制御又はハードウェアロジック回路で動作する情報処理装置であり、例えばマイコンやHDL(Hardware Description Language)などで構成される。制御部5は、図示しない外部ユニットから入力される速度指令と、逆起電力検知回路4から入力される相電圧比較信号とから得られたロータの位相と周期に基づいて制御演算を行い、インバータ回路3の各スイッチング素子のスイッチングを制御するPWM制御信号を生成して出力する。 The control unit 5 is an information processing device that operates by program control or a hardware logic circuit, and is configured by, for example, a microcomputer or HDL (Hardware Description Language). The control unit 5 performs control calculation based on the phase and cycle of the rotor obtained from the speed command input from an external unit (not shown) and the phase voltage comparison signal input from the back electromotive force detection circuit 4, and the inverter A PWM control signal that controls switching of each switching element of the circuit 3 is generated and output.
 駆動回路6は、制御部5から出力されたPWM制御信号に基づいて、インバータ回路3の各スイッチング素子の駆動信号を生成し、各スイッチング素子の制御端子(ゲート)に供給する。 The drive circuit 6 generates a drive signal for each switching element of the inverter circuit 3 based on the PWM control signal output from the control unit 5, and supplies the drive signal to the control terminal (gate) of each switching element.
 制御部5は、ゼロクロス検出部51と、速度演算部52と、加算器53と、PWM生成部54と、デットタイム検出部55と、マスク生成部56として機能する。 The control unit 5 functions as a zero cross detection unit 51, a speed calculation unit 52, an adder 53, a PWM generation unit 54, a dead time detection unit 55, and a mask generation unit 56.
 ゼロクロス検出部51は、非通電期間の相電圧比較信号に基づいて逆起電力(逆起電厚位相)がゼロクロスするタイミングを検出してロータの回転位置を検出する。ゼロクロス検出部51は、ゼロクロスを検出したタイミングをゼロクロス検出信号として速度演算部52及びPWM生成部54に出力する。なお、モータ回転中のロータ位置の検出に逆起電力を使用する場合、回転中のモータ2に対し、インバータ回路3の全てのスイッチング素子、又は検出したい相のスイッチング素子のスイッチングをOFFにして、ステータコイル21、21、21をHi-Z(高インピーダンス)にすることで逆起電力の検出が可能になる。例えば、スイッチング素子QUH、QULがいずれもオフであるU相の非通電期間において、ゼロクロス検出部51は、コンパレータCPの出力が反転するタイミングを逆起電力のゼロクロスとして検出する。 The zero-cross detector 51 detects the timing of zero-crossing of the back electromotive force (back electromotive force thickness phase) based on the phase voltage comparison signal in the non-energized period, and detects the rotational position of the rotor. The zero-cross detector 51 outputs the timing at which the zero-cross is detected to the speed calculator 52 and the PWM generator 54 as a zero-cross detection signal. When the counter electromotive force is used to detect the rotor position during rotation of the motor, the switching of all the switching elements of the inverter circuit 3 or the switching elements of the phase to be detected is turned off for the rotating motor 2. The counter electromotive force can be detected by setting the stator coils 21 U , 21 V , and 21 W to Hi-Z (high impedance). For example, the switching elements Q UH, in the non-energized period of the U-phase Q UL are both OFF, zero-cross detecting unit 51 detects the timing at which the output of the comparator CP U is inverted as the zero crossing of the counter electromotive force.
 また、ゼロクロス検出部51は、逆起電力のゼロクロス検出において、マスク生成部56によって生成されるマスク期間を不感帯(無視)とする。すなわち、ゼロクロス検出部51は、マスク生成部56によって生成されるマスク期間以外の期間に逆起電力のゼロクロスを検出する。 In addition, the zero-cross detection unit 51 sets the mask period generated by the mask generation unit 56 to the dead zone (ignored) in the zero-cross detection of the back electromotive force. That is, the zero-cross detector 51 detects the zero-cross of the back electromotive force during the period other than the mask period generated by the mask generator 56.
 速度演算部52は、ゼロクロス検出部51から出力されるゼロクロス検出信号に基づいて、モータ2の回転速度を演算する。 The speed calculator 52 calculates the rotation speed of the motor 2 based on the zero-cross detection signal output from the zero-cross detector 51.
 加算器53は、図示しない外部ユニットから入力される速度指令と、速度演算部52によって演算された回転速度とに基づいて速度制御信号を生成し、生成した速度制御信号をPWM生成部54に出力する。 The adder 53 generates a speed control signal based on the speed command input from an external unit (not shown) and the rotation speed calculated by the speed calculator 52, and outputs the generated speed control signal to the PWM generator 54. To do.
 PWM生成部54は、ゼロクロス検出部51から入力されるゼロクロス検出信号に基づき、各相のスイッチング素子をスイッチングする駆動タイミング(転流タイミング)を決定すると共に、加算器53から入力される速度制御信号に基づいて、駆動タイミングである相スイッチング素子をスイッチングさせるPWM制御信号を生成して出力する。PWM生成部54は、ハイサイド側のスイッチング素子とローサイド側のスイッチング素子とを、デットタイム(ハイサイド側のスイッチング素子とローサイド側のスイッチング素子との両方がオフになる期間)を挟んだ上下相補スイッチングで駆動するPWM制御信号を生成する。なお、本実施の形態では、デットタイムをソフトウェアで生成する例を示したが、HDLによるハードウェアで生成するようにしても良い。 The PWM generation unit 54 determines the drive timing (commutation timing) for switching the switching element of each phase based on the zero-cross detection signal input from the zero-cross detection unit 51, and the speed control signal input from the adder 53. Based on the above, a PWM control signal for switching the phase switching element, which is the drive timing, is generated and output. The PWM generation unit 54 vertically complements the high-side switching element and the low-side switching element with a dead time (a period in which both the high-side switching element and the low-side switching element are off). A PWM control signal driven by switching is generated. Note that, in the present embodiment, an example in which the dead time is generated by software has been shown, but it may be generated by hardware by HDL.
 デットタイム検出部55は、PWM生成部54で生成されるPWM制御信号におけるデットタイムを検出し、検出したデットタイムをデットタイム信号としてマスク生成部56に出力する。 The dead time detector 55 detects the dead time in the PWM control signal generated by the PWM generator 54, and outputs the detected dead time to the mask generator 56 as a dead time signal.
 マスク生成部56は、デットタイム検出部55によって検出されたデッドタイムと、デッドタイムに引き続く予め設定された延長期間とをマスク期間(デッドタイム+延長期間)とするマスク信号を生成し、生成したマスク信号をゼロクロス検出部51に出力する。なお、ゼロクロス検出部51において逆起電力のゼロクロスを検出する検出相は、非通電期間である。従って、マスク期間は、検出相以外(例えば、U相で逆起電力のゼロクロスを検出する場合は、V,W相)のPWM制御信号におけるデットタイムに基づいて生成されることになる。 The mask generation unit 56 generates and generates a mask signal in which the dead time detected by the dead time detection unit 55 and a preset extension period subsequent to the dead time are set as a mask period (dead time+extension period). The mask signal is output to the zero-cross detector 51. The detection phase in which the zero-cross detector 51 detects the zero-cross of the back electromotive force is the non-energization period. Therefore, the mask period is generated based on the dead time in the PWM control signal of a phase other than the detection phase (for example, V and W phases when the zero-cross of the back electromotive force is detected in the U phase).
 図2は、非通電期間であるU相の相電圧波形と、V相及びW相のPWM制御信号波形とが示されている。また、図3(a)は、図2に示す期間TaにおけるU相の相電圧波形の拡大図が、V相のPWM制御信号波形(QVH、QVL)をNOR(否定論理和)した結果が、W相のPWM制御信号波形(QWH、QWL)をNOR(否定論理和)した結果がそれぞれ示されている。図2及び図3を参照すると、U相の相電圧がゼロクロスする付近においても、デットタイムTdの期間を挟んでV相及びW相がスイッチングしていることが判る。このように、検出相(U相)の非通電期間に発生する逆起電力でゼロクロスを検出する際に、検出相以外の相(V相、W相)のスイッチングにより、ノイズの影響によってゼロクロスを検出できないことが想定される。 FIG. 2 shows the U-phase phase voltage waveform and the V-phase and W-phase PWM control signal waveforms during the non-energization period. In addition, FIG. 3A shows a result of NOR (negative OR) the PWM control signal waveforms (Q VH , Q VL ) of the V phase in the enlarged view of the phase voltage waveform of the U phase in the period Ta shown in FIG. 2. Shows the results of NOR (negative OR) the W-phase PWM control signal waveforms (Q WH , Q WL ). Referring to FIGS. 2 and 3, it can be seen that even in the vicinity of the zero-cross of the U-phase voltage, the V-phase and the W-phase are switching with the dead time Td in between. As described above, when the zero cross is detected by the back electromotive force generated during the non-energization period of the detection phase (U phase), switching of phases other than the detection phase (V phase, W phase) causes the zero cross due to the influence of noise. It is assumed that it cannot be detected.
 図4は、モータ2を120度通電方式で駆動する際のU相の相電圧波形である。図4を参照すると、非通電期間において、検出相(U相)の相電圧波形には、逆起電力と一緒に、検出相以外の相(V相、W相)のスイッチングに起因するノイズが重畳されていることが判る。 FIG. 4 is a phase voltage waveform of the U phase when the motor 2 is driven by the 120-degree conduction method. Referring to FIG. 4, in the non-energization period, the phase voltage waveform of the detection phase (U phase) includes the back electromotive force and noise caused by switching of phases other than the detection phase (V phase, W phase). You can see that they are superimposed.
 そこで、本実施の形態では、図5に示すように、検出相以外の相(V相、W相)におけるPWM制御信号のデットタイムTdをデットタイム検出部55によって検出し、マスク生成部56は、デットタイムTdと、デットタイムTdに引き続く予め設定された延長期間αとをマスク期間(Td+α)とするマスク信号を生成する。そして、ゼロクロス検出部51は、逆起電力のゼロクロス検出において、マスク生成部56によって生成されるマスク期間(Td+α)を不感帯(無視)とする。これにより、検出相以外の相(V相、W相)のスイッチングに起因するノイズによる誤検出を防止することができ、逆起電力のゼロクロスを正しく、高速で検出することができる。 Therefore, in the present embodiment, as shown in FIG. 5, the dead time detecting unit 55 detects the dead time Td of the PWM control signal in the phases other than the detection phase (V phase, W phase), and the mask generating unit 56 , A dead time Td and a preset extension period α subsequent to the dead time Td as a mask period (Td+α). Then, the zero-cross detection unit 51 sets the mask period (Td+α) generated by the mask generation unit 56 to the dead zone (ignored) in the zero-cross detection of the back electromotive force. As a result, it is possible to prevent erroneous detection due to noise caused by switching of phases (V phase, W phase) other than the detection phase, and it is possible to correctly detect the zero cross of the back electromotive force at high speed.
 インバータ回路3を上下相補スイッチングで駆動するPWM制御信号では、デットタイムTdは、ハードウェア、又はソフトウェアで設定されている。従って、PWMのスイッチング周波数が変わっても、デットタイムTdの情報を容易に利用できる。 In the PWM control signal that drives the inverter circuit 3 by the upper and lower complementary switching, the dead time Td is set by hardware or software. Therefore, even if the switching frequency of PWM changes, the information of the dead time Td can be easily used.
 検出相以外の相(V相、W相)のスイッチングに起因するノイズの幅は、インバータからモータに流れる電流量とモータ2の端子間容量、モータ2のインダクタンスによって変化する。従って、モータ2の端子間容量とモータ2のインダクタンスとに応じて設定した延長期間αをマスク期間に加えることで、
誤検出をさらに少なくできる。
The width of noise caused by switching of phases other than the detection phase (V phase, W phase) varies depending on the amount of current flowing from the inverter to the motor, the inter-terminal capacitance of the motor 2, and the inductance of the motor 2. Therefore, by adding the extension period α set according to the inter-terminal capacitance of the motor 2 and the inductance of the motor 2 to the mask period,
False detection can be further reduced.
 例えば、検出相以外の相(V相、W相)のスイッチングに起因するノイズの幅は、インバータ回路3の出力電流に応じて、出力電流が大きくなると、広くなる。従って、インバータ回路3の出力電流、もしくは出力電流と相関があるモータ2の回転速度やPWM制御信号のデューティ比に応じて、マスク生成部56は、延長期間αの長さを制御しても良い。この場合、マスク生成部56は、出力電流が大きくなるほど、延長期間αが長くなるように制御する。 For example, the width of noise caused by switching of phases (V phase, W phase) other than the detection phase becomes wider as the output current increases in accordance with the output current of the inverter circuit 3. Therefore, the mask generation unit 56 may control the length of the extension period α according to the output current of the inverter circuit 3, or the rotation speed of the motor 2 and the duty ratio of the PWM control signal that are correlated with the output current. .. In this case, the mask generation unit 56 controls so that the extension period α becomes longer as the output current increases.
 なお、本実施の形態では、120度通電方式で説明しているが、他の変調モードでも有効であり、非通電期間も短縮可能である。 In the present embodiment, the 120-degree energization method has been described, but it is also effective in other modulation modes and the non-energization period can be shortened.
 また、デットタイム検出部55において、デットタイムの立ち上がりを検出し、マスク生成部56は、デットタイムの立ち上がりから予め設定されたマスク期間を設定するようにしても良い。 The dead time detection unit 55 may detect the rise of the dead time, and the mask generation unit 56 may set a preset mask period from the rise of the dead time.
 以上説明したように、本実施の形態は、逆起電力がゼロクロスするタイミングによってロータの回転位置を検出して複数相(U相、V相、W相)のモータ2を駆動するモータ駆動装置1であって、ハイサイド側のスイッチング素子QUH、QVH、QWHとローサイド側のスイッチング素子QUL、QVL、QWLとを有して構成されたアームをモータ2の複数相に対応してそれぞれ備え、直流電力から変換した交流電力を前記複数相にそれぞれ通電するインバータ回路3と、ハイサイド側のスイッチング素子QUL、QVL、QWL及びローサイド側のスイッチング素子QUH、QVH、QWHを、デットタイムTdを挟んだ上下相補スイッチングで駆動するPWM制御信号を生成するPWM生成部54と、複数相の相電圧をそれぞれ検知する逆起電力検知回路4と、デットタイムTdを含むマスク期間を生成するマスク生成部56と、非通電期間の相電圧に基づいて、マスク期間以外の期間に逆起電力のゼロクロスを検出するゼロクロス検出部51とを備えている。
 この構成により、検出相における逆起電力のゼロクロス検出に際し、検出相以外の相のスイッチングに起因するノイズをマスクすることで、外部のフィルタ回路を最小限にできる。従って、他の相のスイッチングに影響されることなく、逆起電力のゼロクロスを正しく、高速で検出することができるため、回転子の位置と速度を正確に推定できる。また、インバータ回路3を上下相補スイッチングで駆動するPWM制御信号において、デットタイムTdは、ハードウェア、又はソフトウェアで設定されている。従って、PWMのスイッチング周波数が変わっても、デットタイムTdの情報を容易に利用できる。
As described above, in the present embodiment, the motor drive device 1 that detects the rotational position of the rotor at the timing when the back electromotive force crosses zero and drives the motor 2 of a plurality of phases (U phase, V phase, W phase). In addition, an arm configured to include the high-side switching elements Q UH , Q VH , and Q WH and the low-side switching elements Q UL , Q VL , and Q WL corresponds to a plurality of phases of the motor 2. An inverter circuit 3 for respectively supplying AC power converted from DC power to the plurality of phases, a high-side switching element Q UL , Q VL , Q WL and a low-side switching element Q UH , Q VH , Includes a PWM generation unit 54 that generates a PWM control signal that drives Q WH by vertical complementary switching across the dead time Td, a counter electromotive force detection circuit 4 that detects phase voltages of a plurality of phases, and a dead time Td. A mask generation unit 56 that generates a mask period and a zero-cross detection unit 51 that detects a zero-cross of the back electromotive force in a period other than the mask period based on the phase voltage of the non-energized period are provided.
With this configuration, at the time of zero-cross detection of the back electromotive force in the detection phase, by masking noise caused by switching of phases other than the detection phase, the external filter circuit can be minimized. Therefore, the zero-cross of the back electromotive force can be detected correctly and at high speed without being affected by the switching of other phases, so that the position and speed of the rotor can be accurately estimated. Further, in the PWM control signal that drives the inverter circuit 3 by the upper and lower complementary switching, the dead time Td is set by hardware or software. Therefore, even if the PWM switching frequency changes, the information on the dead time Td can be easily used.
 さらに、本実施の形態によれば、マスク生成部56は、デットタイムTdと、デットタイムTdに引き続く延長期間αをマスク期間として生成する。
 この構成により、デットタイムTdに引き続く延長期間αがマスク期間となるため、誤検出をさらに少なくできる。
Further, according to the present embodiment, the mask generation unit 56 generates the dead time Td and the extension period α subsequent to the dead time Td as the mask period.
With this configuration, the extension period α subsequent to the dead time Td serves as the mask period, so that erroneous detection can be further reduced.
 さらに、本実施の形態によれば、マスク生成部56は、インバータ回路3の出力電流に応じて、前記出力電流が大きくなるほど長いマスク期間を生成する。なお、インバータ回路3の出力電流は、インバータ回路3に図示しない電流検出回路を設け、電流検出回路で検出された電流信号をマスク生成部56に出力しても良い。また、インバータ回路3の出力電流と相関があるモータ2の回転速度やPWM制御信号のデューティ比をマスク生成部56に出力しても良い。
 この構成により、検出相以外の相のスイッチングに起因するノイズの幅が変化しても、確実にマスクすることでき、逆起電力のゼロクロスを正しく検出することができる。
Further, according to the present embodiment, the mask generation unit 56 generates a longer mask period according to the output current of the inverter circuit 3 as the output current increases. For the output current of the inverter circuit 3, a current detection circuit (not shown) may be provided in the inverter circuit 3 and the current signal detected by the current detection circuit may be output to the mask generation unit 56. Further, the rotation speed of the motor 2 and the duty ratio of the PWM control signal, which are correlated with the output current of the inverter circuit 3, may be output to the mask generation unit 56.
With this configuration, even if the width of the noise caused by the switching of the phases other than the detection phase changes, the noise can be reliably masked, and the zero cross of the back electromotive force can be correctly detected.
 以上説明したように、本実施の形態は、逆起電力がゼロクロスするタイミングによってロータの回転位置を検出して複数相(U相、V相、W相)のモータ2を駆動するモータ駆動方法であって、ハイサイド側のスイッチング素子QUH、QVH、QWHとローサイド側のスイッチング素子QUL、QVL、QWLとを有して構成されたアームをモータ2の複数相に対応してそれぞれ備えたインバータ回路3によって、直流電力から変換した交流電力をモータ2の複数相にそれぞれ通電し、インバータ回路3を制御する制御部5は、ハイサイド側のスイッチング素子QUH、QVH、QWH及びローサイド側のスイッチング素子QUL、QVL、QWLを、デットタイムTdを挟んだ上下相補スイッチングで駆動するPWM制御信号を生成し、前記デットタイムTdを含むマスク期間を生成し、非通電期間の相電圧に基づいて、マスク期間以外の期間に逆起電力のゼロクロスを検出する。 As described above, the present embodiment is a motor driving method in which the rotational position of the rotor is detected at the timing when the counter electromotive force is zero-crossed to drive the motor 2 of a plurality of phases (U phase, V phase, W phase). there are, high-side switching element Q UH, Q VH, Q WH and low-side switching element Q UL, Q VL, the arm is configured to have a Q WL corresponding to the plurality of phases of the motor 2 The control unit 5 that controls the inverter circuit 3 by energizing the plurality of phases of the motor 2 with the AC power converted from the DC power by the inverter circuits 3 provided respectively, controls the high-side switching elements QUH , QVH , Q. A PWM control signal for driving the switching elements Q UL , Q VL , and Q WL on the WH side and the low side by vertical complementary switching across the dead time Td is generated, and a mask period including the dead time Td is generated to turn off the current. Based on the phase voltage of the period, the zero-cross of the back electromotive force is detected during the period other than the mask period.
 以上、本発明を具体的な実施の形態で説明したが、上記実施の形態は一例であって、本発明の趣旨を逸脱しない範囲で変更して実施できることは言うまでもない。 Although the present invention has been described above with reference to the specific embodiments, the above embodiments are merely examples, and it goes without saying that the embodiments can be modified and implemented without departing from the spirit of the present invention.
1 モータ駆動装置
2 モータ
3 インバータ回路
4 逆起電力検知回路
5 制御部
6 駆動回路
7 直流電源
21、21、21 ステータコイル
51 ゼロクロス検出部
52 速度演算部
53 加算器
54 PWM生成部
55 デットタイム検出部
56 マスク生成部
CP、CP、CP コンパレータ
UH、QVH、QWH、QUL、QVL、QWL スイッチング素子
Td デットタイム
α 延長期間
1 motor driving device 2 motor 3 inverter circuit 4 back EMF detection circuit 5 controller 6 drive circuit 7 the DC power source 21 U, 21 V, 21 W stator coil 51 zero-cross detector 52 speed calculator 53 an adder 54 PWM generator 55 dead time detecting unit 56 mask generator CP U, CP V, CP W comparator Q UH, Q VH, Q WH , Q UL, Q VL, Q WL switching element Td dead time α extended period

Claims (4)

  1.  逆起電力がゼロクロスするタイミングによってロータの回転位置を検出して複数相のモータを駆動するモータ駆動装置であって、
     ハイサイド側スイッチング素子とローサイド側スイッチング素子とを有して構成されたアームを前記複数相に対応してそれぞれ備え、直流電力から変換した交流電力を前記複数相にそれぞれ通電するインバータ回路と、
     前記ハイサイド側スイッチング素子及び前記ローサイド側スイッチング素子を、デットタイムを挟んだ上下相補スイッチングで駆動するPWM制御信号を生成するPWM生成部と、
     前記複数相の相電圧をそれぞれ検知する逆起電力検知部と、
     前記デットタイムを含むマスク期間を生成するマスク生成部と、
     非通電期間の前記相電圧に基づいて、前記マスク期間以外の期間に前記逆起電力のゼロクロスを検出するゼロクロス検出部と、を具備することを特徴とするモータ駆動装置。
    A motor drive device for driving a multi-phase motor by detecting a rotational position of a rotor at a timing when a counter electromotive force crosses zero,
    Inverter circuits for respectively energizing the plurality of phases with an arm configured with a high-side switching element and a low-side switching element respectively corresponding to the plurality of phases, and alternating current power converted from direct current power to each of the plurality of phases,
    A PWM generation unit that generates a PWM control signal that drives the high-side switching element and the low-side switching element by upper and lower complementary switching with a dead time in between;
    A back electromotive force detection unit that detects the phase voltage of each of the plurality of phases,
    A mask generation unit that generates a mask period including the dead time;
    A zero-cross detector that detects a zero-cross of the back electromotive force in a period other than the mask period based on the phase voltage in the non-energized period, and a motor drive device.
  2.  前記マスク生成部は、前記デットタイムと、前記デットタイムに引き続く延長期間を前記マスク期間として生成することを特徴とする請求項1記載のモータ駆動装置。 The motor drive device according to claim 1, wherein the mask generation unit generates the dead time and an extension period subsequent to the dead time as the mask period.
  3.  前記マスク生成部は、前記インバータ回路の出力電流に応じて、前記出力電流が大きくなるほど長い前記マスク期間を生成することを特徴とする請求項1又は2記載のモータ駆動装置。 The motor drive device according to claim 1 or 2, wherein the mask generation unit generates the mask period that is longer as the output current is larger, according to the output current of the inverter circuit.
  4.  逆起電力がゼロクロスするタイミングによってロータの回転位置を検出して複数相のモータを駆動するモータ駆動方法であって、
     ハイサイド側スイッチング素子とローサイド側スイッチング素子とを有して構成されたアームを前記複数相に対応してそれぞれ備えたインバータ回路によって、直流電力から変換した交流電力を前記複数相にそれぞれ通電し、
     前記インバータ回路を制御する制御部は、前記ハイサイド側スイッチング素子及び前記ローサイド側スイッチング素子を、デットタイムを挟んだ上下相補スイッチングで駆動するPWM制御信号を生成し、
     前記デットタイムを含むマスク期間を生成し、
     非通電期間の相電圧に基づいて、前記マスク期間以外の期間に前記逆起電力のゼロクロスを検出することを特徴とするモータ駆動方法。
    A motor driving method for detecting a rotational position of a rotor at a timing when a back electromotive force zero-crosses to drive a multi-phase motor,
    By an inverter circuit provided with an arm configured with a high-side switching element and a low-side switching element respectively corresponding to the plurality of phases, AC power converted from DC power is supplied to each of the plurality of phases,
    A control unit that controls the inverter circuit generates a PWM control signal that drives the high-side switching element and the low-side switching element by upper and lower complementary switching with dead time interposed therebetween.
    Generate a mask period including the dead time,
    A motor driving method comprising detecting a zero cross of the back electromotive force in a period other than the mask period based on a phase voltage in a non-energized period.
PCT/JP2018/045253 2018-12-10 2018-12-10 Motor drive device and motor drive method WO2020121368A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/045253 WO2020121368A1 (en) 2018-12-10 2018-12-10 Motor drive device and motor drive method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/045253 WO2020121368A1 (en) 2018-12-10 2018-12-10 Motor drive device and motor drive method

Publications (1)

Publication Number Publication Date
WO2020121368A1 true WO2020121368A1 (en) 2020-06-18

Family

ID=71077234

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/045253 WO2020121368A1 (en) 2018-12-10 2018-12-10 Motor drive device and motor drive method

Country Status (1)

Country Link
WO (1) WO2020121368A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024025982A1 (en) * 2022-07-28 2024-02-01 Microchip Technology Incorporated Using a deadtime interval for back emf acquisition and measurement

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11299283A (en) * 1998-02-16 1999-10-29 Rohm Co Ltd Sensorless motor driver
JP2007195313A (en) * 2006-01-18 2007-08-02 Aisin Seiki Co Ltd Driving device for brushless motors
JP2008236842A (en) * 2007-03-16 2008-10-02 Rohm Co Ltd Motor driving circuit, driving method, and disk device using same
JP2014023257A (en) * 2012-07-17 2014-02-03 Aisin Seiki Co Ltd Driving device for sensorless brushless motor
JP2016032372A (en) * 2014-07-29 2016-03-07 株式会社富士通ゼネラル Motor controller and air conditioner using the same
JP2017163637A (en) * 2016-03-07 2017-09-14 アスモ株式会社 Motor controller

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11299283A (en) * 1998-02-16 1999-10-29 Rohm Co Ltd Sensorless motor driver
JP2007195313A (en) * 2006-01-18 2007-08-02 Aisin Seiki Co Ltd Driving device for brushless motors
JP2008236842A (en) * 2007-03-16 2008-10-02 Rohm Co Ltd Motor driving circuit, driving method, and disk device using same
JP2014023257A (en) * 2012-07-17 2014-02-03 Aisin Seiki Co Ltd Driving device for sensorless brushless motor
JP2016032372A (en) * 2014-07-29 2016-03-07 株式会社富士通ゼネラル Motor controller and air conditioner using the same
JP2017163637A (en) * 2016-03-07 2017-09-14 アスモ株式会社 Motor controller

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024025982A1 (en) * 2022-07-28 2024-02-01 Microchip Technology Incorporated Using a deadtime interval for back emf acquisition and measurement

Similar Documents

Publication Publication Date Title
JP6475182B2 (en) Motor drive control device
JP6805035B2 (en) Integrated circuit
TWI571042B (en) Motor drive device and motor drive method
JP2016163518A (en) Rotational position detection device, motor controller and rotational position detection method
CN113381649B (en) Control method and control device for direct current brushless motor
KR102362995B1 (en) Motor drive device and system
WO2020121368A1 (en) Motor drive device and motor drive method
JP2000083397A (en) Control device for motor and motor unit having the same
JP5405224B2 (en) Motor driving device and method for determining relative position of rotor provided in motor
JP6348779B2 (en) Synchronous motor drive system
JP3515047B2 (en) DC brushless motor device
CN108075690B (en) Motor driving system and operation recovery method thereof
KR102260101B1 (en) Integrated circuit for controlling motor
JP6495528B1 (en) Method of driving motor
JP4147826B2 (en) Brushless motor drive control device
JP2017034767A (en) Sensorless drive method for three-phase brushless motor
JP2006006067A (en) Brushless dc motor driving apparatus
WO2021200209A1 (en) Motor control device, motor system, and motor control method
WO2021200236A1 (en) Motor control device, motor system, and motor control method
JP7482668B2 (en) MOTOR CONTROL DEVICE, MOTOR SYSTEM, AND MOTOR CONTROL METHOD
WO2022259624A1 (en) Inverter control device, inverter control method
JP2011055586A (en) Motor drive control circuit
KR101733878B1 (en) Buck Converter and driver for Sensorless Brushless Direct Current motor
JP6509683B2 (en) Rotational position detection device and rotational position detection method
KR100250108B1 (en) Conduction angle control apparatus of an interior permanent magnet bldc motor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18942857

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18942857

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP