WO2020120483A1 - Procédé de détermination de la distance entre un dispositif d'authentification et un véhicule - Google Patents

Procédé de détermination de la distance entre un dispositif d'authentification et un véhicule Download PDF

Info

Publication number
WO2020120483A1
WO2020120483A1 PCT/EP2019/084448 EP2019084448W WO2020120483A1 WO 2020120483 A1 WO2020120483 A1 WO 2020120483A1 EP 2019084448 W EP2019084448 W EP 2019084448W WO 2020120483 A1 WO2020120483 A1 WO 2020120483A1
Authority
WO
WIPO (PCT)
Prior art keywords
reference signal
value
phase
vehicle
component
Prior art date
Application number
PCT/EP2019/084448
Other languages
English (en)
Inventor
Sylvain Godet
Martin Opitz
Original Assignee
Continental Automotive France
Continental Automotive Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Continental Automotive France, Continental Automotive Gmbh filed Critical Continental Automotive France
Priority to CN201980081769.1A priority Critical patent/CN113167880B/zh
Priority to US17/293,244 priority patent/US11885867B2/en
Publication of WO2020120483A1 publication Critical patent/WO2020120483A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/74Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems
    • G01S13/76Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems wherein pulse-type signals are transmitted
    • G01S13/765Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems wherein pulse-type signals are transmitted with exchange of information between interrogator and responder
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S11/00Systems for determining distance or velocity not using reflection or reradiation
    • G01S11/02Systems for determining distance or velocity not using reflection or reradiation using radio waves
    • G01S11/06Systems for determining distance or velocity not using reflection or reradiation using radio waves using intensity measurements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R25/00Fittings or systems for preventing or indicating unauthorised use or theft of vehicles
    • B60R25/20Means to switch the anti-theft system on or off
    • B60R25/24Means to switch the anti-theft system on or off using electronic identifiers containing a code not memorised by the user
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R25/00Fittings or systems for preventing or indicating unauthorised use or theft of vehicles
    • B60R25/20Means to switch the anti-theft system on or off
    • B60R25/24Means to switch the anti-theft system on or off using electronic identifiers containing a code not memorised by the user
    • B60R25/245Means to switch the anti-theft system on or off using electronic identifiers containing a code not memorised by the user where the antenna reception area plays a role
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R2325/00Indexing scheme relating to vehicle anti-theft devices
    • B60R2325/10Communication protocols, communication systems of vehicle anti-theft devices
    • B60R2325/101Bluetooth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R2325/00Indexing scheme relating to vehicle anti-theft devices
    • B60R2325/20Communication devices for vehicle anti-theft devices
    • B60R2325/205Mobile phones
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07CTIME OR ATTENDANCE REGISTERS; REGISTERING OR INDICATING THE WORKING OF MACHINES; GENERATING RANDOM NUMBERS; VOTING OR LOTTERY APPARATUS; ARRANGEMENTS, SYSTEMS OR APPARATUS FOR CHECKING NOT PROVIDED FOR ELSEWHERE
    • G07C9/00Individual registration on entry or exit
    • G07C9/00174Electronically operated locks; Circuits therefor; Nonmechanical keys therefor, e.g. passive or active electrical keys or other data carriers without mechanical keys
    • G07C2009/00753Electronically operated locks; Circuits therefor; Nonmechanical keys therefor, e.g. passive or active electrical keys or other data carriers without mechanical keys operated by active electrical keys
    • G07C2009/00769Electronically operated locks; Circuits therefor; Nonmechanical keys therefor, e.g. passive or active electrical keys or other data carriers without mechanical keys operated by active electrical keys with data transmission performed by wireless means
    • G07C2009/00793Electronically operated locks; Circuits therefor; Nonmechanical keys therefor, e.g. passive or active electrical keys or other data carriers without mechanical keys operated by active electrical keys with data transmission performed by wireless means by Hertzian waves
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07CTIME OR ATTENDANCE REGISTERS; REGISTERING OR INDICATING THE WORKING OF MACHINES; GENERATING RANDOM NUMBERS; VOTING OR LOTTERY APPARATUS; ARRANGEMENTS, SYSTEMS OR APPARATUS FOR CHECKING NOT PROVIDED FOR ELSEWHERE
    • G07C2209/00Indexing scheme relating to groups G07C9/00 - G07C9/38
    • G07C2209/60Indexing scheme relating to groups G07C9/00174 - G07C9/00944
    • G07C2209/63Comprising locating means for detecting the position of the data carrier, i.e. within the vehicle or within a certain distance from the vehicle
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07CTIME OR ATTENDANCE REGISTERS; REGISTERING OR INDICATING THE WORKING OF MACHINES; GENERATING RANDOM NUMBERS; VOTING OR LOTTERY APPARATUS; ARRANGEMENTS, SYSTEMS OR APPARATUS FOR CHECKING NOT PROVIDED FOR ELSEWHERE
    • G07C9/00Individual registration on entry or exit
    • G07C9/00174Electronically operated locks; Circuits therefor; Nonmechanical keys therefor, e.g. passive or active electrical keys or other data carriers without mechanical keys
    • G07C9/00309Electronically operated locks; Circuits therefor; Nonmechanical keys therefor, e.g. passive or active electrical keys or other data carriers without mechanical keys operated with bidirectional data transmission between data carrier and locks

Definitions

  • the invention relates to the detection of an authentication device near a vehicle and more particularly a method and a computer allowing a determination of the distance between an authentication device and a vehicle in order to trigger functions of the vehicle.
  • certain motor vehicles are equipped with a detection system making it possible to remotely authenticate a device worn by the user, for example a badge or an electronic ignition key, in order to implement certain functions. from outside the vehicle.
  • a detection system can be used in order to implement a function for unlocking the opening elements of the vehicle, for example the doors or the trunk or else activating reception functions (lights, adjustments of interior equipment , etc.).
  • the system For security reasons, it is known to configure the system to activate these functions only when the user is at a distance less than a predetermined distance called “detection distance" which depends on the function to be activated.
  • the unlocking function of the doors can be activated only when the user is less than two meters from the vehicle.
  • a welcome light can be activated when the user is within five meters of the vehicle or a request to maneuver the vehicle (“remote parking”) can only be activated when the user is within six meters from the vehicle.
  • the vehicle and the device communicate on wireless communication links of the LF / RF (Low Frequency / RadioFrequency) type.
  • the vehicle periodically transmits a detection signal on an LF communication link.
  • the device receives this detection signal, it responds to the vehicle over an RF communication link in order to authenticate itself.
  • the advantage of this type of technology is that the propagation of signals is not impacted by mechanical elements such as the vehicle body.
  • the vehicle measures the power of the signals received from the authentication device during these exchanges and deduces a distance therefrom.
  • Bluetooth® communication interface in particular a BLE (Bluetooth® Low Energy) type interface
  • BLE Bluetooth® Low Energy
  • the vehicle In order to determine the distance between the device and the vehicle, the vehicle must detect the reception of a BLE signal and determine its power, for example by measuring the RSSI (Received Signal Strength Indication), to deduce the distance .
  • RSSI Receiveived Signal Strength Indication
  • the measurement of the RSSI is not reliable since the signals can bounce off from surrounding objects, which leads to inaccuracy in determining the distance.
  • the invention therefore aims to at least partially remedy these drawbacks by proposing a simple, reliable and effective solution for determining the distance between the device and the vehicle.
  • the invention relates to a method for determining the distance between an authentication device intended to be worn by a user, and a motor vehicle, each of said device and of said vehicle comprising a communication module.
  • wireless enabling the exchange of at least one data frame between the communication module of the device, designated transmitter, and the vehicle communication module, designated receiver, said data frame comprising a series of bits of value 0 or 1 modulated by the transmitter by change of phase of a reference signal comprising a component called "in phase", characterized by a maximum amplitude value, and a second component called "in quadrature", phase shifted by 90 ° with respect to the component in phase and characterized by a maximum amplitude value, said method comprising a step of reception, by the receiver, of a modulated reference signal, sent by the transmitter and whose changes nts of phase characterize the values bits of a data frame, and a step of demodulating the reference signal received in order to extract the phase component and the quadrature component, the method being remarkable in that it further comprises, following
  • phase component and the quadrature component makes it possible to calculate the power of the received signal precisely, quickly and reliably compared to a measurement of the RSSI of said signal.
  • the calculation of the signal strength and therefore of the distance is advantageously made precise and rapid by the use of a series of 0 or 1 consecutive in the data frame sent in the signal insofar as the reduction the number of alternation of the bit states (from 0 to 1 or from 1 to 0) reduces the disturbances on the signal and therefore makes the power estimation more precise.
  • the value of the power of the reference signal is calculated using the following formula:
  • the data frame comprising a useful data field
  • the received data frame is specific and the useful data field consists of either a series of 0 or a series of 1 in order to limit disparities due to the alternation of 0 and 1.
  • the method further comprises, prior to the step of receiving, by the receiver, the modulated reference signal, a step of modulating the reference signal by the transmitter from the signals corresponding to the bits of the field. useful data of the data frame and a step of transmitting the modulated reference signal to the receiver.
  • the method comprises: prior to the step of modulating the reference signal, a step of transforming the reference signal aiming to avoid sending a series of 0 or 1 in the useful data field of the data frame, and
  • a step of reverse transformation of the bits of the useful data field in order to allow the modulation of a series of 0 or 1 in the useful data field of the data frame.
  • a useful data field comprising a series of 0 or 1 is transmitted despite the transformation of the bits by the transmitting communication module.
  • the data frames are encoded in signals exchanged in the UHF (Ultra High Frequencies) frequency band between 300 and 3000 MHz, more preferably still according to the BLE (Bluetooth® Low Energy) standard.
  • UHF Ultra High Frequencies
  • BLE Bluetooth® Low Energy
  • the communication modules being configured to exchange data frames on different channels
  • said data frame comprises an identifier of said channel on which the data frame is transmitted in order to determine the channel by which the data frame has been received.
  • the invention also relates to a computer intended to be mounted in a motor vehicle in order to determine the distance between an authentication device, intended to be worn by a user, and said vehicle, each of said device and of said vehicle comprising a wireless communication module making it possible to exchange at least one data frame between the communication module of the device, designated transmitter, and the vehicle communication module, designated receiver, said data frame comprising a series of bits of value 0 or 1 modulated by the transmitter by change of phase of a reference signal comprising a component called "in phase", characterized by a maximum amplitude value, and a second component called "in quadrature", 90 ° out of phase to the phase component and characterized by a maximum amplitude value, the receiver being configured to receive a modulated reference signal, sent by the transmitter and whose phase changes characterize the values of the bits of a data frame, and demodulate the reference signal received in order to extract the phase component and the quadrature component, the computer being remarkable in that it is configured to calculate the value of the power of the reference signal from the maximum ampli
  • the value of the power of the reference signal is calculated using the following formula: [Math. 2]
  • PdBm is the power of the reference signal in dBm
  • IM is the maximum amplitude value of the phase component
  • Q M is the maximum amplitude value of the quadrature component
  • the data frame comprising a payload field
  • the received data frame is specific and the payload field consists of either a series of 0 or a series of 1.
  • the invention also relates to a motor vehicle comprising:
  • a so-called receiver communication module configured to receive a modulated reference signal, sent by the transmitter and whose phase changes characterize the values of the bits of a data frame, and demodulate the reference signal received in order to extract the phase component and the quadrature component, and
  • the invention further relates to an authentication device intended to be worn by a user, comprising a so-called transmitter communication module, configured to: transform a reference signal aimed at avoiding the sending of a series of 0 or 1 in the payload field of a data frame, and
  • the invention also relates to a detection system for a motor vehicle, said system comprising:
  • an authentication device intended to be worn by a user comprising a so-called transmitter communication module, configured to modulate the reference signal from signals corresponding to the bits of the useful data field of a data frame and to transmit the signal modulated reference, and
  • FIG. 1 schematically illustrates a motor vehicle around which different areas of action are defined.
  • FIG. 2 schematically illustrates an embodiment of a motor vehicle according to the invention.
  • FIG. 3 schematically illustrates a constellation diagram of a signal received by the vehicle in FIG. 2.
  • FIG. 4 schematically illustrated an implementation of the method according to the invention.
  • different zones Z1, Z2 are determined around a motor vehicle 100.
  • the vehicle 100 is configured to determine the distance between a user and the vehicle 100, in order to authenticate the user for implement certain functions from outside said vehicle 100.
  • a first zone Z1 makes it possible to activate an unlocking function of the vehicle 100 when the user is less than two meters from the vehicle 100.
  • a second zone Z2 makes it possible to activate welcome lighting when the user is less than five meters from vehicle 100.
  • Other zones can be determined around vehicle 100 to activate other functions, in particular a request to maneuver the vehicle (“remote parking ”) When the user is less than six meters from the vehicle 100.
  • the distance is determined from an authentication device 200 that the user wears in order to determine the distance of the user from the vehicle 100 from the distance of the device 200 d authentication with respect to the vehicle 100.
  • the authentication device 200 and the vehicle 100 exchange at least one data frame in the form of a signal as will be described below.
  • the authentication device 200 may be in the form of a mobile terminal such as a smart phone, also known as a smartphone in the English language, or else in the form of a remote control for example. Such a device 200 is thus easily transportable for the user so that the latter carries it with him when determining the distance with the vehicle 100.
  • the authentication device 200 includes a wireless communication module (not shown) adapted to communicate with the vehicle 100 in order to exchange at least a data frame.
  • the device 200 is configured to send a data frame T.
  • the communication module is of the Bluetooth® type, preferably Bluetooth® Low Energy, designated BLE in the English language.
  • Such a communication module is configured to transmit a data frame on different channels: in particular on a first channel whose frequency is 2402 MHz, a second channel whose frequency is 2426 MHz and a third channel whose frequency is 2480 MHz.
  • the communication module transmits a data frame on these different channels simultaneously.
  • One of the aims of the invention is to determine, when a data frame is received, the channel by which it was transmitted.
  • a data frame comprises an identifier field and at least one useful data field which corresponds to the data that the authentication device 200 wishes to send to the vehicle 100.
  • the identifier makes it possible to identify the channel by which the data frame has been transmitted.
  • a data frame is in the form of a plurality of bits, each of the fields consisting of a series of 0 or 1 grouped in bytes.
  • a BLE data frame is composed as follows: 1 to 2 bytes for the preamble, 4 bytes for the identifier (or Access Address), 2 to 257 bytes for the useful part (called Protocol Data Unit or PDU) and 3 bytes for error detection (CRC).
  • the device 200 comprises a modulation unit (not shown) configured to modulate a reference signal by changing the phase of this reference signal.
  • the phase changes of this modulated signal S are characteristic of the values of the different bits of the data frame.
  • the modulated reference signal S comprises a component called “in phase” I and a component called “in quadrature” Q phase shifted by 90 ° with respect to the component in phase I.
  • Each of the components I, Q is characterized by a value of maximum amplitude IM, QM. Since such modulation of the quadrature amplitude modulation type is known, it will not be described in more detail.
  • the device 200 is further configured to transform the reference signal so as to force the sending of a series composed only of 0 or 1 in the useful data field.
  • the communication module can be configured to avoid sending a series of bits made up only of 0 or only of 1 by using a bit scrambling filter before the emission of a signal, said signal being inversely filtered on reception in order to recover the original bits of the message.
  • the device can be configured to apply the reverse boiling filter to the useful data bits before transmitting them to the communication module so that the communication module communication transforms them, via the interference filter, into a series composed only of 0 or only of 1.
  • the use of a frame in which the useful data field is filled only with 0 or only with 1 makes it possible to limit the disturbances in the signal S generated by the alternations of 0 and 1 and thus optimizing the subsequent measurements carried out on the signal S.
  • the motor vehicle 100 comprises an antenna 10, a filter 20, an amplifier 30, a demodulation unit 40, a communication module 50 and a computer 60.
  • the antenna 10 is configured to receive modulated signals S in order to communicate with the authentication device 200 placed at a distance from the vehicle 100.
  • the filter 20 is configured to filter the modulated signal S received and the amplifier 30 is configured to amplify the modulated signal S. Since such elements are known, they will not be described in more detail.
  • the demodulation unit 40 is configured to decimate a modulated signal S received in order to separate the modulated signal S into two signals corresponding to each of the components I, Q. In other words, the demodulation unit 40 is configured to extract the components I, Q of the modulated signal S.
  • a maximum amplitude value IM, QM of each component I, Q is thus determined and can be plotted on a constellation diagram as illustrated in FIG. 3.
  • the computer 60 is configured to determine the distance between the vehicle 100 and the device 200 from the power P m of the modulated signal S received by the vehicle 100.
  • V pk sqrtQ 2 + Q 2 )
  • the values of the components I, Q used are the maximum amplitude values / M, QM, which correspond to the peak value of the sinusoidal components in quadrature of the module signal S.
  • the effective value of the voltage, noted V rms is thus given by the equation:
  • the computer 60 is thus configured to calculate the power P dBm of the signal S received by the vehicle 100 from the components I, Q of the signal S.
  • the computer 60 is further configured to determine the distance between the device 200 and the vehicle 100 from this power measured in a manner known per se.
  • the computer 60 is configured to determine the channel by which the data frame was received from the identifier. This allows the computer 60 to determine the characteristics of this channel, in particular its frequency, in order to optimize the calculation of the power of the signal S received by this channel and thus to make the determination of the distance more reliable.
  • the latter transmits, in a transmission step E1, a specific data frame in the form of a signal S.
  • the device 200 Before transmitting this specific data frame, the device 200 successively performs a reverse transformation and a transformation of this specific data frame, said reverse transformation being opposite to said transformation.
  • the purpose of the reverse transformation is to transform the specific data frame, the useful data field of which comprises a succession of 0 or 1, into an alternation of 0 and 1 which, after the transformation, will be transformed again into a succession of 0 or 1. This makes it possible to transmit a specific data frame comprising a succession of 0 or 1 despite the transformation which aims to avoid such transmission for non-specific data frames.
  • the device 200 modulates, in a step E0, a reference signal S from the signals corresponding to the bits of the useful data field of the specific data frame.
  • the signal S is received, in a reception step E2, by the vehicle 100.
  • the antenna 10 receives the signal S which is then filtered by the filter 20 and amplified by l amplifier 30.
  • the signal S is demodulated by the demodulation module 40 in order to separate the signal in phase I and the phase-shifted signal Q.
  • the computer 60 of the vehicle 100 determines for each bit the maximum amplitude value IM of the phase I component and the maximum amplitude value IM of the quadrature component Q.
  • a step E4 the computer 60 calculates the power Pm m of the reference signal (S) from these maximum amplitude values IM, QM as described above.
  • the computer 60 determines the distance between the device 200 and the vehicle 100 from the power P m calculated.
  • a value of the power P of the signal S can be calculated for each bit of the data frame, which makes it possible to calculate several power values Pm m with a single data frame.
  • the computer 60 can thus calculate the median of these values in order to make the determination of distance more reliable.
  • the median is produced with a single data frame, the time required to calculate such a median is limited.
  • the vehicle 100 may include two antennas 10 and a switch, placed between said two antennas and the filter 20, making it possible to alternately connect one or the other of the two antennas 10 to the filter 20
  • the switch can switch from one antenna 10 to the other substantially at half the duration of reception of a signal corresponding to a BLE data frame so that the computer 60 can calculate, for this same frame, a first power value of the signal received on the first antenna 10 and a second power value of the signal received on the second antenna 10, for example on a different transmission channel, then calculate the median or the average in order to further improve the accuracy of the distance determination.
  • the invention therefore makes it possible to calculate the power from the phase and quadrature components of a signal comprising a series of 0 or 1 in order to precisely determine the distance separating the device 200 for authenticating the vehicle 100.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Lock And Its Accessories (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Un procédé de détermination de la distance entre un dispositif d'authentification porté par un utilisateur, et un véhicule (100) automobile, comprenant chacun un module de communication (50) sans fil afin d'échanger une trame de données, ladite trame de données étant modulée par changement de phase d'un signal de référence (S). Le procédé comprend les étapes de réception par le véhicule d'un signal (S) de référence modulé, envoyé par le dispositif, de démodulation du signal (S) reçu afin d'en extraire une composante en phase (I) et une composante en quadrature (Q), de calcul de la valeur de la puissance du signal (S) à partir de la valeur d'amplitude maximale de la composante en phase (I) et de la valeur d'amplitude maximale de la composante en quadrature (Q), et de détermination de la distance entre le dispositif et le véhicule à partir de la valeur de puissance calculée.

Description

Description
Titre : Procédé de détermination de la distance entre un dispositif d’authentification et un véhicule
[Domaine technique]
[0001] L’invention concerne la détection d’un dispositif d’authentification à proximité d’un véhicule et plus particulièrement un procédé et un calculateur permettant une détermination de la distance entre un dispositif d’authentification et un véhicule afin de déclencher des fonctions du véhicule.
[Etat de la technique antérieure]
[0002] De nos jours, certains véhicules automobiles sont équipés d’un système de détection permettant d’authentifier à distance un dispositif porté par l’utilisateur, par exemple un badge ou une clé de contact électronique, afin de mettre en œuvre certaines fonctions depuis l’extérieur du véhicule. Par exemple, un tel système de détection peut être utilisé afin de mettre en œuvre une fonction de déverrouillage des ouvrants du véhicule, par exemple les portières ou le coffre ou bien d’activation de fonctions d’accueil (lumières, réglages d’équipements intérieurs, etc.).
[0003] Pour des raisons de sécurité, il est connu de paramétrer le système pour activer ces fonctions seulement lorsque l’utilisateur se trouve à une distance inférieure à une distance prédéterminée dite « distance de détection » qui dépend de la fonction à activer. Par exemple, la fonction de déverrouillage des ouvrants peut être uniquement activée lorsque l’utilisateur se trouve à moins de deux mètres du véhicule. Par exemple encore, un éclairage d’accueil peut être activé lorsque l’utilisateur se trouve à moins de cinq mètres du véhicule ou une demande de manœuvre du véhicule (« remote parking ») peut être uniquement activée lorsque l’utilisateur se trouve à moins de six mètres du véhicule.
[0004] Dans une solution connue, le véhicule et le dispositif communiquent sur des liens de communication sans fil de type LF/RF (Low Frequency / RadioFrequency). Dans cette solution, le véhicule émet de manière périodique un signal de détection sur un lien de communication LF. Lorsque le dispositif reçoit ce signal de détection, il répond au véhicule sur un lien de communication RF afin de s’authentifier. L’avantage de ce type de technologie est que la propagation des signaux n’est pas impactée par des éléments mécaniques tels que la carrosserie du véhicule. Afin de déterminer la distance entre l’utilisateur et le véhicule, le véhicule mesure la puissance des signaux reçus du dispositif d’authentification lors de ces échanges et en déduit une distance. [0005] Pour des raisons pratiques, il est aujourd’hui connu d’utiliser un smartphone, par exemple celui du conducteur, afin s’authentifier auprès du véhicule. Cependant, les smartphones utilisés aujourd’hui ne présentent pas pour la plupart d’interface de communication LF/RF. Afin de remédier à cet inconvénient, il est connu d’utiliser une interface de communication Bluetooth®, notamment une interface de type BLE (Bluetooth® Low Energy), présente sur la plupart des smartphones actuels. Les échanges sont réalisés sur une telle interface à l’aide de trames codées dans un signal dit signal BLE.
[0006] Afin de déterminer la distance entre le dispositif et le véhicule, le véhicule doit détecter la réception d’un signal BLE et en déterminer la puissance, par exemple en mesurant le RSSI (Received Signal Strength Indication), pour en déduire la distance. Cependant, on constate que la mesure du RSSI n’est pas fiable dans la mesure où les signaux peuvant rebondir sur des objets environnants, ce qui entraîne une imprécision dans la détermination de la distance.
[0007] Dans une solution connue, il a été proposé de mesurer le RSSI pendant une durée plus longue, de l’ordre de 10 secondes, et de déterminer la médiane de ces mesures afin d’obtenir une valeur plus fiable du RSSI. Toutefois, l’utilisateur se déplaçant généralement de manière continue lorsqu’il s’approche du véhicule, la distance déterminée au terme d’une telle durée de mesure n’est pas celle à laquelle se trouve réellement l’utilisateur, ce qui présente un inconvénient important.
[Exposé de l’invention]
[0008] L’invention a donc pour but de remédier au moins en partie à ces inconvénients en proposant une solution simple, fiable et efficace pour déterminer la distance entre le dispositif et le véhicule.
[0009] A cette fin, l’invention a pour objet un procédé de détermination de la distance entre un dispositif d’authentification destiné à être porté par un utilisateur, et un véhicule automobile, chacun dudit dispositif et dudit véhicule comprenant un module de communication sans fil permettant d’échanger au moins une trame de données entre le module de communication du dispositif, désigné émetteur, et le module de communication du véhicule, désigné récepteur, ladite trame de données comprenant une série de bits de valeur 0 ou 1 modulée par l’émetteur par changement de phase d’un signal de référence comprenant une composante dite « en phase », caractérisée par une valeur d’amplitude maximale, et une deuxième composante dite « en quadrature », déphasée de 90° par rapport à la composante en phase et caractérisée par une valeur d’amplitude maximale, ledit procédé comprenant une étape de réception, par le récepteur, d’un signal de référence modulé, envoyé par l’émetteur et dont les changements de phase caractérisent les valeurs des bits d’une trame de données, et une étape de démodulation du signal de référence reçu afin d’en extraire la composante en phase et la composante en quadrature, le procédé étant remarquable en ce qu’il comprend en outre, suite à l’étape de démodulation, une étape de calcul de la valeur de la puissance du signal de référence à partir de la valeur d’amplitude maximale de la composante en phase et de la valeur d’amplitude maximale de la composante en quadrature et une étape de détermination de la distance entre l’émetteur et le récepteur à partir de la valeur de puissance calculée.
[0010] L’utilisation de la composante en phase et de la composante en quadrature permet de calculer la puissance du signal reçu de manière précise, rapide et fiable en comparaison d’une mesure du RSSI dudit signal. De plus, le calcul de la puissance du signal et donc de la distance est avantageusement rendu précis et rapide par l’utilisation d’une série de 0 ou de 1 consécutifs dans la trame de données envoyée dans le signal dans la mesure où la réduction du nombre d’alternance des états des bits (de 0 à 1 ou de 1 à 0) réduit les perturbations sur le signal et rend donc l’estimation de la puissance plus précise.
[0011] De préférence, la valeur de la puissance du signal de référence est calculée en utilisant la formule suivante :
[0012] [Math. 1]
[0013] PdBm = 10 * log(10 * (/M 2 + Qm 2))
[0014] où PdBm est la puissance du signal de référence en dBm, IM est la valeur d’amplitude maximale de la composante en phase et Q est la valeur d’amplitude maximale de la composante en quadrature. Ainsi, la puissance du signal est calculée avec précision, augmentant la fiabilité de la détermination de la distance.
[0015] De manière avantageuse, la trame de données comprenant un champ de données utiles, la trame de donnée reçue est spécifique et le champ de données utiles est constitué soit d’une série de 0, soit d’une série de 1 afin de limiter des disparités dues à l’alternance de 0 et de 1.
[0016] Avantageusement, le procédé comprend en outre, préalablement à l’étape de réception, par le récepteur, du signal de référence modulé, une étape de modulation du signal de référence par l’émetteur à partir des signaux correspondants aux bits du champ de données utiles de la trame de données et une étape d’émission du signal de référence modulé à destination du récepteur.
[0017] De préférence, le procédé comprend : préalablement à l’étape de modulation du signal de référence, une étape de transformation du signal de référence visant à éviter l’envoi d’une série de 0 ou de 1 dans le champ de données utiles de la trame de données, et
préalablement à ladite étape de transformation, une étape de transformation inverse des bits du champ de données utiles afin de permettre la modulation d’une série de 0 ou de 1 dans le champ de données utiles de la trame de données.
[0018] Ainsi, un champ de données utiles comprenant une suite de 0 ou de 1 est émis malgré la transformation des bits par le module de communication émetteur.
[0019] De préférence, les trames de données sont codées dans des signaux échangés dans la bande de fréquences UHF (Ultra Hautes Fréquences) comprise entre 300 et 3000 MHz, de préférence encore selon la norme BLE (Bluetooth® Low Energy).
[0020] De préférence, les modules de communication étant configurés pour échanger des trames de données sur différents canaux, ladite trame de données comprend un identifiant dudit canal sur lequel la trame de données est émise afin de déterminer le canal par lequel la trame de données a été reçue.
[0021] L’invention vise également un calculateur destiné à être monté dans un véhicule automobile afin de déterminer la distance entre un dispositif d’authentification, destiné à être porté par un utilisateur, et ledit véhicule, chacun dudit dispositif et dudit véhicule comprenant un module de communication sans fil permettant d’échanger au moins une trame de données entre le module de communication du dispositif, désigné émetteur, et le module de communication du véhicule, désigné récepteur, ladite trame de données comprenant une série de bits de valeur 0 ou 1 modulée par l’émetteur par changement de phase d’un signal de référence comprenant une composante dite « en phase », caractérisée par une valeur d’amplitude maximale, et une deuxième composante dite « en quadrature », déphasée de 90° par rapport à la composante en phase et caractérisée par une valeur d’amplitude maximale, le récepteur étant configuré pour recevoir un signal de référence modulé, envoyé par l’émetteur et dont les changements de phase caractérisent les valeurs des bits d’une trame de données, et démoduler le signal de référence reçu afin d’en extraire la composante en phase et la composante en quadrature, le calculateur étant remarquable en ce qu’il est configuré pour calculer la valeur de la puissance du signal de référence à partir de la valeur d’amplitude maximale de la composante en phase et de la valeur d’amplitude maximale de la composante en quadrature et pour déterminer la distance entre l’émetteur et le récepteur à partir de la valeur de puissance calculée.
[0022] De préférence, la valeur de la puissance du signal de référence est calculée en utilisant la formule suivante : [0023] [Math. 2]
[0024] PdBm = 10 * log(10 * (/M 2 + Qm 2))
[0025] Où PdBm est la puissance du signal de référence en dBm, IM est la valeur d’amplitude maximale de la composante en phase et QM est la valeur d’amplitude maximale de la composante en quadrature.
[0026] De manière avantageuse, la trame de données comprenant un champ de données utiles, la trame de donnée reçue est spécifique et le champ de données utiles est constitué soit d’une série de 0, soit d’une série de 1.
[0027] L’invention concerne également un véhicule automobile comprenant :
un module de communication dit récepteur, configuré pour recevoir un signal de référence modulé, envoyé par l’émetteur et dont les changements de phase caractérisent les valeurs des bits d’une trame de données, et démoduler le signal de référence reçu afin d’en extraire la composante en phase et la composante en quadrature, et
un calculateur tel que décrit précédemment.
[0028] L’invention concerne en outre un dispositif d’authentification destiné à être porté par un utilisateur, comprenant un module de communication dit émetteur, configuré pour : transformer un signal de référence visant à éviter l’envoi d’une série de 0 ou de 1 dans le champ de données utiles d’une trame de données, et
réaliser la transformation inverse des bits du champ de données utiles afin de permettre la modulation d’une série de 0 ou de 1 dans le champ de données utiles de la trame de données,
moduler un signal de référence à partir des signaux correspondants aux bits du champ de données utiles de la trame de données et émettre le signal de référence modulé.
[0029] L’invention vise également un système de détection pour véhicule automobile, ledit système comprenant :
un dispositif d’authentification destiné à être porté par un utilisateur, comprenant un module de communication dit émetteur, configuré pour moduler le signal de référence à partir des signaux correspondants aux bits du champ de données utiles d’une trame de données et émettre le signal de référence modulé, et
un véhicule automobile, tel que décrit ci-avant.
[Description des dessins]
[0030] D’autres caractéristiques et avantages de l’invention apparaîtront lors de la description qui suit faite en regard des figures annexées données à titre d’exemples non limitatifs et dans lesquelles des références identiques sont données à des objets semblables.
[Fig. 1] illustre schématiquement un véhicule automobile autour duquel sont définies différentes zones d’action.
[Fig. 2] illustre schématiquement une forme de réalisation d’un véhicule automobile selon l’invention.
[Fig. 3] illustre schématiquement un diagramme de constellation d’un signal reçu par le véhicule de la figure 2.
[Fig. 4] illustré schématiquement une mise en œuvre du procédé selon l’invention.
[0031] L’invention sera présentée ci-après en vue d’une mise en œuvre dans un véhicule automobile. Cependant, toute mise en œuvre dans un contexte différent, en particulier pour tout véhicule est également visé par la présente invention.
[0032] Comme illustré sur la figure 1 , différentes zones Z1 , Z2 sont déterminées autour d’un véhicule automobile 100. Le véhicule 100 est configuré pour déterminer la distance entre un utilisateur et le véhicule 100, afin d’authentifier l’utilisateur pour mettre en œuvre certaines fonctions depuis l’extérieur dudit véhicule 100.
[0033] Dans l’exemple illustré sur la figure 1 , une première zone Z1 permet d’activer une fonction de déverrouillage du véhicule 100 lorsque l’utilisateur se trouve à moins de deux mètres du véhicule 100. Une deuxième zone Z2 permet d’activer un éclairage d’accueil lorsque l’utilisateur se trouve à moins de cinq mètres du véhicule 100. D’autres zones peuvent être déterminées autour du véhicule 100 pour activer d’autres fonctions, notamment une demande de manœuvre du véhicule (« remote parking ») lorsque l’utilisateur se trouve à moins de six mètres du véhicule 100.
[0034] Selon l’invention, la distance est déterminée à partir d’un dispositif 200 d’authentification que l’utilisateur porte afin de déterminer la distance de l’utilisateur par rapport au véhicule 100 à partir de la distance du dispositif 200 d’authentification par rapport au véhicule 100. Dans ce but, le dispositif 200 d’authentification et le véhicule 100 échangent au moins une trame de données sous la forme d’un signal comme cela sera décrit par la suite.
[0035] Le dispositif 200 d’authentification peut se présenter sous la forme d’un terminal mobile tel qu’un téléphone intelligent, également désigné smartphone en langue anglaise, ou bien sous la forme d’une télécommande par exemple. Un tel dispositif 200 est ainsi aisément transportable pour l’utilisateur afin que ce dernier le porte avec lui lors de la détermination de la distance avec le véhicule 100.
[0036] Le dispositif 200 d’authentification comprend un module de communication sans fil (non représenté) adapté pour communiquer avec le véhicule 100 afin d’échanger au moins une trame de données. En particulier, le dispositif 200 est configuré pour envoyer une trame de données T.
[0037] Le module de communication est du type Bluetooth®, de préférence Bluetooth® Low Energy, désigné BLE en langue anglaise. Un tel module de communication est configuré pour émettre une trame de données sur différents canaux : notamment sur un premier canal dont la fréquence est de 2402 MHz, un deuxième canal dont la fréquence est de 2426 MHz et un troisième canal dont la fréquence est de 2480 MHz. De manière classique, le module de communication émet une trame de données sur ces différents canaux simultanément. Un des buts de l’invention est de déterminer, lorsqu’une trame de données est reçue, le canal par lequel elle a été transmise.
[0038] Une trame de données comprend un champ d’identifiant et au moins un champ de données utiles qui correspond aux données que le dispositif 200 d’authentification souhaite envoyer au véhicule 100. L’identifiant permet d’identifier le canal par lequel la trame de données a été transmise.
[0039] Selon un mode de réalisation préférée, une trame de données se présente sous la forme d’une pluralité de bits, chacun des champs étant constitué d’une série de 0 ou de 1 regroupés en octets. A titre d’exemple, une trame de données de type BLE est composée de la manière suivante : 1 à 2 octets pour le préambule, 4 octets pour l’identifiant (ou Access Address), 2 à 257 octets pour la partie utile (appelée Protocol Data Unit ou PDU) et 3 octets pour la détection d’erreur (CRC).
[0040] Selon un aspect de l’invention, le dispositif 200 comprend une unité de modulation (non représentée) configurée pour moduler un signal de référence par changement de phase de ce signal de référence. Les changements de phase de ce signal modulé S sont caractéristiques des valeurs des différents bits de la trame de données. Le signal de référence modulé S comprend une composante dite « en phase » I et une composante dite « en quadrature » Q déphasée de 90° par rapport à la composante en phase I. Chacune des composantes I, Q est caractérisée par une valeur d’amplitude maximale IM, QM. Une telle modulation du type modulation d’amplitude en quadrature étant connue, elle ne sera pas décrite plus en détail.
[0041] Le dispositif 200 est en outre configuré pour transformer le signal de référence de manière à forcer l’envoi d’une série composée uniquement de 0 ou de 1 dans le champ de données utiles. En effet, dans certains cas, le module de communication peut être configuré pour éviter l’envoi d’une série de bits constitués uniquement de 0 ou uniquement de 1 en utilisant un filtre de brouillage des bits avant l’émission d’un signal, ledit signal étant filtré à l’inverse en réception afin de récupérer les bits d’origine du message. Dans ce cas, le dispositif peut être configuré pour appliquer le filtre de bouillage inverse aux bits de données utiles avant de les transmettre au module de communication de sorte que le module de communication les transforme, via le filtre de brouillage, en une série composée uniquement de 0 ou uniquement de 1. L’utilisation d’une trame dans laquelle le champ de données utiles est rempli uniquement de 0 ou uniquement de 1 permet de limiter les perturbations dans le signal S générées par les alternances de 0 et de 1 et d’optimiser ainsi les mesures ultérieures réalisées sur le signal S.
[0042] Dans l’exemple illustré sur la figure 2, le véhicule automobile 100 comprend une antenne 10, un filtre 20, un amplificateur 30, une unité de démodulation 40, un module de communication 50 et un calculateur 60.
[0043] L’antenne 10 est configurée pour recevoir des signaux modulés S afin de communiquer avec le dispositif 200 d’authentification placé à distance du véhicule 100.
[0044] Le filtre 20 est configuré pour filtrer le signal modulé S reçu et l’amplificateur 30 est configuré pour amplifier le signal modulé S. De tels éléments étant connus, ils ne seront pas décrits plus en détails.
[0045] L’unité de démodulation 40 est configurée pour décimer un signal modulé S reçu afin de séparer le signal modulé S en deux signaux correspondants à chacune des composantes I, Q. Autrement dit, l’unité de démodulation 40 est configurée pour extraire les composantes I, Q du signal modulé S.
[0046] Une telle démodulation étant connue, elle ne sera pas décrite plus en détails.
[0047] Pour chaque bit de la trame de données reçu, une valeur d’amplitude maximale IM, QM de chaque composante I, Q est ainsi déterminée et peut être reportée sur un diagramme de constellation comme illustré sur la figure 3.
[0048] Le calculateur 60 est configuré pour déterminer la distance entre le véhicule 100 et le dispositif 200 à partir de la puissance P m du signal modulé S reçu par le véhicule 100.
[0049] La tension Vpk du signal modulé S est donnée par l’équation :
[0050] [Math. 3]
[0051] Vpk = sqrtQ2 + Q 2)
[0052] Pour effectuer une mesure précise, autrement dit sans distorsion, les valeurs des composants I, Q utilisées sont les valeurs d’amplitude maximales /M, QM, qui correspondent à la valeur crêt des composantes sinusoïdales en quadrature du signal module S. La valeur efficace de la tension, notée Vrms, est ainsi donnée par l’équation :
[0053] [Math. 4]
Figure imgf000010_0001
[0055] La puissance du signal modulé S est alors, pour un système en 50 ohms, donnée par l’équation :
[0056] [Math. 5] [0058] Soit en dBm :
[0059] [Math. 6]
[0060] PdBm = 10 * log(^) = 10 * log(10 * (JM 2 + ÇM 2))
[0061] Le calculateur 60 est ainsi configuré pour calculer la puissance PdBm du signal S reçu par le véhicule 100 à partir des composantes I, Q du signal S. Le calculateur 60 est en outre configuré pour déterminer la distance entre le dispositif 200 et le véhicule 100 à partir de cette puissance mesurée de manière connue en soi.
[0062] Selon un aspect de l’invention, le calculateur 60 est configuré pour déterminer le canal par lequel la trame de données a été reçue à partir de l’identifiant. Ceci permet au calculateur 60 de déterminer les caractéristiques de ce canal, notamment sa fréquence, afin d’optimiser le calcul de la puissance du signal S reçu par ce canal et ainsi de fiabiliser la détermination de la distance.
[0063] Il va maintenant être décrit une mise en œuvre du procédé de détermination selon l’invention entre le dispositif 200 d’authentification et le véhicule 100.
[0064] Lorsque l’utilisateur transporte le dispositif 200 d’authentification, ce dernier émet, dans une étape d’émission E1 , une trame de données spécifique sous forme d’un signal S.
[0065] Avant d’émettre cette trame de données spécifique, le dispositif 200 réalise de manière successive une transformation inverse et une transformation de cette trame de données spécifique, ladite transformation inverse étant inverse à ladite transformation. La transformation inverse a pour but de transformer la trame de données spécifique, dont le champ de données utiles comprend une succession de 0 ou de 1 , en une alternance de 0 et de 1 qui, après la transformation, sera transformée à nouveau en une succession de 0 ou de 1. Ceci permet d’émettre une trame de données spécifique comprenant une succession de 0 ou de 1 malgré la transformation qui a pour but d’éviter une telle émission pour des trames de données non spécifiques.
[0066] Toujours avant l’émission de la trame de données spécifique, le dispositif 200 module, dans une étape E0, un signal S de référence à partir des signaux correspondants aux bits du champ de données utiles de la trame de données spécifiques.
[0067] Après l’émission E1 , le signal S est reçu, dans une étape de réception E2, par le véhicule 100. En particulier, l’antenne 10 reçoit le signal S qui est ensuite filtré par le filtre 20 et amplifié par l’amplificateur 30.
[0068] Puis, dans une étape de démodulation E3, le signal S est démodulé par le module de démodulation 40 afin de séparer le signal en phase I et le signal déphasé Q. [0069] Le calculateur 60 du véhicule 100 détermine pour chaque bit la valeur d’amplitude maximale IM de la composante en phase I et la valeur d’amplitude maximale IM de la composante en quadrature Q.
[0070] Dans une étape E4, le calculateur 60 calcule la puissance Pmm du signal (S) de référence à partir de ces valeurs d’amplitude maximale IM, QM comme décrit précédemment.
[0071] Puis, dans une étape E5, le calculateur 60 détermine la distance entre le dispositif 200 et le véhicule 100 à partir de la puissance P m calculée.
[0072] Avantageusement, une valeur de la puissance P du signal S peut être calculée pour chaque bit de la trame de données, ce qui permet de calculer plusieurs valeurs de puissance Pmm avec une unique trame de données. Le calculateur 60 peut ainsi calculer la médiane de ces valeurs afin de fiabiliser la détermination de distance. De plus, la médiane étant réalisée avec une unique trame de données, le temps nécessaire pour calculer une telle médiane est limité.
[0073] Dans une autre forme de réalisation, le véhicule 100 peut comprendre deux antennes 10 et un commutateur, placé entre lesdites deux antennes et le filtre 20, permettant de connecter alternativement l’une ou l’autre des deux antennes 10 au filtre 20. Avantageusement, le commutateur peut basculer d’une antenne 10 vers l’autre sensiblement à la moitié de la durée de réception d’un signal correspondant à un trame de données BLE de sorte que le calculateur 60 puisse calculer, pour cette même trame, une première valeur de puissance du signal reçu sur la première antenne 10 et une deuxième valeur de puissance du signal reçu sur la deuxième antenne 10, par exemple sur un canal de transmission différent, puis en calculer la médiane ou la moyenne afin d’améliorer davantage la précision de la détermination de la distance.
[0074] L’invention permet donc de calculer la puissance à partir des composantes en phase et en quadrature d’un signal comportant une série de 0 ou de 1 afin de déterminer de manière précise la distance séparant le dispositif 200 d’authentification du véhicule 100.

Claims

REVENDICATIONS
[Revendication 1] Procédé de détermination de la distance entre un dispositif (200) d’authentification destiné à être porté par un utilisateur, et un véhicule (100) automobile, chacun dudit dispositif (200) et dudit véhicule (100) comprenant un module de communication (50) sans fil permettant d’échanger au moins une trame de données entre le module de communication du dispositif (200), désigné émetteur, et le module de communication (50) du véhicule (100), désigné récepteur, ladite trame de données comprenant une série de bits de valeur 0 ou 1 modulée par l’émetteur par changement de phase d’un signal de référence (S) comprenant une composante dite « en phase » (I), caractérisée par une valeur d’amplitude maximale (/M), et une deuxième composante dite « en quadrature » (Q), déphasée de 90° par rapport à la composante en phase (I) et caractérisée par une valeur d’amplitude maximale (QM), ledit procédé comprenant une étape de réception (E2), par le récepteur, d’un signal (S) de référence modulé, envoyé par l’émetteur et dont les changements de phase caractérisent les valeurs des bits d’une trame de données, et une étape de démodulation (E3) du signal (S) de référence reçu afin d’en extraire la composante en phase (I) et la composante en quadrature (Q), le procédé étant caractérisé en ce qu’il comprend en outre, suite à l’étape de démodulation (E3), une étape de calcul (E4) de la valeur de la puissance ( PdBm ) du signal (S) de référence à partir de la valeur d’amplitude maximale (/M) de la composante en phase (I) et de la valeur d’amplitude maximale (QM) de la composante en quadrature (Q) et une étape de détermination (E5) de la distance entre l’émetteur et le récepteur à partir de la valeur de puissance (PdBm) calculée.
[Revendication 2] Procédé selon la revendication 1 , dans lequel la valeur de la puissance (PdBm) du signal (S) de référence est calculée en utilisant la formule suivante :
PdBm = 10 * log(10 * (/M 2 + Qm 2))
où PdBm est la puissance du signal de référence en dBm, IM est la valeur d’amplitude maximale de la composante en phase (I) et Q est la valeur d’amplitude maximale de la composante en quadrature (Q).
[Revendication 3] Procédé selon l’une quelconque des revendications précédentes, dans lequel, la trame de données comprenant un champ de données utiles, la trame de donnée reçue est spécifique et le champ de données utiles est constitué soit d’une série de 0, soit d’une série de 1.
[Revendication 4] Procédé selon l’une quelconque des revendications précédentes, comprenant en outre, préalablement à l’étape de réception (E2), par le récepteur, du signal (S) de référence modulé, une étape de modulation (E0) du signal (S) de référence par l’émetteur à partir des signaux correspondants aux bits du champ de données utiles de la trame de données et une étape d’émission (E1) du signal de référence modulé à destination du récepteur.
[Revendication 5] Procédé selon la revendication précédente, comprenant :
- préalablement à l’étape de modulation (E0) du signal (S) de référence, une étape de transformation du signal de référence visant à éviter l’envoi d’une série de 0 ou de 1 dans le champ de données utiles de la trame de données, et
- préalablement à ladite étape de transformation, une étape de transformation inverse des bits du champ de données utiles afin de permettre la modulation d’une série de 0 ou de 1 dans le champ de données utiles de la trame de données.
[Revendication 6] Procédé selon l’une quelconque des revendications précédentes, dans lequel le module de communication du dispositif (200) et le module de communication (50) du véhicule (100) sont configurés pour communiquer sur une interface de type BLE (Bluetooth® Low Energy).
[Revendication 7] Calculateur (60) destiné à être monté dans un véhicule automobile afin de déterminer la distance entre un dispositif (200) d’authentification, destiné à être porté par un utilisateur, et ledit véhicule (100), chacun dudit dispositif (200) et dudit véhicule (100) comprenant un module de communication (50) sans fil permettant d’échanger au moins une trame de données entre le module de communication du dispositif (200), désigné émetteur, et le module de communication (50) du véhicule (100), désigné récepteur, ladite trame de données comprenant une série de bits de valeur 0 ou 1 modulée par l’émetteur par changement de phase d’un signal (S) de référence comprenant une composante dite « en phase » (I), caractérisée par une valeur d’amplitude maximale (/M), et une deuxième composante dite « en quadrature » (Q), déphasée de 90° par rapport à la composante en phase (I) et caractérisée par une valeur d’amplitude maximale (QM), le récepteur étant configuré pour recevoir un signal (S) de référence modulé, envoyé par l’émetteur et dont les changements de phase caractérisent les valeurs des bits d’une trame de données, et démoduler le signal (S) de référence reçu afin d’en extraire la composante en phase (I) et la composante en quadrature (Q), le calculateur (60) étant caractérisé en ce qu’il est configuré pour calculer la valeur de la puissance (PdBm) du signal (S) de référence à partir de la valeur d’amplitude maximale (/M) de la composante en phase (I) et de la valeur d’amplitude maximale (QM) de la composante en quadrature (Q) et pour déterminer la distance entre l’émetteur et le récepteur à partir de la valeur de puissance (PdBm) calculée.
[Revendication 8] Calculateur (60) selon la revendication précédente, dans lequel la valeur de la puissance (PdBm) du signal (S) de référence est calculée en utilisant la formule suivante :
PdBm— 10 * log(10 * (/M 2 + Qm 2)) où PdBm est la puissance du signal de référence en dBm, IM est la valeur d’amplitude maximale de la composante en phase (I) et QM est la valeur d’amplitude maximale de la composante en quadrature (Q).
[Revendication 9] Véhicule automobile (100) comprenant :
- un module de communication (50) dit récepteur, configuré pour recevoir un signal (S) de référence modulé, envoyé par l’émetteur et dont les changements de phase caractérisent les valeurs des bits d’une trame de données, et démoduler le signal (S) de référence reçu afin d’en extraire la composante en phase (I) et la composante en quadrature (Q), et
- un calculateur (60) selon l’une quelconque des revendications 7 ou 8.
[Revendication 10] Système de détection pour véhicule (100) automobile, ledit système comprenant :
- un dispositif (200) d’authentification destiné à être porté par un utilisateur, comprenant un module de communication dit émetteur, configuré pour moduler le signal (S) de référence à partir des signaux correspondants aux bits du champ de données utiles de la trame de données et émettre le signal (S) de référence modulé, et
- un véhicule (100) automobile, selon la revendication précédente.
PCT/EP2019/084448 2018-12-11 2019-12-10 Procédé de détermination de la distance entre un dispositif d'authentification et un véhicule WO2020120483A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980081769.1A CN113167880B (zh) 2018-12-11 2019-12-10 用于确定认证装置与车辆之间的距离的方法
US17/293,244 US11885867B2 (en) 2018-12-11 2019-12-10 Method for determining the distance between an authentication device and a vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1872716A FR3089736B1 (fr) 2018-12-11 2018-12-11 Procédé de détermination de la distance entre un dispositif d’authentification et un véhicule
FRFR1872716 2018-12-11

Publications (1)

Publication Number Publication Date
WO2020120483A1 true WO2020120483A1 (fr) 2020-06-18

Family

ID=66218240

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2019/084448 WO2020120483A1 (fr) 2018-12-11 2019-12-10 Procédé de détermination de la distance entre un dispositif d'authentification et un véhicule

Country Status (4)

Country Link
US (1) US11885867B2 (fr)
CN (1) CN113167880B (fr)
FR (1) FR3089736B1 (fr)
WO (1) WO2020120483A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111815962A (zh) * 2020-07-08 2020-10-23 支付宝(杭州)信息技术有限公司 车辆身份的识别方法、装置、主设备和从设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7130601B2 (en) * 2002-09-13 2006-10-31 Broadcom Corporation Determination of received signal strength in a direct conversion receiver
US20090011725A1 (en) * 2005-01-06 2009-01-08 Murata Manufacturing Co., Ltd. Radio receiver and radio transmitter
US20150048927A1 (en) * 2013-08-13 2015-02-19 Directed, Llc Smartphone based passive keyless entry system
US20180254925A1 (en) * 2017-03-02 2018-09-06 Nxp B.V. Processing module and associated method

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100539571C (zh) * 2004-02-27 2009-09-09 诺基亚西门子通信***技术(北京)有限公司 一种正交振幅调制方式下的信噪比估计方法
FR2888429A1 (fr) * 2005-07-06 2007-01-12 St Microelectronics Sa Correction des defauts d'appariement entre deux voies i et q
EP2682780B1 (fr) * 2012-07-04 2014-04-23 Sick Ag Procédé de détection et de détermination de position sécurisée d'objets et dispositif de sécurité
EP2767847B1 (fr) * 2013-02-14 2016-04-20 Semtech Corporation Système de positionnement et de télémétrie
WO2014125336A1 (fr) * 2013-02-15 2014-08-21 Nokia Corporation Traitement de signaux
CN106062511B (zh) * 2013-12-05 2018-12-04 特林布尔有限公司 大地测量仪器和操作大地测量仪器的方法
DE102014010990B4 (de) * 2014-07-29 2021-06-17 Jenoptik Robot Gmbh Verfahren und Vorrichtung zum Erkennen von einer Geschwindigkeit und einer Entfernung zumindest eines Objekts in Bezug zu einem Empfänger eines Empfangssignals
FR3040551B1 (fr) * 2015-08-28 2018-08-17 Continental Automotive France Procede de localisation ultra haute frequence d'un dispositif portable d'acces " main libre " a un vehicule automobile et dispositif de localisation associe
US10328898B2 (en) * 2016-10-12 2019-06-25 Denso International America, Inc. Passive entry / passive start systems and methods for vehicles
US10244476B2 (en) * 2017-04-13 2019-03-26 Ford Global Technologies, Llc Reducing power consumption for phone as a key (PAAK) vehicle system
US11398876B2 (en) * 2021-02-19 2022-07-26 Ultralogic 6G, Llc Error detection and correction in 5G/6G pulse-amplitude modulation

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7130601B2 (en) * 2002-09-13 2006-10-31 Broadcom Corporation Determination of received signal strength in a direct conversion receiver
US20090011725A1 (en) * 2005-01-06 2009-01-08 Murata Manufacturing Co., Ltd. Radio receiver and radio transmitter
US20150048927A1 (en) * 2013-08-13 2015-02-19 Directed, Llc Smartphone based passive keyless entry system
US20180254925A1 (en) * 2017-03-02 2018-09-06 Nxp B.V. Processing module and associated method

Also Published As

Publication number Publication date
FR3089736B1 (fr) 2020-11-13
CN113167880B (zh) 2024-07-09
US20220050192A1 (en) 2022-02-17
FR3089736A1 (fr) 2020-06-12
US11885867B2 (en) 2024-01-30
CN113167880A (zh) 2021-07-23

Similar Documents

Publication Publication Date Title
EP2583484B1 (fr) Procédé de sécurisation d'une communication sans fil, dispositif récepteur et système de communication mettant en oeuvre ce procédé
EP3365697A1 (fr) Procédé d'estimation d'une distance et unité électronique pour véhicule
EP3301608B1 (fr) Procédé de détection de la présence éventuelle d'un objet par un lecteur sans contact, et lecteur correspondant
EP3026453B1 (fr) Procede de generation d'une cartographie de couverture d'emission ou de reception d'une antenne d'une station sol pour des liaisons satellite
EP3556028A1 (fr) Procédé de traitement de l'effet doppler d'un signal transmis par un dispositif émetteur vers un satellite non géosynchrone
EP3306576A1 (fr) Procede et systeme d'acces securise a un espace determine au moyen d'un objet portable
WO2019155167A1 (fr) Procédé de détection d'un équipement portable d'utilisateur dans une zone prédéterminée, à l'intérieur ou à l'extérieur d'un véhicule par ultra haute fréquence, dispositif de détection et équipement d'utilisateur associés
WO2020120483A1 (fr) Procédé de détermination de la distance entre un dispositif d'authentification et un véhicule
EP3907895A1 (fr) Méthode de réception d'un signal modulé et récepteur associé
EP2715392B1 (fr) Procede de localisation d'un terminal a la surface d'une zone de couverture au moyen d'un reseau de telecommunication utilisant un satellite multifaisceaux
EP1453217B1 (fr) Procédé d'atténuation de l'influence d'interférences produites par des systèmes de transmission radio en rafales sur des communications UWB
EP1690429B1 (fr) Reseau de telephonie mobile pour une communication entre deux postes de communication
FR2811495A1 (fr) Procede et dipositif pour proteger une voie de transmission entre une unite de base et une unite mobile
WO2020120445A1 (fr) Procédé d'estimation de la distance séparant un dispositif d'authentification d'un véhicule automobile
EP2455263B1 (fr) Dispositif de commande à distance pour véhicule automobile
FR3107963A1 (fr) Procède de communication et de localisation en continu ultra haute fréquence d’un dispositif portable d’accès « mains libres » à un véhicule automobile
WO2020120491A1 (fr) Procédé d'estimation de la distance séparant un véhicule et un dispositif d'authentification
WO2020161325A1 (fr) Procédé de localisation d'un smartphone dans une zone de dépose
EP1125374B1 (fr) Procede de mise en service d'une liaison de donnees numeriques empruntant un milieu de transmission sujet aux perturbations
WO2022269071A1 (fr) Procede de detection d'ouverture des ouvrants d'un vehicule automobile et dispositif de detection associe
EP2085941A1 (fr) Procédé de transmission de signaux à partir de boîtiers électroniques montés sur les roues d'un véhicule, à destination d'une unité centrale montée sur le dit véhicule
WO2020058486A1 (fr) Procédé et dispositif pour déterminer un instant d'arrivée d'un signal radio
FR2889008A1 (fr) Procede et systeme de transmission de donnees en serie
FR2771234A1 (fr) Systeme et procede de transmission radio
EP0576382A1 (fr) Procédé de transmission de signaux électriques par voie hertzienne, et systèmes de transmission pour la mise en oeuvre de ce procédé

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19816710

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19816710

Country of ref document: EP

Kind code of ref document: A1