WO2020119639A1 - 复合金刚石涂层及其制备方法、微流体通道和微流体器件 - Google Patents

复合金刚石涂层及其制备方法、微流体通道和微流体器件 Download PDF

Info

Publication number
WO2020119639A1
WO2020119639A1 PCT/CN2019/124031 CN2019124031W WO2020119639A1 WO 2020119639 A1 WO2020119639 A1 WO 2020119639A1 CN 2019124031 W CN2019124031 W CN 2019124031W WO 2020119639 A1 WO2020119639 A1 WO 2020119639A1
Authority
WO
WIPO (PCT)
Prior art keywords
diamond coating
coating
intermediate layer
composite
composite diamond
Prior art date
Application number
PCT/CN2019/124031
Other languages
English (en)
French (fr)
Inventor
唐永炳
王星永
王陶
黄磊
李星星
Original Assignee
深圳先进技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳先进技术研究院 filed Critical 深圳先进技术研究院
Publication of WO2020119639A1 publication Critical patent/WO2020119639A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • C23C16/27Diamond only
    • C23C16/271Diamond only using hot filaments
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0227Pretreatment of the material to be coated by cleaning or etching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0272Deposition of sub-layers, e.g. to promote the adhesion of the main coating
    • C23C16/029Graded interfaces
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • C23C16/27Diamond only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/56After-treatment

Definitions

  • the present invention relates to the technical field of coatings, and in particular, to a composite diamond coating and its preparation method, microfluidic channel and microfluidic device.
  • the present invention is specifically proposed to solve at least one of the above problems.
  • One of the objectives of the present invention is to provide a composite diamond coating, which has a structural gradient distribution and a gradient distribution of chemical composition on the surface. By changing the wettability of the composite diamond coating surface, the microfluid in contact with it can be effectively driven With the purpose of control.
  • the second object of the present invention is to provide a method for preparing the above composite diamond coating, which uses a hot wire vapor deposition method to prepare the composite diamond coating, which does not require a mask, and has strong operability and good controllability.
  • the process is stable and easy to implement, which is convenient for large-scale continuous industrial production.
  • the third object of the present invention is to provide a microfluidic channel comprising a substrate and the above composite diamond coating.
  • the fourth object of the present invention is to provide a microfluidic device comprising the above composite diamond coating or the composite diamond coating or microfluidic channel prepared by the above composite diamond coating preparation method.
  • a composite diamond coating including:
  • the intermediate layer is a non-diamond coating
  • the nucleation density of the diamond coating changes in a gradient
  • At least a part of the surface of the composite diamond coating has hydrophilicity, and a part of the surface has hydrophobicity.
  • Equation 1 the nucleation density of the diamond coating gradually increases from one side to the other side of the intermediate layer, and the static contact angle of the droplet on the composite diamond coating.
  • A is 0.1-15°/mm, and B is 100°-150°;
  • the composite diamond coating is hydrophobic along the surface with a relatively high nucleation density of the diamond coating, and the composite diamond coating is hydrophilic along the surface with a relatively low nucleation density of the diamond coating;
  • the surface of the composite diamond coating is modified with a hydrophobic group and a hydrophilic group
  • the hydrophobic group includes a hydrogen group and/or a fluorosilyl group
  • the hydrophilic group includes a hydroxyl group, a carboxyl group, an amino group or a sulfonate group Any one or more of acid groups
  • the intermediate layer includes any one or more of silicon carbide coating, titanium carbide coating, silica coating, graphene layer, aluminum coating or copper coating, preferably silicon carbide coating .
  • the invention also provides a composite diamond coating, including:
  • a diamond coating is formed on a part of the surface of the intermediate layer, and the nucleation density of the diamond coating changes in a gradient;
  • the surface of the diamond coating is hydrophobic
  • the surface of the intermediate layer where the coating of the diamond layer is not formed is hydrophilic.
  • the surface of the diamond coating is modified with hydrophobic groups, and the hydrophobic groups include hydrogen groups and/or fluorosilyl groups;
  • the surface of the intermediate layer on which the diamond layer coating is not formed is modified with a hydrophilic group, and the hydrophilic group includes any one or more of hydroxyl group, carboxyl group, amino group or sulfonic acid group;
  • the intermediate layer includes any one or more of silicon carbide coating, titanium carbide coating, silica coating, graphene layer, aluminum coating or copper coating, preferably silicon carbide coating .
  • a method for preparing the above composite diamond coating including the following steps:
  • the diamond coating is gradient deposited, and then the product after the gradient deposition of the diamond coating is functionalized to make the surface of the diamond coating hydrophilic and not formed
  • the surface of the middle layer of the diamond coating is hydrophobic;
  • the functional treatment includes oxidation treatment and reduction treatment.
  • the process conditions of the gradient deposition diamond coating include: the gas source includes methane and hydrogen; and/or, the vacuum chamber pressure is 1.5-2.0 kPa; and/or, the methane flow rate is 16-32sccm; and/or, the flow rate of hydrogen is 600-800sccm; and/or, the filament power is 6800-7000W; and/or, the filament bottom distance is 7-10mm; and/or, the deposition time is 0.5-1.5h ;
  • the oxidation treatment includes the following steps: performing acid treatment on the product after gradient deposition of the diamond coating, and then washing and drying;
  • the acid solution used for the acid treatment includes the following raw materials: sulfuric acid, potassium nitrate and water, and the mass ratio of sulfuric acid, potassium nitrate and water is (5-15): (0.5-2): (0.5-2), It is preferably (8-12): (1-1.5): (1-1.5), further preferably 10:1:1;
  • the temperature of the acid treatment is 200-300°C, preferably 220-260°C;
  • the time of the acid treatment is 0.5-1h, preferably 0.5-0.8h;
  • the reduction treatment includes the following steps: the oxidation-treated product is subjected to reduction treatment under a hydrogen condition using a hot wire chemical vapor deposition method;
  • the hydrogen flow rate of the reduction treatment is 60-100 sccm
  • the pressure of the vacuum chamber of the reduction treatment is 15-30 Pa;
  • the reduction treatment time is 10-30 min.
  • the implantation treatment includes the steps of placing the substrate formed with an intermediate layer on the surface in an implantation solution, performing ultrasonic treatment, and then drying;
  • the seeding solution is a nanodiamond suspension
  • the mass fraction of nanodiamond in the nanodiamond suspension is 0.005-0.01%
  • the pH of the nanodiamond suspension is 5-8;
  • the intermediate layer includes any one or more of silicon carbide coating, titanium carbide coating, silicon dioxide coating, graphene layer, aluminum coating or copper coating;
  • the intermediate layer is a silicon carbide coating
  • the process conditions for forming the silicon carbide coating include: the gas source includes methane, hydrogen, and silane; and/or, the vacuum chamber pressure is 1.5-2.0 kPa; and/or, the flow rate of methane 16-32sccm, hydrogen flow rate 600-800sccm, silane flow rate 32-80sccm; and/or, filament power 6000-7000W; and/or, filament bottom distance 7-15mm; and/or, deposition time 0.5-2h;
  • the substrate is a silicon substrate.
  • a gradient coating of a diamond coating by a hot wire chemical vapor deposition device is used;
  • the hot-wire chemical vapor deposition apparatus includes a deposition chamber, and the substrate table and a heating device are provided inside the deposition chamber, and the heating device is provided above the substrate table;
  • the heating device includes a hot wire
  • the substrate table includes a supporting surface for supporting the substrate, the supporting surface is an inclined surface and the distance between the supporting surface and the hot wire changes in a gradient;
  • the inclination angle of the bearing surface is 1-89° relative to the plane where the hot wire is located;
  • the substrate stage is a water-cooled substrate stage
  • a protrusion is provided at an edge of the bearing surface, and the protrusion surrounds the bearing surface into a groove.
  • a microfluidic channel including:
  • the intermediate layer is disposed between the diamond coating and the substrate.
  • a microfluidic device comprising the above composite diamond coating or the composite diamond coating produced by the above composite diamond coating preparation method or comprising the above microfluidic channel.
  • the composite diamond coating provided by the present invention and its preparation method and microfluidic device have the following beneficial effects:
  • the composite diamond coating provided by the present invention includes an intermediate layer and a diamond coating formed on the surface of the intermediate layer, wherein the nucleation density of the diamond coating changes in a gradient, and at least a part of the surface of the composite diamond coating has a hydrophilic Part of the surface is hydrophobic; through the combination of the above intermediate layer and the diamond coating, the gradient change of the surface structure of the composite diamond coating and the gradient change of the chemical composition can be achieved under the combined effect of the two gradient changes and the surface hydrophilicity and hydrophobicity , Can effectively control the surface wettability of the composite diamond coating, so as to effectively drive and control the microfluid in contact with it;
  • the composite diamond coating can be surface functionalized, such as surface protein adsorption, and the composite diamond coating also has good chemical stability and repeatability, which laid a solid foundation for its application in the field of biomedicine or microelectromechanical field basis.
  • the preparation method has simple process and convenient operation, and is suitable for industrial production and large-scale industrial use.
  • the microfluidic channel or microfluidic device containing the same also has the same advantages.
  • the microfluidic channel or microfluidic device has good applications in the field of microfluidic driving and control, such as microelectromechanical systems or biomedical fields.
  • FIG. 1 is a schematic structural view of a composite diamond coating on a substrate surface according to an embodiment of the present invention
  • FIG. 2 is a schematic structural diagram of a substrate table according to an embodiment of the present invention.
  • FIG. 3 is a schematic structural view of a substrate table and a heating device according to an embodiment of the invention.
  • FIG. 4 is a schematic diagram of the structure of a substrate table and a heating device according to another embodiment of the invention.
  • Figure 5 is a top view of Figure 4.
  • FIG. 6 is a schematic structural diagram of a substrate table and a heating device according to still another embodiment of the present invention.
  • Example 7 is a schematic structural view of a composite diamond coating obtained in Example 1 of the present invention.
  • FIG. 8 is a SEM image (a) and a contact angle image (b) corresponding to the position A of the composite diamond coating of FIG. 7;
  • FIG. 9 is a SEM image (a) and a contact angle image (b) corresponding to the position B of the composite diamond coating of FIG. 7;
  • FIG. 10 is a SEM image (a) and a contact angle image (b) corresponding to the position C of the composite diamond coating of FIG. 7;
  • FIG. 11 is a SEM image (a) and a contact angle image (b) corresponding to the position D of the composite diamond coating of FIG. 7;
  • FIG. 13 is a SEM image (a) and a contact angle image (b) corresponding to the position F of the composite diamond coating of FIG. 7.
  • Icons 10-substrate stage; 11-bearing surface; 12-protrusion; 13-marker; 20-heating device; 100-substrate; 200-intermediate layer; 300-diamond coating.
  • a composite diamond coating is provided, as shown in FIG. 1 in particular.
  • the composite diamond coating includes an intermediate layer 200 and a diamond coating 300.
  • the diamond coating 300 is formed on the surface of the intermediate layer 200;
  • the intermediate layer 200 is a non-diamond coating
  • the nucleation density of the diamond coating 300 changes gradually
  • At least part of the surface of the composite diamond coating is hydrophilic, and part of the surface is hydrophobic.
  • the composite diamond coating provided by the present invention has a gradient distribution of chemical composition and structure, that is, the nucleation density of the diamond coating changes gradually during the deposition process , So that the diamond coating is unevenly distributed on the surface of the intermediate layer, so that the composite diamond coating achieves a gradient change in structure.
  • the intermediate layer is a non-diamond coating, and the diamond coating is unevenly distributed on the surface of the intermediate layer, it can make the chemical composition of the composite diamond coating exhibit a gradient change after being combined with the diamond coating, that is, the composite diamond coating is away from
  • the chemical composition of the surface of the substrate 100 is not unique, that is, the chemical composition of part of the surface of the composite diamond coating is diamond, and the chemical composition of part of the surface is represented by the material of the intermediate layer. The content changes in a gradient.
  • the wettability at different positions on the surface of the composite diamond coating is not the same, that is, at least a part of the surface is hydrophilic and a part of the surface is hydrophobic.
  • Hydrophilicity refers to the property of easily bonding with water by hydrogen bonding.
  • the interaction between water molecules and the surface of different solid materials is different.
  • the angle ⁇ formed by the tangent line along the surface of the water drop and the contact surface of water and material is called the contact angle, and the angle ⁇ is 0°
  • the degree of wetting can be estimated from the angle ⁇ , ⁇ 90° (such as glass, concrete and many mineral surfaces), it is hydrophilic; ⁇ >90° (such as water droplets on paraffin, asphalt Surface) is hydrophobic.
  • the surface wettability of the composite diamond coating can be effectively controlled by the gradient change of the surface wettability
  • the generated surface tension can achieve the purpose of effectively driving and controlling the microfluid in contact with it; in addition, the composite diamond coating can be surface functionalized, such as surface protein adsorption, and also has good chemical stability and repeatability, It laid the foundation for its application in the field of biomedicine or microelectromechanical field.
  • the nucleation density of the diamond coating directly affects the flow behavior of droplets on the surface of the composite diamond coating.
  • the nucleation density of the diamond coating gradually increases from one side to the other side of the intermediate layer, and the static contact angle of the droplets on the composite diamond coating is expressed by Equation 1
  • Equation 1 The trends shown change accordingly:
  • X is the relative distance of the droplets flowing along the composite diamond coating, which can be calculated from the side of the intermediate layer as a starting point.
  • A is 0.1-15°/mm
  • B is 100°-150°
  • typical but non-limiting A is 0.1°/mm, 0.5°/mm, 1°/mm, 2°/mm , 3°/mm, 4°/mm, 5°/mm, 6°/mm, 8°/mm, 10°/mm, 11°/mm, 12°/mm, 13°/mm, 14°/mm Or 15°/mm
  • typical but non-limiting B is 100°, 102°, 105°, 108°, 112°, 115°, 120°, 125°, 130°, 135°, 140°, 145° or 150°.
  • the distribution of hydrophilic and hydrophobic regions on the surface of the composite diamond coating can be judged according to the nucleation density of the diamond coating.
  • the composite diamond coating has hydrophobicity along the surface with relatively large nucleation density of the diamond coating, and the composite diamond coating has hydrophilicity along the surface with relatively low nucleation density of the diamond coating.
  • a surface with a relatively large nucleation density refers to the area covered by the diamond coating covering the intermediate layer, that is, the composite diamond coating The surface only shows the area of the diamond coating
  • the surface with relatively low nucleation density refers to the area where the diamond coating partially covers or does not cover the intermediate layer, that is, the surface of the composite diamond coating shows that the diamond coating and the intermediate layer coexist or only The area that presents the middle layer.
  • hydrophilicity and hydrophobicity of the surface of the composite diamond coating are mainly because the surface is modified with corresponding hydrophilic groups and hydrophobic groups.
  • the hydrophobic group includes a hydrogen group and/or a fluorosilyl group
  • the hydrophilic group includes any one or more of a hydroxyl group, a carboxyl group, an amino group, or a sulfonic acid group, preferably a hydroxyl group ;
  • the intermediate layer includes any one or more of a silicon carbide coating, a titanium carbide coating, a silicon dioxide coating, a graphene layer, an aluminum coating, or a copper coating.
  • the intermediate layer may be a single layer, such as a silicon carbide coating, a titanium carbide coating, a silicon dioxide coating, a graphene layer, an aluminum coating, or a copper coating, or may be a multilayer composite, for example Silicon carbide coating/titanium carbide coating, silicon carbide coating/graphene layer, silicon carbide coating/aluminum coating, graphene layer/aluminum coating, titanium carbide coating/aluminum coating, silicon carbide coating/ Titanium carbide coating/graphene layer, silicon carbide coating/aluminum coating/graphene layer or silicon carbide coating/titanium carbide coating/aluminum coating, etc., where “/” stands for “and”.
  • the intermediate layer is a silicon carbide coating.
  • the crystal structure of silicon carbide is very similar to diamond, and its thermal expansion coefficient is close to the matrix material. After compounding it with the diamond coating, it can effectively reduce the internal stress of the composite diamond coating and improve the bonding strength of the composite diamond coating and the matrix, thereby improving Stability of composite diamond coating.
  • silicon carbide also has excellent physical and chemical properties, such as high hardness, thermal conductivity and chemical passivity.
  • its good biocompatibility makes silicon carbide a material of great concern in the biological field. Since the surface chemistry of both diamond and silicon carbide is different, the chemical state and structural state of the coating surface can be changed by preparing a composite diamond coating containing a diamond coating and a silicon carbide coating. The gradient distribution controls the wettability of the coating surface.
  • the composite diamond coating with the above characteristics can be applied to microfluidic devices in biomedical or microelectromechanical systems. For example, the composite diamond coating is placed on the surface of a biodevice or implanted stent to realize the microfluidic flow through its surface. Drive and control to control and guide cell growth and rapid healing.
  • the composite diamond coating provided by the present invention includes an intermediate layer
  • a diamond coating is formed on part of the surface of the intermediate layer, and the nucleation density of the diamond coating changes in a gradient;
  • the surface of the diamond coating is hydrophobic
  • the surface of the intermediate layer where the coating of the diamond layer is not formed is hydrophilic.
  • the resulting diamond coating is unevenly distributed on the surface of the intermediate layer, that is, the surface of the composite diamond coating partly presents the diamond coating and partly presents the intermediate layer, and by making the composite diamond coating Part of the diamond coating on the surface exhibits diametrically opposite hydrophobicity and hydrophilicity, so that different locations of the surface of the composite diamond coating exhibit different wetting properties, thereby effectively driving the microfluid in contact with it control.
  • the hydrophilicity and hydrophobicity of the surface of the composite diamond coating are mainly because the surface is modified with corresponding hydrophilic groups and hydrophobic groups.
  • the hydrophobic group includes a hydrogen group and/or a fluorosilyl group
  • the hydrophilic group includes any one or more of a hydroxyl group, a carboxyl group, an amino group, or a sulfonic acid group, preferably a hydroxyl group .
  • the intermediate layer includes any one or more of silicon carbide coating, titanium carbide coating, silicon dioxide coating, graphene layer, aluminum coating or copper coating, It is preferably a silicon carbide coating.
  • a method for preparing the above composite diamond coating including the following steps:
  • the diamond coating is gradient deposited, and then the product after the gradient deposition of diamond coating is functionalized to make the surface of the diamond coating hydrophilic, and no diamond coating is formed
  • the surface of the middle layer of the layer is hydrophobic.
  • the method for depositing the intermediate layer on the surface of the substrate is not particularly limited, and conventional methods in the art, such as hot wire chemical vapor deposition, can be used.
  • the substrate with the intermediate layer deposited on the surface is subjected to seeding treatment, which is beneficial to the subsequent deposition of the diamond coating.
  • the preparation method of the diamond coating is not specifically limited, and a preparation method commonly used in the art may be adopted, for example, a hot wire chemical vapor deposition method and a mask are used to perform gradient deposition on the diamond coating.
  • a preparation method commonly used in the art may be adopted, for example, a hot wire chemical vapor deposition method and a mask are used to perform gradient deposition on the diamond coating.
  • the nucleation density of the diamond coating in the present invention changes in a gradient during the deposition process, so that the diamond coating has a structural gradient distribution on the surface of the intermediate layer, while the diamond coating is in the middle
  • the non-uniform distribution on the surface of the layer makes the chemical composition of the diamond and the intermediate layer also have a gradient distribution.
  • the functional treatment makes the surface of the composite diamond coating have different wettability, that is, part of the surface is hydrophilic and part of the surface is hydrophobic.
  • the chemical composition and microstructure of the surface of the composite diamond coating are changed in a gradient, and by controlling the wettability of the surface of the composite diamond coating, the gradient of the surface wettability changes and the surface tension is generated. To achieve the drive and control of microfluidics.
  • the preparation method has simple process and convenient operation, and is suitable for industrial production and large-scale industrial use.
  • the substrate before depositing the intermediate layer on the surface of the substrate, in order to remove substances on the surface of the substrate and improve the binding ability of the substrate and the intermediate layer, the substrate needs to be treated.
  • the substrate is pretreated, washed and dried.
  • the above pretreatment is corrosion treatment.
  • the etching treatment specifically includes: placing the cleaned silicon wafer in an alkaline solution and then ultrasonically cleaning it, and then using deionized water for cleaning. This etching treatment can make the silicon wafer form silicon oxide, making its surface negatively charged, which is beneficial to the subsequent deposition of the intermediate layer.
  • the alkaline solution is mainly made of ammonia water, hydrogen peroxide and water, wherein the mass ratio of ammonia water, hydrogen peroxide and water is (0.5-2):(0.5-2):(3-8), typical but not Restrictive mass ratios are 0.5:0.5:3, 0.5:0.5:5, 0.5:0.5:8, 1:0.5:2, 1:1:4, 1:1:5, 2:1:6, 2: 2:7, 2:0.5:8 or 2:0.5:3.
  • the cleaning and drying process includes: using deionized water to clean the residual alkali solution on the silicon wafer, then using alcohol to clean, and finally blowing dry with nitrogen.
  • the washing frequency, washing time and nitrogen drying time of deionized water and alcohol are not specifically limited, and can be set according to actual needs.
  • an intermediate layer can be deposited on the surface of the substrate.
  • a suitable deposition method in the art can be selected according to its specific material.
  • the material of the intermediate layer includes but is not limited to silicon carbide, titanium carbide, silicon dioxide, graphene, aluminum or copper, so the corresponding intermediate layers are respectively silicon carbide coating, titanium carbide coating, silicon dioxide coating, graphite Vene layer, aluminum coating or copper coating.
  • the intermediate layer may be any one of the above coatings, or may be a composite of at least two coatings.
  • the intermediate layer is preferably a silicon carbide coating
  • the corresponding process conditions for depositing the silicon carbide coating include: the gas source includes methane, hydrogen, and silane; and/or, the vacuum chamber pressure is 1.5 -2.0kPa; and/or, methane flow rate is 16-32sccm, hydrogen flow rate is 600-800sccm, silane flow rate is 32-80sccm; and/or, filament power is 6000-7000W; and/or, wire bottom distance 7-15mm; and/or, the deposition time is 0.5-2h.
  • methane, hydrogen, and silane are required as the source of the reaction gas.
  • Vacuum chamber air pressure includes but is not limited to 1.5 kPa, 1.6 kPa, 1.7 kPa, 1.8 kPa, 1.9 kPa or 2.0 kPa.
  • the methane flow rate includes but is not limited to 16 sccm, 18 sccm, 20 sccm, 22 sccm, 24 sccm, 25 sccm, 26 sccm, 28 sccm, 30 sccm or 32 sccm.
  • Hydrogen flow rates include but are not limited to 600 sccm, 620 sccm, 640 sccm, 650 sccm, 660 sccm, 680 sccm, 700 sccm, 720 sccm, 740 sccm, 750 sccm, 760 sccm, 780 sccm, or 800 sccm.
  • the silane flow rate includes but is not limited to 32ccm, 35sccm, 40sccm, 45sccm, 50sccm, 55sccm, 60sccm, 65sccm, 70sccm, 75sccm or 80sccm.
  • Filament power includes but is not limited to 6000W, 6200W, 6400W, 6500W, 6800W, 6900W or 7000W.
  • the wire bottom distance refers to the distance between the hot wire and the substrate stage, and the typical but non-limiting wire bottom distance is 7 mm, 8 mm, 9 mm, 10 mm, 12 mm, 14 mm, or 15 mm.
  • the deposition time includes but is not limited to 0.5h, 0.75h, 1.0h, 1.5h or 2.0h.
  • the nucleation and growth of the silicon carbide coating can be effectively controlled, thereby effectively controlling the final grown silicon carbide grain size and coating thickness, so as to improve the bonding force between the coating and the substrate.
  • the substrate with the intermediate layer deposited on the surface is subjected to a seed treatment, which is beneficial for the subsequent deposition of the diamond coating.
  • the implantation treatment includes the steps of placing the substrate with the intermediate layer deposited on the surface in an implantation solution, performing ultrasonic treatment, and then drying.
  • the seed crystal solution is a nano-diamond suspension
  • the mass fraction of nano-diamond in the nano-diamond suspension is 0.005-0.01%, and the typical but non-limiting mass fraction is 0.005%, 0.006%, 0.007%, 0.008%, 0.009% or 0.01%;
  • the pH of the nanodiamond suspension is 5-8, and a typical but non-limiting pH value is 5, 5.5, 6, 6.5, 7, 7.5 or 8;
  • the sonication time is 10-20 min, and the typical but non-limiting sonication time is 10 min, 12 min, 14 min, 15 min, 16 min, 18 min or 20 min;
  • nitrogen is used for drying.
  • the diamond coating is deposited.
  • the deposition method and deposition apparatus used are not specifically limited, as long as the deposition of the diamond coating can be achieved.
  • the diamond coating is deposited in a special hot wire chemical vapor deposition device.
  • the specially-made hot-wire chemical vapor deposition apparatus includes a deposition chamber, and a substrate table 10 and a heating device 20 are provided inside the deposition chamber, and the heating device 20 is provided above the substrate table 10;
  • the heating device 20 includes a hot wire
  • the substrate table 10 is provided with a bearing surface 11 for carrying a substrate.
  • the bearing surface 11 is an inclined surface and the distance between the bearing surface 11 and the heating device 20 changes in a gradient.
  • the specific structure is shown in FIGS. 2-6.
  • the substrate stage 10 in the hot-wire chemical vapor deposition apparatus does not have the same thickness, that is, the distance of the substrate table 10 at different positions on the surface
  • the distance of the heating device 20 may be different, and the substrate table 10 is also provided with a bearing surface 11 having an inclined angle.
  • the substrate with the intermediate layer deposited on the surface is placed on the bearing surface 11 of the substrate table 10 with a certain inclination angle, so that the distance between the substrate and the heating device 20 (mainly referring to the hot wire) has a corresponding gradient change, so that the substrate It is in a non-uniform temperature field (where the temperature field can be calculated by finite element), so during the deposition process, the nucleation density of the diamond coating also generates a gradient distribution with the position of the substrate, thereby achieving the diamond coating in the intermediate layer Structural gradient changes on the surface.
  • the hot wire chemical vapor deposition device has a simple structure and convenient operation, and does not require a mask, and can directly obtain a diamond coating with a nucleation density varying in gradients, which is suitable for the deposition of various gradient coatings.
  • the inclination angle of the bearing surface is 1-89° relative to the plane of the hot wire. Typical but non-limiting tilt angles are 1°, 10°, 20°, 30°, 40°, 50°, 60°, 70°, 80° or 89°.
  • the bearing surface has a more suitable gradient change, which is beneficial to the gradient deposition of the coating.
  • the substrate stage 10 is a water-cooled substrate stage, and the use of a water-cooled substrate stage can make the temperature on the substrate stage 10 more uniform, which is beneficial to improve the coating in hot wire chemical vapor deposition Uniformity of deposition.
  • the structure of the substrate table 10 is not specifically limited, as long as the substrate table 10 has at least one bearing surface 11 with an inclined angle.
  • the longitudinal cross-sectional shape of the substrate stage 10 is triangular or trapezoidal, as shown in FIGS. 1-5.
  • the size of the substrate stage 10 is also not limited, and can be determined according to the actual size of the deposition chamber and the number of substrates to be deposited.
  • the substrate stage 10 may be smaller than the effective deposition area of the heat generating device 20 (in this case, one or more substrate stages may be placed under the heating wire of the heat generating device), or may be larger than the effective deposition area of the heat generating device 20.
  • the height of the substrate stage 10 is not particularly limited, as long as its placement height is smaller than the height of the heat generating device 20 (hot wire). In order to flexibly adjust the distance between the bearing surface 11 of the substrate table 10 and the heating device 20, as an optional embodiment of the present invention, the height of the substrate table 10 can be adjusted.
  • the inclination angle of the bearing surface 11 of the substrate table 10 can be set according to actual needs. In order to flexibly adjust the gradient distribution of the diamond coating structure, as an optional embodiment of the present invention, the inclination angle of the bearing surface 11 can be adjusted.
  • protrusions 12 are provided at the edges of the bearing surface 11.
  • the height of the protrusion 12 is not specifically limited, as long as it is greater than the thickness of the base. As an optional embodiment of the present invention, the height of the protrusion 12 is 0.2-3 mm. Typical but non-limiting protrusions 12 have a height of 0.2mm, 0.4mm, 0.5mm, 0.6mm, 0.8mm, 1.0mm, 1.2mm, 1.6mm, 2.0mm, 2.4mm, 2.5mm, 2.8mm or 3.0mm .
  • a number of marking parts 13 for indicating the placement position of the base are provided on the protrusion 12.
  • the substrate is placed on the bearing surface 11 according to the actual deposition requirements.
  • the bottom distance of the wire (the distance between the sample and the hot wire) does not need to be measured, and can be directly read through the marking part 13, which greatly simplifies the operation process.
  • the marking portion 13 is a notch, and the height difference between two adjacent notches is 1-10 mm.
  • Typical but non-limiting gap height differences are 1mm, 2mm, 4mm, 5mm, 6mm, 8mm or 10mm.
  • the number of marking parts 13 is not specifically limited, and can be limited according to actual deposition needs.
  • the process conditions for depositing the diamond coating include: the gas source includes methane and hydrogen; and/or, the vacuum chamber pressure is 1.5-2.0 kPa; and/or, the methane flow rate is 16-32 sccm ; And/or, the hydrogen flow rate is 600-800sccm; and/or, the filament power is 6800-7000W; and/or, the filament bottom distance is 7-10mm; and/or, the deposition time is 0.5-1.5h.
  • methane and hydrogen need to be introduced as a source of reaction gas.
  • Vacuum chamber air pressure includes but is not limited to 1.5 kPa, 1.6 kPa, 1.7 kPa, 1.8 kPa, 1.9 kPa or 2.0 kPa.
  • the methane flow rate includes but is not limited to 16 sccm, 18 sccm, 20 sccm, 22 sccm, 24 sccm, 25 sccm, 26 sccm, 28 sccm, 30 sccm or 32 sccm.
  • Hydrogen flow rates include but are not limited to 600 sccm, 620 sccm, 640 sccm, 650 sccm, 660 sccm, 680 sccm, 700 sccm, 720 sccm, 740 sccm, 750 sccm, 760 sccm, 780 sccm, or 800 sccm.
  • the filament power includes but is not limited to 6800W, 6900W or 7000W.
  • the wire bottom distance refers to the distance between the hot wire and the substrate stage sample (substrate), and the typical but non-limiting wire bottom distance is 7 mm, 8 mm, 9 mm, or 10 mm.
  • the deposition time includes but is not limited to 0.5h, 0.75h, 1.0h or 1.5h.
  • the nucleation and growth of the diamond coating can be effectively controlled, thereby controlling the distribution of the diamond coating on the surface of the intermediate layer.
  • the substrate with the intermediate layer and the diamond coating is functionalized.
  • the functional treatment includes oxidation treatment and reduction treatment.
  • Oxidation treatment and reduction treatment can make the surface of the composite diamond coating modified with different hydrophilic or hydrophobic groups, so that it has different wettability.
  • the oxidation treatment includes the following steps: the substrate deposited with the intermediate layer and the diamond coating on the surface is heated in a concentrated acid mixture, and then washed and dried.
  • the concentrated acid mixture can oxidize the substrate with an intermediate layer and a diamond coating deposited on the surface.
  • the concentrated acid mixture includes the following raw materials: sulfuric acid, potassium nitrate, and water.
  • the concentrated acid mixture can fully oxidize the surface of the composite coating, thereby regulating the hydrophilicity and hydrophobicity of the surface of the composite coating.
  • Typical but non-limiting mass ratios of sulfuric acid, potassium nitrate and water are (5-15):(0.5-2):(0.5-2), preferably (8-12):(1-1.5):(1- 1.5), mass ratio including but not limited to 5:0.5:0.5, 5:1:0.5, 5:0.5:2, 8:0.5:1, 10:1:1, 12:1:1, 15:2:2 , 12:2:2 or 15:2:0.5.
  • the heating temperature is 200-300°C, preferably 220-260°C, and the heating temperature includes but is not limited to 200°C, 220°C, 240°C, 250°C, 260°C , 270°C, 280°C or 300°C.
  • the heating time during the oxidation treatment is 0.5-1 h, preferably 0.5-0.8 h; the typical but non-limiting heating time is 0.5 h, 0.75 h or 1.0 h.
  • deionized water is used for washing during the oxidation treatment.
  • the use of deionized water can effectively wash away the concentrated acid on the substrate and the surface of the composite coating.
  • nitrogen is used for drying.
  • the reduction treatment includes the following steps: the oxidized substrate is subjected to a reduction treatment under the condition of hydrogen using hot-wire chemical vapor deposition method.
  • the process parameters of the reduction process include: a hydrogen flow rate of 60-100 sccm; and/or, a vacuum chamber pressure of 15-30 Pa; and/or, a reduction time of 10-30 min.
  • Hydrogen flow rate includes but is not limited to 60 sccm, 65 sccm, 70 sccm, 75 sccm, 80 sccm, 85 sccm, 90 sccm, 95 sccm or 100 sccm.
  • the vacuum chamber pressure includes but is not limited to 15Pa, 20Pa, 25Pa or 30Pa.
  • the hydrophilicity and hydrophobicity of the surface of the composite diamond coating meet the requirements of use.
  • the preparation method of the composite diamond coating includes the following steps:
  • the cleaned silicon wafer is subjected to etching treatment and cleaning and drying treatment; wherein, the raw materials of the alkaline solution used in the etching treatment include ammonia, hydrogen peroxide and water, and the mass ratio of ammonia, hydrogen peroxide and water is 1 :1:5;
  • Hot wire chemical vapor deposition is used to deposit silicon carbide coatings on the silicon wafers after cleaning and drying;
  • the process conditions for depositing silicon carbide coatings include: gas sources including methane, hydrogen and silane; the vacuum chamber pressure is 1.5 -2.0kPa, methane flow rate is 16-32sccm, hydrogen flow rate is 600-800sccm, silane flow rate is 32-80sccm, filament power is 6000-7000W, filament bottom distance is 7-15mm, deposition time is 0.5-2h;
  • Hot wire chemical vapor deposition method is used to deposit silicon carbide coating on the silicon wafer after cleaning and drying; wherein, the process conditions for depositing silicon carbide coating include: gas source including methane, hydrogen and silane; vacuum chamber pressure is 1.5 -2.0kPa, methane flow rate is 16-32sccm, hydrogen flow rate is 600-800sccm, silane flow rate is 32-80sccm, filament power is 6000-7000W, filament bottom distance is 7-15mm, deposition time is 0.5-2h;
  • the silicon wafer with silicon carbide coating deposited on the surface is cleaned and then implanted, and then placed in a hot wire chemical vapor deposition device to deposit a diamond coating.
  • the deposition parameters of the diamond coating include:
  • the gas source includes methane With hydrogen, the vacuum chamber pressure is 1.5-2.0kPa, the methane flow rate is 16-32sccm, the hydrogen flow rate is 600-800sccm, the filament power is 6800-7000W, the filament bottom distance is 7-10mm, and the deposition time is 0.5-1.5h;
  • the substrate deposited with the intermediate layer and the diamond coating on the surface is sequentially subjected to oxidation treatment and reduction treatment to obtain a composite diamond coating;
  • the oxidation treatment includes the following steps: the substrate deposited with the intermediate layer and the diamond coating on the surface is heated in a concentrated acid mixture, and then washed and dried; the concentrated acid mixture includes the following raw materials: sulfuric acid, potassium nitrate and deionized water, The mass ratio of the three is (8-12):(1-1.5):(1-1.5), the heating temperature is 200-300°C, and the heating time is 0.5-1h;
  • the reduction treatment includes the following steps: the oxidation-treated substrate is subjected to reduction treatment under a hydrogen condition using a hot-wire chemical vapor deposition method, with a hydrogen flow rate of 60-100 sccm, a vacuum chamber pressure of 15-30 Pa, and a reduction time of 10-30 min.
  • the composite diamond coating prepared by the above preparation method is mainly composed of a silicon carbide coating and a diamond coating.
  • the nucleation density of the diamond coating formed by the hot wire chemical vapor deposition device provided by the present invention shows a gradient change, and the nucleation density of the diamond coating at the end (near wire end) of the substrate near the hot wire may appear Larger, the nucleation density of the diamond coating at the end far away from the hot wire (distal wire end) is small, and even the phenomenon of no diamond coating deposition may occur in some areas, thus making the diamond coating unevenly distributed on the surface of the silicon carbide coating That is, the surface chemical composition of the composite diamond coating has a gradient change, mainly in the following situations: (1) The surface of the composite diamond coating made near the wire end of the substrate is a diamond coating, and the composite made at the far wire end The surface of the diamond coating is a diamond coating and a silicon carbide coating, or a silicon carbide coating; (2) The surface of the composite diamond coating prepared by the substrate near the wire end is a diamond coating and a silicon carbide coating, and the far wire end The surface of the prepared composite diamond coating is diamond
  • the surface obtained by the treatment in step (c) is deposited with a diamond coating and a silicon carbide coating.
  • the diamond coating and the silicon carbide coating are both hydrophilic; and
  • the surface of the diamond coating is connected to the -H terminal, which is hydrophobic, and the surface of the silicon carbide is connected to the -OH terminal, which is hydrophilic.
  • the surface of the composite diamond coating exhibits a transition between hydrophobicity and hydrophilicity, thereby achieving a change in wettability.
  • the difference in surface energy will be A non-equilibrium force is generated at the edge of the droplet to drive the liquid transportation, so that the droplet moves from the hydrophobic end to the hydrophilic end, thereby achieving the driving and control of the liquid.
  • the prepared composite diamond coating has a gradient distribution in chemical composition and structure, thereby controlling the wettability of the surface of the composite diamond coating.
  • the surface tension generated by the gradient change achieves the purpose of driving and controlling the microfluid.
  • a microfluidic channel, a substrate and a composite diamond coating formed on the surface of the substrate are provided;
  • the intermediate layer is disposed between the diamond coating and the substrate.
  • an intermediate layer and a diamond coating are sequentially formed on the surface of the substrate, and the intermediate layer and the diamond coating are compounded to obtain a composite diamond coating.
  • the type and material of the substrate are not limited, and conventional substrates in the art can be used. Typical but non-limiting substrate materials are silicon, glassy carbon, or gold. There are many materials as the substrate, such as silicon, glassy carbon or gold. As an optional embodiment of the present invention, the substrate is a silicon substrate. A good interface bonding force can be formed between the silicon substrate and the intermediate layer.
  • the intermediate layer is arranged between the diamond coating and the substrate, which can enhance the bonding strength of the interface between the composite coating and the substrate.
  • the preparation method of the intermediate layer is not specifically limited.
  • the intermediate layer can be prepared by a hot wire chemical vapor deposition method.
  • the material of the intermediate layer is not specifically limited, as long as the material of the intermediate layer is different from the material of the diamond coating.
  • a microfluidic device comprising the above composite diamond coating or the above composite diamond coating prepared by the composite diamond coating preparation method or the above microfluidic channel.
  • the microfluidic channel or microfluidic device containing the same also has the same advantages.
  • the microfluidic channel or microfluidic device has good applications in the field of microfluidic driving and control, such as microelectromechanical systems or biomedical fields.
  • This embodiment provides a composite diamond coating, including an intermediate layer and a diamond coating formed on the surface of the intermediate layer;
  • the middle layer is a silicon carbide coating, the nucleation density of the diamond coating changes in a gradient, at least a part of the surface of the composite diamond coating is hydrophilic, and a part of the surface is hydrophobic.
  • the cleaned silicon wafer is subjected to etching treatment, specifically ultrasonic cleaning in an alkaline solution for 8 minutes, and then in deionized water for 2 minutes.
  • the raw materials of the alkaline solution include ammonia, hydrogen peroxide and water, and the ammonia and peroxide
  • the mass ratio of hydrogen and water is 1:1:5;
  • the silicon wafer after the etching treatment is cleaned and dried, that is, ultrasonic cleaning with deionized water twice, 5 minutes each time, and finally ultrasonic cleaning with alcohol for 5 minutes, and blowing dry with nitrogen;
  • Hot wire chemical vapor deposition is used to deposit silicon carbide coating on the silicon wafer after cleaning and drying; wherein, the process conditions for depositing silicon carbide coating include: gas source including methane, hydrogen and tetramethylsilane; vacuum chamber The air pressure is 1.5kPa, the flow rate of hydrogen is 800sccm, the flow rate of tetramethylsilane is 64sccm, the filament power is 6800W, the filament bottom distance is 7mm, and the deposition time is 1h;
  • the silicon wafer with silicon carbide coating deposited on the surface is cleaned and then implanted; where the implanted solution is a detonation nanodiamond suspension, and the mass fraction of nanodiamond in the detonation nanodiamond suspension is 0.005%,
  • the method of seeding is to put the sample into the seeding solution for 15 minutes, take it out, and blow dry with nitrogen;
  • the silicon wafer processed by crystal implantation is placed in a hot wire chemical vapor deposition device to deposit a diamond coating;
  • the deposition parameters of the diamond coating include: a gas source including methane and hydrogen, a vacuum chamber pressure of 1.5 kPa, and a methane flow rate of 32 sccm
  • the flow rate of hydrogen is 800sccm
  • the filament power is 6800W
  • the filament bottom distance is 5-10mm
  • the deposition time is 1.0h;
  • the substrate deposited with the intermediate layer and the diamond coating on the surface are sequentially subjected to oxidation treatment and reduction treatment, at least a part of the surface of the composite diamond coating is hydrophilic, and a part of the surface is hydrophobic to obtain a composite diamond coating;
  • the oxidation treatment includes the following steps: the substrate with the intermediate layer and the diamond coating deposited on the surface is placed in a concentrated acid mixture (sulfuric acid, potassium nitrate and deionized water, mass ratio is 10:1:1), the heating temperature is 250 °C, Heating time is 0.5h, then wash and blow dry with nitrogen;
  • a concentrated acid mixture sulfuric acid, potassium nitrate and deionized water, mass ratio is 10:1:1
  • the heating temperature is 250 °C
  • Heating time is 0.5h, then wash and blow dry with nitrogen;
  • the reduction treatment includes the following steps: the oxidation-treated substrate is subjected to reduction treatment under a hydrogen gas condition by chemical vapor deposition method, the hydrogen flow rate is 80 sccm, the vacuum chamber pressure is 20 Pa, and the reduction time is 20 min.
  • This embodiment provides a composite diamond coating, including an intermediate layer and a diamond coating on the surface of the intermediate layer;
  • the intermediate layer is a titanium carbide (TiC) coating.
  • TiC titanium carbide
  • the nucleation density of the diamond coating changes in a gradient. At least a part of the surface of the composite diamond coating is hydrophilic and a part of the surface is hydrophobic.
  • the PLD equipment was used to deposit the titanium carbide coating on the silicon wafer, and the hot-pressed TiC disk (Cerac, WI, USA) was used as the target.
  • the silicon wafer was kept at a constant temperature (20-600°C).
  • the silicon wafer with titanium carbide coating deposited on the surface is cleaned and then implanted; where the implanted solution is a detonation nanodiamond suspension, and the mass fraction of nanodiamond in the detonation nanodiamond suspension is 0.0075%,
  • the method of planting is to put the sample into the planting solution and sonicate for 15min, take it out, and blow dry with nitrogen;
  • the silicon wafer processed by crystal implantation is placed in a hot wire chemical vapor deposition device to deposit a diamond coating;
  • the deposition parameters of the diamond coating include: a gas source including methane and hydrogen, a vacuum chamber pressure of 1.5 kPa, and a methane flow rate of 32 sccm ,
  • the flow rate of hydrogen is 800sccm
  • the filament power is 6800W
  • the filament bottom distance is 7mm
  • the deposition time is 1.0h
  • the substrate deposited with the intermediate layer and the diamond coating on the surface is sequentially subjected to oxidation treatment and reduction treatment to obtain a composite diamond coating;
  • the oxidation treatment includes the following steps: the substrate deposited with the intermediate layer and the diamond coating on the surface is heated in a concentrated acid mixture (sulfuric acid, potassium nitrate and deionized water, mass ratio is 8:0.5:2), the heating temperature is 250 °C, heating time is 0.5h, then wash, and dry with nitrogen;
  • the reduction process includes the following steps: the oxidation-treated substrate is subjected to a reduction process under a hydrogen gas condition using a chemical vapor deposition method, a hydrogen flow rate of 80 sccm, a vacuum chamber pressure of 20 Pa, and a reduction time of 20 min.
  • This embodiment provides a composite diamond coating, including an intermediate layer and a diamond coating on the surface of the intermediate layer;
  • the middle layer is a graphene coating, the nucleation density of the diamond coating changes in a gradient, at least a part of the surface of the composite diamond coating is hydrophilic, and a part of the surface is hydrophobic.
  • the silicon wafer with the graphene coating deposited on the surface is cleaned and then implanted; wherein the implanted solution is a detonation nanodiamond suspension, and the mass fraction of nanodiamond in the detonation nanodiamond suspension is 0.01%,
  • the seeding method is to put the sample into the seeding solution and sonicate for 30min, take it out, and blow dry with nitrogen;
  • the silicon wafer processed by crystal implantation is placed in a hot wire chemical vapor deposition device to deposit a diamond coating;
  • the deposition parameters of the diamond coating include: a gas source including methane and hydrogen, a vacuum chamber pressure of 2.0 kPa, and a methane flow rate of 32 sccm
  • the flow rate of hydrogen is 800sccm
  • the filament power is 7000W
  • the filament bottom distance is 5-10mm
  • the deposition time is 1.0h;
  • the substrate deposited with the intermediate layer and the diamond coating on the surface is sequentially subjected to oxidation treatment and reduction treatment to obtain a composite diamond coating;
  • the oxidation treatment includes the following steps: the substrate deposited with the intermediate layer and the diamond coating on the surface is heated in a concentrated acid mixture (sulfuric acid, potassium nitrate and deionized water, the mass ratio is 5:1:0.5), and the heating temperature is 250 °C, heating time is 0.5h, then wash, and dry with nitrogen;
  • a concentrated acid mixture sulfuric acid, potassium nitrate and deionized water, the mass ratio is 5:1:0.5
  • heating temperature is 250 °C
  • heating time is 0.5h, then wash, and dry with nitrogen
  • the reduction process includes the following steps: the oxidation-treated substrate is subjected to a reduction process under a hydrogen gas condition using a chemical vapor deposition method, a hydrogen flow rate of 80 sccm, a vacuum chamber pressure of 20 Pa, and a reduction time of 20 min.
  • This embodiment provides a composite diamond coating, including an intermediate layer and a diamond coating formed on the surface of the intermediate layer;
  • the intermediate layer is an aluminum coating, the nucleation density of the diamond coating changes in a gradient, at least a part of the surface of the composite diamond coating is hydrophilic, and a part of the surface is hydrophobic.
  • the silicon wafer with the graphene coating deposited on the surface is cleaned and then implanted; wherein the implanted solution is a detonation nanodiamond suspension, and the mass fraction of nanodiamond in the detonation nanodiamond suspension is 0.006%,
  • the method of planting is to put the sample into the planting solution and sonicate for 15min, take it out, and blow dry with nitrogen;
  • the silicon wafer processed by crystal implantation is placed in a hot wire chemical vapor deposition device to deposit a diamond coating;
  • the deposition parameters of the diamond coating include: a gas source including methane and hydrogen, a vacuum chamber pressure of 1.8 kPa, and a methane flow rate of 16 sccm
  • the flow rate of hydrogen is 600sccm
  • the filament power is 7000W
  • the filament bottom distance is 5-10mm
  • the deposition time is 1.5h;
  • the substrate deposited with the intermediate layer and the diamond coating on the surface is sequentially subjected to oxidation treatment and reduction treatment to obtain a composite diamond coating;
  • the oxidation treatment includes the following steps: the substrate deposited with the intermediate layer and the diamond coating on the surface is heated in a concentrated acid mixture (sulfuric acid, potassium nitrate and deionized water, mass ratio of 2:2:0.5) at a heating temperature of 220 °C, heating time is 0.8h, then wash and blow dry with nitrogen;
  • a concentrated acid mixture sulfuric acid, potassium nitrate and deionized water, mass ratio of 2:2:0.5
  • the reduction treatment includes the following steps: the oxidation-treated substrate is subjected to reduction treatment under a hydrogen gas condition using a chemical vapor deposition method, the hydrogen flow rate is 800 sccm, the vacuum chamber pressure is 30 Pa, and the reduction time is 30 min.
  • This embodiment provides a composite diamond coating, including an intermediate layer and a diamond coating formed on the surface of the intermediate layer;
  • the intermediate layer is a copper coating, the nucleation density of the diamond coating changes in a gradient, at least a part of the surface of the composite diamond coating is hydrophilic, and a part of the surface is hydrophobic.
  • the silicon wafer with the graphene coating deposited on the surface is cleaned and then implanted; where the implanted solution is a detonation nanodiamond suspension, and the mass fraction of nanodiamond in the detonation nanodiamond suspension is 0.008%,
  • the method of planting is to put the sample into the planting solution and sonicate for 15min, take it out, and blow dry with nitrogen;
  • the silicon wafer processed by the crystal implantation is placed in a hot wire chemical vapor deposition device to deposit a diamond coating;
  • the deposition parameters of the diamond coating include: a gas source including methane and hydrogen, a vacuum chamber pressure of 1.8 kPa, and a methane flow rate of 20 sccm ,
  • the flow rate of hydrogen is 700sccm
  • the filament power is 7000W
  • the filament bottom distance is 5-10mm
  • the deposition time is 0.5h;
  • the substrate deposited with the intermediate layer and the diamond coating on the surface is sequentially subjected to oxidation treatment and reduction treatment to obtain a composite diamond coating;
  • the oxidation treatment includes the following steps: the substrate deposited with the intermediate layer and the diamond coating on the surface is heated in a concentrated acid mixture (sulfuric acid, potassium nitrate and deionized water, mass ratio is 10:1:1), the heating temperature is 300 °C, heating time is 0.5h, then wash and blow dry with nitrogen;
  • the reduction treatment includes the following steps: the oxidation-treated substrate is subjected to reduction treatment under a hydrogen gas condition using a chemical vapor deposition method, a hydrogen flow rate of 60 sccm, a vacuum chamber pressure of 30 Pa, and a reduction time of 20 min.
  • the hot wire chemical vapor deposition apparatus used includes a deposition chamber, a substrate stage and a heating device are provided inside the deposition chamber, and the heating device is disposed above the substrate table ;
  • the heating device includes a hot wire
  • the substrate table is provided with a bearing surface for bearing the substrate, the bearing surface is an inclined surface and the distance between the bearing surface and the heating device changes in a gradient;
  • the substrate table is a graphite substrate table, and the temperature of the substrate table is controlled by water, and the longitudinal cross-sectional shape of the substrate table is triangular; the bearing surface is provided with protrusions, and the protrusions are provided along the peripheral edges of the bearing surface and The bearing surface is enclosed to form a groove, and the substrate (silicon wafer) is placed on the bearing surface.
  • the example 1 is used as an example to test the SEM electron micrographs and droplet contact angle graphs at different positions of the composite diamond coating, as shown in Figure 7-13.
  • FIG. 7 is a schematic structural diagram of the composite diamond coating obtained in Example 1.
  • the nucleation density of the diamond coating changes in a gradient, and the diamond coating is on the end of the substrate near the hot wire (nearly (Wire end)
  • the nucleation density of the diamond coating is larger, and the nucleation density of the diamond coating at the end away from the hot wire (distal wire end) is smaller, so the diamond coating has a gradient distribution on the surface structure of the silicon carbide coating; Due to the different materials of diamond coating and silicon carbide coating, the composite diamond coating also has a gradient distribution of chemical composition.
  • Figures 8-13 are the corresponding electron micrographs and contact angles at positions A, B, C, D, E, and F on the composite diamond coating of Figure 7, respectively. It can be seen from the graphs (a) and (b) in Figures 8-13 that the corresponding SEM electron micrographs at each position of the composite diamond coating are obviously different.
  • the distribution density of particles in the composite diamond coating is determined by the near-wire end (position A One end) gradually decreases towards the far wire end (the end at position F); as the nucleation density of the diamond coating gradually decreases from the near wire end to the far wire end, the silicon carbide coating exposed on the surface of the compound diamond coating gradually increases, and the compound diamond Correspondingly, the surface of the coating is more hydrophilic. From the change of the contact angle in Figures 8-13, it can be clearly seen that the composite diamond coating changes from hydrophobic to hydrophilic.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

一种复合金刚石涂层及其制备方法、微流体通道和微流体器件,涉及涂层技术领域。该复合金刚石涂层包括中间层和形成在中间层表面的金刚石涂层,金刚石涂层的形核密度呈梯度变化,且复合金刚石涂层至少一部分表面具有亲水性,一部分表面具有疏水性;通过上述中间层和金刚石涂层的复合,可实现复合金刚石涂层具有结构及化学成分的梯度变化,在两种梯度变化以及表面亲疏水性的共同作用下,可有效控制复合金刚石涂层的表面湿润性,从而达到对与其接触的微流体进行有效驱动与控制的目的;另外,该复合金刚石涂层可表面功能化,还具有良好的化学稳定性和可重复性。还提供了复合金刚石涂层的制备方法,该方法工艺简单,操作便利。

Description

复合金刚石涂层及其制备方法、微流体通道和微流体器件 技术领域
本发明涉及涂层技术领域,具体而言,涉及一种复合金刚石涂层及其制备方法、微流体通道和微流体器件。
背景技术
近年来,新型驱动方式根据微尺度下流体特性设计,表现为表面张力驱动、热能驱动、电能驱动、光能驱动等驱动方式。由于表面效应在微流动中具有举足轻重的作用,通过表面润湿性梯度变化而产生的表面张力驱动技术具有诱人的应用潜力,因为它不需要外加能源,可通过材料表面的特性对微流体进行驱动与控制。梯度涂层就是表面张力驱动技术的典型代表之一。
目前,绝大多数的研究集中在均匀涂层领域,很少有关于梯度涂层的报道,这主要由于梯度涂层制备工艺复杂,且多数需要作用掩模;另外,现有的梯度涂层对于微流体的驱动与控制效果不佳,梯度涂层的化学稳定性、可表面功能化以及可重复性能较差,不能满足实际使用需求。
有鉴于此,特提出本发明,以解决上述问题中的至少一个。
发明内容
本发明的目的之一在于提供一种复合金刚石涂层,其表面存在结构梯度分布以及化学成分的梯度分布,通过改变复合金刚石涂层表面润湿性能,从而达到对与其接触的微流体进行有效驱动与控制的目的。
本发明的目的之二在于提供一种上述复合金刚石涂层的制备方法,采用热丝气相沉积法制备复合金刚石涂层,该制备方法不需要掩模,且可操作性强、可控性好,工艺稳定、易于实施,便于大规模连续化工业生产。
本发明的目的之三在于提供一种微流体通道,包含基体和上述复合金刚石涂层。
本发明的目的之四在于提供一种微流体器件,包含上述复合金刚石涂层或采用上述复合金刚石涂层的制备方法制备得到的复合金刚石涂层或微流体通道。
为了实现本发明的上述目的,特采用以下技术方案:
第一方面,提供了一种复合金刚石涂层,包括:
中间层;和,
金刚石涂层,形成于所述中间层表面;
其中,所述中间层为非金刚石涂层;
所述金刚石涂层的形核密度呈梯度变化;
所述复合金刚石涂层至少一部分表面具有亲水性,一部分表面具有疏水性。
进一步的,在本发明技术方案的基础上,所述金刚石涂层的形核密度自所述中间层的一侧至另一侧的趋势逐渐增大,复合金刚石涂层上液滴的静态接触角以式1所示的趋势发生相应的变化:
式1:Q=-AX+B,其中,Q为静态接触角,X为液滴沿复合金刚石涂层流动的距离,A为每毫米减少的接触角,B为最大接触角;
优选地,式1中A为0.1-15°/mm,B为100°-150°;
优选地,所述复合金刚石涂层沿所述金刚石涂层形核密度相对大的表面具有疏水性,所述复合金刚石涂层沿所述金刚石涂层形核密度相对小的表面具有亲水性;
优选地,所述复合金刚石涂层表面修饰有疏水基团和亲水基团,所述疏水基团包括氢基和/或氟硅烷基,所述亲水基团包括羟基、羧基、氨基或磺酸基中的任意一种或几种;
优选地,所述中间层包括碳化硅涂层、碳化钛涂层、二氧化硅涂层、石墨烯层、铝涂层或铜涂层中的任意一种或几种,优选为碳化硅涂层。
本发明还提供了一种复合金刚石涂层,包括:
中间层;
所述中间层的部分表面形成有金刚石涂层,且所述金刚石涂层的形核密度呈梯度变化;
所述金刚石涂层表面具有疏水性;
所述中间层未形成有所述金刚层涂层的表面具有亲水性。
进一步的,在本发明技术方案的基础上,所述金刚石涂层表面修饰有疏水 基团,所述疏水基团包括氢基和/或氟硅烷基;
优选地,所述中间层未形成有所述金刚层涂层的表面修饰有亲水基团,所述亲水基团包括羟基、羧基、氨基或磺酸基中的任意一种或几种;
优选地,所述中间层包括碳化硅涂层、碳化钛涂层、二氧化硅涂层、石墨烯层、铝涂层或铜涂层中的任意一种或几种,优选为碳化硅涂层。
第二方面,提供了上述复合金刚石涂层的制备方法,包括以下步骤:
将表面形成有中间层的基体植晶处理后,梯度沉积金刚石涂层,然后将梯度沉积金刚石涂层后的产品进行功能化处理,使所述金刚石涂层表面具有亲水性,未形成有所述金刚层涂层的中间层表面具有疏水性;
优选地,所述功能化处理包括氧化处理和还原处理。
进一步的,在本发明技术方案的基础上,梯度沉积金刚石涂层的工艺条件包括:气源包括甲烷和氢气;和/或,真空室气压为1.5-2.0kPa;和/或,甲烷的流量为16-32sccm;和/或,氢气的流量为600-800sccm;和/或,灯丝功率为6800-7000W;和/或,丝底距为7-10mm;和/或,沉积时间为0.5-1.5h;
优选地,所述氧化处理包括以下步骤:将梯度沉积金刚石涂层后的产品进行酸处理,然后进行洗涤和干燥;
优选地,所述酸处理采用的酸溶液包括以下原料:硫酸、硝酸钾和水,硫酸、硝酸钾和水的质量比为(5-15):(0.5-2):(0.5-2),优选为(8-12):(1-1.5):(1-1.5),进一步优选为10:1:1;
优选地,所述酸处理的温度为200-300℃,优选为220-260℃;
优选地,所述酸处理的时间为0.5-1h,优选为0.5-0.8h;
优选地,所述还原处理包括以下步骤:将经过氧化处理的产品采用热丝化学气相沉积法在氢气条件下进行还原处理;
优选地,所述还原处理的氢气流量为60-100sccm;
优选地,所述还原处理的真空室压力为15-30Pa;
优选地,所述还原处理的时间为10-30min。
进一步的,在本发明技术方案的基础上,植晶处理包括将表面形成有中间层的基体置于植晶溶液中进行超声处理然后干燥的步骤;
优选地,植晶溶液为纳米金刚石悬浮液,纳米金刚石悬浮液中纳米金刚石的质量分数为0.005-0.01%,纳米金刚石悬浮液的pH为5-8;
优选地,中间层包括碳化硅涂层、碳化钛涂层、二氧化硅涂层、石墨烯层、 铝涂层或铜涂层中的任意一种或几种;
优选地,中间层为碳化硅涂层,形成碳化硅涂层的工艺条件包括:气源包括甲烷、氢气和硅烷;和/或,真空室气压为1.5-2.0kPa;和/或,甲烷的流量为16-32sccm,氢气的流量为600-800sccm,硅烷的流量为32-80sccm;和/或,灯丝功率为6000-7000W;和/或,丝底距为7-15mm;和/或,沉积时间为0.5-2h;
优选地,所述基体为硅基体。
进一步的,在本发明技术方案的基础上,采用热丝化学气相沉积装置梯度沉积金刚石涂层;
所述热丝化学气相沉积装置包括沉积室,所述沉积室内部设置有所述基片台和发热装置,所述发热装置设置在所述基片台的上方;
所述发热装置包括热丝;
所述基片台包括用于承载基体的承载面,所述承载面为斜面且所述承载面与热丝之间的距离呈梯度变化;
优选地,相对于所述热丝所在平面,所述承载面的倾斜角度为1-89°;
优选地,所述基片台为水冷基片台;
优选地,所述承载面的边缘处设置有凸起,所述凸起将所述承载面围设成一凹槽。
第三方面,提供了一种微流体通道,包括:
基体和形成于所述基体表面的上述复合金刚石涂层或采用上述复合金刚石涂层的制备方法制得的复合金刚石涂层;
其中,所述中间层设置于所述金刚石涂层与所述基体之间。
第四方面,提供了一种微流体器件,包含上述复合金刚石涂层或上述复合金刚石涂层的制备方法制得的复合金刚石涂层或包含上述微流体通道。
与已有技术相比,本发明提供的复合金刚石涂层及其制备方法和微流体器件具有如下有益效果:
(1)本发明提供的复合金刚石涂层,包括中间层和形成在中间层表面的金刚石涂层,其中,金刚石涂层的形核密度呈梯度变化,且复合金刚石涂层至少一部分表面具有亲水性,一部分表面具有疏水性;通过上述中间层和金刚石涂层的复合,可实现复合金刚石涂层表面结构的梯度变化以及化学成分的梯度变化,在两种梯度变化以及表面亲疏水性的共同作用下,可有效控制复合金刚石涂层的表面湿润性,从而达到对与其接触的微流体进行有效驱动与控制的目 的;
另外,该复合金刚石涂层可表面功能化,例如表面蛋白质吸附,同时该复合金刚石涂层还具有良好的化学稳定性和可重复性,为其在生物医学领域或微机电领域中的应用奠定了基础。
(2)本发明提供的复合金刚石涂层的制备方法,通过将表面沉积有中间层的基体植晶处理后,梯度沉积金刚石涂层,然后将梯度沉积金刚石涂层后的产品进行功能化处理,得到复合金刚石涂层;其中,将表面沉积有中间层的基体进行植晶处理,有利于后期金刚石涂层的沉积;采用梯度沉积金刚石涂层,从而使得金刚石涂层的形核密度呈梯度变化,从而使金刚石涂层在中间层表面实现非均匀分布,再经过功能化处理后,使复合金刚石涂层至少一部分表面具有亲水性,一部分表面具有疏水性;通过上述各步骤的协同配合,使得复合金刚石涂层表面的化学成分和微观结构均呈梯度变化,且通过控制复合金刚石涂层表面的润湿性,使得表面润湿性梯度变化而产生表面张力进而实现对微流体的驱动与控制。
另外,该制备方法工艺简单,操作便利,适合工业化生产和大规模工业化使用。
(3)鉴于上述复合金刚石涂层或采用复合金刚石涂层的制备方法得到的复合金刚石涂层所具有的优势,使其包含其的微流体通道或微流体器件也具有同样的优势。该微流体通道或微流体器件在微流体驱动与控制领域,例如微机电***或生物医学领域,具有良好的应用。
附图说明
图1为本发明一种实施方式的复合金刚石涂层在基体表面的结构示意图;
图2为本发明一种实施方式的基片台的结构示意图;
图3为本发明一种实施方式的基片台与发热装置的结构示意图;
图4为本发明另一种实施方式的基片台与发热装置的结构示意图;
图5为图4的俯视图;
图6为本发明再一种实施方式的基片台与发热装置的结构示意图;
图7为本发明实施例1所得到的复合金刚石涂层的结构示意图;
图8为图7复合金刚石涂层位置A对应的SEM图(a)和接触角图(b);
图9为图7复合金刚石涂层位置B对应的SEM图(a)和接触角图(b);
图10为图7复合金刚石涂层位置C对应的SEM图(a)和接触角图(b);
图11为图7复合金刚石涂层位置D对应的SEM图(a)和接触角图(b);
图12为图7复合金刚石涂层位置E对应的SEM图(a)和接触角图(b);
图13为图7复合金刚石涂层位置F对应的SEM图(a)和接触角图(b)。
图标:10-基片台;11-承载面;12-凸起;13-标识部;20-发热装置;100-基体;200-中间层;300-金刚石涂层。
具体实施方式
下面将结合实施例对本发明的实施方案进行详细描述,但是本领域技术人员将会理解,下列实施例仅用于说明本发明,而不应视为限制本发明的范围。实施例中未注明具体条件者,按照常规条件或制造商建议的条件进行。所用试剂或仪器未注明生产厂商者,均为可以通过市售购买获得的常规产品。
根据本发明的第一个方面,提供了一种复合金刚石涂层,具体如图1所示。该复合金刚石涂层包括中间层200和金刚石涂层300,金刚石涂层300形成于中间层200表面;
其中,中间层200为非金刚石涂层;
金刚石涂层300的形核密度呈梯度变化;
复合金刚石涂层至少一部分表面具有亲水性,一部分表面具有疏水性。
相对于常规的成分以及结构均匀的涂层不同,本发明提供的复合金刚石涂层其涂层存在化学成分和结构上的梯度分布,也就是在沉积过程中金刚石涂层的形核密度呈梯度变化,使得金刚石涂层在中间层表面呈非均匀分布,从而使得该复合金刚石涂层实现结构上的梯度变化。
由于中间层为非金刚石涂层,且金刚石涂层在中间层表面呈非均匀分布,故其与金刚石涂层复合后可使得复合金刚石涂层的化学成分呈现梯度变化,也就是复合金刚石涂层远离基体100的表面其化学成分不是唯一的,即复合金刚石涂层部分表面的化学成分为金刚石,部分表面的化学成分表现为中间层的材质,复合金刚石涂层表面金刚石层和中间层化学成分的相对含量呈梯度变化。
同时,复合金刚石涂层表面不同位置处的湿润性能也不尽相同,即至少一部分表面具有亲水性,一部分表面具有疏水性。
亲水性是指容易与水成氢键而结合的性质。水分子与不同固体材料表面之间的相互作用情况是各不相同的。在水(液相)、材料(固相)与空气(气相)三相的交点处,沿水滴表面的切线与水和材料接触面所形成的夹角θ称为接触角,θ角在0°~180°之间,由θ角的大小可估计润湿程度,θ<90°(如玻璃、混凝土及许多矿物表面),则为亲水性的;θ>90°(如水滴在石蜡、沥青表面)为疏水性的。
在上述化学成分和结构两种梯度变化的共同作用下以及复合金刚石涂层表面亲水性与疏水性的不同,使得复合金刚石涂层的表面湿润性可得到有效控制,通过表面润湿性梯度变化产生的表面张力可达到对与其接触的微流体进行有效驱动与控制的目的;另外,该复合金刚石涂层可表面功能化,例如表面蛋白质吸附,同时还具有良好的化学稳定性和可重复性,为其在生物医学领域或微机电领域中的应用奠定了基础。
金刚石涂层的形核密度直接影响到液滴在复合金刚石涂层表面的流动行为。作为本发明的一种可选实施方式,金刚石涂层的形核密度自所述中间层的一侧至另一侧的趋势逐渐增大,复合金刚石涂层上液滴的静态接触角以式1所示的趋势发生相应的变化:
式1:Q=-AX+B,其中,Q为静态接触角,X为液滴沿复合金刚石涂层流动的距离,A为每毫米减少的接触角,B为最大接触角。
需要说明的是,X为液滴沿复合金刚石涂层流动的距离为一相对值,可以以中间层的一侧为起点进行计算。
优选地,式1中A为0.1-15°/mm,B为100°-150°;典型但非限制性的A为0.1°/mm、0.5°/mm、1°/mm、2°/mm、3°/mm、4°/mm、5°/mm、6°/mm、8°/mm、10°/mm、11°/mm、12°/mm、13°/mm、14°/mm或15°/mm;典型但非限制性的B为100°、102°、105°、108°、112°、115°、120°、125°、130°、135°、140°、145°或150°。
通过上述公式,可模拟出复合金刚石涂层不同位置处对应液滴的静态接触角的变化。
复合金刚石涂层表面亲水性以及疏水性的区域分布,可根据金刚石涂层的形核密度进行判断。作为本发明的一种可选实施方式,复合金刚石涂层沿金刚 石涂层形核密度相对大的表面具有疏水性,复合金刚石涂层沿金刚石涂层形核密度相对小的表面具有亲水性。
需要说明的是,“相对大”和“相对小”为相对概念,在本发明中,“形核密度相对大的表面”是指金刚石涂层将中间层覆盖住的区域,即复合金刚石涂层表面只呈现金刚石涂层的区域,“形核密度相对小的表面”是指金刚石涂层将中间层部分覆盖或者未覆盖的区域,即复合金刚石涂层表面呈现金刚石涂层与中间层共存或者只呈现中间层的区域。
复合金刚石涂层表面所呈现出的亲水性和疏水性主要是因为其表面修饰有相应的亲水基团和疏水基团。作为本发明的一种可选实施方式,疏水基团包括氢基和/或氟硅烷基,亲水基团包括羟基、羧基、氨基或磺酸基中的任意一种或几种,优选为羟基;
复合金刚石涂层表面存在的化学成分和结构梯度变化以及亲疏水性的不同,使得复合金刚石涂层表面的湿润性也具有梯度变化,从而使得表面液滴在不受外力的作用的情况下发生移动,一般是沿复合金刚石涂层表面的疏水端向亲水端移动。
中间层的材质可有多种。作为本发明的一种可选实施方式,中间层包括碳化硅涂层、碳化钛涂层、二氧化硅涂层、石墨烯层、铝涂层或铜涂层中的任意一种或几种。
在本发明中,中间层可以为单层,例如碳化硅涂层、碳化钛涂层、二氧化硅涂层、石墨烯层、铝涂层或铜涂层,也可以是多层的复合,例如碳化硅涂层/碳化钛涂层、碳化硅涂层/石墨烯层、碳化硅涂层/铝涂层、石墨烯层/铝涂层、碳化钛涂层/铝涂层、碳化硅涂层/碳化钛涂层/石墨烯层、碳化硅涂层/铝涂层/石墨烯层或碳化硅涂层/碳化钛涂层/铝涂层等,其中,“/”代表和的意思。
作为本发明的一种可选实施方式,中间层为碳化硅涂层。
碳化硅的晶体结构与金刚石非常相似,其热膨胀系数接近基体材料,将其与金刚石涂层复合后,可有效降低复合金刚石涂层的内应力,提高复合金刚石涂层与基体的结合强度,从而提高复合金刚石涂层的稳定性。
同时,碳化硅还具有优良的物理和化学性能,如高硬度、热导率及化学钝性,另外,其良好的生物相容性使碳化硅在生物领域成为倍受关注的材料。由于金刚石和碳化硅两者的表面化学不相同,可以通过制备包含金刚石涂层和碳化硅涂层的复合金刚石涂层改变涂层表面的化学状态和结构状态,利用涂层表 面化学成分以及结构的梯度分布控制涂层表面的润湿性。具有上述特性的复合金刚石涂层可应用于生物医学或者微机电***中微流体器件,例如,将复合金刚石涂层设置在生物器件或植入支架表面上,可实现对流经其表面的微流体实现驱动和控制,从而控制并引导细胞生长及快速愈合。
另外,本发明提供的复合金刚石涂层,包括中间层;
中间层的部分表面形成有金刚石涂层,且金刚石涂层的形核密度呈梯度变化;
金刚石涂层表面具有疏水性;
中间层未形成有金刚层涂层的表面具有亲水性。
由于金刚石涂层形核密度的梯度变化,使得所得到的金刚石涂层在中间层表面非均匀分布,即复合金刚石涂层表面部分呈现金刚石涂层,部分呈现中间层,并通过使复合金刚石涂层表面的部分金刚石涂层与部分中间层呈现截然相反的疏水性和亲水性,从而使得复合金刚石涂层表面的不同位置呈现不同的润湿性能,从而对与其接触的微流体进行有效的驱动与控制。
复合金刚石涂层表面所呈现出的亲水性和疏水性主要是因为其表面修饰有相应的亲水基团和疏水基团。作为本发明的一种可选实施方式,疏水基团包括氢基和/或氟硅烷基,亲水基团包括羟基、羧基、氨基或磺酸基中的任意一种或几种,优选为羟基。
中间层的材质可有多种。作为本发明的一种可选实施方式,中间层包括碳化硅涂层、碳化钛涂层、二氧化硅涂层、石墨烯层、铝涂层或铜涂层中的任意一种或几种,优选为碳化硅涂层。
根据本发明的第二方面,提供了上述复合金刚石涂层的制备方法,包括以下步骤:
将表面形成有中间层的基体植晶处理后,梯度沉积金刚石涂层,然后将梯度沉积金刚石涂层后的产品进行功能化处理,使金刚石涂层表面具有亲水性,未形成有金刚层涂层的中间层表面具有疏水性。
在基体表面沉积中间层的方法不作具体限定,可采用本领域常规方法,例如热丝化学气相沉积法。
将表面沉积有中间层的基体进行植晶处理,有利于后续金刚石涂层的沉积。
金刚石涂层的制备方法不作具体限定,可采用本领域常用的制备方法,例如采用热丝化学气相沉积方法并利用掩模对金刚石涂层进行梯度沉积。由于与 常规厚度均匀的金刚石涂层不同,本发明中的金刚石涂层在沉积过程中其形核密度呈梯度变化,故使得金刚石涂层在中间层表面存在结构梯度分布,而金刚石涂层在中间层表面的非均匀分布使得金刚石与中间层化学成分也呈梯度分布。
功能化处理使得该复合金刚石涂层表面不同位置具有不同的润湿性,即部分表面呈现亲水性,部分表面呈现疏水性。
通过上述各步骤的协同配合,使得复合金刚石涂层表面的化学成分和微观结构均呈梯度变化,并通过控制复合金刚石涂层表面的润湿性,使得表面润湿性梯度变化而产生表面张力进而实现对微流体的驱动与控制。
另外,该制备方法工艺简单,操作便利,适合工业化生产和大规模工业化使用。
具体的,在基体表面沉积中间层之前,为了除去基体表面的物质,提高基体与中间层的结合能力,需要对基体进行处理。优选地,对基体进行预处理和清洗干燥处理。
上述预处理为腐蚀处理。作为本发明的一种可选实施方式,当基体为硅片时,腐蚀处理具体包括:将清洗好的硅片置于碱溶液中超声清洗后再采用去离子水进行清洗。该腐蚀处理可使得硅片形成氧化硅,使其表面带负电,有利于后续中间层的沉积。
优选地,碱溶液主要采用氨水、过氧化氢和水制成,其中氨水、过氧化氢和水的质量比为(0.5-2):(0.5-2):(3-8),典型但非限制性的质量比为0.5:0.5:3、0.5:0.5:5、0.5:0.5:8、1:0.5:2、1:1:4、1:1:5、2:1:6、2:2:7、2:0.5:8或2:0.5:3。
在将硅片经过碱溶液腐蚀处理后,进行清洗干燥处理。清洗干燥处理包括:采用去离子水将硅片上残留的碱溶液清洗干净,然后再采用酒精进行清洗,最后用氮气吹干。去离子水和酒精的洗涤次数、洗涤时间以及氮气吹干时间均不作具体限定,可根据实际需要进行设定。
在对基体进行预处理和清洗干燥处理后,即可在基体表面沉积中间层。中间层的沉积可根据其具体材质选用本领域适宜的沉积方法。中间层的材质包括但不限于碳化硅、碳化钛、二氧化硅、石墨烯、铝或铜,故对应得到的中间层分别为碳化硅涂层、碳化钛涂层、二氧化硅涂层、石墨烯层、铝涂层或铜涂层。需要说明的是,中间层可为上述涂层中的任意一种,也可以为至少两种涂层的 复合。
作为本发明的一种可选实施方式,中间层优选为碳化硅涂层,相应的沉积碳化硅涂层的工艺条件包括:气源包括甲烷、氢气和硅烷;和/或,真空室气压为1.5-2.0kPa;和/或,甲烷的流量为16-32sccm,氢气的流量为600-800sccm,硅烷的流量为32-80sccm;和/或,灯丝功率为6000-7000W;和/或,丝底距为7-15mm;和/或,沉积时间为0.5-2h。
沉积过程中需要通入甲烷、氢气和硅烷作为反应气源。
真空室气压包括但不限于1.5kPa、1.6kPa、1.7kPa、1.8kPa、1.9kPa或2.0kPa。
甲烷流量包括但不限于16sccm、18sccm、20sccm、22sccm、24sccm、25sccm、26sccm、28sccm、30sccm或32sccm。
氢气流量包括但不限于600sccm、620sccm、640sccm、650sccm、660sccm、680sccm、700sccm、720sccm、740sccm、750sccm、760sccm、780sccm或800sccm。
硅烷流量包括但不限于32ccm、35sccm、40sccm、45sccm、50sccm、55sccm、60sccm、65sccm、70sccm、75sccm或80sccm。
灯丝功率包括但不限于6000W、6200W、6400W、6500W、6800W、6900W或7000W。
丝底距是指热丝到基片台之间的距离,典型但非限制性的丝底距为7mm、8mm、9mm、10mm、12mm、14mm或15mm。
沉积时间包括但不限于0.5h、0.75h、1.0h、1.5h或2.0h。
通过对沉积过程中各沉积参数的限定,可有效控制碳化硅涂层的形核和生长,从而有效控制最终生长的碳化硅晶粒大小和涂层厚度,以提高涂层与基体的结合力。
在基体表面沉积完中间层之后,将表面沉积有中间层的基体进行植晶处理,这一处理有利于后续金刚石涂层的沉积。作为本发明的一种可选实施方式,植晶处理包括将表面沉积有中间层的基体置于植晶溶液中进行超声处理然后干燥的步骤。
优选地,植晶溶液为纳米金刚石悬浮液;
优选地,纳米金刚石悬浮液中纳米金刚石的质量分数为0.005-0.01%,典型但非限制性的质量分数为0.005%、0.006%、0.007%、0.008%、0.009%或0.01%;
优选地,纳米金刚石悬浮液的pH为5-8,典型但非限制性的pH值为5、5.5、6、6.5、7、7.5或8;
优选地,超声处理时间为10-20min,典型但非限制性的超声处理时间为10min、12min、14min、15min、16min、18min或20min;
优选地,干燥采用氮气吹干。
通过对植晶溶液种类以及植晶处理参数的限定,更有利于后续金刚石涂层的沉积。
在对基体表面沉积完中间层之后,再进行金刚石涂层的沉积。所采用的沉积方法以及沉积装置不作具体限定,只要能够实现金刚石涂层的沉积即可。作为本发明的一种可选实施方式,将表面沉积有中间层的基体植晶处理后,置于特制的热丝化学气相沉积装置中沉积金刚石涂层。
在本发明中,特制的热丝化学气相沉积装置包括沉积室,沉积室内部设置有基片台10和发热装置20,发热装置20设置在基片台10的上方;
发热装置20包括热丝;
基片台10上设置有用于承载基体的承载面11,承载面11为斜面且承载面11距发热装置20之间的距离呈梯度变化,具体结构如图2-6所示。
与常规热丝化学气相沉积装置中具有均匀厚度的基片台不同,本发明提供的热丝化学气相沉积装置中的基片台10并不是具有同等厚度的,即基片台10表面不同位置距离发热装置20的距离可能并不相同,且基片台10上还设有一具有倾斜角度的承载面11。将表面沉积有中间层的基体放置于基片台10具有一定倾斜角度的承载面11上,使得基体距发热装置20(主要是指热丝)之间的距离存在相应的梯度变化,从而使基体处于非均匀温度场(其中,该温度场可经有限元计算得到),故在沉积过程中金刚石涂层的形核密度随着基***置的不同也产生梯度分布,进而实现金刚石涂层在中间层表面上的结构梯度变化。
该热丝化学气相沉积装置结构简单,操作便利,不需要掩模,可直接得到形核密度呈梯度变化的金刚石涂层,适合于各种梯度涂层的沉积。
作为本发明的一种可选实施方式,相对于热丝所在平面,承载面的倾斜角度为1-89°。典型但非限制性的倾斜角度为为1°、10°、20°、30°、40°、50°、60°、70°、80°或89°。通过对上述倾斜角度的限定,使得承载面具有较为适宜的梯度变化,从而有利于涂层的梯度沉积。
作为本发明的一种可选实施方式,基片台10为水冷基片台,采用水冷基片台,可使得基片台10上的温度更均匀,有利于提高热丝化学气相沉积中涂层沉积的均匀性。
对于基片台10的结构不作具体限定,只要基片台10存在至少一具有倾斜角度的承载面11即可。作为本发明的一种可选实施方式,基片台10的纵向截面形状为三角形或梯形,具体如图1-5所示。
对于基片台10的大小也不作限定,可根据实际沉积室体积大小以及待沉积基体的数量进行确定。基片台10可小于发热装置20的有效沉积区域(此时发热装置的热丝下方可放置一个或者多个基片台),也可大于发热装置20的有效沉积区域。
基片台10的高度不作具体限定,只要其放置高度小于发热装置20(热丝)的高度即可。为灵活调节基片台10的承载面11距发热装置20之间的距离,作为本发明的一种可选实施方式,基片台10的高度可调节。
基片台10承载面11的倾斜角度可根据实际需要进行设定。为灵活调节金刚石涂层结构梯度分布,作为本发明的一种可选实施方式,承载面11的倾斜角度可调节。
另外,鉴于基体的质量较轻,为防止基体在沉积过程中受反应气体的影响其位置发生偏移,故承载面11的边缘处设置有凸起12。
凸起12的高度不作具体限定,只要大于基体厚度即可。作为本发明的一种可选实施方式,凸起12的高度为0.2-3mm。典型但非限制性的凸起12的高度为0.2mm、0.4mm、0.5mm、0.6mm、0.8mm、1.0mm、1.2mm、1.6mm、2.0mm、2.4mm、2.5mm、2.8mm或3.0mm。
作为本发明的一种可选实施方式,凸起12上设置有若干个用于指示基体放置位置的标识部13。
将基体根据实际沉积需要放置于承载面11上,丝底距(样品距离热丝的距离)无需再进行测量,可通过标识部13直接进行读取,大大简化操作流程。
作为本发明的一种可选实施方式,标识部13为豁口,两个相邻的豁口高度差为1-10mm。典型但非限制性豁口高度差为1mm、2mm、4mm、5mm、6mm、8mm或10mm。
标识部13的数量不作具体限定,可根据实际沉积需要进行限定。
金刚石涂层的沉积过程中,除了热丝化学气相沉积装置之外,各沉积参数对金刚石涂层的形核和生长均产生不同程度的影响。作为本发明的一种可选实施方式,沉积金刚石涂层的工艺条件包括:气源包括甲烷和氢气;和/或,真空室气压为1.5-2.0kPa;和/或,甲烷流量为16-32sccm;和/或,氢气流量为600- 800sccm;和/或,灯丝功率为6800-7000W;和/或,丝底距为7-10mm;和/或,沉积时间为0.5-1.5h。
沉积过程中需要通入甲烷和氢气作为反应气源。
真空室气压包括但不限于1.5kPa、1.6kPa、1.7kPa、1.8kPa、1.9kPa或2.0kPa。
甲烷流量包括但不限于16sccm、18sccm、20sccm、22sccm、24sccm、25sccm、26sccm、28sccm、30sccm或32sccm。
氢气流量包括但不限于600sccm、620sccm、640sccm、650sccm、660sccm、680sccm、700sccm、720sccm、740sccm、750sccm、760sccm、780sccm或800sccm。
灯丝功率包括但不限于6800W、6900W或7000W。
丝底距是指热丝到基片台样品(基体)之间的距离,典型但非限制性的丝底距为7mm、8mm、9mm或10mm。
沉积时间包括但不限于0.5h、0.75h、1.0h或1.5h。
通过对沉积过程中各沉积参数的限定,可有效控制金刚石涂层的形核和生长,从而控制金刚石涂层在中间层表面的分布。
在基体表面依次沉积中间层和金刚石涂层之后,为使其涂层表面的亲疏水性满足使用需求,故对沉积中间层和金刚石涂层的基体进行功能化处理。
作为本发明的一种可选实施方式,功能化处理包括氧化处理和还原处理。
氧化处理和还原处理可使得复合金刚石涂层表面上修饰不同的亲水或者疏水基团,从而使得其具有不同的润湿性。
作为本发明的一种可选实施方式,氧化处理包括以下步骤:将表面沉积有中间层和金刚石涂层的基体置于浓酸混合物中加热,然后进行洗涤和干燥。
浓酸混合物可氧化表面沉积有中间层和金刚石涂层的基体。作为本发明一种可选实施方式,浓酸混合物包括以下原料:硫酸、硝酸钾和水。该浓酸混合物可对复合涂层表面进行充分氧化,从而调控复合涂层表面的亲疏水性。
硫酸、硝酸钾和水典型但非限制性的质量比为(5-15):(0.5-2):(0.5-2),优选为(8-12):(1-1.5):(1-1.5),质量比包括但不限于5:0.5:0.5、5:1:0.5、5:0.5:2、8:0.5:1、10:1:1、12:1:1、15:2:2、12:2:2或15:2:0.5。
作为本发明一种可选实施方式,氧化处理过程中,加热温度为200-300℃,优选为220-260℃,加热温度包括但不限于200℃、220℃、240℃、250℃、260℃、270℃、280℃或300℃。
和/或,氧化处理过程中的加热时间为0.5-1h,优选为0.5-0.8h;典型但非限制性的加热时间为0.5h、0.75h或1.0h。
和/或,氧化处理过程中洗涤采用去离子水。采用去离子水可有效洗去基体和复合涂层表面的浓酸。
和/或,氧化处理过程中干燥采用氮气吹干。
为了进一步对氧化后基体表面进行亲疏水性调控,还原处理包括以下步骤:将经过氧化处理的基体采用热丝化学气相沉积法在氢气条件下进行还原处理。
还原处理过程的工艺参数包括:氢气流速为60-100sccm;和/或,真空室压力为15-30Pa;和/或,还原时间为10-30min。
氢气流量包括但不限于60sccm、65sccm、70sccm、75sccm、80sccm、85sccm、90sccm、95sccm或100sccm。
真空室压力包括但不限于15Pa、20Pa、25Pa或30Pa。
通过对上述氧化处理和还原处理过程中各工艺参数的限定,使得复合金刚石涂层表面的亲疏水性满足使用需求。
作为本发明的一种可选实施方式,当基体为硅片、中间层为碳化硅涂层时,复合金刚石涂层的制备方法包括以下步骤:
(a)将清洗好的硅片进行腐蚀处理和清洗干燥处理;其中,腐蚀处理中采用的碱溶液的原料包括氨水、过氧化氢和水,且氨水、过氧化氢和水的质量比为1:1:5;
(b)采用热丝化学气相沉积法在清洗干燥处理后的硅片沉积碳化硅涂层;其中,沉积碳化硅涂层的工艺条件包括:气源包括甲烷、氢气和硅烷;真空室气压为1.5-2.0kPa,甲烷的流量为16-32sccm,氢气的流量为600-800sccm,硅烷的流量为32-80sccm,灯丝功率为6000-7000W,丝底距为7-15mm,沉积时间为0.5-2h;
(c)采用热丝化学气相沉积法在清洗干燥处理后的硅片沉积碳化硅涂层;其中,沉积碳化硅涂层的工艺条件包括:气源包括甲烷、氢气和硅烷;真空室气压为1.5-2.0kPa,甲烷的流量为16-32sccm,氢气的流量为600-800sccm,硅烷的流量为32-80sccm,灯丝功率为6000-7000W,丝底距为7-15mm,沉积时间为0.5-2h;
(d)将表面沉积有碳化硅涂层的硅片清洗后进行植晶处理,然后置于热丝化学气相沉积装置中沉积金刚石涂层,其中,金刚石涂层的沉积参数包括: 气源包括甲烷和氢气,真空室气压为1.5-2.0kPa,甲烷流量为16-32sccm,氢气的流量为600-800sccm,灯丝功率为6800-7000W,丝底距为7-10mm,沉积时间为0.5-1.5h;
(e)然后将表面沉积有中间层和金刚石涂层的基体依次进行氧化处理和还原处理,得到复合金刚石涂层;
其中,氧化处理包括以下步骤:将表面沉积有中间层和金刚石涂层的基体置于浓酸混合物中加热,然后进行洗涤和干燥;浓酸混合物包括以下原料:硫酸、硝酸钾和去离子水,三者的质量比为(8-12):(1-1.5):(1-1.5),加热温度为200-300℃,热时间为0.5-1h;
还原处理包括以下步骤:将经过氧化处理的基体采用热丝化学气相沉积法在氢气条件下进行还原处理,氢气流量为60-100sccm,真空室压力为15-30Pa,还原时间为10-30min。
采用上述制备方法制得的复合金刚石涂层主要是由碳化硅涂层和金刚石涂层复合而成。
需要说明的是,采用本发明提供的热丝化学气相沉积装置形成的金刚石涂层的形核密度呈梯度变化,可能会出现基体靠近热丝的一端(近丝端)金刚石涂层的形核密度较大,远离热丝的一端(远丝端)金刚石涂层的形核密度较小,部分区域甚至会出现无金刚石涂层沉积的现象,从而使得金刚石涂层在碳化硅涂层表面分布不均匀,即复合金刚石涂层的表面化学成分存在梯度变化,主要出现以下几种情形:(1)基体近丝端所制得的复合金刚石涂层表面为金刚石涂层,远丝端所制得的复合金刚石涂层表面为金刚石涂层和碳化硅涂层,或,碳化硅涂层;(2)基体近丝端所制得的复合金刚石涂层表面为金刚石涂层和碳化硅涂层,远丝端所制得的复合金刚石涂层表面为金刚石涂层和碳化硅涂层,或,碳化硅涂层。
还需要说明的是,经步骤(c)处理得到的表面沉积有金刚石涂层和碳化硅涂层,经过步骤(d)氧化处理后,金刚石涂层以及碳化硅涂层均呈现亲水性;而经过还原处理后,金刚石涂层表面接-H终端,呈疏水性,碳化硅表面连接-OH终端,呈亲水性。也就是说,复合金刚石涂层表面呈现疏水性与亲水性的转变,从而实现润湿性的变化,当液滴边缘的前和后两方向的润湿性不同时,表面能的差异会在液滴的边缘产生非平衡力以驱动液体运输,从而实现液滴从疏水性一端向亲水性一端移动,进而实现了对液体的驱动和控制。
通过对上述复合金刚石涂层的制备方法的限定,使得所制备得到的复合金刚石涂层在化学成分以及结构上均具有梯度分布,从而控制复合金刚石涂层表面的润湿性,通过表面润湿性梯度变化而产生的表面张力达到对微流体进行驱动与控制的目的。
第三方面,提供了一种微流体通道,基体和形成于基体表面的复合金刚石涂层;
其中,中间层设置于金刚石涂层与基体之间。
本发明中,基体表面依次形成有中间层和金刚石涂层,中间层和金刚石涂层进行复合得到复合金刚石涂层。其中,对于基体类型和材质不作限定,可采用本领域常规的基体,典型但非限制的基体材质为硅、玻璃碳或金。作为基体的材料有多种,例如硅、玻璃碳或金。作为本发明的一种可选实施方式,基体为硅基体。硅基体与中间层之间可形成良好的界面结合力。
中间层设置于金刚石涂层与基体之间,其可增强复合涂层与基体界面的结合强度。对于中间层的制备方法不作具体限定,例如,中间层可采用热丝化学气相沉积方法制得。对于中间层的材质不作具体限定,只要中间层的材质不同于金刚石涂层的材质即可。
第四方面,提供了一种微流体器件,包含上述复合金刚石涂层或上述复合金刚石涂层的制备方法制得的复合金刚石涂层或上述微流体通道。
鉴于上述复合金刚石涂层或采用复合金刚石涂层的制备方法得到的复合金刚石涂层所具有的优势,使包含其的微流体通道或微流体器件也具有同样的优势。该微流体道或微流体器件在微流体驱动与控制领域,例如微机电***或生物医学领域,具有良好的应用。
下面通过具体的实施例和对比例进一步说明本发明,但是,应当理解为,这些实施例仅是用于更详细地说明之用,而不应理解为用于以任何形式限制本发明。本发明涉及的各原料均可通过商购获取。
实施例1
本实施例提供了一种复合金刚石涂层,包括中间层和形成在中间层表面的金刚石涂层;
中间层为碳化硅涂层,金刚石涂层的形核密度呈梯度变化,复合金刚石涂层至少一部分表面具有亲水性,一部分表面具有疏水性。
本实施例提供的复合金刚石涂层的制备方法,包括以下步骤:
(a)将硅片表面进行清洗,首先使用去离子水超声清洗2次,每次5分钟,最后用酒精超声清洗5分钟,用氮气吹干;
将清洗好的硅片进行腐蚀处理,具体为在碱溶液中超声清洗8分钟,然后在去离子水中清洗2分钟,其中,碱溶液的原料包括氨水、过氧化氢和水,且氨水、过氧化氢和水的质量比为1:1:5;
将腐蚀处理后的硅片进行清洗干燥处理,即使用去离子水超声清洗2次,每次5分钟,最后用酒精超声清洗5分钟,用氮气吹干;
(b)采用热丝化学气相沉积法在清洗干燥处理后的硅片沉积碳化硅涂层;其中,沉积碳化硅涂层的工艺条件包括:气源包括甲烷、氢气和四甲基硅烷;真空室气压为1.5kPa,氢气的流量为800sccm,四甲基硅烷的流量为64sccm,灯丝功率为6800W,丝底距为7mm,沉积时间为1h;
(c)将表面沉积有碳化硅涂层的硅片清洗后进行植晶处理;其中,植晶溶液为爆轰纳米金刚石悬浮液,爆轰纳米金刚石悬浮液中纳米金刚石的质量分数为0.005%,植晶方式为将试样放入植晶溶液中超声15分钟,取出,用氮气吹干;
然后将植晶处理的硅片置于热丝化学气相沉积装置中沉积金刚石涂层;其中,金刚石涂层的沉积参数包括:气源包括甲烷和氢气,真空室气压为1.5kPa,甲烷流量为32sccm,氢气的流量为800sccm,灯丝功率为6800W,丝底距为5-10mm,沉积时间为1.0h;
(d)然后将表面沉积有中间层和金刚石涂层的基体依次进行氧化处理和还原处理,复合金刚石涂层至少一部分表面具有亲水性,一部分表面具有疏水性,得到复合金刚石涂层;
其中,氧化处理包括以下步骤:将表面沉积有中间层和金刚石涂层的基体置于浓酸混合物(硫酸、硝酸钾和去离子水,质量比为10:1:1)加热温度为250℃,加热时间为0.5h,然后进行洗涤,并用氮气吹干;
还原处理包括以下步骤:将经过氧化处理的基体采用化学气相沉积法在氢气条件下进行还原处理,氢气流量为80sccm,真空室压力为20Pa,还原时间为20min。
实施例2
本实施例提供了一种复合金刚石涂层,包括中间层和中间层表面的金刚石涂层;
中间层为碳化钛(TiC)涂层,金刚石涂层的形核密度呈梯度变化,复合金刚石涂层至少一部分表面具有亲水性,一部分表面具有疏水性。
本实施例提供的复合金刚石涂层的制备方法,包括以下步骤:
(a)将硅片表面进行清洗:首先使用去离子水超声清洗2次,每次5分钟,最后用酒精超声清洗5分钟,用氮气吹干;
(b)采用PLD设备将碳化钛涂层沉积在硅片上,热压TiC盘(Cerac,WI,USA)用作靶,在沉积过程中,硅片保持恒温(20-600℃)。沉积在1.5×10 -4Pa的动态真空中进行,使用倍频Nd:Yag激光(λ=532nm,t=10ns,重复频率10Hz),沉积时间为1h;
(c)将表面沉积有碳化钛涂层的硅片清洗后进行植晶处理;其中,植晶溶液为爆轰纳米金刚石悬浮液,爆轰纳米金刚石悬浮液中纳米金刚石的质量分数为0.0075%,植晶方式为将试样放入植晶溶液中超声15min,取出,用氮气吹干;
然后将植晶处理的硅片置于热丝化学气相沉积装置中沉积金刚石涂层;其中,金刚石涂层的沉积参数包括:气源包括甲烷和氢气,真空室气压为1.5kPa,甲烷流量为32sccm,氢气的流量为800sccm,灯丝功率为6800W,丝底距为7mm,沉积时间为1.0h;
(d)然后将表面沉积有中间层和金刚石涂层的基体依次进行氧化处理和还原处理,得到复合金刚石涂层;
其中,氧化处理包括以下步骤:将表面沉积有中间层和金刚石涂层的基体置于浓酸混合物(硫酸、硝酸钾和去离子水,质量比为8:0.5:2)中加热,加热温度为250℃,加热时间为0.5h,然后进行洗涤,并用氮气吹干;
还原处理包括以下步骤:将经过氧化处理的基片采用化学气相沉积法在氢气条件下进行还原处理,氢气流量为80sccm,真空室压力为20Pa,还原时间为20min。
实施例3
本实施例提供了一种复合金刚石涂层,包括中间层和中间层表面的金刚石涂层;
中间层为石墨烯涂层,金刚石涂层的形核密度呈梯度变化,复合金刚石涂层至少一部分表面具有亲水性,一部分表面具有疏水性。
本实施例提供的复合金刚石涂层的制备方法,包括以下步骤:
(a)将硅片表面进行清洗:首先使用去离子水超声清洗2次,每次5min,最后用酒精超声清洗5min,用氮气吹干;
(b)用热丝化学气相沉积法在硅片表面生长一层石墨烯,使用甲烷(H 2=65sccm)存在下退火30分钟,通过以相同的流速连续H 2,在1200℃的热丝温度下持续5min以从基板上除去痕量的有机材料和氧化物层来进行进一步的退火;最后,甲烷(CH 4=50sccm)引入反应器中5min以在基底上产生薄的GO层,并通氩气(Ar=200sccm)经90min使***在室温下冷却,得到石墨烯涂层;
(c)将表面沉积有石墨烯涂层的硅片清洗后进行植晶处理;其中,植晶溶液为爆轰纳米金刚石悬浮液,爆轰纳米金刚石悬浮液中纳米金刚石的质量分数为0.01%,植晶方式为将试样放入植晶溶液中超声30min,取出,用氮气吹干;
然后将植晶处理的硅片置于热丝化学气相沉积装置中沉积金刚石涂层;其中,金刚石涂层的沉积参数包括:气源包括甲烷和氢气,真空室气压为2.0kPa,甲烷流量为32sccm,氢气的流量为800sccm,灯丝功率为7000W,丝底距为5-10mm,沉积时间为1.0h;
(d)然后将表面沉积有中间层和金刚石涂层的基体依次进行氧化处理和还原处理,得到复合金刚石涂层;
其中,氧化处理包括以下步骤:将表面沉积有中间层和金刚石涂层的基体置于浓酸混合物(硫酸、硝酸钾和去离子水,质量比为5:1:0.5)中加热,加热温度为250℃,加热时间为0.5h,然后进行洗涤,并用氮气吹干;
还原处理包括以下步骤:将经过氧化处理的基片采用化学气相沉积法在氢气条件下进行还原处理,氢气流量为80sccm,真空室压力为20Pa,还原时间为20min。
实施例4
本实施例提供了一种复合金刚石涂层,包括中间层和形成在中间层表面的金刚石涂层;
中间层为铝涂层,金刚石涂层的形核密度呈梯度变化,复合金刚石涂层至少一部分表面具有亲水性,一部分表面具有疏水性。
本实施例提供的复合金刚石涂层的制备方法,包括以下步骤:
(a)将硅片表面进行清洗:首先使用去离子水超声清洗2次,每次5min, 最后用酒精超声清洗5min,用氮气吹干;
(b)采用PVD法在硅片上生长一层铝涂层,使用靶材为铝,功率=30W,压强为0.56Pa,沉积时间为1h;
(c)将表面沉积有石墨烯涂层的硅片清洗后进行植晶处理;其中,植晶溶液为爆轰纳米金刚石悬浮液,爆轰纳米金刚石悬浮液中纳米金刚石的质量分数为0.006%,植晶方式为将试样放入植晶溶液中超声15min,取出,用氮气吹干;
然后将植晶处理的硅片置于热丝化学气相沉积装置中沉积金刚石涂层;其中,金刚石涂层的沉积参数包括:气源包括甲烷和氢气,真空室气压为1.8kPa,甲烷流量为16sccm,氢气的流量为600sccm,灯丝功率为7000W,丝底距为5-10mm,沉积时间为1.5h;
(d)然后将表面沉积有中间层和金刚石涂层的基体依次进行氧化处理和还原处理,得到复合金刚石涂层;
其中,氧化处理包括以下步骤:将表面沉积有中间层和金刚石涂层的基体置于浓酸混合物(硫酸、硝酸钾和去离子水,质量比为2:2:0.5)中加热,加热温度为220℃,加热时间为0.8h,然后进行洗涤,并用氮气吹干;
还原处理包括以下步骤:将经过氧化处理的基片采用化学气相沉积法在氢气条件下进行还原处理,氢气流量为800sccm,真空室压力为30Pa,还原时间为30min。
实施例5
本实施例提供了一种复合金刚石涂层,包括中间层和形成在中间层表面的金刚石涂层;
中间层为铜涂层,金刚石涂层的形核密度呈梯度变化,复合金刚石涂层至少一部分表面具有亲水性,一部分表面具有疏水性。
本实施例提供的复合金刚石涂层的制备方法,包括以下步骤:
(a)将硅片表面进行清洗:首先使用去离子水超声清洗2次,每次5min,最后用酒精超声清洗5min,用氮气吹干;
(b)采用PVD法在硅片上生长一层铜涂层,使用靶材为铜,功率=30W,压强为0.56Pa,沉积时间为1h;
(c)将表面沉积有石墨烯涂层的硅片清洗后进行植晶处理;其中,植晶溶液为爆轰纳米金刚石悬浮液,爆轰纳米金刚石悬浮液中纳米金刚石的质量分 数为0.008%,植晶方式为将试样放入植晶溶液中超声15min,取出,用氮气吹干;
然后将植晶处理的硅片置于热丝化学气相沉积装置中沉积金刚石涂层;其中,金刚石涂层的沉积参数包括:气源包括甲烷和氢气,真空室气压为1.8kPa,甲烷流量为20sccm,氢气的流量为700sccm,灯丝功率为7000W,丝底距为5-10mm,沉积时间为0.5h;
(d)然后将表面沉积有中间层和金刚石涂层的基体依次进行氧化处理和还原处理,得到复合金刚石涂层;
其中,氧化处理包括以下步骤:将表面沉积有中间层和金刚石涂层的基体置于浓酸混合物(硫酸、硝酸钾和去离子水,质量比为10:1:1)中加热,加热温度为300℃,加热时间为0.5h,然后进行洗涤,并用氮气吹干;
还原处理包括以下步骤:将经过氧化处理的基片采用化学气相沉积法在氢气条件下进行还原处理,氢气流量为60sccm,真空室压力为30Pa,还原时间为20min。
实施例1-5步骤(c)在沉积金刚石涂层时,所采用的热丝化学气相沉积装置包括沉积室,沉积室内部设置有基片台和发热装置,发热装置设置在基片台的上方;
发热装置包括热丝;
基片台上设置有用于承载基体的承载面,承载面为斜面且承载面距发热装置之间的距离呈梯度变化;
其中,基片台为石墨基片台,并采用水对基片台温度进行控制,基片台的纵向截面形状为三角形;承载面上设置有凸起,凸起沿承载面的四周边缘设置且将承载面围合形成一凹槽,基体(硅片)放置于承载面上。
试验例
为了考察本发明实施例的效果,以实施例1为例进行试验,测定复合金刚石涂层不同位置处的SEM电镜图和液滴接触角图,具体如图7-13所示。
其中,图7为实施例1所得到的复合金刚石涂层的结构示意图,由图7可以看出,金刚石涂层的形核密度呈梯度变化,且金刚石涂层在基体靠近热丝的一端(近丝端)金刚石涂层的形核密度较大,远离热丝的一端(远丝端)金刚石涂层的形核密度较小,故金刚石涂层在碳化硅涂层表面结构上存在梯度分布;另外,由于金刚石涂层和碳化硅涂层材质的不同,使得该复合金刚石涂层同时 也存在着化学成分梯度分布。
图8-13分别为图7复合金刚石涂层上位置A、B、C、D、E和F处对应的电镜图和接触角图。由图8-13中的图(a)和(b)可以看出,复合金刚石涂层各位置处对应的SEM电镜图明显不同,复合金刚石涂层中颗粒的分布密度由近丝端(位置A一端)向远丝端(位置F一端)逐渐降低;由于金刚石涂层由近丝端向远丝端的形核密度逐渐减小,复合金刚石涂层表面裸露出来的碳化硅涂层逐渐增多,复合金刚石涂层表面则相应呈现出更多的亲水性。从图8-13中接触角的变化可以明显看出复合金刚石涂层由疏水性向亲水性的转变。
尽管已用具体实施例来说明和描述了本发明,然而应意识到,在不背离本发明的精神和范围的情况下可作出许多其它的更改和修改。因此,这意味着在所附权利要求中包括属于本发明范围内的所有这些变化和修改。

Claims (17)

  1. 一种复合金刚石涂层,其特征在于,包括:
    中间层;和,
    金刚石涂层,形成于所述中间层表面;
    其中,所述中间层为非金刚石涂层;
    所述金刚石涂层的形核密度呈梯度变化;
    所述复合金刚石涂层至少一部分表面具有亲水性,一部分表面具有疏水性。
  2. 根据权利要求1所述的复合金刚石涂层,其特征在于,所述金刚石涂层的形核密度沿所述中间层的一侧至另一侧逐渐增大,复合金刚石涂层上液滴的静态接触角以式1所示的趋势发生相应的变化:
    式1:Q=-AX+B,其中,Q为静态接触角,X为液滴沿复合金刚石涂层流动的距离,A为每毫米减少的接触角,B为最大接触角;
    式1中A为0.1-15°/mm,B为100°-150°;
    所述复合金刚石涂层沿所述金刚石涂层形核密度相对大的表面具有疏水性,所述复合金刚石涂层沿所述金刚石涂层形核密度相对小的表面具有亲水性;
    所述复合金刚石涂层表面修饰有疏水基团和亲水基团,所述疏水基团包括氢基和/或氟硅烷基,所述亲水基团包括羟基、羧基、氨基或磺酸基中的任意一种或几种;
    所述中间层包括碳化硅涂层、碳化钛涂层、二氧化硅涂层、石墨烯层、铝涂层或铜涂层中的任意一种或几种。
  3. 根据权利要求2所述的复合金刚石涂层,其特征在于,所述中间层为碳化硅涂层。
  4. 一种复合金刚石涂层,其特征在于,包括:
    中间层;
    所述中间层的部分表面形成有金刚石涂层,且所述金刚石涂层的形核密度呈梯度变化;
    所述金刚石涂层表面具有疏水性;
    所述中间层未形成有所述金刚层涂层的表面具有亲水性。
  5. 根据权利要求4所述的复合金刚石涂层,其特征在于,所述金刚石涂层表面修饰有疏水基团,所述疏水基团包括氢基和/或氟硅烷基;
    所述中间层未形成有所述金刚层涂层的表面修饰有亲水基团,所述亲水基团包括羟基、羧基、氨基或磺酸基中的任意一种或几种;
    所述中间层包括碳化硅涂层、碳化钛涂层、二氧化硅涂层、石墨烯层、铝涂层或铜涂层中的任意一种或几种。
  6. 根据权利要求5所述的复合金刚石涂层,其特征在于,所述中间层为碳化硅涂层。
  7. 权利要求1-3或权利要求4-6任意一项所述的复合金刚石涂层的制备方法,其特征在于,包括以下步骤:
    将表面形成有中间层的基体植晶处理后,梯度沉积金刚石涂层,然后将梯度沉积金刚石涂层后的产品进行功能化处理,使所述金刚石涂层表面具有亲水性,未形成有所述金刚层涂层的中间层表面具有疏水性;
    所述功能化处理包括氧化处理和还原处理。
  8. 根据权利要求7所述的复合金刚石涂层的制备方法,其特征在于,梯度沉积金刚石涂层的工艺条件包括:气源包括甲烷和氢气;和/或,真空室气压为1.5-2.0kPa;和/或,甲烷的流量为16-32sccm;和/或,氢气的流量为600-800sccm;和/或,灯丝功率为6800-7000W;和/或,丝底距为7-10mm;和/或,沉积时间为0.5-1.5h。
  9. 根据权利要求8所述的复合金刚石涂层的制备方法,其特征在于,所述氧化处理包括以下步骤:将梯度沉积金刚石涂层后的产品进行酸处理,然后进行洗涤和干燥;
    所述酸处理采用的酸溶液包括以下原料:硫酸、硝酸钾和水,硫酸、硝酸钾和水的质量比为(5-15):(0.5-2):(0.5-2);所述酸处理的温度为200-300℃;所述酸处理的时间为0.5-1h。
  10. 根据权利要求9所述的复合金刚石涂层的制备方法,其特征在于,硫酸、硝酸钾和水,硫酸、硝酸钾和水的质量比为(8-12):(1-1.5):(1-1.5);所述酸处理的温度为220-260℃;所述酸处理的时间为0.5-0.8h。
  11. 根据权利要求10所述的复合金刚石涂层的制备方法,其特征在于,硫酸、硝酸钾和水,硫酸、硝酸钾和水的质量比为10:1:1。
  12. 根据权利要求11所述的复合金刚石涂层的制备方法,其特征在于,所述还原处理包括以下步骤:将经过氧化处理的产品采用热丝化学气相沉积法在氢气条件下进行还原处理;所述还原处理的氢气流量为60-100sccm;所述还原 处理的真空室压力为15-30Pa;所述还原处理的时间为10-30min。
  13. 根据权利要求7或8所述的复合金刚石涂层的制备方法,其特征在于,植晶处理包括将表面形成有中间层的基体置于植晶溶液中进行超声处理然后干燥的步骤;
    植晶溶液为纳米金刚石悬浮液,纳米金刚石悬浮液中纳米金刚石的质量分数为0.005-0.01%,纳米金刚石悬浮液的pH为5-8;
    中间层包括碳化硅涂层、碳化钛涂层、二氧化硅涂层、石墨烯层、铝涂层或铜涂层中的任意一种或几种。
  14. 根据权利要求13所述的复合金刚石涂层的制备方法,其特征在于,中间层为碳化硅涂层,形成碳化硅涂层的工艺条件包括:气源包括甲烷、氢气和硅烷;和/或,真空室气压为1.5-2.0kPa;和/或,甲烷的流量为16-32sccm,氢气的流量为600-800sccm,硅烷的流量为32-80sccm;和/或,灯丝功率为6000-7000W;和/或,丝底距为7-15mm;和/或,沉积时间为0.5-2h;所述基体为硅基体。
  15. 根据权利要求7或8所述的复合金刚石涂层的制备方法,其特征在于,采用热丝化学气相沉积装置梯度沉积金刚石涂层;
    所述热丝化学气相沉积装置包括沉积室,所述沉积室内部设置有所述基片台和发热装置,所述发热装置设置在所述基片台的上方;
    所述发热装置包括热丝;
    所述基片台包括用于承载基体的承载面,所述承载面为斜面且所述承载面与热丝之间的距离呈梯度变化;
    相对于所述热丝所在平面,所述承载面的倾斜角度为1-89°;
    所述基片台为水冷基片台;
    所述承载面的边缘处设置有凸起,所述凸起将所述承载面围设成一凹槽。
  16. 一种微流体通道,其特征在于,包括:
    基体和形成于所述基体表面的权利要求1-6任意一项所述的复合金刚石涂层或采用权利要求7-15任意一项所述的复合金刚石涂层的制备方法制得的复合金刚石涂层;
    其中,所述中间层设置于所述金刚石涂层与所述基体之间。
  17. 一种微流体器件,其特征在于,包含权利要求1-6任意一项所述的复合金刚石涂层或采用权利要求7-15任意一项所述的复合金刚石涂层的制备方法制得的复合金刚石涂层或包含权利要求16所述的微流体通道。
PCT/CN2019/124031 2018-12-14 2019-12-09 复合金刚石涂层及其制备方法、微流体通道和微流体器件 WO2020119639A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811536783.XA CN111321389B (zh) 2018-12-14 2018-12-14 复合金刚石涂层及其制备方法、微流体通道和微流体器件
CN201811536783.X 2018-12-14

Publications (1)

Publication Number Publication Date
WO2020119639A1 true WO2020119639A1 (zh) 2020-06-18

Family

ID=71077146

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/124031 WO2020119639A1 (zh) 2018-12-14 2019-12-09 复合金刚石涂层及其制备方法、微流体通道和微流体器件

Country Status (2)

Country Link
CN (1) CN111321389B (zh)
WO (1) WO2020119639A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116555907A (zh) * 2023-04-28 2023-08-08 哈尔滨工业大学 仿生自清洁多晶金刚石的制备方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110684959B (zh) * 2019-10-30 2022-02-15 中国科学院深圳先进技术研究院 金刚石梯度涂层及其制备方法和应用
CN112025530B (zh) * 2020-11-06 2021-03-23 上海征世科技有限公司 一种纳米金刚石刀具及其制备方法和应用
CN112030133B (zh) * 2020-11-06 2021-03-23 上海征世科技有限公司 一种金刚石及其制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105256278A (zh) * 2015-11-13 2016-01-20 浙江工业大学 一种在不锈钢表面制备金刚石薄膜的方法
US9484284B1 (en) * 2016-03-16 2016-11-01 Northrop Grumman Systems Corporation Microfluidic impingement jet cooled embedded diamond GaN HEMT
CN106191807A (zh) * 2016-08-03 2016-12-07 中国科学院深圳先进技术研究院 一种具有金刚石涂层的硬质合金件及其制备方法
CN107937883A (zh) * 2017-12-25 2018-04-20 深圳先进技术研究院 沉积金刚石涂层的装置和沉积金刚石涂层的制备方法
CN108103468A (zh) * 2017-12-27 2018-06-01 富耐克超硬材料股份有限公司 一种金刚石涂层刀片及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CZ2008355A3 (cs) * 2008-06-10 2009-12-23 Fyzikální ústav AV CR, v.v.i. Zpusob prípravy usporádaných bunecných struktur

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105256278A (zh) * 2015-11-13 2016-01-20 浙江工业大学 一种在不锈钢表面制备金刚石薄膜的方法
US9484284B1 (en) * 2016-03-16 2016-11-01 Northrop Grumman Systems Corporation Microfluidic impingement jet cooled embedded diamond GaN HEMT
CN106191807A (zh) * 2016-08-03 2016-12-07 中国科学院深圳先进技术研究院 一种具有金刚石涂层的硬质合金件及其制备方法
CN107937883A (zh) * 2017-12-25 2018-04-20 深圳先进技术研究院 沉积金刚石涂层的装置和沉积金刚石涂层的制备方法
CN108103468A (zh) * 2017-12-27 2018-06-01 富耐克超硬材料股份有限公司 一种金刚石涂层刀片及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WANG, TAO ET AL.: "Controlling Directional Liquid Motion on Micro- and Nanocrystalline Diamond/β- SiC Composite Gradient Films", LANGMUIR, vol. 34, 18 December 2017 (2017-12-18), XP055713579, ISSN: 0743-7463, DOI: 20200211111549X *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116555907A (zh) * 2023-04-28 2023-08-08 哈尔滨工业大学 仿生自清洁多晶金刚石的制备方法
CN116555907B (zh) * 2023-04-28 2024-05-03 哈尔滨工业大学 仿生自清洁多晶金刚石的制备方法

Also Published As

Publication number Publication date
CN111321389B (zh) 2023-11-14
CN111321389A (zh) 2020-06-23

Similar Documents

Publication Publication Date Title
WO2020119639A1 (zh) 复合金刚石涂层及其制备方法、微流体通道和微流体器件
CN103981507B (zh) 一种石墨烯制备方法
TW507263B (en) Method and device for the formation of thin film
KR101626181B1 (ko) 그라핀 필름의 제어된 성장 방법
CN104498902B (zh) 一种常压化学气相沉积石墨烯薄膜的制备方法
JPH0477711B2 (zh)
CN107311158B (zh) 一种在镍基上制备石墨烯薄膜并转移到其它基底的方法
JP2006124834A (ja) シリコン基板上にZnOナノ構造を堆積するための、ALDよるZnOシード層
CN108264815A (zh) 一种超疏水超疏油高分子纳米涂层的制备方法
JP2001262343A (ja) 製品の製造方法
JP4866461B2 (ja) ドーナッツ状の触媒金属層を利用したシリコンナノチューブの製造方法
US9074281B2 (en) Methods for fabricating nanocrystalline diamond film
CN110144567A (zh) 采用化学气相沉积工艺在硅基体上制备超厚碳化硅梯度涂层的方法
CN101235485A (zh) 纳米金刚石薄膜窗口的制备方法
CN111334777A (zh) 具有多级次微纳结构的金刚石薄膜及其制备方法和应用
CN110817852B (zh) 基于水处理辅助机制的石墨烯制备方法
US9437823B2 (en) Production device for a graphene thin film
JP2004176132A (ja) ナノダイヤモンド膜及びその製造方法
CN106847667B (zh) 一种表面改性的氮化物半导体及其制备方法
CN115012029A (zh) 一种二维硒化铟晶体材料的制备方法
CN104419894B (zh) 浸润性可控的一维碲微纳结构膜及其制备方法
CN114538518B (zh) 一种过渡金属硫族化合物二维材料的转移方法
JP6142562B2 (ja) 超撥水性材料の製造方法および超撥水性材料
CN108823551A (zh) 一种cvd金刚石沉积过程中的基体自洁方法
JP6800185B2 (ja) グラフェンの境界制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19894732

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC

122 Ep: pct application non-entry in european phase

Ref document number: 19894732

Country of ref document: EP

Kind code of ref document: A1