WO2020119546A1 - 通信方法和通信装置 - Google Patents

通信方法和通信装置 Download PDF

Info

Publication number
WO2020119546A1
WO2020119546A1 PCT/CN2019/122966 CN2019122966W WO2020119546A1 WO 2020119546 A1 WO2020119546 A1 WO 2020119546A1 CN 2019122966 W CN2019122966 W CN 2019122966W WO 2020119546 A1 WO2020119546 A1 WO 2020119546A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
data
address information
distributed unit
message
Prior art date
Application number
PCT/CN2019/122966
Other languages
English (en)
French (fr)
Inventor
晋英豪
韩锋
谭巍
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2020119546A1 publication Critical patent/WO2020119546A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/22Manipulation of transport tunnels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices

Definitions

  • the present application relates to the field of communication, and more specifically, to a communication method and communication device.
  • a new base station architecture is defined in 5th generation (5G), introducing the concept of separation of centralized unit (CU) and distributed unit (DU), that is, the base station It is divided into CU and DU.
  • 5G 5th generation
  • CU centralized unit
  • DU distributed unit
  • a terminal device in certain states such as an inactive terminal device in 5G transmits data
  • a data tunnel needs to be established between the DU and the CU based on the bearer.
  • this method for data transmission it is necessary to complete the establishment of the data tunnel through multiple signaling interactions between the DU and CU. At this time, a large signaling overhead will be generated and the data transmission delay will also be caused. Cause an impact.
  • the present application provides a communication method and a communication device, which can reduce the signaling overhead of a terminal device in an inactive state during data transmission, reduce the delay of data transmission, and improve the efficiency of system data transmission.
  • a communication method includes: a distributed unit receives data sent by a terminal device in a deactivated state; the distributed unit determines first information corresponding to the data, the first The information corresponds to the data wireless bearer; the distributed unit sends the first information to the central unit.
  • the distributed unit receives the data sent by the terminal device in the deactivated state, determines the first information corresponding to the data, and sends the first information to the central unit, the The central unit may determine the data radio bearer corresponding to the data according to the first information, and process the data according to the protocol stack corresponding to the data radio bearer. Therefore, the terminal device does not need to switch from the inactive state to the connected state. Data can be transmitted, which can reduce the signaling overhead of the terminal equipment in the inactive state during data transmission, reduce the delay of data transmission, and improve the efficiency of system data transmission.
  • the first information includes at least one of the following: a logical channel identifier corresponding to the data, address information, or a network slice identifier corresponding to the data, where the address information includes the following At least one item: uplink data transmission address information corresponding to the data radio bearer identifier, uplink data transmission address information corresponding to the logical channel identifier, or uplink data transmission address information corresponding to the network slice identifier.
  • the distributed unit sending the first information to the central unit includes: the distributed unit sending the first information to the central unit through an initial uplink radio resource control message transmission message The first message.
  • the distributed unit sends the first information to the central unit through the control plane channel in the inactive state. Since the control plane channel in the inactive state is used, it is not necessary to switch from the inactive state. Switching to the connected state can improve the efficiency of system data transmission.
  • the communication method further includes: the distributed unit receives second information sent by the central unit, and the second information is used to indicate at least one of the following: the data radio bearer Correspondence between the identifier and the address information, correspondence between the logical channel identifier and the address information, or correspondence between the network slice identifier and the address information.
  • the determining of the first information corresponding to the data by the distributed unit includes: the distributed unit determining the address information according to the corresponding relationship.
  • the distributed unit determines the address information according to the correspondence, and sends data to the central unit in the data plane tunnel corresponding to the address information without switching to The data is transmitted after the connection state. Therefore, the signaling overhead and transmission delay in the data transmission process can be reduced, and the efficiency of system data transmission can be improved.
  • the distributed unit receiving the second information sent by the central unit includes: the distributed unit receives a first message sent by the central unit through an interface establishment reply message or a context release command message ⁇ Second information.
  • the distributed unit receives the second information sent by the central unit through the control plane channel in the inactive state. Since the control plane channel in the inactive state is used, there is no need to switch from the inactive state To the connected state, the efficiency of system data transmission can be improved.
  • the distributed unit sending the first information to the central unit includes the distributed unit sending the first information and the data to the central unit.
  • the distributed unit sends the first information and the data to the central unit, and the central unit can determine the data wireless corresponding to the data according to the first information Bearer, and process the data according to the protocol stack corresponding to the data wireless bearer, so that the terminal device can transmit data without switching from the inactive state to the connected state, thereby reducing the terminal device in the inactive state during data transmission Signaling overhead, reduce the delay of data transmission, and improve the efficiency of system data transmission.
  • the communication method further includes: the distributed unit receives third information sent by the central unit through a context establishment request message, and the third information is used to indicate the distributed unit Establish the data radio bearer.
  • the distributed unit receives the third information sent by the central unit, and the distributed unit may establish only the data radio bearer corresponding to the first information according to the third information Without establishing other data radio bearers, it can reduce the signaling overhead and delay of establishing data radio bearers, thereby reducing the signaling overhead and delay in the data transmission process, and improving the efficiency of system data transmission.
  • a communication method includes: a central unit receives first information sent by a distributed unit; the central unit determines a data radio bearer corresponding to the first information according to the first information; The central unit receives data sent by the terminal device from the distributed unit in a deactivated state.
  • the central unit receives the first information sent by the distributed unit, and the central unit may determine the data radio bearer corresponding to the first information according to the first information.
  • the central unit can process the data according to the protocol stack corresponding to the data wireless bearer, so that the terminal device does not need to switch from the inactive state to the connected state Data can be transmitted, which can reduce the signaling overhead of the terminal device in the inactive state during data transmission, reduce the delay of data transmission, and improve the efficiency of system data transmission.
  • the first information includes at least one of the following: a logical channel identifier corresponding to the data, address information, and a network slice identifier corresponding to the data, where the address information includes at least the following One item: uplink data transmission address information corresponding to the data radio bearer identifier, uplink data transmission address information corresponding to the logical channel identifier, or uplink data transmission address information corresponding to the network slice identifier.
  • the central unit receiving the first information sent by the distributed unit includes: the central unit receiving the first information sent by the distributed unit through an initial uplink radio resource control message transmission message information.
  • the central unit may receive the first information sent by the distributed unit through the control plane channel in the inactive state. Since the control plane channel in the inactive state is used, there is no need to Switching from inactive state to connected state can improve the efficiency of system data transmission.
  • the communication method further includes: the central unit sends second information to the distributed unit, where the second information is used to indicate at least one of the following: the data radio bearer identifier The correspondence relationship with the address information, or the correspondence relationship between the logical channel identifier and the address information, or the correspondence relationship between the network slice identifier and the address information.
  • the central unit sending the second information to the distributed unit includes: the central unit sends the first information to the distributed unit through an interface establishment reply message or a context release command message ⁇ Second information.
  • the central unit transmits the second information to the distributed unit through the control plane channel in the inactive state, and can transmit data without switching from the inactive state to the connected state. Improve the efficiency of system data transmission.
  • the central unit receiving the first information sent by the distributed unit includes: the central unit receiving the first information and the data sent by the distributed unit.
  • the central unit receives the first information and the data sent by the distributed unit, and the central unit may determine the data corresponding to the data according to the first information Wireless bearer, and process the data according to the protocol stack corresponding to the data wireless bearer, so that the terminal device can transmit data without switching from the inactive state to the connected state, thereby reducing the data transmission process of the terminal device in the inactive state
  • the signaling overhead in the system reduces the delay of data transmission and improves the efficiency of system data transmission.
  • the communication method further includes: the central unit sends third information to the distributed unit through a context establishment request message, where the third information is used to instruct the distributed unit to establish The data is wirelessly carried.
  • the central unit sends the third information to the distributed unit, and the distributed unit may establish only the data radio corresponding to the first information according to the third information Bearer, without the need to establish other data radio bearers, can reduce the signaling overhead and delay of establishing a data radio bearer, thereby reducing the signaling overhead and delay in the data transmission process, and improve the efficiency of system data transmission.
  • the central unit includes CU-UP and CU-CP.
  • the communication method further includes: the CU-UP sending the second information to the CU-CP.
  • the CU-CP receives the second information sent by the CU-UP, and sends the second information to the distributed unit, and accordingly, the distribution
  • the formula unit can determine the address information according to the correspondence in the second information, and send data to the CU-CP in the data plane tunnel corresponding to the address information without having to switch to the connected state before transmitting the data Therefore, it can reduce signaling overhead and transmission delay during data transmission, and improve the efficiency of system data transmission.
  • the communication method further includes: the CU-CP sending the first information to the CU-UP.
  • the CU-UP receives the first information sent by the CU-CP, and the CU-UP may determine the data radio bearer corresponding to the data according to the first information , And process the data according to the protocol stack corresponding to the data wireless bearer. Therefore, the terminal device can transmit data without switching from the inactive state to the connected state, which can reduce signaling overhead during data transmission and reduce data transmission. Delay, improve the efficiency of system data transmission.
  • a communication device in a third aspect, includes: a receiving module for receiving data sent by a terminal device in a deactivated state; a processing module for determining first information corresponding to the data, the The first information corresponds to the data wireless bearer; the sending module is used to send the first information to the central unit.
  • the communication apparatus receives the data sent by the terminal device in the deactivated state, determines the first information corresponding to the data, and sends the first information to the central unit.
  • the central unit may determine the data radio bearer corresponding to the data according to the first information, and process the data according to the protocol stack corresponding to the data radio bearer. Therefore, the terminal device does not need to switch from the inactive state to the connected state Data can be transmitted, which can reduce the signaling overhead of the terminal device in the inactive state during data transmission, reduce the delay of data transmission, and improve the efficiency of system data transmission.
  • the first information includes at least one of the following: a logical channel identifier corresponding to the data, address information, or a network slice identifier corresponding to the data, where the address information includes the following At least one item: uplink data transmission address information corresponding to the data radio bearer identifier, uplink data transmission address information corresponding to the logical channel identifier, or uplink data transmission address information corresponding to the network slice identifier.
  • the sending module is specifically configured to send the first information to the central unit through an initial uplink radio resource control message transmission message.
  • the communication device sends the first information to the central unit through the control plane channel in the inactive state. Since the control plane channel in the inactive state is used, there is no need to switch from the inactive state To the connected state, the efficiency of system data transmission can be improved.
  • the receiving module is further configured to: receive second information sent by the central unit, where the second information is used to indicate at least one of the following: the data radio bearer identifier and the The correspondence between the address information, the correspondence between the logical channel identifier and the address information, or the correspondence between the network slice identifier and the address information.
  • the processing module is specifically configured to: determine the address information according to the corresponding relationship.
  • the communication device determines the address information according to the correspondence, and sends data to the central unit in the data plane tunnel corresponding to the address information according to the address information, It is not necessary to switch to the connected state before transmitting data. Therefore, the signaling overhead and transmission delay in the data transmission process can be reduced, and the efficiency of system data transmission can be improved.
  • the receiving module is specifically configured to receive the second information sent by the central unit through an interface establishment reply message or a context release command message.
  • the communication device receives the second information sent by the central unit through the control plane channel in the inactive state. Since the control plane channel in the inactive state is used, there is no need to switch from the inactive state to the Connected state can improve the efficiency of system data transmission.
  • the sending module is specifically configured to send the first information and the data to the central unit.
  • the communication device sends the first information and the data to the central unit, and the central unit can determine the data radio bearer corresponding to the data according to the first information And process the data according to the protocol stack corresponding to the data wireless bearer, so that the terminal device can transmit data without switching from the inactive state to the connected state, thereby reducing the data transmission process of the terminal device in the inactive state
  • Signaling overhead reduces the delay of data transmission and improves the efficiency of system data transmission.
  • the receiving module is further configured to: receive third information sent by the central unit through a context establishment request message, where the third information is used to instruct the distributed unit to establish the data Wireless bearer.
  • the communication device receives the third information sent by the central unit, and the communication device may establish only the data wireless bearer corresponding to the first information according to the third information, and There is no need to establish other data radio bearers, which can reduce the signaling overhead and delay of establishing data radio bearers, thereby reducing the signaling overhead and delay in the data transmission process, and improving the efficiency of system data transmission.
  • a communication device includes: a receiving module for receiving first information sent by a distributed unit; and a processing module for determining, according to the first information, the corresponding information of the first information Data wireless bearer; the receiving module is used to receive data sent by the terminal device from the distributed unit in a deactivated state.
  • the communication device receives the first information sent by the distributed unit, and the communication device may determine the data radio bearer corresponding to the first information according to the first information, after receiving After the data sent by the terminal device from the distributed unit in the deactivated state, the communication apparatus may process the data according to the protocol stack corresponding to the data wireless bearer, so that the terminal device does not need to switch from the inactive state Data can be transferred to the connected state, which can reduce the signaling overhead of the terminal equipment in the inactive state during data transmission, reduce the delay of data transmission, and improve the efficiency of system data transmission.
  • the first information includes at least one of the following: a logical channel identifier corresponding to the data, address information, and a network slice identifier corresponding to the data, where the address information includes at least the following One item: uplink data transmission address information corresponding to the data radio bearer identifier, uplink data transmission address information corresponding to the logical channel identifier, or uplink data transmission address information corresponding to the network slice identifier.
  • the receiving module is specifically configured to: receive the first information sent by the distributed unit through an initial uplink radio resource control message transmission message.
  • the communication device may receive the first information sent by the distributed unit through the control plane channel in the inactive state. Since the control plane channel in the inactive state is used, there is no need to Switching from inactive state to connected state can improve the efficiency of system data transmission.
  • the communication device further includes a sending module, configured to send second information to the distributed unit, where the second information is used to indicate at least one of the following: the data radio bearer The correspondence between the identifier and the address information, or the correspondence between the logical channel identifier and the address information, or the correspondence between the network slice identifier and the address information.
  • the sending module is specifically configured to send the second information to the distributed unit through an interface establishment reply message or a context release command message.
  • the communication device transmits the second information to the distributed unit through the control plane channel in the inactive state, and can transmit data without switching from the inactive state to the connected state. Can improve the efficiency of system data transmission.
  • the receiving module is specifically configured to: receive the first information and the data sent by the distributed unit.
  • the communication device receives the first information and the data sent by the distributed unit, and the communication device may determine the data corresponding to the data according to the first information Wireless bearer, and process the data according to the protocol stack corresponding to the data wireless bearer, so that the terminal device can transmit data without switching from the inactive state to the connected state, thereby reducing the data transmission process of the terminal device in the inactive state
  • the signaling overhead in the system reduces the delay of data transmission and improves the efficiency of system data transmission.
  • the sending module is further configured to send third information to the distributed unit through a context establishment request message, where the third information is used to instruct the distributed unit to establish the data Wireless bearer.
  • the communication device sends the third information to the distributed unit, and the distributed unit may only establish data wireless corresponding to the first information according to the third information Bearer, without the need to establish other data radio bearers, can reduce the signaling overhead and delay of establishing a data radio bearer, thereby reducing the signaling overhead and delay in the data transmission process, and improve the efficiency of system data transmission.
  • the communication device includes CU-UP and CU-CP.
  • the sending module belongs to the CU-UP, and the sending module is further configured to send the second information to the CU-CP by the CU-UP.
  • the CU-CP receives the second information sent by the CU-UP, and sends the second information to the distributed unit, and accordingly, the distribution
  • the formula unit can determine the address information according to the correspondence in the second information, and send data to the CU-CP in the data plane tunnel corresponding to the address information according to the address information without switching to the connection After the data is transmitted, the signaling overhead and transmission delay during data transmission can be reduced, and the efficiency of system data transmission can be improved.
  • the sending module belongs to the CU-CP, and the sending module is further configured to: the CU-CP sends the first information to the CU-UP.
  • the CU-UP receives the first information sent by the CU-CP, and the CU-UP may determine the data radio bearer corresponding to the data according to the first information , And process the data according to the protocol stack corresponding to the data wireless bearer. Therefore, the terminal device can transmit data without switching from the inactive state to the connected state, which can reduce signaling overhead during data transmission and reduce data transmission. Delay, improve the efficiency of system data transmission.
  • a communication device includes: a receiver for receiving data sent by a terminal device in a deactivated state; a processor for determining first information corresponding to the data, the The first information corresponds to the data radio bearer; the transmitter is configured to send the first information to the central unit.
  • the communication apparatus receives the data sent by the terminal device in the deactivated state, determines the first information corresponding to the data, and sends the first information to the central unit.
  • the central unit may determine the data radio bearer corresponding to the data according to the first information, and process the data according to the protocol stack corresponding to the data radio bearer. Therefore, the terminal device does not need to switch from the inactive state to the connected state Data can be transmitted, which can reduce the signaling overhead of the terminal device in the inactive state during data transmission, reduce the delay of data transmission, and improve the efficiency of system data transmission.
  • the first information includes at least one of the following: a logical channel identifier corresponding to the data, address information, or a network slice identifier corresponding to the data, where the address information includes the following At least one item: uplink data transmission address information corresponding to the data radio bearer identifier, uplink data transmission address information corresponding to the logical channel identifier, or uplink data transmission address information corresponding to the network slice identifier.
  • the transmitter is specifically configured to: send the first information to the central unit through an initial uplink radio resource control message transmission message.
  • the communication device sends the first information to the central unit through the control plane channel in the inactive state. Since the control plane channel in the inactive state is used, there is no need to switch from the inactive state To the connected state, the efficiency of system data transmission can be improved.
  • the receiver is further configured to: receive second information sent by the central unit, where the second information is used to indicate at least one of the following: the data radio bearer identifier and the The correspondence between the address information, the correspondence between the logical channel identifier and the address information, or the correspondence between the network slice identifier and the address information.
  • the processor is specifically configured to: determine the address information according to the correspondence.
  • the communication device determines the address information according to the correspondence, and sends data to the central unit in the data plane tunnel corresponding to the address information according to the address information, It is not necessary to switch to the connected state before transmitting data. Therefore, the signaling overhead and transmission delay in the data transmission process can be reduced, and the efficiency of system data transmission can be improved.
  • the receiver is specifically configured to receive the second information sent by the central unit through an interface establishment reply message or a context release command message.
  • the communication device receives the second information sent by the central unit through the control plane channel in the inactive state. Since the control plane channel in the inactive state is used, there is no need to switch from the inactive state to the Connected state can improve the efficiency of system data transmission.
  • the transmitter is specifically configured to: send the first information and the data to the central unit.
  • the communication device sends the first information and the data to the central unit, and the central unit can determine the data radio bearer corresponding to the data according to the first information And process the data according to the protocol stack corresponding to the data wireless bearer, so that the terminal device can transmit data without switching from the inactive state to the connected state, thereby reducing the data transmission process of the terminal device in the inactive state
  • Signaling overhead reduces the delay of data transmission and improves the efficiency of system data transmission.
  • the receiver is further configured to receive third information sent by the central unit through a context establishment request message, where the third information is used to instruct the distributed unit to establish the data Wireless bearer.
  • the communication device receives the third information sent by the central unit, and the communication device may establish only the data wireless bearer corresponding to the first information according to the third information, and There is no need to establish other data radio bearers, which can reduce the signaling overhead and delay of establishing data radio bearers, thereby reducing the signaling overhead and delay in the data transmission process, and improving the efficiency of system data transmission.
  • Each module included in the communication device in the fifth aspect may be implemented in software and/or hardware.
  • the communication device in the fifth aspect may include a memory for storing program instructions executed by the processor, and even for storing various data.
  • the communication device in the fifth aspect may be a chip that can be integrated in a smart device.
  • the communication device may further include a communication interface.
  • a communication device includes: a receiver for receiving first information sent by a distributed unit; and a processor for determining according to the first information corresponding to the first information Data wireless bearer; the receiver is used to receive data sent by the terminal device from the distributed unit in a deactivated state.
  • the communication device receives the first information sent by the distributed unit, and the communication device may determine the data radio bearer corresponding to the first information according to the first information, after receiving After the data sent by the terminal device from the distributed unit in the deactivated state, the communication apparatus may process the data according to the protocol stack corresponding to the data wireless bearer, so that the terminal device does not need to switch from the inactive state Data can be transmitted to the connected state, which can reduce the signaling overhead of the terminal equipment in the inactive state during data transmission, reduce the delay of data transmission, and improve the efficiency of system data transmission.
  • the first information includes at least one of the following: a logical channel identifier corresponding to the data, address information, and a network slice identifier corresponding to the data, where the address information includes at least the following One item: uplink data transmission address information corresponding to the data radio bearer identifier, uplink data transmission address information corresponding to the logical channel identifier, or uplink data transmission address information corresponding to the network slice identifier.
  • the receiver is specifically configured to: receive the first information sent by the distributed unit through an initial uplink radio resource control message transmission message.
  • the communication device may receive the first information sent by the distributed unit through the control plane channel in the inactive state. Since the control plane channel in the inactive state is used, there is no need to Switching from inactive state to connected state can improve the efficiency of system data transmission.
  • the communication device further includes a transmitter, configured to send second information to the distributed unit, where the second information is used to indicate at least one of the following: the data radio bearer The correspondence between the identifier and the address information, or the correspondence between the logical channel identifier and the address information, or the correspondence between the network slice identifier and the address information.
  • the transmitter is specifically configured to send the second information to the distributed unit through an interface establishment reply message or a context release command message.
  • the communication device transmits the second information to the distributed unit through the control plane channel in the inactive state, and can transmit data without switching from the inactive state to the connected state. Can improve the efficiency of system data transmission.
  • the receiver is specifically configured to: receive the first information and the data sent by the distributed unit.
  • the communication device receives the first information and the data sent by the distributed unit, and the communication device may determine the data corresponding to the data according to the first information Wireless bearer, and process the data according to the protocol stack corresponding to the data wireless bearer, so that the terminal device can transmit data without switching from the inactive state to the connected state, thereby reducing the data transmission process of the terminal device in the inactive state
  • the signaling overhead in the system reduces the delay of data transmission and improves the efficiency of system data transmission.
  • the transmitter is further configured to send third information to the distributed unit through a context establishment request message, where the third information is used to instruct the distributed unit to establish the data Wireless bearer.
  • the communication device sends the third information to the distributed unit, and the distributed unit may only establish data wireless corresponding to the first information according to the third information Bearer, without the need to establish other data radio bearers, can reduce the signaling overhead and delay of establishing a data radio bearer, thereby reducing the signaling overhead and delay in the data transmission process, and improve the efficiency of system data transmission.
  • the communication device includes CU-UP and CU-CP.
  • the transmitter belongs to the CU-UP, and the transmitter is further configured to: the CU-UP sends the second information to the CU-CP.
  • the CU-CP receives the second information sent by the CU-UP, and sends the second information to the distributed unit, and accordingly, the distribution
  • the formula unit can determine the address information according to the correspondence in the second information, and send data to the CU-CP in the data plane tunnel corresponding to the address information according to the address information without switching to the connection After the data is transmitted, the signaling overhead and transmission delay during data transmission can be reduced, and the efficiency of system data transmission can be improved.
  • the transmitter belongs to the CU-CP, and the transmitter is further configured to: the CU-CP sends the first information to the CU-UP.
  • the CU-UP receives the first information sent by the CU-CP, and the CU-UP may determine the data radio bearer corresponding to the data according to the first information , And process the data according to the protocol stack corresponding to the data wireless bearer. Therefore, the terminal device can transmit data without switching from the inactive state to the connected state, which can reduce signaling overhead during data transmission and reduce data transmission. Delay, improve the efficiency of system data transmission.
  • Each module included in the communication device in the sixth aspect may be implemented in software and/or hardware.
  • the communication device in the sixth aspect may include a memory for storing program instructions executed by the processor, and even for storing various data.
  • the communication device in the sixth aspect may be a chip that can be integrated in a smart device.
  • the communication device may further include a communication interface.
  • the present application provides a computer-readable storage medium.
  • the computer-readable storage medium stores program codes for execution by the communication device.
  • the program code includes instructions for executing the communication method in the first aspect or any one of the possible implementation manners.
  • the present application provides a computer-readable storage medium.
  • the computer-readable storage medium stores program codes for execution by the communication device.
  • the program code includes instructions for performing the communication method in the second aspect or any one of the possible implementation manners.
  • the present application provides a computer program product containing instructions.
  • the computer program product runs on the communication device, the communication device is caused to execute the method in the first aspect or any one of the possible implementation manners.
  • the present application provides a computer program product containing instructions.
  • the computer program product runs on the communication device, the communication device is caused to perform the method in the second aspect or any one of the possible implementation manners.
  • the distributed unit receives the data sent by the terminal device in the deactivated state, determines the first information corresponding to the data, and sends the first information to the central unit, the The central unit may determine the data radio bearer corresponding to the data according to the first information, and process the data according to the protocol stack corresponding to the data radio bearer. Therefore, the terminal device does not need to switch from the inactive state to the connected state. Data can be transmitted, which can reduce the signaling overhead of the terminal equipment in the inactive state during data transmission, reduce the delay of data transmission, and improve the efficiency of system data transmission.
  • FIG. 1 is a schematic diagram of an application scenario of the technical solution of the embodiment of the present application.
  • FIG. 2 is a schematic diagram of another application scenario of the technical solution of the embodiment of the present application.
  • FIG. 3 is a schematic diagram of still another application scenario of the technical solution of the embodiment of the present application.
  • FIG. 4 is a schematic diagram of still another application scenario of the technical solution of the embodiment of the present application.
  • FIG. 5 is a schematic flowchart of a communication method according to an embodiment of the present application.
  • FIG. 6 is a schematic flowchart of a communication method according to another embodiment of the present application.
  • FIG. 7 is a schematic flowchart of a communication method according to another embodiment of the present application.
  • FIG. 8 is a schematic flowchart of a communication method according to another embodiment of the present application.
  • FIG. 9 is a schematic flowchart of a communication method according to another embodiment of the present application.
  • FIG. 10 is a schematic flowchart of a communication method according to another embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of a communication device according to another embodiment of the present application.
  • FIG. 13 is a schematic structural diagram of a communication device according to another embodiment of the present application.
  • FIG. 1 shows a schematic diagram of an application scenario of the technical solution of the embodiments of the present application. As shown in FIG. 1, the network device Some functions are separated into a first network node and a second network node.
  • FIG. 2 shows a schematic diagram of another application scenario of the technical solution of the embodiment of the present application.
  • CU-DU segmentation is introduced.
  • the DU may correspond to the first in FIG. 1.
  • a network node, CU corresponds to the second network node in FIG. 1.
  • first network node and the second network node may be two physically or logically separated modules in an overall network architecture, or two completely independent logical network elements.
  • the second network node may separate the control plane and the user plane to form the user plane of the second network node and the control plane of the second network node.
  • CU has radio resource control (radio resource control, RRC) or part of RRC control functions, including all protocol layer functions or part of protocol layer functions of existing base stations; for example, including only RRC functions or part of RRC functions, or including RRC functions or services Data adaptation protocol (service, adaptation, protocol, SDAP) layer functions, or include RRC/packet data convergence protocol (packet data, convergence, protocol, PDCP) layer functions, or include RRC/PDCP and some radio link layer control protocols (radio link) control, RLC) layer function; or including RRC/PDCP/media access control (MAC) layer, or even part or all of the physical layer PHY function, does not rule out any other possibility.
  • RRC radio resource control
  • RRC radio resource control
  • the DU has all the protocol layer functions of the existing base station except the protocol layer functions of the CU, that is, some protocol layer functional units of RRC/SDAP/PDCP/RLC/MAC/PHY, such as including some RRC functions and PDCP/RLC/ Protocol layer functions such as MAC/PHY, or include protocol layer functions such as PDCP/RLC/MAC/PHY, or include protocol layer functions such as RLC/MAC/PHY, or include some RLC/MAC/PHY functions, or only all or part of PHY Function; It should be noted that the functions of the various protocol layers mentioned here may change, all within the scope of protection of this application. For example, DU has all the protocol layer functions of existing base stations.
  • the functions of the PDCP and above protocol layers are set in the CU, and the functions of the protocol layers below PDCP, such as RLC and MAC, are set in the DU.
  • this division of the protocol layer is only an example, and it can also be divided in other protocol layers, such as the division at the RLC layer, the functions of the RLC layer and above protocol layers are set to CU, and the functions of the protocol layers below the RLC layer are set at DU.
  • some functions of the RLC layer and the functions of the protocol layer above the RLC layer are set in the CU, and the remaining functions of the RLC layer and the functions of the protocol layer below the RLC layer are set in the DU.
  • the radio frequency device can be remotely located, not placed in the DU, or integrated in the DU, or partially remotely and partially integrated in the DU, without any limitation here.
  • relay nodes also have new technological developments.
  • relay nodes are only deployed with layer 2 (for example, including the radio link control (resource link control, RLC) layer, MAC layer, etc.)
  • the protocol stack architecture of layer 1 eg, including the PHY layer
  • all the protocol stack functions above layer 2 such as all RRC layer functions, are not deployed. Therefore, the data or signaling generated by the host base station needs to be forwarded by the relay node to the terminal device.
  • the first network node in the embodiment of the present application may correspond to the DU in the CU-DU architecture or the above relay node
  • the second network node may correspond to the CU in the CU-DU architecture, or Corresponds to the above-mentioned host base station.
  • a network device may include one CU and at least one DU.
  • the current third-generation partnership program (3rd generation partnership program) project, 3GPP) the interface between CUs in different network devices is Xn-C, the interface between CU and 5G core network (5G core network, 5GC) is Ng, and the interface between CU and DU is named F1,
  • the F1 interface includes a control plane (CP) and a user plane (user) (UP).
  • the transport layer protocol of the control plane is the stream control transmission protocol (stream control control protocol (SCTP), and the application layer message transmitted is F1AP ( application) protocol) message.
  • the transport layer protocol of the user plane is the GPRS tunneling protocol (GPRS tunneling protocol-user plane, GTP-U) at the user level.
  • FIG. 4 shows a schematic diagram of still another application scenario of the technical solution of the embodiment of the present application.
  • the E1 interface is between the CU-CP and CU-UP Interface, F1-U connection between CU-UP and DU, F1-C connection between CU-CP and DU, Ng-U connection between CU-UP and 5GC, between CU-CP and 5GC Ng-C connection.
  • GSM global mobile communication
  • CDMA code division multiple access
  • WCDMA broadband code Wideband code
  • GSM global mobile communication
  • GPRS general packet radio service
  • LTE long term evolution
  • FDD frequency division duplex
  • TDD time division duplex
  • UMTS universal mobile communication system
  • WiMAX future fifth generation communication system 5th generation
  • 5G fifth generation
  • NR new radio
  • the network device in the embodiment of the present application may be a device for communicating with a terminal device, and the network device may be a global system for mobile (GSM) system or code division multiple access (CDMA)
  • the base station (base transceiver) (BTS) in the system can also be the base station (NodeB, NB) in the wideband code division multiple access (WCDMA) system or the evolved base station (evolved) in the LTE system NodeB, eNB or eNodeB), or a wireless controller in a cloud radio access network (CRAN) scenario
  • the network device can be a relay station, an access point, an in-vehicle device, a wearable device, and future Network devices in a 5G network or network devices in a PLMN network that will evolve in the future are not limited in the embodiments of the present application.
  • 3rd-Generation, 3G UMTS there is a scenario where the wireless network control node and the base station are separated; in the LTE system, there is a scenario where the baseband module and the radio frequency module are separated, that is, radio frequency Remote scenarios; Data Center (DC) scenarios, which require interconnection between two different networks; large and small station scenarios, where large and small stations are connected to each other with interfaces; LTE and Wifi aggregation (LTE-Wifi aggregation, LWA) scenarios; There are various non-cell scenarios in the 5G system (the terminal can freely switch between each cell at will, and there is no clear boundary between each cell), there is a control node connected to all cells, or under the cell Connect each transmission node; CRAN scenario, where there is a BBU segmentation scenario; CRAN virtualization scenario, where some functions of BBU are centrally deployed, virtualization, and other functions are deployed separately, there is a possibility of physical separation between the two parts; should It is
  • the terminal equipment in the embodiments of the present application may refer to user equipment (UE), access terminal, user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless Communication equipment, user agent or user device.
  • Terminal devices can also be cellular phones, cordless phones, session initiation protocol (SIP) phones, wireless local loop (WLL) stations, personal digital assistants (personal digital assistants, PDAs), and wireless communication Functional handheld devices, computing devices or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, terminal devices in future 5G networks or public land mobile communication networks (PLMN) in the future evolution
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDAs personal digital assistants
  • the terminal device and the like are not limited in this embodiment of the present application.
  • the network device and/or the terminal device may have corresponding forms, which is not limited in this application.
  • 5G includes three typical business scenarios:
  • the first is enhanced mobile broadband.
  • the peak rate of Internet access for intelligent end users should reach 10Gbps or even 20Gbps, providing support for large-bandwidth applications such as virtual reality, ubiquitous video live broadcast and sharing, and cloud access anytime and anywhere.
  • the second is the big connection to the Internet of Things.
  • the 5G network needs to support the connection of people and things with a scale of 1 million square kilometers.
  • the third is low-latency, ultra-reliable communication.
  • This scenario requires a 5G network delay of 1 millisecond to provide strong support for low-latency services such as intelligent manufacturing, remote machine control, assisted driving, and autonomous driving.
  • the terminal device or the network device includes a hardware layer, an operating system layer running on the hardware layer, and an application layer running on the operating system layer.
  • the hardware layer includes central processing unit (CPU), memory management unit (memory management unit, MMU), and memory (also called main memory) and other hardware.
  • the operating system may be any one or more computer operating systems that implement business processes through processes, for example, a Linux operating system, a Unix operating system, an Android operating system, an iOS operating system, or a windows operating system.
  • the application layer includes browser, address book, word processing software, instant messaging software and other applications.
  • the embodiment of the present application does not specifically limit the specific structure of the execution body of the method provided in the embodiment of the present application, as long as it can run the program that records the code of the method provided by the embodiment of the present application to provide according to the embodiment of the present application
  • the method may be used for communication.
  • the execution body of the method provided in the embodiments of the present application may be a terminal device or a network device, or a functional module in the terminal device or network device that can call a program and execute the program.
  • the term "article of manufacture” as used in this application encompasses a computer program accessible from any computer-readable device, carrier, or medium.
  • the computer-readable medium may include, but is not limited to: magnetic storage devices (for example, hard disks, floppy disks, or magnetic tapes, etc.), optical disks (for example, compact discs (CDs), digital universal discs (digital discs, DVDs)) Etc.), smart cards and flash memory devices (for example, erasable programmable read-only memory (EPROM), cards, sticks or key drives, etc.).
  • various storage media described herein may represent one or more devices and/or other machine-readable media for storing information.
  • machine-readable medium may include, but is not limited to, wireless channels and various other media capable of storing, containing, and/or carrying instructions and/or data.
  • a new RRC state is introduced for the terminal equipment, which is called inactive state.
  • the terminal device in the inactive state terminates the connection between the terminal device and the network device.
  • the access stratum (AS, access) context of the terminal device is simultaneously stored on the terminal device side and the network side.
  • the terminal device requests the network device to restore the connection.
  • the terminal device transitions from the inactive state to the connected state, the link between the network device and the core network control plane may not be reactivated.
  • the process of transitioning the terminal device from the connected state to the inactive state may include the following steps:
  • the CU sends a UE context release command (UE context release command) message to the DU, which is used by the DU to release the context of the terminal device.
  • UE context release command UE context release command
  • the DU does not retain the context of the terminal device, and all the context is stored in the CU;
  • the DU sends an RRC connection release (RRC connection release) message to the terminal device.
  • RRC connection release RRC connection release
  • the terminal device After receiving the RRC connection release message, the terminal device enters if the RRC connection release message includes suspend configuration information Inactive state; if the RRC connection release message does not include suspend configuration information, then enter the idle state (idle);
  • the DU sends a UE context release complete (UE context release) message to the CU.
  • UE context release UE context release
  • the process of switching the terminal device from the inactive state to the connected state may include the following steps:
  • the CU If downlink data arrives in the core network, the CU sends a paging message to the DU;
  • the DU After receiving the paging message, the DU sends the paging message to the terminal device through the air interface;
  • the terminal device sends an RRC connection recovery request (RRC connection resume request) message or RRC recovery request (RRC resume request) message to the DU;
  • the DU After receiving the RRC connection recovery request message or RRC recovery request message sent by the terminal device, the DU sends the request message to the CU through an initial uplink RRC message transmission (initial UL RRC message transfer) message;
  • the CU sends a UE context establishment request (UE context setup request) message to the DU, where the request message includes information such as the bearer that needs to be established;
  • the DU sends a UE context establishment response (UE context setup response) message to the CU to inform the CU that it has successfully established the bearer;
  • UE context setup response UE context setup response
  • the CU sends a DL RRC message transfer (DL RRC message transfer) message to the DU, which includes the RRC message transmitted in step 8;
  • the DU sends an RRC connection recovery request message or an RRC connection request message message to the terminal device, which is used to put the terminal device into the connected state; or an RRC reject (RRC reject) message, indicating that the terminal device access is not successful, and the terminal device receives After the message is still in the Inactive state); or RRC setup (RRC Setup message), the CU does not have the context of the terminal device, but the terminal device can still switch to the connected state after receiving the message); or RRC release (RRC release ) Message, if the message includes the suspend configuration message at this time, the terminal device is in the inactive state, otherwise the terminal device switches to the idle state;
  • the terminal device sends an RRC resume/setup complete (RRC resume/setup complete) message to the DU to reply to the message in step 8;
  • the DU sends an uplink RRC message (UL RRC message transfer) message to the CU.
  • the bearer establishment is completed, the terminal device enters the connected state, and can perform data transmission with the network device.
  • the terminal device needs to go through the above 10 steps to switch to the connected state, that is, the terminal device can perform data transmission after step (10).
  • the above process can also be applied to the scenario where inactive initiates the RRC recovery process in a new DU.
  • the present application proposes a communication method, which can reduce the signaling overhead of the terminal device in the inactive state during data transmission, reduce the delay of data transmission, and improve the efficiency of system data transmission.
  • FIG. 5 shows a schematic flowchart of a communication method 500 according to an embodiment of the present application. As shown in FIG. 5, the communication method 500 includes:
  • the terminal device sends data to the DU in the deactivated state.
  • the data may correspond to a certain data radio bearer (data radio bearer, DRB).
  • DRB data radio bearer
  • the terminal in the deactivated state can retain the configuration information of three DRBs DRB#1, DRB#2 and DRB#3. If the data sent by the user is the data of DRB#1, the configuration of DRB#1 can be used to send data.
  • the terminal device may send the data to the DU through an RRC connection recovery request message or an RRC recovery request message in an inactive state.
  • the DU determines the first information corresponding to the data, and the first information corresponds to the DRB.
  • the first information may include at least one of the following: a logical channel identification (LCID) corresponding to the data, address information, or a network slice identification corresponding to the data, wherein the address
  • the information includes at least one of the following: uplink data transmission address information corresponding to the data radio bearer identifier, uplink data transmission address information corresponding to the logical channel identifier, or uplink data transmission address information corresponding to the network slice identifier.
  • LCID logical channel identification
  • the first information may be an LCID or a network slice identifier.
  • the determination of the first information corresponding to the data by the DU means that the DU can determine the LCID or network slice identifier corresponding to the data through the MAC layer.
  • the first information corresponds to the DRB, and may refer to that the CU determines the corresponding DRB according to the first information, for example, the corresponding DRB identifier may be determined.
  • the CU may determine a DRB identifier of the terminal device according to the logical channel identifier corresponding to the data packet; or, if The data includes a plurality of data packets, and the plurality of data packets respectively correspond to a plurality of different logical channel identifiers, and then the CU may determine the one according to one of the plurality of different logical channel identifiers A DRB identifier of the terminal device; or, if the multiple data packets correspond to a logical channel identifier, the CU may determine a DRB identifier of the terminal device according to the logical channel identifier.
  • the DU may determine the first information corresponding to the data in the MAC layer.
  • the first information may be a logical channel identifier.
  • the DU sends the first information to the CU.
  • the DU may send the first information to the CU through a first message.
  • the first message may be an initial uplink RRC message transmission (initial UL RRC message transfer), or the first message may also be other messages, which is not limited in this application.
  • the first message may also include the data.
  • the DU may send the first information and the data to the CU simultaneously through a first message, for example, the DU may send the first information to the CU simultaneously through the same initial uplink RRC message And the data; the DU can also send only the first information to the CU in one message, and send the data to the CU in another message, for example, the DU can pass an initial An uplink RRC message simultaneously sends the first information to the CU, and sends the data to the CU in another initial uplink RRC message or other messages.
  • the data list indicates that the DU may send one or more data packets in the first message, and the data packets may be carried in the first message in the form of a container. It is understandable that the data list is just a name, and it can be other names.
  • the LCID may be a logical channel identifier, indicating the logical channel identifier corresponding to the data packet, and the CU may correspond the data packet to the corresponding DRB through the LCID, and then use the PDCP layer protocol stack and SDAP layer protocol stack corresponding to the bearer to the data packet Be processed.
  • Data may be data sent by the terminal to the DU in S510, and the data here may be one data packet or multiple data packets. It can be understood that each LCID may correspond to multiple data packets, or may correspond to one data packet.
  • the CU determines the DRB corresponding to the data according to the first information.
  • the CU may use the PDCP layer protocol stack and the SDAP layer protocol stack corresponding to the bearer to process the data.
  • the CU may correspond the data packet to a corresponding DRB through a logical channel identifier, and then use the PDCP layer protocol stack and SDAP layer protocol stack corresponding to the DRB to process the data packet.
  • the CU sends an RRC message to the DU.
  • the RRC message may be an RRC connection release (RRC connection release) message or an RRC release (RRC release) message.
  • the RRC message may be an RRC connection resume (RRC connection resume) message or an RRC resume (RRC resume) message.
  • the DU sends the RRC message to the terminal device.
  • the RRC message may be an RRC connection release message or an RRC release message.
  • the network side can put the terminal device into a deactivated state or an idle state.
  • the RRC message may be an RRC connection recovery message or an RRC recovery message.
  • the network side can put the terminal device into a connected state.
  • the distributed unit receives the data sent by the terminal device in the deactivated state, determines the first information corresponding to the data, and sends the first information to the central unit, the The central unit may determine the data radio bearer corresponding to the data according to the first information, and process the data according to the protocol stack corresponding to the data radio bearer. Therefore, the terminal device does not need to switch from the inactive state to the connected state. Data can be transmitted, which can reduce the signaling overhead of the terminal equipment in the inactive state during data transmission, reduce the delay of data transmission, and improve the efficiency of system data transmission.
  • FIG. 6 shows a schematic flowchart of a communication method 600 according to another embodiment of the present application. As shown in FIG. 6, the communication method 600 includes:
  • the CU sends the second information to the DU.
  • the CU may send the second information to the DU through a UE context release command (UE context release command) message.
  • UE context release command UE context release command
  • the second information may be used to indicate the correspondence between the logical channel identifier and the address information, the DRB identifier and the address information, or the network slice identifier and the address information.
  • the second information may also be used to indicate the correspondence between other identifiers and the address information.
  • the second information may be used to indicate address information, which is not limited in this application.
  • the address information may refer to address information for transmitting uplink data corresponding to the logical channel, the DRB, or the network slice.
  • different logical channels, DRBs or network slices can correspond to different addresses.
  • the address information may include a transport layer address (transport layer address).
  • the address information may include a GPRS tunneling protocol (GPRS tunneling protocol, GTP) tunnel port identifier (tunnel endpoint identifier, TEID).
  • GTP GPRS tunneling protocol
  • TEID tunnel port identifier
  • the data may be a data packet
  • the network slice identifier corresponding to the data packet may correspond to an address information.
  • the data may include multiple data packets, and the multiple data packets respectively correspond to multiple different network slice identifiers, and the multiple different network slice identifiers may respectively correspond to different address information.
  • the multiple data packets may correspond to a network slice identifier, and the network slice identifier may correspond to address information.
  • the DU may establish an uplink data plane tunnel through the second message.
  • the terminal device sends data to the DU in the deactivated state.
  • the terminal device may send the data to the DU through an RRC connection recovery request message or an RRC recovery request message in an inactive state.
  • the DU determines the address information corresponding to the data. Specifically, the DU may determine the address information corresponding to the data according to the second information.
  • the DU may determine a logical channel identifier, a DRB identifier, or a network slice identifier corresponding to the data, and according to the correspondence between the logical channel identifier, the DRB identifier, or the network slice identifier, and the second information , Determine the uplink data transmission address information corresponding to the logical channel, the DRB, or the network slice.
  • the uplink data transmission address information may be address information of an uplink data plane tunnel corresponding to the data.
  • the DU may send data to the CU in the data plane tunnel corresponding to the address information.
  • the DU sends the data in the data plane tunnel.
  • the DU may send the data and the address information.
  • the DU may add address information of an upstream data plane tunnel corresponding to the data packet to the data packet.
  • the CU can receive the data, and determine the logical channel ID, DRB ID, or network slice ID corresponding to the data packet according to the address information in the data packet, and use the logical channel ID, the DRB ID Or the protocol stack corresponding to the network slice identifier processes the data packet.
  • the central unit sends the second information to the distributed unit through a UE context release command message, and the distributed unit determines the location based on the correspondence in the second information.
  • FIG. 7 shows a schematic flowchart of a communication method 700 according to another embodiment of the present application. As shown in FIG. 7, the communication method 700 includes:
  • the DU sends an interface setup request (F1 setup request) message to the CU.
  • the CU sends second information to the DU.
  • the CU sends the second information to the DU through an interface setup response (F1 setup response) message.
  • F1 setup response interface setup response
  • the second information may be used to indicate the correspondence between the logical channel identifier and the address information, the DRB identifier and the address information, or the network slice identifier and the address information.
  • the second information may also be used to indicate the correspondence between other identifiers and the address information.
  • the second information may be used to indicate address information, which is not limited in this application.
  • the CU may establish a tunnel through the second message.
  • the DU may establish an uplink data plane tunnel through the second message.
  • the terminal device sends data to the DU in the deactivated state.
  • the terminal device may send the data to the DU through an RRC connection recovery request message or an RRC recovery request message in an inactive state.
  • the DU determines the address information corresponding to the data. Specifically, the DU may determine the address information corresponding to the data according to the second information.
  • the DU may send data to the CU in the data plane tunnel corresponding to the address information.
  • the DU sends the data in the data plane tunnel.
  • the DU may send the data and the address information.
  • S730, S740, and S750 reference may be made to S620, S630, and S640 in FIG. 6, which will not be repeated here.
  • the central unit sends the second information to the distributed unit through an interface establishment reply message, and the distributed unit determines the second information according to the correspondence in the second information Address information, and send data to the central unit in the data plane tunnel corresponding to the address information according to the address information without having to switch to the connected state before transmitting the data, therefore, signaling in the data transmission process can be reduced Overhead and transmission delay improve the efficiency of system data transmission.
  • FIG. 8 shows a schematic flowchart of a communication method 800 according to another embodiment of the present application. As shown in FIG. 8, the communication method 800 includes:
  • the terminal device sends data to the DU in the deactivated state.
  • the terminal device may send data to the DU through an RRC connection recovery request (RRC connection resume request) message in the inactive state, or the terminal device may send the data together with an RRC connection recovery request message Sent to the DU.
  • RRC connection recovery request RRC connection resume request
  • the DU determines first information corresponding to the data, and the first information corresponds to the DRB.
  • the first information may include at least one of the following: a logical channel identifier corresponding to the data, or a network slice identifier corresponding to the data.
  • the data may include a data packet, and the data packet corresponds to the logical channel identifier or the network slice identifier.
  • the data includes multiple data packets, and the multiple data packets may respectively correspond to different logical channel identifiers or different network slice identifiers. Alternatively, the multiple data packets may correspond to one of the logical channel identifier or the network slice identifier.
  • the DU may determine the first information corresponding to the data in the MAC layer.
  • the first information may be a logical channel identifier, and at this time, the DU may correspond the data to the logical channel identifier.
  • the logical channel identifier corresponding to the data packet may correspond to a DRB identifier; or, if the data includes multiple data packets, the multiple data packets respectively correspond to multiple different
  • the multiple different logical channel identifiers may correspond to different DRB identifiers respectively; or, if the multiple data packets correspond to a logical channel identifier, the logical channel identifier may correspond to a DRB identifier.
  • the DU sends the first information to the CU.
  • the DU may send the first information to the CU through an initial uplink RRC message transmission (initial UL RRC message transfer) message.
  • the CU may determine the logical channel identifier corresponding to the data according to the first information, so as to determine the bearer to be established according to the DRB identifier corresponding to the logical channel identifier.
  • the LCID list corresponding to the DRB to be established is as follows, one possible form is:
  • the CU sends third information to the DU, where the third information is used to instruct the DU to establish the DRB.
  • the CU may also send third information to the DU through a UE context establishment request (UE context setup request) message, where the third information is used to instruct the DU to establish the location where the first information association is established. ⁇ Bearing.
  • UE context setup request UE context setup request
  • the bearer context modification request message may also carry indication information, which is used to indicate that the DU does not need to activate the context to make the terminal device enter the connected state, which can avoid the DU from the terminal device
  • indication information which is used to indicate that the DU does not need to activate the context to make the terminal device enter the connected state, which can avoid the DU from the terminal device
  • the recovery process of the protocol stack can save system resources.
  • the indication information may instruct the terminal device to transmit small data packets.
  • the terminal device since the terminal device transmits a small data packet, the DU does not need to activate a context to make the terminal device enter a connected state.
  • the CU only needs to ask the DU to establish the data radio bearer corresponding to the first information in step S830.
  • the CU may reserve the configuration of carrying the DRB#1, DRB#2, DRB#3, DRB#4 for the terminal device in the deactivated state.
  • the DU sends the first One message only corresponds to bearer DRB#1 and DRB#2, that is, the current terminal only needs to send data corresponding to DRB#1 and DRB#2, then the CU may only request the DU to establish DRB#1 and DRB# in this step 2 corresponding bearers, without the need to establish DRB#3 and DRB#4 corresponding bearers. This can reduce the number of bearer establishments, reduce the bearer establishment delay, and avoid the establishment of invalid bearers, thereby saving resource overhead.
  • the DU sends a UE context setup response (UE context setup response) message to the CU.
  • the UE context setup response message is used to notify the CU that it has successfully established a bearer.
  • the DU may only establish the bearer corresponding to the data.
  • the data may include a data packet corresponding to the logical channel identifier or the network slice identifier.
  • the DU may only need to establish a bearer corresponding to the logical channel identifier, or The DU may only need to establish a bearer corresponding to the network slice identifier.
  • the data may include multiple data packets, and the multiple data packets may respectively correspond to different logical channel identifiers or different network slice identifiers.
  • the DU may only establish The bearer corresponding to the logical channel identifier corresponding to the multiple data packets, or the DU may establish only the bearer corresponding to the network slice identifier.
  • the data may include multiple data packets, and the multiple data packets may correspond to one of the logical channel identifier or the network slice identifier.
  • the DU may only establish correspondence with the logical channel identifier Or the DU may establish only the bearer corresponding to the network slice identifier.
  • the first information in step S830 may include LCID#1, LCID#2, and LCID#3, where LCID#1 corresponds to bearer DRB#1, LCID#2 corresponds to bearer DRB#2, and LCID#3 corresponds to Carrying DRB#3, the DU may only be able to successfully establish DRB#1 and DRB#2 due to reasons such as limited DU resources. Of course, the DU may also establish all bearers DRB#1, DRB#2 and DRB#3.
  • the DU sends uplink data to the CU.
  • the DU can only send data corresponding to the successfully established bearer.
  • the terminal device sends LCID#1, LCID#2, and LCID#3 data to the DU, where LCID#1 corresponds to DRB#1, LCID#2 corresponds to DRB#2, and LCID#3 corresponds to DRB#3, if The DU can only successfully establish DRB#1 and DRB#2, then in this step, the DU can only send data corresponding to DRB#1 and data corresponding to DRB#2 to the CU.
  • the CU sends a downlink RRC message transfer (DL RRC message transfer) message to the DU.
  • DL RRC message transfer downlink RRC message transfer
  • the downlink RRC message transmission message may include an RRC release (RRC release) message.
  • RRC release RRC release
  • the DU may send an RRC release message to the terminal device.
  • the RRC release message may include a suspend configuration message.
  • the terminal device receives the RRC release message, it is in an inactive state; otherwise, the terminal device switches to the idle state.
  • the distributed unit receives the third information sent by the central unit, and the distributed unit may establish only the data radio bearer corresponding to the first information according to the third information Without establishing other data radio bearers, it can reduce the signaling overhead and delay of establishing data radio bearers, thereby reducing the signaling overhead and delay in the data transmission process, and improving the efficiency of system data transmission.
  • FIG. 9 shows a schematic flowchart of a communication method 900 according to another embodiment of the present application.
  • the communication method 900 includes:
  • the CU-CP sends a bearer context modification request (bearer context modification request) message to the CU-UP.
  • the CU-UP sends second information to the CU-CP.
  • the second information may be used to indicate the correspondence between the data radio bearer identifier and the address information, or the correspondence between the logical channel identifier and the address information, or the network slice identifier and the Correspondence of address information.
  • the CU-UP sends the second information to the CU-CP through a bearer context modification reply (bearer context modification) response message.
  • bearer context modification reply bearer context modification
  • the CU-CP sends the second information to the DU.
  • the second information may be used to indicate at least one of the following: the correspondence between the data radio bearer identifier and the address information, the correspondence between the logical channel identifier and the address information, or the network slice The correspondence between the identifier and the address information.
  • the CU-CP may establish a common data plane tunnel in a UE context release command (UE context release command) message.
  • UE context release command UE context release command
  • the CU-CP sends the second information to the DU through a UE context release command message.
  • the DU sends an RRC connection release message to the terminal device.
  • the RRC release message may include a suspend configuration message.
  • the terminal device receives the RRC connection release message, it is in an inactive state; otherwise, the terminal device switches to the idle state.
  • the terminal device sends data to the DU in the deactivated state.
  • the terminal device may send the data to the DU through an RRC connection resume request (RRC connection resume) message in the inactive state.
  • RRC connection resume RRC connection resume
  • the DU determines first information corresponding to the data, and the first information corresponds to the DRB.
  • the DU may determine the first information according to the second information, and the first information is associated with the bearer.
  • the DU may determine the address information according to the correspondence in the second information.
  • the correspondence includes the correspondence between the data radio bearer identifier and the address information, the correspondence between the logical channel identifier and the address information, or the correspondence between the network slice identifier and the address information At least one item.
  • the data plane tunnel may be the data plane tunnel established in S930.
  • the DU may send the first information and the data to the CU-CP.
  • the DU may send the address information and the data determined in S960 to the CU-CP.
  • the CU-CP sends the second information to the DU
  • the distributed unit determines the address information according to the correspondence in the second information, and according to the The address information sends data to the central unit in the data plane tunnel corresponding to the address information without having to switch to the connected state before transmitting the data. Therefore, signaling overhead and transmission delay during data transmission can be reduced, Improve the efficiency of system data transmission.
  • FIG. 10 shows a schematic flowchart of a communication method 1000 according to an embodiment of the present application. As shown in FIG. 10, the communication method 1000 includes:
  • the terminal device sends data to the DU in the deactivated state.
  • the terminal device may send data to the DU in an RRC connection recovery request (RRC connection resume) request message.
  • RRC connection recovery request RRC connection resume
  • the DU determines first information corresponding to the data, and the first information corresponds to the DRB.
  • the first information may include at least one of the following: a logical channel identifier corresponding to the data, address information, or a network slice identifier corresponding to the data, where the address information includes at least one of the following: Uplink data transmission address information corresponding to the data radio bearer identifier, uplink data transmission address information corresponding to the logical channel identifier, or uplink data transmission address information corresponding to the network slice identifier.
  • the CU may determine a DRB identifier of the terminal device according to the logical channel identifier corresponding to the data packet; or, if The data includes a plurality of data packets, and the plurality of data packets respectively correspond to a plurality of different logical channel identifiers, and then the CU may determine the one according to one of the plurality of different logical channel identifiers A DRB identifier of the terminal device; or, if the multiple data packets correspond to a logical channel identifier, the CU may determine a DRB identifier of the terminal device according to the logical channel identifier.
  • the DU may determine the first information corresponding to the data in the MAC layer.
  • the first information may be a logical channel identifier.
  • the DU may send the first information to the CU-CP.
  • the DU may send the first information to the CU-CP through an initial uplink RRC message transmission (initial UL RRC message transfer) message.
  • the DU may send the first information and the data to the CU-CP.
  • the DU may send the data to the CU-CP before sending the first information to the CU-CP.
  • the DU may send the data to the CU-CP after sending the first information to the CU-CP.
  • the CU-CP determines a bearer corresponding to the data according to the first information.
  • the CU-CP sends first information to the CU-UP, where the first information corresponds to the DRB.
  • the first information may be a logical channel identifier, a DRB identifier, or a network slice identifier corresponding to the data.
  • the data may include a data packet, and the data packet corresponds to a bearer.
  • the first information may be a logical channel identifier, a DRB identifier, or a network slice identifier corresponding to the data packet.
  • the data may include multiple data packets, and the multiple data packets may respectively correspond to different bearers.
  • the first information may include logical channel identifiers and DRBs corresponding to the multiple data packets. logo or network slice logo.
  • the data may include multiple data packets, and the multiple data packets may correspond to a bearer.
  • the first information may be a logical channel identifier, a DRB identifier, or a network slice corresponding to multiple data packets. logo.
  • the CU-CP may send the first information through a bearer context modification request (bearer context modification request) message. Accordingly, the CU-UP receives the first information through the bearer context modification request message.
  • bearer context modification request bearer context modification request
  • the bearer context modification request message may also carry indication information, which is used to indicate that the CU-CP does not need to activate the context to make the terminal device enter the connected state, which can avoid the CU-UP pair
  • the recovery process of the protocol stack of the terminal device can save system resources.
  • the indication information may instruct the terminal device to transmit small data packets.
  • the terminal device since the terminal device transmits a small data packet, the DU does not need to activate a context to make the terminal device enter a connected state.
  • the CU-UP may determine a bearer corresponding to the data according to the first information, and process the data according to PDCP and SDAP corresponding to the bearer.
  • the CU-CP may send the data and the first information to the CU-UP.
  • the data corresponding to the first information For example, the data corresponding to the first information
  • the first information (logical channel ID, DRB ID or network slice ID)
  • the first information may include the data and the corresponding logical channel identifier, DRB identifier, or network slice identifier
  • the CU-UP may use the logical channel identifier, the DRB identifier, or the network slice Identify the data packet corresponding to the corresponding DRB, and then use the PDCP layer protocol stack and SDAP layer protocol stack corresponding to the DRB to process the data packet.
  • the first information may be address information allocated by the CU-UP to the bearer corresponding to the first information, such as a data identifier.
  • the CU-CP can add the address information to the header of the data, and the CU-UP determines the bearer information corresponding to the data according to the address information, and then uses the PDCP layer protocol stack corresponding to the DRB and The SDAP layer protocol stack processes the data packet.
  • the CU-UP sends a bearer context modification response (bearer context modification response) message to the CU-CP.
  • the CU-CP sends an RRC message to the DU.
  • the RRC message may be an RRC connection release (RRC connection release) message or an RRC release (RRC release) message.
  • the RRC message may be an RRC connection resume (RRC connection resume) message or an RRC resume (RRC resume) message.
  • the DU sends the RRC message to the terminal device.
  • the RRC message may be an RRC connection release message or an RRC release message.
  • the network side can put the terminal device into a deactivated state or an idle state.
  • the RRC message may be an RRC connection recovery message or an RRC recovery message.
  • the network side can put the terminal device into a connected state.
  • the CU-CP sends first information to the CU-UP
  • the CU-UP may determine the data radio bearer corresponding to the data according to the first information, and according to The protocol stack corresponding to the data wireless bearer processes the data. Therefore, the terminal device can transmit data without switching from the inactive state to the connected state, thereby reducing signaling in the data transmission process of the terminal device in the inactive state. Overhead, reduce the delay of data transmission, and improve the efficiency of system data transmission.
  • FIG. 11 is a schematic block diagram of a communication device 1100 according to an embodiment of the present application. It should be understood that the communication device 1100 is only an example. The communication device according to the embodiment of the present application may further include other modules or units, or include modules with similar functions to the modules in FIG. 11, or not necessarily include all modules in FIG. 11.
  • the receiving module 1110 is configured to receive data sent by the terminal device in a deactivated state, where the data corresponds to the data wireless bearer;
  • the processing module 1120 is configured to determine first information corresponding to the data, and the first information is associated with the bearer;
  • the sending module 1130 is configured to send the first information to the central unit.
  • the first information includes at least one of the following: a logical channel identifier corresponding to the data, address information, or a network slice identifier corresponding to the data, wherein the address information includes at least one of the following: data Uplink data transmission address information corresponding to the wireless bearer identifier, uplink data transmission address information corresponding to the logical channel identifier, or uplink data transmission address information corresponding to the network slice identifier.
  • the sending module 1130 is specifically configured to send the first information to the central unit through an initial uplink radio resource control message transmission message.
  • the receiving module 1110 is further configured to: receive second information sent by the central unit, where the second information is used to indicate at least one of the following: correspondence between the data radio bearer identifier and the address information Relationship, correspondence between the logical channel identifier and the address information, or correspondence between the network slice identifier and the address information.
  • the processing module 1120 is specifically configured to determine the address information according to the correspondence.
  • the receiving module 1110 is specifically configured to receive the second information sent by the central unit through an interface establishment reply message or a context release command message.
  • the sending module 1130 is specifically configured to send the first information and the data to the central unit.
  • the receiving module 1110 is further configured to: receive third information sent by the central unit through a context establishment request message, where the third information is used to instruct the distributed unit to establish the data radio bearer.
  • FIG. 12 is a schematic block diagram of a communication device 1200 according to an embodiment of the present application. It should be understood that the communication device 1200 is only an example. The communication device in the embodiment of the present application may further include other modules or units, or include modules with similar functions to the modules in FIG. 12, or not necessarily include all modules in FIG.
  • the receiving module 1210 is configured to receive the first information sent by the distributed unit
  • the processing module 1220 is configured to determine the data radio bearer corresponding to the first information according to the first information
  • the receiving module 1210 is configured to receive data sent by the terminal device from the distributed unit in a deactivated state.
  • the first information includes at least one of the following: a logical channel identifier corresponding to the data, address information, and a network slice identifier corresponding to the data, wherein the address information includes at least one of the following: data wireless Uplink data transmission address information corresponding to the bearer identifier, uplink data transmission address information corresponding to the logical channel identifier, or uplink data transmission address information corresponding to the network slice identifier.
  • the receiving module 1210 is specifically configured to: receive the first information sent by the distributed unit through an initial uplink radio resource control message transmission message.
  • the communication device further includes a sending module 1230, configured to send second information to the distributed unit, where the second information is used to indicate at least one of the following: the data radio bearer identifier and the The correspondence between the address information, or the correspondence between the logical channel identifier and the address information, or the correspondence between the network slice identifier and the address information.
  • a sending module 1230 configured to send second information to the distributed unit, where the second information is used to indicate at least one of the following: the data radio bearer identifier and the The correspondence between the address information, or the correspondence between the logical channel identifier and the address information, or the correspondence between the network slice identifier and the address information.
  • the sending module 1230 is specifically configured to send the second information to the distributed unit through an interface establishment reply message or a context release command message.
  • the receiving module 1210 is specifically configured to: receive the first information and the data sent by the distributed unit.
  • the sending module 1230 is further configured to send third information to the distributed unit through a context establishment request message, where the third information is used to instruct the distributed unit to establish the data radio bearer.
  • the communication device 1200 includes CU-UP and CU-CP.
  • the sending module 1230 belongs to the CU-UP, and the sending module 1230 is further configured to: send the second information to the CU-CP by the CU-UP.
  • the sending module 1230 belongs to the CU-CP, and the sending module 1230 is further configured to: the CU-CP sends the first information to the CU-UP.
  • FIG. 13 is a schematic structural diagram of a communication device 1300 according to an embodiment of the present application. It should be understood that the communication device 1300 shown in FIG. 13 is only an example, and the communication device 1300 in the embodiment of the present application may further include other modules or units, or include modules having similar functions as the modules in FIG. 13.
  • the communication device 1300 may include one or more processors 1310, one or more memories 1320, a receiver 1330, and a transmitter 1340.
  • the receiver 1330 and the transmitter 1340 may be integrated together, called a transceiver.
  • the memory 1320 is used to store program codes executed by the processor 1310.
  • the processor 1310 may be integrated with a memory 1320, or the processor 1310 is coupled to one or more memories 1320 for retrieving instructions in the memory 1320.
  • the processor 1310 may be used to implement the operations or steps that the processing module 1120 in FIG. 11 can implement
  • the receiver 1330 may be used to implement the operations or steps that the receiving module 1110 in FIG. 11 can implement
  • 1340 may be used to implement operations or steps that can be implemented by the sending module 1130 in FIG.
  • the processor 1310 may be used to implement operations or steps that can be implemented by the processing module 1220 in FIG. 12, and the receiver 1330 may be used to implement operations or steps that can be implemented by the receiving module 1210 in FIG. 12.
  • the device 1340 may be used to implement operations or steps that can be implemented by the sending module 1230 in FIG.
  • the processor in the embodiments of the present application may be a central processing unit (CPU), and the processor may also be other general-purpose processors, digital signal processors (DSPs), and application specific integrated circuits (application specific integrated circuit, ASIC), ready-made programmable gate array (field programmable gate array, FPGA) or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components, etc.
  • the general-purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the memory in the embodiments of the present application may be volatile memory or non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be read-only memory (read-only memory, ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), electronically Erasable programmable read only memory (electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be a random access memory (random access memory, RAM), which is used as an external cache.
  • random access memory random access memory
  • static random access memory static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access Access memory
  • SDRAM double data rate synchronous dynamic random access memory
  • double data Srate double data Srate
  • DDR SDRAM enhanced synchronous dynamic random access memory
  • ESDRAM synchronous connection dynamic random access memory Take memory (synchlink DRAM, SLDRAM) and direct memory bus random access memory (direct rambus RAM, DR RAM).
  • the above embodiments may be implemented in whole or in part by software, hardware, firmware, or any other combination.
  • the above-described embodiments may be implemented in whole or in part in the form of computer program products.
  • the computer program product includes one or more computer instructions or computer programs. When the computer instructions or computer programs are loaded or executed on a computer, all or part of the processes or functions described in the embodiments of the present application are generated.
  • the computer may be a general-purpose computer, a dedicated computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be from a website site, computer, server or data center Transmit to another website, computer, server or data center by wired (such as infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or data center that contains one or more collections of available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a DVD), or a semiconductor medium.
  • the semiconductor medium may be a solid state drive.
  • the disclosed system, device, and method may be implemented in other ways.
  • the device embodiments described above are only schematic.
  • the division of the units is only a division of logical functions.
  • there may be other divisions for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the functions are implemented in the form of software functional units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application essentially or part of the contribution to the existing technology or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to enable a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in the embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM), random access memory (random access memory, RAM), magnetic disk or optical disk and other media that can store program codes .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种通信方法和通信装置,该方法包括:分布式单元接收终端设备在去激活态下发送的数据;所述分布式单元确定所述数据对应的第一信息,所述第一信息与数据无线承载相对应;所述分布式单元向中心单元发送所述第一信息。本申请实施例提供的方法,能够减少处于inactive态的终端设备在数据传输过程中的信令开销,降低数据传输的时延,提高***数据传输的效率。

Description

通信方法和通信装置
本申请要求于2018年12月10日提交中国专利局、申请号为201811502425.7、申请名称为“通信方法和通信装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,并且更具体地,涉及一种通信方法和通信装置。
背景技术
第五代通信(5th generation,5G)中定义了一种新的基站架构,引入了集中式单元(centralized unit,CU)和分布式单元(distributed unit,DU)相分离的概念,也就是将基站分为CU和DU两部分。
CU和DU相分离的场景下,处于某些状态的终端设备,例如处于5G中的去激活态(inactive)的终端设备传输数据时,需要先转换到连接态(connected),才能够传输数据。而当终端设备转换到连接态时,DU和CU之间也需要基于承载建立数据隧道。使用这种方式进行数据传输时,DU和CU之间需要通过多次的信令交互才能够完成数据隧道的建立,此时,会产生较大的信令开销,也会对数据传输的时延造成影响。
发明内容
本申请提供一种通信方法和通信装置,能够减少处于inactive态的终端设备在数据传输过程中的信令开销,降低数据传输的时延,提高***数据传输的效率。
第一方面,提供了一种通信方法,该通信方法包括:分布式单元接收终端设备在去激活态下发送的数据;所述分布式单元确定所述数据对应的第一信息,所述第一信息与数据无线承载相对应;所述分布式单元向所述中心单元发送所述第一信息。
根据本申请实施例中的通信方法,分布式单元接收终端设备在去激活态下发送的数据,确定所述数据对应的第一信息,并向所述中心单元发送所述第一信息,所述中心单元可以根据所述第一信息确定所述数据对应的数据无线承载,并根据所述数据无线承载对应的协议栈对所述数据进行处理,因此,终端设备不用从inactive态切换到连接态就可以传输数据,从而能够减少处于inactive态的终端设备在数据传输过程中的信令开销,降低数据传输的时延,提高***数据传输的效率。
在一种可能的实现方式中,所述第一信息包括以下至少一项:所述数据对应的逻辑信道标识、地址信息、或所述数据对应的网络切片标识,其中,所述地址信息包括以下至少一项:数据无线承载标识对应的上行数据传输地址信息、所述逻辑信道标识对应的上行数据传输地址信息、或所述网络切片标识对应的上行数据传输地址信息。
在一种可能的实现方式中,所述分布式单元向所述中心单元发送所述第一信息,包括: 所述分布式单元通过初始上行无线资源控制消息传输消息向所述中心单元发送所述第一信息。
根据本申请实施例中的通信方法,所述分布式单元在inactive态下通过控制面信道向所述中心单元发送所述第一信息,由于使用inactive态下的控制面信道,因此不用从inactive态切换到连接态,可以提高***数据传输的效率。
在一种可能的实现方式中,所述通信方法还包括:所述分布式单元接收所述中心单元发送的第二信息,所述第二信息用于指示以下至少一项:所述数据无线承载标识与所述地址信息的对应关系、所述逻辑信道标识与所述地址信息的对应关系、或所述网络切片标识与所述地址信息的对应关系。
在一种可能的实现方式中,所述分布式单元确定所述数据对应的第一信息,包括:所述分布式单元根据所述对应关系确定所述地址信息。
根据本申请实施例中的通信方法,所述分布式单元根据所述对应关系确定所述地址信息,并在所述地址信息对应的数据面隧道中向所述中心单元发送数据,而不必切换到连接态后再传输数据,因此,能够减少数据传输过程中的信令开销和传输时延,提高***数据传输的效率。
在一种可能的实现方式中,所述分布式单元接收所述中心单元发送的第二信息,包括:所述分布式单元通过接口建立回复消息或上下文释放命令消息接收所述中心单元发送的第二信息。
根据本申请实施例中的通信方法,所述分布式单元在inactive态下通过控制面信道接收所述中心单元发送的第二信息,由于使用inactive态下的控制面信道,因此不用从inactive态切换到连接态,可以提高***数据传输的效率。
在一种可能的实现方式中,所述分布式单元向所述中心单元发送所述第一信息,包括:所述分布式单元向所述中心单元发送所述第一信息和所述数据。
根据本申请实施例中的通信方法,所述分布式单元向所述中心单元发送所述第一信息和所述数据,所述中心单元根据所述第一信息可以确定所述数据对应的数据无线承载,并根据所述数据无线承载对应的协议栈对所述数据进行处理,使得终端设备不用从inactive态切换到连接态就可以传输数据,从而能够减少处于inactive态的终端设备在数据传输过程中的信令开销,降低数据传输的时延,提高***数据传输的效率。
在一种可能的实现方式中,所述通信方法还包括:所述分布式单元通过上下文建立请求消息接收所述中心单元发送的第三信息,所述第三信息用于指示所述分布式单元建立所述数据无线承载。
根据本申请实施例中的通信方法,所述分布式单元接收所述中心单元发送的第三信息,所述分布式单元根据所述第三信息可以只建立所述第一信息对应的数据无线承载,而不需要建立其他的数据无线承载,能够减少建立数据无线承载的信令开销和时延,从而减少数据传输过程中的信令开销和时延,提高***数据传输的效率。
第二方面,提供了一种通信方法,该通信方法包括:中心单元接收分布式单元发送的第一信息;所述中心单元根据所述第一信息确定所述第一信息对应的数据无线承载;所述中心单元接收来自所述分布式单元的终端设备在去激活态下所发送的数据。
根据本申请实施例中的通信方法,中心单元接收分布式单元发送的第一信息,所述中 心单元可以根据所述第一信息确定所述第一信息对应的数据无线承载,在接收来自所述分布式单元的终端设备在去激活态下所发送的数据后,所述中心单元可以根据所述数据无线承载对应的协议栈对所述数据进行处理,使得终端设备不用从inactive态切换到连接态就可以传输数据,从而能够减少处于inactive态的终端设备在数据传输过程中的信令开销,降低数据传输的时延,提高***数据传输的效率。
在一种可能的实现方式中,所述第一信息包括以下至少一项:所述数据对应的逻辑信道标识、地址信息、所述数据对应的网络切片标识,其中,所述地址信息包括以下至少一项:所述数据无线承载标识对应的上行数据传输地址信息、所述逻辑信道标识对应的上行数据传输地址信息、或所述网络切片标识对应的上行数据传输地址信息。
在一种可能的实现方式中,所述中心单元接收分布式单元发送的第一信息,包括:所述中心单元通过初始上行无线资源控制消息传输消息接收所述分布式单元发送的所述第一信息。
根据本申请实施例中的通信方法,所述中心单元可以在inactive态下通过控制面信道接收所述分布式单元发送的所述第一信息,由于使用inactive态下的控制面信道,因此不用从inactive态切换到连接态,可以提高***数据传输的效率。
在一种可能的实现方式中,所述通信方法还包括:所述中心单元向所述分布式单元发送第二信息,所述第二信息用于指示以下至少一项:所述数据无线承载标识与所述地址信息的对应关系、或所述逻辑信道标识与所述地址信息的对应关系、或所述网络切片标识与所述地址信息的对应关系。
在一种可能的实现方式中,所述中心单元向所述分布式单元发送第二信息,包括:所述中心单元通过接口建立回复消息或上下文释放命令消息向所述分布式单元发送所述第二信息。
根据本申请实施例中的通信方法,所述中心单元在inactive态下通过控制面信道向所述分布式单元发送所述第二信息,而不用从inactive态切换到连接态就可以传输数据,可以提高***数据传输的效率。
在一种可能的实现方式中,所述中心单元接收分布式单元发送的第一信息,包括:所述中心单元接收所述分布式单元发送的所述第一信息和所述数据。
根据本申请实施例中的通信方法,所述中心单元接收所述分布式单元发送的所述第一信息和所述数据,所述中心单元根据所述第一信息可以确定所述数据对应的数据无线承载,并根据所述数据无线承载对应的协议栈对所述数据进行处理,使得终端设备不用从inactive态切换到连接态就可以传输数据,从而能够减少处于inactive态的终端设备在数据传输过程中的信令开销,降低数据传输的时延,提高***数据传输的效率。
在一种可能的实现方式中,所述通信方法还包括:所述中心单元通过上下文建立请求消息向所述分布式单元发送第三信息,所述第三信息用于指示所述分布式单元建立所述数据无线承载。
根据本申请实施例中的通信方法,所述中心单元向所述分布式单元发送所述第三信息,所述分布式单元根据所述第三信息可以只建立所述第一信息对应的数据无线承载,而不需要建立其他的数据无线承载,能够减少建立数据无线承载的信令开销和时延,从而减少数据传输过程中的信令开销和时延,提高***数据传输的效率。
在一种可能的实现方式中,所述中心单元包括CU-UP和CU-CP。
在一种可能的实现方式中,所述通信方法还包括:所述CU-UP向所述CU-CP发送所述第二信息。
根据本申请实施例中的通信方法,所述CU-CP接收所述CU-UP发送的所述第二信息,并将所述第二信息发送至所述分布式单元,相应地,所述分布式单元根据所述第二信息中的对应关系可以确定所述地址信息,并在所述地址信息对应的数据面隧道中向所述CU-CP发送数据,而不必切换到连接态后再传输数据,因此,能够减少数据传输过程中的信令开销和传输时延,提高***数据传输的效率。
在一种可能的实现方式中,所述通信方法还包括:所述CU-CP向所述CU-UP发送所述第一信息。
根据本申请实施例中的通信方法,所述CU-UP接收所述CU-CP发送的所述第一信息,所述CU-UP根据所述第一信息可以确定所述数据对应的数据无线承载,并根据所述数据无线承载对应的协议栈对所述数据进行处理,因此,终端设备不用从inactive态切换到连接态就可以传输数据,能够减少数据传输过程中的信令开销,降低数据传输的时延,提高***数据传输的效率。
第三方面,提供了一种通信装置,该通信装置包括:接收模块,用于接收终端设备在去激活态下发送的数据;处理模块,用于确定所述数据对应的第一信息,所述第一信息与数据无线承载相对应;发送模块,用于向所述中心单元发送所述第一信息。
根据本申请实施例中的通信装置,所述通信装置接收终端设备在去激活态下发送的数据,确定所述数据对应的第一信息,并向所述中心单元发送所述第一信息,所述中心单元可以根据所述第一信息确定所述数据对应的数据无线承载,并根据所述数据无线承载对应的协议栈对所述数据进行处理,因此,终端设备不用从inactive态切换到连接态就可以传输数据,从而能够减少处于inactive态的终端设备在数据传输过程中的信令开销,降低数据传输的时延,提高***数据传输的效率。
在一种可能的实现方式中,所述第一信息包括以下至少一项:所述数据对应的逻辑信道标识、地址信息、或所述数据对应的网络切片标识,其中,所述地址信息包括以下至少一项:数据无线承载标识对应的上行数据传输地址信息、所述逻辑信道标识对应的上行数据传输地址信息、或所述网络切片标识对应的上行数据传输地址信息。
在一种可能的实现方式中,所述发送模块具体用于:通过初始上行无线资源控制消息传输消息向所述中心单元发送所述第一信息。
根据本申请实施例中的通信装置,所述通信装置在inactive态下通过控制面信道向所述中心单元发送所述第一信息,由于使用inactive态下的控制面信道,因此不用从inactive态切换到连接态,可以提高***数据传输的效率。
在一种可能的实现方式中,所述接收模块还用于:接收所述中心单元发送的第二信息,所述第二信息用于指示以下至少一项:所述数据无线承载标识与所述地址信息的对应关系、所述逻辑信道标识与所述地址信息的对应关系、或所述网络切片标识与所述地址信息的对应关系。
在一种可能的实现方式中,所述处理模块具体用于:根据所述对应关系确定所述地址信息。
根据本申请实施例中的通信装置,所述通信装置根据所述对应关系确定所述地址信息,并根据所述地址信息在所述地址信息对应的数据面隧道中向所述中心单元发送数据,而不必切换到连接态后再传输数据,因此,能够减少数据传输过程中的信令开销和传输时延,提高***数据传输的效率。
在一种可能的实现方式中,所述接收模块具体用于:通过接口建立回复消息或上下文释放命令消息接收所述中心单元发送的第二信息。
根据本申请实施例中的通信装置,所述通信装置在inactive态下通过控制面信道接收所述中心单元发送的第二信息,由于使用inactive态下的控制面信道,因此不用从inactive态切换到连接态,可以提高***数据传输的效率。
在一种可能的实现方式中,所述发送模块具体用于:向所述中心单元发送所述第一信息和所述数据。
根据本申请实施例中的通信装置,所述通信装置向所述中心单元发送所述第一信息和所述数据,所述中心单元根据所述第一信息可以确定所述数据对应的数据无线承载,并根据所述数据无线承载对应的协议栈对所述数据进行处理,使得终端设备不用从inactive态切换到连接态就可以传输数据,从而能够减少处于inactive态的终端设备在数据传输过程中的信令开销,降低数据传输的时延,提高***数据传输的效率。
在一种可能的实现方式中,所述接收模块还用于:通过上下文建立请求消息接收所述中心单元发送的第三信息,所述第三信息用于指示所述分布式单元建立所述数据无线承载。
根据本申请实施例中的通信装置,所述通信装置接收所述中心单元发送的第三信息,所述通信装置根据所述第三信息可以只建立所述第一信息对应的数据无线承载,而不需要建立其他的数据无线承载,能够减少建立数据无线承载的信令开销和时延,从而减少数据传输过程中的信令开销和时延,提高***数据传输的效率。
第四方面,提供了一种通信装置,该通信装置包括:接收模块,用于接收分布式单元发送的第一信息;处理模块,用于根据所述第一信息确定所述第一信息对应的数据无线承载;所述接收模块,用于接收来自所述分布式单元的终端设备在去激活态下所发送的数据。
根据本申请实施例中的通信装置,所述通信装置接收分布式单元发送的第一信息,所述通信装置可以根据所述第一信息确定所述第一信息对应的数据无线承载,在接收到来自所述分布式单元的终端设备在去激活态下所发送的数据后,所述通信装置可以根据所述数据无线承载对应的协议栈对所述数据进行处理,使得终端设备不用从inactive态切换到连接态就可以传输数据,从而能够减少处于inactive态的终端设备在数据传输过程中的信令开销,降低数据传输的时延,提高***数据传输的效率。
在一种可能的实现方式中,所述第一信息包括以下至少一项:所述数据对应的逻辑信道标识、地址信息、所述数据对应的网络切片标识,其中,所述地址信息包括以下至少一项:所述数据无线承载标识对应的上行数据传输地址信息、所述逻辑信道标识对应的上行数据传输地址信息、或所述网络切片标识对应的上行数据传输地址信息。
在一种可能的实现方式中,所述接收模块具体用于:通过初始上行无线资源控制消息传输消息接收所述分布式单元发送的所述第一信息。
根据本申请实施例中的通信装置,所述通信装置可以在inactive态下通过控制面信道 接收所述分布式单元发送的所述第一信息,由于使用inactive态下的控制面信道,因此不用从inactive态切换到连接态,可以提高***数据传输的效率。
在一种可能的实现方式中,所述通信装置还包括发送模块,用于:向所述分布式单元发送第二信息,所述第二信息用于指示以下至少一项:所述数据无线承载标识与所述地址信息的对应关系、或所述逻辑信道标识与所述地址信息的对应关系、或所述网络切片标识与所述地址信息的对应关系。
在一种可能的实现方式中,所述发送模块具体用于:通过接口建立回复消息或上下文释放命令消息向所述分布式单元发送所述第二信息。
根据本申请实施例中的通信通信装置,所述通信装置在inactive态下通过控制面信道向所述分布式单元发送所述第二信息,而不用从inactive态切换到连接态就可以传输数据,可以提高***数据传输的效率。
在一种可能的实现方式中,所述接收模块具体用于:接收所述分布式单元发送的所述第一信息和所述数据。
根据本申请实施例中的通信装置,所述通信装置接收所述分布式单元发送的所述第一信息和所述数据,所述通信装置可以根据所述第一信息确定所述数据对应的数据无线承载,并根据所述数据无线承载对应的协议栈对所述数据进行处理,使得终端设备不用从inactive态切换到连接态就可以传输数据,从而能够减少处于inactive态的终端设备在数据传输过程中的信令开销,降低数据传输的时延,提高***数据传输的效率。
在一种可能的实现方式中,所述发送模块还用于:通过上下文建立请求消息向所述分布式单元发送第三信息,所述第三信息用于指示所述分布式单元建立所述数据无线承载。
根据本申请实施例中的通信装置,所述通信装置向所述分布式单元发送所述第三信息,所述分布式单元根据所述第三信息可以只建立所述第一信息对应的数据无线承载,而不需要建立其他的数据无线承载,能够减少建立数据无线承载的信令开销和时延,从而减少数据传输过程中的信令开销和时延,提高***数据传输的效率。
在一种可能的实现方式中,所述通信装置包括CU-UP和CU-CP。
在一种可能的实现方式中,所述发送模块属于所述CU-UP,所述发送模块还用于:所述CU-UP向所述CU-CP发送所述第二信息。
根据本申请实施例中的通信装置,所述CU-CP接收所述CU-UP发送的所述第二信息,并将所述第二信息发送至所述分布式单元,相应地,所述分布式单元根据所述第二信息中的对应关系可以确定所述地址信息,并根据所述地址信息在所述地址信息对应的数据面隧道中向所述CU-CP发送数据,而不必切换到连接态后再传输数据,因此,能够减少数据传输过程中的信令开销和传输时延,提高***数据传输的效率。
在一种可能的实现方式中,所述发送模块属于所述CU-CP,所述发送模块还用于:所述CU-CP向所述CU-UP发送所述第一信息。
根据本申请实施例中的通信装置,所述CU-UP接收所述CU-CP发送的所述第一信息,所述CU-UP根据所述第一信息可以确定所述数据对应的数据无线承载,并根据所述数据无线承载对应的协议栈对所述数据进行处理,因此,终端设备不用从inactive态切换到连接态就可以传输数据,能够减少数据传输过程中的信令开销,降低数据传输的时延,提高***数据传输的效率。
第五方面,提供了一种通信装置,该通信装置包括:接收器,用于接收终端设备在去激活态下发送的数据;处理器,用于确定所述数据对应的第一信息,所述第一信息与数据无线承载相对应;发送器,用于向所述中心单元发送所述第一信息。
根据本申请实施例中的通信装置,所述通信装置接收终端设备在去激活态下发送的数据,确定所述数据对应的第一信息,并向所述中心单元发送所述第一信息,所述中心单元可以根据所述第一信息确定所述数据对应的数据无线承载,并根据所述数据无线承载对应的协议栈对所述数据进行处理,因此,终端设备不用从inactive态切换到连接态就可以传输数据,从而能够减少处于inactive态的终端设备在数据传输过程中的信令开销,降低数据传输的时延,提高***数据传输的效率。
在一种可能的实现方式中,所述第一信息包括以下至少一项:所述数据对应的逻辑信道标识、地址信息、或所述数据对应的网络切片标识,其中,所述地址信息包括以下至少一项:数据无线承载标识对应的上行数据传输地址信息、所述逻辑信道标识对应的上行数据传输地址信息、或所述网络切片标识对应的上行数据传输地址信息。
在一种可能的实现方式中,所述发送器具体用于:通过初始上行无线资源控制消息传输消息向所述中心单元发送所述第一信息。
根据本申请实施例中的通信装置,所述通信装置在inactive态下通过控制面信道向所述中心单元发送所述第一信息,由于使用inactive态下的控制面信道,因此不用从inactive态切换到连接态,可以提高***数据传输的效率。
在一种可能的实现方式中,所述接收器还用于:接收所述中心单元发送的第二信息,所述第二信息用于指示以下至少一项:所述数据无线承载标识与所述地址信息的对应关系、所述逻辑信道标识与所述地址信息的对应关系、或所述网络切片标识与所述地址信息的对应关系。
在一种可能的实现方式中,所述处理器具体用于:根据所述对应关系确定所述地址信息。
根据本申请实施例中的通信装置,所述通信装置根据所述对应关系确定所述地址信息,并根据所述地址信息在所述地址信息对应的数据面隧道中向所述中心单元发送数据,而不必切换到连接态后再传输数据,因此,能够减少数据传输过程中的信令开销和传输时延,提高***数据传输的效率。
在一种可能的实现方式中,所述接收器具体用于:通过接口建立回复消息或上下文释放命令消息接收所述中心单元发送的第二信息。
根据本申请实施例中的通信装置,所述通信装置在inactive态下通过控制面信道接收所述中心单元发送的第二信息,由于使用inactive态下的控制面信道,因此不用从inactive态切换到连接态,可以提高***数据传输的效率。
在一种可能的实现方式中,所述发送器具体用于:向所述中心单元发送所述第一信息和所述数据。
根据本申请实施例中的通信装置,所述通信装置向所述中心单元发送所述第一信息和所述数据,所述中心单元根据所述第一信息可以确定所述数据对应的数据无线承载,并根据所述数据无线承载对应的协议栈对所述数据进行处理,使得终端设备不用从inactive态切换到连接态就可以传输数据,从而能够减少处于inactive态的终端设备在数据传输过程 中的信令开销,降低数据传输的时延,提高***数据传输的效率。
在一种可能的实现方式中,所述接收器还用于:通过上下文建立请求消息接收所述中心单元发送的第三信息,所述第三信息用于指示所述分布式单元建立所述数据无线承载。
根据本申请实施例中的通信装置,所述通信装置接收所述中心单元发送的第三信息,所述通信装置根据所述第三信息可以只建立所述第一信息对应的数据无线承载,而不需要建立其他的数据无线承载,能够减少建立数据无线承载的信令开销和时延,从而减少数据传输过程中的信令开销和时延,提高***数据传输的效率。
第五方面中的通信装置包括的各个模块可以通过软件和/或硬件方式实现。
可选地,第五方面中的通信装置开可以包括存储器,用于存储处理器执行的程序指令,甚至用于存储各种数据。
可选地,第五方面中的通信装置可以是能够集成在智能设备中的芯片,此时,该通信装置还可以包括通信接口。
第六方面,提供了一种通信装置,该通信装置包括:接收器,用于接收分布式单元发送的第一信息;处理器,用于根据所述第一信息确定所述第一信息对应的数据无线承载;所述接收器,用于接收来自所述分布式单元的终端设备在去激活态下所发送的数据。
根据本申请实施例中的通信装置,所述通信装置接收分布式单元发送的第一信息,所述通信装置可以根据所述第一信息确定所述第一信息对应的数据无线承载,在接收到来自所述分布式单元的终端设备在去激活态下所发送的数据后,所述通信装置可以根据所述数据无线承载对应的协议栈对所述数据进行处理,使得终端设备不用从inactive态切换到连接态就可以传输数据,从而能够减少处于inactive态的终端设备在数据传输过程中的信令开销,降低数据传输的时延,提高***数据传输的效率。
在一种可能的实现方式中,所述第一信息包括以下至少一项:所述数据对应的逻辑信道标识、地址信息、所述数据对应的网络切片标识,其中,所述地址信息包括以下至少一项:所述数据无线承载标识对应的上行数据传输地址信息、所述逻辑信道标识对应的上行数据传输地址信息、或所述网络切片标识对应的上行数据传输地址信息。
在一种可能的实现方式中,所述接收器具体用于:通过初始上行无线资源控制消息传输消息接收所述分布式单元发送的所述第一信息。
根据本申请实施例中的通信装置,所述通信装置可以在inactive态下通过控制面信道接收所述分布式单元发送的所述第一信息,由于使用inactive态下的控制面信道,因此不用从inactive态切换到连接态,可以提高***数据传输的效率。
在一种可能的实现方式中,所述通信装置还包括发送器,用于:向所述分布式单元发送第二信息,所述第二信息用于指示以下至少一项:所述数据无线承载标识与所述地址信息的对应关系、或所述逻辑信道标识与所述地址信息的对应关系、或所述网络切片标识与所述地址信息的对应关系。
在一种可能的实现方式中,所述发送器具体用于:通过接口建立回复消息或上下文释放命令消息向所述分布式单元发送所述第二信息。
根据本申请实施例中的通信通信装置,所述通信装置在inactive态下通过控制面信道向所述分布式单元发送所述第二信息,而不用从inactive态切换到连接态就可以传输数据,可以提高***数据传输的效率。
在一种可能的实现方式中,所述接收器具体用于:接收所述分布式单元发送的所述第一信息和所述数据。
根据本申请实施例中的通信装置,所述通信装置接收所述分布式单元发送的所述第一信息和所述数据,所述通信装置可以根据所述第一信息确定所述数据对应的数据无线承载,并根据所述数据无线承载对应的协议栈对所述数据进行处理,使得终端设备不用从inactive态切换到连接态就可以传输数据,从而能够减少处于inactive态的终端设备在数据传输过程中的信令开销,降低数据传输的时延,提高***数据传输的效率。
在一种可能的实现方式中,所述发送器还用于:通过上下文建立请求消息向所述分布式单元发送第三信息,所述第三信息用于指示所述分布式单元建立所述数据无线承载。
根据本申请实施例中的通信装置,所述通信装置向所述分布式单元发送所述第三信息,所述分布式单元根据所述第三信息可以只建立所述第一信息对应的数据无线承载,而不需要建立其他的数据无线承载,能够减少建立数据无线承载的信令开销和时延,从而减少数据传输过程中的信令开销和时延,提高***数据传输的效率。
在一种可能的实现方式中,所述通信装置包括CU-UP和CU-CP。
在一种可能的实现方式中,所述发送器属于所述CU-UP,所述发送器还用于:所述CU-UP向所述CU-CP发送所述第二信息。
根据本申请实施例中的通信装置,所述CU-CP接收所述CU-UP发送的所述第二信息,并将所述第二信息发送至所述分布式单元,相应地,所述分布式单元根据所述第二信息中的对应关系可以确定所述地址信息,并根据所述地址信息在所述地址信息对应的数据面隧道中向所述CU-CP发送数据,而不必切换到连接态后再传输数据,因此,能够减少数据传输过程中的信令开销和传输时延,提高***数据传输的效率。
在一种可能的实现方式中,所述发送器属于所述CU-CP,所述发送器还用于:所述CU-CP向所述CU-UP发送所述第一信息。
根据本申请实施例中的通信装置,所述CU-UP接收所述CU-CP发送的所述第一信息,所述CU-UP根据所述第一信息可以确定所述数据对应的数据无线承载,并根据所述数据无线承载对应的协议栈对所述数据进行处理,因此,终端设备不用从inactive态切换到连接态就可以传输数据,能够减少数据传输过程中的信令开销,降低数据传输的时延,提高***数据传输的效率。
第六方面中的通信装置包括的各个模块可以通过软件和/或硬件方式实现。
可选地,第六方面中的通信装置开可以包括存储器,用于存储处理器执行的程序指令,甚至用于存储各种数据。
可选地,第六方面中的通信装置可以是能够集成在智能设备中的芯片,此时,该通信装置还可以包括通信接口。
第七方面,本申请提供了一种计算机可读存储介质。该计算机可读存储介质中存储用于通信装置执行的程序代码。该程序代码包括用于执行第一方面或其中任意一种可能的实现方式中的通信方法的指令。
第八方面,本申请提供了一种计算机可读存储介质。该计算机可读存储介质中存储用于通信装置执行的程序代码。该程序代码包括用于执行第二方面或其中任意一种可能的实现方式中的通信方法的指令。
第九方面,本申请提供了一种包含指令的计算机程序产品。当该计算机程序产品在通信装置上运行时,使得该通信装置执行第一方面或其中任意一种可能的实现方式中的方法。
第十方面,本申请提供了一种包含指令的计算机程序产品。当该计算机程序产品在通信装置上运行时,使得该通信装置执行第二方面或其中任意一种可能的实现方式中的方法。
根据本申请实施例中的通信方法,分布式单元接收终端设备在去激活态下发送的数据,确定所述数据对应的第一信息,并向所述中心单元发送所述第一信息,所述中心单元可以根据所述第一信息确定所述数据对应的数据无线承载,并根据所述数据无线承载对应的协议栈对所述数据进行处理,因此,终端设备不用从inactive态切换到连接态就可以传输数据,从而能够减少处于inactive态的终端设备在数据传输过程中的信令开销,降低数据传输的时延,提高***数据传输的效率。
附图说明
图1为本申请实施例的技术方案的一种应用场景的示意图。
图2为本申请实施例的技术方案的另一种应用场景的示意图。
图3为本申请实施例的技术方案的再一种应用场景的示意图。
图4为本申请实施例的技术方案的再一种应用场景的示意图。
图5是本申请一个实施例的通信方法的示意性流程图。
图6是本申请另一个实施例的通信方法的示意性流程图。
图7是本申请另一个实施例的通信方法的示意性流程图。
图8是本申请另一个实施例的通信方法的示意性流程图。
图9是本申请另一个实施例的通信方法的示意性流程图。
图10是本申请另一个实施例的通信方法的示意性流程图。
图11是本申请一个实施例的通信装置的示意性结构图。
图12是本申请另一个实施例的通信装置的示意性结构图。
图13是本申请另一个实施例的通信装置的示意性结构图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例适用于各种形式的包含网络设备中部分功能分离的***,图1示出了本申请实施例的技术方案的一种应用场景的示意图,如图1所示,该网络设备中部分功能分离为第一网络节点和第二网络节点。
具体地,图2示出了本申请实施例的技术方案的另一种应用场景的示意图,图2中的通信***中,引入了CU-DU的切分,DU可以对应于图1中的第一网络节点,CU对应于图1中的第二网络节点。
应理解,第一网络节点和第二网络节点可以是一个整体网络架构中的两个物理或者逻辑分离模块,也可以是完全独立的两个逻辑网元。
还应理解,该第二网络节点可以进行控制面和用户面分离,形成第二网络节点的用户 面和第二网络节点的控制面。
CU具有无线资源控制(radio resource control,RRC)或者部分RRC控制功能,包含现有基站的所有的协议层功能或者部分协议层功能;比如只包含RRC功能或者部分RRC功能,或者包含RRC功能或者业务数据适配协议(service data adaptation protocol,SDAP)层功能,或者包含RRC/分组数据汇聚协议(packet data convergence protocol,PDCP)层功能,或者包含RRC/PDCP以及部分无线链路层控制协议(radio link control,RLC)层功能;或者包含RRC/PDCP/媒体介入控制(media access control,MAC)层,甚至部分或者全部物理层PHY功能,也不排除其它任何可能性。
DU具有除CU具有的协议层功能之外的现有基站的全部协议层功能,即RRC/SDAP/PDCP/RLC/MAC/PHY的部分协议层功能单元,比如包含部分RRC功能和PDCP/RLC/MAC/PHY等协议层功能,或者包含PDCP/RLC/MAC/PHY等协议层功能,或者包含RLC/MAC/PHY等协议层功能或者包含部分RLC/MAC/PHY功能,或者只包含全部或者部分PHY功能;需要注意的是这里提及的各个协议层的功能可能发生变化,均在本申请保护的范围内。例如,DU具有现有基站的全部协议层功能。
示例的,PDCP及以上协议层的功能设置在CU,PDCP以下的协议层,例如RLC和MAC等的功能设置在DU。当然,这种协议层的划分仅仅是一种举例,还可以在其它协议层划分,例如在RLC层划分,将RLC层及以上协议层的功能设置在CU,RLC层以下协议层的功能设置在DU。或者,在某个协议层中划分,例如将RLC层的部分功能和RLC层以上的协议层的功能设置在CU,将RLC层的剩余功能和RLC层以下的协议层的功能设置在DU。此外,也可以按其它方式划分,例如按时延划分,将处理时间需要满足时延要求的功能设置在DU,不需要满足该时延要求的功能设置在CU。此外,射频装置可以拉远,不放在DU中,也可以集成在DU中,或者部分拉远部分集成在DU中,在此不作任何限制。
又例如,在5G网络中,新型的中继节点也有新的技术进展,例如,中继节点仅部署有层2(例如,包括无线链路控制(resource link control,RLC)层、MAC层等)和层1(例如,包括PHY层)的协议栈架构,而未部署层2以上的全部协议栈功能,例如全部RRC层功能。因此,宿主基站产生的数据或信令,需要由中继节点转发给终端设备。
应理解,本申请实施例中的第一网络节点可以对应于CU-DU架构中的DU,也可以对应于上述中继节点,第二网络节点可以对应于CU-DU架构中的CU,也可以对应于上述宿主基站。
图3示出了本申请实施例的技术方案的再一种应用场景的示意图,如图3所示,一个网络设备可以包括一个CU和至少一个DU,当前第三代合作伙伴计划(3rd generation partnership project,3GPP)将不同网络设备中的CU之间的接口为Xn-C,CU与5G核心网(5G core network,5GC)之间的接口为Ng,CU和DU之间的接口命名为F1,F1接口上包含控制面(control plane,CP)和用户面(user plane,UP),控制面的传输层协议为流控制传输协议(stream control transmission protocol,SCTP),传输的应用层消息为F1AP(application protocol)消息。用户面的传输层协议为用户层面的GPRS隧道协议(GPRS tunnelling protocol-user plane,GTP-U)。
图4示出了本申请实施例的技术方案的再一种应用场景的示意图,如图4所示,将 CU进行控制面和用户面分离时,E1接口是CU-CP和CU-UP之间的接口,CU-UP和DU之间是F1-U连接,CU-CP和DU之间是F1-C连接,CU-UP和5GC之间是Ng-U连接,CU-CP和5GC之间是Ng-C连接。
应理解,本申请实施例的技术方案可以应用于各种通信***,例如:全球移动通信(global system for mobile communications,GSM)***、码分多址(code division multiple access,CDMA)***、宽带码分多址(wideband code division multiple access,WCDMA)***、通用分组无线业务(general packet radio service,GPRS)、长期演进(long term evolution,LTE)***、LTE频分双工(frequency division duplex,FDD)***、LTE时分双工(time division duplex,TDD)、通用移动通信***(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信***、未来的第五代(5th generation,5G)***、新无线(new radio,NR)、以及其它能够适用于DU和CU相分离的架构的通信***或具有类似设计原理的通信***等。
本申请实施例中的网络设备可以是用于与终端设备通信的设备,该网络设备可以是全球移动通信(global system for mobile communications,GSM)***或码分多址(code division multiple access,CDMA)中的基站(base transceiver station,BTS),也可以是宽带码分多址(wideband code division multiple access,WCDMA)***中的基站(NodeB,NB),还可以是LTE***中的演进型基站(evolved NodeB,eNB或eNodeB),还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器,或者该网络设备可以为中继站、接入点、车载设备、可穿戴设备以及未来5G网络中的网络设备或者未来演进的PLMN网络中的网络设备等,本申请实施例并不限定。
具体地,第三代移动通信技术(3rd-Generation,3G)中的UMTS***,存在无线网络控制节点和基站分离的场景;在LTE***中,存在有基带模块和射频模块分离的情景,即射频拉远的场景;数据中心(Data Center,DC)场景,需要两个不同的网络之间互联;大小站场景,大小站相互连接存在接口;LTE与Wifi聚合(LTE-Wifi aggregation,LWA)场景;在5G***中存在各种无小区(non-cell)场景(终端可以在各个小区之间自由随意切换,各个小区之间没有明确的界线),存在一个控制节点和所有小区连接,或者在小区下面连接各个传输节点;CRAN场景,存在BBU切分的场景;CRAN虚拟化场景,BBU的某一部分功能集中部署,虚拟化,另外一部分功能分开部署,两个部分之间存在物理分开部署可能性;应理解,不同***/制式共存场景都在本申请适用的范围内。
本申请实施例中的终端设备可以指用户设备(user equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。终端设备还可以是蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,未来5G网络中的终端设备或者未来演进的公用陆地移动通信网络(public land mobile network,PLMN)中的终端设备等,本申请实施例对此并不限定。
可以理解的是,在通信网络中会有不同的业务场景,在不同的业务场景下,网络设备 和/或终端设备可能具有相应的形态,本申请对此不作限定。
比如,5G中包括三种典型业务场景:
一是增强型的移动宽带。这种应用场景下,智能终端用户上网峰值速率要达到10Gbps甚至20Gbps,为虚拟现实、无处不在的视频直播和分享、随时随地的云接入等大带宽应用提供支持。
二是大连接物联网。这种场景下,5G网络需要支撑100万/平方公里规模的人和物的连接。
三是低时延、超可靠通信。这种场景要求5G网络的时延达到1毫秒,为智能制造、远程机械控制、辅助驾驶和自动驾驶等低时延业务提供强有力的支持。
在本申请实施例中,终端设备或网络设备包括硬件层、运行在硬件层之上的操作***层,以及运行在操作***层上的应用层。该硬件层包括中央处理器(central processing unit,CPU)、内存管理单元(memory management unit,MMU)和内存(也称为主存)等硬件。该操作***可以是任意一种或多种通过进程(process)实现业务处理的计算机操作***,例如,Linux操作***、Unix操作***、Android操作***、iOS操作***或windows操作***等。该应用层包含浏览器、通讯录、文字处理软件、即时通信软件等应用。并且,本申请实施例并未对本申请实施例提供的方法的执行主体的具体结构特别限定,只要能够通过运行记录有本申请实施例的提供的方法的代码的程序,以根据本申请实施例提供的方法进行通信即可,例如,本申请实施例提供的方法的执行主体可以是终端设备或网络设备,或者,是终端设备或网络设备中能够调用程序并执行程序的功能模块。
另外,本申请的各个方面或特征可以实现成方法、装置或使用标准编程和/或工程技术的制品。本申请中使用的术语“制品”涵盖可从任何计算机可读器件、载体或介质访问的计算机程序。例如,计算机可读介质可以包括,但不限于:磁存储器件(例如,硬盘、软盘或磁带等),光盘(例如,压缩盘(compact disc,CD)、数字通用盘(digital versatile disc,DVD)等),智能卡和闪存器件(例如,可擦写可编程只读存储器(erasable programmable read-only memory,EPROM)、卡、棒或钥匙驱动器等)。另外,本文描述的各种存储介质可代表用于存储信息的一个或多个设备和/或其它机器可读介质。术语“机器可读介质”可包括但不限于,无线信道和能够存储、包含和/或承载指令和/或数据的各种其它介质。
在5G中,为终端设备引入了一个新的RRC状态,称之为去激活态(inactive)。处于inactive态的终端设备中止了终端设备与网络设备之间的连接,此时,终端设备的接入层(AS,access stratum)上下文同时保存在终端设备侧和网络侧。在终端设备需要发送数据或者网络侧需要终端设备接收数据时,终端设备向网络设备请求恢复连接。当终端设备从inactive态转换至连接态时,可以不重新激活网络设备与核心网控制面之间的链路。
在CU-DU架构下,终端设备从连接态转换至inactive态的流程可以包括以下步骤:
(1)CU向DU发送UE上下文释放命令(UE context release command)消息,该消息用于DU释放终端设备的上下文。特别地,若网络侧决定将连接态的UE转换为Inactive状态,则DU不保留终端设备的上下文,所有的上下文都是保存在CU;
(2)DU向终端设备发送RRC连接释放(RRC connection release)消息,相应地,终端设备收到该RRC连接释放消息后,若该RRC连接释放消息中包括挂起(suspend)配置信息,则进入Inactive态;若该RRC连接释放消息中不包括suspend配置信息,则进入 空闲态(idle);
(3)DU向CU发送UE上下文释放完成(UE context release complete)消息。
当处于Inactive态的终端设备需要发送数据或者网络侧需要终端设备接收数据时,需要从Inactive态切换至连接态。以下行传输为例,在CU-DU架构下,终端设备从inactive态切换至连接态的流程可以包括以下步骤:
(1)若核心网有下行数据到达,则CU向DU发送寻呼(paging)消息;
(2)DU收到寻呼消息后,通过空口(air interface)向终端设备发送寻呼消息;
(3)终端设备向DU发送RRC连接恢复请求(RRC connection resume request)消息或RRC恢复请求(RRC resume request)消息;
(4)DU收到终端设备发送的RRC连接恢复请求消息或RRC恢复请求消息以后,将该请求消息通过初始上行RRC消息传输(initial UL RRC message transfer)消息发送给CU;
(5)若确定将终端设备切换为连接态(例如有数据需要发送),则CU向DU发送UE上下文建立请求(UE context setup request)消息,该请求消息包括需要建立的承载等信息;
(6)DU向CU发送UE上下文建立回复(UE context setup response)消息,告知CU其已成功建立承载;
(7)CU向DU发送下行RRC消息传输(DL RRC message transfer)消息,该消息包括步骤8中传输的RRC消息;
(8)DU向终端设备发送RRC连接恢复请求消息或RRC连接请求消息消息,用于将终端设备置为连接态;或RRC拒绝(RRC reject)消息,表示终端设备接入未成功,终端设备收到该消息后仍然处于Inactive态);或RRC建立(RRC setup)消息,此时CU没有终端设备的上下文,但终端设备收到该消息后仍然可以切换为连接态);或RRC释放(RRC release)消息,此时若该消息包括suspend配置消息,则终端设备处于inactive态,否则终端设备切换至idle态;
(9)终端设备向DU发送RRC恢复/建立完成(RRC resume/setup complete)消息,用于回复步骤8中的消息;
(10)DU向CU发送上行RRC消息传输(UL RRC message transfer)消息。此时,承载建立完成,终端设备进入连接态,可以与网络设备进行数据传输。
在上述从inactive态切换至连接态的流程中,终端设备需要经过以上10个步骤才能够切换至连接态,也就是说,终端设备在步骤(10)之后才能进行数据传输。上述的过程也可以应用在inactive在新的DU发起RRC恢复流程的场景。
由此可见,处于inactive态的终端设备通过上述流程进行数据传输时,会产生较大的信令开销,而由于在步骤(10)之后才能进行数据传输,也会对数据传输的时延造成影响。
针对上述问题,本申请提出一种通信方法,能够减少处于inactive态的终端设备在数据传输过程中的信令开销,降低数据传输的时延,提高***数据传输的效率。
图5示出了本申请实施例的通信方法500的示意性流程图,如图5所示,该通信方法500包括:
S510,终端设备在去激活态下向DU发送数据。
可选地,所述数据可以对应到某一个数据无线承载(data radio bearer,DRB)。举例 来说,去激活状态的终端可以保留3个DRB的配置信息DRB#1、DRB#2和DRB#3,若用户发送的数据是DRB#1的数据,则可以采用DRB#1的配置发送数据。
可选地,所述终端设备可以在inactive态下通过RRC连接恢复请求消息或RRC恢复请求消息向所述DU发送所述数据。
S520,所述DU确定所述数据对应的第一信息,所述第一信息与DRB相对应。
可选地,所述第一信息可以包括以下至少一项:所述数据对应的逻辑信道标识(logical channel identify,LCID)、地址信息、或所述数据对应的网络切片标识,其中,所述地址信息包括以下至少一项:所述数据无线承载标识对应的上行数据传输地址信息、所述逻辑信道标识对应的上行数据传输地址信息、或所述网络切片标识对应的上行数据传输地址信息。
可选地,所述第一信息可以为LCID或网络切片标识。所述DU确定所述数据对应的第一信息,是指所述DU通过MAC层可以确定出所述数据对应的LCID或网络切片标识。所述第一信息与DRB相对应,可以指CU根据所述第一信息确定对应的DRB,例如可以确定对应的DRB标识。
以所述第一信息为逻辑信道标识为例,例如,若所述数据为一个数据包,则CU根据所述数据包对应的逻辑信道标识可以确定所述终端设备的一个DRB标识;或者,若所述数据包括多个数据包,所述多个数据包分别对应多个不同的逻辑信道标识,则所述CU根据所述多个不同的逻辑信道标识中的一个逻辑信道标识,可以确定所述终端设备的一个DRB标识;或者,若所述多个数据包对应一个逻辑信道标识,则所述CU根据所述逻辑信道标识可以确定所述终端设备的一个DRB标识。
可选的,所述DU可以在MAC层中确定所述数据对应的第一信息,例如,所述第一信息可以为逻辑信道标识。
S530,所述DU向所述CU发送所述第一信息。
在本申请实施例中,所述DU可以通过第一消息向所述CU发送所述第一信息。其中,所述第一消息可以为初始上行RRC消息传输(initial UL RRC message transfer),或者所述第一消息也可以为其他消息,本申请对此并不限定。
可选地,所述第一消息还可以包括所述数据。其中,所述DU可以通过第一消息向所述CU同时发送所述第一信息和所述数据,例如,所述DU可以通过同一个初始上行RRC消息向所述CU同时发送所述第一信息和所述数据;所述DU也可以在一个消息中向所述CU仅发送所述第一信息,而在另一个消息中向所述CU发送所述数据,例如,所述DU可以通过一个初始上行RRC消息向所述CU同时发送所述第一信息,在另一个初始上行RRC消息或其他消息向所述CU发送所述数据。
示例的,如果第一信息和所述数据同时在初始上行RRC消息传输消息发送,一种可能的形式为:
>数据列表(Data List)
>>所述第一信息(LCID)
>>所述数据(Data)
其中,数据列表表示DU可以在第一消息中发送一个或者多个数据包,所述数据包可以是以容器的形式携带在第一消息中。可以理解的是,数据列表只是一个名称,还可以是 其他的名称。LCID可以是逻辑信道标识,表示数据包对应的逻辑信道标识,CU可以通过LCID将所述数据包对应到相应的DRB,然后采用该承载对应的PDCP层协议栈以及SDAP层协议栈对该数据包进行处理。Data可以是S510中终端向DU发送的数据,这里的数据可以是一个数据包,也可以是多个数据包。可以理解的是,每一个LCID可以对应多个数据包,也可以对应一个数据包。
S540,所述CU根据所述第一信息确定所述数据对应的DRB。
可选地,所述CU可以采用所述承载对应的PDCP层协议栈和SDAP层协议栈对所述数据进行处理。
例如,所述CU可以通过逻辑信道标识将所述数据包对应到相应的DRB,然后采用该DRB对应的PDCP层协议栈和SDAP层协议栈对该数据包进行处理。
S550,所述CU向所述DU发送RRC消息。
其中,所述RRC消息可以是RRC连接释放(RRC connection release)消息或者是RRC释放(RRC release)消息。
或者,所述RRC消息可以是RRC连接恢复(RRC connection resume)消息或者是RRC恢复(RRC resume)消息。
S560,所述DU向所述终端设备发送所述RRC消息。
其中,所述RRC消息可以是RRC连接释放消息或者是RRC释放消息。可选地,通过该消息,网络侧可以将终端设备置为去激活状态或者空闲态。
或者,所述RRC消息可以是RRC连接恢复消息或者是RRC恢复消息。可选地,通过该消息,网络侧可以将终端设备置为连接态。
根据本申请实施例中的通信方法,分布式单元接收终端设备在去激活态下发送的数据,确定所述数据对应的第一信息,并向所述中心单元发送所述第一信息,所述中心单元可以根据所述第一信息确定所述数据对应的数据无线承载,并根据所述数据无线承载对应的协议栈对所述数据进行处理,因此,终端设备不用从inactive态切换到连接态就可以传输数据,从而能够减少处于inactive态的终端设备在数据传输过程中的信令开销,降低数据传输的时延,提高***数据传输的效率。
图6示出了本申请另一个实施例的通信方法600的示意性流程图。如图6所示,该通信方法600包括:
S610,CU向DU发送第二信息。
可选地,所述CU可以通过UE上下文释放命令(UE context release command)消息向所述DU发送所述第二信息。
在本申请中,所述第二信息可以用于指示逻辑信道标识与地址信息的对应关系、DRB标识与地址信息的对应关系、或网络切片标识与地址信息的对应关系。可选地,所述第二信息还可以用于指示其他标识与所述地址信息的对应关系。或者,所述第二信息可以用于指示地址信息,本申请对此并不限定。
可选地,所述地址信息可以指用于传输所述逻辑信道、所述DRB或所述网络切片对应的上行数据传输地址信息。其中,不同的逻辑信道、DRB或网络切片可以对应不同的地址。
可选地,所述地址信息可以包括传输层地址(transport layer address)。或者,所述地 址信息可以包括GPRS隧道协议(GPRS tunnelling protocol,GTP)隧道端口标识(tunnel endpoint identifier,TEID)。
以所述第二信息指示所述网络切片标识与所述地址信息的对应关系为例,例如,所述数据可以为一个数据包,则这个数据包对应的网络切片标识可以对应一个地址信息。或者,所述数据可以包括多个数据包,所述多个数据包分别对应多个不同的网络切片标识,则所述多个不同的网络切片标识可以分别对应不同的地址信息。或者,所述多个数据包可以对应一个网络切片标识,则所网络切片标识可以对应一个地址信息。
可选地,所述DU可以通过所述第二消息建立上行数据面隧道。
S620,终端设备在去激活态下向所述DU发送数据。
可选地,所述终端设备可以在inactive态下通过RRC连接恢复请求消息或RRC恢复请求消息向所述DU发送所述数据。
S630,所述DU确定所述数据对应的所述地址信息。具体地,所述DU可以根据所述第二信息确定所述数据对应的所述地址信息。
例如,所述DU可以确定所述数据对应的逻辑信道标识、DRB标识或网络切片标识,根据所述逻辑信道标识、所述DRB标识或所述网络切片标识及所述第二信息中的对应关系,确定所述逻辑信道、所述DRB或所述网络切片对应的上行数据传输地址信息。其中,所述上行数据传输地址信息可以为所述数据对应的上行数据面隧道的地址信息。
可选地,当所述第二信息用于指示地址信息时,所述DU可以在所述地址信息对应的数据面隧道中向CU发送数据。
S640,所述DU在数据面隧道中发送所述数据。
可选地,所述DU可以发送所述数据和所述地址信息。
在本申请实施一种可能的实现方式中,所述DU可以在所述数据包中加上所述数据包对应的上行数据面隧道的地址信息。相应的,所述CU可以接收所述数据,并且根据数据包中的地址信息确定所述数据包对应的逻辑信道标识、DRB标识或网络切片标识,并且利用所述逻辑信道标识、所述DRB标识或所述网络切片标识对应的协议栈对数据包进行处理。
根据本申请实施例中的通信方法,所述中心单元通过UE上下文释放命令消息向所述分布式单元发送所述第二信息,所述分布式单元根据所述第二信息中的对应关系确定所述地址信息,并在所述地址信息对应的数据面隧道中向所述中心单元发送数据,而不必切换到连接态后再传输数据,因此,能够减少数据传输过程中的信令开销和传输时延,提高***数据传输的效率。
图7示出了本申请另一个实施例的通信方法700的示意性流程图。如图7所示,该通信方法700包括:
S710,DU向CU发送接口建立请求(F1 setup request)消息。
S720,所述CU向所述DU发送第二信息。
可选地,所述CU通过接口建立回复(F1 setup response)消息向所述DU发送所述第二信息。
其中,所述第二信息可以用于指示逻辑信道标识与地址信息的对应关系、DRB标识与地址信息的对应关系、或所述网络切片标识与地址信息的对应关系。可选地,所述第二 信息还可以用于指示其他标识与所述地址信息的对应关系。或者,所述第二信息可以用于指示地址信息,本申请对此并不限定。
可选地,所述CU可以通过所述第二消息建立隧道。
具体地,所述DU可以通过所述第二消息建立上行数据面隧道。
S730,终端设备在去激活态下向所述DU发送数据。
可选地,所述终端设备可以在inactive态下通过RRC连接恢复请求消息或RRC恢复请求消息向所述DU发送所述数据。
S740,所述DU确定所述数据对应的所述地址信息。具体地,所述DU可以根据所述第二信息确定所述数据对应的所述地址信息。
可选地,当所述第二信息用于指示地址信息时,所述DU可以在所述地址信息对应的数据面隧道中向CU发送数据。
S750,所述DU在所述数据面隧道中发送所述数据。
可选地,所述DU可以发送所述数据和所述地址信息。
S730、S740、S750的实现可以参照图6中的S620、S630、S640,这里不再赘述。
根据本申请实施例中的通信方法,所述中心单元通过接口建立回复消息向所述分布式单元发送所述第二信息,所述分布式单元根据所述第二信息中的对应关系确定所述地址信息,并根据所述地址信息在所述地址信息对应的数据面隧道中向所述中心单元发送数据,而不必切换到连接态后再传输数据,因此,能够减少数据传输过程中的信令开销和传输时延,提高***数据传输的效率。
图8示出了本申请另一个实施例的通信方法800的示意性流程图,如图8所示,该通信方法800包括:
S810,终端设备在去激活态下向DU发送数据。
可选地,所述终端设备可以在inactive态下通过RRC连接恢复请求(RRC connection resume request)消息向所述DU发送数据,或者,所述终端设备可以将所述数据与RRC连接恢复请求消息一起发送给所述DU。
S820,所述DU确定所述数据对应的第一信息,所述第一信息与DRB相对应。
可选地,所述第一信息可以包括以下至少一项:所述数据对应的逻辑信道标识、或所述数据对应的网络切片标识。
所述数据可以包括一个数据包,所述数据包与所述逻辑信道标识、或所述网络切片标识对应。
可选地,所述数据包括多个数据包,所述多个数据包可以分别对应不同的所述逻辑信道标识、或不同的所述网络切片标识。或者,所述多个数据包可以对应一个所述逻辑信道标识、或所述网络切片标识。
可选地,所述DU可以在MAC层中确定所述数据对应的第一信息。例如,所述第一信息可以为逻辑信道标识,此时,所述DU可以将所述数据与逻辑信道标识对应。
例如,若所述数据为一个数据包,则这个数据包对应的逻辑信道标识可以对应一个DRB标识;或者,若所述数据包括多个数据包,所述多个数据包分别对应多个不同的逻辑信道标识,则所述多个不同的逻辑信道标识可以分别对应不同的DRB标识;或者,若所述多个数据包对应一个逻辑信道标识,则所述逻辑信道标识可以对应一个DRB标识。
S830,所述DU向所述CU发送所述第一信息。
所述DU可以通过初始上行RRC消息传输(initial UL RRC message transfer)消息向所述CU发送所述第一信息。
可选地,所述CU可以根据所述第一信息确定所述数据对应的逻辑信道标识,从而根据所述逻辑信道标识对应的DRB标识确定需要建立的承载。
示例的,需要建立的DRB对应的LCID列表如下,一种可能的形式为:
>LCID列表
>>LCID
S840,所述CU向所述DU发送第三信息,所述第三信息用于指示所述DU建立所述DRB。
可选地,所述CU还可以通过UE上下文建立请求(UE context setup request)消息向所述DU发送第三信息,所述第三信息用于指示所述DU建立所述第一信息关联的所述承载。
可选地,所述承载上下文修改请求消息还可以携带指示信息,所述指示信息用于指示所述DU不需要激活上下文使所述终端设备进入连接态,这样可以避免DU对所述终端设备的协议栈的恢复过程,从而可以节省***资源。
或者,所述指示信息可以指示所述终端设备传输小数据包。此时,由于所述终端设备传输小数据包,则所述DU不需要激活上下文使所述终端设备进入连接态。
可选地,CU仅需要要求DU建立在步骤S830中第一信息对应的所述数据无线承载。
例如,所述CU可以为所述去激活状态的终端设备保留承载DRB#1,DRB#2,DRB#3,DRB#4的配置,在步骤S830中,所述DU向所述CU发送的第一信息仅对应承载DRB#1和DRB#2,也即当前终端仅需要发送DRB#1和DRB#2对应的数据,那么所述CU在该步骤中可以仅请求DU建立DRB#1和DRB#2对应的承载,而不需要同时建立DRB#3和DRB#4对应的承载。这样可以减少承载建立的数量,降低了承载建立的时延,同时避免了建立无效的承载,从而节省了资源开销。
S850,所述DU向所述CU发送UE上下文建立回复(UE context setup response)消息,所述UE上下文建立回复消息用于通知所述CU其已成功建立承载。
应理解,所述DU可以仅建立所述数据对应的所述承载。
例如,所述数据可以包括一个数据包,所述数据包与所述逻辑信道标识、或所述网络切片标识对应,此时,所述DU可以仅需要建立所述逻辑信道标识对应的承载、或所述DU可以仅需要建立所述网络切片标识对应的承载。
又例如,所述数据可以包括多个数据包,所述多个数据包可以分别对应不同的所述逻辑信道标识、或不同的所述网络切片标识,此时,所述DU可以仅建立与所述多个数据包对应的所述逻辑信道标识对应的承载、或所述DU可以仅建立所述网络切片标识对应的承载。
再例如,所述数据可以包括多个数据包,所述多个数据包可以对应一个所述逻辑信道标识、或所述网络切片标识,此时,所述DU可以仅建立所述逻辑信道标识对应的承载、或所述DU可以仅建立所述网络切片标识对应的承载。
举例来说,在步骤S830中的第一信息可以包括LCID#1、LCID#2和LCID#3,其中, LCID#1对应承载DRB#1,LCID#2对应承载DRB#2,LCID#3对应承载DRB#3,由于DU资源受限等原因,所述DU可能只能成功建立DRB#1和DRB#2。当然,所述DU也可能建立全部的承载DRB#1,DRB#2和DRB#3。
S860,所述DU向所述CU发送上行数据。
可以理解的是,所述DU只能发送与成功建立的承载对应的数据。举例来说,终端设备向DU发送了LCID#1,LCID#2和LCID#3的数据,其中LCID#1对应DRB#1,LCID#2对应DRB#2,LCID#3对应DRB#3,如果DU只能成功建立DRB#1和DRB#2,那么在此步骤中,所述DU只能向所述CU发送DRB#1对应的数据和DRB#2对应的数据。
S870,所述CU向所述DU发送下行RRC消息传输(DL RRC message transfer)消息。
其中,所述下行RRC消息传输消息中可以包括RRC释放(RRC release)消息。
可选地,所述DU可以向终端设备发送RRC释放消息。
可选地,所述RRC释放消息可以包括suspend配置消息,此时,当所述终端设备收到所述RRC释放消息后处于inactive态;否则,所述终端设备切换至idle态。
根据本申请实施例中的通信方法,所述分布式单元接收所述中心单元发送的第三信息,所述分布式单元根据所述第三信息可以只建立所述第一信息对应的数据无线承载,而不需要建立其他的数据无线承载,能够减少建立数据无线承载的信令开销和时延,从而减少数据传输过程中的信令开销和时延,提高***数据传输的效率。
图9示出了本申请另一个实施例的通信方法900的示意性流程图,如图9所示,该通信方法900包括:
S910,CU-CP向CU-UP发送承载上下文修改请求(bearer context modification request)消息。
S920,所述CU-UP向所述CU-CP发送第二信息。
其中,所述第二信息可以用于指示所述数据无线承载标识与所述地址信息的对应关系、或所述逻辑信道标识与所述地址信息的对应关系、或所述网络切片标识与所述地址信息的对应关系。
可选地,所述CU-UP通过承载上下文修改回复(bearer context modification response)消息向所述CU-CP发送所述第二信息。
S930,所述CU-CP向所述DU发送所述第二信息。
其中,所述第二信息可以用于指示以下至少一项:所述数据无线承载标识与所述地址信息的对应关系、所述逻辑信道标识与所述地址信息的对应关系、或所述网络切片标识与所述地址信息的对应关系。
可选地,所述CU-CP可以在UE上下文释放命令(UE context release command)消息中建立公用的数据面隧道。
例如,所述CU-CP通过UE上下文释放命令消息向所述DU发送所述第二信息。
S940,所述DU向终端设备发送RRC连接释放消息。
可选地,所述RRC释放消息可以包括suspend配置消息,此时,当所述终端设备收到所述RRC连接释放消息后处于inactive态;否则,所述终端设备切换至idle态。
S950,终端设备在去激活态下向所述DU发送数据。
可选地,所述终端设备可以在inactive态下通过RRC连接恢复请求(RRC connection  resume request)消息向所述DU发送所述数据。
S960,所述DU确定所述数据对应的第一信息,所述第一信息与DRB相对应。
可选地,所述DU可以根据所述第二信息确定所述第一信息,所述第一信息关联所述承载。
例如,所述DU可以根据所述第二信息中的对应关系确定所述地址信息。其中,所述对应关系包括所述数据无线承载标识与所述地址信息的对应关系、所述逻辑信道标识与所述地址信息的对应关系、或所述网络切片标识与所述地址信息的对应关系中的至少一项。
S970,所述DU在数据面隧道中向所述CU-CP发送所述数据。
其中,所述数据面隧道可以是S930中建立的数据面隧道。
可选地,所述DU可以向所述CU-CP发送所述第一信息和所述数据。
可选地,所述DU可以向所述CU-CP发送S960中确定的所述地址信息和所述数据。
根据本申请实施例中的通信方法,所述CU-CP向所述DU发送所述第二信息,所述分布式单元根据所述第二信息中的对应关系确定所述地址信息,并根据所述地址信息在所述地址信息对应的数据面隧道中向所述中心单元发送数据,而不必切换到连接态后再传输数据,因此,能够减少数据传输过程中的信令开销和传输时延,提高***数据传输的效率。
图10示出了本申请一个实施例的通信方法1000的示意性流程图,如图10所示,该通信方法1000包括:
S1010,终端设备在去激活态下向DU发送数据。
可选地,所述终端设备可以在inactive态下通过RRC连接恢复请求(RRC connection resume request)消息向所述DU发送数据。
S1020,所述DU确定所述数据对应的第一信息,所述第一信息与DRB相对应。
可选地,所述第一信息可以包括以下至少一项:所述数据对应的逻辑信道标识、地址信息、或所述数据对应的网络切片标识,其中,所述地址信息包括以下至少一项:所述数据无线承载标识对应的上行数据传输地址信息、所述逻辑信道标识对应的上行数据传输地址信息、或所述网络切片标识对应的上行数据传输地址信息。
以所述第一信息为逻辑信道标识为例,例如,若所述数据为一个数据包,则CU根据所述数据包对应的逻辑信道标识可以确定所述终端设备的一个DRB标识;或者,若所述数据包括多个数据包,所述多个数据包分别对应多个不同的逻辑信道标识,则所述CU根据所述多个不同的逻辑信道标识中的一个逻辑信道标识,可以确定所述终端设备的一个DRB标识;或者,若所述多个数据包对应一个逻辑信道标识,则所述CU根据所述逻辑信道标识可以确定所述终端设备的一个DRB标识。
可选的,所述DU可以在MAC层中确定所述数据对应的第一信息,例如,所述第一信息可以为逻辑信道标识。
S1030,所述DU可以向所述CU-CP发送第一信息。
在本申请实施例中,所述DU可以通过初始上行RRC消息传输(initial UL RRC message transfer)消息向所述CU-CP发送所述第一信息。
可选地,所述DU可以向所述CU-CP发送所述第一信息和所述数据。
可选地,所述DU可以在向所述CU-CP发送所述第一信息之前,向所述CU-CP发送所述数据。或者,所述DU可以在向所述CU-CP发送所述第一信息之后,向所述CU-CP 发送所述数据。
S1040,所述CU-CP根据所述第一信息确定所述数据对应的承载。
S1050,所述CU-CP向所述CU-UP发送第一信息,所述第一信息所述DRB相对应。
在本申请实施例一种可能的实现方式中,所述第一信息可以是所述数据对应的逻辑信道标识、DRB标识或网络切片标识。
例如,所述数据可以包括一个数据包,所述数据包对应一个承载,此时,所述第一信息可以是所述数据包对应的逻辑信道标识、DRB标识或网络切片标识。
又例如,所述数据可以包括多个数据包,所述多个数据包可以分别对应不同的承载,此时,所述第一信息可以包括所述多个数据包各自对应的逻辑信道标识、DRB标识或网络切片标识。
再例如,所述数据可以包括多个数据包,所述多个数据包可以对应一个承载,此时,所述第一信息可以是多个数据包共同对应的逻辑信道标识、DRB标识或网络切片标识。
可选地,所述CU-CP可以通过承载上下文修改请求(bearer context modification request)消息发送所述第一信息。相应地,CU-UP通过承载上下文修改请求消息接收所述第一信息。
可选地,所述承载上下文修改请求消息还可以携带指示信息,所述指示信息用于指示所所述CU-CP不需要激活上下文使所述终端设备进入连接态,这样可以避免CU-UP对所述终端设备的协议栈的恢复过程,可以节省***资源。
或者,所述指示信息可以指示所述终端设备传输小数据包。此时,由于所述终端设备传输小数据包,则所述DU不需要激活上下文使所述终端设备进入连接态。
可选地,所述CU-UP可以根据所述第一信息确定所述数据对应的承载,根据所述承载对应的PDCP和SDAP对所述数据进行处理。
可选地,所述CU-CP可以向所述CU-UP发送所述数据和所述第一信息。
举例来说,数据和第一信息对应的
>数据列表(Data List)
>>所述第一信息(逻辑信道标识、DRB标识或网络切片标识)
>>所述数据(Data)
可选地,所述第一信息可以包括所述数据及对应的逻辑信道标识、DRB标识或网络切片标识,所述CU-UP可以通过所述逻辑信道标识、所述DRB标识或所述网络切片标识将所述数据包对应到相应的DRB,然后采用该DRB对应的PDCP层协议栈以及SDAP层协议栈对该数据包进行处理。
在本申请实施例另一种可能的实现方式中,所述第一信息可以是CU-UP针对所述第一信息对应的承载分配的地址信息,例如数据标识。在该实现方式中,所述CU-CP可以在数据的包头添加所述地址信息,CU-UP根据所述地址信息判断所述数据对应的承载信息,然后采用该DRB对应的PDCP层协议栈以及SDAP层协议栈对该数据包进行处理。
S1060,所述CU-UP向所述CU-CP发送承载上下文修改回复(bearer context modification response)消息。
S1070,所述CU-CP向所述DU发送RRC消息。
其中,所述RRC消息可以是RRC连接释放(RRC connection release)消息或者是RRC 释放(RRC release)消息。
或者,所述RRC消息可以是RRC连接恢复(RRC connection resume)消息或者是RRC恢复(RRC resume)消息。
S1080,所述DU向终端设备发送所述RRC消息。
其中,所述RRC消息可以是RRC连接释放消息或者是RRC释放消息。可选地,通过该消息,网络侧可以将终端设备置为去激活状态或者空闲态。
或者,所述RRC消息可以是RRC连接恢复消息或者是RRC恢复消息。可选地,通过该消息,网络侧可以将终端设备置为连接态。
根据本申请实施例中的通信方法,所述CU-CP向所述CU-UP发送第一信息,所述CU-UP可以根据所述第一信息确定所述数据对应的数据无线承载,并根据所述数据无线承载对应的协议栈对所述数据进行处理,因此,终端设备不用从inactive态切换到连接态就可以传输数据,从而能够减少处于inactive态的终端设备在数据传输过程中的信令开销,降低数据传输的时延,提高***数据传输的效率。
图11是本申请实施例的通信装置1100的示意性框图。应理解,通信装置1100仅是一种示例。本申请实施例的通信装置还可包括其他模块或单元,或者包括与图11中的各个模块的功能相似的模块,或者并非要包括图11中的所有模块。
在本申请的一个实施例中,接收模块1110,用于接收终端设备在去激活态下发送的数据,所述数据与数据无线承载相对应;
处理模块1120,用于确定所述数据对应的第一信息,所述第一信息关联所述承载;
发送模块1130,用于向所述中心单元发送所述第一信息。
可选地,所述第一信息包括以下至少一项:所述数据对应的逻辑信道标识、地址信息、或所述数据对应的网络切片标识,其中,所述地址信息包括以下至少一项:数据无线承载标识对应的上行数据传输地址信息、所述逻辑信道标识对应的上行数据传输地址信息、或所述网络切片标识对应的上行数据传输地址信息。
可选地,所述发送模块1130具体用于:通过初始上行无线资源控制消息传输消息向所述中心单元发送所述第一信息。
可选地,所述接收模块1110还用于:接收所述中心单元发送的第二信息,所述第二信息用于指示以下至少一项:所述数据无线承载标识与所述地址信息的对应关系、所述逻辑信道标识与所述地址信息的对应关系、或所述网络切片标识与所述地址信息的对应关系。
可选地,所述处理模块1120具体用于:根据所述对应关系确定所述地址信息。
可选地,所述接收模块1110具体用于:通过接口建立回复消息或上下文释放命令消息接收所述中心单元发送的第二信息。
可选地,所述发送模块1130具体用于:向所述中心单元发送所述第一信息和所述数据。
可选地,所述接收模块1110还用于:通过上下文建立请求消息接收所述中心单元发送的第三信息,所述第三信息用于指示所述分布式单元建立所述数据无线承载。
图12是本申请实施例的通信装置1200的示意性框图。应理解,通信装置1200仅是一种示例。本申请实施例的通信装置还可包括其他模块或单元,或者包括与图12中的各 个模块的功能相似的模块,或者并非要包括图12中的所有模块。
在本申请的一个实施例中,接收模块1210,用于接收分布式单元发送的第一信息;
处理模块1220,用于根据所述第一信息确定所述第一信息对应的数据无线承载;
所述接收模块1210,用于接收来自所述分布式单元的终端设备在去激活态下所发送的数据。
可选地,所述第一信息包括以下至少一项:所述数据对应的逻辑信道标识、地址信息、所述数据对应的网络切片标识,其中,所述地址信息包括以下至少一项:数据无线承载标识对应的上行数据传输地址信息、所述逻辑信道标识对应的上行数据传输地址信息、或所述网络切片标识对应的上行数据传输地址信息。
可选地,所述接收模块1210具体用于:通过初始上行无线资源控制消息传输消息接收所述分布式单元发送的所述第一信息。
可选地,所述通信装置还包括发送模块1230,用于:向所述分布式单元发送第二信息,所述第二信息用于指示以下至少一项:所述数据无线承载标识与所述地址信息的对应关系、或所述逻辑信道标识与所述地址信息的对应关系、或所述网络切片标识与所述地址信息的对应关系。
可选地,所述发送模块1230具体用于:通过接口建立回复消息或上下文释放命令消息向所述分布式单元发送所述第二信息。
可选地,所述接收模块1210具体用于:接收所述分布式单元发送的所述第一信息和所述数据。
可选地,所述发送模块1230还用于:通过上下文建立请求消息向所述分布式单元发送第三信息,所述第三信息用于指示所述分布式单元建立所述数据无线承载。
可选地,所述通信装置1200包括CU-UP和CU-CP。
可选地,所述发送模块1230属于所述CU-UP,所述发送模块1230还用于:所述CU-UP向所述CU-CP发送所述第二信息。
可选地,所述发送模块1230属于所述CU-CP,所述发送模块1230还用于:所述CU-CP向所述CU-UP发送所述第一信息。
图13是本申请一个实施例的通信装置1300的示意性结构图。应理解,图13示出的通信装置1300仅是示例,本申请实施例的通信装置1300还可包括其他模块或单元,或者包括与图13中的各个模块的功能相似的模块。
通信装置1300可以包括一个或多个处理器1310、一个或多个存储器1320、接收器1330和发送器1340。接收器1330和发送器1340可以集成在一起,称为收发器。存储器1320用于存储处理器1310执行的程序代码。其中,处理器1310中可以集成有存储器1320,或者处理器1310耦合到一个或多个存储器1320,用于调取存储器1320中的指令。
在一个实施例中,处理器1310可以用于实现图11中的处理模块1120能够实现的操作或步骤,接收器1330可以用于实现图11中的接收模块1110能够实现的操作或步骤,发送器1340可以用于实现图11中的发送模块1130能够实现的操作或步骤。
在另一个实施例中,处理器1310可以用于实现图12中的处理模块1220能够实现的操作或步骤,接收器1330可以用于实现图12中的接收模块1210能够实现的操作或步骤,发送器1340可以用于实现图12中的发送模块1230能够实现的操作或步骤。
应理解,本申请实施例中的处理器可以为中央处理单元(central processing unit,CPU),该处理器还可以是其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
还应理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的随机存取存储器(random access memory,RAM)可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。
上述实施例,可以全部或部分地通过软件、硬件、固件或其他任意组合来实现。当使用软件实现时,上述实施例可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令或计算机程序。在计算机上加载或执行所述计算机指令或计算机程序时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以为通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集合的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质。半导体介质可以是固态硬盘。
应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可 以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的***、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的***、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个***,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (38)

  1. 一种通信方法,其特征在于,包括:
    分布式单元接收终端设备在去激活态下发送的数据;
    所述分布式单元确定所述数据对应的第一信息,所述第一信息与数据无线承载相对应;
    所述分布式单元向所述中心单元发送所述第一信息。
  2. 根据权利要求1所述的通信方法,其特征在于,所述第一信息包括以下至少一项:所述数据对应的逻辑信道标识、地址信息、或所述数据对应的网络切片标识,其中,所述地址信息包括以下至少一项:数据无线承载标识对应的上行数据传输地址信息、所述逻辑信道标识对应的上行数据传输地址信息、或所述网络切片标识对应的上行数据传输地址信息。
  3. 根据权利要求1或2所述的通信方法,其特征在于,所述分布式单元向所述中心单元发送所述第一信息,包括:
    所述分布式单元通过初始上行无线资源控制消息传输消息向所述中心单元发送所述第一信息。
  4. 根据权利要求1或2所述的通信方法,其特征在于,所述通信方法还包括:
    所述分布式单元接收所述中心单元发送的第二信息,所述第二信息用于指示以下至少一项:所述数据无线承载标识与所述地址信息的对应关系、所述逻辑信道标识与所述地址信息的对应关系、或所述网络切片标识与所述地址信息的对应关系。
  5. 根据权利要求4所述的通信方法,其特征在于,所述分布式单元确定所述数据对应的第一信息,包括:
    所述分布式单元根据所述对应关系确定所述地址信息。
  6. 根据权利要求4或5所述的通信方法,其特征在于,所述分布式单元接收所述中心单元发送的第二信息,包括:
    所述分布式单元通过接口建立回复消息或上下文释放命令消息接收所述中心单元发送的第二信息。
  7. 根据权利要求1至6中任一项所述的通信方法,其特征在于,所述分布式单元向所述中心单元发送所述第一信息,包括:
    所述分布式单元向所述中心单元发送所述第一信息和所述数据。
  8. 根据权利要求1至3中任一项所述的通信方法,其特征在于,所述通信方法还包括:
    所述分布式单元通过上下文建立请求消息接收所述中心单元发送的第三信息,所述第三信息用于指示所述分布式单元建立所述数据无线承载。
  9. 一种通信方法,其特征在于,包括:
    中心单元接收分布式单元发送的第一信息;
    所述中心单元根据所述第一信息确定所述第一信息对应的数据无线承载;
    所述中心单元接收来自所述分布式单元的终端设备在去激活态下所发送的数据。
  10. 根据权利要求9所述的通信方法,其特征在于,所述第一信息包括以下至少一项:所述数据对应的逻辑信道标识、地址信息、所述数据对应的网络切片标识,其中,所述地址信息包括以下至少一项:数据无线承载标识对应的上行数据传输地址信息、所述逻辑信道标识对应的上行数据传输地址信息、或所述网络切片标识对应的上行数据传输地址信息。
  11. 根据权利要求9或10所述的通信方法,其特征在于,所述中心单元接收分布式单元发送的第一信息,包括:
    所述中心单元通过初始上行无线资源控制消息传输消息接收所述分布式单元发送的所述第一信息。
  12. 根据权利要求9或10所述的通信方法,其特征在于,所述通信方法还包括:
    所述中心单元向所述分布式单元发送第二信息,所述第二信息用于指示以下至少一项:所述数据无线承载标识与所述地址信息的对应关系、或所述逻辑信道标识与所述地址信息的对应关系、或所述网络切片标识与所述地址信息的对应关系。
  13. 根据权利要求12所述的通信方法,其特征在于,所述中心单元向所述分布式单元发送第二信息,包括:
    所述中心单元通过接口建立回复消息或上下文释放命令消息向所述分布式单元发送所述第二信息。
  14. 根据权利要求9至13中任一项所述的通信方法,其特征在于,所述中心单元接收分布式单元发送的第一信息,包括:
    所述中心单元接收所述分布式单元发送的所述第一信息和所述数据。
  15. 根据权利要求9至11中任一项所述的通信方法,其特征在于,所述通信方法还包括:
    所述中心单元通过上下文建立请求消息向所述分布式单元发送第三信息,所述第三信息用于指示所述分布式单元建立所述数据无线承载。
  16. 根据权利要求12至14中任一项所述的通信方法,其特征在于,所述中心单元包括CU-UP和CU-CP。
  17. 根据权利要求16所述的通信方法,其特征在于,所述通信方法还包括:
    所述CU-UP向所述CU-CP发送所述第二信息。
  18. 根据权利要求16所述的通信方法,其特征在于,所述通信方法还包括:
    所述CU-CP向所述CU-UP发送所述第一信息。
  19. 一种通信装置,其特征在于,包括:
    接收模块,用于接收终端设备在去激活态下发送的数据;
    处理模块,用于确定所述数据对应的第一信息,所述第一信息与数据无线承载相对应;
    发送模块,用于向所述中心单元发送所述第一信息。
  20. 根据权利要求19所述的通信装置,其特征在于,所述第一信息包括以下至少一项:所述数据对应的逻辑信道标识、地址信息、或所述数据对应的网络切片标识,其中,所述地址信息包括以下至少一项:数据无线承载标识对应的上行数据传输地址信息、所述逻辑信道标识对应的上行数据传输地址信息、或所述网络切片标识对应的上行数据传输地址信息。
  21. 根据权利要求19或20所述的通信装置,其特征在于,所述发送模块具体用于:
    通过初始上行无线资源控制消息传输消息向所述中心单元发送所述第一信息。
  22. 根据权利要求19或20所述的通信装置,其特征在于,所述接收模块还用于:
    接收所述中心单元发送的第二信息,所述第二信息用于指示以下至少一项:所述数据无线承载标识与所述地址信息的对应关系、所述逻辑信道标识与所述地址信息的对应关系、或所述网络切片标识与所述地址信息的对应关系。
  23. 根据权利要求22所述的通信装置,其特征在于,所述处理模块具体用于:
    根据所述对应关系确定所述地址信息。
  24. 根据权利要求22或23所述的通信装置,其特征在于,所述接收模块具体用于:
    通过接口建立回复消息或上下文释放命令消息接收所述中心单元发送的第二信息。
  25. 根据权利要求19至24中任一项所述的通信装置,其特征在于,所述发送模块具体用于:
    向所述中心单元发送所述第一信息和所述数据。
  26. 根据权利要求19至21中任一项所述的通信装置,其特征在于,所述接收模块还用于:
    通过上下文建立请求消息接收所述中心单元发送的第三信息,所述第三信息用于指示所述分布式单元建立所述数据无线承载。
  27. 一种通信装置,其特征在于,包括:
    接收模块,用于接收分布式单元发送的第一信息;
    处理模块,用于根据所述第一信息确定所述第一信息对应的数据无线承载;
    所述接收模块,用于接收来自所述分布式单元的终端设备在去激活态下所发送的数据。
  28. 根据权利要求27所述的通信装置,其特征在于,所述第一信息包括以下至少一项:所述数据对应的逻辑信道标识、地址信息、所述数据对应的网络切片标识,其中,所述地址信息包括以下至少一项:数据无线承载标识对应的上行数据传输地址信息、所述逻辑信道标识对应的上行数据传输地址信息、或所述网络切片标识对应的上行数据传输地址信息。
  29. 根据权利要求27或28所述的通信装置,其特征在于,所述接收模块具体用于:
    通过初始上行无线资源控制消息传输消息接收所述分布式单元发送的所述第一信息。
  30. 根据权利要求27或28所述的通信装置,其特征在于,所述通信装置还包括发送模块,用于:
    向所述分布式单元发送第二信息,所述第二信息用于指示以下至少一项:所述数据无线承载标识与所述地址信息的对应关系、或所述逻辑信道标识与所述地址信息的对应关系、或所述网络切片标识与所述地址信息的对应关系。
  31. 根据权利要求30所述的通信装置,其特征在于,所述发送模块具体用于:
    通过接口建立回复消息或上下文释放命令消息向所述分布式单元发送所述第二信息。
  32. 根据权利要求27至31中任一项所述的通信装置,其特征在于,所述接收模块具体用于:
    接收所述分布式单元发送的所述第一信息和所述数据。
  33. 根据权利要求27至29中任一项所述的通信装置,其特征在于,所述发送模块还用于:
    通过上下文建立请求消息向所述分布式单元发送第三信息,所述第三信息用于指示所述分布式单元建立所述数据无线承载。
  34. 根据权利要求30至32中任一项所述的通信装置,其特征在于,所述通信装置包括CU-UP和CU-CP。
  35. 根据权利要求34所述的通信装置,其特征在于,所述发送模块属于所述CU-UP,所述发送模块还用于:
    所述CU-UP向所述CU-CP发送所述第二信息。
  36. 根据权利要求34所述的通信装置,其特征在于,所述发送模块属于所述CU-CP,所述发送模块还用于:
    所述CU-CP向所述CU-UP发送所述第一信息。
  37. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储用于通信装置执行的程序代码,所述程序代码包括用于执行权利要求1至18中任一项所述的通信方法的指令。
  38. 一种计算机程序产品,其特征在于,所述计算机程序产品包括用于执行权利要求1至18中任一项所述的通信方法的指令。
PCT/CN2019/122966 2018-12-10 2019-12-04 通信方法和通信装置 WO2020119546A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811502425.7 2018-12-10
CN201811502425.7A CN111294982B (zh) 2018-12-10 2018-12-10 通信方法和通信装置

Publications (1)

Publication Number Publication Date
WO2020119546A1 true WO2020119546A1 (zh) 2020-06-18

Family

ID=71029809

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/122966 WO2020119546A1 (zh) 2018-12-10 2019-12-04 通信方法和通信装置

Country Status (2)

Country Link
CN (1) CN111294982B (zh)
WO (1) WO2020119546A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114095138A (zh) * 2020-08-24 2022-02-25 维沃移动通信有限公司 用户面数据的传输方法和网络节点
CN115190655A (zh) * 2021-04-07 2022-10-14 大唐移动通信设备有限公司 数据处理方法、装置、网络设备、存储介质及程序产品

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115942508A (zh) * 2021-12-24 2023-04-07 中兴通讯股份有限公司 指示方法、数据传输方法、通信节点及存储介质
CN117377051A (zh) * 2022-06-30 2024-01-09 华为技术有限公司 数据传输的方法和装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107371264A (zh) * 2016-05-12 2017-11-21 电信科学技术研究院 一种上行数据传输的方法及设备
CN107635258A (zh) * 2016-07-18 2018-01-26 电信科学技术研究院 一种数据或者信令发送、传输方法及装置
CN107645779A (zh) * 2016-07-22 2018-01-30 电信科学技术研究院 一种数据发送、传输方法及装置
CN108366398A (zh) * 2017-01-26 2018-08-03 华为技术有限公司 一种数据传输方法、网络设备及终端设备
WO2018144961A1 (en) * 2017-02-06 2018-08-09 Qualcomm Incorporated Data transmission in inactive state
CN110139387A (zh) * 2018-02-08 2019-08-16 电信科学技术研究院有限公司 一种上行小数据的传输方法、网络侧du和网络侧cu
CN110139386A (zh) * 2018-02-08 2019-08-16 电信科学技术研究院有限公司 一种上行小数据的传输方法、网络侧du和网络侧cu

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108141897A (zh) * 2016-01-30 2018-06-08 华为技术有限公司 一种终端设备、网络设备以及数据传输方法
CN107484183B (zh) * 2016-06-08 2020-12-29 ***通信有限公司研究院 一种分布式基站***、cu、du及数据传输方法
CN108307450A (zh) * 2016-09-30 2018-07-20 华为技术有限公司 一种数据传输方法、装置和***
US10368334B2 (en) * 2017-03-17 2019-07-30 Ofinno Technologies, Llc Radio access network paging area configuration
KR102222830B1 (ko) * 2017-03-21 2021-03-04 삼성전자 주식회사 이동통신에서 연결 모드의 비연속 수신 모드를 지원하는 방법 및 장치

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107371264A (zh) * 2016-05-12 2017-11-21 电信科学技术研究院 一种上行数据传输的方法及设备
CN107635258A (zh) * 2016-07-18 2018-01-26 电信科学技术研究院 一种数据或者信令发送、传输方法及装置
CN107645779A (zh) * 2016-07-22 2018-01-30 电信科学技术研究院 一种数据发送、传输方法及装置
CN108366398A (zh) * 2017-01-26 2018-08-03 华为技术有限公司 一种数据传输方法、网络设备及终端设备
WO2018144961A1 (en) * 2017-02-06 2018-08-09 Qualcomm Incorporated Data transmission in inactive state
CN110139387A (zh) * 2018-02-08 2019-08-16 电信科学技术研究院有限公司 一种上行小数据的传输方法、网络侧du和网络侧cu
CN110139386A (zh) * 2018-02-08 2019-08-16 电信科学技术研究院有限公司 一种上行小数据的传输方法、网络侧du和网络侧cu

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114095138A (zh) * 2020-08-24 2022-02-25 维沃移动通信有限公司 用户面数据的传输方法和网络节点
CN114095138B (zh) * 2020-08-24 2023-05-30 维沃移动通信有限公司 用户面数据的传输方法和网络节点
CN115190655A (zh) * 2021-04-07 2022-10-14 大唐移动通信设备有限公司 数据处理方法、装置、网络设备、存储介质及程序产品

Also Published As

Publication number Publication date
CN111294982B (zh) 2022-05-24
CN111294982A (zh) 2020-06-16

Similar Documents

Publication Publication Date Title
US11388560B2 (en) Radio terminal, radio station, and method therefor
WO2020119546A1 (zh) 通信方法和通信装置
WO2021032066A1 (zh) 寻呼的方法和装置
WO2018165996A1 (zh) 切换方法和装置
WO2019105378A1 (zh) 通信方法和通信装置
WO2013075602A1 (zh) 实现载波聚合的方法、基站和用户设备
WO2022036555A1 (zh) 中继传输的方法、中继终端和远端终端
CN114600508A (zh) Iab节点双连接建立的方法和通信装置
WO2021185350A1 (zh) 一种通信方法、接入网设备、终端设备和核心网设备
EP3993558A1 (en) Ran node, radio terminal, and method for same
WO2023066383A1 (zh) 数据传输方法、装置及存储介质
EP3393173B1 (en) Terminal device and access network devices
WO2021026706A1 (zh) 一种f1接口管理方法及装置
EP3457758B1 (en) Data transmission methods and devices
WO2022078867A1 (en) Methods, apparatuses and computer program for data transmission in inactive state
WO2022141025A1 (zh) 用于传输数据的方法与装置
WO2024093721A1 (zh) 通信方法、装置及***
WO2020200038A1 (zh) 准入控制的方法和装置
JP7434663B2 (ja) データ圧縮方法、装置及び記憶媒体
WO2022061838A1 (zh) 启用反向映射机制方法、终端设备和网络设备
WO2022217615A1 (zh) 进入连接态的方法和终端设备
WO2022205453A1 (zh) 网络选择的方法和装置
JP2022108605A (ja) 基地局、ユーザ機器、ネットワークノード及び方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19896635

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19896635

Country of ref document: EP

Kind code of ref document: A1