WO2020116343A1 - 複合材料製航空機用部品およびその製造方法 - Google Patents

複合材料製航空機用部品およびその製造方法 Download PDF

Info

Publication number
WO2020116343A1
WO2020116343A1 PCT/JP2019/046789 JP2019046789W WO2020116343A1 WO 2020116343 A1 WO2020116343 A1 WO 2020116343A1 JP 2019046789 W JP2019046789 W JP 2019046789W WO 2020116343 A1 WO2020116343 A1 WO 2020116343A1
Authority
WO
WIPO (PCT)
Prior art keywords
composite material
aircraft
aircraft component
laminate
material layer
Prior art date
Application number
PCT/JP2019/046789
Other languages
English (en)
French (fr)
Inventor
島田 直樹
良博 中山
さやか 越智
昇平 金澤
謙士郎 奥村
Original Assignee
川崎重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 川崎重工業株式会社 filed Critical 川崎重工業株式会社
Priority to EP19893392.1A priority Critical patent/EP3892549A4/en
Publication of WO2020116343A1 publication Critical patent/WO2020116343A1/ja
Priority to US17/337,416 priority patent/US20210284317A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C1/00Fuselages; Constructional features common to fuselages, wings, stabilising surfaces or the like
    • B64C1/06Frames; Stringers; Longerons ; Fuselage sections
    • B64C1/061Frames
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D99/00Subject matter not provided for in other groups of this subclass
    • B29D99/0003Producing profiled members, e.g. beams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/30Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core
    • B29C70/34Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core and shaping or impregnating by compression, i.e. combined with compressing after the lay-up operation
    • B29C70/342Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core and shaping or impregnating by compression, i.e. combined with compressing after the lay-up operation using isostatic pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/42Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles
    • B29C70/46Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using matched moulds, e.g. for deforming sheet moulding compounds [SMC] or prepregs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C1/00Fuselages; Constructional features common to fuselages, wings, stabilising surfaces or the like
    • B64C1/06Frames; Stringers; Longerons ; Fuselage sections
    • B64C1/064Stringers; Longerons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64FGROUND OR AIRCRAFT-CARRIER-DECK INSTALLATIONS SPECIALLY ADAPTED FOR USE IN CONNECTION WITH AIRCRAFT; DESIGNING, MANUFACTURING, ASSEMBLING, CLEANING, MAINTAINING OR REPAIRING AIRCRAFT, NOT OTHERWISE PROVIDED FOR; HANDLING, TRANSPORTING, TESTING OR INSPECTING AIRCRAFT COMPONENTS, NOT OTHERWISE PROVIDED FOR
    • B64F5/00Designing, manufacturing, assembling, cleaning, maintaining or repairing aircraft, not otherwise provided for; Handling, transporting, testing or inspecting aircraft components, not otherwise provided for
    • B64F5/10Manufacturing or assembling aircraft, e.g. jigs therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2307/00Use of elements other than metals as reinforcement
    • B29K2307/04Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/30Vehicles, e.g. ships or aircraft, or body parts thereof
    • B29L2031/3076Aircrafts
    • B29L2031/3082Fuselages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C1/00Fuselages; Constructional features common to fuselages, wings, stabilising surfaces or the like
    • B64C2001/0054Fuselage structures substantially made from particular materials
    • B64C2001/0072Fuselage structures substantially made from particular materials from composite materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/40Weight reduction

Definitions

  • the present invention relates to a composite material aircraft part and a method for manufacturing the same, and more particularly to a composite material aircraft part suitable as a long part including a curved structure having a difference in circumferential length, and a method for manufacturing the same.
  • composite materials fiber-reinforced resin composite materials
  • composite materials a carbon fiber reinforced type (CFRP) obtained by using carbon fibers as reinforcing fibers and impregnating a matrix resin such as epoxy resin into the composite (CFRP) is lighter than a metal material, and Higher strength. Therefore, as a composite material component in the field of aircraft, for example, a large structure such as a wing or a fuselage is known.
  • CFRP carbon fiber reinforced type
  • the number of skin that constitutes the fuselage of an aircraft assuming a 10 per one aircraft 1 aircraft, but the beam is elongate products are assumed 10 two per aircraft, also is elongate products
  • the number of stringers and frames is assumed to be 10 3 per aircraft, that is, several thousand.
  • there are thousands of different shapes of parts such as smaller clips, and 10 4 pieces, that is, tens of thousands pieces are required per machine. Since there are thousands to tens of thousands of small parts such as long parts or clips per machine, it is very difficult to make such parts into a composite material and autoclave-molding them, which greatly reduces the manufacturing efficiency. It is supposed to let.
  • Patent Document 1 discloses a method of manufacturing a long and slender component (long component) using a composite material, simply and at low cost.
  • a composite material is pultruded to obtain a preform in which the resin is in a partially polymerized state, a reinforcement element in which the resin is in a partially polymerized state is prepared, and a reinforcement element is added to the preform.
  • a reinforcement element is added to the preform.
  • Patent Document 1 As described above, it is possible to obtain a long component made of a composite material simply and at low cost by reinforcing and hardening a preformed product in a partially polymerized state by a reinforcing element. It has been described. However, this method discloses the use of an autoclave (or furnace) as an example of resin curing. Therefore, as described above, it is considered unsuitable for the purpose of efficiently manufacturing thousands to tens of thousands of parts.
  • many long members for aircraft are curved in the longitudinal direction so as to have a circumferential length difference.
  • a prepreg is manually laminated to form a laminated body having a curved portion, which is autoclaved. Therefore, when a long component having a curved portion is made into a composite material, not only the length of molding time by autoclave molding but also the step of forming a laminate hinders improvement in manufacturing efficiency.
  • the present invention has been made to solve such a problem, and provides a composite material aircraft component having a curved structure that can be efficiently manufactured without using autoclave molding. With the goal.
  • the composite material aircraft component according to the present invention has a laminated structure in which a plurality of composite material layers composed of at least a reinforcing fiber and a resin composition are laminated, and has a circumference in the longitudinal direction.
  • the reinforcing fiber is composed of a single continuous fiber that does not include a joint portion, and includes a partial cut portion.
  • a laminated body of prepregs containing such reinforcing fibers is placed in a molding die and heated and pressure-molded (press molding), the resin composition flows in the cavity of the molding die and the notch of the reinforcing fibers opens.
  • the composite material layer containing the reinforcing fiber that is, the reinforcing fiber and the resin composition
  • the composite material layer containing the reinforcing fiber is expanded on a large scale while the laminated structure of the reinforcing fiber is substantially maintained or the laminated structure is not significantly changed.
  • a method of manufacturing a composite material aircraft part comprising placing the laminate in a molding die and performing heat and pressure molding, wherein the composite material layer has a cut region including a plurality of partial cut portions.
  • the molding die is curved in the longitudinal direction
  • the installation surface for installing the laminate is It has a configuration in which the laminated body is placed on the placing surface and the entire laminated body is stretched in the in-plane direction and is heated and pressed.
  • the present invention has the effect of providing a composite material aircraft component having a curved structure that can be efficiently manufactured without using autoclave molding with the above configuration.
  • FIG. 1 is a schematic perspective view showing a typical configuration of a composite material aircraft component according to an embodiment of the present invention.
  • FIG. 2A is a cross-sectional comparison view schematically showing an example of the composite material aircraft component shown in FIG. 1 and a prepreg laminate which is a material thereof, and FIG. 2B is a reinforcing fiber of the prepreg laminate shown in FIG. 2A.
  • FIG. 2C is a partial plan view schematically showing an example of a notch part included in FIG. 2C
  • FIG. 2C is a partial plan view schematically showing an example of an open notch part included in the reinforcing fiber of the aircraft component shown in FIG. 2A. is there.
  • FIG. 1 is a schematic perspective view showing a typical configuration of a composite material aircraft component according to an embodiment of the present invention.
  • FIG. 2A is a cross-sectional comparison view schematically showing an example of the composite material aircraft component shown in FIG. 1 and a prepreg laminate which is a material thereof
  • FIG. 3 is a schematic exploded cross-sectional view showing an example of a joint portion which is not included in the composite material aircraft part according to the embodiment of the present invention and is included in the conventional composite material aircraft part.
  • FIG. 4A is a process chart showing a typical example of a method for manufacturing a composite material aircraft part according to an embodiment of the present invention
  • FIG. 4B is a typical method for manufacturing a conventional composite material aircraft part.
  • FIG. FIG. 5 is a schematic diagram which shows a specific example of the hot press molding process in the manufacturing method of the composite material aircraft parts shown in FIG. 4A.
  • FIG. 6 is a diagram showing a specific example of the incision portion shown in FIG. 2C.
  • 7A is a diagram showing a specific example of the composite material aircraft part shown in FIG.
  • FIG. 7B is an example of a cross section taken along the line I--I of the composite material aircraft part shown in FIG. 7A.
  • 7C is a diagram showing an example of a cross section taken along the line II-II of the composite material aircraft component shown in FIG. 7A
  • FIG. 7D is a composite material aircraft component shown in FIG. 7A.
  • FIG. 7E is a diagram showing an example of a cross section taken along the line III-III
  • FIG. 7E is a diagram showing an example of a cross section taken along the line IV-IV of the composite material aircraft component shown in FIG. 7A.
  • a composite material aircraft component (hereinafter, abbreviated as “aircraft component” as appropriate) according to the present disclosure has a laminated structure in which a plurality of composite material layers each including at least a reinforcing fiber and a resin composition are laminated, and has a long length. It has a curved structure with a circumferential length difference in the direction. The laminated structure is retained in the entire part including the curved structure, and the composite material layer is such that at least the reinforcing fiber is composed of a single continuous fiber without a joint portion and a partial cut portion. And further, the reinforcing fiber is a layer including an open cut portion in which the cut portion is in an open state.
  • a typical example of aircraft parts according to the present disclosure is a Z-shaped frame 30 as shown in FIG.
  • the Z-shaped frame 30 has a plate-shaped main body 31 (or a web) and two flange portions 32 and 33 bent in opposite directions from both edge portions of the main body 31 when viewed from the end face thereof. It is a shape having,.
  • FIG. 2A shows a Z-shaped frame 30 and a prepreg laminated body 10 which is a material thereof.
  • the upper tier in the drawing is the prepreg laminate 10, which has a laminated structure in which a plurality of composite material layers are laminated.
  • the lower part of FIG. 2A is a cross section of the Z-shaped frame 30, and the laminated structure is held by the entire main body 31 and the flanges 32 and 33.
  • the prepreg laminate 10 is press-molded to manufacture aircraft parts such as the Z-shaped frame 30.
  • the prepreg laminate 10 is configured by laminating a plurality of prepregs (semi-cured composite material layers). The cured composite material layers are laminated (having a laminated structure).
  • the composite material layer is composed of at least a reinforcing fiber and a resin composition, but in the present disclosure, the composite material layer has a cut region including a plurality of partial cuts and includes a joint portion. Those with no single reinforcing fiber are used at least.
  • the composite material layer 11 that is, the prepreg
  • the composite material layer 11 before curing has a region (cut region) in which a plurality of partial cut portions 12a are formed. included.
  • this cut region may be a part of the composite material layer 11 or may extend to the whole composite material layer 11. It should be noted that the joint portion not included in the aircraft component according to the present disclosure will be described later.
  • the plurality of composite material layers 11 constituting the prepreg laminate 10 may all have reinforcing fibers having a cut region or may have reinforcing fibers having no cut region.
  • a composite material layer in which the reinforcing fibers have a cut area is referred to as a "first composite material layer” for convenience of description
  • a composite material layer in which the reinforcing fibers do not have a cut area is referred to as a "second composite material layer”.
  • the reinforcing fibers forming the first composite material layer and the second composite material layer are both single fibers that do not include a joint portion, that is, one composite material layer is one reinforcing fiber. And does not contain multiple layers of reinforcing fibers.
  • the aircraft parts such as the Z-shaped frame 30 manufactured by press-molding the prepreg laminate 10 have a curved structure having a circumferential difference in the longitudinal direction as described above.
  • the first composite material layer that is, the composite material layer in which the reinforcing fibers have the cut portions 12a
  • the reinforcing fibers are stretched during press molding, Along with this, many of the plurality of notches 12a are opened. Since the open cut portion 12a is maintained in an open state by the resin composition being cured, as shown in FIG. 2C, for example, the cut portion 12a may be cut in the manufactured aircraft part (Z-shaped frame 30). An open cut portion 12b is generated in which the portion 12a remains open.
  • the specific types of the reinforcing fiber and the resin composition forming the composite material layer are not particularly limited, and materials applicable to aircraft parts can be appropriately selected and used.
  • the reinforcing fiber is not particularly limited as long as it can realize good physical properties (strength, etc.) in aircraft parts, and examples thereof include carbon fiber, polyester fiber, and PBO (polyparaphenylenebenzobisoxazole).
  • Fiber, boron fiber, aramid fiber, glass fiber, silica fiber (quartz fiber), silicon carbide (SiC) fiber, nylon fiber and the like Only one type of these reinforcing fibers may be used, or two or more types may be appropriately combined and used.
  • carbon fibers are particularly preferably used in the aircraft field.
  • the mode of use of the reinforcing fiber is not particularly limited, but typically, it can be used as a base material composed of a braid, a woven fabric, a knitted fabric, a non-woven fabric or the like.
  • the resin composition that is impregnated into the reinforcing fibers may contain a resin material that can be used as a matrix material (base material) that supports the base material.
  • resin materials include thermosetting resins and thermoplastic resins.
  • thermosetting resin is not particularly limited, but typically includes, for example, epoxy resin, polyester resin, vinyl ester resin, phenol resin, cyanate ester resin, polyimide resin, polyamide resin and the like. These thermosetting resins may be used alone or in combination of two or more. Further, the more specific chemical structure of these thermosetting resins is not particularly limited, and may be a polymer in which various known monomers are polymerized, or a copolymer in which a plurality of monomers are polymerized. .. Further, the average molecular weight, the structures of the main chain and the side chains, etc. are not particularly limited.
  • thermoplastic resin is not particularly limited, but engineering plastics such as polyphenylene sulfide (PPS), polyether ether ketone (PEEK), and polyether imide (PEI) are preferable especially in the field of aircraft parts. Used for.
  • PPS polyphenylene sulfide
  • PEEK polyether ether ketone
  • PEI polyether imide
  • the specific chemical structure of these thermoplastic resins is not particularly limited, and may be a polymer in which various known monomers are polymerized or a copolymer in which a plurality of monomers are polymerized. Further, the average molecular weight, the structures of the main chain and the side chains, etc. are not particularly limited.
  • the matrix material of the composite material may be composed of only the thermosetting resin or the thermoplastic resin described above (that is, the matrix material may be only a known resin material), but a known curing agent or curing accelerator. , A reinforcing material or filler other than the fiber base material, and other known additives may be included.
  • the specific type and composition of additives such as a curing agent and a curing accelerator are not particularly limited, and known types and compositions can be preferably used.
  • the matrix material may be a thermosetting resin composition containing a thermosetting resin and other components, or a thermoplastic resin composition containing a thermoplastic resin and other components.
  • the composite material may be a “thermosetting type” composed of reinforcing fibers and a thermosetting resin or a thermosetting resin composition, or may be a reinforcing fiber and a thermoplastic resin or a thermosetting resin.
  • a “thermoplastic type” composed of a plastic resin composition may be used.
  • the prepreg laminate 10 which is a material for aircraft parts, is a laminate of prepregs, which are semi-cured composite material layers.
  • a prepreg is a sheet body that is semi-cured by impregnating a base material composed of reinforcing fibers with a thermosetting resin composition or a thermoplastic resin composition.
  • the specific configuration of the prepreg is not particularly limited.
  • the specific configuration of the prepreg laminate 10 formed by laminating prepregs is not particularly limited.
  • the shape of the prepreg, the number of stacked prepregs, the stacking direction of the prepregs, and the like can be appropriately set according to the shape, use, type, and the like of the obtained aircraft component.
  • the shape of the prepreg laminate 10 is not particularly limited. 2A is typically used, the prepreg laminate 10 is not limited to a flat plate, and may have a simple shape close to a flat plate, or may partially include a three-dimensional shape. ..
  • the prepreg laminate 10 may include a material layer other than the prepreg, that is, the composite material layer. That is, the aircraft component according to the present disclosure may include a material other than the composite material.
  • a resin layer formed of a resin (or a resin composition) having extensibility may be laminated on the surface of the prepreg laminate 10.
  • the resin layer on the surface include those for the purpose of imparting machinability (for example, for preventing the occurrence of burrs or flakes at the time of drilling described later) or for improving the appearance of aircraft parts, It is not particularly limited.
  • the prepreg laminate 10 may include a metal mesh layer or a metal foil as another material layer. Since the metal mesh layer or the metal foil also has extensibility, it can be suitably used as another material layer of the aircraft component according to the present disclosure.
  • a copper mesh layer may be laminated on the surface of the prepreg laminate 10. By heat-pressing the prepreg laminate 10 including the copper mesh layer as described below, it is possible to manufacture an aircraft component having a copper mesh on the surface.
  • the copper mesh layer is used for lightning protection measures in aircraft parts, but the specific type or use of the metal mesh layer or metal foil is not particularly limited.
  • the aircraft component according to the present disclosure may be a long member having a curved structure having a circumferential length difference in the longitudinal direction, and its specific configuration is not particularly limited.
  • the flange portions 32 and 33 are bent on opposite sides of the main body portion 31, but for example, a C-shaped frame bent in the same direction is used. It may be. Alternatively, it may be an L-shaped frame having only a single flange portion 32. Therefore, in the aircraft component according to the present disclosure, at least one of the side edges in the longitudinal direction may be bent to form the flange portion.
  • the main body 31 may not be flat and may have a corrugated structure, a bent structure, or an uneven structure such as a bead.
  • the aircraft part to which the present disclosure is preferably applied may be a long member that extends in one direction and includes a curved structure that has a circumferential length difference in the longitudinal direction. Therefore, it may be a Z-shaped frame 30, a frame such as a C-shaped frame or an L-shaped frame, a stringer, or a long member other than the frame or the stringer. Further, the cross-sectional shape is not limited to the Z-type, C-type, L-type, etc., and may be another shape such as a hat-type ( ⁇ -type).
  • the content rate of the reinforcing fiber in the aircraft part according to the present disclosure is not particularly limited, and a suitable content rate can be set according to various physical properties or various conditions required for the aircraft part.
  • the content rate of the reinforcing fiber in the aircraft component can be defined by the fiber volume content rate Vf.
  • the fiber volume content Vf is known in the field of carbon fiber reinforced plastic (CFRP) and the like, and is an index indicating the amount (content) of fibers contained in the entire composite material by volume ratio.
  • the fiber volume content Vf may be calculated according to JIS K7075 or ASTM D3171.
  • the fiber volume content Vf in the aircraft component according to the present disclosure may be in the range of 50 to 70%, and preferably in the range of 55 to 65%. If the fiber volume content Vf is too small, good physical properties and the like may not be realized as aircraft parts. On the other hand, when the fiber volume content Vf is too large, the resin composition as the matrix material becomes too small, so that the reinforcing fiber cannot be favorably supported, and even if the reinforcing fiber has the cut portion 12a. However, there is a possibility that the reinforcing fibers will be relatively too much and may not be able to flow or spread well during press molding.
  • FIG. 3 schematically shows a part of a conventional aircraft component 50.
  • a part of the conventional aircraft component 50 is illustrated as a flat plate-shaped configuration including three composite material layers.
  • the actual aircraft component 50 has three composite material layers. However, it is not limited to the above and may include two or more layers. Further, the actual aircraft component 50 is not limited to a flat plate shape, and may be any one including the above-described three-dimensional structure or any other known structure.
  • one joining portion 15 is provided on the reinforcing fiber 14 forming each composite material layer.
  • the joining portion 15 has a configuration in which one reinforcing fiber 14 partially overlaps the other reinforcing fiber 14.
  • the distance W between the joints 15 may be, for example, 13 mm or more.
  • the distance between the joint portions 15 can be, for example, 25 mm or more.
  • the distance between the joint 15 in the reinforcing fiber 14 of the lowermost layer (third layer) and the joint 15 in the reinforcing fiber 14 of the intermediate layer (second layer) may be 25 mm or more.
  • the prepreg is laminated in a predetermined shape by a manual work or the like to form the prepreg laminate 10, and then the prepreg is heat-press molded by an autoclave. At the time of this lamination, as shown in FIG. 3, prepregs are laminated so as to include the joint portion 15 in each layer.
  • the aircraft component 50 obtained by heat and pressure molding has a partially sufficient strength or elastic modulus. It may not be possible.
  • the reinforcing fibers forming the composite material layer are composed of a single continuous fiber and include a partial cut portion. Therefore, the reinforcing fibers can flow or spread (or both) together with the resin composition during the heat and pressure molding.
  • an aircraft component having a three-dimensional structure of at least one of the upright portion, the convex portion, and the curved portion described above can be manufactured without forming the joint portion 15 as shown in FIG.
  • the process diagram shown in FIG. 4A shows a typical process for manufacturing aircraft parts such as the Z-shaped frame 30 illustrated in FIG. 1 or 2A.
  • the process chart shown in FIG. 4B shows a typical process for manufacturing a conventional general aircraft component.
  • the steps to be performed differ depending on various conditions such as the type of composite material, the type and shape of prepreg, or the type, shape, and application of aircraft parts
  • the process diagrams shown in FIGS. 4A and 4B are general It is an example of a typical manufacturing method of various aircraft parts.
  • prepregs are laminated to prepare a flat plate-shaped prepreg laminated body 10 (process P11), and the prepreg laminated body 10 is hot-draped and curved. A structure is formed (process P12).
  • hot drape molding the prepreg laminate 10 is placed on a jig for forming a curved structure and a Z shape, and heating and pressurization are performed under the condition that the resin composition does not cure but fluidity occurs. Thereby, the prepreg laminated body 10 having the curved structure and the Z-shaped cross section is obtained.
  • the prepreg laminate 10 is subjected to a bagging process together with the male jig using a heat resistant film, a sealing material and the like (process P13), and autoclave molding (process P14). Since the prepreg laminated body 10 is heated and pressed by the autoclave molding, the prepreg laminated body 10 is cured in a state where the curved structure and the Z shape of the cross section are held, and a cured product, that is, an aircraft part is obtained.
  • NDI nondestructive inspection
  • edge sealing process it is possible to prevent moisture absorption from the fiber exposed at the trim end by the trim process, and it is also possible to prevent electrolytic corrosion through the exposed fiber.
  • the prepreg laminated body 10 is prepared by laminating the prepregs as in the conventional case (process P01), but the prepreg laminated body 10 is formed into a predetermined shape.
  • Hot press molding heat molding and pressure molding
  • a mold process P02.
  • a Z-shaped frame jig 40 for forming a Z-shaped cross section and a curved structure is prepared.
  • the Z-shaped frame jig 40 is curved in the longitudinal direction, and mounting surfaces 40a and 40b having a difference in circumferential length are provided along the curvature.
  • the mounting surface 40a is an upper surface of the Z-shaped frame jig 40, and the mounting surface 40b is a surface adjacent to and erected on the outer side edge of the mounting surface 40a. Further, a restraint portion 41 is provided on the inner side edge of the mounting surface 40a (illustrated by a dotted line in the drawing for convenience of description).
  • the restraint portion 41 is provided, for example, so as to be attachable to a restraint surface that is adjacent to and erected inside the placing surface 40a, and is configured to restrain a part of the prepreg laminate 10 between the restraint surface and the restraint surface. There is.
  • the prepreg laminated body 10 As shown in the upper part of FIG. 5, in the prepreg laminated body 10, first, one side edge portion is restrained by the restraint portion 41 by the restraint portion 41. Then, as shown in the middle of FIG. 5, the prepreg laminate 10 is stretched in the in-plane direction from the placement surface 40a toward the placement surface 40b in a large scale (black block arrow in the figure), while the placement is performed. It is placed on the surfaces 40a and 40b. By hot press molding in this state, the resin composition flows on the Z-shaped frame jig 40, and the cut portion of the reinforcing fiber is opened, so that the laminated structure of the reinforcing fiber is substantially maintained.
  • the composite material layer containing the reinforcing fibers (that is, the reinforcing fibers and the resin composition) is expanded on a large scale, and the resin composition is cured.
  • an aircraft component having a curved structure having a circumferential length difference in the longitudinal direction, such as a Z-shaped frame 30, is easily molded. be able to.
  • the orientation angle of the reinforcing fiber can be controlled to a desired angle.
  • the fiber direction (orientation angle) of the reinforcing fibers in the circumferential direction and the direction orthogonal thereto can greatly contribute to the strength.
  • the fiber direction of the reinforcing fibers can be controlled so as to be substantially along the circumferential direction and the direction orthogonal thereto.
  • the fiber direction cannot be controlled so as to be along the circumferential direction and the direction orthogonal thereto.
  • the manufacturing method according to the present disclosure does not require an autoclave for heating and pressurizing, unlike the conventional manufacturing method. Since the autoclave is relatively expensive as compared with the equipment for hot press molding, the manufacturing method according to the present disclosure can suppress an increase in the cost of the manufacturing equipment. Further, if the autoclave is unnecessary, the bagging process and the debug process are not necessary. Since the number of man-hours and the work time of the bagging process and the debug process are relatively large, the manufacturing method can be made more efficient by reducing these processes. In the hot press molding (process P02), if the reinforcing fibers of the prepreg laminate 10 can be appropriately developed, it is not necessary to restrain a part of the prepreg laminate 10 by the restraint portion 41 or the like.
  • a cured product that is, an aircraft part is obtained by hot press molding
  • the trimming process (process P03) and the drilling process (process P04) are performed on the aircraft part, and then the aircraft part is processed.
  • NDI is performed (process P05), and then the cured product is subjected to edge seal processing (process P06).
  • the flow of the composite material (the reinforcing fiber and the resin composition) forming the prepreg laminate 10 can be controlled at the time of hot press molding (process P02).
  • the edge sealing process can be omitted depending on various conditions such as the shape, the type of composite material, and the conditions of hot press molding.
  • the composite material layer forming the prepreg laminate 10 includes the cut region (the region where the cut portion 12a is formed) in the first composite material layer, that is, the reinforcing fiber, it is hot.
  • the resin composition but also the reinforcing fibers can be made to flow or stretch.
  • the position of the cut region in the prepreg laminate 10 is not particularly limited, and a suitable position can be appropriately set according to the cross-sectional structure or the degree of bending of the obtained aircraft component.
  • the curved structure having the circumferential length difference in the longitudinal direction is manufactured by press molding.
  • the length of the long member is limited to about 300 mm in terms of manufacturing efficiency, and if the radius of curvature R of the curved structure does not exceed 8000 mm, the reinforcing fiber does not extend and the prepreg. The laminate did not fit in the mold, and wrinkles occurred especially on the inside.
  • the manufacturing method according to the present disclosure it is possible to favorably manufacture a long component having a length of 300 mm or more and a radius of curvature R of 8000 mm or less. In particular, it is possible to manufacture without theoretical limitation regarding the length.
  • FIG. 6 is an actual example of the incision 12b schematically shown in FIG. 2C, and such an incision is observed on the surface of the Z-shaped frame shown in FIG. 7A.
  • the example illustrated in FIG. 6 is an example of the cut-and-cut portion 12b formed on the surface of the aircraft component, and is a characteristic configuration of the aircraft component according to the present disclosure.
  • the laminated structure is well maintained as a whole.
  • the laminated structure of the composite material layers is well retained as shown in FIG. 7B.
  • looking at three cross-sections of the Z-shaped frame that is, a cross-sectional view taken along line II-II, a cross-sectional view taken along line III-III, and a cross-sectional view taken along line IV-IV in FIG. 7A.
  • the laminated structure of the composite material layer is well retained as a whole.
  • the aircraft component according to the present disclosure has a laminated structure in which a plurality of composite material layers each including at least a reinforcing fiber and a resin composition are laminated, and also has a curved structure having a circumferential length difference in the longitudinal direction.
  • the laminated structure is retained in the entire part including the curved structure, and the composite material layer is such that at least the reinforcing fiber is composed of a single continuous fiber without a joint and a partial cut is made. It is a layer that includes an incision part, and further, the reinforcing fiber includes an incision incision part in which the incision part is in an open state.
  • a plurality of composite material layers composed of a reinforcing fiber and a resin composition are laminated to form a laminated body, and the laminated body is placed on a jig and heated.
  • a composite material layer having a cut region including a plurality of partial cut portions and composed of a single reinforcing fiber and a resin composition not including a joint portion is used.
  • the jig is curved in the longitudinal direction and has an installation surface on which the laminated body is installed.
  • the laminated body is placed on the placing surface, and part of the laminated body is restrained. Heat compression molding is performed with the entire body extended in the in-plane direction.
  • the reinforcing fiber is composed of a single continuous fiber that does not include a joint portion, and also includes a partial cut portion.
  • a laminated body of prepregs containing such reinforcing fibers is placed in a molding die and heated and pressure-molded (press molding), the resin composition flows in the cavity of the molding die and the notch of the reinforcing fibers opens.
  • the composite material layer containing the reinforcing fiber that is, the reinforcing fiber and the resin composition
  • the composite material layer containing the reinforcing fiber is expanded on a large scale while the laminated structure of the reinforcing fiber is substantially maintained or the laminated structure is not significantly changed.
  • a composite material aircraft component according to the present disclosure has a laminated structure in which a plurality of composite material layers at least composed of a reinforcing fiber and a resin composition are laminated, and has a curved structure having a circumferential length difference in the longitudinal direction,
  • the reinforcing fiber is composed of a single continuous fiber that does not include a joint portion, and includes a partial cut portion.
  • a laminated body of prepregs containing such reinforcing fibers is placed in a molding die and heated and pressure-molded (press molding), the resin composition flows in the cavity of the molding die and the notch of the reinforcing fibers opens.
  • the composite material layer containing the reinforcing fiber that is, the reinforcing fiber and the resin composition
  • the composite material layer containing the reinforcing fiber is expanded on a large scale while the laminated structure of the reinforcing fiber is substantially maintained or the laminated structure is not significantly changed.
  • At least one of the side edges in the longitudinal direction may be bent.
  • the composite material aircraft component having the above configuration may have a length of 300 mm or more and a radius of curvature R of 8000 mm or less.
  • the resin composition may include a thermosetting resin or a thermoplastic resin.
  • the reinforcing fibers may be carbon fibers.
  • a method for manufacturing a composite material aircraft component according to the present disclosure includes forming a laminate by laminating a plurality of composite material layers composed of reinforcing fibers and a resin composition, and placing the laminate in a molding die and heating.
  • a method for manufacturing a composite material aircraft part comprising press molding, wherein the composite material layer has a cut region including a plurality of partial cut portions, and does not include a joint portion. What is comprised from a reinforced fiber and a resin composition is used, the said shaping
  • the composite material layer having the cutout region when the composite material layer having the cutout region is the first composite material layer, the composite material layer further has the cutout region.
  • a second composite material layer composed of a single reinforcing fiber and a resin composition that does not include a joint portion may be used.
  • the cut region may be a part of the composite material layer or may extend to the entire composite material layer.
  • a part of the laminate may be constrained when the laminate is extended in the in-plane direction.
  • the present invention relates to the field of manufacturing aircraft parts made of composite materials, and more particularly to composite materials for aircraft parts including a curved structure having a circumferential length difference in the longitudinal direction, such as a long member such as a frame or a stringer. It can be widely and suitably used in the field of manufacturing.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Transportation (AREA)
  • Moulding By Coating Moulds (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)

Abstract

複合材料製航空機用部品は、複合材料層が複数積層された積層構造を有するとともに、長手方向に周長差を有する湾曲構造を有する。積層構造は、湾曲構造を含む部品全体において保持される。それぞれの複合材料層では、強化繊維が、接合部を含まない単一の連続繊維で構成され、かつ、部分的な切込部を含み、さらに、強化繊維には、前記切込部が開いた状態である開切込部が含まれている。

Description

複合材料製航空機用部品およびその製造方法
 本発明は、複合材料製航空機用部品およびその製造方法に関し、特に、周長差を有する湾曲構造を含む長尺部品として好適な複合材料製航空機用部品と、その製造方法とに関する。
 近年、これまで金属材料が用いられてきた分野において、繊維強化樹脂複合材料(以下、適宜「複合材料」と略す。)が広く用いられるようになっている。この複合材料の中でも、強化繊維として炭素繊維を用い、これにエポキシ樹脂等のマトリクス樹脂を含浸させて成形した炭素繊維強化型のもの(CFRP)は、金属材料よりも軽量であることに加え、より高強度である。それゆえ、航空機分野における複合材料製部品としては、例えば、翼または胴体等の大型の構造物が知られている。
 一般に、航空機分野における複合材料製部品の製造では、オートクレーブ成形を用いた製造方法が主流である。ただし、オートクレーブ成形は、成形時間が相対的に長くなるため一般に大量生産に不向きとされる。前述した大型の構造物は、航空機1機当たりの部品個数が少ないため、オートクレーブ成形で対応することが可能である。これに対して、1機当たりの部品点数がより多い小型の部品を製造する場合には、オートクレーブ成形では効率的な製造が困難になるおそれがある。
 近年、航空需要の拡大により航空機の運航効率を向上することが求められており、そのため、大型の航空機ではなく、中型機または小型機の需要が増加する傾向にある。このような中型機または小型機の需要が増加すれば、航空機の月産機数も増加するため、より製造効率を向上する必要がある。複合材料製航空機用部品は、前記の通り、より軽量かつ高強度であるため、中型機または小型機の部品として特に好適である。しかしながら、大型の部品だけでなく小型の部品もオートクレーブ成形により製造しようとしても、十分な製造効率を実現することは困難であると考えられる。
 例えば、航空機の胴体を構成するスキンの個数を、航空機1機当たり101 個と想定すれば、長尺部品であるビームは1機当たり102 個と想定されるが、同じく長尺部品であるストリンガおよびフレームは、いずれも1機当たり103 個すなわち数千個と想定される。さらには、より小型のクリップ等の部品は、異なる形状のものが数千種類存在し、1機当たり104 個すなわち数万個必要となる。このように長尺部品またはクリップ等の小型の部品は、1機当たり数千個から数万個となるので、このような部品を複合材料化してオートクレーブ成形することは、製造効率を大幅に低下させることが想定される。
 そこで、従来から、複合材料製航空機用部品を効率的かつ低コストで製造するための技術が提案されている。例えば、特許文献1には、複合材料を用いて細長い全体形状の部品(長尺部品)を、単純かつ低コストで製造する方法が開示されている。この方法では、複合材料を引抜成形して、樹脂が部分重合状態にある予成形物を得るとともに、樹脂が部分重合状態にある補強要素を準備し、予成形物に対して補強要素を付加して樹脂の重合を完了させることにより、航空機構造用の複合材料部品を製造している。
特開2015-214151号公報
 特許文献1によれば、前述したように、部分重合状態にある予成形物を補強要素により補強して硬化させることにより、複合材料製の長尺部品を単純かつ低コストで得ることができると記載している。しかしながら、この方法では、樹脂の硬化の一例としてオートクレーブ(または炉)を用いることを開示している。それゆえ、前述したように、数千個から数万個の部品を効率的に製造する用途には不適であると考えられる。
 ここで、航空機用の長尺部材は、周長差を有するように長手方向に湾曲しているものが多い。このような湾曲部を有する複合材料製部品を成形するためには、一般的には、プリプレグを人手により積層して湾曲部を有する積層体を形成し、これをオートクレーブ成形する。それゆえ、湾曲部を有する長尺部品を複合材料化する場合には、オートクレーブ成形による成形時間の長さだけでなく、積層体の形成工程も製造効率の向上の妨げとなる。
 本発明はこのような課題を解決するためになされたものであって、オートクレーブ成形を用いることなく、効率的に製造することが可能な、湾曲構造を有する複合材料製航空機用部品を提供することを目的とする。
 本発明に係る複合材料製航空機用部品は、前記の課題を解決するために、強化繊維および樹脂組成物から少なくとも構成される複合材料層が複数積層された積層構造を有するとともに、長手方向に周長差を有する湾曲構造を有する、複合材料製航空機用部品であって、前記積層構造が、前記湾曲構造を含む部品全体において保持され、前記複合材料層は、少なくとも、前記強化繊維が、接合部を含まない単一の連続繊維で構成され、かつ、部分的な切込部を含み、さらに、前記強化繊維には、前記切込部が開いた状態である開切込部が含まれている層である構成である。
 前記構成によれば、強化繊維が接合部を含まない単一の連続繊維で構成され、かつ、部分的な切込部を含んでいる。このような強化繊維を含むプリプレグの積層体を成形型に設置して加熱加圧成形(プレス成形)すると、成形型のキャビティ内で樹脂組成物が流動しつつ、強化繊維の切込部が開くことによって、強化繊維の積層構造が実質的に保持されるか積層構造が大幅に変化しない状態で、当該強化繊維を含む複合材料層(すなわち強化繊維および樹脂組成物)は大規模に伸展する。これにより、加熱加圧成形の実質1工程で、長手方向に周長差を有する湾曲構造を容易に成形することができる。そのため、オートクレーブ成形を用いることなく、金属と同様に積層体を面内方向に伸展させながら複合材料製航空機用部品をプレス成形で容易に製造することができるとともに、従来のようにプリプレグを切り貼りして積層する手間を省くことができるため、製造効率を向上することができる。
 また、本発明に係る複合材料製航空機用部品の製造方法は、前記の課題を解決するために、強化繊維および樹脂組成物から構成される複合材料層を複数積層して積層体を形成し、当該積層体を成形型に設置して加熱加圧成形する、複合材料製航空機用部品の製造方法であって、前記複合材料層として、部分的な切込部を複数含む切込領域を有し、かつ、接合部を含まない単一の強化繊維および樹脂組成物から構成されるものが用いられ、前記成形型は、長手方向に湾曲しており、かつ、前記積層体を設置する設置面を有し、前記積層体を前記載置面に載置して、当該積層体全体を面内方向に伸展させた状態で、加熱加圧成形する構成である。
 本発明の上記目的、他の目的、特徴、および利点は、添付図面参照の下、以下の好適な実施態様の詳細な説明から明らかにされる。
 本発明では、以上の構成により、オートクレーブ成形を用いることなく、効率的に製造することが可能な、湾曲構造を有する複合材料製航空機用部品を提供することができる、という効果を奏する。
図1は、本発明の実施の形態に係る複合材料製航空機用部品の代表的な構成を示す模式的斜視図である。 図2Aは、図1に示す複合材料製航空機用部品およびその素材であるプリプレグ積層体の一例を模式的に示す断面の対比図であり、図2Bは、図2Aに示すプリプレグ積層体の強化繊維が有する切込部の一例を模式的に示す部分平面図であり、図2Cは、図2Aに示す航空機用部品の強化繊維に含まれる開切込部の一例を模式的に示す部分平面図である。 図3は、本発明の実施の形態に係る複合材料製航空機用部品には含まれず、従来の複合材料製航空機用部品に含まれる接合部の一例を示す模式的分解断面図である。 図4Aは、本発明の実施の形態に係る複合材料製航空機用部品の製造方法の代表的な一例を示す工程図であり、図4Bは、従来の複合材料製航空機用部品の製造方法の代表的な一例を示す工程図である。 図5は、図4Aに示す複合材料製航空機用部品の製造方法におけるホットプレス成形工程の具体的な一例を示す模式図である。 図6は、図2Cに示す開切込部の具体的な一例を示す図である。 図7Aは、図1に示す複合材料製航空機用部品の具体的な一例を示す図であり、図7Bは、図7Aに示す複合材料製航空機用部品におけるI-I線矢視断面の一例を示す図であり、図7Cは、図7Aに示す複合材料製航空機用部品におけるII-II線矢視断面の一例を示す図であり、図7Dは、図7Aに示す複合材料製航空機用部品におけるIII-III線矢視断面の一例を示す図であり、図7Eは、図7Aに示す複合材料製航空機用部品におけるIV-IV線矢視断面の一例を示す図である。
 以下、本発明の代表的な実施の形態を、図面を参照しながら説明する。なお、以下では全ての図を通じて同一又は相当する要素には同一の参照符号を付して、その重複する説明を省略する。
 [複合材料製航空機用部品]
 まず、本開示に係る複合材料製航空機用部品の一例について、図1および図2A~図2Cを参照して具体的に説明する。
 本開示に係る複合材料製航空機用部品(以下、適宜「航空機用部品」と略す)は、強化繊維および樹脂組成物から少なくとも構成される複合材料層が複数積層された積層構造を有するとともに、長手方向に周長差を有する湾曲構造を有する。積層構造は、湾曲構造を含む部品全体において保持されており、複合材料層は、少なくとも、前記強化繊維が、接合部を含まない単一の連続繊維で構成され、かつ、部分的な切込部を含み、さらに、前記強化繊維には、前記切込部が開いた状態である開切込部が含まれている層である。
 本開示に係る航空機用部品の代表的な一例としては、図1に示すようなZ型フレーム30を挙げることができる。このZ型フレーム30は、その端面から見たときに、板状の本体部31(またはウェブ)と、当該本体部31の両縁部から互いに反対方向に折れ曲がった2つのフランジ部32,33と、を有する形状である。
 図2Aには、Z型フレーム30と、その素材となるプリプレグ積層体10とを図示している。図中上段がプリプレグ積層体10であり、複数の複合材料層が積層された積層構造を有している。図2Aにおける下段がZ型フレーム30の断面であり、本体部31およびフランジ部32,33全体において積層構造が保持されている。後述するように、プリプレグ積層体10をプレス成形することにより、Z型フレーム30等の航空機用部品が製造される。本開示においては、プリプレグ積層体10は、複数のプリプレグ(半硬化状態の複合材料層)が積層されて構成されているので、このプリプレグ積層体10を素材として製造される航空機用部品も複数の硬化した複合材料層が積層されたもの(積層構造を有するもの)となっている。
 複合材料層は、強化繊維および樹脂組成物から少なくとも構成されるが、本開示においては、複合材料層として、部分的な切込部を複数含む切込領域を有し、かつ、接合部を含まない単一の強化繊維を備えるものが、少なくとも用いられる。具体的には、例えば図2Bに模式的に示すように、硬化前の複合材料層11(すなわちプリプレグ)には、部分的な切込部12aが複数形成されている領域(切込領域)が含まれる。後述するように、この切込領域は、複合材料層11の一部であってもよいし、当該複合材料層11全体に及んでもよい。なお、本開示に係る航空機用部品に含まれない接合部については後述する。
 また、プリプレグ積層体10を構成する複数の複合材料層11は、全て強化繊維が切込領域を有するものであってもよいし、強化繊維が切込領域を有さないものを含んでもよい。強化繊維が切込領域を有する複合材料層11を、説明の便宜上「第一複合材料層」と称するときに、強化繊維が切込領域を有さない複合材料層を「第二複合材料層」と称することができる。本開示においては、第一複合材料層および第二複合材料層を構成する強化繊維は、いずれも接合部を含まない単一のもの、すなわち、1枚の複合材料層は、1層の強化繊維を有しており、複数層の強化繊維を含まない。
 プリプレグ積層体10をプレス成形して製造されるZ型フレーム30等の航空機用部品は、前記の通り長手方向に周長差を有する湾曲構造を有する。当該航空機用部品を構成する硬化した複合材料層のうち、第一複合材料層(すなわち強化繊維が切込部12aを有する複合材料層)では、プレス成形に際して、強化繊維が引き伸ばされて、これに伴って複数の切込部12aの多くが開いた状態となる。開いた切込部12aは、樹脂組成物が硬化することで開いた状態が維持されるので、例えば図2Cに示すように、製造される航空機用部品(Z型フレーム30)には、切込部12aが開いたままの状態である開切込部12bが生じる。
 本開示において、複合材料層を構成する強化繊維および樹脂組成物の具体的な種類は特に限定されず、航空機用部品に適用可能な材料を適宜選択して用いることができる。強化繊維は、航空機用部品において良好な物性(強度等)を実現できるものであれば、その具体的な種類は特に限定されないが、例えば、炭素繊維、ポリエステル繊維、PBO(ポリパラフェニレンベンゾビスオキサゾール)繊維、ボロン繊維、アラミド繊維、ガラス繊維、シリカ繊維(石英繊維)、炭化ケイ素(SiC)繊維、ナイロン繊維、等を挙げることができる。これら強化繊維は、1種類のみが用いられてもよいし2種類以上が適宜組み合わせて用いられてもよい。これらの中でも、特に航空機分野では炭素繊維が好適に用いられる。また、強化繊維の使用形態は特に限定されないが、代表的には、組物、織物、編物、不織布等で構成された基材として用いることができる。
 強化繊維に含浸される樹脂組成物は、基材を支持するマトリクス材(母材)として使用可能な樹脂材料を含有していればよい。具体的な樹脂材料としては、熱硬化性樹脂と熱可塑性樹脂とが挙げられる。
 熱硬化性樹脂の具体的な種類は特に限定されないが、代表的には、例えば、エポキシ樹脂、ポリエステル樹脂、ビニルエステル樹脂、フェノール樹脂、シアネートエステル樹脂、ポリイミド樹脂、ポリアミド樹脂等が挙げられる。これら熱硬化性樹脂は単独種で用いられてもよいし、複数種が組み合わせられて用いられもよい。また、これら熱硬化性樹脂のより具体的な化学構造も特に限定されず、公知の種々のモノマーが重合されたポリマーであってもよいし、複数のモノマーが重合されたコポリマーであってもよい。また、平均分子量、主鎖および側鎖の構造等についても特に限定されない。
 また、熱可塑性樹脂の具体的な種類も特に限定されないが、特に航空機用部品の分野では、ポリフェニレンスルフィド(PPS)、ポリエーテルエーテルケトン(PEEK)、ポリエーテルイミド(PEI)等のエンジニアリングプラスチックが好適に用いられる。これら熱可塑性樹脂もより具体的な化学構造は特に限定されず、公知の種々のモノマーが重合されたポリマーであってもよいし、複数のモノマーが重合されたコポリマーであってもよい。また、平均分子量、主鎖および側鎖の構造等についても特に限定されない。
 複合材料のマトリクス材は、前述した熱硬化性樹脂または熱可塑性樹脂のみで構成されてもよい(すなわちマトリクス材は公知の樹脂材料のみであってもよい)が、公知の硬化剤、硬化促進剤、繊維基材以外の補強材または充填材、その他公知の添加剤を含んでいてもよい。硬化剤、硬化促進剤等の添加剤の具体的な種類、組成等についても特に限定されず、公知の種類または組成のものを好適に用いることができる。
 つまり、本開示においては、マトリクス材は、熱硬化性樹脂および他の成分を含有する熱硬化性樹脂組成物、あるいは、熱可塑性樹脂および他の成分を含有する熱可塑性樹脂組成物であってもよい。したがって、本開示においては、複合材料は、強化繊維と熱硬化性樹脂または熱硬化性樹脂組成物とで構成される「熱硬化型」であってもよいし、強化繊維と熱可塑性樹脂または熱可塑性樹脂組成物とで構成される「熱可塑型」であってもよい。
 航空機用部品の素材となるプリプレグ積層体10は、前記の通り、半硬化状態の複合材料層であるプリプレグを積層したものである。プリプレグは、強化繊維で構成される基材に熱硬化性樹脂組成物または熱可塑性樹脂組成物を含浸させて半硬化状態としたシート体である。プリプレグの具体的な構成は特に限定されない。また、プリプレグを積層して形成されるプリプレグ積層体10の具体的な構成も特に限定されない。例えば、プリプレグの形状、プリプレグの積層枚数、プリプレグの積層方向等については、得られる航空機用部品の形状、用途、種類等に応じて適宜設定することができる。
 また、プリプレグ積層体10の形状も特に限定されない。代表的には、図2Aに示す平板状が挙げられるが、プリプレグ積層体10は平板状のみに限定されず、平板に近い単純形状であってもよいし、一部に立体形状を含んでもよい。
 また、プリプレグ積層体10は、プリプレグすなわち複合材料層以外の他の材料層が含まれてもよい。つまり、本開示に係る航空機用部品は、複合材料以外の他の材料を含んでもよい。例えば、プリプレグ積層体10の表面には、伸展性を有する樹脂(または樹脂組成物)により形成された樹脂層が積層されてもよい。このような樹脂層を含むプリプレグ積層体10を後述するように加熱加圧成形することで、表面に樹脂層が形成された航空機用部品を製造することができる。表面の樹脂層としては、機械加工性を付与する(例えば後述する穴開け時にバリまたはささくれ等の発生を防止する)目的、あるいは、航空機用部品の外観を向上する目的のものが挙げられるが、特に限定されない。
 また、プリプレグ積層体10には、他の材料層として金属メッシュ層あるいは金属箔が含まれてもよい。金属メッシュ層または金属箔も伸展性を有するので、本開示に係る航空機用部品の他の材料層として好適に用いることができる。例えば、プリプレグ積層体10の表面には、銅メッシュ層が積層されてもよい。銅メッシュ層を含むプリプレグ積層体10を後述するように加熱加圧成形することで、表面に銅メッシュを備える航空機用部品を製造することができる。銅メッシュ層は、航空機用部品において耐雷保護対策に用いられるが、金属メッシュ層または金属箔の具体的な種類または用途については特に限定されない。
 本開示に係る航空機用部品は、前記の通り、長手方向に周長差を有する湾曲構造を有する長尺部材であればよく、その具体的な構成は特に限定されない。例えば、図1および図2Aに示すZ型フレーム30は、本体部31に対してそれぞれのフランジ部32,33が反対側に折り曲げられているが、例えば、同一方向に折り曲げられたC型フレームであってもよい。あるいは、単一のフランジ部32のみを有するL型フレームであってもよい。したがって、本開示に係る航空機用部品においては、長手方向の側縁の少なくも一方が折り曲げられてフランジ部を形成する構成であってもよい。あるいは、図示しないが、本体部31が平坦ではなく、波型構造、折れ曲り構造、ビード等の凹凸構造を有する構成であってもよい。
 本開示が好適に適用される航空機用部品は、一方向に延伸する長尺部材であって、その長手方向に周長差を有する湾曲構造を含むものであればよい。それゆえ、Z型フレーム30、あるいはC型フレーム、L型フレームのようなフレームであってもよいし、ストリンガであってもよいし、フレームまたはストリンガ以外の長尺部材であってもよい。また、断面形状もZ型、C型、L型等に限定されず、ハット型(Ω型)等の他の形状であってもよい。
 本開示に係る航空機用部品における強化繊維の含有率は特に限定されず、当該航空機用部品に要求される諸物性または諸条件に応じて好適な含有率を設定することができる。本開示においては、航空機用部品における強化繊維の含有率は、繊維体積含有率Vfで規定することができる。繊維体積含有率Vfは、炭素繊維強化プラスチック(CFRP)の分野等において公知であり、複合材料全体に含有される繊維の量(含有量)を体積比で示す指標である。繊維体積含有率Vfの算出方法は、JIS K7075またはASTM D3171に準じて行えばよい。
 本開示に係る航空機用部品における繊維体積含有率Vfは、50~70%の範囲内であればよく、好ましくは55~65%の範囲内を挙げることができる。繊維体積含有率Vfが小さ過ぎると、航空機用部品として良好な物性等を実現できない場合がある。一方、繊維体積含有率Vfが大き過ぎると、マトリクス材である樹脂組成物が少なくなり過ぎて、強化繊維を良好に支持できなくなるだけでなく、強化繊維が切込部12aを有していても、強化繊維が相対的に多くなり過ぎて、プレス成形時に良好に流動または伸展できなくなるおそれがある。
 ここで、本開示に係る航空機用部品に含まれていない接合部について図3を参照して具体的に説明する。図3には、従来の航空機用部品50の一部を模式的に図示している。図3に示す例では、従来の航空機用部品50の一部を、複合材料層を3層含む平板状の構成として図示しているが、実際の航空機用部品50は、複合材料層が3層に限定されず2層以上含むものであればよい。また、実際の航空機用部品50は、平板状に限定されず前述した立体構造を含むもの、あるいは、その他の公知の構造を有するものであればよい。
 航空機用部品50では、それぞれの複合材料層を構成する強化繊維14に一つの接合部15が設けられている。接合部15では、一方の強化繊維14に対して他方の強化繊維14が部分的に重なっている構成である。航空機用部品では、接合部15の間隔Wは例えば13mm以上を挙げることができる。また、隣接する上下層においては、接合部15同士の間隔は例えば25mm以上を挙げることができる。図3に示す例では、最下層(第3層)の強化繊維14における接合部15と中間層(第2層)の強化繊維14における接合部15との間隔が25mm以上であればよい。
 航空機用部品が前述した立体構造を含む場合、従来では、プリプレグを手作業等により所定形状に積層してプリプレグ積層体10を形成してからオートクレーブにより加熱加圧成形している。この積層に際しては、図3に示すように、各層に接合部15を含むようにプリプレグが積層される。このような接合部15を含まないようにプリプレグが積層されてプリプレグ積層体10が形成された場合には、加熱加圧成形により得られる航空機用部品50において部分的に十分な強度または弾性率を実現できなくなるおそれがある。
 これに対して、本開示に係る航空機用部品では、複合材料層を構成する強化繊維が単一の連続繊維で構成され、かつ、部分的な切込部を含んでいる。そのため、加熱加圧成形時に樹脂組成物とともに強化繊維も流動または伸展(もしくはその両方)することができる。その結果、前述した立設部、凸部、および湾曲部の少なくともいずれかの立体構造を有する航空機用部品を、図3に示すような接合部15を形成することなく製造することができる。
 [複合材料製航空機用部品の製造方法]
 次に、本開示に係る複合材料製航空機用部品の製造方法について、図4A,図4Bおよび図5を参照して具体的に説明する。
 図4Aに示す工程図は、図1または図2Aに例示するZ型フレーム30等の航空機用部品を製造する際の代表的な工程を示している。これに対して、図4Bに示す工程図は、従来の一般的な航空機用部品を製造する際の代表的な工程を示している。複合材料の種類、プリプレグの種類、形状、あるいは、航空機用部品の種類、形状、用途等の諸条件によって実施される工程は異なるが、図4A,図4Bに示すそれぞれの工程図は、一般的な航空機用部品の代表的な製造方法の一例である。
 航空機用部品を従来の一般的な製造方法で製造する場合、まず、プリプレグを積層して平板状のプリプレグ積層体10を準備し(工程P11)、このプリプレグ積層体10をホットドレープ成形して湾曲構造を形成する(工程P12)。ホットドレープ成形では、プリプレグ積層体10を湾曲構造およびZ型を形成するための治具上に載置し、樹脂組成物は硬化しないが流動性が生じる条件で、加熱および加圧を行う。これにより、湾曲構造および断面のZ型が形成されたプリプレグ積層体10が得られる。その後、耐熱フィルムおよびシール材等を用いて、雄型治具とともにプリプレグ積層体10をバギング処理し(工程P13)、オートクレーブ成形する(工程P14)。オートクレーブ成形によりプリプレグ積層体10が加熱および加圧されるため、当該プリプレグ積層体10は、湾曲構造および断面のZ型を保持した状態で硬化し、硬化物すなわち航空機用部品が得られる。
 オートクレーブ成形が終了すれば、バギングされた状態の雄型治具および航空機用部品をデバッグ処理して、当該航空機用部品を脱型する(工程P15)。オートクレーブ成形に際しては、樹脂組成物が流れ出して硬化した余剰部分が周囲に発生する。そのため、この余剰部分を除去するために硬化物をトリム処理する(工程P16)。トリム処理の後に、硬化物を穴開け処理し(工程P17)、その後に硬化物について非破壊検査(Non Destructive Inspection:NDI)を行う(工程P18)。NDIでは、硬化物の品質に影響を与える(またはその可能性のある)欠陥、例えば、層間剥離、空隙(ボイド)、ポロシティ等の有無について検査する。さらにNDIの後に、硬化物をエッジシール処理する(工程P19)。エッジシール処理により、トリム処理によってトリム端に露出した繊維からの吸湿を防止することができるとともに、露出した繊維を介した電食を防止することも可能となる。
 これに対して、本開示に係る航空機用部品の係る製造方法では、従来と同様に、プリプレグを積層してプリプレグ積層体10を準備するが(工程P01)、このプリプレグ積層体10を所定の成形型を用いてホットプレス成形(加熱加圧成形)する(工程P02)。ホットプレス成形に際しては、図5に示すように、断面のZ型および湾曲構造を形成するためのZ型フレーム治具40を準備する。
 このZ型フレーム治具40は、長手方向に湾曲しており、この湾曲に沿って周長差を有する載置面40a,40bが設けられている。載置面40aは、Z型フレーム治具40の上面であり、載置面40bは、載置面40aにおける外側の側縁に隣接かつ立設した面である。また、載置面40aの内側の側縁には拘束部41が設けられている(説明の便宜上、図中点線で図示)。この拘束部41は、例えば、載置面40aの内側に隣接かつ立設する拘束面に取り付け可能に設けられ、拘束面との間でプリプレグ積層体10の一部を拘束するように構成されている。
 図5における上段に示すように、プリプレグ積層体10は、まず、拘束部41により一方の側縁部が拘束部41により拘束される。そして、図5における中段に示すように、プリプレグ積層体10を載置面40aから載置面40bに向かって面内方向に大規模に延伸しながら(図中黒のブロック矢印)、当該載置面40a,40b上に載置する。この状態でホットプレス成形することにより、Z型フレーム治具40上において、樹脂組成物が流動しつつ、強化繊維の切込部が開くことによって、強化繊維の積層構造が実質的に保持されたままで、当該強化繊維を含む複合材料層(すなわち強化繊維および樹脂組成物)が大規模に伸展し、樹脂組成物が硬化する。これにより、ホットプレス成形の実質1工程で、図5における下段に示すように、Z型フレーム30等のように、長手方向に周長差を有する湾曲構造を有する航空機用部品を容易に成形することができる。
 また、強化繊維の切込部が開いて複合材料層が大規模に伸展することで、当該強化繊維の配向角を希望の角度になるように制御することができる。例えば、Z型フレーム30等の湾曲構造を有する長尺部品においては、周長方向およびその直交方向における強化繊維の繊維方向(配向角)が、その強度に大きく寄与し得る。本開示においては、切込部により強化繊維が大規模に進展するため、強化繊維の繊維方向は、周長方向およびその直交方向に対して概ね沿うように制御することができる。一方、従来の製造方法のようにプリプレグを切り貼りして積層する場合には、繊維方向を周長方向およびその直交方向に沿わせるような制御はできない。
 また、本開示に係る製造方法では、従来の製造方法のように、加熱とともに加圧を行うオートクレーブが必要なくなる。オートクレーブは、ホットプレス成形の設備に比べて相対的に高価であるので、本開示に係る製造方法であれば、製造設備の費用の増加を抑制することができる。また、オートクレーブが不要となれば、バギング処理およびデバッグ処理も必要なくなる。バギング処理およびデバッグ処理は、工数も作業時間も相対的に大きくなるので、これら処理を削減することで、製造方法をより効率化することができる。なお、ホットプレス成形(工程P02)において、プリプレグ積層体10の強化繊維を好適に進展させることが可能であるならば、拘束部41等によりプリプレグ積層体10の一部を拘束する必要はない。
 ホットプレス成形により硬化物すなわち航空機用部品が得られれば、当該航空機用部品に対して、前述したようにトリム処理(工程P03)および穴あけ処理(工程P04)を行ってから、当該航空機用部品についてNDIを行い(工程P05)、その後に硬化物をエッジシール処理する(工程P06)。ここで、本開示に係る製造方法では、ホットプレス成形(工程P02)に際して、プリプレグ積層体10を構成する複合材料(強化繊維および樹脂組成物)の流動を制御することができるので、航空機用部品の形状、複合材料の種類、ホットプレス成形の条件等の諸条件に応じて、エッジシール処理を省略することも可能となる。
 ここで、本開示に係る航空機用部品の製造方法において、複合材料の流動制御および伸展制御について説明する。前記の通り、本開示においては、プリプレグ積層体10を構成する複合材料層に、第一複合材料層すなわち強化繊維に切込領域(切込部12aが形成されている領域)を含むので、ホットプレス成形に際して、樹脂組成物だけでなく強化繊維も流動させたり伸展させたりすることができる。プリプレグ積層体10における切込領域の位置は特に限定されず、得られる航空機用部品の断面構造あるいは湾曲の程度に応じた好適な位置を適宜設定することができる。
 このように、本開示に係る航空機用部品の製造方法では、プリプレグ積層体10において切込領域の位置を適宜設定することで、長手方向に周長差を有する湾曲構造をプレス成形により製造することができる。従来においても、プリプレグ積層体をプレス成形して周長差を有する航空機用の長尺部品を製造することは可能であったものの、その周長差および長さに制限があった。
 従来のプレス成形による製造方法では、長尺部材の長さは300mm程度までが製造効率上の限界であり、また、湾曲構造の曲率半径Rは8000mmを超えないと、強化繊維が伸展しないためプリプレグ積層体が成形型になじまず、特に内側にしわが発生した。これに対して、本開示に係る製造方法では、長さが300mm以上であり、曲率半径Rは8000mm以下である長尺部品を良好に製造することができる。特に、長さに関しては理論上制限なしで製造することが可能である。
 [航空機用部品の具体例]
 次に、図6および図7A~図7Eを参照して、実際に製造した航空機用部品の一例について説明する。図6は、図2Cに模式的に示す開切込部12bの実際の一例であり、このような開切込部は、図7Aに示すZ型フレームの表面に観察される。図6に示す例は、航空機用部品の表面に形成された開切込部12bの一例であり、本開示に係る航空機用部品の特徴的な構成である。
 図7Aに示すZ型フレームでは、全体的に積層構造が良好に保持されている。例えば、Z型フレームの縦断面すなわち図7AにおけるI-I線矢視方向の断面図を見ると、図7Bに示すように、複合材料層の積層構造が良好に保持されている。また、Z型フレームにおける3箇所の横断面すなわち図7AにおけるII-II線矢視方向の断面図、III-III線矢視方向の断面図、IV-IV線矢視方向の断面図を見ても、全体的に複合材料層の積層構造が良好に保持されている。
 このように、本開示に係る航空機用部品は、強化繊維および樹脂組成物から少なくとも構成される複合材料層が複数積層された積層構造を有するとともに、長手方向に周長差を有する湾曲構造を有しており、積層構造が、湾曲構造を含む部品全体において保持され、複合材料層は、少なくとも、前記強化繊維が、接合部を含まない単一の連続繊維で構成され、かつ、部分的な切込部を含み、さらに、前記強化繊維には、前記切込部が開いた状態である開切込部が含まれている層である。
 また、本開示に係る航空機用部品の製造方法は、強化繊維および樹脂組成物から構成される複合材料層を複数積層して積層体を形成し、当該積層体を治具に設置して加熱加圧成形する際に、複合材料層として、部分的な切込部を複数含む切込領域を有し、かつ、接合部を含まない単一の強化繊維および樹脂組成物から構成されるものが用いられ、治具は、長手方向に湾曲しており、かつ、積層体を設置する設置面を有し、この積層体を載置面に載置して、その一部を拘束した状態で当該積層体全体を面内方向に伸展させた状態で、加熱加圧成形する。
 このような構成によれば、強化繊維が接合部を含まない単一の連続繊維で構成され、かつ、部分的な切込部を含んでいる。このような強化繊維を含むプリプレグの積層体を成形型に設置して加熱加圧成形(プレス成形)すると、成形型のキャビティ内で樹脂組成物が流動しつつ、強化繊維の切込部が開くことによって、強化繊維の積層構造が実質的に保持されるか積層構造が大幅に変化しない状態で、当該強化繊維を含む複合材料層(すなわち強化繊維および樹脂組成物)は大規模に伸展する。これにより、加熱加圧成形の実質1工程で、長手方向に周長差を有する湾曲構造を容易に成形することができる。そのため、オートクレーブ成形を用いることなく、金属と同様に積層体を面内方向に伸展させながら複合材料製航空機用部品をプレス成形で容易に製造することができるとともに、従来のようにプリプレグを切り貼りして積層する手間を省くことができるため、製造効率を向上することができる。
 [本開示に係る複合材料製航空機用部品およびその製造方法]
 本開示に係る複合材料製航空機用部品は、強化繊維および樹脂組成物から少なくとも構成される複合材料層が複数積層された積層構造を有するとともに、長手方向に周長差を有する湾曲構造を有する、複合材料製航空機用部品であって、前記積層構造が、前記湾曲構造を含む部品全体において保持され、前記複合材料層は、少なくとも、前記強化繊維が、接合部を含まない単一の連続繊維で構成され、かつ、部分的な切込部を含み、さらに、前記強化繊維には、前記切込部が開いた状態である開切込部が含まれている層である構成である。
 前記構成によれば、強化繊維が接合部を含まない単一の連続繊維で構成され、かつ、部分的な切込部を含んでいる。このような強化繊維を含むプリプレグの積層体を成形型に設置して加熱加圧成形(プレス成形)すると、成形型のキャビティ内で樹脂組成物が流動しつつ、強化繊維の切込部が開くことによって、強化繊維の積層構造が実質的に保持されるか積層構造が大幅に変化しない状態で、当該強化繊維を含む複合材料層(すなわち強化繊維および樹脂組成物)は大規模に伸展する。これにより、加熱加圧成形の実質1工程で、長手方向に周長差を有する湾曲構造を容易に成形することができる。そのため、オートクレーブ成形を用いることなく、金属と同様に積層体を面内方向に伸展させながら複合材料製航空機用部品をプレス成形で容易に製造することができるとともに、従来のようにプリプレグを切り貼りして積層する手間を省くことができるため、製造効率を向上することができる。
 前記構成の複合材料製航空機用部品においては、さらに、前記長手方向の側縁の少なくも一方が折り曲げられている構成であってもよい。
 また、前記構成の複合材料製航空機用部品においては、長さが300mm以上であり、曲率半径Rが8000mm以下である構成であってもよい。
 また、前記構成の複合材料製航空機用部品においては、前記樹脂組成物は、熱硬化性樹脂または熱可塑性樹脂を含有するものである構成であってもよい。
 また、前記構成の複合材料製航空機用部品においては、前記強化繊維は炭素繊維である構成であってもよい。
 本開示に係る複合材料製航空機用部品の製造方法は、強化繊維および樹脂組成物から構成される複合材料層を複数積層して積層体を形成し、当該積層体を成形型に設置して加熱加圧成形する、複合材料製航空機用部品の製造方法であって、前記複合材料層として、部分的な切込部を複数含む切込領域を有し、かつ、接合部を含まない単一の強化繊維および樹脂組成物から構成されるものが用いられ、前記成形型は、長手方向に湾曲しており、かつ、前記積層体を設置する設置面を有し、前記積層体を前記載置面に載置して、当該積層体全体を面内方向に伸展させた状態で、加熱加圧成形する構成である。
 前記構成の複合材料製航空機用部品の製造方法においては、前記切込領域を有する複合材料層を第一複合材料層としたときに、前記複合材料層として、さらに、前記切込領域を有さず、接合部を含まない単一の強化繊維および樹脂組成物から構成される第二複合材料層が用いられる構成であってもよい。
 また、前記構成の複合材料製航空機用部品の製造方法においては、前記切込領域は、前記複合材料層の一部であるか、当該複合材料層全体に及んでいる構成であってもよい。
 また、前記構成の複合材料製航空機用部品の製造方法においては、前記積層体を面内方向に伸展させる際に、当該積層体の一部を拘束する構成であってもよい。
 なお、本発明は前記実施の形態の記載に限定されるものではなく、特許請求の範囲に示した範囲内で種々の変更が可能であり、異なる実施の形態や複数の変形例にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施の形態についても本発明の技術的範囲に含まれる。
 また、上記説明から、当業者にとっては、本発明の多くの改良や他の実施形態が明らかである。従って、上記説明は、例示としてのみ解釈されるべきであり、本発明を実行する最良の態様を当業者に教示する目的で提供されたものである。本発明の精神を逸脱することなく、その構造及び/又は機能の詳細を実質的に変更できる。
 本発明は、複合材料製の航空機用部品を製造する分野、特に、フレームまたはストリンガ等のような長尺部材であって、長手方向に周長差を有する湾曲構造を含む航空機用部品を複合材料で製造する分野に広く好適に用いることができる。
10:プリプレグ積層体
11:複合材料層
12a:切込部
12b:開切込部
14:強化繊維
15:接合部
30:Z型フレーム(航空機用部品、長尺部材)
31:本体部
32,33:フランジ部
40:Z型フレーム治具
40a,40b:載置面
41:拘束部
 

Claims (9)

  1.  強化繊維および樹脂組成物から少なくとも構成される複合材料層が複数積層された積層構造を有するとともに、長手方向に周長差を有する湾曲構造を有する、複合材料製航空機用部品であって、
     前記積層構造が、前記湾曲構造を含む部品全体において保持され、
     前記複合材料層は、少なくとも、前記強化繊維が、接合部を含まない単一の連続繊維で構成され、かつ、部分的な切込部を含み、
     さらに、前記強化繊維には、前記切込部が開いた状態である開切込部が含まれている層であることを特徴とする、
    複合材料製航空機用部品。
  2.  さらに、前記長手方向の側縁の少なくも一方が折り曲げられていることを特徴とする、
    請求項1に記載の複合材料製航空機用部品。
  3.  長さが300mm以上であり、曲率半径Rが8000mm以下であることを特徴とする、
    請求項1または2に記載の複合材料製航空機用部品。
  4.  前記樹脂組成物は、熱硬化性樹脂または熱可塑性樹脂を含有するものであることを特徴とする、
    請求項1から3のいずれか1項に記載の複合材料製航空機用部品。
  5.  前記強化繊維は炭素繊維であることを特徴とする、
    請求項1から4のいずれか1項に記載の複合材料製航空機用部品。
  6.  強化繊維および樹脂組成物から構成される複合材料層を複数積層して積層体を形成し、
     当該積層体を成形型に設置して加熱加圧成形する、複合材料製航空機用部品の製造方法であって、
     前記複合材料層として、部分的な切込部を複数含む切込領域を有し、かつ、接合部を含まない単一の強化繊維および樹脂組成物から構成されるものが用いられ、
     前記成形型は、長手方向に湾曲しており、かつ、前記積層体を設置する設置面を有し、
     前記積層体を前記載置面に載置して、当該積層体全体を面内方向に伸展させた状態で、加熱加圧成形することを特徴とする、
    複合材料製航空機用部品の製造方法。
  7.  前記切込領域を有する複合材料層を第一複合材料層としたときに、
     前記複合材料層として、さらに、前記切込領域を有さず、接合部を含まない単一の強化繊維および樹脂組成物から構成される第二複合材料層が用いられることを特徴とする、
    請求項6に記載の複合材料製航空機用部品の製造方法。
  8.  前記切込領域は、前記複合材料層の一部であるか、当該複合材料層全体に及んでいることを特徴とする、
    請求項6または7に記載の複合材料製航空機用部品の製造方法。
  9.  前記積層体を面内方向に伸展させる際に、当該積層体の一部を拘束することを特徴とする、
    請求項6から8のいずれか1項に記載の複合材料製航空機用部品の製造方法。
     
PCT/JP2019/046789 2018-12-03 2019-11-29 複合材料製航空機用部品およびその製造方法 WO2020116343A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP19893392.1A EP3892549A4 (en) 2018-12-03 2019-11-29 AIRCRAFT COMPONENT MADE OF COMPOSITE MATERIAL AND PROCESS FOR THEIR MANUFACTURE
US17/337,416 US20210284317A1 (en) 2018-12-03 2021-06-03 Composite-material aircraft part and method of manufacturing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018226503A JP7199940B2 (ja) 2018-12-03 2018-12-03 複合材料製航空機用部品およびその製造方法
JP2018-226503 2018-12-03

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/337,416 Continuation US20210284317A1 (en) 2018-12-03 2021-06-03 Composite-material aircraft part and method of manufacturing same

Publications (1)

Publication Number Publication Date
WO2020116343A1 true WO2020116343A1 (ja) 2020-06-11

Family

ID=70975121

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/046789 WO2020116343A1 (ja) 2018-12-03 2019-11-29 複合材料製航空機用部品およびその製造方法

Country Status (4)

Country Link
US (1) US20210284317A1 (ja)
EP (1) EP3892549A4 (ja)
JP (1) JP7199940B2 (ja)
WO (1) WO2020116343A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3736203A4 (en) * 2018-10-03 2021-06-02 Kawasaki Jukogyo Kabushiki Kaisha COMPOSITE COMPONENT FOR AIRCRAFT AND METHOD FOR MANUFACTURING IT

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021200047A1 (ja) 2020-03-31 2021-10-07 川崎重工業株式会社 航空機部品の中間生成品の製造方法および航空機部品
JP2021183586A (ja) 2020-05-22 2021-12-02 武田薬品工業株式会社 複素環化合物

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010023449A (ja) * 2008-07-24 2010-02-04 Toray Ind Inc 繊維強化プラスチックの製造方法
JP2015143007A (ja) * 2013-12-03 2015-08-06 ザ・ボーイング・カンパニーTheBoeing Company ハイブリッド積層体及び成形複合構造体
JP2015214151A (ja) 2014-05-09 2015-12-03 エアバス オペラシオン ソシエテ パ アクシオンス シンプリフィエ 航空機構造用の複合材料部品を製造する方法
WO2016043156A1 (ja) * 2014-09-19 2016-03-24 東レ株式会社 切込プリプレグおよび切込プリプレグシート
JP2016508900A (ja) * 2013-01-07 2016-03-24 ザ・ボーイング・カンパニーTheBoeing Company 輪郭に合致した積層構造体を製作するための方法及び装置
JP2017008258A (ja) * 2015-06-25 2017-01-12 三菱レイヨン株式会社 繊維強化複合材料
US20170129207A1 (en) * 2014-07-03 2017-05-11 Saab Ab A composite article having multifunctional properties and method for its manufacture

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9278484B2 (en) * 2008-04-17 2016-03-08 The Boeing Company Method and apparatus for producing contoured composite structures and structures produced thereby
EP2934860A4 (en) * 2012-12-19 2016-08-24 Fives Machining Systems Inc METHOD FOR FORMING A THREE-DIMENSIONAL PART
US10596778B2 (en) * 2015-04-13 2020-03-24 Howard E. Crawford, III Fiber-reinforced composite material
WO2017159567A1 (ja) * 2016-03-16 2017-09-21 東レ株式会社 繊維強化プラスチックの製造方法および繊維強化プラスチック

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010023449A (ja) * 2008-07-24 2010-02-04 Toray Ind Inc 繊維強化プラスチックの製造方法
JP2016508900A (ja) * 2013-01-07 2016-03-24 ザ・ボーイング・カンパニーTheBoeing Company 輪郭に合致した積層構造体を製作するための方法及び装置
JP2015143007A (ja) * 2013-12-03 2015-08-06 ザ・ボーイング・カンパニーTheBoeing Company ハイブリッド積層体及び成形複合構造体
JP2015214151A (ja) 2014-05-09 2015-12-03 エアバス オペラシオン ソシエテ パ アクシオンス シンプリフィエ 航空機構造用の複合材料部品を製造する方法
US20170129207A1 (en) * 2014-07-03 2017-05-11 Saab Ab A composite article having multifunctional properties and method for its manufacture
WO2016043156A1 (ja) * 2014-09-19 2016-03-24 東レ株式会社 切込プリプレグおよび切込プリプレグシート
JP2017008258A (ja) * 2015-06-25 2017-01-12 三菱レイヨン株式会社 繊維強化複合材料

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3892549A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3736203A4 (en) * 2018-10-03 2021-06-02 Kawasaki Jukogyo Kabushiki Kaisha COMPOSITE COMPONENT FOR AIRCRAFT AND METHOD FOR MANUFACTURING IT

Also Published As

Publication number Publication date
EP3892549A1 (en) 2021-10-13
JP7199940B2 (ja) 2023-01-06
JP2020090110A (ja) 2020-06-11
US20210284317A1 (en) 2021-09-16
EP3892549A4 (en) 2022-08-17

Similar Documents

Publication Publication Date Title
JP7149151B2 (ja) 複合材料製航空機用部品およびその製造方法
EP2477799B1 (en) Method of molding complex composite parts using pre-plied multi-directional continuous fiber laminate
WO2020116343A1 (ja) 複合材料製航空機用部品およびその製造方法
RU2697451C2 (ru) Способ изготовления композитного изделия
CA2693812C (en) A method of manufacturing a curved element made of composite material
US7179517B2 (en) Sheet moulding compound (SMC) with ventilating structure for entrapped gases
AU2014203585B2 (en) Laminated composite radius filler with geometric shaped filler element and method of forming the same
US8052826B2 (en) Method of making bead-stiffened composite parts and parts made thereby
US20090148700A1 (en) Method for Making a Composite RTM Part and Composite Connecting ROD Obtained by Said Method
JP2010524718A (ja) 連続したプロファイルを作製するための引抜き成形法
AU2005232257A1 (en) Moulding materials
AU2001293967A1 (en) Sheet moulding compound (SMC) with ventilating structure for entrapped gases
CN107521124A (zh) 碳纤维双面板加筋结构件及其制造方法
EP2983899B1 (en) Multi-component composite structures
US20150210019A1 (en) Methods for combining components of varying stages of cure
TW201919839A (zh) 纖維強化塑膠及纖維強化塑膠之製造方法
JP7240559B2 (ja) 航空機部品の中間生成品の製造方法および航空機部品
GB2573774A (en) Composite joint
GB2401081A (en) Moulding material
JPH04244839A (ja) 炭素繊維強化複合材料の作製方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19893392

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019893392

Country of ref document: EP

Effective date: 20210705