WO2020115964A1 - Battery case device and power supply device - Google Patents

Battery case device and power supply device Download PDF

Info

Publication number
WO2020115964A1
WO2020115964A1 PCT/JP2019/034250 JP2019034250W WO2020115964A1 WO 2020115964 A1 WO2020115964 A1 WO 2020115964A1 JP 2019034250 W JP2019034250 W JP 2019034250W WO 2020115964 A1 WO2020115964 A1 WO 2020115964A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
storage space
battery case
pressure source
adjusting
Prior art date
Application number
PCT/JP2019/034250
Other languages
French (fr)
Japanese (ja)
Inventor
淳也 西山
大祐 新井
直哉 後藤
Original Assignee
三桜工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三桜工業株式会社 filed Critical 三桜工業株式会社
Publication of WO2020115964A1 publication Critical patent/WO2020115964A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/262Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders with fastening means, e.g. locks
    • H01M50/264Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders with fastening means, e.g. locks for cells or batteries, e.g. straps, tie rods or peripheral frames
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • One aspect of the present invention relates to a battery case device and a power supply device, for example, a battery case device for operating a battery including all solid-state battery cells and a power supply device using the battery case device.
  • Patent Document 1 describes a battery module including a battery case for accommodating a single battery that is a lithium-ion all-solid-state battery.
  • a pressurized gas is sealed in a battery case that houses a single battery.
  • the unit cell is pressurized and compressed by the pressure of this gas.
  • the battery case is a closed system.
  • the means for adjusting the pressure in the battery module only changes the pressure depending on the gas temperature.
  • An object of one aspect of the present invention is to provide a battery case device capable of obtaining a stable output from a battery including all solid-state battery cells and a power supply device using the battery case device.
  • the inventors of the present invention did not enclose the gas in the battery case to hermetically seal the battery case, but instead vented the battery case by electrode-binding force of a battery including all-solid-state battery cells and the cell. We have found that the temperature can be adjusted. The present invention has been made based on such findings.
  • a battery case device for operating a battery including all-solid-state battery cells, including a battery case having a storage space capable of storing a battery, and the battery case includes: A factor that affects the output of the battery by forming an air supply port for communicating the pressure source to the storage space so that the compressed and heated gas is supplied from the pressure source to the storage space, and an exhaust port communicating with the storage space.
  • this battery case device has adjusting means, the adjusting means can change the factors that affect the output of the battery so that the battery functions.
  • the electrode restraining force of the all-solid-state battery cells increases, so that a stable output can be obtained from the battery.
  • the temperature of the all-solid-state battery cells can be raised.
  • the compressed and heated gas is continuously or intermittently supplied to the storage space through the air supply port, so that the internal temperature of the storage space can be kept high. Further, since the gas is discharged from the exhaust port while the gas is supplied to the storage space, it is possible to suppress excessive stress from occurring in the battery case.
  • the supply amount of the compressed and heated gas that flows into the storage space through the air supply port is adjusted, and the discharge amount from the discharge port is adjusted so that the pressure of the storage space is maintained at a predetermined pressure.
  • the output required for actual use of the battery can be adjusted to be stable.
  • This battery case device is provided with, as an adjusting means, an adjusting valve capable of adjusting the amount of gas discharged from the exhaust port so that the pressure of the storage space is maintained at a predetermined pressure, and the factors affecting the output are controlled.
  • a control unit for operating the adjusting valve may be further provided.
  • a drive unit capable of driving the pressure source is provided so as to adjust the supply amount of the gas introduced from the pressure source to the storage space through the air supply port, and the factors affecting the output are controlled.
  • You may further provide the control part which operates a drive part.
  • the control unit operates the adjusting valve or the drive unit so as to control the factors that affect the output of the battery, so that a stable output can be obtained from the battery.
  • Factors that affect the output of the battery include, for example, the electrode restraining force and the cell temperature.
  • the control unit may operate the adjustment valve so that the electrode restraining force is controlled and the cell temperature is controlled within the temperature range in which the battery functions, as the control of the factor affecting the output. Further, the control unit may operate the drive unit such that the electrode restraining force is controlled and the cell temperature is controlled within a temperature range in which the battery functions, as a control of a factor affecting the output.
  • the control unit may perform fail-safe control to stop the function of the battery by adjusting a factor that affects the output by the adjusting unit when an abnormality occurs in the battery. As a result, the function of the battery can be stopped when an abnormality occurs in the battery.
  • control unit may perform, as fail-safe control, decompression control in which the opening degree of the adjustment valve is operated in the increasing direction so that the internal pressure of the storage space decreases. By decompressing the storage space to atmospheric pressure, the electrode restraining force is weakened and the battery can stop functioning.
  • the all-solid-state battery cell has a glass solid electrolyte, and as an adjusting means, a drive unit capable of driving the pressure source is provided so as to adjust the supply amount of gas introduced from the pressure source to the storage space through the air supply port Therefore, the control unit may perform, as the fail-safe control, pressurization and heating control for operating the drive unit so that the cell temperature exceeds the crystallization temperature of the glass solid electrolyte.
  • the cell temperature exceeds the crystallization temperature when an abnormality occurs in the battery, so that the ionic transport of the glass solid electrolyte is closed by the crystallization of the glass solid electrolyte.
  • the battery is chemically immobilized, so that the battery can stop functioning when an abnormality occurs.
  • the battery case may be installed so that the exhaust port is located at the bottom of the storage space in the direction of gravity.
  • the exhaust port is located at the bottom of the storage space in the gravity direction. Therefore, even if water vapor contained in the gas supplied into the storage space is condensed to generate water droplets, the water droplets can be discharged from the exhaust port. As a result, it is possible to suppress contact of water drops with the battery pack.
  • a power supply device includes a battery including all-solid-state battery cells, and a battery case having a storage space capable of storing the battery, and in the battery case, compressed and heated gas is supplied from a pressure source.
  • An air supply port for communicating the pressure source to the storage space so as to be supplied to the storage space, and an exhaust port communicating with the storage space are formed, and as a factor affecting the output of the battery through the air supply port or the exhaust port. It has an adjusting means capable of adjusting a factor affecting the output.
  • the factor that affects the output as the factor that affects the output of the battery can be changed by the adjusting means so that the battery functions, so that a power source with stable output characteristics can be obtained. Be done.
  • the factor that affects the output of the battery can be changed by the adjusting means so that the battery functions, so that the output required in actual use of the battery can be adjusted to be stable.
  • FIG. 1 is a schematic configuration diagram of a power supply device according to the first embodiment.
  • FIG. 2 is a schematic cross-sectional view of the assembled battery.
  • FIG. 3 is a graph showing the relationship between the absolute pressure of an all-solid-state battery and the electrode restraining force.
  • FIG. 4 is a graph showing the relationship between the absolute pressure and the temperature of the all-solid-state battery.
  • FIG. 5 is a graph showing the relationship between the temperature and the ionic conductivity of the all-solid-state battery.
  • FIG. 6 is a graph schematically showing an example of a temporal change in the internal temperature of the battery case from the start of the operation of the power supply device to the steady state.
  • FIG. 7 is a schematic configuration diagram of the power supply device according to the second embodiment.
  • FIG. 8 is a diagram for explaining a control mode of the power supply device according to the third embodiment.
  • FIG. 9 is a diagram illustrating a configuration for performing pressure reduction control.
  • FIG. 10 is a graph showing the relationship between cell temperature and ionic conductivity of an all-solid-state battery.
  • FIG. 11 is a schematic configuration diagram of the power supply device according to the fourth embodiment.
  • FIG. 12 is a schematic configuration diagram of the power supply device according to the fifth embodiment.
  • the all-solid-state battery has the characteristic that the output changes according to the cell electrode binding force, the cell temperature, etc. Electrode binding force and cell temperature are examples of factors that influence the output. Therefore, the output characteristics of the battery can be adjusted by adjusting the electrode restraining force and/or the temperature of the all-solid-state battery.
  • An all-solid-state battery requires a higher electrode restraining force than a conventional battery having a liquid electrolyte and is required to maintain a cell temperature higher than that of a conventional battery.
  • the electrode restraining force applied to the cell case covering the all-solid-state battery cell is determined by the difference between the internal pressure in the battery case and the internal pressure in the cell case.
  • the pressure inside the cell case can be adjusted when assembling the battery, but the specific internal pressure varies depending on the type of cells to be stored in the cell case.
  • the cell case may be a laminated, square, or cylindrical cell case. If the cell is manufactured without adjusting the pressure under the atmospheric pressure until the cell is housed and sealed in the cell case, the internal pressure of the cell case is defined as 1 atmosphere. Then, when the compressed and heated gas is continuously supplied into the battery case while the internal pressure in the battery case is adjusted to be high, the internal temperature in the battery case also rises and the temperature of the cell rises. To be done. That is, if the compressed and heated gas is circulated in the battery case, the electrode restraining force of the battery and the cell temperature can be adjusted. Thereby, the output characteristics of the all-solid-state battery can be adjusted.
  • the battery case device and the power supply device according to the present embodiment can be used as, for example, a secondary battery device mounted in a vehicle such as an automobile, a power supply device that operates an electric machine such as a motor, and the like.
  • a secondary battery device mounted in a vehicle such as an automobile
  • a power supply device that operates an electric machine such as a motor
  • the same or corresponding elements are designated by the same reference numerals, and duplicated description will be omitted.
  • a power supply device 1 As shown in FIG. 1, a power supply device 1 according to the present embodiment includes an assembled battery 3 in which a plurality of all-solid-state battery cells (hereinafter, referred to as battery cells) 2 are combined, and a battery case 4 accommodating the assembled battery 3. And The assembled battery 3 corresponds to an example of a battery. A pressure source 5 and a regulating valve 6 are connected to the power supply device 1.
  • a device obtained by removing the assembled battery 3 from the power supply device 1 is also referred to as a battery case device.
  • the assembled battery 3 functions as one battery by connecting a plurality of battery cells 2 in series or in parallel with each other.
  • a positive electrode terminal (plus terminal) 15 and a negative electrode terminal (minus terminal) 16 for outputting electric power from the assembled battery 3 are connected to the assembled battery 3.
  • the battery cell 2 includes a positive electrode 12 and a negative electrode 13 that are arranged to face each other, and a solid electrolyte 14 that is arranged between the positive electrode 12 and the negative electrode 13.
  • the battery cell 2 is hermetically sealed while being housed in the cell case 2a.
  • the battery cell 2 may be housed in the cell case 2a in a state where the pressure is reduced to a negative pressure.
  • the electrolyte 14 carries out ion transport between the positive electrode 12 and the negative electrode 13.
  • the electrolyte 14 transports ions from the positive electrode 12 side to the negative electrode 13 side during discharging, and transports ions from the negative electrode 13 side to the positive electrode 12 side during charging.
  • Examples of the electrolyte 14 include sulfide-based electrolytes such as Li 10 Ge 0.25 P 2 S 12 and Li 6 PS 5 Cl, Li 3 PS 4 , 70Li 2 S.30P 2 S 5 , Li 7 P 3 S 11 and the like. Glass solid electrolytes such as
  • the battery case 4 has a storage space A for storing the assembled battery 3. That is, the storage space A is an internal space of the battery case 4 that can store the assembled battery 3.
  • the shape of the storage space A is not particularly limited and may be any shape as long as the assembled battery 3 can be stored.
  • An air supply port 18 and an exhaust port 19 are formed in the battery case 4.
  • the air supply port 18 allows the pressure source 5 to communicate with the storage space A.
  • the exhaust port 19 allows the adjustment valve 6 provided outside the battery case 4 to communicate with the storage space A.
  • the storage space A is not a closed space, but a space having a ventilation means with the outside through the air supply port 18 and the exhaust port 19.
  • the pressure source 5 compresses and heats the gas and supplies the compressed and heated gas to the battery case 4.
  • the pressure source 5 is basically operating while the power supply device 1 is operating, but may be stopped when heating of the battery cells 2 is not necessary.
  • a check valve (not shown) that blocks the flow of gas from the storage space A toward the pressure source 5 when the operation of the pressure source 5 is stopped is provided, for example, between the pressure source 5 and the air supply port 18. It may be provided.
  • the pressure source 5 for example, a fluid machine such as a compressor or a pump is used.
  • the pressure source 5 is connected to an air supply duct 20 that communicates with the air supply port 18. Then, the pressure source 5 pressure-feeds the gas from the air supply port 18 to the storage space A via the air supply duct 20.
  • the gas pressure-fed to the storage space A by the pressure source 5 may be air in the atmosphere or may be another gas.
  • the pressure source 5 need not be dedicated to the power supply device 1.
  • a vehicle-mounted pressure device such as a fan or a compressor mounted on the vehicle may be used as the pressure source 5.
  • the path from the pressure source 5 to the battery case 4 and the system including the battery case 4 may be insulated from the outside of the system.
  • the air supply duct 20 with a heat insulating material and using a disconnecting material as the exterior or interior of the battery case 4, or using a heat insulating material as the material of the battery case 4, the heat insulation of the system including the battery case 4 can be achieved. It is possible to secure the sex.
  • the adjusting valve 6 is a device that can adjust the amount of gas discharged from the exhaust port 19.
  • the adjustment valve 6 is a valve whose opening can be changed from a fully closed state to a fully opened state, and for example, a valve that can be used as a pressure regulator such as a regulator or a pressure reducing valve can be used.
  • the adjusting valve 6 is connected to an exhaust duct 21 that communicates with the exhaust port 19.
  • the adjusting valve 6 adjusts the discharge amount of gas so that the pressure in the storage space A is maintained at a predetermined pressure. As a result, the amount of pressurized and compressed gas flowing through the storage space A can be adjusted.
  • the gas discharged from the adjusting valve 6 is released into the atmosphere.
  • the gas compressed and heated by the pressure source 5 is pressure-fed to the storage space A from the air supply port 18, and the discharge amount of the gas is adjusted by the adjusting valve 6, so that the internal pressure of the storage space A is maintained at a high pressure state. it can.
  • the electrode restraining force of the battery cell 2 also increases in proportion to the internal pressure of the storage space A.
  • the horizontal axis represents the absolute pressure (hPa) of the storage space A
  • the vertical axis represents the electrode restraining force (kgf/cm 2 ) of the battery cell 2.
  • the temperature of the gas increases due to the pressure source 5 compressing the gas.
  • the horizontal axis indicates the absolute pressure (hPa) of the storage space A
  • the vertical axis indicates the internal temperature (° C.) of the storage space A.
  • the cell temperature which is one of the factors that influence the output of the assembled battery 3, affects the ionic conductivity of the electrolyte 14.
  • the ionic conductivity affects the output of the battery pack 3.
  • the ionic conductivity of the electrolyte 14 increases as the cell temperature increases and decreases as the cell temperature decreases.
  • the gradient of the ionic conductivity with respect to the cell temperature tends to change depending on the material of the electrolyte 14 and the like.
  • the tendency that the ionic conductivity becomes higher as the cell temperature becomes higher does not change depending on the material of the electrolyte 14 and the like.
  • the range of the electrode restraining force and the range of the cell temperature at which the assembled battery 3 functions varies depending on the material used as the electrolyte 14. For example, when a sulfide-based glass solid electrolyte is used as the electrolyte 14, the internal pressure of the storage space A required to obtain the electrode restraining force for the assembled battery 3 to function is 1 atm to 5 atm.
  • the range of the internal temperature of the storage space A required to obtain the cell temperature at which 3 operates is about ⁇ 20° C. to 170° C.
  • the functioning of the assembled battery 3 means that the assembled battery 3 can obtain an output that can be used practically, and does not include the case where the assembled battery 3 can obtain a low output that cannot be used practically.
  • the low output that cannot be used practically means, for example, an output less than the desired output required in actual use.
  • At least one of the regulating valve 6 and the pressure source 5 is operated so that the internal pressure of the storage space A is maintained within the above range and the internal temperature of the storage space A is maintained within the above range. 3 works. On the other hand, when at least one of the internal pressure and the internal temperature of the storage space A is outside the above ranges, the assembled battery 3 stops functioning.
  • the battery case 4 may have predetermined pressure resistance and heat resistance. For example, when the storage space A at 25° C. is adjusted within the range of 1 atm to 5 atm, the battery case 4 may have a pressure resistance capable of withstanding 8 atm with a margin. In addition, for example, when the storage space A is adjusted within the range of 1 to 6 atmospheres, the internal temperature of the storage space A is 25 to 225° C., and therefore the battery case 4 has a sufficient heat resistance to withstand 250° C. You may have. Moreover, since the heat resistant temperature of the assembled battery 3 changes depending on the electrodes used, the battery case 4 may have a predetermined heat resistance.
  • the assembled battery 3 is allowed to function at 150° C. or lower, and the battery case 4 has a margin and is heat resistant to 200° C. or higher. May have.
  • the material of such a battery case 4 include metal materials such as iron, stainless steel, aluminum and copper, heat resistant resins such as fluororesin, silicone resin and polyamide, and thermosetting resins such as polyimide, allyl resin and furan resin. Resin is used.
  • the battery case 4 may be installed so that the exhaust port 19 is located at the lowermost portion of the storage space A in the gravity direction.
  • a drain port for discharging water droplets from the storage space A may be separately provided in the battery case 4.
  • a desiccant or a drying device for drying the gas is attached to the pressure source 5, the upstream side of the pressure source 5, or between the pressure source 5 and the battery case 4. Good. If the power supply device 1 is used in an environment where heat pump heating is used, air that has passed through an outdoor unit (evaporator) that dehumidifies and drys air can also be used.
  • the fixture 23 includes, for example, a pair of plates 24 and 25 sandwiching the assembled battery 3 and a fixing member 26.
  • a fixing member 26 for example, a spring, a screw, or a belt is used.
  • the fixture 23 is not limited to the above mechanism and configuration.
  • FIG. 6 schematically shows an example of a temporal change in the internal temperature in the battery case 4 from the start of the operation of the power supply device 1 to the steady state in which the assembled battery 3 functions.
  • the internal temperature of the storage space A gradually rises with the passage of time.
  • the internal temperature reaches within the temperature range in which the battery pack 3 operates.
  • the regulating valve 6 is operated so that the electrode restraining force and the cell temperature are controlled within the range where the battery pack 3 functions.
  • the target value of the internal temperature is set according to the output required in actual use, and the opening degree of the regulating valve 6 is operated in the increasing direction or the decreasing direction so as to converge to the target value. As a result, the output characteristics of the assembled battery 3 can be stabilized.
  • the gas heated and compressed by the pressure source 5 is supplied to the storage space A of the battery case 4 through the air supply port 18, while the amount of gas discharged from the exhaust port 19 is adjusted by the control valve. Adjustable with 6.
  • the internal temperature of the storage space A can be maintained at a temperature necessary for obtaining the cell temperature at which the assembled battery 3 functions, and the internal pressure of the storage space A can be obtained at the electrode binding force at which the assembled battery 3 functions. The required pressure can be maintained.
  • the gas in the storage space A can be discharged from the exhaust port 19. Therefore, the load on the battery case 4 is suppressed.
  • the exhaust port 19 is located at the bottom of the storage space A in the gravity direction. In this case, even if the gas condenses in the storage space A to generate water drops, the water drops can be discharged from the exhaust port 19. This can prevent water droplets from accumulating inside the battery case 4 and contacting the battery pack 3.
  • the second embodiment differs from the first embodiment in that the power supply device includes a pressure source, a regulating valve, and a control unit, but is basically the same as the first embodiment. Therefore, hereinafter, only matters different from the first embodiment will be described, and explanations of matters similar to the first embodiment will be omitted.
  • the power supply device 31 includes an assembled battery 3, a battery case 4, a pressure source 5, a regulating valve 6, and a controller 32. Further, the power supply device 31 is provided with a drive unit 42 capable of driving the pressure source so that the amount of gas supplied from the pressure source 5 to the storage space A through the air supply port 18 can be adjusted.
  • the control unit 32 is an electronic control unit having a CPU (Central Processing Unit), a sensor input unit, a motor control output unit, and the like.
  • the controller 32 may be composed of a plurality of electronic control units.
  • the control unit 32 controls at least one of the adjusting valve 6 and the driving unit 42 so that a factor that affects the output of the assembled battery 3 is controlled.
  • the control unit 32 controls the regulating valve so that the electrode restraining force of the battery pack 3 is controlled and the cell temperature is controlled within a temperature range in which the battery pack 3 functions. Operate 6.
  • control unit 32 controls the cell binding temperature so that the electrode restraining force of the battery pack 3 is controlled and the temperature range in which the battery pack 3 functions is controlled.
  • the drive unit 42 is controlled. Only one of these controls may be performed by the control unit 32, but these controls may be performed simultaneously by the control unit 32. When these controls are performed simultaneously, the adjusting valve 6 and the drive unit 42 correspond to an example of adjusting means.
  • the internal temperature of the storage space A can be acquired from the temperature sensor 34, for example. Further, as shown in FIG. 8, when the temperature sensor 35 is arranged in the exhaust duct 21, the internal temperature of the storage space A can be acquired from the temperature sensor 35.
  • the control unit 32 may directly acquire the opening degree, which is an example of the operation amount of the adjustment valve 6, by an opening degree sensor or the like, but acquires it based on a control command value for the adjustment valve 6 stored in the control unit 32. You can also The electrode restraining force, which is an example of a factor affecting the output of the assembled battery 3, correlates with the internal pressure of the storage space A.
  • the cell temperature which is another example of the factor affecting the output of the assembled battery 3, correlates with the internal temperature of the storage space A.
  • the electrode restraining force and the cell temperature are controlled, the internal pressure and the internal temperature are controlled as physical quantities correlated with these, but the invention is not limited to this.
  • the electrode temperature and the cell temperature may be controlled by directly measuring the cell temperature.
  • the correspondence relationship between the electrode restraining force of the battery pack 3 and the operation amount of the adjusting valve 6, the correspondence relationship between the cell temperature and the operation amount of the adjusting valve 6, the assembled battery The correspondence between the electrode restraining force of No. 3 and the output of the drive unit 42 and the correspondence between the cell temperature and the output of the drive unit 42 may be obtained in advance and stored in the control unit 32.
  • the control unit 32 reads out various correspondence relationships stored in advance in a timely manner, and specifies the operation amount of the adjusting valve 6 or the output of the driving unit 42 corresponding to the target electrode restraining force and the cell temperature, respectively. Good.
  • control unit 32 may operate the regulating valve 6 and the drive unit 42 so as to operate with the specified operation amount and output.
  • the ambient environment such as the atmospheric temperature and the atmospheric pressure which influences the control accuracy may be taken into consideration. As a result, the difference between the content specified by the various correspondences and the actual situation is reduced, so that the control accuracy is improved.
  • the battery monitoring device 33 is a device that detects the output of the assembled battery 3 and monitors the charge/discharge performance of the assembled battery 3.
  • the control unit 32 may use the information on the charge/discharge performance acquired by the battery monitoring device 33 to calibrate the various correspondence relationships described above.
  • the control unit 32 performs fail-safe control when an abnormality regarding the battery pack 3 occurs.
  • the abnormality relating to the assembled battery 3 include abnormal temperature rise of the assembled battery 3, abnormal output rise of the assembled battery 3, short circuit of output, gas generation and leakage due to damage of the assembled battery 3.
  • the temperature abnormality of the battery pack 3 can be detected by, for example, the temperature sensor 34 (see FIG. 8) arranged inside the storage space A.
  • Generation and leakage of gas due to breakage of the assembled battery 3 can be detected by, for example, a gas sensor (not shown) arranged in the exhaust duct 21.
  • the fail-safe control is a control for stopping the function of the battery pack 3 when an abnormality occurs in the battery pack 3. That is, the fail-safe control is control for stopping the function of the assembled battery 3 by adjusting factors that affect the output by the adjustment valve 6, the drive unit 42, and the like when an abnormality occurs in the assembled battery 3. As a result, it is possible to prevent the electric current from concentrating on the abnormal portion that has occurred in a part of the assembled battery 3.
  • the control unit 32 sets at least one of the electrode restraining force and the cell temperature outside the above range when an abnormality occurs. This causes the assembled battery 3 to stop functioning.
  • control unit 32 performs, as fail-safe control, pressure reduction control that operates the opening degree of the adjustment valve 6 in an increasing direction so that the internal pressure of the storage space A decreases.
  • pressure reduction control By setting the electrode restraining force of the battery pack 3 to be less than the lower limit value of the above range by this pressure reduction control, the battery pack 3 can stop functioning.
  • the gas supply by the pressure source 5 may be stopped or reduced at the same time when the opening degree of the adjusting valve 6 is operated.
  • control unit 32 may reduce the internal pressure of the battery case 4 to atmospheric pressure by performing pressure reduction control.
  • a negative pressure path 49 connected to the negative pressure source 47 is connected to the air supply duct 20 as shown in FIG.
  • a three-way valve 48 may be provided at the connecting portion.
  • the three-way valve 48 closes the negative pressure path 49 while opening the air supply duct 20, and opens the negative pressure source 47 and the storage space A while blocking the supply of gas from the pressure source 5.
  • the state b can be switched. Therefore, the three-way valve 48 corresponds to an example of switching means.
  • the control unit 32 switches the three-way valve 48 from the state a to the state b to reduce the internal pressure of the storage space A to a negative pressure, and the internal pressure of the cell case 2a can be made higher than the internal pressure of the storage space A. Thereby, the assembled battery 3 can be immobilized. It is also possible to provide a pressure reducing device such as a vacuum pump as an example of a negative pressure source, and activate the pressure reducing device in the event of an abnormality to similarly immobilize the assembled battery 3.
  • a pressure reducing device such as a vacuum pump as an example of a negative pressure source
  • the control unit 32 changes the cell temperature to a temperature higher than the crystallization temperature of the glass solid electrolyte as a chemical fail-safe control.
  • the ionic conductivity of the glass solid electrolyte increases as the temperature rises.
  • the temperature exceeds a predetermined temperature (crystallization temperature) the ionic conductivity of the glass solid electrolyte sharply decreases, and the ion transport of the glass solid electrolyte is closed.
  • the temperature exceeds 170° C. the ionic conductivity sharply decreases, and when the temperature exceeds 200° C., the ion transport is closed.
  • the control unit 32 changes the cell temperature to the internal temperature so as to exceed the crystallization temperature.
  • the control unit 32 performs pressurization and heating control that operates the drive unit 42 so that the cell temperature becomes a temperature exceeding the crystallization temperature.
  • the glass transportation of the electrolyte 14 is closed, so that the assembled battery 3 can stop functioning.
  • Li 3 PS 4 is used as the glass solid electrolyte.
  • the power supply device 41 includes an assembled battery 3, a battery case 4, a pressure source 5, a drive unit 42 that adjusts the output of the pressure source 5, and an exhaust duct with a throttle. (Pressure adjustment exhaust duct) 43.
  • the drive unit 42 is controlled by the control unit 45.
  • the exhaust duct 43 corresponds to the exhaust duct 21 of the first embodiment and communicates with the exhaust port 19 of the battery case 4.
  • the exhaust duct 43 is formed with a venturi portion 44 as an example of a throttle portion.
  • the venturi portion 44 is a portion that reduces the diameter of the flow path of the exhaust duct 43 and serves as a flow path resistance of gas flowing through the exhaust duct 43. Therefore, the venturi portion 44 makes it difficult for the gas supplied to the storage space A to escape from the exhaust duct 43, thereby suppressing a decrease in the internal pressure of the storage space A.
  • an orifice portion that narrows the flow path with an orifice plate may be provided as another example of the throttle portion.
  • the fifth embodiment is basically the same as the first and second embodiments except that the air supply/exhaust ports functioning as the air supply port and the air exhaust port are provided in the battery case.
  • the air supply/exhaust ports functioning as the air supply port and the air exhaust port are provided in the battery case.
  • only matters different from the second embodiment will be described, and explanations of matters similar to the second embodiment will be omitted.
  • the power supply device 51 includes an assembled battery 3, a battery case 52, a pressure source 5, and a regulating valve 6.
  • the battery case 52 has a storage space A for storing the assembled battery 3.
  • the battery case 52 is provided with one air supply/exhaust port 54 that also serves as an air supply port and an air exhaust port.
  • the air supply/exhaust port 54 is an opening for communicating the pressure source 5 and the regulating valve 53 with the storage space A.
  • a ventilation duct 55 is connected to the battery case 52.
  • One end side of the ventilation duct 55 is communicated with the air supply/exhaust port 54 of the battery case 52, and the other end side of the ventilation duct 55 is connected to the pressure source 5 with a first ventilation part 56 and a second ventilation part 57. It has been branched to.
  • the second ventilation portion 57 communicates with the air supply/exhaust port 54, and the second ventilation portion 57 is provided with the adjusting valve 6.
  • the second ventilation part 57 functions as an example of an exhaust passage.
  • the air compressed and heated by the pressure source 5 is supplied to the storage space A, and the air in the storage space A is guided from the air supply/exhaust port 54 to the second ventilation portion 57 of the ventilation duct 55 and passes through the adjustment valve 6. Released into the atmosphere.
  • each of the above embodiments can be partially applied to each other.
  • the control unit of the second embodiment may be applied to the fifth embodiment.
  • the fail-safe control of the third embodiment may be applied to the second embodiment.
  • the configuration of the fifth embodiment may be replaced with the configuration of each of the above-described embodiments.
  • the assembled battery 3 in which a plurality of all-solid-state battery cells 2 are combined corresponds to an example of the battery according to the present invention.
  • the all-solid-state battery cell 2 is a single battery. May be provided as an example of the battery according to the present invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Engineering & Computer Science (AREA)
  • Secondary Cells (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Battery Mounting, Suspending (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

This battery case device allows an assembled battery 3 in which a plurality of all solid-state battery cells 2 are combined to function. The battery case device is provided with a battery case 4 having a housing space A capable of housing the assembled battery 3. The battery case 4 is formed with: a gas supply opening 18 through which a pressure source 5 is connected to the housing space A so that a compressed and heated gas is supplied from the pressure source 5 to the housing space A; and an exhaust opening 19 that is in communication with the housing space A. The battery case device also has an adjustment valve 6 capable of adjusting, through the exhaust opening 19, a factor affecting the output of the assembled battery 3.

Description

電池ケース装置及び電源装置Battery case device and power supply device
 本発明の一側面は、電池ケース装置及び電源装置に関し、例えば全固体電池セルを含む電池を機能させるための電池ケース装置及びこの電池ケース装置を用いた電源装置に関する。 One aspect of the present invention relates to a battery case device and a power supply device, for example, a battery case device for operating a battery including all solid-state battery cells and a power supply device using the battery case device.
 特許文献1には、リチウムイオン全固体電池である単電池を収納する電池ケースを備えた電池モジュールが記載されている。この電池モジュールでは、単電池が収納された電池ケースに加圧された気体が封入される。この気体の圧力により単電池が加圧圧縮されている。 [Patent Document 1] describes a battery module including a battery case for accommodating a single battery that is a lithium-ion all-solid-state battery. In this battery module, a pressurized gas is sealed in a battery case that houses a single battery. The unit cell is pressurized and compressed by the pressure of this gas.
特開2013-69558号公報JP, 2013-69558, A
 特許文献1に記載された電池モジュールでは、電池ケースが閉鎖系である。この場合、当該電池モジュール内の圧力を調整する手段は、気体温度に依存した圧力変化しかない。 In the battery module described in Patent Document 1, the battery case is a closed system. In this case, the means for adjusting the pressure in the battery module only changes the pressure depending on the gas temperature.
 本発明の一側面の目的は、全固体電池セルを含む電池から安定した出力を得ることが可能な電池ケース装置及びこの電池ケース装置を用いた電源装置を提供することである。 An object of one aspect of the present invention is to provide a battery case device capable of obtaining a stable output from a battery including all solid-state battery cells and a power supply device using the battery case device.
 本発明者らは、上記課題について鋭意検討を行った結果、電池ケースに気体を封入して密閉するのではなく、電池ケースを通気させることで全固体電池セルを含む電池の電極拘束力とセル温度を調整できるとの知見を得た。本発明は、このような知見に基づいてなされたものである。 As a result of intensive studies on the above-mentioned problems, the inventors of the present invention did not enclose the gas in the battery case to hermetically seal the battery case, but instead vented the battery case by electrode-binding force of a battery including all-solid-state battery cells and the cell. We have found that the temperature can be adjusted. The present invention has been made based on such findings.
 本発明の一側面に係る電池ケース装置は、全固体電池セルを含む電池を機能させるための電池ケース装置であって、電池を収納可能な収納空間を有する電池ケースを備え、電池ケースには、圧縮加熱された気体が圧力源から収納空間に供給されるように圧力源を収納空間に通じさせるための給気口と、収納空間に通じる排気口とが形成され、電池の出力に影響する因子を給気口又は排気口を通じて調整可能な調整手段を有する。 A battery case device according to one aspect of the present invention is a battery case device for operating a battery including all-solid-state battery cells, including a battery case having a storage space capable of storing a battery, and the battery case includes: A factor that affects the output of the battery by forming an air supply port for communicating the pressure source to the storage space so that the compressed and heated gas is supplied from the pressure source to the storage space, and an exhaust port communicating with the storage space. Has an adjusting means that can be adjusted through an air supply port or an exhaust port.
 この電池ケース装置は調整手段を有するので、この調整手段によって電池の出力に影響する因子を電池が機能するように変更できる。ここで、収納空間の内部圧力が高まると全固体電池セルの電極拘束力が高まるため電池から安定した出力を得ることができる。更に、圧縮加熱された気体が収納空間に供給されることにより全固体電池セルを昇温できる。そして、給気口を通じて圧縮加熱された気体を収納空間に連続的または断続的に供給することにより収納空間の内部温度を高い状態に維持できる。また、収納空間に気体が供給されつつ排気口から気体が排出されるので過剰な応力が電池ケースに生じることを抑制できる。これにより、給気口を通じて収納空間に流通する圧縮加熱された気体の供給量を調整したり、収納空間の圧力が所定の圧力に保持されるように排出口からの排出量を調整したりすることによって、電池の実使用において要求される出力が安定するように調整できる。 Since this battery case device has adjusting means, the adjusting means can change the factors that affect the output of the battery so that the battery functions. Here, when the internal pressure of the storage space increases, the electrode restraining force of the all-solid-state battery cells increases, so that a stable output can be obtained from the battery. Furthermore, by supplying the compressed and heated gas to the storage space, the temperature of the all-solid-state battery cells can be raised. Then, the compressed and heated gas is continuously or intermittently supplied to the storage space through the air supply port, so that the internal temperature of the storage space can be kept high. Further, since the gas is discharged from the exhaust port while the gas is supplied to the storage space, it is possible to suppress excessive stress from occurring in the battery case. Thereby, the supply amount of the compressed and heated gas that flows into the storage space through the air supply port is adjusted, and the discharge amount from the discharge port is adjusted so that the pressure of the storage space is maintained at a predetermined pressure. As a result, the output required for actual use of the battery can be adjusted to be stable.
 この電池ケース装置は、調整手段として、収納空間の圧力が所定の圧力に保持されるように排気口からの気体の排出量を調整可能な調整弁が設けられ、出力に影響する因子が制御されるように調整弁を操作する制御部を更に備えてもよい。また、調整手段として、圧力源から給気口を通じて収納空間に導かれる気体の供給量を調整できるように圧力源を駆動可能な駆動部が設けられ、出力に影響する因子が制御されるように駆動部を操作する制御部を更に備えてもよい。これら電池ケース装置では、制御部が、電池の出力に影響する因子が制御されるように調整弁もしくは駆動部が操作されるので、電池から安定した出力を得ることができる。電池の出力に影響する因子としては、例えば、電極拘束力、セル温度等が挙げられる。 This battery case device is provided with, as an adjusting means, an adjusting valve capable of adjusting the amount of gas discharged from the exhaust port so that the pressure of the storage space is maintained at a predetermined pressure, and the factors affecting the output are controlled. A control unit for operating the adjusting valve may be further provided. Further, as the adjusting means, a drive unit capable of driving the pressure source is provided so as to adjust the supply amount of the gas introduced from the pressure source to the storage space through the air supply port, and the factors affecting the output are controlled. You may further provide the control part which operates a drive part. In these battery case devices, the control unit operates the adjusting valve or the drive unit so as to control the factors that affect the output of the battery, so that a stable output can be obtained from the battery. Factors that affect the output of the battery include, for example, the electrode restraining force and the cell temperature.
 制御部は、出力に影響する因子の制御として、電極拘束力が制御され、かつ電池が機能する温度範囲にセル温度が制御されるように調整弁を操作してもよい。また、制御部は、出力に影響する因子の制御として、電極拘束力が制御され、かつ電池が機能する温度範囲にセル温度が制御されるように駆動部を操作してもよい。 The control unit may operate the adjustment valve so that the electrode restraining force is controlled and the cell temperature is controlled within the temperature range in which the battery functions, as the control of the factor affecting the output. Further, the control unit may operate the drive unit such that the electrode restraining force is controlled and the cell temperature is controlled within a temperature range in which the battery functions, as a control of a factor affecting the output.
 制御部は、電池に関する異常が生じた場合に、調整手段による出力に影響する因子の調整によって電池を機能停止させるフェールセーフ制御を行ってもよい。これにより、電池に関する異常が生じた場合に電池を機能停止できる。 The control unit may perform fail-safe control to stop the function of the battery by adjusting a factor that affects the output by the adjusting unit when an abnormality occurs in the battery. As a result, the function of the battery can be stopped when an abnormality occurs in the battery.
 例えば、制御部は、フェールセーフ制御として、収納空間の内部圧力が低下するように調整弁の開度を増加方向に操作する減圧制御を行ってもよい。収納空間を大気圧まで減圧することで、電極拘束力を弱めて電池を機能停止できる。 For example, the control unit may perform, as fail-safe control, decompression control in which the opening degree of the adjustment valve is operated in the increasing direction so that the internal pressure of the storage space decreases. By decompressing the storage space to atmospheric pressure, the electrode restraining force is weakened and the battery can stop functioning.
 負圧源と、負圧源と収納空間とを開通する状態と遮断する状態とを切り替える切替手段とを更に備える場合には、フェールセーフ制御として、負圧源と収納空間とを開通する状態になるように切替手段を操作してもよい。電池に関する異常が生じた場合に負圧源と収納空間とが開通するので収納空間を負圧まで減圧できる。これにより電極拘束力を弱めて電池を機能停止できる。 When a negative pressure source and a switching means for switching between a state in which the negative pressure source and the storage space are opened and a state in which the negative pressure source and the storage space are shut off are provided, failsafe control is performed so that the negative pressure source and the storage space are opened. You may operate a switching means so that it may become. When an abnormality occurs in the battery, the negative pressure source and the storage space are opened, so that the storage space can be depressurized to a negative pressure. This weakens the electrode restraining force and allows the battery to stop functioning.
 また、全固体電池セルは、ガラス固体電解質を有し、調整手段として、圧力源から給気口を通じて収納空間に導かれる気体の供給量を調整できるように圧力源を駆動可能な駆動部が設けられ、制御部は、フェールセーフ制御として、セル温度がガラス固体電解質の結晶化温度を超える温度となるように駆動部を操作する加圧加熱制御を行ってもよい。この電池ケース装置では、電池に関する異常が生じた場合にセル温度が結晶化温度を超えるので、ガラス固体電解質の結晶化によりガラス固体電解質のイオン輸送が閉鎖する。換言すれば、セル温度が結晶化温度を超えることによって化学的に電池が不動化するので、異常発生時に電池を機能停止できる。 Further, the all-solid-state battery cell has a glass solid electrolyte, and as an adjusting means, a drive unit capable of driving the pressure source is provided so as to adjust the supply amount of gas introduced from the pressure source to the storage space through the air supply port Therefore, the control unit may perform, as the fail-safe control, pressurization and heating control for operating the drive unit so that the cell temperature exceeds the crystallization temperature of the glass solid electrolyte. In this battery case device, the cell temperature exceeds the crystallization temperature when an abnormality occurs in the battery, so that the ionic transport of the glass solid electrolyte is closed by the crystallization of the glass solid electrolyte. In other words, when the cell temperature exceeds the crystallization temperature, the battery is chemically immobilized, so that the battery can stop functioning when an abnormality occurs.
 排気口が収納空間の重力方向最下部に位置するように、電池ケースが設置されてもよい。この電池ケース装置では、排気口が収納空間の重力方向最下部に位置する。このため、収納空間内に供給される気体に含まれた水蒸気が凝縮して水滴が生じても、この水滴を排気口から排出することができる。これにより、水滴が組電池と接触するのを抑制することができる。 -The battery case may be installed so that the exhaust port is located at the bottom of the storage space in the direction of gravity. In this battery case device, the exhaust port is located at the bottom of the storage space in the gravity direction. Therefore, even if water vapor contained in the gas supplied into the storage space is condensed to generate water droplets, the water droplets can be discharged from the exhaust port. As a result, it is possible to suppress contact of water drops with the battery pack.
 本発明の一側面に係る電源装置は、全固体電池セルを含む電池と、電池を収納可能な収納空間を有する電池ケースと、を備え、電池ケースには、圧縮加熱された気体が圧力源から収納空間に供給されるように圧力源を収納空間に通じさせるための給気口と、収納空間に通じる排気口とが形成され、給気口又は排気口を通じて電池の出力に影響する因子としての出力に影響する因子を調整可能な調整手段を有する。 A power supply device according to one aspect of the present invention includes a battery including all-solid-state battery cells, and a battery case having a storage space capable of storing the battery, and in the battery case, compressed and heated gas is supplied from a pressure source. An air supply port for communicating the pressure source to the storage space so as to be supplied to the storage space, and an exhaust port communicating with the storage space are formed, and as a factor affecting the output of the battery through the air supply port or the exhaust port. It has an adjusting means capable of adjusting a factor affecting the output.
 この電源装置では、上記の電池ケース装置と同様に、調整手段によって電池の出力に影響する因子としての出力に影響する因子を電池が機能するように変更できるため、出力特性が安定した電源が得られる。 In this power supply device, as in the case of the battery case device described above, the factor that affects the output as the factor that affects the output of the battery can be changed by the adjusting means so that the battery functions, so that a power source with stable output characteristics can be obtained. Be done.
 本発明の一側面によれば、調整手段によって電池の出力に影響する因子を電池が機能するように変更できるから、電池の実使用において要求される出力が安定するように調整できる。 According to one aspect of the present invention, the factor that affects the output of the battery can be changed by the adjusting means so that the battery functions, so that the output required in actual use of the battery can be adjusted to be stable.
図1は、第一実施形態に係る電源装置の概略構成図である。FIG. 1 is a schematic configuration diagram of a power supply device according to the first embodiment. 図2は、組電池の概略断面図である。FIG. 2 is a schematic cross-sectional view of the assembled battery. 図3は、全固体電池の絶対圧と電極拘束力との関係を示すグラフである。FIG. 3 is a graph showing the relationship between the absolute pressure of an all-solid-state battery and the electrode restraining force. 図4は、全固体電池の絶対圧と温度との関係を示すグラフである。FIG. 4 is a graph showing the relationship between the absolute pressure and the temperature of the all-solid-state battery. 図5は、全固体電池の温度とイオン伝導度との関係を示すグラフである。FIG. 5 is a graph showing the relationship between the temperature and the ionic conductivity of the all-solid-state battery. 図6は、電源装置の作動開始時から定常状態に至るまでの電池ケースの内部温度の時間変化の一例を模式的に示すグラフである。FIG. 6 is a graph schematically showing an example of a temporal change in the internal temperature of the battery case from the start of the operation of the power supply device to the steady state. 図7は、第二実施形態に係る電源装置の概略構成図である。FIG. 7 is a schematic configuration diagram of the power supply device according to the second embodiment. 図8は、第三実施形態に係る電源装置の制御形態を説明するための図である。FIG. 8 is a diagram for explaining a control mode of the power supply device according to the third embodiment. 図9は、減圧制御を実施するための構成を説明する図。FIG. 9 is a diagram illustrating a configuration for performing pressure reduction control. 図10は、全固体電池のセル温度とイオン伝導度との関係を示すグラフである。FIG. 10 is a graph showing the relationship between cell temperature and ionic conductivity of an all-solid-state battery. 図11は、第四実施形態に係る電源装置の概略構成図である。FIG. 11 is a schematic configuration diagram of the power supply device according to the fourth embodiment. 図12は、第五実施形態に係る電源装置の概略構成図である。FIG. 12 is a schematic configuration diagram of the power supply device according to the fifth embodiment.
 全固体電池は、セルの電極拘束力、セル温度等の変化によって出力が変化する特性を持つ。電極拘束力及びセル温度は出力に影響する因子の一例である。従って、全固体電池の電極拘束力及び/又は温度を調整することにより電池の出力特性を調整できる。全固体電池においては、液体電解質を有する従来電池よりも高い電極拘束力が必要であるとともに、従来電池よりもセル温度を高温に維持することが求められる。全固体電池セルを覆うセルケースに加わる電極拘束力は、電池ケース内の内部圧力とセルケースの内部圧力の差で決まる。セルケース内の圧力は電池を組み立てる際に調整可能であるが、具体的な内部圧力はセルケースに収めるセルの種類によって異なる。例えば、セルケースには、ラミネート、角型、円筒型等のセルケースがある。このようなセルケースにセルを収納して密封するまでに大気圧下で圧力調整をせずに製造すれば、セルケースの内部圧力は1気圧で定義される。そして、電池ケース内の内部圧力を高く維持するように調圧された状態において、圧縮加熱された気体を電池ケース内に供給し続けると、電池ケース内の内部温度も高くなり、セルが昇温される。つまり、圧縮加熱した気体を電池ケース内に流通させれば、電池の電極拘束力とセル温度との調整ができる。これにより、全固体電池の出力特性を調整できる。  The all-solid-state battery has the characteristic that the output changes according to the cell electrode binding force, the cell temperature, etc. Electrode binding force and cell temperature are examples of factors that influence the output. Therefore, the output characteristics of the battery can be adjusted by adjusting the electrode restraining force and/or the temperature of the all-solid-state battery. An all-solid-state battery requires a higher electrode restraining force than a conventional battery having a liquid electrolyte and is required to maintain a cell temperature higher than that of a conventional battery. The electrode restraining force applied to the cell case covering the all-solid-state battery cell is determined by the difference between the internal pressure in the battery case and the internal pressure in the cell case. The pressure inside the cell case can be adjusted when assembling the battery, but the specific internal pressure varies depending on the type of cells to be stored in the cell case. For example, the cell case may be a laminated, square, or cylindrical cell case. If the cell is manufactured without adjusting the pressure under the atmospheric pressure until the cell is housed and sealed in the cell case, the internal pressure of the cell case is defined as 1 atmosphere. Then, when the compressed and heated gas is continuously supplied into the battery case while the internal pressure in the battery case is adjusted to be high, the internal temperature in the battery case also rises and the temperature of the cell rises. To be done. That is, if the compressed and heated gas is circulated in the battery case, the electrode restraining force of the battery and the cell temperature can be adjusted. Thereby, the output characteristics of the all-solid-state battery can be adjusted.
 以下、図面を参照して、本発明の一側面に係る実施形態について説明する。本実施形態に係る電池ケース装置及び電源装置は、例えば、自動車等の車両に搭載される二次電池装置、モーター等の電動機械を作動させる電源装置等に利用することができる。なお、各図において同一又は相当する要素については同一の符号を付し、重複する説明を省略する。 Hereinafter, an embodiment according to one aspect of the present invention will be described with reference to the drawings. The battery case device and the power supply device according to the present embodiment can be used as, for example, a secondary battery device mounted in a vehicle such as an automobile, a power supply device that operates an electric machine such as a motor, and the like. In the drawings, the same or corresponding elements are designated by the same reference numerals, and duplicated description will be omitted.
[第一実施形態]
 図1に示すように、本実施形態に係る電源装置1は、複数の全固体電池セル(以下、電池セルという。)2が組み合わされた組電池3と、組電池3を収納する電池ケース4と、を備える。組電池3は電池の一例に相当する。電源装置1には、圧力源5と調整弁6とが接続される。以下では、電源装置1から組電池3が除かれた装置を電池ケース装置とも呼称する。
[First embodiment]
As shown in FIG. 1, a power supply device 1 according to the present embodiment includes an assembled battery 3 in which a plurality of all-solid-state battery cells (hereinafter, referred to as battery cells) 2 are combined, and a battery case 4 accommodating the assembled battery 3. And The assembled battery 3 corresponds to an example of a battery. A pressure source 5 and a regulating valve 6 are connected to the power supply device 1. Hereinafter, a device obtained by removing the assembled battery 3 from the power supply device 1 is also referred to as a battery case device.
 組電池3は、複数の電池セル2が互いに直列又は並列に接続されて、一つの電池として機能する。組電池3には、組電池3から電力を出力するための正極端子(プラス端子)15及び負極端子(マイナス端子)16が接続されている。 The assembled battery 3 functions as one battery by connecting a plurality of battery cells 2 in series or in parallel with each other. A positive electrode terminal (plus terminal) 15 and a negative electrode terminal (minus terminal) 16 for outputting electric power from the assembled battery 3 are connected to the assembled battery 3.
 図2に示すように、本実施形態では、電池セル2は、対向配置された正極12及び負極13と、正極12と負極13との間に配置された固体の電解質14とを含む。電池セル2はセルケース2aに収納された状態で密封されている。なお、電池セル2は大気圧の状態でセルケース2aに収納されているが、負圧まで減圧した状態で電池セル2がセルケース2aに収納されてもよい。電解質14は、正極12と負極13との間でイオン輸送を行う。電解質14は、放電時には正極12側から負極13側にイオンを輸送し、充電時には負極13側から正極12側にイオンを輸送する。電解質14としては、例えば、Li10Ge0.2512、LiPSCl等の硫化物系電解質、LiPS、70LiS・30P、Li11等のガラス固体電解質が用いられる。 As shown in FIG. 2, in the present embodiment, the battery cell 2 includes a positive electrode 12 and a negative electrode 13 that are arranged to face each other, and a solid electrolyte 14 that is arranged between the positive electrode 12 and the negative electrode 13. The battery cell 2 is hermetically sealed while being housed in the cell case 2a. Although the battery cell 2 is housed in the cell case 2a under atmospheric pressure, the battery cell 2 may be housed in the cell case 2a in a state where the pressure is reduced to a negative pressure. The electrolyte 14 carries out ion transport between the positive electrode 12 and the negative electrode 13. The electrolyte 14 transports ions from the positive electrode 12 side to the negative electrode 13 side during discharging, and transports ions from the negative electrode 13 side to the positive electrode 12 side during charging. Examples of the electrolyte 14 include sulfide-based electrolytes such as Li 10 Ge 0.25 P 2 S 12 and Li 6 PS 5 Cl, Li 3 PS 4 , 70Li 2 S.30P 2 S 5 , Li 7 P 3 S 11 and the like. Glass solid electrolytes such as
 図1に示すように、電池ケース4は、組電池3を収納する収納空間Aを有する。つまり、収納空間Aは、組電池3を収納可能な電池ケース4の内部空間である。収納空間Aの形状は、特に限定されるものではなく、組電池3を収納することができれば如何なる形状であってもよい。電池ケース4には、給気口18及び排気口19が形成されている。給気口18は圧力源5を収納空間Aに通じさせる。排気口19は、電池ケース4の外部に設けられた調整弁6を収納空間Aに通じさせる。このため、収納空間Aは、閉空間ではなく、給気口18及び排気口19を通じて外部との通気手段を持つ空間である。 As shown in FIG. 1, the battery case 4 has a storage space A for storing the assembled battery 3. That is, the storage space A is an internal space of the battery case 4 that can store the assembled battery 3. The shape of the storage space A is not particularly limited and may be any shape as long as the assembled battery 3 can be stored. An air supply port 18 and an exhaust port 19 are formed in the battery case 4. The air supply port 18 allows the pressure source 5 to communicate with the storage space A. The exhaust port 19 allows the adjustment valve 6 provided outside the battery case 4 to communicate with the storage space A. For this reason, the storage space A is not a closed space, but a space having a ventilation means with the outside through the air supply port 18 and the exhaust port 19.
 圧力源5は、気体を圧縮加熱すると共に、圧縮加熱された気体を電池ケース4に供給するものである。圧力源5は、電源装置1の作動中は基本的に作動しているが、電池セル2の加熱が必要でない場合は作動を停止させてもよい。なお、圧力源5の作動を停止した場合に収納空間Aから圧力源5側へ向かう気体の流れを阻止する逆止弁(不図示)を、例えば圧力源5と給気口18との間に設けてもよい。圧力源5としては、例えば、コンプレッサー、ポンプ等の流体機械が用いられる。圧力源5は、給気口18に連通された給気ダクト20に接続されている。そして、圧力源5は、給気ダクト20を介して給気口18から収納空間Aに気体を圧送する。圧力源5が収納空間Aに圧送する気体は、大気中の空気であってもよいし、それ以外の気体であってもよい。圧力源5は、電源装置1に専用のものである必要はない。例えば、電源装置1が車両に搭載される場合は、車両に搭載されたファン、コンプレッサー等の車載圧力機器を圧力源5として用いてもよい。 The pressure source 5 compresses and heats the gas and supplies the compressed and heated gas to the battery case 4. The pressure source 5 is basically operating while the power supply device 1 is operating, but may be stopped when heating of the battery cells 2 is not necessary. A check valve (not shown) that blocks the flow of gas from the storage space A toward the pressure source 5 when the operation of the pressure source 5 is stopped is provided, for example, between the pressure source 5 and the air supply port 18. It may be provided. As the pressure source 5, for example, a fluid machine such as a compressor or a pump is used. The pressure source 5 is connected to an air supply duct 20 that communicates with the air supply port 18. Then, the pressure source 5 pressure-feeds the gas from the air supply port 18 to the storage space A via the air supply duct 20. The gas pressure-fed to the storage space A by the pressure source 5 may be air in the atmosphere or may be another gas. The pressure source 5 need not be dedicated to the power supply device 1. For example, when the power supply device 1 is mounted on a vehicle, a vehicle-mounted pressure device such as a fan or a compressor mounted on the vehicle may be used as the pressure source 5.
 圧力源5から電池ケース4までの経路及び電池ケース4を含む系は、当該系外に対して断熱されてもよい。例えば、給気ダクト20を断熱材で覆うとともに電池ケース4の外装又は内装として断絶材を使用すること、電池ケース4の素材として断熱材を使用すること等によって、電池ケース4を含む系の断熱性を確保することができる。 The path from the pressure source 5 to the battery case 4 and the system including the battery case 4 may be insulated from the outside of the system. For example, by covering the air supply duct 20 with a heat insulating material and using a disconnecting material as the exterior or interior of the battery case 4, or using a heat insulating material as the material of the battery case 4, the heat insulation of the system including the battery case 4 can be achieved. It is possible to secure the sex.
 調整弁6は、排気口19からの気体の排出量を調整可能な装置である。調整弁6は、全閉状態から全開状態まで開度変更可能な弁であり、例えばレギュレータ、減圧弁等の調圧器として使用可能な弁を用いることができる。調整弁6は、排気口19に連通された排気ダクト21に接続されている。調整弁6は、収納空間Aの圧力が所定の圧力に保持されるように気体の排出量を調整する。これによって収納空間Aを流通する加圧圧縮された気体の量を調整できる。調整弁6から排出された気体は、大気中に放出される。 The adjusting valve 6 is a device that can adjust the amount of gas discharged from the exhaust port 19. The adjustment valve 6 is a valve whose opening can be changed from a fully closed state to a fully opened state, and for example, a valve that can be used as a pressure regulator such as a regulator or a pressure reducing valve can be used. The adjusting valve 6 is connected to an exhaust duct 21 that communicates with the exhaust port 19. The adjusting valve 6 adjusts the discharge amount of gas so that the pressure in the storage space A is maintained at a predetermined pressure. As a result, the amount of pressurized and compressed gas flowing through the storage space A can be adjusted. The gas discharged from the adjusting valve 6 is released into the atmosphere.
 ここで、圧力源5により圧縮加熱された気体を給気口18から収納空間Aに圧送し、調整弁6により気体の排出量を調整することで、収納空間Aの内部圧力を高圧状態に維持できる。図3に示すように、収納空間Aの内部圧力が高くなると、収納空間Aの内部圧力に比例して電池セル2の電極拘束力も高くなる。図3では、横軸に、収納空間Aの絶対圧(hPa)を示しており、縦軸に、電池セル2の電極拘束力(kgf/cm)を示している。図4に示すように、圧力源5が気体を圧縮することにより気体の温度が高くなる。圧力源5にて圧縮加熱された気体が収納空間Aに供給されることにより収納空間Aの内部温度が高くなる。図4では、横軸に、収納空間Aの絶対圧(hPa)を示しており、縦軸に、収納空間Aの内部温度(℃)を示している。本明細書において、気圧は、絶対圧を基準とする。絶対真空を0Paとして、標準大気圧は1atm=101.33kPa=1013.3hPaである。 Here, the gas compressed and heated by the pressure source 5 is pressure-fed to the storage space A from the air supply port 18, and the discharge amount of the gas is adjusted by the adjusting valve 6, so that the internal pressure of the storage space A is maintained at a high pressure state. it can. As shown in FIG. 3, when the internal pressure of the storage space A increases, the electrode restraining force of the battery cell 2 also increases in proportion to the internal pressure of the storage space A. In FIG. 3, the horizontal axis represents the absolute pressure (hPa) of the storage space A, and the vertical axis represents the electrode restraining force (kgf/cm 2 ) of the battery cell 2. As shown in FIG. 4, the temperature of the gas increases due to the pressure source 5 compressing the gas. By supplying the gas compressed and heated by the pressure source 5 to the storage space A, the internal temperature of the storage space A rises. In FIG. 4, the horizontal axis indicates the absolute pressure (hPa) of the storage space A, and the vertical axis indicates the internal temperature (° C.) of the storage space A. In the present specification, atmospheric pressure is based on absolute pressure. When the absolute vacuum is 0 Pa, the standard atmospheric pressure is 1 atm=101.33 kPa=1013.3 hPa.
 組電池3の出力に影響する因子の一つであるセル温度は、電解質14のイオン伝導度を左右する。イオン伝導度は組電池3の出力を左右する。図5に示すように、電解質14のイオン伝導度は、セル温度が高いほど高く、セル温度が低いほど低くなる。セル温度に対するイオン伝導度の傾きは、電解質14の材料等によって変わる傾向にある。一方、セル温度が高くなるほどイオン伝導度が高くなる傾向は、電解質14の材料等によって変わらない。 The cell temperature, which is one of the factors that influence the output of the assembled battery 3, affects the ionic conductivity of the electrolyte 14. The ionic conductivity affects the output of the battery pack 3. As shown in FIG. 5, the ionic conductivity of the electrolyte 14 increases as the cell temperature increases and decreases as the cell temperature decreases. The gradient of the ionic conductivity with respect to the cell temperature tends to change depending on the material of the electrolyte 14 and the like. On the other hand, the tendency that the ionic conductivity becomes higher as the cell temperature becomes higher does not change depending on the material of the electrolyte 14 and the like.
 組電池3が機能する電極拘束力の範囲及びセル温度の範囲は、電解質14として用いられる材料によって変わる。例えば、電解質14として硫化物系ガラス固体電解質を用いた場合、組電池3が機能する電極拘束力を得るために必要な収納空間Aの内部圧力の範囲は1気圧~5気圧であり、組電池3が機能するセル温度を得るために必要な収納空間Aの内部温度の範囲は約-20℃~170℃である。組電池3が機能するとは、組電池3から実用に耐える出力が得られることをいい、組電池3から実用に耐えない低出力が得られている場合を含まない。実用に耐えない低出力とは、例えば、実使用において要求される所望の出力未満の出力をいう。 The range of the electrode restraining force and the range of the cell temperature at which the assembled battery 3 functions varies depending on the material used as the electrolyte 14. For example, when a sulfide-based glass solid electrolyte is used as the electrolyte 14, the internal pressure of the storage space A required to obtain the electrode restraining force for the assembled battery 3 to function is 1 atm to 5 atm. The range of the internal temperature of the storage space A required to obtain the cell temperature at which 3 operates is about −20° C. to 170° C. The functioning of the assembled battery 3 means that the assembled battery 3 can obtain an output that can be used practically, and does not include the case where the assembled battery 3 can obtain a low output that cannot be used practically. The low output that cannot be used practically means, for example, an output less than the desired output required in actual use.
 収納空間Aの内部圧力が上記範囲内に維持され、かつ収納空間Aの内部温度が上記範囲内に維持されるように、調整弁6及び圧力源5の少なくとも一方が操作されることによって組電池3は機能する。一方、収納空間Aの内部圧力及び内部温度の少なくとも一方が上記各範囲外となることによって組電池3は機能停止する。 At least one of the regulating valve 6 and the pressure source 5 is operated so that the internal pressure of the storage space A is maintained within the above range and the internal temperature of the storage space A is maintained within the above range. 3 works. On the other hand, when at least one of the internal pressure and the internal temperature of the storage space A is outside the above ranges, the assembled battery 3 stops functioning.
 電源装置1では、圧力源5にて圧縮加熱された気体が収納空間Aに供給されるため、電池ケース4は、所定の耐圧性及び耐熱性を有してもよい。例えば、25℃の収納空間Aを1気圧~5気圧の範囲で調整する場合、電池ケース4は、余裕をもって8気圧に耐えられる耐圧性を有してもよい。また、例えば、収納空間Aを1気圧~6気圧の範囲で調整する場合、収納空間Aの内部温度は25~225℃となるため、電池ケース4は、余裕をもって250℃に耐えられる耐熱性を有してもよい。また、組電池3は使用される電極によって耐熱温度が変化することから、電池ケース4は、所定の耐熱性を有してもよい。例えば、負極13として金属リチウムを用いる場合、金属リチウムの融点が180℃程度であるため、150℃以下で組電池3を機能させ、電池ケース4は、余裕をもって、200℃以上に耐えられる耐熱性を有してもよい。このような電池ケース4の素材としては、例えば、鉄、ステンレス、アルミニウム、銅等の金属材料、フッ素樹脂、シリコン樹脂、ポリアミド等の耐熱性樹脂、ポリイミド、アリル樹脂、フラン樹脂等の熱硬化性樹脂が用いられる。 In the power supply device 1, since the gas compressed and heated by the pressure source 5 is supplied to the storage space A, the battery case 4 may have predetermined pressure resistance and heat resistance. For example, when the storage space A at 25° C. is adjusted within the range of 1 atm to 5 atm, the battery case 4 may have a pressure resistance capable of withstanding 8 atm with a margin. In addition, for example, when the storage space A is adjusted within the range of 1 to 6 atmospheres, the internal temperature of the storage space A is 25 to 225° C., and therefore the battery case 4 has a sufficient heat resistance to withstand 250° C. You may have. Moreover, since the heat resistant temperature of the assembled battery 3 changes depending on the electrodes used, the battery case 4 may have a predetermined heat resistance. For example, when metallic lithium is used as the negative electrode 13, since the melting point of metallic lithium is about 180° C., the assembled battery 3 is allowed to function at 150° C. or lower, and the battery case 4 has a margin and is heat resistant to 200° C. or higher. May have. Examples of the material of such a battery case 4 include metal materials such as iron, stainless steel, aluminum and copper, heat resistant resins such as fluororesin, silicone resin and polyamide, and thermosetting resins such as polyimide, allyl resin and furan resin. Resin is used.
 収納空間Aに供給される気体に水分が含まれている場合、収納空間A内で気体が凝縮して水滴が生じる場合がある。そこで、電池ケース4に溜まった当該水滴を排出する観点から、排気口19が収納空間Aの重力方向最下部に位置するように、電池ケース4が設置されてもよい。排気口19が収納空間Aの重力方向最下部に位置しない場合は、別途、収納空間Aから水滴を排出する排水口を電池ケース4に設けてもよい。また、収納空間A内で気体を凝縮させない観点から、圧力源5、圧力源5の上流側、又は圧力源5と電池ケース4との間に、気体を乾燥させる乾燥剤又は乾燥装置を取り付けてもよい。また、ヒートポンプ暖房を使用する環境で電源装置1を使用する場合であれば、空気を除湿乾燥させる室外機(エバポレータ)を通過した空気を使用することもできる。 If the gas supplied to the storage space A contains water, the gas may condense in the storage space A to generate water droplets. Therefore, from the viewpoint of discharging the water droplets accumulated in the battery case 4, the battery case 4 may be installed so that the exhaust port 19 is located at the lowermost portion of the storage space A in the gravity direction. When the exhaust port 19 is not located at the bottom of the storage space A in the direction of gravity, a drain port for discharging water droplets from the storage space A may be separately provided in the battery case 4. Further, from the viewpoint of not condensing the gas in the storage space A, a desiccant or a drying device for drying the gas is attached to the pressure source 5, the upstream side of the pressure source 5, or between the pressure source 5 and the battery case 4. Good. If the power supply device 1 is used in an environment where heat pump heating is used, air that has passed through an outdoor unit (evaporator) that dehumidifies and drys air can also be used.
 固定具23は、例えば、組電池3を挟み込む一対の板24,25と、固定部材26と、を備える。固定部材26としては、例えば、バネ、ネジ、ベルトが用いられる。但し、固定具23は、上記の機構及び構成に限定されるものではない。 The fixture 23 includes, for example, a pair of plates 24 and 25 sandwiching the assembled battery 3 and a fixing member 26. As the fixing member 26, for example, a spring, a screw, or a belt is used. However, the fixture 23 is not limited to the above mechanism and configuration.
 次に、本実施形態に係る電源装置1の使用方法及び動作について説明する。 Next, the usage method and operation of the power supply device 1 according to the present embodiment will be described.
 収納空間Aに組電池3が収納された電池ケース4に圧力源5及び調整弁6が接続された状態で、圧力源5で圧縮加熱された気体を電池ケース4内に導いて電源装置1を作動させる。図6は、電源装置1の作動開始から組電池3が機能する定常状態に至るまでの電池ケース4内の内部温度の時間的変化の一例を模式的に示している。 In a state where the pressure source 5 and the adjusting valve 6 are connected to the battery case 4 in which the assembled battery 3 is stored in the storage space A, the gas compressed and heated by the pressure source 5 is guided into the battery case 4 so that the power supply device 1 is installed. Activate. FIG. 6 schematically shows an example of a temporal change in the internal temperature in the battery case 4 from the start of the operation of the power supply device 1 to the steady state in which the assembled battery 3 functions.
 図6に示すように、時刻t0において、調整弁6の開度が全閉状態で圧縮加熱された気体の供給が開始すると、収納空間Aに圧縮加熱された気体の流入が継続する。このため、収納空間Aの内部温度は経過時間とともに徐々に上昇する。時刻t1において、内部温度は組電池3が機能する温度範囲内に達する。時刻t1の後は、組電池3が機能する範囲内に電極拘束力及びセル温度が制御されるように調整弁6が操作される。例えば、実使用において要求される出力に合わせて内部温度の目標値を設定し、その目標値に収束するように調整弁6の開度を増加方向又は減少方向に操作する。これにより組電池3の出力特性を安定化できる。 As shown in FIG. 6, at time t0, when the supply of the compressed and heated gas is started with the opening degree of the regulating valve 6 fully closed, the inflow of the compressed and heated gas to the storage space A continues. Therefore, the internal temperature of the storage space A gradually rises with the passage of time. At time t1, the internal temperature reaches within the temperature range in which the battery pack 3 operates. After time t1, the regulating valve 6 is operated so that the electrode restraining force and the cell temperature are controlled within the range where the battery pack 3 functions. For example, the target value of the internal temperature is set according to the output required in actual use, and the opening degree of the regulating valve 6 is operated in the increasing direction or the decreasing direction so as to converge to the target value. As a result, the output characteristics of the assembled battery 3 can be stabilized.
 このように、本実施形態では、圧力源5で加熱圧縮された気体が給気口18を通じて電池ケース4の収納空間Aに供給される一方で、排気口19からの気体の排出量を調整弁6で調整できる。これにより、収納空間Aの内部温度を組電池3が機能するセル温度を得るために必要な温度に維持できると共に、収納空間Aの内部圧力を組電池3が機能する電極拘束力を得るために必要な圧力に維持できる。しかも、収納空間Aの内部圧力が高くなっても、収納空間A内の気体を排気口19から排出できる。このため、電池ケース4にかかる負荷が抑制される。 As described above, in the present embodiment, the gas heated and compressed by the pressure source 5 is supplied to the storage space A of the battery case 4 through the air supply port 18, while the amount of gas discharged from the exhaust port 19 is adjusted by the control valve. Adjustable with 6. As a result, the internal temperature of the storage space A can be maintained at a temperature necessary for obtaining the cell temperature at which the assembled battery 3 functions, and the internal pressure of the storage space A can be obtained at the electrode binding force at which the assembled battery 3 functions. The required pressure can be maintained. Moreover, even if the internal pressure of the storage space A becomes high, the gas in the storage space A can be discharged from the exhaust port 19. Therefore, the load on the battery case 4 is suppressed.
 本実施形態では、排気口19が収納空間Aの重力方向最下部に位置する。この場合、収納空間A内で気体が凝縮して水滴が生じても、この水滴を排気口19から排出することができる。これにより、水滴が電池ケース4内部に溜まって組電池3と接触するのを抑制することができる。 In the present embodiment, the exhaust port 19 is located at the bottom of the storage space A in the gravity direction. In this case, even if the gas condenses in the storage space A to generate water drops, the water drops can be discharged from the exhaust port 19. This can prevent water droplets from accumulating inside the battery case 4 and contacting the battery pack 3.
[第二実施形態]
 次に、第二実施形態について説明する。第二実施形態は、電源装置が圧力源、調整弁及び制御部を備えた点で第一実施形態と相違するが、基本的に第一実施形態と同様である。このため、以下では、第一実施形態と相違する事項のみを説明し、第一実施形態と同様の事項の説明を省略する。
[Second embodiment]
Next, a second embodiment will be described. The second embodiment differs from the first embodiment in that the power supply device includes a pressure source, a regulating valve, and a control unit, but is basically the same as the first embodiment. Therefore, hereinafter, only matters different from the first embodiment will be described, and explanations of matters similar to the first embodiment will be omitted.
 図7に示すように、本実施形態に係る電源装置31は、組電池3と、電池ケース4と、圧力源5と、調整弁6と、制御部32と、を備える。また、電源装置31には、圧力源5から給気口18を通じて収納空間Aに導かれる気体の供給量を調整できるように圧力源を駆動可能な駆動部42が設けられている。 As shown in FIG. 7, the power supply device 31 according to the present embodiment includes an assembled battery 3, a battery case 4, a pressure source 5, a regulating valve 6, and a controller 32. Further, the power supply device 31 is provided with a drive unit 42 capable of driving the pressure source so that the amount of gas supplied from the pressure source 5 to the storage space A through the air supply port 18 can be adjusted.
 制御部32は、CPU(Central Processing Unit)、センサ入力部、モーターコントロール用出力部等を有する電子制御ユニットである。制御部32は、複数の電子制御ユニットから構成されていてもよい。制御部32は、組電池3の出力に影響する因子が制御されるように調整弁6及び駆動部42の少なくとも一方を制御する。例えば、出力に影響する因子の制御の一例として、制御部32は、組電池3の電極拘束力が制御され、かつ組電池3が機能する温度範囲にセル温度が制御されるように、調整弁6を操作する。また、出力に影響する因子の制御の他の一例として、制御部32は、組電池3の電極拘束力が制御され、かつ組電池3が機能する温度範囲にセル温度が制御されるように、駆動部42を制御する。これらの制御は制御部32によって何れか一方のみ実施されてもよいが、これらの制御が制御部32によって同時に実施されてもよい。これらの制御が同時に実施される場合、調整弁6及び駆動部42が調整手段の一例に相当する。 The control unit 32 is an electronic control unit having a CPU (Central Processing Unit), a sensor input unit, a motor control output unit, and the like. The controller 32 may be composed of a plurality of electronic control units. The control unit 32 controls at least one of the adjusting valve 6 and the driving unit 42 so that a factor that affects the output of the assembled battery 3 is controlled. For example, as an example of the control of factors that affect the output, the control unit 32 controls the regulating valve so that the electrode restraining force of the battery pack 3 is controlled and the cell temperature is controlled within a temperature range in which the battery pack 3 functions. Operate 6. In addition, as another example of the control of the factors that affect the output, the control unit 32 controls the cell binding temperature so that the electrode restraining force of the battery pack 3 is controlled and the temperature range in which the battery pack 3 functions is controlled. The drive unit 42 is controlled. Only one of these controls may be performed by the control unit 32, but these controls may be performed simultaneously by the control unit 32. When these controls are performed simultaneously, the adjusting valve 6 and the drive unit 42 correspond to an example of adjusting means.
 図8に示すように、収納空間Aの内部に温度センサ34が配置されている場合、収納空間Aの内部温度は、例えば、この温度センサ34から取得することができる。また、図8に示すように、排気ダクト21に温度センサ35が配置されている場合、収納空間Aの内部温度は、この温度センサ35から取得することができる。制御部32は、調整弁6の動作量の一例である開度を、開度センサ等によって直接取得してもよいが、制御部32が記憶する調整弁6に対する制御指令値に基づいて取得することもできる。組電池3の出力に影響する因子の一例である電極拘束力は収納空間Aの内部圧力と相関する。組電池3の出力に影響する因子の他の一例であるセル温度は収納空間Aの内部温度と相関する。本実施形態では、電極拘束力及びセル温度を制御するため、これらと相関する物理量として内部圧力と内部温度とを制御しているが、これに限定されない。例えば、セル温度を直接測定して、電極拘束力及びセル温度を制御してもよい。 When the temperature sensor 34 is arranged inside the storage space A as shown in FIG. 8, the internal temperature of the storage space A can be acquired from the temperature sensor 34, for example. Further, as shown in FIG. 8, when the temperature sensor 35 is arranged in the exhaust duct 21, the internal temperature of the storage space A can be acquired from the temperature sensor 35. The control unit 32 may directly acquire the opening degree, which is an example of the operation amount of the adjustment valve 6, by an opening degree sensor or the like, but acquires it based on a control command value for the adjustment valve 6 stored in the control unit 32. You can also The electrode restraining force, which is an example of a factor affecting the output of the assembled battery 3, correlates with the internal pressure of the storage space A. The cell temperature, which is another example of the factor affecting the output of the assembled battery 3, correlates with the internal temperature of the storage space A. In the present embodiment, since the electrode restraining force and the cell temperature are controlled, the internal pressure and the internal temperature are controlled as physical quantities correlated with these, but the invention is not limited to this. For example, the electrode temperature and the cell temperature may be controlled by directly measuring the cell temperature.
 実機を使用した実験又はシミュレーション等の事前調査により、例えば、組電池3の電極拘束力と調整弁6の動作量との対応関係、セル温度と調整弁6の動作量との対応関係、組電池3の電極拘束力と駆動部42の出力との対応関係、及びセル温度と駆動部42の出力との対応関係を事前に求めておき、制御部32に記憶させてもよい。制御部32は、予め記憶しておいた各種対応関係を適時に読み出して、目標値となる電極拘束力及びセル温度に対応する調整弁6の動作量又は駆動部42の出力をそれぞれ特定してもよい。加えて制御部32は、特定した動作量及び出力で動作するように調整弁6及び駆動部42を操作してもよい。上記各種の対応関係を求める際に、制御精度に影響する大気温度、大気圧等の周辺環境も考慮してもよい。これにより、各種対応関係が特定する内容と実態との乖離が小さくなるため制御精度が向上する。 Based on a preliminary investigation such as an experiment or simulation using an actual machine, for example, the correspondence relationship between the electrode restraining force of the battery pack 3 and the operation amount of the adjusting valve 6, the correspondence relationship between the cell temperature and the operation amount of the adjusting valve 6, the assembled battery The correspondence between the electrode restraining force of No. 3 and the output of the drive unit 42 and the correspondence between the cell temperature and the output of the drive unit 42 may be obtained in advance and stored in the control unit 32. The control unit 32 reads out various correspondence relationships stored in advance in a timely manner, and specifies the operation amount of the adjusting valve 6 or the output of the driving unit 42 corresponding to the target electrode restraining force and the cell temperature, respectively. Good. In addition, the control unit 32 may operate the regulating valve 6 and the drive unit 42 so as to operate with the specified operation amount and output. When obtaining the above-mentioned various correspondences, the ambient environment such as the atmospheric temperature and the atmospheric pressure which influences the control accuracy may be taken into consideration. As a result, the difference between the content specified by the various correspondences and the actual situation is reduced, so that the control accuracy is improved.
 図8に示すように、正極端子15及び負極端子16にバッテリー監視装置33が電気的に接続されている場合、組電池3の出力は、バッテリー監視装置33から取得することができる。バッテリー監視装置33は、組電池3の出力を検出して、組電池3の充放電性能を監視する装置である。例えば、制御部32はバッテリー監視装置33が取得した充放電性能に関する情報を利用し、上述した各種対応関係を校正してもよい。 As shown in FIG. 8, when the battery monitoring device 33 is electrically connected to the positive electrode terminal 15 and the negative electrode terminal 16, the output of the assembled battery 3 can be obtained from the battery monitoring device 33. The battery monitoring device 33 is a device that detects the output of the assembled battery 3 and monitors the charge/discharge performance of the assembled battery 3. For example, the control unit 32 may use the information on the charge/discharge performance acquired by the battery monitoring device 33 to calibrate the various correspondence relationships described above.
[第三実施形態]
 次に、第三実施形態について説明する。第三実施形態は、制御部が行う制御内容を除き第二実施形態の物理的構成は同様である。第二実施形態と同様の事項の説明を省略する。また、第三実施形態の制御は第二実施形態で行う制御とともに実施することもできる。
[Third embodiment]
Next, a third embodiment will be described. In the third embodiment, the physical configuration of the second embodiment is the same except for the control content performed by the control unit. Description of the same items as in the second embodiment will be omitted. Further, the control of the third embodiment can be performed together with the control performed in the second embodiment.
 本実施形態では、制御部32は、組電池3に関する異常が発生した場合に、フェールセーフ制御を行う。組電池3に関する異常としては、例えば、組電池3の温度の異常上昇、組電池3の出力の異常上昇、出力の短絡、組電池3の破損によるガスの発生および漏洩、が挙げられる。組電池3に関する異常の検出方法は問わない。例えば、組電池3の温度の異常は、例えば、収納空間Aの内部に配置された温度センサ34(図8参照)により検出することができる。組電池3の破損によるガスの発生および漏洩は、例えば、排気ダクト21に配置されたガスセンサ(不図示)により検出することができる。 In the present embodiment, the control unit 32 performs fail-safe control when an abnormality regarding the battery pack 3 occurs. Examples of the abnormality relating to the assembled battery 3 include abnormal temperature rise of the assembled battery 3, abnormal output rise of the assembled battery 3, short circuit of output, gas generation and leakage due to damage of the assembled battery 3. There is no limitation on the method of detecting an abnormality relating to the assembled battery 3. For example, the temperature abnormality of the battery pack 3 can be detected by, for example, the temperature sensor 34 (see FIG. 8) arranged inside the storage space A. Generation and leakage of gas due to breakage of the assembled battery 3 can be detected by, for example, a gas sensor (not shown) arranged in the exhaust duct 21.
 フェールセーフ制御は、組電池3に関する異常が生じた場合に、組電池3を機能停止させるための制御である。つまり、フェールセーフ制御は、組電池3に関する異常が生じた場合に、調整弁6、駆動部42等による出力に影響する因子の調整によって組電池3を機能停止させる制御である。これにより、組電池3の一部に発生した異常部分に電流が集中することを抑制することができる。組電池3が機能する電極拘束力の範囲及びセル温度の範囲については上述したが、制御部32は、異常が生じた場合には電極拘束力及びセル温度の少なくとも一方を上記範囲外と設定することによって、組電池3を機能停止させる。 The fail-safe control is a control for stopping the function of the battery pack 3 when an abnormality occurs in the battery pack 3. That is, the fail-safe control is control for stopping the function of the assembled battery 3 by adjusting factors that affect the output by the adjustment valve 6, the drive unit 42, and the like when an abnormality occurs in the assembled battery 3. As a result, it is possible to prevent the electric current from concentrating on the abnormal portion that has occurred in a part of the assembled battery 3. Although the range of the electrode restraining force and the range of the cell temperature at which the assembled battery 3 functions have been described above, the control unit 32 sets at least one of the electrode restraining force and the cell temperature outside the above range when an abnormality occurs. This causes the assembled battery 3 to stop functioning.
 例えば、制御部32は、フェールセーフ制御として、収納空間Aの内部圧力が低下するように調整弁6の開度を増加方向に操作する減圧制御を行う。この減圧制御によって組電池3の電極拘束力を上記範囲の下限値未満とすることで、組電池3を機能停止できる。この場合、調整弁6の開度操作と同時に圧力源5による気体の供給を停止または低下させてもよい。例えば、制御部32は、減圧制御を行うことによって電池ケース4の内部圧力を大気圧に減圧してもよい。 For example, the control unit 32 performs, as fail-safe control, pressure reduction control that operates the opening degree of the adjustment valve 6 in an increasing direction so that the internal pressure of the storage space A decreases. By setting the electrode restraining force of the battery pack 3 to be less than the lower limit value of the above range by this pressure reduction control, the battery pack 3 can stop functioning. In this case, the gas supply by the pressure source 5 may be stopped or reduced at the same time when the opening degree of the adjusting valve 6 is operated. For example, the control unit 32 may reduce the internal pressure of the battery case 4 to atmospheric pressure by performing pressure reduction control.
 例えば、自動車等の負圧源が存在する対象に電源装置が適用される場合、図9に示すように、負圧源47に接続される負圧経路49を給気ダクト20に接続し、その接続部に三方弁48を設けてもよい。三方弁48は、負圧経路49を閉鎖する一方で給気ダクト20を開通する状態aと、負圧源47と収納空間Aとを開通する一方で圧力源5からの気体の供給を遮断する状態bとを切り替えることができる。従って、三方弁48は切替手段の一例に相当する。制御部32は、異常時に三方弁48を状態aから状態bに切り替えて収納空間Aの内部圧力を負圧まで減圧し、セルケース2aの内圧を収納空間Aの内部圧力よりも大きくできる。これにより、組電池3を不動化させることが可能である。なお、真空ポンプなどの減圧装置を負圧源の一例として設け、異常時に減圧装置を作動させて、同様に組電池3を不動化させることも可能である。 For example, when the power supply device is applied to an object such as an automobile in which a negative pressure source exists, a negative pressure path 49 connected to the negative pressure source 47 is connected to the air supply duct 20 as shown in FIG. A three-way valve 48 may be provided at the connecting portion. The three-way valve 48 closes the negative pressure path 49 while opening the air supply duct 20, and opens the negative pressure source 47 and the storage space A while blocking the supply of gas from the pressure source 5. The state b can be switched. Therefore, the three-way valve 48 corresponds to an example of switching means. When an abnormality occurs, the control unit 32 switches the three-way valve 48 from the state a to the state b to reduce the internal pressure of the storage space A to a negative pressure, and the internal pressure of the cell case 2a can be made higher than the internal pressure of the storage space A. Thereby, the assembled battery 3 can be immobilized. It is also possible to provide a pressure reducing device such as a vacuum pump as an example of a negative pressure source, and activate the pressure reducing device in the event of an abnormality to similarly immobilize the assembled battery 3.
 また、電解質14がガラス固体電解質である場合、制御部32は、化学的なフェールセーフ制御として、セル温度をガラス固体電解質の結晶化温度を超える温度に変更する。図10に示すように、ガラス固体電解質は、温度が上昇するとイオン伝導度が高くなる。一方、所定の温度(結晶化温度)を超えると、ガラス固体電解質のイオン伝導度が急激に低下し、ガラス固体電解質のイオン輸送が閉鎖される。例えば、図10に示す例では、170℃付近を超えると、イオン伝導度が急激に低下し、200℃付近を超えるとイオンの輸送が閉鎖される。このため、制御部32は、セル温度がこの結晶化温度を超えるように内部温度に変更する。例えば、制御部32は、セル温度がこの結晶化温度を超える温度となるように駆動部42を操作する加圧加熱制御を行う。これにより、電解質14のガラス輸送が閉鎖されるため組電池3を機能停止できる。本実施形態では、ガラス固体電解質としては、例えば、LiPSが用いられる。 When the electrolyte 14 is a glass solid electrolyte, the control unit 32 changes the cell temperature to a temperature higher than the crystallization temperature of the glass solid electrolyte as a chemical fail-safe control. As shown in FIG. 10, the ionic conductivity of the glass solid electrolyte increases as the temperature rises. On the other hand, when the temperature exceeds a predetermined temperature (crystallization temperature), the ionic conductivity of the glass solid electrolyte sharply decreases, and the ion transport of the glass solid electrolyte is closed. For example, in the example shown in FIG. 10, when the temperature exceeds 170° C., the ionic conductivity sharply decreases, and when the temperature exceeds 200° C., the ion transport is closed. Therefore, the control unit 32 changes the cell temperature to the internal temperature so as to exceed the crystallization temperature. For example, the control unit 32 performs pressurization and heating control that operates the drive unit 42 so that the cell temperature becomes a temperature exceeding the crystallization temperature. As a result, the glass transportation of the electrolyte 14 is closed, so that the assembled battery 3 can stop functioning. In the present embodiment, for example, Li 3 PS 4 is used as the glass solid electrolyte.
[第四実施形態]
 次に、第四実施形態について説明する。
[Fourth Embodiment]
Next, a fourth embodiment will be described.
 図11に示すように、本実施形態に係る電源装置41は、組電池3と、電池ケース4と、圧力源5と、圧力源5の出力を調整する駆動部42と、絞り付きの排気ダクト(圧力調整排気ダクト)43と、を備える。駆動部42は制御部45によって制御される。 As shown in FIG. 11, the power supply device 41 according to the present embodiment includes an assembled battery 3, a battery case 4, a pressure source 5, a drive unit 42 that adjusts the output of the pressure source 5, and an exhaust duct with a throttle. (Pressure adjustment exhaust duct) 43. The drive unit 42 is controlled by the control unit 45.
 排気ダクト43は、第一実施形態の排気ダクト21に対応するものであり、電池ケース4の排気口19に連通されている。排気ダクト43には、絞り部の一例としてのベンチュリ部44が形成されている。ベンチュリ部44は、排気ダクト43の流路を小径化する部分であり排気ダクト43を流れる気体の流路抵抗となる。このため、ベンチュリ部44は、収納空間Aに供給された気体を排気ダクト43から抜けにくくすることで、収納空間Aの内部圧力の低下を抑える。なお、ベンチュリ部44の代わりに、オリフィス板にて流路を絞るオリフィス部を絞り部の他の一例として設けることもできる。 The exhaust duct 43 corresponds to the exhaust duct 21 of the first embodiment and communicates with the exhaust port 19 of the battery case 4. The exhaust duct 43 is formed with a venturi portion 44 as an example of a throttle portion. The venturi portion 44 is a portion that reduces the diameter of the flow path of the exhaust duct 43 and serves as a flow path resistance of gas flowing through the exhaust duct 43. Therefore, the venturi portion 44 makes it difficult for the gas supplied to the storage space A to escape from the exhaust duct 43, thereby suppressing a decrease in the internal pressure of the storage space A. Instead of the venturi portion 44, an orifice portion that narrows the flow path with an orifice plate may be provided as another example of the throttle portion.
[第五実施形態]
 次に、第五実施形態について説明する。第五実施形態は、給気口及び排気口として機能する給排気口が電池ケースに設けられている点を除き、基本的に第一実施形態及び第二実施形態と同様である。以下では、第二実施形態と相違する事項のみを説明し、第二実施形態と同様の事項の説明を省略する。
[Fifth Embodiment]
Next, a fifth embodiment will be described. The fifth embodiment is basically the same as the first and second embodiments except that the air supply/exhaust ports functioning as the air supply port and the air exhaust port are provided in the battery case. In the following, only matters different from the second embodiment will be described, and explanations of matters similar to the second embodiment will be omitted.
 図12に示すように、本実施形態に係る電源装置51は、組電池3と、電池ケース52と、圧力源5と、調整弁6と、を備える。 As shown in FIG. 12, the power supply device 51 according to the present embodiment includes an assembled battery 3, a battery case 52, a pressure source 5, and a regulating valve 6.
 電池ケース52は、組電池3を収納する収納空間Aを有する。電池ケース52には、給気口と排気口とを兼ねる一つの給排気口54が形成されている。給排気口54は、圧力源5及び調整弁53を収納空間Aに通じさせるための開口部である。 The battery case 52 has a storage space A for storing the assembled battery 3. The battery case 52 is provided with one air supply/exhaust port 54 that also serves as an air supply port and an air exhaust port. The air supply/exhaust port 54 is an opening for communicating the pressure source 5 and the regulating valve 53 with the storage space A.
 電池ケース52には、通気ダクト55が接続されている。通気ダクト55の一方端部側は、電池ケース52の給排気口54に連通されており、通気ダクト55の他方端部側は、圧力源5に通じる第一通気部56と第二通気部57とに分岐されている。第二通気部57は給排気口54に通じており、第二通気部57には調整弁6が設けられている。第二通気部57は排気通路の一例として機能する。 A ventilation duct 55 is connected to the battery case 52. One end side of the ventilation duct 55 is communicated with the air supply/exhaust port 54 of the battery case 52, and the other end side of the ventilation duct 55 is connected to the pressure source 5 with a first ventilation part 56 and a second ventilation part 57. It has been branched to. The second ventilation portion 57 communicates with the air supply/exhaust port 54, and the second ventilation portion 57 is provided with the adjusting valve 6. The second ventilation part 57 functions as an example of an exhaust passage.
 圧力源5にて圧縮加熱された空気は収納空間Aに供給されるとともに、収納空間A内の空気は給排気口54から通気ダクト55の第二通気部57に導かれて調整弁6を介して大気中に放出される。 The air compressed and heated by the pressure source 5 is supplied to the storage space A, and the air in the storage space A is guided from the air supply/exhaust port 54 to the second ventilation portion 57 of the ventilation duct 55 and passes through the adjustment valve 6. Released into the atmosphere.
 このような構成においても、第二実施形態と同様の効果を得ることができる。 Even in such a configuration, the same effect as that of the second embodiment can be obtained.
 以上、本発明の一側面に係る実施形態について説明したが、本発明は上記各実施形態に限定されるものではない。 The embodiments according to one aspect of the present invention have been described above, but the present invention is not limited to the above embodiments.
 例えば、上記の各実施形態は、その一部を互いに適用し合うことができる。例えば、第二実施形態の制御部を、第五実施形態に適用してもよい。また、第三実施形態のフェールセーフ制御を第二実施形態に適用してもよい。さらに、第五実施形態の構成を上述した各実施形態の構成と置き換えて実施してもよい。 For example, each of the above embodiments can be partially applied to each other. For example, the control unit of the second embodiment may be applied to the fifth embodiment. Further, the fail-safe control of the third embodiment may be applied to the second embodiment. Furthermore, the configuration of the fifth embodiment may be replaced with the configuration of each of the above-described embodiments.
 上記各実施形態では、複数の全固体電池セル2が組み合わされた組電池3が本発明に係る電池の一例に相当するが、組電池3の代わりに、全固体電池セル2が単体である電池を本発明に係る電池の一例として設けてもよい。 In each of the above embodiments, the assembled battery 3 in which a plurality of all-solid-state battery cells 2 are combined corresponds to an example of the battery according to the present invention. However, instead of the assembled battery 3, the all-solid-state battery cell 2 is a single battery. May be provided as an example of the battery according to the present invention.
 1…電源装置、2…全固体電池セル(電池セル)、3…組電池(電池)、4…電池ケース、5…圧力源、6…調整弁、12…正極、13…負極、14…電解質、15…正極端子、16…負極端子、18…給気口、19…排気口、20…給気ダクト、21…排気ダクト、23…固定具、24,25…板、26…固定部材、31…電源装置、32…制御部、33…バッテリー監視装置、34…温度センサ、35…温度センサ、41…電源装置、42…駆動部、43…排気ダクト、44…ベンチュリ部、45…制御部、51…電源装置、52…電池ケース、53…調整弁、54…給排気口、55…通気ダクト、56…第一通気部、57…第二通気部、A…収納空間。 DESCRIPTION OF SYMBOLS 1... Power supply device, 2... All-solid-state battery cell (battery cell), 3... Assembly battery (battery), 4... Battery case, 5... Pressure source, 6... Regulator valve, 12... Positive electrode, 13... Negative electrode, 14... Electrolyte , 15... Positive terminal, 16... Negative terminal, 18... Air supply port, 19... Exhaust port, 20... Air supply duct, 21... Exhaust duct, 23... Fixing device, 24, 25... Plate, 26... Fixing member, 31 ... power supply device, 32... control part, 33... battery monitoring device, 34... temperature sensor, 35... temperature sensor, 41... power supply device, 42... drive part, 43... exhaust duct, 44... venturi part, 45... control part, 51... Power supply device, 52... Battery case, 53... Regulator valve, 54... Air supply/exhaust port, 55... Ventilation duct, 56... First ventilation part, 57... Second ventilation part, A... Storage space.

Claims (11)

  1.  全固体電池セルを含む電池を機能させるための電池ケース装置であって、
     前記電池を収納可能な収納空間を有する電池ケースを備え、
     前記電池ケースには、圧縮加熱された気体が圧力源から前記収納空間に供給されるように前記圧力源を前記収納空間に通じさせるための給気口と、前記収納空間に通じる排気口とが形成され、
     前記電池の出力に影響する因子を前記給気口又は前記排気口を通じて調整可能な調整手段を有する、
    電池ケース装置。
    A battery case device for operating a battery including all-solid-state battery cells, comprising:
    A battery case having a storage space capable of storing the battery;
    The battery case has an air supply port for communicating the pressure source to the storage space so that the compressed and heated gas is supplied from the pressure source to the storage space, and an exhaust port communicating with the storage space. Formed,
    A factor that influences the output of the battery is adjustable through the air supply port or the exhaust port,
    Battery case device.
  2.  前記調整手段として、前記収納空間の圧力が所定の圧力に保持されるように前記排気口からの気体の排出量を調整可能な調整弁が設けられ、
     前記因子が制御されるように前記調整弁を操作する制御部を更に備える、
    請求項1に記載の電池ケース装置。
    As the adjusting means, there is provided an adjusting valve capable of adjusting the amount of gas discharged from the exhaust port so that the pressure of the storage space is maintained at a predetermined pressure.
    Further comprising a controller that operates the regulator valve such that the factor is controlled,
    The battery case device according to claim 1.
  3.  前記調整手段として、前記圧力源から前記給気口を通じて前記収納空間に導かれる気体の供給量を調整できるように前記圧力源を駆動可能な駆動部が設けられ、
     前記因子が制御されるように前記駆動部を操作する制御部を更に備える、
    請求項1に記載の電池ケース装置。
    As the adjusting means, a drive unit capable of driving the pressure source is provided so that the supply amount of the gas introduced from the pressure source to the storage space through the air supply port can be adjusted.
    Further comprising a controller for operating the driver so that the factor is controlled,
    The battery case device according to claim 1.
  4.  前記因子には、前記全固体電池セルの電極拘束力及びセル温度が含まれ、
     前記制御部は、前記因子の前記制御として、前記電極拘束力が制御され、かつ前記電池が機能する温度範囲に前記セル温度が制御されるように前記調整弁を操作する、
    請求項2に記載の電池ケース装置。
    The factors include an electrode restraining force and a cell temperature of the all-solid-state battery cell,
    The control unit controls the electrode restraining force as the control of the factor, and operates the adjustment valve so that the cell temperature is controlled in a temperature range in which the battery functions,
    The battery case device according to claim 2.
  5.  前記因子には、前記全固体電池セルの電極拘束力及びセル温度が含まれ、
     前記制御部は、前記因子の前記制御として、前記電極拘束力が制御され、かつ前記電池が機能する温度範囲に前記セル温度が制御されるように前記駆動部を操作する、
    請求項3に記載の電池ケース装置。
    The factors include an electrode restraining force and a cell temperature of the all-solid-state battery cell,
    The control unit controls the electrode restraining force as the control of the factor, and operates the drive unit so that the cell temperature is controlled in a temperature range in which the battery functions,
    The battery case device according to claim 3.
  6.  前記制御部は、前記電池に関する異常が生じた場合に、前記調整手段による前記因子の調整によって前記電池を機能停止させるフェールセーフ制御を行う、
    請求項2又は3に記載の電池ケース装置。
    The control unit performs fail-safe control for stopping the function of the battery by adjusting the factor by the adjusting unit when an abnormality occurs in the battery.
    The battery case device according to claim 2 or 3.
  7.  前記調整手段として、前記排気口からの気体の排出量を調整可能な調整弁が設けられ、
     前記制御部は、前記フェールセーフ制御として、前記収納空間の内部圧力が低下するように前記調整弁の開度を増加方向に操作する減圧制御を行う、請求項6に記載の電池ケース装置。
    As the adjusting means, an adjusting valve capable of adjusting the amount of gas discharged from the exhaust port is provided,
    7. The battery case device according to claim 6, wherein the control unit performs, as the fail-safe control, pressure reduction control that operates the opening of the adjustment valve in an increasing direction so that the internal pressure of the storage space decreases.
  8.  負圧源と、前記負圧源と前記収納空間とを開通する状態と遮断する状態とを切り替える切替手段とを更に備え、
     前記制御部は、前記フェールセーフ制御として、前記開通する状態となるように切替手段を操作する、請求項6に記載の電池ケース装置。
    A negative pressure source, and a switching means for switching between a state in which the negative pressure source and the storage space are opened and a state in which the negative pressure source is cut off,
    The battery case device according to claim 6, wherein the control unit operates the switching unit so as to be in the open state as the fail-safe control.
  9.  前記全固体電池セルは、ガラス固体電解質を有し、
     前記調整手段として、前記圧力源から前記給気口を通じて前記収納空間に導かれる気体の供給量を調整できるように前記圧力源を駆動可能な駆動部が設けられ、
     前記制御部は、前記フェールセーフ制御として、前記全固体電池セルのセル温度が前記ガラス固体電解質の結晶化温度を超える温度となるように前記駆動部を操作する加圧加熱制御を行う、
    請求項6に記載の電池ケース装置。
    The all-solid-state battery cell has a glass solid electrolyte,
    As the adjusting means, a drive unit capable of driving the pressure source is provided so as to adjust the supply amount of gas introduced from the pressure source to the storage space through the air supply port,
    The control unit performs, as the fail-safe control, pressurizing and heating control for operating the drive unit so that the cell temperature of the all-solid-state battery cell exceeds the crystallization temperature of the glass solid electrolyte.
    The battery case device according to claim 6.
  10.  前記排気口が前記収納空間の重力方向最下部に位置するように、前記電池ケースが設置される、
    請求項1~8の何れか一項に記載の電池ケース装置。
    The battery case is installed such that the exhaust port is located at the bottom of the storage space in the direction of gravity.
    The battery case device according to any one of claims 1 to 8.
  11.  全固体電池セルを含む電池と、
     前記電池を収納可能な収納空間を有する電池ケースと、を備え、
     前記電池ケースには、圧縮加熱された気体が圧力源から前記収納空間に供給されるように前記圧力源を前記収納空間に通じさせるための給気口と、前記収納空間に通じる排気口とが形成され、
     前記給気口又は前記排気口を通じて前記電池の出力に影響する因子を調整可能な調整手段を有する、
    電源装置。
    A battery including all-solid-state battery cells,
    A battery case having a storage space capable of storing the battery,
    The battery case has an air supply port for communicating the pressure source to the storage space so that compressed and heated gas is supplied from the pressure source to the storage space, and an exhaust port communicating with the storage space. Formed,
    And an adjusting unit capable of adjusting a factor that influences the output of the battery through the air supply port or the exhaust port.
    Power supply.
PCT/JP2019/034250 2018-12-05 2019-08-30 Battery case device and power supply device WO2020115964A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018228561A JP7222680B2 (en) 2018-12-05 2018-12-05 Battery case device and power supply device
JP2018-228561 2018-12-05

Publications (1)

Publication Number Publication Date
WO2020115964A1 true WO2020115964A1 (en) 2020-06-11

Family

ID=70973719

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/034250 WO2020115964A1 (en) 2018-12-05 2019-08-30 Battery case device and power supply device

Country Status (2)

Country Link
JP (1) JP7222680B2 (en)
WO (1) WO2020115964A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102022124042A1 (en) 2022-09-20 2024-03-21 Bayerische Motoren Werke Aktiengesellschaft Electrical energy storage with pressure vessel

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102622321B1 (en) 2022-01-12 2024-01-08 (주)하나기술 Pressurizing system of all solid state secondary battery with high temperature and method thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007087759A (en) * 2005-09-21 2007-04-05 Nissan Motor Co Ltd Gel electrolyte battery, battery unit, and method of manufacturing gel electrolyte layer for battery
JP2008147010A (en) * 2006-12-08 2008-06-26 Nissan Motor Co Ltd Power supply device, and its control method
JP2010034002A (en) * 2008-07-31 2010-02-12 Idemitsu Kosan Co Ltd Lithium battery and lithium battery mounting device
WO2010092692A1 (en) * 2009-02-16 2010-08-19 トヨタ自動車株式会社 Power storage device system, motor driver and mobile body using this system
JP2012169204A (en) * 2011-02-16 2012-09-06 Toyota Motor Corp Battery structure
JP2018073540A (en) * 2016-10-26 2018-05-10 トヨタ自動車株式会社 Battery structure, battery system and vehicle
JP2019033043A (en) * 2017-08-09 2019-02-28 三菱重工業株式会社 All-solid battery module

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007087759A (en) * 2005-09-21 2007-04-05 Nissan Motor Co Ltd Gel electrolyte battery, battery unit, and method of manufacturing gel electrolyte layer for battery
JP2008147010A (en) * 2006-12-08 2008-06-26 Nissan Motor Co Ltd Power supply device, and its control method
JP2010034002A (en) * 2008-07-31 2010-02-12 Idemitsu Kosan Co Ltd Lithium battery and lithium battery mounting device
WO2010092692A1 (en) * 2009-02-16 2010-08-19 トヨタ自動車株式会社 Power storage device system, motor driver and mobile body using this system
JP2012169204A (en) * 2011-02-16 2012-09-06 Toyota Motor Corp Battery structure
JP2018073540A (en) * 2016-10-26 2018-05-10 トヨタ自動車株式会社 Battery structure, battery system and vehicle
JP2019033043A (en) * 2017-08-09 2019-02-28 三菱重工業株式会社 All-solid battery module

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102022124042A1 (en) 2022-09-20 2024-03-21 Bayerische Motoren Werke Aktiengesellschaft Electrical energy storage with pressure vessel

Also Published As

Publication number Publication date
JP7222680B2 (en) 2023-02-15
JP2020092007A (en) 2020-06-11

Similar Documents

Publication Publication Date Title
US8876947B2 (en) Method and device for reducing the humidity of a gas in a housing interior
WO2020115964A1 (en) Battery case device and power supply device
CN102656737B (en) Method and device for decreasing moisture in a gas in a housing interior
JP5229534B2 (en) Fuel cell, fuel cell system and heating unit
US20100159306A1 (en) Device having at least one electrochemical cell, and method for operating a device having at least one electrochemical cell
US20070218328A1 (en) Fuel cell system
CN110797552B (en) Fuel cell system
US7883811B2 (en) Control apparatus for fuel cell stack
KR20130007669A (en) Drying method, and drying device
US10601092B2 (en) Temperature control apparatus for the temperature control of an electric power supply unit
KR20160054407A (en) End plate for fuel cell, fuel cell, and fuel cell system
US20180226667A1 (en) Method for operating a fuel cell system and adjusting a relative humidity of a cathode operating gas during a heating phase
US7418855B2 (en) Gas sensor and control method therefor
US8413517B2 (en) Fuel cell system and heated pressure sensor
US20170250422A1 (en) Method for controlling fuel cell system
CN111826668B (en) Water electrolysis system and control method thereof
JP4984392B2 (en) Fuel cell system
JP2008108612A (en) Fuel cell system
US20110023580A1 (en) Gas sensor
CN114074521A (en) Vehicle with a steering wheel
JP4747495B2 (en) Fuel cell system
JP2005166600A (en) Fuel cell system
JP2010015733A (en) Fuel cell system and compressed air supply device
JP7298430B2 (en) fuel cell system
JP5223624B2 (en) FUEL CELL SYSTEM AND FUEL CELL SYSTEM CONTROL METHOD USING THE SAME

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19892547

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19892547

Country of ref document: EP

Kind code of ref document: A1