WO2020115912A1 - Unit management device and unit management method - Google Patents

Unit management device and unit management method Download PDF

Info

Publication number
WO2020115912A1
WO2020115912A1 PCT/JP2018/045185 JP2018045185W WO2020115912A1 WO 2020115912 A1 WO2020115912 A1 WO 2020115912A1 JP 2018045185 W JP2018045185 W JP 2018045185W WO 2020115912 A1 WO2020115912 A1 WO 2020115912A1
Authority
WO
WIPO (PCT)
Prior art keywords
stepping motor
unit
board
spool
pressure air
Prior art date
Application number
PCT/JP2018/045185
Other languages
French (fr)
Japanese (ja)
Inventor
大樹 鈴木
正隆 岩▲崎▼
Original Assignee
株式会社Fuji
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Fuji filed Critical 株式会社Fuji
Priority to PCT/JP2018/045185 priority Critical patent/WO2020115912A1/en
Priority to CN201880099024.3A priority patent/CN112913342B/en
Priority to JP2020558794A priority patent/JP7080344B2/en
Publication of WO2020115912A1 publication Critical patent/WO2020115912A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
    • H05K13/04Mounting of components, e.g. of leadless components

Definitions

  • This specification discloses the technology related to the unit management device and the unit management method.
  • the state determination device described in Patent Document 1 includes a detection unit and a determination unit.
  • the detection means detects whether or not the motor is out of step.
  • the determination means controls the drive of the motor based on a low torque drive condition that the torque output from the motor becomes smaller than a predetermined drive condition when the determination condition for determining the state of the component supply device is satisfied, and the detection means.
  • the state of the component supply device is determined based on the detection result of. Specifically, the determination means controls the drive of the motor by setting the reference voltage of the pulse signal when driving the motor to a low voltage lower than that at the time of producing the mounting board.
  • the determining means determines that the maintenance is unnecessary when the motor is out of step, and determines that the maintenance is necessary when the motor is out of step.
  • the state determination device described in Patent Document 1 tries to determine whether maintenance is necessary before an abnormality occurs in the component supply device.
  • the state determination device described in Patent Document 1 detects the presence or absence of step-out of the motor by lowering the reference voltage of the pulse signal when driving the motor compared to when the mounting board is produced.
  • the presence or absence of step-out of the motor is not detected by using the operation interval of the predetermined operation repeatedly executed in the work for the board.
  • the present specification detects the presence or absence of step-out of a stepping motor by using an operation interval of a predetermined operation repeatedly performed in a work for a board, and determines whether maintenance of a driven part is necessary.
  • a unit management device and a unit management method capable of performing the above are disclosed.
  • the present specification manages a drive unit that is provided in a board-to-board work machine that performs a predetermined board-to-board work on a board to produce a board product, and that includes a stepping motor and a driven part driven by the stepping motor.
  • the unit management device includes an interval setting unit and a determination unit.
  • the interval setting unit sets the operation interval shorter than that at the time of producing the board product.
  • the operation interval starts from a time point when one of the predetermined operations repeatedly executed in the work for the board is finished and the pulse signal supplied to the stepping motor is stopped, and the next predetermined interval is set.
  • the end point is the time point at which the supply of the pulse signal is started to start the operation.
  • the determination unit drives the stepping motor at the operation interval set by the interval setting unit to detect presence/absence of step-out, and based on the presence/absence of step-out of the stepping motor, maintenance of the driven part is performed. Judge whether it is necessary or not.
  • the present specification provides a drive unit that is provided in a work machine for a board that performs a predetermined work for a board to produce a board product, and includes a stepping motor and a driven portion that is driven by the stepping motor.
  • a unit management method for managing a unit is disclosed.
  • the unit management method includes an interval setting step and a determination step.
  • the interval setting step the operation interval is set shorter than when the board product is produced.
  • the operation interval starts from a time point when one of the predetermined operations repeatedly executed in the work for the board is finished and the pulse signal supplied to the stepping motor is stopped, and the next predetermined interval is set.
  • the end point is the time point at which the supply of the pulse signal is started to start the operation.
  • the stepping motor is driven at the operation interval set in the interval setting step to detect the presence/absence of step-out, and based on the presence/absence of step-out of the stepping motor, maintenance of the driven part is performed. Judge whether it is necessary or not.
  • the unit management device it is provided with an interval setting unit and a determination unit.
  • the unit management device sets the operation interval of the predetermined operation that is repeatedly executed in the board-to-board operation to be shorter than that during the production of the board product, detects whether or not the stepping motor is out of step, and detects the stepped motor. The necessity of maintenance can be judged. What has been described above regarding the unit management device can be similarly applied to the unit management method.
  • FIG. 6 is a cross-sectional view showing an example of a state in which the spool 41 of the valve device 40 is positioned at the first stop position P1 and negative pressure air can be supplied to the holding member 50.
  • FIG. 9 is a cross-sectional view showing an example of a state in which the spool 41 of the valve device 40 is positioned at the second stop position P2 and positive pressure air can be supplied to the holding member 50.
  • FIG. 8 is a cross-sectional view showing an example of a state in which the spool 41 of the valve device 40 is positioned at the third stop position P3 and the holding member 50 can be opened to the atmosphere.
  • 3 is a block diagram showing an example of control blocks of a drive unit 60 and a unit management device 70.
  • FIG. 7 is a flowchart showing an example of a control procedure performed by the unit management device 70. It is a schematic diagram which shows the structural example of the mechanism which slides the spool 41 in the sliding direction (arrow Z direction).
  • 5 is a schematic diagram showing an example of a temporal change in the positional relationship between the spool 41 and the operating shaft 43.
  • FIG. FIG. 6 is a schematic diagram showing an example of damped vibration generated in a mover of a stepping motor 61 when supply of a pulse signal is stopped.
  • Embodiment 1-1 Example of Configuration of Work Line for Substrate WML
  • a predetermined work for the substrate is performed on the substrate 90.
  • the work line WML for a board of the present embodiment is a plurality (five) work for a board of a printing machine WM1, a printing inspection machine WM2, a component mounting machine WM3, a reflow furnace WM4, and an appearance inspection machine WM5.
  • the machine 90 is provided with a machine WM, and the substrate 90 is transported in this order by a substrate transport device (not shown).
  • the printing machine WM1 prints solder on the mounting positions of the plurality of components 91 on the board 90.
  • the printing inspection machine WM2 inspects the printing state of the solder printed by the printing machine WM1.
  • the component mounting machine WM3 mounts a plurality of components 91 on the substrate 90 (on the solder printed by the printing machine WM1).
  • the number of component mounting machines WM3 may be one or more. When a plurality of component mounting machines WM3 are provided, the plurality of component mounting machines WM3 can share and mount a plurality of components 91.
  • the reflow furnace WM4 heats the substrate 90 on which the plurality of components 91 are mounted by the component mounting machine WM3, melts the solder, and performs soldering.
  • the appearance inspection machine WM5 inspects the mounting state of the plurality of components 91 mounted by the component mounting machine WM3. In this way, the to-board work line WML uses a plurality of (five) to-to-board work machines WM to sequentially transfer the substrates 90 and execute the production process including the inspection process to produce the board product 900.
  • the work line to board WML includes, for example, a work machine to work WM such as a function inspection machine, a buffer device, a substrate supply device, a substrate reversing device, a shield mounting device, an adhesive coating device, and an ultraviolet irradiation device. It can be provided.
  • a work machine to work WM such as a function inspection machine, a buffer device, a substrate supply device, a substrate reversing device, a shield mounting device, an adhesive coating device, and an ultraviolet irradiation device. It can be provided.
  • a plurality of (five) anti-board working machines WM and a management device WMC forming the anti-board working line WML are electrically connected by a communication unit LC.
  • the communication unit LC may be wired or wireless. Also, various communication methods can be used.
  • a plurality of (five) anti-board working machines WM and a management device WMC constitute a local information communication network (LAN: Local Area Network). Accordingly, the plurality (five) of the board-working machines WM can communicate with each other via the communication unit LC. Further, a plurality (five) of the board-working machines WM can communicate with the management device WMC via the communication unit LC.
  • the management device WMC controls a plurality of (five) to-board work machines WM that form the to-board work line WML, and monitors the operating status of the to-board work line WML.
  • the management device WMC stores various control data for controlling a plurality of (five) work machines WM for a board.
  • the management device WMC transmits the control data to each of the plurality (five) of the board working machines WM. Further, each of the plurality (five) of the board working machines WM transmits the operation status and the production status to the management device WMC.
  • the component mounting machine WM3 mounts a plurality of components 91 on the board 90.
  • the component mounting machine WM3 includes a substrate transfer device 11, a component supply device 12, a component transfer device 13, a component camera 14, a substrate camera 15, and a control device 16.
  • the substrate transfer device 11 is configured by, for example, a belt conveyor and transfers the substrate 90 in the transfer direction (X-axis direction).
  • the board 90 is a circuit board on which at least one of an electronic circuit and an electric circuit is formed.
  • the board transfer device 11 carries the board 90 into the component mounting machine WM3 and positions the board 90 at a predetermined position in the machine.
  • substrate conveyance apparatus 11 carries out the board
  • the component supply device 12 supplies a plurality of components 91 mounted on the board 90.
  • the component supply device 12 includes a plurality of feeders 121 provided along the conveyance direction (X-axis direction) of the substrate 90.
  • Each of the plurality of feeders 121 feeds a carrier tape (not shown) in which a plurality of components 91 are housed with a pitch so that the components 91 can be collected at a supply position located on the tip side of the feeder 121.
  • the component supply device 12 can also supply a relatively large electronic component (for example, a lead component) compared to a chip component or the like in a state of being arranged on the tray.
  • the component transfer device 13 includes a head drive device 131 and a moving base 132.
  • the head drive device 131 is configured to be able to move the movable table 132 in the X-axis direction and the Y-axis direction by a linear motion mechanism.
  • the mounting head 20 is detachably (replaceable) provided on the moving table 132 by a clamp member (not shown).
  • the mounting head 20 uses at least one holding member 50 to collect and hold the component 91 supplied by the component supply device 12, and mounts the component 91 on the substrate 90 positioned by the substrate transfer device 11.
  • As the holding member 50 for example, a suction nozzle or a chuck can be used.
  • a publicly known imaging device can be used for the component camera 14 and the board camera 15.
  • the component camera 14 is fixed to the base of the component mounting machine WM3 so that the optical axis is upward in the Z-axis direction (vertical upward direction).
  • the component camera 14 can image the component 91 held by the holding member 50 from below.
  • the board camera 15 is provided on the moving base 132 of the component transfer device 13 such that the optical axis is downward in the Z-axis direction (downward in the vertical direction).
  • the board camera 15 can take an image of the board 90 from above.
  • the component camera 14 and the board camera 15 perform imaging based on a control signal sent from the control device 16. Image data captured by the component camera 14 and the board camera 15 is transmitted to the control device 16.
  • the control device 16 includes a well-known central processing unit and a storage device, and constitutes a control circuit (both not shown). Information output from various sensors provided in the component mounting machine WM3, image data, and the like are input to the control device 16.
  • the control device 16 sends a control signal to each device based on a control program and a predetermined mounting condition set in advance. For example, the control device 16 causes the substrate camera 15 to capture an image of the substrate 90 positioned by the substrate transfer device 11. The control device 16 performs image processing on the image captured by the board camera 15 to recognize the positioning state of the board 90. Further, the control device 16 causes the holding member 50 to collect and hold the component 91 supplied by the component supply device 12, and causes the component camera 14 to image the component 91 held by the holding member 50. The control device 16 performs image processing on the image captured by the component camera 14 to recognize the holding posture of the component 91.
  • the control device 16 moves the holding member 50 to the upper side of the planned mounting position preset by a control program or the like. Further, the control device 16 corrects the planned mounting position based on the positioning state of the board 90, the holding posture of the component 91, etc., and sets the mounting position at which the component 91 is actually mounted.
  • the planned mounting position and the mounting position include a rotation angle in addition to the position (X-axis coordinate and Y-axis coordinate).
  • the control device 16 corrects the target position (X-axis coordinate and Y-axis coordinate) and the rotation angle of the holding member 50 according to the mounting position.
  • the controller 16 lowers the holding member 50 at the corrected target position at the corrected rotation angle, and mounts the component 91 on the board 90.
  • the control device 16 executes the mounting process for mounting the plurality of components 91 on the board 90 by repeating the above-described pick and place cycle.
  • the mounting head 20 includes a head main body 21 that is clamped to the moving base 132.
  • the head main body 21 is provided with a rotary head 23 so that the R-axis motor 22 can determine a rotation angle for each predetermined angle.
  • the rotary head 23 includes a plurality of (for example, 12) tool shafts 24 at equal intervals in the circumferential direction on a circle concentric with the R axis.
  • the rotary head 23 holds the tool shaft 24 so as to be slidable in the ⁇ -axis direction (vertical direction in FIG. 3) parallel to the Z-axis and the R-axis and rotatable about the ⁇ -axis.
  • the tool shaft 24 is biased upward with respect to the rotary head 23 by the elastic force of a spring (not shown). As a result, the tool shaft 24 is located at the rising end in the normal state where no external force is applied.
  • a holding member 50 is detachably attached to the lower end of the tool shaft 24. At least positive pressure air or negative pressure air is supplied to the holding member 50, and the component 91 is sampled.
  • the holding member 50 includes a suction nozzle that sucks the component 91 with negative pressure air, a chuck (not shown) that operates with positive pressure air or negative pressure air, and the like. Further, when the holding member 50 is attached, the tool shaft 24 urges the holding member 50 downward by the elastic force of an in-shaft spring (not shown).
  • Each of the plurality of holding members 50 holds the component 91 by supplying air to the air passage of the holding member 50.
  • the plurality of holding members 50 are sequentially indexed to a predetermined angular position around the R axis (for example, the vertical position of the tool shaft 24) by the rotation of the rotary head 23 as the R axis motor 22 is driven.
  • the mounting head 20 includes a ⁇ -axis motor 25 fixed to the head body 21. All the tool shafts 24 are connected to the output shaft of the ⁇ -axis motor 25 so that the rotational force can be transmitted via a plurality of gears.
  • the tool shaft 24 and the holding member 50 are integrally rotated (rotated) around the ⁇ axis by the operation of the ⁇ axis motor 25, and the rotation angle and the rotation speed are controlled.
  • the head body 21 is provided with an operating member 26 that is movable in the Z-axis direction (vertical vertical direction).
  • the actuating member 26 is moved up and down in the Z-axis direction by a ball screw mechanism 28 that is operated by driving the Z-axis motor 27.
  • the actuating member 26 includes a lever 29 that comes into contact with the upper end of the tool shaft 24 that is indexed to the vertical position among the plurality of tool shafts 24.
  • the lever 29 moves down as the actuating member 26 moves downward in the Z-axis direction.
  • the lever 29 presses the tool shaft 24 downward in the Z-axis direction against the elastic force of the contacting spring of the tool shaft 24, and lowers the tool shaft 24.
  • the tool shaft 24 and the holding member 50 are integrally moved up and down in the Z-axis direction by driving the Z-axis motor 27, and the Z-axis direction position and the moving speed are controlled.
  • the mounting head 20 includes an air supply circuit 30.
  • the air supply circuit 30 can supply positive pressure air or negative pressure air to the holding member 50, and can open the inside of the holding member 50 to the atmosphere.
  • the air supply circuit 30 includes a positive pressure air passage 31, a negative pressure air passage 32, a plurality of atmospheric pressure air passages 33, a plurality of air passages 34, a positive pressure valve 35, a regulator valve 36, and a plurality of valve devices 40. ..
  • the positive pressure air passage 31 is an air passage formed in the rotary head 23 as a valve body and through which positive pressure air supplied from the positive pressure air supply source 81 flows.
  • the positive pressure air supply source 81 for example, a blower or a compressor provided outside the mounting head 20 can be used.
  • the positive pressure air passage 31 of the present embodiment is connected to the positive pressure air supply source 81 via the positive pressure valve 35 and the regulator valve 36.
  • the positive pressure valve 35 switches the communication state or the blocking state of the positive pressure air passage 31 and the positive pressure air supply source 81.
  • the positive pressure valve 35 of this embodiment is a two-position solenoid valve.
  • the positive pressure valve 35 is opened when the solenoid is excited by power supply.
  • the positive pressure valve 35 brings the positive pressure air passage 31 and the positive pressure air supply source 81 into communication with each other, and the positive pressure air can flow through the positive pressure air passage 31.
  • the positive pressure valve 35 is closed when the solenoid is not powered. As a result, the positive pressure valve 35 shuts off the positive pressure air passage 31 and the positive pressure air supply source 81, and the positive pressure air does not flow through the positive pressure air passage 31.
  • the regulator valve 36 is arranged between the positive pressure valve 35 and the positive pressure air supply source 81.
  • the regulator valve 36 adjusts the air pressure supplied from the positive pressure air supply source 81.
  • the regulator valve 36 of the present embodiment reduces the air pressure of the positive pressure air supplied from the positive pressure air supply source 81 to a specified pressure that is reduced to a certain extent, and enables stable positive pressure air supply.
  • the negative pressure air passage 32 is an air passage formed in the rotary head 23 and through which negative pressure air supplied from the negative pressure air supply source 82 flows.
  • the negative pressure air supply source 82 for example, a negative pressure pump provided inside the mounting head 20 can be used.
  • the negative pressure air passage 32 of the present embodiment is configured to be constantly connected to the negative pressure air supply source 82. Therefore, the negative pressure air passage 32 is in a state in which negative pressure air can flow while the negative pressure air supply source 82 is driven.
  • Each of the plurality of atmospheric pressure air passages 33 is an air passage formed in the rotary head 23 and opened to the atmosphere.
  • the atmospheric pressure air passage 33 is maintained equal to the atmospheric pressure inside the component mounting machine WM3 in which the mounting head 20 is arranged. Accordingly, when the atmospheric pressure air passage 33 communicates with the holding member internal air passage 51 of the holding member 50, if the holding member internal air passage 51 has a negative pressure, the air is supplied to the atmospheric pressure, and the holding member internal air passage 51 is provided. If 51 is a positive pressure, it is exhausted to atmospheric pressure.
  • Each of the plurality of air passages 34 is an air passage that communicates with the corresponding holding member 50 and allows the air supplied to the holding member 50 to flow.
  • the air passage 34 of this embodiment includes a main pipe 341, a first branch pipe 342, and a second branch pipe 343.
  • the main pipe 341 of the air passage 34 is formed in the tool shaft 24 and communicates with the holding member air passage 51 of the holding member 50.
  • the first branch pipe 342 and the second branch pipe 343 are formed in the rotary head 23 and branch from the main pipe 341, respectively.
  • the first branch pipe 342 can communicate with the positive pressure air passage 31 or the negative pressure air passage 32 by switching the valve device 40.
  • the second branch pipe 343 can communicate with the atmospheric pressure air passage 33 by switching the valve device 40.
  • the air passages 34 are formed by the number of tool shafts 24 provided in the rotary head 23. Further, when the holding member 50 is attached to the tool shaft 24, the air passage 34 always communicates with the holding member 50 so that air can be supplied to the holding member 50.
  • the valve device 40 selectively connects the air passage 34 with any one of the positive pressure air passage 31, the negative pressure air passage 32, and the atmospheric pressure air passage 33.
  • the valve device 40 can be configured by one or a plurality of valves as long as it has the above function. Further, various fluid valves can be used as the valves constituting the valve device 40.
  • the valve device 40 of the present embodiment is a three-position mechanical valve that includes the rotary head 23 as a valve body, a spool 41, a stepping motor 61, and an operating shaft 43. As described above, the rotary head 23 has the positive pressure air passage 31, the negative pressure air passage 32, the atmospheric pressure air passage 33, and the first branch pipe 342 and the second branch pipe 343 of the air passage 34.
  • the spool 41 is slidably provided in a spool hole 231 formed in the rotary head 23, and is positioned at three different stop positions (first stop position P1, second stop position P2, third stop position P3). To be done.
  • the spool 41 forms a state in which any one of the positive pressure air passage 31, the negative pressure air passage 32, and the atmospheric pressure air passage 33 communicates with the first branch pipe 342 or the second branch pipe 343 of the air passage 34, Switch the formation state.
  • An engagement portion 411 is formed on the upper end of the spool 41 protruding from the upper surface of the rotary head 23.
  • the stepping motor 61 is fixed to the head body 21.
  • the operation shaft 43 is moved up and down by a predetermined amount by driving the stepping motor 61.
  • the engaging portion 411 of the spool 41 is configured to be disengageable around the R axis and engageable with the operating claw 431 of the operating shaft 43 in the Z axis direction. Thereby, the engaging portion 411 of the spool 41 of the plurality of valve devices 40 is sequentially engaged with the operating claw 431 of the operating shaft 43 by indexing the rotation angle of the rotary head 23 around the R axis.
  • one end of the spool hole 231 in the rotary head 23 constitutes at least a part of the atmospheric pressure air passage 33.
  • the spool hole 231 is formed so as to penetrate the rotary head 23 in the sliding direction (arrow Z direction), and one lower end thereof is open to the atmosphere. That is, one end below the spool hole 231 constitutes the atmospheric pressure air passage 33, and may communicate with the second branch pipe 343 of the air passage 34 depending on the stop position (third stop position P3) of the spool 41. Is becoming
  • the valve device 40 has a positive pressure air passage 31 and a negative pressure air passage with respect to the air passage 34 according to three stop positions of the spool 41 (first stop position P1, second stop position P2, third stop position P3). Either one of the passage 32 and the atmospheric pressure air passage 33 is selectively communicated. Specifically, as shown in FIG. 5A, the valve device 40 positions the spool 41 at the first stop position P1 and connects the negative pressure air passage 32 to the first branch pipe 342 of the air passage 34. As a result, negative pressure air is supplied to the holding member internal air passage 51 of the holding member 50, and the holding member 50 is in a state capable of sucking the component 91.
  • the valve device 40 positions the spool 41 at the second stop position P2 and connects the positive pressure air passage 31 to the first branch pipe 342 of the air passage 34.
  • positive pressure air is supplied to the air passage 51 in the holding member 50 of the holding member 50, and the holding member 50 opens the component 91 by vacuum breaking.
  • the valve device 40 positions the spool 41 at the third stop position P3 and connects the atmospheric pressure air passage 33 to the second branch pipe 343 of the air passage 34. As a result, the air passage 51 in the holding member of the holding member 50 is opened to the atmosphere.
  • the spool 41 is moved in one direction (direction from the lower side to the upper side) of the sliding direction (arrow Z direction) with respect to the rotary head 23 as the valve body.
  • One stop position (first stop position P1, second stop position P2, third stop position P3) is sequentially positioned. Then, the valve device 40 makes the negative pressure air passage 32, the positive pressure air passage 31, and the atmospheric pressure air passage 33 communicate with the air passage 34 in this order.
  • Example of Configuration of Drive Unit 60 The drive unit 60 is provided in the board-to-board working machine WM that produces a board product 900 by performing a predetermined board-to-board work on the board 90.
  • the drive unit 60 is not limited as long as it is a drive unit provided in the work machine WM for a board.
  • the drive unit 60 is preferably the mounting head 20 including the holding member 50 and the valve device 40.
  • the holding member 50 picks up and holds the component 91 and mounts it on the positioned substrate 90.
  • the valve device 40 switches the selective supply of at least one of positive pressure air and negative pressure air to the holding member 50.
  • the valve device 40 includes the rotary head 23 as a valve body and the spool 41, and the positive pressure air passage 31 and the negative pressure are supplied to the air passage 34 of the holding member 50 according to the stop position of the spool 41. It is preferable to selectively communicate any one of the air passages 32.
  • a positive pressure air passage 31 through which positive pressure air flows and a negative pressure air passage 32 through which negative pressure air flows are formed in the rotary head 23 as a valve body.
  • the spool 41 is provided slidably with respect to the rotary head 23 as a valve body, and at least two different stop positions (in the present embodiment, three different stop positions (first stop position P1, first stop position) by a stepping motor 61). The second stop position P2 and the third stop position P3)) are positioned.
  • the drive unit 60 includes a stepping motor 61 and a driven portion 62.
  • the driven portion 62 can take various forms, but when the drive unit 60 is the mounting head 20 including the valve device 40 described above, it is preferable that the driven portion 62 includes at least the spool 41.
  • the operation shaft 43 moves up and down by driving the stepping motor 61.
  • the spool 41 slides in the sliding direction (the arrow Z direction) in the spool hole 231 of the rotary head 23 serving as the valve body and stops at the stop position (first stop position P1, second stop position P2, third position). It is positioned at the stop position P3). That is, the driven portion 62 of this embodiment includes the spool 41 and the operating shaft 43.
  • the spool 41 of the valve device 40 is provided with a plurality of (for example, three) O-rings 49.
  • Two O-rings 49 of the plurality (three) of O-rings 49 are provided on both sides in the sliding direction (arrow Z direction) so as to sandwich the positive pressure air passage 31.
  • Two O-rings 49 of the plurality (three) of O-rings 49 are provided on both sides in the sliding direction (arrow Z direction) so as to sandwich the negative pressure air passage 32.
  • the valve device 40 can suppress air leakage and wraparound of positive pressure air and negative pressure air in the spool 41.
  • grease is applied to each of the plurality (three) of O-rings 49, so that the sliding resistance when the spool 41, which is the driven portion 62, slides in the sliding direction (arrow Z direction). Has been reduced.
  • the drive unit 60 is used to produce the board product 900, the grease applied to the plurality (three) of O-rings 49 may decrease and the sliding resistance may increase. Further, there is a possibility that the spool 41 may become stuck due to the loss of grease.
  • the increase in sliding resistance or the fixation of the spool 41 may also be caused by, for example, breaking or misaligning at least one of the plurality (three) of O-rings 49, mixing foreign matter (for example, dust) in the spool hole 231, or the like. It can happen.
  • the unit management device 70 determines whether maintenance of the driven portion 62 is necessary or not based on whether or not the stepping motor 61 is out of step.
  • the unit management device 70 when regarded as a control block, includes an interval setting unit 71 and a determination unit 72. It is preferable that the unit management device 70 further includes at least one of the confirmation unit 73 and the guide unit 74. As shown in FIG. 6, the unit management device 70 of this embodiment includes an interval setting unit 71, a determination unit 72, a confirmation unit 73, and a guide unit 74. Further, as shown in FIG. 1, the unit management device 70 of the present embodiment is provided separately from the board working machine WM, but it may be provided in the board working machine WM. In this case, the unit management device 70 needs maintenance of the driven portion 62 during, for example, a standby time of the drive unit 60 (for example, during transportation of the substrate 90) or a rest time during which the work for the substrate is stopped. Can be judged.
  • the unit management device 70 executes the control program according to the flowchart shown in FIG.
  • the interval setting unit 71 performs the process shown in step S12.
  • the determination unit 72 performs the process shown in step S13 and makes the determination shown in step S14.
  • the determination unit 72 also performs the processing shown in steps S15 and S16.
  • the confirmation unit 73 performs the process shown in step S11.
  • the guide unit 74 performs the process shown in step S17.
  • Interval setting section 71 The interval setting unit 71 sets the operation interval Ti shorter than that during the production of the board product 900 (step S12 shown in FIG. 7).
  • the operation interval Ti starts from a point in time when one of the predetermined operations repeatedly executed in the work for the board ends and the pulse signal supplied to the stepping motor 61 is stopped. Further, the operation interval Ti has an end point at the time point when the supply of the pulse signal is started in order to start the next predetermined operation.
  • the predetermined operation is not limited as long as it is repeatedly executed in the work for the board.
  • the mounting head 20 includes the rotary head 23
  • the rotary head 23 is provided rotatably around the R axis parallel to the vertical axis. Then, the rotary head 23 sequentially indexes the spools 41 corresponding to the plurality of holding members 50 to a predetermined position around the R axis that can be driven.
  • the operation interval Ti in this case is preferably set to the starting point when the spool 41 corresponding to the indexed one holding member 50 is slid by a predetermined amount Z0 and the pulse signal supplied to the stepping motor 61 is stopped. Is. Further, the operation interval Ti is preferably set to an end point at the time when the supply of the pulse signal for starting the sliding of the spool 41 corresponding to the next holding member 50 is started.
  • FIG. 8 shows a structural example of a mechanism for sliding the spool 41 in the sliding direction (arrow Z direction).
  • This figure is an axial view seen from the drive shaft 61a side of the stepping motor 61, and the operating shaft 43 includes a rotating portion 43a and a linear moving portion 43b.
  • a drive shaft 61a of a stepping motor 61 is connected to the rotating portion 43a via a speed reducer (not shown).
  • the rotating portion 43a moves around the drive shaft 61a.
  • the rotation portion 43a is formed with an elongated hole portion 43a1 extending in a direction orthogonal to the sliding direction (arrow Z direction).
  • the linear motion portion 43b is a portion including the actuating claw 431, and can be linearly moved along the sliding direction (arrow Z direction) by a guide (not shown) extending along the sliding direction (arrow Z direction). ing.
  • a protrusion 43b1 that protrudes in the axial direction of the drive shaft 61a of the stepping motor 61 is formed on the linear motion portion 43b.
  • the elongated hole portion 43a1 of the rotating portion 43a is engaged with the protruding portion 43b1 of the linear motion portion 43b.
  • FIG. 9 shows an example of a temporal change in the positional relationship between the spool 41 and the operating shaft 43.
  • This figure is a partially omitted view of FIG. 8 and shows how the operating shaft 43 shifts from the first state to the second state and the third state and then returns to the first state.
  • the third state is the starting point of the operation interval Ti
  • the first state is the ending point of the operation interval Ti.
  • the first state is a state immediately before the spool 41 corresponding to the one holding member 50 indexed by the rotary head 23 starts sliding in the sliding direction (arrow Z direction).
  • the second state is a state immediately after the spool 41 is slid by a predetermined amount Z0 on one side in the sliding direction (the arrow Z direction) (for example, the upper side in the drawing of the drawing).
  • the third state is a state in which the spool 41 is stationary at the stop position in the second state, and the operating shaft 43 is in the same state as the first state.
  • the stepping motor 61 In the first state, when a pulse signal is supplied to the stepping motor 61, the stepping motor 61 is rotationally driven to rotate the rotating portion 43a of the operating shaft 43, so that the linear moving portion 43b of the operating shaft 43 slides. It moves straight toward one side (direction of arrow Z). As a result, the actuating claw 431 of the actuating shaft 43 engages with the engaging portion 411 of the spool 41, and the spool 41 has one side in the sliding direction (arrow Z direction) (for example, the upside in the figure). Begins to slide on.
  • the stepping motor 61 When shifting to the second state, the stepping motor 61 is rotationally driven in the opposite direction, the rotating portion 43a of the operating shaft 43 rotates in the opposite direction, and the linearly moving portion 43b of the operating shaft 43 slides in the sliding direction (arrow Z direction). ) To the other side (in this case, the lower side in the drawing of the drawing). At this time, the spool 41 is stationary at the stop position in the second state.
  • the pulse signal supplied to the stepping motor 61 is stopped (starting point of the operation interval Ti).
  • the stepping motor 61 stops rotating.
  • the spool 41 corresponding to the next holding member 50 is indexed by the rotary head 23 and shifts to the first state.
  • the supply of the pulse signal to the stepping motor 61 is started (the end point of the operation interval Ti).
  • a gap is provided between the operating claw 431 of the operating shaft 43 and the engaging portion 411 of the spool 41.
  • the control of the stepping motor 61 is an open loop control, when the supply of the pulse signal is stopped, damped vibration may occur in the mover of the stepping motor 61. Therefore, when the substrate product 900 is produced, the operation interval Ti is set so as not to be affected by these.
  • the sliding resistance of the driven portion 62 (spool 41) is increased or the driven portion 62 is fixed as described above, if the operation interval Ti is set shorter than that during the production of the board product 900, the stepping motor is set. Step out is likely to occur in 61. Therefore, the interval setting unit 71 sets the operation interval Ti shorter than that during the production of the board product 900.
  • the interval setting unit 71 sets the operation interval Ti to be shorter than the time Td required from the occurrence of the damped vibration of the mover to the predetermined vibration amplitude or less. Thereby, the interval setting unit 71 can set the operation interval Ti based on the damping vibration of the mover.
  • FIG. 10 shows an example of damping vibration generated in the mover of the stepping motor 61 when the supply of the pulse signal is stopped.
  • the solid line L11 indicates an example of the change over time of the mover position.
  • the solid line L11 can be acquired by, for example, simulation, prior confirmation by an actual machine, or the like.
  • the vertical axis of the figure shows the mover position, and the horizontal axis shows the time.
  • the interval setting unit 71 sets the operation interval Ti shorter than the time Td.
  • the operation interval Ti is shown as the time from time Tm11 to time Tm12
  • the time Td is shown as the time from time Tm11 to time Tm13.
  • the predetermined vibration amplitude that defines the time Td can be set arbitrarily.
  • the predetermined vibration amplitude can be set to, for example, a level that is unlikely to be affected during production of the board product 900, and can be acquired in advance by simulation, prior confirmation by an actual machine, or the like.
  • the time Td can be set to the same time as the operation interval Ti0 when the substrate product 900 is produced, for example.
  • Judgment unit 72 The determination unit 72 drives the stepping motor 61 at the operation interval Ti set by the interval setting unit 71 to detect the presence/absence of step-out, and based on the presence/absence of step-out of the stepping motor 61, maintenance of the driven part 62 is performed. Judge whether it is necessary or not. When the sliding resistance of the driven part 62 (spool 41) has been increased or the driven part 62 has been fixed, the driven part 62 needs to be maintained. The output torque required when the stepping motor 61 drives the driven portion 62 when the driven portion 62 needs maintenance is larger than when the driven portion 62 does not need maintenance. Therefore, it is preferable that the determination unit 72 determines that the driven unit 62 needs to be maintained when the stepping motor 61 loses synchronization.
  • the determination unit 72 drives the stepping motor 61 at the operation interval Ti set by the interval setting unit 71 (step S13 shown in FIG. 7). Then, the determination unit 72 detects whether or not the stepping motor 61 is out of step (step S14).
  • the valve device 40 is provided with a position detector (not shown) capable of detecting the position of the engagement portion 411 of the spool 41.
  • a known optical sensor can be used as the position detector, for example, and detects the position of the engagement portion 411 in the sliding direction (arrow Z direction) in the first state and the third state.
  • the determination unit 72 determines that the stepping motor 61 is You can judge that you are not out of sync. On the contrary, when the engagement portion 411 is not detected at the expected position, the determination unit 72 can determine that the stepping motor 61 is out of step. When step out of the stepping motor 61 is detected (Yes in step S14), the determination unit 72 determines that the spool 41 needs maintenance (step S15).
  • the determination unit 72 determines at least one of the spool 41 in which the stepping motor 61 is detected to be out of step and the spool 41 which is indexed immediately before the spool 41 in which the stepping motor 61 is detected to be out of step. It is preferable to judge that maintenance is necessary. As a result, the determination unit 72 can determine whether or not maintenance is required for the spool 41 indexed immediately before the spool 41 in which the stepping motor 61 is detected to be out of step. When the stepping motor 61 is not detected to be out of step (No in step S14), the determination unit 72 determines that maintenance of the spool 41 is unnecessary (step S16).
  • the determination unit 72 sequentially slides all the spools 41 provided on the mounting head 20 to one side in the sliding direction (the arrow Z direction) to detect the presence or absence of step-out of the stepping motor 61. is there. Then, the determination unit 72 sequentially detects the presence or absence of step-out of the stepping motor 61 by sequentially sliding all the spools 41 provided on the mounting head 20 to the one side and the opposite side in the sliding direction (arrow Z direction). It is preferable. As a result, the determination unit 72 can detect whether or not the stepping motor 61 is out of step by operating the spool 41 in the same order as when the board product 900 was produced.
  • the determination unit 72 detects the step-out of the stepping motor 61 and the step-out of the stepping motor 61 in at least one of the one side and the opposite side in the sliding direction (arrow Z direction). It is preferable to judge that at least one of the spools 41 indexed immediately before the spool 41 needs maintenance.
  • the operation interval Ti is stepped by sliding the spool 41 corresponding to the holding member 50 one side in the sliding direction (arrow Z direction) by a predetermined amount Z0. It is preferable to start from a time point when the pulse signal supplied to the motor 61 is stopped. Further, the operation interval Ti has an end point at the time when the supply of the pulse signal is started in order to start the sliding of the spool 41 corresponding to the holding member 50 to the one side and the opposite side in the sliding direction (arrow Z direction). It is preferable.
  • the determination unit 72 requires maintenance of the spool 41 when step out of the stepping motor 61 is detected for at least one of one side and the other side in the sliding direction (arrow Z direction). It is suitable to judge that. As a result, the determination unit 72 can determine whether maintenance of the spool 41 is necessary in the mounting head 20 including the single holding member 50.
  • the interval setting unit 71 can gradually set the operation interval Ti to be shorter from the operation interval Ti0 during the production of the board product 900.
  • the determination unit 72 detects whether or not the stepping motor 61 is out of step for each operation interval Ti set by the interval setting unit 71. Then, it is preferable that the determination unit 72 obtains the necessity level of maintenance of the driven unit 62 according to the operation interval Ti applied immediately before the predetermined operation when the stepping motor 61 loses step.
  • the determination unit 72 can acquire the need for maintenance of the driven unit 62 according to the operation interval Ti applied immediately before the predetermined operation when the stepping motor 61 loses step.
  • Confirmation unit 73 The confirmation unit 73 drives the stepping motor 61 at the same operation interval Ti0 as when the board product 900 is produced before detecting the step-out of the stepping motor 61 due to the operation interval Ti set by the interval setting unit 71. It is confirmed that step-out 61 does not occur (step S11 shown in FIG. 7).
  • the sliding resistance of the driven portion 62 (spool 41) described above is extremely high. It may be large (including fixation of the driven part 62). There is also a possibility of other factors (for example, equipment failure) other than the increase in sliding resistance. Therefore, it is advisable to make a preliminary confirmation by the confirmation unit 73. Accordingly, the determination unit 72 can determine whether or not maintenance of the driven unit 62 (spool 41) is necessary after the confirmation unit 73 performs the preliminary confirmation.
  • the guide unit 74 guides the user of the working machine WM to the substrate whether the maintenance of the driven unit 62 is determined by the determination unit 72 (step S17 shown in FIG. 7). Accordingly, the user of the working machine WM for a board can know whether maintenance of the driven portion 62 is necessary or not, and the maintenance of the driven portion 62 can be performed.
  • the guide unit 74 displays, for example, the driven unit 62 that has determined whether maintenance is necessary and the determination result (maintenance required or not required) on a known display device (not shown). You can Further, the guide part 74 can also display the necessity level of maintenance of the driven part 62 on the display device.
  • the reference voltage of the pulse signal supplied to the stepping motor 61 is the same as that at the time of producing the board product 900.
  • the drive unit 60 may be a feeder 121 that supplies a component 91.
  • Each of the plurality of feeders 121 includes a sprocket and a drive device that rotationally drives the sprocket (all not shown).
  • the sprocket pitch-feeds a carrier tape containing a plurality of components 91.
  • the driving device can use a stepping motor 61.
  • the predetermined operation that is repeatedly executed is pitch feeding of the carrier tape
  • the driven portion 62 includes a reduction mechanism and a sprocket that are connected to the drive shaft of the stepping motor 61.
  • the operation interval Ti is set to start at the time point when one predetermined operation (pitch feed) is completed and the pulse signal supplied to the stepping motor 61 is stopped, and to start the next predetermined operation (pitch feed). The time point when the supply of the pulse signal is started is the end point.
  • the unit management method includes an interval setting step and a determination step.
  • the interval setting step corresponds to the control performed by the interval setting unit 71.
  • the determination step corresponds to the control performed by the determination unit 72.
  • the unit management method includes at least one of the confirmation step and the guidance step.
  • the confirmation step corresponds to the control performed by the confirmation unit 73.
  • the guidance process corresponds to the control performed by the guide unit 74.
  • the unit management device 70 detects the presence or absence of step-out of the stepping motor 61 by setting the operation interval Ti of the predetermined operation repeatedly executed in the work for the board to be shorter than that during the production of the board product 900, It is possible to determine whether maintenance of the driven portion 62 is necessary. What has been described above regarding the unit management apparatus 70 can be similarly applied to the unit management method.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Supply And Installment Of Electrical Components (AREA)

Abstract

Provided is a unit management device which manages a drive unit disposed on a substrate operation machine which carries out a prescribed substrate operation on a substrate and manufactures a substrate product, said drive unit comprising a stepping motor and a drive subject unit which is driven by the stepping motor. The unit management device comprises an interval setting unit and a determination unit. The interval setting unit sets an action interval to be shorter compared to the manufacturing time of the substrate product. The action interval takes as a start point a time point at which one prescribed action ends from among prescribed actions which are repeatedly executed in the substrate operation and a pulse signal which is supplied to the stepping motor is interrupted, and takes as an end point a time point at which the supply of a pulse signal to commence the next prescribed action commences. The determination unit drives the stepping motor at the action interval which is set by the interval setting unit and detects whether a step-out has occurred, and on the basis of whether the step-out has occurred with the stepping motor, determines whether maintenance work of the drive subject part is necessary.

Description

ユニット管理装置およびユニット管理方法Unit management device and unit management method
 本明細書は、ユニット管理装置およびユニット管理方法に関する技術を開示する。 This specification discloses the technology related to the unit management device and the unit management method.
 特許文献1に記載の状態判定装置は、検出手段と判定手段とを備えている。検出手段は、モータの脱調の有無を検出する。判定手段は、部品供給装置の状態を判定する判定条件が成立した場合に、所定の駆動条件よりもモータから出力されるトルクが小さくなる低トルク駆動条件に基づいてモータを駆動制御し、検出手段による検出結果に基づいて部品供給装置の状態を判定する。具体的には、判定手段は、モータを駆動する際のパルス信号の基準電圧を、実装基板の生産時と比べて低い低電圧としてモータを駆動制御する。そして、判定手段は、モータが脱調しなかった場合にメンテナンスが不要と判定し、モータが脱調した場合にメンテナンスが必要と判定する。これにより、特許文献1に記載の状態判定装置は、部品供給装置に異常が生じる前にメンテナンスの要否を判定しようとしている。 The state determination device described in Patent Document 1 includes a detection unit and a determination unit. The detection means detects whether or not the motor is out of step. The determination means controls the drive of the motor based on a low torque drive condition that the torque output from the motor becomes smaller than a predetermined drive condition when the determination condition for determining the state of the component supply device is satisfied, and the detection means. The state of the component supply device is determined based on the detection result of. Specifically, the determination means controls the drive of the motor by setting the reference voltage of the pulse signal when driving the motor to a low voltage lower than that at the time of producing the mounting board. The determining means determines that the maintenance is unnecessary when the motor is out of step, and determines that the maintenance is necessary when the motor is out of step. As a result, the state determination device described in Patent Document 1 tries to determine whether maintenance is necessary before an abnormality occurs in the component supply device.
国際公開第2016/207952号International Publication No. 2016/207952
 しかしながら、特許文献1に記載の状態判定装置は、モータを駆動する際のパルス信号の基準電圧を、実装基板の生産時と比べて低くして、モータの脱調の有無を検出するものであり、対基板作業において繰り返し実行される所定動作の動作インターバルを用いてモータの脱調の有無を検出するものではない。 However, the state determination device described in Patent Document 1 detects the presence or absence of step-out of the motor by lowering the reference voltage of the pulse signal when driving the motor compared to when the mounting board is produced. The presence or absence of step-out of the motor is not detected by using the operation interval of the predetermined operation repeatedly executed in the work for the board.
 このような事情に鑑みて、本明細書は、対基板作業において繰り返し実行される所定動作の動作インターバルを用いてステッピングモータの脱調の有無を検出し、被駆動部のメンテナンスの要否を判断することが可能なユニット管理装置およびユニット管理方法を開示する。 In view of such circumstances, the present specification detects the presence or absence of step-out of a stepping motor by using an operation interval of a predetermined operation repeatedly performed in a work for a board, and determines whether maintenance of a driven part is necessary. A unit management device and a unit management method capable of performing the above are disclosed.
 本明細書は、基板に所定の対基板作業を行って基板製品を生産する対基板作業機に設けられ、かつ、ステッピングモータと前記ステッピングモータによって駆動される被駆動部とを備える駆動ユニットを管理するユニット管理装置を開示する。前記ユニット管理装置は、インターバル設定部と判断部とを具備する。前記インターバル設定部は、動作インターバルを前記基板製品の生産時と比べて短く設定する。前記動作インターバルは、前記対基板作業において繰り返し実行される所定動作のうちの一の前記所定動作が終了して前記ステッピングモータに供給されるパルス信号が停止される時点を起点とし、次の前記所定動作を開始するために前記パルス信号の供給が開始される時点を終点とする。前記判断部は、前記インターバル設定部によって設定された前記動作インターバルで前記ステッピングモータを駆動させて脱調の有無を検出し、前記ステッピングモータの脱調の有無に基づいて前記被駆動部のメンテナンスの要否を判断する。 The present specification manages a drive unit that is provided in a board-to-board work machine that performs a predetermined board-to-board work on a board to produce a board product, and that includes a stepping motor and a driven part driven by the stepping motor. Disclosed is a unit management device. The unit management device includes an interval setting unit and a determination unit. The interval setting unit sets the operation interval shorter than that at the time of producing the board product. The operation interval starts from a time point when one of the predetermined operations repeatedly executed in the work for the board is finished and the pulse signal supplied to the stepping motor is stopped, and the next predetermined interval is set. The end point is the time point at which the supply of the pulse signal is started to start the operation. The determination unit drives the stepping motor at the operation interval set by the interval setting unit to detect presence/absence of step-out, and based on the presence/absence of step-out of the stepping motor, maintenance of the driven part is performed. Judge whether it is necessary or not.
 また、本明細書は、基板に所定の対基板作業を行って基板製品を生産する対基板作業機に設けられ、かつ、ステッピングモータと前記ステッピングモータによって駆動される被駆動部とを備える駆動ユニットを管理するユニット管理方法を開示する。前記ユニット管理方法は、インターバル設定工程と判断工程とを具備する。前記インターバル設定工程は、動作インターバルを前記基板製品の生産時と比べて短く設定する。前記動作インターバルは、前記対基板作業において繰り返し実行される所定動作のうちの一の前記所定動作が終了して前記ステッピングモータに供給されるパルス信号が停止される時点を起点とし、次の前記所定動作を開始するために前記パルス信号の供給が開始される時点を終点とする。前記判断工程は、前記インターバル設定工程によって設定された前記動作インターバルで前記ステッピングモータを駆動させて脱調の有無を検出し、前記ステッピングモータの脱調の有無に基づいて前記被駆動部のメンテナンスの要否を判断する。 In addition, the present specification provides a drive unit that is provided in a work machine for a board that performs a predetermined work for a board to produce a board product, and includes a stepping motor and a driven portion that is driven by the stepping motor. A unit management method for managing a unit is disclosed. The unit management method includes an interval setting step and a determination step. In the interval setting step, the operation interval is set shorter than when the board product is produced. The operation interval starts from a time point when one of the predetermined operations repeatedly executed in the work for the board is finished and the pulse signal supplied to the stepping motor is stopped, and the next predetermined interval is set. The end point is the time point at which the supply of the pulse signal is started to start the operation. In the determination step, the stepping motor is driven at the operation interval set in the interval setting step to detect the presence/absence of step-out, and based on the presence/absence of step-out of the stepping motor, maintenance of the driven part is performed. Judge whether it is necessary or not.
 上記のユニット管理装置によれば、インターバル設定部と、判断部とを具備する。これにより、ユニット管理装置は、対基板作業において繰り返し実行される所定動作の動作インターバルを、基板製品の生産時と比べて短く設定してステッピングモータの脱調の有無を検出し、被駆動部のメンテナンスの要否を判断することができる。ユニット管理装置について上述したことは、ユニット管理方法についても同様に言える。 According to the above unit management device, it is provided with an interval setting unit and a determination unit. As a result, the unit management device sets the operation interval of the predetermined operation that is repeatedly executed in the board-to-board operation to be shorter than that during the production of the board product, detects whether or not the stepping motor is out of step, and detects the stepped motor. The necessity of maintenance can be judged. What has been described above regarding the unit management device can be similarly applied to the unit management method.
対基板作業ラインWMLの構成例を示す構成図である。It is a block diagram which shows the structural example of the to-substrate work line WML. 部品装着機WM3の構成例を示す平面図である。It is a top view which shows the structural example of component mounting machine WM3. 装着ヘッド20の構成例を示す側面図である。3 is a side view showing a configuration example of a mounting head 20. FIG. 装着ヘッド20に構成されるエア供給回路30の一例を示す回路図である。3 is a circuit diagram showing an example of an air supply circuit 30 configured in the mounting head 20. FIG. バルブ装置40のスプール41が第一停止位置P1に位置決めされて保持部材50に負圧エアが供給可能な状態の一例を示す断面図である。6 is a cross-sectional view showing an example of a state in which the spool 41 of the valve device 40 is positioned at the first stop position P1 and negative pressure air can be supplied to the holding member 50. FIG. バルブ装置40のスプール41が第二停止位置P2に位置決めされて保持部材50に正圧エアが供給可能な状態の一例を示す断面図である。9 is a cross-sectional view showing an example of a state in which the spool 41 of the valve device 40 is positioned at the second stop position P2 and positive pressure air can be supplied to the holding member 50. FIG. バルブ装置40のスプール41が第三停止位置P3に位置決めされて保持部材50を大気に開放可能な状態の一例を示す断面図である。FIG. 8 is a cross-sectional view showing an example of a state in which the spool 41 of the valve device 40 is positioned at the third stop position P3 and the holding member 50 can be opened to the atmosphere. 駆動ユニット60およびユニット管理装置70の制御ブロックの一例を示すブロック図である。3 is a block diagram showing an example of control blocks of a drive unit 60 and a unit management device 70. FIG. ユニット管理装置70による制御手順の一例を示すフローチャートである。7 is a flowchart showing an example of a control procedure performed by the unit management device 70. スプール41を摺動方向(矢印Z方向)に摺動させる機構の構成例を示す模式図である。It is a schematic diagram which shows the structural example of the mechanism which slides the spool 41 in the sliding direction (arrow Z direction). スプール41と作動軸43の位置関係の経時変化の一例を示す模式図である。5 is a schematic diagram showing an example of a temporal change in the positional relationship between the spool 41 and the operating shaft 43. FIG. パルス信号の供給が停止したときにステッピングモータ61の可動子に発生する減衰振動の一例を示す模式図である。FIG. 6 is a schematic diagram showing an example of damped vibration generated in a mover of a stepping motor 61 when supply of a pulse signal is stopped.
 1.実施形態
 1-1.対基板作業ラインWMLの構成例
 対基板作業ラインWMLでは、基板90に所定の対基板作業を行う。対基板作業ラインWMLを構成する対基板作業機WMの種類および数は、限定されない。図1に示すように、本実施形態の対基板作業ラインWMLは、印刷機WM1、印刷検査機WM2、部品装着機WM3、リフロー炉WM4および外観検査機WM5の複数(5つ)の対基板作業機WMを備えており、基板90は、基板搬送装置(図示略)によって、この順に搬送される。
1. Embodiment 1-1. Example of Configuration of Work Line for Substrate WML In the work line for Substrate WML, a predetermined work for the substrate is performed on the substrate 90. There is no limitation on the type and number of the work-to-board machine WM forming the work-to-board line WML. As shown in FIG. 1, the work line WML for a board of the present embodiment is a plurality (five) work for a board of a printing machine WM1, a printing inspection machine WM2, a component mounting machine WM3, a reflow furnace WM4, and an appearance inspection machine WM5. The machine 90 is provided with a machine WM, and the substrate 90 is transported in this order by a substrate transport device (not shown).
 印刷機WM1は、基板90において、複数の部品91の各々の装着位置に、はんだを印刷する。印刷検査機WM2は、印刷機WM1によって印刷されたはんだの印刷状態を検査する。部品装着機WM3は、基板90(印刷機WM1によって印刷されたはんだの上)に複数の部品91を装着する。部品装着機WM3は、一つであっても良く、複数であっても良い。部品装着機WM3が複数設けられる場合は、複数の部品装着機WM3が分担して、複数の部品91を装着することができる。 The printing machine WM1 prints solder on the mounting positions of the plurality of components 91 on the board 90. The printing inspection machine WM2 inspects the printing state of the solder printed by the printing machine WM1. The component mounting machine WM3 mounts a plurality of components 91 on the substrate 90 (on the solder printed by the printing machine WM1). The number of component mounting machines WM3 may be one or more. When a plurality of component mounting machines WM3 are provided, the plurality of component mounting machines WM3 can share and mount a plurality of components 91.
 リフロー炉WM4は、部品装着機WM3によって複数の部品91が装着された基板90を加熱し、はんだを溶融させて、はんだ付けを行う。外観検査機WM5は、部品装着機WM3によって装着された複数の部品91の装着状態などを検査する。このように、対基板作業ラインWMLは、複数(5つ)の対基板作業機WMを用いて、基板90を順に搬送し、検査処理を含む生産処理を実行して基板製品900を生産することができる。なお、対基板作業ラインWMLは、例えば、機能検査機、バッファ装置、基板供給装置、基板反転装置、シールド装着装置、接着剤塗布装置、紫外線照射装置などの対基板作業機WMを必要に応じて備えることもできる。 The reflow furnace WM4 heats the substrate 90 on which the plurality of components 91 are mounted by the component mounting machine WM3, melts the solder, and performs soldering. The appearance inspection machine WM5 inspects the mounting state of the plurality of components 91 mounted by the component mounting machine WM3. In this way, the to-board work line WML uses a plurality of (five) to-to-board work machines WM to sequentially transfer the substrates 90 and execute the production process including the inspection process to produce the board product 900. You can The work line to board WML includes, for example, a work machine to work WM such as a function inspection machine, a buffer device, a substrate supply device, a substrate reversing device, a shield mounting device, an adhesive coating device, and an ultraviolet irradiation device. It can be provided.
 対基板作業ラインWMLを構成する複数(5つ)の対基板作業機WMおよび管理装置WMCは、通信部LCによって電気的に接続されている。通信部LCは、有線であっても良く、無線であっても良い。また、通信方法は、種々の方法をとり得る。本実施形態では、複数(5つ)の対基板作業機WMおよび管理装置WMCによって、構内情報通信網(LAN:Local Area Network)が構成されている。これにより、複数(5つ)の対基板作業機WMは、通信部LCを介して、互いに通信することができる。また、複数(5つ)の対基板作業機WMは、通信部LCを介して、管理装置WMCと通信することができる。 A plurality of (five) anti-board working machines WM and a management device WMC forming the anti-board working line WML are electrically connected by a communication unit LC. The communication unit LC may be wired or wireless. Also, various communication methods can be used. In the present embodiment, a plurality of (five) anti-board working machines WM and a management device WMC constitute a local information communication network (LAN: Local Area Network). Accordingly, the plurality (five) of the board-working machines WM can communicate with each other via the communication unit LC. Further, a plurality (five) of the board-working machines WM can communicate with the management device WMC via the communication unit LC.
 管理装置WMCは、対基板作業ラインWMLを構成する複数(5つ)の対基板作業機WMの制御を行い、対基板作業ラインWMLの動作状況を監視する。管理装置WMCには、複数(5つ)の対基板作業機WMを制御する種々の制御データが記憶されている。管理装置WMCは、複数(5つ)の対基板作業機WMの各々に制御データを送信する。また、複数(5つ)の対基板作業機WMの各々は、管理装置WMCに動作状況および生産状況を送信する。 The management device WMC controls a plurality of (five) to-board work machines WM that form the to-board work line WML, and monitors the operating status of the to-board work line WML. The management device WMC stores various control data for controlling a plurality of (five) work machines WM for a board. The management device WMC transmits the control data to each of the plurality (five) of the board working machines WM. Further, each of the plurality (five) of the board working machines WM transmits the operation status and the production status to the management device WMC.
 1-2.部品装着機WM3の構成例
 部品装着機WM3は、基板90に複数の部品91を装着する。図2に示すように、部品装着機WM3は、基板搬送装置11、部品供給装置12、部品移載装置13、部品カメラ14、基板カメラ15および制御装置16を備えている。基板搬送装置11は、例えば、ベルトコンベアなどによって構成され、基板90を搬送方向(X軸方向)に搬送する。基板90は、回路基板であり、電子回路および電気回路のうちの少なくとも一方が形成される。基板搬送装置11は、部品装着機WM3の機内に基板90を搬入し、機内の所定位置に基板90を位置決めする。基板搬送装置11は、部品装着機WM3による複数の部品91の装着処理が終了した後に、基板90を部品装着機WM3の機外に搬出する。
1-2. Configuration Example of Component Mounting Machine WM3 The component mounting machine WM3 mounts a plurality of components 91 on the board 90. As shown in FIG. 2, the component mounting machine WM3 includes a substrate transfer device 11, a component supply device 12, a component transfer device 13, a component camera 14, a substrate camera 15, and a control device 16. The substrate transfer device 11 is configured by, for example, a belt conveyor and transfers the substrate 90 in the transfer direction (X-axis direction). The board 90 is a circuit board on which at least one of an electronic circuit and an electric circuit is formed. The board transfer device 11 carries the board 90 into the component mounting machine WM3 and positions the board 90 at a predetermined position in the machine. The board|substrate conveyance apparatus 11 carries out the board|substrate 90 out of the component mounting machine WM3, after the mounting process of the some components 91 by the component mounting machine WM3 is complete|finished.
 部品供給装置12は、基板90に装着される複数の部品91を供給する。部品供給装置12は、基板90の搬送方向(X軸方向)に沿って設けられる複数のフィーダ121を備えている。複数のフィーダ121の各々は、複数の部品91が収納されるキャリアテープ(図示略)をピッチ送りさせて、フィーダ121の先端側に位置する供給位置において部品91を採取可能に供給する。また、部品供給装置12は、チップ部品などと比べて比較的大型の電子部品(例えば、リード部品など)を、トレイ上に配置した状態で供給することもできる。 The component supply device 12 supplies a plurality of components 91 mounted on the board 90. The component supply device 12 includes a plurality of feeders 121 provided along the conveyance direction (X-axis direction) of the substrate 90. Each of the plurality of feeders 121 feeds a carrier tape (not shown) in which a plurality of components 91 are housed with a pitch so that the components 91 can be collected at a supply position located on the tip side of the feeder 121. In addition, the component supply device 12 can also supply a relatively large electronic component (for example, a lead component) compared to a chip component or the like in a state of being arranged on the tray.
 部品移載装置13は、ヘッド駆動装置131および移動台132を備えている。ヘッド駆動装置131は、直動機構によって移動台132を、X軸方向およびY軸方向に移動可能に構成されている。移動台132には、クランプ部材(図示略)によって装着ヘッド20が着脱可能(交換可能)に設けられている。装着ヘッド20は、少なくとも一つの保持部材50を用いて、部品供給装置12によって供給される部品91を採取し保持して、基板搬送装置11によって位置決めされた基板90に部品91を装着する。保持部材50は、例えば、吸着ノズル、チャックなどを用いることができる。 The component transfer device 13 includes a head drive device 131 and a moving base 132. The head drive device 131 is configured to be able to move the movable table 132 in the X-axis direction and the Y-axis direction by a linear motion mechanism. The mounting head 20 is detachably (replaceable) provided on the moving table 132 by a clamp member (not shown). The mounting head 20 uses at least one holding member 50 to collect and hold the component 91 supplied by the component supply device 12, and mounts the component 91 on the substrate 90 positioned by the substrate transfer device 11. As the holding member 50, for example, a suction nozzle or a chuck can be used.
 部品カメラ14および基板カメラ15は、公知の撮像装置を用いることができる。部品カメラ14は、光軸がZ軸方向の上向き(鉛直上方方向)になるように、部品装着機WM3の基台に固定されている。部品カメラ14は、保持部材50によって保持されている部品91を下方から撮像することができる。基板カメラ15は、光軸がZ軸方向の下向き(鉛直下方方向)になるように、部品移載装置13の移動台132に設けられている。基板カメラ15は、基板90を上方から撮像することができる。部品カメラ14および基板カメラ15は、制御装置16から送出される制御信号に基づいて撮像を行う。部品カメラ14および基板カメラ15によって撮像された画像データは、制御装置16に送信される。 A publicly known imaging device can be used for the component camera 14 and the board camera 15. The component camera 14 is fixed to the base of the component mounting machine WM3 so that the optical axis is upward in the Z-axis direction (vertical upward direction). The component camera 14 can image the component 91 held by the holding member 50 from below. The board camera 15 is provided on the moving base 132 of the component transfer device 13 such that the optical axis is downward in the Z-axis direction (downward in the vertical direction). The board camera 15 can take an image of the board 90 from above. The component camera 14 and the board camera 15 perform imaging based on a control signal sent from the control device 16. Image data captured by the component camera 14 and the board camera 15 is transmitted to the control device 16.
 制御装置16は、公知の中央演算装置および記憶装置を備えており、制御回路が構成されている(いずれも図示略)。制御装置16には、部品装着機WM3に設けられる各種センサから出力される情報、画像データなどが入力される。制御装置16は、制御プログラムおよび予め設定されている所定の装着条件などに基づいて、各装置に対して制御信号を送出する。例えば、制御装置16は、基板搬送装置11によって位置決めされた基板90を基板カメラ15に撮像させる。制御装置16は、基板カメラ15によって撮像された画像を画像処理して、基板90の位置決め状態を認識する。また、制御装置16は、部品供給装置12によって供給された部品91を保持部材50に採取させ保持させて、保持部材50に保持されている部品91を部品カメラ14に撮像させる。制御装置16は、部品カメラ14によって撮像された画像を画像処理して、部品91の保持姿勢を認識する。 The control device 16 includes a well-known central processing unit and a storage device, and constitutes a control circuit (both not shown). Information output from various sensors provided in the component mounting machine WM3, image data, and the like are input to the control device 16. The control device 16 sends a control signal to each device based on a control program and a predetermined mounting condition set in advance. For example, the control device 16 causes the substrate camera 15 to capture an image of the substrate 90 positioned by the substrate transfer device 11. The control device 16 performs image processing on the image captured by the board camera 15 to recognize the positioning state of the board 90. Further, the control device 16 causes the holding member 50 to collect and hold the component 91 supplied by the component supply device 12, and causes the component camera 14 to image the component 91 held by the holding member 50. The control device 16 performs image processing on the image captured by the component camera 14 to recognize the holding posture of the component 91.
 制御装置16は、制御プログラムなどによって予め設定される装着予定位置の上方に向かって、保持部材50を移動させる。また、制御装置16は、基板90の位置決め状態、部品91の保持姿勢などに基づいて、装着予定位置を補正して、実際に部品91を装着する装着位置を設定する。装着予定位置および装着位置は、位置(X軸座標およびY軸座標)の他に回転角度を含む。制御装置16は、装着位置に合わせて、保持部材50の目標位置(X軸座標およびY軸座標)および回転角度を補正する。制御装置16は、補正された目標位置において補正された回転角度で保持部材50を下降させて、基板90に部品91を装着する。制御装置16は、上記のピックアンドプレースサイクルを繰り返すことによって、基板90に複数の部品91を装着する装着処理を実行する。 The control device 16 moves the holding member 50 to the upper side of the planned mounting position preset by a control program or the like. Further, the control device 16 corrects the planned mounting position based on the positioning state of the board 90, the holding posture of the component 91, etc., and sets the mounting position at which the component 91 is actually mounted. The planned mounting position and the mounting position include a rotation angle in addition to the position (X-axis coordinate and Y-axis coordinate). The control device 16 corrects the target position (X-axis coordinate and Y-axis coordinate) and the rotation angle of the holding member 50 according to the mounting position. The controller 16 lowers the holding member 50 at the corrected target position at the corrected rotation angle, and mounts the component 91 on the board 90. The control device 16 executes the mounting process for mounting the plurality of components 91 on the board 90 by repeating the above-described pick and place cycle.
 1-3.装着ヘッド20の構成例
 図3に示すように、装着ヘッド20は、移動台132にクランプされるヘッド本体21を備えている。ヘッド本体21には、R軸モータ22によって所定の角度ごとに回転角度を割り出し可能に、ロータリヘッド23が設けられている。ロータリヘッド23は、R軸と同心の円周上において周方向に等間隔に複数(例えば、12本)のツール軸24を備えている。ロータリヘッド23は、Z軸およびR軸に平行なθ軸方向(図3の上下方向)に摺動可能に且つθ軸周りに回転可能にツール軸24を保持している。
1-3. Configuration Example of Mounting Head 20 As shown in FIG. 3, the mounting head 20 includes a head main body 21 that is clamped to the moving base 132. The head main body 21 is provided with a rotary head 23 so that the R-axis motor 22 can determine a rotation angle for each predetermined angle. The rotary head 23 includes a plurality of (for example, 12) tool shafts 24 at equal intervals in the circumferential direction on a circle concentric with the R axis. The rotary head 23 holds the tool shaft 24 so as to be slidable in the θ-axis direction (vertical direction in FIG. 3) parallel to the Z-axis and the R-axis and rotatable about the θ-axis.
 ツール軸24は、スプリング(図示略)の弾性力によってロータリヘッド23に対して上方に付勢されている。これにより、ツール軸24は、外力が付与されていない通常状態では、上昇端に位置している。ツール軸24の下端部には、保持部材50が着脱可能に取り付けられる。保持部材50には、少なくとも正圧エアまたは負圧エアが供給され、部品91を採取する。保持部材50には、負圧エアによって部品91を吸着する吸着ノズルの他に、正圧エアまたは負圧エアによって動作するチャック(図示略)などが含まれる。また、ツール軸24は、保持部材50が取り付けられると、軸内スプリング(図示略)の弾性力によって、保持部材50を下方に付勢する。 The tool shaft 24 is biased upward with respect to the rotary head 23 by the elastic force of a spring (not shown). As a result, the tool shaft 24 is located at the rising end in the normal state where no external force is applied. A holding member 50 is detachably attached to the lower end of the tool shaft 24. At least positive pressure air or negative pressure air is supplied to the holding member 50, and the component 91 is sampled. The holding member 50 includes a suction nozzle that sucks the component 91 with negative pressure air, a chuck (not shown) that operates with positive pressure air or negative pressure air, and the like. Further, when the holding member 50 is attached, the tool shaft 24 urges the holding member 50 downward by the elastic force of an in-shaft spring (not shown).
 複数の保持部材50の各々は、保持部材50のエア通路にエアが供給されて部品91を保持する。複数の保持部材50は、R軸モータ22の駆動に伴ってロータリヘッド23が回転することによって、R軸周りの所定の角度位置(例えば、ツール軸24の昇降位置)に順次割り出される。図3に示すように、装着ヘッド20は、ヘッド本体21に固定されているθ軸モータ25を備えている。θ軸モータ25の出力軸には、複数のギヤを介して回転力を伝達可能に全てのツール軸24が連結されている。ツール軸24および保持部材50は、θ軸モータ25の動作によってθ軸周りに一体的に回転(自転)し、回転角度や回転速度が制御される。 Each of the plurality of holding members 50 holds the component 91 by supplying air to the air passage of the holding member 50. The plurality of holding members 50 are sequentially indexed to a predetermined angular position around the R axis (for example, the vertical position of the tool shaft 24) by the rotation of the rotary head 23 as the R axis motor 22 is driven. As shown in FIG. 3, the mounting head 20 includes a θ-axis motor 25 fixed to the head body 21. All the tool shafts 24 are connected to the output shaft of the θ-axis motor 25 so that the rotational force can be transmitted via a plurality of gears. The tool shaft 24 and the holding member 50 are integrally rotated (rotated) around the θ axis by the operation of the θ axis motor 25, and the rotation angle and the rotation speed are controlled.
 また、ヘッド本体21には、Z軸方向(鉛直上下方向)に移動可能に作動部材26が設けられている。作動部材26は、Z軸モータ27の駆動によって動作するボールねじ機構28によってZ軸方向に昇降する。作動部材26は、複数のツール軸24のうちの昇降位置に割り出されたツール軸24の上端部に接触するレバー29を備えている。レバー29は、作動部材26のZ軸方向下方への移動に伴って下降する。レバー29は、接触するツール軸24のスプリングの弾性力に抗してツール軸24をZ軸方向の下方へと押圧し、ツール軸24を下降させる。ツール軸24および保持部材50は、Z軸モータ27の駆動によってZ軸方向に一体的に昇降し、Z軸方向位置や移動速度が制御される。 Further, the head body 21 is provided with an operating member 26 that is movable in the Z-axis direction (vertical vertical direction). The actuating member 26 is moved up and down in the Z-axis direction by a ball screw mechanism 28 that is operated by driving the Z-axis motor 27. The actuating member 26 includes a lever 29 that comes into contact with the upper end of the tool shaft 24 that is indexed to the vertical position among the plurality of tool shafts 24. The lever 29 moves down as the actuating member 26 moves downward in the Z-axis direction. The lever 29 presses the tool shaft 24 downward in the Z-axis direction against the elastic force of the contacting spring of the tool shaft 24, and lowers the tool shaft 24. The tool shaft 24 and the holding member 50 are integrally moved up and down in the Z-axis direction by driving the Z-axis motor 27, and the Z-axis direction position and the moving speed are controlled.
 1-4.エア供給回路30の構成例
 図4に示すように、装着ヘッド20は、エア供給回路30を備えている。エア供給回路30は、保持部材50に正圧エアまたは負圧エアを供給可能とし、且つ、保持部材50内を大気に開放可能とする。エア供給回路30は、正圧エア通路31、負圧エア通路32、複数の大気圧エア通路33、複数のエア通路34、正圧バルブ35、レギュレータバルブ36および複数のバルブ装置40を備えている。
1-4. Configuration Example of Air Supply Circuit 30 As shown in FIG. 4, the mounting head 20 includes an air supply circuit 30. The air supply circuit 30 can supply positive pressure air or negative pressure air to the holding member 50, and can open the inside of the holding member 50 to the atmosphere. The air supply circuit 30 includes a positive pressure air passage 31, a negative pressure air passage 32, a plurality of atmospheric pressure air passages 33, a plurality of air passages 34, a positive pressure valve 35, a regulator valve 36, and a plurality of valve devices 40. ..
 正圧エア通路31は、バルブボディとしてのロータリヘッド23に形成され、正圧エア供給源81から供給される正圧エアが流通するエア通路である。正圧エア供給源81は、例えば、装着ヘッド20の外部に設けられるブロワ、コンプレッサなどを用いることができる。本実施形態の正圧エア通路31は、正圧バルブ35およびレギュレータバルブ36を介して正圧エア供給源81に接続される。正圧バルブ35は、正圧エア通路31と正圧エア供給源81の連通状態または遮断状態を切り換える。 The positive pressure air passage 31 is an air passage formed in the rotary head 23 as a valve body and through which positive pressure air supplied from the positive pressure air supply source 81 flows. As the positive pressure air supply source 81, for example, a blower or a compressor provided outside the mounting head 20 can be used. The positive pressure air passage 31 of the present embodiment is connected to the positive pressure air supply source 81 via the positive pressure valve 35 and the regulator valve 36. The positive pressure valve 35 switches the communication state or the blocking state of the positive pressure air passage 31 and the positive pressure air supply source 81.
 本実施形態の正圧バルブ35は、二位置のソレノイドバルブである。正圧バルブ35は、ソレノイドが給電により励磁されると開状態になる。これにより、正圧バルブ35は、正圧エア通路31と正圧エア供給源81を連通状態とし、正圧エア通路31に正圧エアが流通可能な状態になる。正圧バルブ35は、ソレノイドが給電されない場合に閉状態となる。これにより、正圧バルブ35は、正圧エア通路31と正圧エア供給源81を遮断状態とし、正圧エア通路31に正圧エアが流通しない状態になる。 The positive pressure valve 35 of this embodiment is a two-position solenoid valve. The positive pressure valve 35 is opened when the solenoid is excited by power supply. As a result, the positive pressure valve 35 brings the positive pressure air passage 31 and the positive pressure air supply source 81 into communication with each other, and the positive pressure air can flow through the positive pressure air passage 31. The positive pressure valve 35 is closed when the solenoid is not powered. As a result, the positive pressure valve 35 shuts off the positive pressure air passage 31 and the positive pressure air supply source 81, and the positive pressure air does not flow through the positive pressure air passage 31.
 レギュレータバルブ36は、正圧バルブ35と正圧エア供給源81との間に配置される。レギュレータバルブ36は、正圧エア供給源81から供給される空気圧を調整する。本実施形態のレギュレータバルブ36は、正圧エア供給源81から供給される正圧エアの空気圧を一定程度低減させた規定圧力に減圧し、安定した正圧エアの供給を可能としている。 The regulator valve 36 is arranged between the positive pressure valve 35 and the positive pressure air supply source 81. The regulator valve 36 adjusts the air pressure supplied from the positive pressure air supply source 81. The regulator valve 36 of the present embodiment reduces the air pressure of the positive pressure air supplied from the positive pressure air supply source 81 to a specified pressure that is reduced to a certain extent, and enables stable positive pressure air supply.
 負圧エア通路32は、ロータリヘッド23に形成され、負圧エア供給源82から供給される負圧エアが流通するエア通路である。負圧エア供給源82は、例えば、装着ヘッド20の内部に設けられる負圧ポンプなどを用いることができる。本実施形態の負圧エア通路32は、負圧エア供給源82に常時接続するように構成される。よって、負圧エア通路32は、負圧エア供給源82が駆動している間は負圧エアが流通可能な状態になる。 The negative pressure air passage 32 is an air passage formed in the rotary head 23 and through which negative pressure air supplied from the negative pressure air supply source 82 flows. As the negative pressure air supply source 82, for example, a negative pressure pump provided inside the mounting head 20 can be used. The negative pressure air passage 32 of the present embodiment is configured to be constantly connected to the negative pressure air supply source 82. Therefore, the negative pressure air passage 32 is in a state in which negative pressure air can flow while the negative pressure air supply source 82 is driven.
 複数の大気圧エア通路33の各々は、ロータリヘッド23に形成され、大気に開放されるエア通路である。大気圧エア通路33は、装着ヘッド20が配置される部品装着機WM3の機内の気圧と等しく維持される。これにより、大気圧エア通路33が保持部材50の保持部材内エア通路51と連通した場合に、保持部材内エア通路51が負圧であれば給気されて大気圧となり、保持部材内エア通路51が正圧であれば排気されて大気圧となる。 Each of the plurality of atmospheric pressure air passages 33 is an air passage formed in the rotary head 23 and opened to the atmosphere. The atmospheric pressure air passage 33 is maintained equal to the atmospheric pressure inside the component mounting machine WM3 in which the mounting head 20 is arranged. Accordingly, when the atmospheric pressure air passage 33 communicates with the holding member internal air passage 51 of the holding member 50, if the holding member internal air passage 51 has a negative pressure, the air is supplied to the atmospheric pressure, and the holding member internal air passage 51 is provided. If 51 is a positive pressure, it is exhausted to atmospheric pressure.
 複数のエア通路34の各々は、対応する保持部材50との間で連通して、保持部材50に供給されるエアが流通可能なエア通路である。本実施形態のエア通路34は、本管341、第一枝管342および第二枝管343を備える。エア通路34の本管341は、ツール軸24に形成され、保持部材50の保持部材内エア通路51と連通する。第一枝管342および第二枝管343は、ロータリヘッド23に形成され、本管341からそれぞれ分岐する。 Each of the plurality of air passages 34 is an air passage that communicates with the corresponding holding member 50 and allows the air supplied to the holding member 50 to flow. The air passage 34 of this embodiment includes a main pipe 341, a first branch pipe 342, and a second branch pipe 343. The main pipe 341 of the air passage 34 is formed in the tool shaft 24 and communicates with the holding member air passage 51 of the holding member 50. The first branch pipe 342 and the second branch pipe 343 are formed in the rotary head 23 and branch from the main pipe 341, respectively.
 第一枝管342は、バルブ装置40の切り換えによって正圧エア通路31または負圧エア通路32と連通し得る。第二枝管343は、バルブ装置40の切り換えによって大気圧エア通路33と連通し得る。エア通路34は、ロータリヘッド23に設けられるツール軸24の数量分、形成される。また、エア通路34は、保持部材50がツール軸24に取り付けられると、保持部材50にエアを供給可能に常時連通する。 The first branch pipe 342 can communicate with the positive pressure air passage 31 or the negative pressure air passage 32 by switching the valve device 40. The second branch pipe 343 can communicate with the atmospheric pressure air passage 33 by switching the valve device 40. The air passages 34 are formed by the number of tool shafts 24 provided in the rotary head 23. Further, when the holding member 50 is attached to the tool shaft 24, the air passage 34 always communicates with the holding member 50 so that air can be supplied to the holding member 50.
 バルブ装置40は、エア通路34に対して、正圧エア通路31、負圧エア通路32および大気圧エア通路33のいずれか一つを選択的に連通させる。バルブ装置40は、上記の機能を有するものであれば、一つまたは複数のバルブによって構成することができる。また、バルブ装置40を構成するバルブは、種々の流体バルブを用いることができる。図5Aに示すように、本実施形態のバルブ装置40は、バルブボディとしてのロータリヘッド23と、スプール41と、ステッピングモータ61と、作動軸43とを備えており、三位置のメカバルブである。ロータリヘッド23は、既述したように、正圧エア通路31、負圧エア通路32、大気圧エア通路33、エア通路34の第一枝管342および第二枝管343が形成されている。 The valve device 40 selectively connects the air passage 34 with any one of the positive pressure air passage 31, the negative pressure air passage 32, and the atmospheric pressure air passage 33. The valve device 40 can be configured by one or a plurality of valves as long as it has the above function. Further, various fluid valves can be used as the valves constituting the valve device 40. As shown in FIG. 5A, the valve device 40 of the present embodiment is a three-position mechanical valve that includes the rotary head 23 as a valve body, a spool 41, a stepping motor 61, and an operating shaft 43. As described above, the rotary head 23 has the positive pressure air passage 31, the negative pressure air passage 32, the atmospheric pressure air passage 33, and the first branch pipe 342 and the second branch pipe 343 of the air passage 34.
 スプール41は、ロータリヘッド23に形成されたスプール穴231に対して摺動可能に設けられ、異なる三つの停止位置(第一停止位置P1、第二停止位置P2、第三停止位置P3)に位置決めされる。スプール41は、エア通路34の第一枝管342または第二枝管343に、正圧エア通路31、負圧エア通路32および大気圧エア通路33のいずれか一つが連通した状態を形成し、形成状態を切り換える。スプール41には、ロータリヘッド23の上面より突出した上端に係合部411が形成されている。 The spool 41 is slidably provided in a spool hole 231 formed in the rotary head 23, and is positioned at three different stop positions (first stop position P1, second stop position P2, third stop position P3). To be done. The spool 41 forms a state in which any one of the positive pressure air passage 31, the negative pressure air passage 32, and the atmospheric pressure air passage 33 communicates with the first branch pipe 342 or the second branch pipe 343 of the air passage 34, Switch the formation state. An engagement portion 411 is formed on the upper end of the spool 41 protruding from the upper surface of the rotary head 23.
 ステッピングモータ61は、ヘッド本体21に固定されている。作動軸43は、ステッピングモータ61の駆動によって所定量、昇降される。スプール41の係合部411は、作動軸43の作動爪431に対して、R軸周りに離脱可能に且つZ軸方向に係合可能に構成されている。これにより、ロータリヘッド23のR軸周りの回転角度の割り出しによって、作動軸43の作動爪431に複数のバルブ装置40のスプール41の係合部411が順次係合される。 The stepping motor 61 is fixed to the head body 21. The operation shaft 43 is moved up and down by a predetermined amount by driving the stepping motor 61. The engaging portion 411 of the spool 41 is configured to be disengageable around the R axis and engageable with the operating claw 431 of the operating shaft 43 in the Z axis direction. Thereby, the engaging portion 411 of the spool 41 of the plurality of valve devices 40 is sequentially engaged with the operating claw 431 of the operating shaft 43 by indexing the rotation angle of the rotary head 23 around the R axis.
 このようにして、ステッピングモータ61の駆動によって昇降する作動軸43に外力が付与されて、スプール41は、ロータリヘッド23のスプール穴231において、摺動方向(矢印Z方向)の停止位置(第一停止位置P1、第二停止位置P2、第三停止位置P3)に位置決めされる。なお、スプール41は、所定の摩擦力をもってスプール穴231に支持されている。これにより、スプール41は、自重による摺動が規制されている。そのため、スプール41は、上述した摩擦力を上回る外力が付与されない限り、位置決めされた停止位置(第一停止位置P1、第二停止位置P2、第三停止位置P3)に保持される。 In this way, an external force is applied to the actuating shaft 43 that moves up and down by the driving of the stepping motor 61, so that the spool 41 slides in the spool hole 231 of the rotary head 23 at the stop position (first direction Z) in the sliding direction (arrow Z direction). It is positioned at a stop position P1, a second stop position P2, and a third stop position P3). The spool 41 is supported by the spool hole 231 with a predetermined frictional force. As a result, the spool 41 is restricted from sliding due to its own weight. Therefore, the spool 41 is held at the positioned stop positions (first stop position P1, second stop position P2, third stop position P3) unless an external force exceeding the above-mentioned frictional force is applied.
 ここで、ロータリヘッド23におけるスプール穴231の一端部は、大気圧エア通路33の少なくとも一部を構成する。具体的には、スプール穴231は、図5Aに示すように、ロータリヘッド23を摺動方向(矢印Z方向)に貫通するように形成され、下方の一端部が大気に開放されている。つまり、スプール穴231の下方の一端部は、大気圧エア通路33を構成し、スプール41の停止位置(第三停止位置P3)によっては、エア通路34の第二枝管343と連通する構成になっている。 Here, one end of the spool hole 231 in the rotary head 23 constitutes at least a part of the atmospheric pressure air passage 33. Specifically, as shown in FIG. 5A, the spool hole 231 is formed so as to penetrate the rotary head 23 in the sliding direction (arrow Z direction), and one lower end thereof is open to the atmosphere. That is, one end below the spool hole 231 constitutes the atmospheric pressure air passage 33, and may communicate with the second branch pipe 343 of the air passage 34 depending on the stop position (third stop position P3) of the spool 41. Is becoming
 バルブ装置40は、スプール41の三つの停止位置(第一停止位置P1、第二停止位置P2、第三停止位置P3)に応じてエア通路34に対して、正圧エア通路31、負圧エア通路32および大気圧エア通路33のいずれか一つを選択的に連通させる。具体的には、バルブ装置40は、図5Aに示すように、スプール41を第一停止位置P1に位置決めして、エア通路34の第一枝管342に負圧エア通路32を連通させる。これにより、保持部材50の保持部材内エア通路51に負圧エアが供給されて、保持部材50が部品91を吸着可能な状態になる。 The valve device 40 has a positive pressure air passage 31 and a negative pressure air passage with respect to the air passage 34 according to three stop positions of the spool 41 (first stop position P1, second stop position P2, third stop position P3). Either one of the passage 32 and the atmospheric pressure air passage 33 is selectively communicated. Specifically, as shown in FIG. 5A, the valve device 40 positions the spool 41 at the first stop position P1 and connects the negative pressure air passage 32 to the first branch pipe 342 of the air passage 34. As a result, negative pressure air is supplied to the holding member internal air passage 51 of the holding member 50, and the holding member 50 is in a state capable of sucking the component 91.
 また、バルブ装置40は、図5Bに示すように、スプール41を第二停止位置P2に位置決めして、エア通路34の第一枝管342に正圧エア通路31を連通させる。これにより、保持部材50の保持部材内エア通路51に正圧エアが供給されて、真空破壊によって保持部材50が部品91を開放する状態になる。さらに、バルブ装置40は、図5Cに示すように、スプール41を第三停止位置P3に位置決めして、エア通路34の第二枝管343に大気圧エア通路33を連通させる。これにより、保持部材50の保持部材内エア通路51が大気に開放される。 Further, as shown in FIG. 5B, the valve device 40 positions the spool 41 at the second stop position P2 and connects the positive pressure air passage 31 to the first branch pipe 342 of the air passage 34. As a result, positive pressure air is supplied to the air passage 51 in the holding member 50 of the holding member 50, and the holding member 50 opens the component 91 by vacuum breaking. Further, as shown in FIG. 5C, the valve device 40 positions the spool 41 at the third stop position P3 and connects the atmospheric pressure air passage 33 to the second branch pipe 343 of the air passage 34. As a result, the air passage 51 in the holding member of the holding member 50 is opened to the atmosphere.
 このように、本実施形態のバルブ装置40は、バルブボディとしてのロータリヘッド23に対してスプール41を摺動方向(矢印Z方向)の一方向(下方から上方に向かう方向)に移動させて三つの停止位置(第一停止位置P1、第二停止位置P2、第三停止位置P3)に順次位置決めする。そして、バルブ装置40は、エア通路34に対して、負圧エア通路32、正圧エア通路31および大気圧エア通路33の順に連通させる。 As described above, in the valve device 40 of the present embodiment, the spool 41 is moved in one direction (direction from the lower side to the upper side) of the sliding direction (arrow Z direction) with respect to the rotary head 23 as the valve body. One stop position (first stop position P1, second stop position P2, third stop position P3) is sequentially positioned. Then, the valve device 40 makes the negative pressure air passage 32, the positive pressure air passage 31, and the atmospheric pressure air passage 33 communicate with the air passage 34 in this order.
 1-5.駆動ユニット60の構成例
 駆動ユニット60は、基板90に所定の対基板作業を行って基板製品900を生産する対基板作業機WMに設けられる。駆動ユニット60は、対基板作業機WMに設けられる駆動ユニットであれば良く限定されない。対基板作業機WMが基板90に部品91を装着する部品装着機WM3の場合、駆動ユニット60は、保持部材50と、バルブ装置40とを備える装着ヘッド20であると好適である。既述したように、保持部材50は、部品91を採取し保持して位置決めされた基板90に装着する。バルブ装置40は、少なくとも正圧エアおよび負圧エアのいずれか一つの保持部材50に対する選択的な供給を切り換える。
1-5. Example of Configuration of Drive Unit 60 The drive unit 60 is provided in the board-to-board working machine WM that produces a board product 900 by performing a predetermined board-to-board work on the board 90. The drive unit 60 is not limited as long as it is a drive unit provided in the work machine WM for a board. In the case of the component mounting machine WM3 in which the board working machine WM mounts the component 91 on the board 90, the drive unit 60 is preferably the mounting head 20 including the holding member 50 and the valve device 40. As described above, the holding member 50 picks up and holds the component 91 and mounts it on the positioned substrate 90. The valve device 40 switches the selective supply of at least one of positive pressure air and negative pressure air to the holding member 50.
 また、バルブ装置40は、バルブボディとしてのロータリヘッド23と、スプール41とを備え、スプール41の停止位置に応じて、保持部材50のエア通路34に対して、正圧エア通路31および負圧エア通路32のいずれか一つを選択的に連通させると好適である。この場合、バルブボディとしてのロータリヘッド23には、正圧エアが流通する正圧エア通路31および負圧エアが流通する負圧エア通路32が形成される。スプール41は、バルブボディとしてのロータリヘッド23に対して摺動可能に設けられ、ステッピングモータ61によって少なくとも二つの異なる停止位置(本実施形態では、三つの異なる停止位置(第一停止位置P1、第二停止位置P2、第三停止位置P3))に位置決めされる。 Further, the valve device 40 includes the rotary head 23 as a valve body and the spool 41, and the positive pressure air passage 31 and the negative pressure are supplied to the air passage 34 of the holding member 50 according to the stop position of the spool 41. It is preferable to selectively communicate any one of the air passages 32. In this case, a positive pressure air passage 31 through which positive pressure air flows and a negative pressure air passage 32 through which negative pressure air flows are formed in the rotary head 23 as a valve body. The spool 41 is provided slidably with respect to the rotary head 23 as a valve body, and at least two different stop positions (in the present embodiment, three different stop positions (first stop position P1, first stop position) by a stepping motor 61). The second stop position P2 and the third stop position P3)) are positioned.
 図6に示すように、駆動ユニット60は、ステッピングモータ61と、被駆動部62とを備える。被駆動部62は、種々の形態をとり得るが、駆動ユニット60が上述したバルブ装置40を備える装着ヘッド20の場合、被駆動部62は、少なくともスプール41を含むと好適である。既述したように、ステッピングモータ61の駆動によって作動軸43が昇降する。これにより、スプール41は、バルブボディとしてのロータリヘッド23のスプール穴231において、摺動方向(矢印Z方向)に摺動して停止位置(第一停止位置P1、第二停止位置P2、第三停止位置P3)に位置決めされる。つまり、本実施形態の被駆動部62は、スプール41と作動軸43を含む。 As shown in FIG. 6, the drive unit 60 includes a stepping motor 61 and a driven portion 62. The driven portion 62 can take various forms, but when the drive unit 60 is the mounting head 20 including the valve device 40 described above, it is preferable that the driven portion 62 includes at least the spool 41. As described above, the operation shaft 43 moves up and down by driving the stepping motor 61. As a result, the spool 41 slides in the sliding direction (the arrow Z direction) in the spool hole 231 of the rotary head 23 serving as the valve body and stops at the stop position (first stop position P1, second stop position P2, third position). It is positioned at the stop position P3). That is, the driven portion 62 of this embodiment includes the spool 41 and the operating shaft 43.
 1-6.ユニット管理装置70の構成例
 図5A~図5Cに示すように、バルブ装置40のスプール41には、複数(例えば、3つ)のOリング49が設けられている。複数(3つ)のOリング49のうちの2つのOリング49は、正圧エア通路31を挟むように摺動方向(矢印Z方向)の両側に設けられている。また、複数(3つ)のOリング49のうちの2つのOリング49は、負圧エア通路32を挟むように摺動方向(矢印Z方向)の両側に設けられている。これらにより、バルブ装置40は、スプール41における正圧エアおよび負圧エアのエア漏れ、回り込みを抑制することができる。
1-6. Configuration Example of Unit Management Device 70 As shown in FIGS. 5A to 5C, the spool 41 of the valve device 40 is provided with a plurality of (for example, three) O-rings 49. Two O-rings 49 of the plurality (three) of O-rings 49 are provided on both sides in the sliding direction (arrow Z direction) so as to sandwich the positive pressure air passage 31. Two O-rings 49 of the plurality (three) of O-rings 49 are provided on both sides in the sliding direction (arrow Z direction) so as to sandwich the negative pressure air passage 32. As a result, the valve device 40 can suppress air leakage and wraparound of positive pressure air and negative pressure air in the spool 41.
 また、複数(3つ)のOリング49の各々には、グリスが塗布されており、被駆動部62であるスプール41が摺動方向(矢印Z方向)に摺動するときの摺動抵抗が低減されている。駆動ユニット60が基板製品900の生産に使用されるにつれて、複数(3つ)のOリング49に塗布されているグリスが減少し摺動抵抗が増加する可能性がある。また、グリスの消失によってスプール41が固着する可能性がある。摺動抵抗の増加またはスプール41の固着は、例えば、複数(3つ)のOリング49のうちの少なくとも一つの破断または位置ずれ、スプール穴231における異物(例えば、埃など)の混入などによっても生じる可能性がある。 Further, grease is applied to each of the plurality (three) of O-rings 49, so that the sliding resistance when the spool 41, which is the driven portion 62, slides in the sliding direction (arrow Z direction). Has been reduced. As the drive unit 60 is used to produce the board product 900, the grease applied to the plurality (three) of O-rings 49 may decrease and the sliding resistance may increase. Further, there is a possibility that the spool 41 may become stuck due to the loss of grease. The increase in sliding resistance or the fixation of the spool 41 may also be caused by, for example, breaking or misaligning at least one of the plurality (three) of O-rings 49, mixing foreign matter (for example, dust) in the spool hole 231, or the like. It can happen.
 このように、被駆動部62(スプール41)の摺動抵抗の増加または被駆動部62の固着が生じると、被駆動部62を駆動するステッピングモータ61に脱調が生じ易くなる。そこで、ユニット管理装置70は、ステッピングモータ61の脱調の有無に基づいて、被駆動部62のメンテナンスの要否を判断する。 When the sliding resistance of the driven portion 62 (spool 41) is increased or the driven portion 62 is fixed as described above, the stepping motor 61 that drives the driven portion 62 is likely to be out of step. Therefore, the unit management device 70 determines whether maintenance of the driven portion 62 is necessary or not based on whether or not the stepping motor 61 is out of step.
 ユニット管理装置70は、制御ブロックとして捉えると、インターバル設定部71と、判断部72とを備えている。ユニット管理装置70は、確認部73および案内部74のうちの少なくとも一方をさらに備えると好適である。図6に示すように、本実施形態のユニット管理装置70は、インターバル設定部71と、判断部72と、確認部73と、案内部74とを備えている。また、図1に示すように、本実施形態のユニット管理装置70は、対基板作業機WMと別体に設けられているが、対基板作業機WMに設けることもできる。この場合、ユニット管理装置70は、例えば、駆動ユニット60の待機時間(例えば、基板90の搬送中など)、対基板作業が休止している休止時間などに、被駆動部62のメンテナンスの要否を判断することができる。 The unit management device 70, when regarded as a control block, includes an interval setting unit 71 and a determination unit 72. It is preferable that the unit management device 70 further includes at least one of the confirmation unit 73 and the guide unit 74. As shown in FIG. 6, the unit management device 70 of this embodiment includes an interval setting unit 71, a determination unit 72, a confirmation unit 73, and a guide unit 74. Further, as shown in FIG. 1, the unit management device 70 of the present embodiment is provided separately from the board working machine WM, but it may be provided in the board working machine WM. In this case, the unit management device 70 needs maintenance of the driven portion 62 during, for example, a standby time of the drive unit 60 (for example, during transportation of the substrate 90) or a rest time during which the work for the substrate is stopped. Can be judged.
 また、ユニット管理装置70は、図7に示すフローチャートに従って、制御プログラムを実行する。インターバル設定部71は、ステップS12に示す処理を行う。判断部72は、ステップS13に示す処理を行い、ステップS14に示す判断を行う。また、判断部72は、ステップS15およびステップS16に示す処理を行う。確認部73は、ステップS11に示す処理を行う。案内部74は、ステップS17に示す処理を行う。 Further, the unit management device 70 executes the control program according to the flowchart shown in FIG. The interval setting unit 71 performs the process shown in step S12. The determination unit 72 performs the process shown in step S13 and makes the determination shown in step S14. The determination unit 72 also performs the processing shown in steps S15 and S16. The confirmation unit 73 performs the process shown in step S11. The guide unit 74 performs the process shown in step S17.
 1-6-1.インターバル設定部71
 インターバル設定部71は、基板製品900の生産時と比べて動作インターバルTiを短く設定する(図7に示すステップS12)。動作インターバルTiは、対基板作業において繰り返し実行される所定動作のうちの一の所定動作が終了してステッピングモータ61に供給されるパルス信号が停止される時点を起点とする。また、動作インターバルTiは、次の所定動作を開始するためにパルス信号の供給が開始される時点を終点とする。
1-6-1. Interval setting section 71
The interval setting unit 71 sets the operation interval Ti shorter than that during the production of the board product 900 (step S12 shown in FIG. 7). The operation interval Ti starts from a point in time when one of the predetermined operations repeatedly executed in the work for the board ends and the pulse signal supplied to the stepping motor 61 is stopped. Further, the operation interval Ti has an end point at the time point when the supply of the pulse signal is started in order to start the next predetermined operation.
 所定動作は、対基板作業において繰り返し実行されるものであれば良く、限定されない。例えば、装着ヘッド20がロータリヘッド23を備える場合、ロータリヘッド23は、鉛直軸に平行なR軸周りに回転可能に設けられる。そして、ロータリヘッド23は、複数の保持部材50に対応したスプール41を駆動可能なR軸周りの所定位置に順次割り出す。この場合の動作インターバルTiは、割り出された一の保持部材50に対応したスプール41が所定量Z0、摺動されてステッピングモータ61に供給されるパルス信号が停止される時点を起点とすると好適である。また、動作インターバルTiは、次に割り出された保持部材50に対応したスプール41の摺動を開始するためにパルス信号の供給が開始される時点を終点とすると好適である。 The predetermined operation is not limited as long as it is repeatedly executed in the work for the board. For example, when the mounting head 20 includes the rotary head 23, the rotary head 23 is provided rotatably around the R axis parallel to the vertical axis. Then, the rotary head 23 sequentially indexes the spools 41 corresponding to the plurality of holding members 50 to a predetermined position around the R axis that can be driven. The operation interval Ti in this case is preferably set to the starting point when the spool 41 corresponding to the indexed one holding member 50 is slid by a predetermined amount Z0 and the pulse signal supplied to the stepping motor 61 is stopped. Is. Further, the operation interval Ti is preferably set to an end point at the time when the supply of the pulse signal for starting the sliding of the spool 41 corresponding to the next holding member 50 is started.
 図8は、スプール41を摺動方向(矢印Z方向)に摺動させる機構の構成例を示している。同図は、ステッピングモータ61の駆動軸61a側から視た軸方向視図であり、作動軸43は、回動部43aと直動部43bを備えている。回動部43aには、ステッピングモータ61の駆動軸61aが減速機(図示略)を介して連結されており、ステッピングモータ61が回転駆動することによって、回動部43aは、駆動軸61aを中心に回動する。また、回動部43aには、摺動方向(矢印Z方向)と直交する方向に延びる長穴部43a1が形成されている。 FIG. 8 shows a structural example of a mechanism for sliding the spool 41 in the sliding direction (arrow Z direction). This figure is an axial view seen from the drive shaft 61a side of the stepping motor 61, and the operating shaft 43 includes a rotating portion 43a and a linear moving portion 43b. A drive shaft 61a of a stepping motor 61 is connected to the rotating portion 43a via a speed reducer (not shown). As the stepping motor 61 is driven to rotate, the rotating portion 43a moves around the drive shaft 61a. Turn to. Further, the rotation portion 43a is formed with an elongated hole portion 43a1 extending in a direction orthogonal to the sliding direction (arrow Z direction).
 直動部43bは、作動爪431を含む部位であり、摺動方向(矢印Z方向)に沿って延びるガイド(図示略)によって、摺動方向(矢印Z方向)に沿って直動可能になっている。直動部43bには、ステッピングモータ61の駆動軸61aの軸方向に突出する突起部43b1が形成されている。回動部43aの長穴部43a1は、直動部43bの突起部43b1と係合している。そのため、回動部43aが駆動軸61aを中心に回動すると、直動部43bの突起部43b1が回動部43aの長穴部43a1に沿って移動し、直動部43bは、摺動方向(矢印Z方向)に直動する。 The linear motion portion 43b is a portion including the actuating claw 431, and can be linearly moved along the sliding direction (arrow Z direction) by a guide (not shown) extending along the sliding direction (arrow Z direction). ing. A protrusion 43b1 that protrudes in the axial direction of the drive shaft 61a of the stepping motor 61 is formed on the linear motion portion 43b. The elongated hole portion 43a1 of the rotating portion 43a is engaged with the protruding portion 43b1 of the linear motion portion 43b. Therefore, when the rotating portion 43a rotates about the drive shaft 61a, the protrusion 43b1 of the linear moving portion 43b moves along the elongated hole portion 43a1 of the rotating portion 43a, and the linear moving portion 43b moves in the sliding direction. Moves straight (in the direction of arrow Z).
 図9は、スプール41と作動軸43の位置関係の経時変化の一例を示している。同図は、図8の一部省略図であり、作動軸43が第一状態から第二状態、第三状態に移行して、第一状態に戻る様子を示している。第三状態が動作インターバルTiの起点であり、第一状態が動作インターバルTiの終点である。第一状態は、ロータリヘッド23によって割り出された一の保持部材50に対応したスプール41が、摺動方向(矢印Z方向)に摺動を開始する直前の状態である。第二状態は、当該スプール41が摺動方向(矢印Z方向)の一方側(例えば、同図の紙面上方向側)に所定量Z0、摺動された直後の状態である。第三状態は、スプール41が第二状態の停止位置で静止した状態で、作動軸43が第一状態と同じ状態に移行した状態である。 FIG. 9 shows an example of a temporal change in the positional relationship between the spool 41 and the operating shaft 43. This figure is a partially omitted view of FIG. 8 and shows how the operating shaft 43 shifts from the first state to the second state and the third state and then returns to the first state. The third state is the starting point of the operation interval Ti, and the first state is the ending point of the operation interval Ti. The first state is a state immediately before the spool 41 corresponding to the one holding member 50 indexed by the rotary head 23 starts sliding in the sliding direction (arrow Z direction). The second state is a state immediately after the spool 41 is slid by a predetermined amount Z0 on one side in the sliding direction (the arrow Z direction) (for example, the upper side in the drawing of the drawing). The third state is a state in which the spool 41 is stationary at the stop position in the second state, and the operating shaft 43 is in the same state as the first state.
 第一状態において、ステッピングモータ61にパルス信号が供給されると、ステッピングモータ61が回転駆動し作動軸43の回動部43aが回動して、作動軸43の直動部43bが摺動方向(矢印Z方向)の一方側に向かって直動する。これにより、作動軸43の作動爪431がスプール41の係合部411と係合して、スプール41は、摺動方向(矢印Z方向)の一方側(例えば、同図の紙面上方向側)に摺動し始める。第二状態に移行すると、ステッピングモータ61は逆方向に回転駆動し作動軸43の回動部43aが逆方向に回動して、作動軸43の直動部43bが摺動方向(矢印Z方向)の他方側(この場合、同図の紙面下方向側)に向かって直動する。このとき、スプール41は、第二状態の停止位置で静止している。 In the first state, when a pulse signal is supplied to the stepping motor 61, the stepping motor 61 is rotationally driven to rotate the rotating portion 43a of the operating shaft 43, so that the linear moving portion 43b of the operating shaft 43 slides. It moves straight toward one side (direction of arrow Z). As a result, the actuating claw 431 of the actuating shaft 43 engages with the engaging portion 411 of the spool 41, and the spool 41 has one side in the sliding direction (arrow Z direction) (for example, the upside in the figure). Begins to slide on. When shifting to the second state, the stepping motor 61 is rotationally driven in the opposite direction, the rotating portion 43a of the operating shaft 43 rotates in the opposite direction, and the linearly moving portion 43b of the operating shaft 43 slides in the sliding direction (arrow Z direction). ) To the other side (in this case, the lower side in the drawing of the drawing). At this time, the spool 41 is stationary at the stop position in the second state.
 第三状態になると、ステッピングモータ61に供給されるパルス信号が停止される(動作インターバルTiの起点)。これにより、ステッピングモータ61は、回転駆動を停止する。また、ロータリヘッド23によって、次の保持部材50に対応したスプール41が割り出され、第一状態に移行する。そして、次に割り出された保持部材50に対応したスプール41の摺動を開始するために、ステッピングモータ61にパルス信号の供給が開始される(動作インターバルTiの終点)。なお、図9に示すように、第一状態および第三状態では、作動軸43の作動爪431と、スプール41の係合部411との間には、間隙が設けられている。これにより、スプール41の割り出し時におけるスプール41の係合部411と、作動軸43の作動爪431との干渉が抑制されている。また、上述したことは、摺動方向(矢印Z方向)の一方側と反対側(この場合、同図の紙面下方向側)に所定量Z0、スプール41を摺動させる場合も同様に言える。 When the third state is reached, the pulse signal supplied to the stepping motor 61 is stopped (starting point of the operation interval Ti). As a result, the stepping motor 61 stops rotating. Further, the spool 41 corresponding to the next holding member 50 is indexed by the rotary head 23 and shifts to the first state. Then, in order to start the sliding of the spool 41 corresponding to the indexed holding member 50, the supply of the pulse signal to the stepping motor 61 is started (the end point of the operation interval Ti). As shown in FIG. 9, in the first state and the third state, a gap is provided between the operating claw 431 of the operating shaft 43 and the engaging portion 411 of the spool 41. As a result, the interference between the engaging portion 411 of the spool 41 and the operating pawl 431 of the operating shaft 43 when the spool 41 is indexed is suppressed. The above description can be similarly applied to the case where the spool 41 is slid by the predetermined amount Z0 in the opposite side to the sliding direction (arrow Z direction) (in this case, the lower side of the drawing).
 ステッピングモータ61の制御は、オープンループ制御なので、パルス信号の供給が停止したときにステッピングモータ61の可動子に減衰振動が発生する可能性がある。そのため、基板製品900の生産時には、これらの影響を受けないように動作インターバルTiが設定されている。既述した被駆動部62(スプール41)の摺動抵抗の増加または被駆動部62の固着が生じている場合に、基板製品900の生産時と比べて動作インターバルTiを短く設定すると、ステッピングモータ61に脱調が生じ易くなる。そこで、インターバル設定部71は、基板製品900の生産時と比べて動作インターバルTiを短く設定する。 Since the control of the stepping motor 61 is an open loop control, when the supply of the pulse signal is stopped, damped vibration may occur in the mover of the stepping motor 61. Therefore, when the substrate product 900 is produced, the operation interval Ti is set so as not to be affected by these. When the sliding resistance of the driven portion 62 (spool 41) is increased or the driven portion 62 is fixed as described above, if the operation interval Ti is set shorter than that during the production of the board product 900, the stepping motor is set. Step out is likely to occur in 61. Therefore, the interval setting unit 71 sets the operation interval Ti shorter than that during the production of the board product 900.
 インターバル設定部71は、可動子に減衰振動が発生してから所定の振動振幅以下になるまでに要する時間Tdと比べて、動作インターバルTiを短く設定すると好適である。これにより、インターバル設定部71は、可動子の減衰振動に基づいて動作インターバルTiを設定することができる。図10は、パルス信号の供給が停止したときにステッピングモータ61の可動子に発生する減衰振動の一例を示している。実線L11は、可動子位置の経時変化の一例を示している。実線L11は、例えば、シミュレーション、実機による事前の確認などによって取得することができる。なお、同図の縦軸は、可動子位置を示し、横軸は、時刻を示している。 It is preferable that the interval setting unit 71 sets the operation interval Ti to be shorter than the time Td required from the occurrence of the damped vibration of the mover to the predetermined vibration amplitude or less. Thereby, the interval setting unit 71 can set the operation interval Ti based on the damping vibration of the mover. FIG. 10 shows an example of damping vibration generated in the mover of the stepping motor 61 when the supply of the pulse signal is stopped. The solid line L11 indicates an example of the change over time of the mover position. The solid line L11 can be acquired by, for example, simulation, prior confirmation by an actual machine, or the like. The vertical axis of the figure shows the mover position, and the horizontal axis shows the time.
 実線L11に示すように、時刻Tm11においてパルス信号の供給が停止されると、可動子は、減衰振動しながら停止位置SP1に収束する。この場合、インターバル設定部71は、時間Tdと比べて、動作インターバルTiを短く設定する。動作インターバルTiは、時刻Tm11から時刻Tm12までの時間で示され、時間Tdは、時刻Tm11から時刻Tm13までの時間で示されている。時間Tdを規定する所定の振動振幅は、任意に設定することができる。所定の振動振幅は、例えば、基板製品900の生産時に影響を受けにくいレベルに設定することができ、予めシミュレーション、実機による事前の確認などによって取得しておくことができる。時間Tdは、例えば、基板製品900の生産時の動作インターバルTi0と同じ時間に設定することができる。 As shown by the solid line L11, when the supply of the pulse signal is stopped at time Tm11, the mover converges to the stop position SP1 while undergoing damping vibration. In this case, the interval setting unit 71 sets the operation interval Ti shorter than the time Td. The operation interval Ti is shown as the time from time Tm11 to time Tm12, and the time Td is shown as the time from time Tm11 to time Tm13. The predetermined vibration amplitude that defines the time Td can be set arbitrarily. The predetermined vibration amplitude can be set to, for example, a level that is unlikely to be affected during production of the board product 900, and can be acquired in advance by simulation, prior confirmation by an actual machine, or the like. The time Td can be set to the same time as the operation interval Ti0 when the substrate product 900 is produced, for example.
 1-6-2.判断部72
 判断部72は、インターバル設定部71によって設定された動作インターバルTiでステッピングモータ61を駆動させて脱調の有無を検出し、ステッピングモータ61の脱調の有無に基づいて被駆動部62のメンテナンスの要否を判断する。既述した被駆動部62(スプール41)の摺動抵抗の増加または被駆動部62の固着が生じている場合には、被駆動部62のメンテナンスが必要である。被駆動部62のメンテナンスが必要な場合にステッピングモータ61が被駆動部62を駆動するときに必要な出力トルクは、被駆動部62のメンテナンスが不要な場合と比べて大きい。そのため、判断部72は、ステッピングモータ61が脱調したときに、被駆動部62のメンテナンスが必要であると判断すると好適である。
1-6-2. Judgment unit 72
The determination unit 72 drives the stepping motor 61 at the operation interval Ti set by the interval setting unit 71 to detect the presence/absence of step-out, and based on the presence/absence of step-out of the stepping motor 61, maintenance of the driven part 62 is performed. Judge whether it is necessary or not. When the sliding resistance of the driven part 62 (spool 41) has been increased or the driven part 62 has been fixed, the driven part 62 needs to be maintained. The output torque required when the stepping motor 61 drives the driven portion 62 when the driven portion 62 needs maintenance is larger than when the driven portion 62 does not need maintenance. Therefore, it is preferable that the determination unit 72 determines that the driven unit 62 needs to be maintained when the stepping motor 61 loses synchronization.
 具体的には、判断部72は、インターバル設定部71によって設定された動作インターバルTiでステッピングモータ61を駆動させる(図7に示すステップS13)。そして、判断部72は、ステッピングモータ61の脱調の有無を検出する(ステップS14)。バルブ装置40には、スプール41の係合部411の位置を検出可能な位置検出器(図示略)が設けられている。位置検出器は、例えば、公知の光センサを用いることができ、第一状態および第三状態において、係合部411の摺動方向(矢印Z方向)における位置を検出する。 Specifically, the determination unit 72 drives the stepping motor 61 at the operation interval Ti set by the interval setting unit 71 (step S13 shown in FIG. 7). Then, the determination unit 72 detects whether or not the stepping motor 61 is out of step (step S14). The valve device 40 is provided with a position detector (not shown) capable of detecting the position of the engagement portion 411 of the spool 41. A known optical sensor can be used as the position detector, for example, and detects the position of the engagement portion 411 in the sliding direction (arrow Z direction) in the first state and the third state.
 スプール41が摺動方向(矢印Z方向)の一方側に所定量Z0、摺動されたことが見込まれる予定位置において、係合部411が検出された場合、判断部72は、ステッピングモータ61が脱調していないと判断することができる。逆に、予定位置で係合部411が検出されなかった場合、判断部72は、ステッピングモータ61が脱調していると判断することができる。ステッピングモータ61の脱調が検出された場合(ステップS14でYesの場合)、判断部72は、スプール41のメンテナンスが必要であると判断する(ステップS15)。このとき、判断部72は、ステッピングモータ61の脱調が検出されたスプール41およびステッピングモータ61の脱調が検出されたスプール41の一つ前に割り出されたスプール41のうちの少なくとも一方をメンテナンスが必要であると判断すると好適である。これにより、判断部72は、ステッピングモータ61の脱調が検出されたスプール41の一つ前に割り出されたスプール41についても、メンテナンスの要否を判断することができる。なお、ステッピングモータ61の脱調が検出されなかった場合(ステップS14でNoの場合)、判断部72は、スプール41のメンテナンスが必要ないと判断する(ステップS16)。 When the engagement portion 411 is detected at a position where the spool 41 is expected to be slid by the predetermined amount Z0 in one side in the sliding direction (arrow Z direction), the determination unit 72 determines that the stepping motor 61 is You can judge that you are not out of sync. On the contrary, when the engagement portion 411 is not detected at the expected position, the determination unit 72 can determine that the stepping motor 61 is out of step. When step out of the stepping motor 61 is detected (Yes in step S14), the determination unit 72 determines that the spool 41 needs maintenance (step S15). At this time, the determination unit 72 determines at least one of the spool 41 in which the stepping motor 61 is detected to be out of step and the spool 41 which is indexed immediately before the spool 41 in which the stepping motor 61 is detected to be out of step. It is preferable to judge that maintenance is necessary. As a result, the determination unit 72 can determine whether or not maintenance is required for the spool 41 indexed immediately before the spool 41 in which the stepping motor 61 is detected to be out of step. When the stepping motor 61 is not detected to be out of step (No in step S14), the determination unit 72 determines that maintenance of the spool 41 is unnecessary (step S16).
 また、判断部72は、装着ヘッド20に設けられるすべてのスプール41について、摺動方向(矢印Z方向)の一方側に順に摺動させてステッピングモータ61の脱調の有無をそれぞれ検出すると好適である。そして、判断部72は、装着ヘッド20に設けられるすべてのスプール41について、摺動方向(矢印Z方向)の一方側と反対側に順に摺動させてステッピングモータ61の脱調の有無をそれぞれ検出すると好適である。これにより、判断部72は、基板製品900の生産時と同じ順序でスプール41を動作させ、ステッピングモータ61の脱調の有無をそれぞれ検出することができる。この場合、判断部72は、摺動方向(矢印Z方向)の一方側および反対側のうちの少なくとも一方についてステッピングモータ61の脱調が検出されたスプール41およびステッピングモータ61の脱調が検出されたスプール41の一つ前に割り出されたスプール41のうちの少なくとも一方をメンテナンスが必要であると判断すると好適である。 Further, it is preferable that the determination unit 72 sequentially slides all the spools 41 provided on the mounting head 20 to one side in the sliding direction (the arrow Z direction) to detect the presence or absence of step-out of the stepping motor 61. is there. Then, the determination unit 72 sequentially detects the presence or absence of step-out of the stepping motor 61 by sequentially sliding all the spools 41 provided on the mounting head 20 to the one side and the opposite side in the sliding direction (arrow Z direction). It is preferable. As a result, the determination unit 72 can detect whether or not the stepping motor 61 is out of step by operating the spool 41 in the same order as when the board product 900 was produced. In this case, the determination unit 72 detects the step-out of the stepping motor 61 and the step-out of the stepping motor 61 in at least one of the one side and the opposite side in the sliding direction (arrow Z direction). It is preferable to judge that at least one of the spools 41 indexed immediately before the spool 41 needs maintenance.
 なお、装着ヘッド20が一つの保持部材50を備える場合、動作インターバルTiは、保持部材50に対応したスプール41が摺動方向(矢印Z方向)の一方側に所定量Z0、摺動されてステッピングモータ61に供給されるパルス信号が停止される時点を起点とすると好適である。また、動作インターバルTiは、保持部材50に対応したスプール41が摺動方向(矢印Z方向)の一方側と反対側に摺動を開始するためにパルス信号の供給が開始される時点を終点とすると好適である。 When the mounting head 20 includes one holding member 50, the operation interval Ti is stepped by sliding the spool 41 corresponding to the holding member 50 one side in the sliding direction (arrow Z direction) by a predetermined amount Z0. It is preferable to start from a time point when the pulse signal supplied to the motor 61 is stopped. Further, the operation interval Ti has an end point at the time when the supply of the pulse signal is started in order to start the sliding of the spool 41 corresponding to the holding member 50 to the one side and the opposite side in the sliding direction (arrow Z direction). It is preferable.
 判断部72は、この場合も、摺動方向(矢印Z方向)の一方側および反対側のうちの少なくとも一方についてステッピングモータ61の脱調が検出されたときに、スプール41のメンテナンスが必要であると判断すると好適である。これにより、判断部72は、一つの保持部材50を備える装着ヘッド20において、スプール41のメンテナンスの要否を判断することができる。 In this case as well, the determination unit 72 requires maintenance of the spool 41 when step out of the stepping motor 61 is detected for at least one of one side and the other side in the sliding direction (arrow Z direction). It is suitable to judge that. As a result, the determination unit 72 can determine whether maintenance of the spool 41 is necessary in the mounting head 20 including the single holding member 50.
 また、インターバル設定部71は、基板製品900の生産時の動作インターバルTi0から徐々に動作インターバルTiを短く設定することもできる。この場合、判断部72は、インターバル設定部71によって設定された動作インターバルTiごとにステッピングモータ61の脱調の有無を検出すると好適である。そして、判断部72は、ステッピングモータ61が脱調したときの所定動作の直前に適用された動作インターバルTiに応じて、被駆動部62のメンテナンスの必要度を取得すると好適である。 Also, the interval setting unit 71 can gradually set the operation interval Ti to be shorter from the operation interval Ti0 during the production of the board product 900. In this case, it is preferable that the determination unit 72 detects whether or not the stepping motor 61 is out of step for each operation interval Ti set by the interval setting unit 71. Then, it is preferable that the determination unit 72 obtains the necessity level of maintenance of the driven unit 62 according to the operation interval Ti applied immediately before the predetermined operation when the stepping motor 61 loses step.
 既述した被駆動部62(スプール41)の摺動抵抗が増加するほど、ステッピングモータ61は脱調し易くなるので、動作インターバルTiの短縮度は、被駆動部62の摺動抵抗が増加するほど、小さくなる。また、動作インターバルTiの短縮度が小さいほど、被駆動部62のメンテナンスの必要度は、高い。よって、判断部72は、ステッピングモータ61が脱調したときの所定動作の直前に適用された動作インターバルTiに応じて、被駆動部62のメンテナンスの必要度を取得することができる。 As the sliding resistance of the driven portion 62 (spool 41) described above increases, the stepping motor 61 is more likely to step out. Therefore, the reduction in the operation interval Ti increases the sliding resistance of the driven portion 62. The smaller it gets. Further, the smaller the shortening degree of the operation interval Ti, the higher the necessity degree of maintenance of the driven portion 62. Therefore, the determination unit 72 can acquire the need for maintenance of the driven unit 62 according to the operation interval Ti applied immediately before the predetermined operation when the stepping motor 61 loses step.
 1-6-3.確認部73
 確認部73は、インターバル設定部71によって設定された動作インターバルTiによるステッピングモータ61の脱調の検出前に、基板製品900の生産時と同じ動作インターバルTi0でステッピングモータ61を駆動させて、ステッピングモータ61に脱調が生じないことを確認する(図7に示すステップS11)。
1-6-3. Confirmation unit 73
The confirmation unit 73 drives the stepping motor 61 at the same operation interval Ti0 as when the board product 900 is produced before detecting the step-out of the stepping motor 61 due to the operation interval Ti set by the interval setting unit 71. It is confirmed that step-out 61 does not occur (step S11 shown in FIG. 7).
 基板製品900の生産時と同じ動作インターバルTi0でステッピングモータ61を駆動させたときに、ステッピングモータ61が脱調する場合、例えば、既述した被駆動部62(スプール41)の摺動抵抗が極めて大きくなっている(被駆動部62の固着を含む)可能性がある。また、摺動抵抗の増加以外の他の要因(例えば、機器の故障など)の可能性もある。そこで、確認部73による事前確認を行うと良い。これにより、判断部72は、確認部73による事前確認が行われた後に、被駆動部62(スプール41)のメンテナンスの要否を判断することができる。 When the stepping motor 61 is stepped out when the stepping motor 61 is driven at the same operation interval Ti0 as when the substrate product 900 is produced, for example, the sliding resistance of the driven portion 62 (spool 41) described above is extremely high. It may be large (including fixation of the driven part 62). There is also a possibility of other factors (for example, equipment failure) other than the increase in sliding resistance. Therefore, it is advisable to make a preliminary confirmation by the confirmation unit 73. Accordingly, the determination unit 72 can determine whether or not maintenance of the driven unit 62 (spool 41) is necessary after the confirmation unit 73 performs the preliminary confirmation.
 1-6-4.案内部74
 案内部74は、判断部72によって判断された被駆動部62のメンテナンスの要否を、対基板作業機WMの使用者に案内する(図7に示すステップS17)。これにより、対基板作業機WMの使用者は、被駆動部62のメンテナンスの要否を知得することができ、被駆動部62のメンテナンスを行うことができる。
1-6-4. Guide 74
The guide unit 74 guides the user of the working machine WM to the substrate whether the maintenance of the driven unit 62 is determined by the determination unit 72 (step S17 shown in FIG. 7). Accordingly, the user of the working machine WM for a board can know whether maintenance of the driven portion 62 is necessary or not, and the maintenance of the driven portion 62 can be performed.
 案内部74は、例えば、メンテナンスの要否を判断した被駆動部62と、判断結果(メンテナンスの必要あり、または、メンテナンスの必要なし)とを、公知の表示装置(図示略)に表示させることができる。また、案内部74は、被駆動部62のメンテナンスの必要度を表示装置に表示させることもできる。 The guide unit 74 displays, for example, the driven unit 62 that has determined whether maintenance is necessary and the determination result (maintenance required or not required) on a known display device (not shown). You can Further, the guide part 74 can also display the necessity level of maintenance of the driven part 62 on the display device.
 2.その他
 本実施形態では、ステッピングモータ61に供給されるパルス信号の基準電圧は、基板製品900の生産時と同じである。また、図2に示すように、対基板作業機WMが部品装着機WM3の場合、駆動ユニット60は、部品91を供給するフィーダ121であっても良い。複数のフィーダ121の各々は、スプロケットと、スプロケットを回転駆動させる駆動装置とを備えている(いずれも図示略)。スプロケットは、複数の部品91が収納されているキャリアテープをピッチ送りする。駆動装置は、ステッピングモータ61を用いることができる。この場合、繰り返し実行される所定動作は、キャリアテープのピッチ送りであり、被駆動部62は、ステッピングモータ61の駆動軸に連結された減速機構およびスプロケットなどが含まれる。また、動作インターバルTiは、一の所定動作(ピッチ送り)が終了してステッピングモータ61に供給されるパルス信号が停止される時点を起点とし、次の所定動作(ピッチ送り)を開始するためにパルス信号の供給が開始される時点を終点とする。
2. Others In this embodiment, the reference voltage of the pulse signal supplied to the stepping motor 61 is the same as that at the time of producing the board product 900. Further, as shown in FIG. 2, when the work machine WM for a board is the component mounting machine WM3, the drive unit 60 may be a feeder 121 that supplies a component 91. Each of the plurality of feeders 121 includes a sprocket and a drive device that rotationally drives the sprocket (all not shown). The sprocket pitch-feeds a carrier tape containing a plurality of components 91. The driving device can use a stepping motor 61. In this case, the predetermined operation that is repeatedly executed is pitch feeding of the carrier tape, and the driven portion 62 includes a reduction mechanism and a sprocket that are connected to the drive shaft of the stepping motor 61. Further, the operation interval Ti is set to start at the time point when one predetermined operation (pitch feed) is completed and the pulse signal supplied to the stepping motor 61 is stopped, and to start the next predetermined operation (pitch feed). The time point when the supply of the pulse signal is started is the end point.
 3.ユニット管理方法
 ユニット管理装置70について既述したことは、ユニット管理方法についても同様に言える。具体的には、ユニット管理方法は、インターバル設定工程と、判断工程とを具備する。インターバル設定工程は、インターバル設定部71が行う制御に相当する。判断工程は、判断部72が行う制御に相当する。また、ユニット管理方法は、確認工程および案内工程のうちの少なくとも一方を備えると好適である。確認工程は、確認部73が行う制御に相当する。案内工程は、案内部74が行う制御に相当する。
3. Unit Management Method The above description of the unit management device 70 can be similarly applied to the unit management method. Specifically, the unit management method includes an interval setting step and a determination step. The interval setting step corresponds to the control performed by the interval setting unit 71. The determination step corresponds to the control performed by the determination unit 72. Further, it is preferable that the unit management method includes at least one of the confirmation step and the guidance step. The confirmation step corresponds to the control performed by the confirmation unit 73. The guidance process corresponds to the control performed by the guide unit 74.
 4.実施形態の効果の一例
 ユニット管理装置70によれば、インターバル設定部71と、判断部72とを具備する。これにより、ユニット管理装置70は、対基板作業において繰り返し実行される所定動作の動作インターバルTiを、基板製品900の生産時と比べて短く設定してステッピングモータ61の脱調の有無を検出し、被駆動部62のメンテナンスの要否を判断することができる。ユニット管理装置70について上述したことは、ユニット管理方法についても同様に言える。
4. Example of Effect of Embodiment According to the unit management device 70, the interval setting unit 71 and the determination unit 72 are provided. As a result, the unit management device 70 detects the presence or absence of step-out of the stepping motor 61 by setting the operation interval Ti of the predetermined operation repeatedly executed in the work for the board to be shorter than that during the production of the board product 900, It is possible to determine whether maintenance of the driven portion 62 is necessary. What has been described above regarding the unit management apparatus 70 can be similarly applied to the unit management method.
20:装着ヘッド、23:ロータリヘッド、
31:正圧エア通路、32:負圧エア通路、34:エア通路、
40:バルブ装置、41:スプール、50:保持部材、
60:駆動ユニット、61:ステッピングモータ、62:被駆動部、
70:ユニット管理装置、71:インターバル設定部、
72:判断部、73:確認部、74:案内部、
90:基板、91:部品、900:基板製品、Td:時間、
Ti,Ti0:動作インターバル、WM:対基板作業機、
WM3:部品装着機、矢印Z方向:摺動方向。
20: mounting head, 23: rotary head,
31: Positive pressure air passage, 32: Negative pressure air passage, 34: Air passage,
40: valve device, 41: spool, 50: holding member,
60: drive unit, 61: stepping motor, 62: driven part,
70: unit management device, 71: interval setting unit,
72: judgment part, 73: confirmation part, 74: guide part,
90: substrate, 91: component, 900: substrate product, Td: time,
Ti, Ti0: movement interval, WM: work machine for substrate,
WM3: component mounting machine, arrow Z direction: sliding direction.

Claims (11)

  1.  基板に所定の対基板作業を行って基板製品を生産する対基板作業機に設けられ、かつ、ステッピングモータと前記ステッピングモータによって駆動される被駆動部とを備える駆動ユニットを管理するユニット管理装置であって、
     前記対基板作業において繰り返し実行される所定動作のうちの一の前記所定動作が終了して前記ステッピングモータに供給されるパルス信号が停止される時点を起点とし、次の前記所定動作を開始するために前記パルス信号の供給が開始される時点を終点とする動作インターバルを、前記基板製品の生産時と比べて短く設定するインターバル設定部と、
     前記インターバル設定部によって設定された前記動作インターバルで前記ステッピングモータを駆動させて脱調の有無を検出し、前記ステッピングモータの脱調の有無に基づいて前記被駆動部のメンテナンスの要否を判断する判断部と、
    を具備するユニット管理装置。
    A unit management device that manages a drive unit that is provided in a board-to-board working machine that performs a predetermined board-to-board work on a board to produce a board product, and that includes a stepping motor and a driven portion driven by the stepping motor. There
    To start the next predetermined operation starting from a time point when one of the predetermined operations repeatedly executed in the work for the board is finished and the pulse signal supplied to the stepping motor is stopped And an interval setting unit that sets an operation interval whose end point is the time point at which the supply of the pulse signal is started to be shorter than that at the time of producing the board product,
    The stepping motor is driven at the operation interval set by the interval setting unit to detect the presence/absence of step-out, and the necessity of maintenance of the driven part is determined based on the presence/absence of step-out of the stepping motor. Judgment part,
    A unit management device comprising:
  2.  前記被駆動部のメンテナンスが必要な場合に前記ステッピングモータが前記被駆動部を駆動するときに必要な出力トルクは、前記被駆動部のメンテナンスが不要な場合と比べて大きく、
     前記判断部は、前記ステッピングモータが脱調したときに、前記被駆動部のメンテナンスが必要であると判断する請求項1に記載のユニット管理装置。
    The output torque required when the stepping motor drives the driven portion when maintenance of the driven portion is required is larger than when the maintenance of the driven portion is unnecessary,
    The unit management device according to claim 1, wherein the determination unit determines that maintenance of the driven unit is required when the stepping motor is out of step.
  3.  前記パルス信号の供給が停止したときに前記ステッピングモータの可動子に減衰振動が発生し、
     前記インターバル設定部は、前記可動子に前記減衰振動が発生してから所定の振動振幅以下になるまでに要する時間と比べて、前記動作インターバルを短く設定する請求項1または請求項2に記載のユニット管理装置。
    Damping vibration occurs in the mover of the stepping motor when the supply of the pulse signal is stopped,
    The said interval setting part sets the said operation interval short compared with the time required until it becomes below a predetermined vibration amplitude after the said damping vibration generate|occur|produced in the said mover. Unit management device.
  4.  前記インターバル設定部は、前記基板製品の生産時の前記動作インターバルから徐々に前記動作インターバルを短く設定して、
     前記判断部は、前記インターバル設定部によって設定された前記動作インターバルごとに前記ステッピングモータの脱調の有無を検出し、前記ステッピングモータが脱調したときの前記所定動作の直前に適用された前記動作インターバルに応じて、前記被駆動部のメンテナンスの必要度を取得する請求項1~請求項3のいずれか一項に記載のユニット管理装置。
    The interval setting unit gradually sets the operation interval to be shorter from the operation interval at the time of production of the board product,
    The determination unit detects the presence or absence of step-out of the stepping motor at each operation interval set by the interval setting unit, and the operation applied immediately before the predetermined operation when the stepping motor is out of step. The unit management device according to any one of claims 1 to 3, wherein the necessity level of maintenance of the driven portion is acquired according to an interval.
  5.  前記インターバル設定部によって設定された前記動作インターバルによる前記ステッピングモータの脱調の検出前に、前記基板製品の生産時と同じ前記動作インターバルで前記ステッピングモータを駆動させて、前記ステッピングモータに脱調が生じないことを確認する確認部をさらに備える請求項1~請求項4のいずれか一項に記載のユニット管理装置。 Before detecting step-out of the stepping motor according to the operation interval set by the interval setting unit, the stepping motor is driven at the same operation interval as when the board product is produced, and the stepping motor is out of step. The unit management device according to claim 1, further comprising a confirmation unit that confirms that the unit management device does not occur.
  6.  前記判断部によって判断された前記被駆動部のメンテナンスの要否を、前記対基板作業機の使用者に案内する案内部をさらに備える請求項1~請求項5のいずれか一項に記載のユニット管理装置。 The unit according to any one of claims 1 to 5, further comprising a guide unit that guides a user of the working machine to the board as to whether maintenance of the driven unit is determined by the determination unit. Management device.
  7.  前記対基板作業機は、前記基板に部品を装着する部品装着機であり、
     前記駆動ユニットは、前記部品を採取し保持して位置決めされた前記基板に装着する保持部材と、少なくとも正圧エアおよび負圧エアのいずれか一つの前記保持部材に対する選択的な供給を切り換えるバルブ装置とを備える装着ヘッドであり、
     前記バルブ装置は、
     前記正圧エアが流通する正圧エア通路および前記負圧エアが流通する負圧エア通路が形成されているバルブボディと、
     前記バルブボディに対して摺動可能に設けられ、前記ステッピングモータによって少なくとも二つの異なる停止位置に位置決めされるスプールと、
    を備え、
     前記バルブ装置は、前記スプールの前記停止位置に応じて、前記保持部材のエア通路に対して、前記正圧エア通路および前記負圧エア通路のいずれか一つを選択的に連通させる請求項1~請求項6のいずれか一項に記載のユニット管理装置。
    The board-to-board working machine is a component mounting machine that mounts components on the board,
    The drive unit collects and holds the component, and mounts it on the positioned substrate, and a valve device that selectively switches at least one of positive pressure air and negative pressure air to the holding member. And a mounting head having
    The valve device is
    A valve body in which a positive pressure air passage through which the positive pressure air flows and a negative pressure air passage through which the negative pressure air flows are formed;
    A spool slidably provided with respect to the valve body and positioned at at least two different stop positions by the stepping motor;
    Equipped with
    The valve device selectively communicates one of the positive pressure air passage and the negative pressure air passage with the air passage of the holding member according to the stop position of the spool. The unit management device according to claim 6.
  8.  前記装着ヘッドは、鉛直軸に平行なR軸周りに回転可能に設けられ、複数の前記保持部材に対応した前記スプールを駆動可能な前記R軸周りの所定位置に順次割り出し可能なロータリヘッドを備え、
     前記判断部は、順次割り出された前記スプールについて前記ステッピングモータの脱調の有無を検出し、前記ステッピングモータの脱調が検出された前記スプールおよび前記ステッピングモータの脱調が検出された前記スプールの一つ前に割り出された前記スプールのうちの少なくとも一方をメンテナンスが必要であると判断する請求項7に記載のユニット管理装置。
    The mounting head includes a rotary head that is rotatably provided around an R axis that is parallel to the vertical axis, and that can sequentially index to predetermined positions around the R axis that can drive the spools corresponding to the plurality of holding members. ,
    The determination unit detects the presence or absence of step-out of the stepping motor in the sequentially indexed spools, the spool in which the stepping motor is out of step and the spool in which the stepping motor is out of step. 8. The unit management device according to claim 7, wherein at least one of the spools indexed immediately before is determined to require maintenance.
  9.  前記判断部は、前記装着ヘッドに設けられるすべての前記スプールについて、摺動方向の一方側に順に摺動させて前記ステッピングモータの脱調の有無をそれぞれ検出した後に、前記摺動方向の前記一方側と反対側に順に摺動させて前記ステッピングモータの脱調の有無をそれぞれ検出して、前記摺動方向の前記一方側および前記反対側のうちの少なくとも一方について前記ステッピングモータの脱調が検出された前記スプールおよび前記ステッピングモータの脱調が検出された前記スプールの一つ前に割り出された前記スプールのうちの少なくとも一方をメンテナンスが必要であると判断する請求項8に記載のユニット管理装置。 The determination unit causes all the spools provided on the mounting head to sequentially slide to one side in the sliding direction to detect the presence or absence of step-out of the stepping motor, and then to determine the one of the sliding directions. The stepping motor is slid in sequence to detect the presence or absence of step-out of the stepping motor, and the stepping-out of the stepping motor is detected for at least one of the one side and the opposite side in the sliding direction. 9. The unit management according to claim 8, wherein it is determined that at least one of the spool that has been indexed and the spool that has been indexed immediately before the spool in which step out of the stepping motor has been detected is in need of maintenance. apparatus.
  10.  前記装着ヘッドは、一つの前記保持部材を備え、
     前記動作インターバルは、前記保持部材に対応した前記スプールが摺動方向の一方側に所定量、摺動されて前記ステッピングモータに供給される前記パルス信号が停止される時点を起点とし、前記保持部材に対応した前記スプールが前記摺動方向の前記一方側と反対側に摺動を開始するために前記パルス信号の供給が開始される時点を終点とする請求項7に記載のユニット管理装置。
    The mounting head includes one holding member,
    The operation interval starts from a time point at which the pulse signal supplied to the stepping motor is stopped by sliding the spool corresponding to the holding member to one side in the sliding direction by a predetermined amount, and the holding member is The unit management device according to claim 7, wherein the end point is a time point at which the supply of the pulse signal is started to start the sliding of the spool corresponding to the direction to the side opposite to the one side in the sliding direction.
  11.  基板に所定の対基板作業を行って基板製品を生産する対基板作業機に設けられ、かつ、ステッピングモータと前記ステッピングモータによって駆動される被駆動部とを備える駆動ユニットを管理するユニット管理方法であって、
     前記対基板作業において繰り返し実行される所定動作のうちの一の前記所定動作が終了して前記ステッピングモータに供給されるパルス信号が停止される時点を起点とし、次の前記所定動作を開始するために前記パルス信号の供給が開始される時点を終点とする動作インターバルを、前記基板製品の生産時と比べて短く設定するインターバル設定工程と、
     前記インターバル設定工程によって設定された前記動作インターバルで前記ステッピングモータを駆動させて脱調の有無を検出し、前記ステッピングモータの脱調の有無に基づいて前記被駆動部のメンテナンスの要否を判断する判断工程と、
    を具備するユニット管理方法。
    A unit management method for managing a drive unit which is provided in a board-to-board working machine for performing a predetermined board-to-board work on a board to produce a board product, and which includes a stepping motor and a driven part driven by the stepping motor. There
    To start the next predetermined operation starting from a time point when one of the predetermined operations repeatedly executed in the work for the board is finished and the pulse signal supplied to the stepping motor is stopped And an interval setting step of setting an operation interval whose end point is a time point at which the supply of the pulse signal is started to be shorter than that during production of the board product,
    The stepping motor is driven at the operation interval set by the interval setting step to detect the presence/absence of step-out, and the necessity of maintenance of the driven part is determined based on the presence/absence of step-out of the stepping motor. Judgment process,
    A unit management method comprising:
PCT/JP2018/045185 2018-12-07 2018-12-07 Unit management device and unit management method WO2020115912A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2018/045185 WO2020115912A1 (en) 2018-12-07 2018-12-07 Unit management device and unit management method
CN201880099024.3A CN112913342B (en) 2018-12-07 2018-12-07 Unit management device and unit management method
JP2020558794A JP7080344B2 (en) 2018-12-07 2018-12-07 Unit management device and unit management method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/045185 WO2020115912A1 (en) 2018-12-07 2018-12-07 Unit management device and unit management method

Publications (1)

Publication Number Publication Date
WO2020115912A1 true WO2020115912A1 (en) 2020-06-11

Family

ID=70974222

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/045185 WO2020115912A1 (en) 2018-12-07 2018-12-07 Unit management device and unit management method

Country Status (3)

Country Link
JP (1) JP7080344B2 (en)
CN (1) CN112913342B (en)
WO (1) WO2020115912A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06276000A (en) * 1993-03-24 1994-09-30 Tescon:Kk Failure self-diagnosing apparatus
JP2010258185A (en) * 2009-04-24 2010-11-11 Fuji Mach Mfg Co Ltd Suction nozzle operation condition inspection device for component mounting machine
WO2013153598A1 (en) * 2012-04-09 2013-10-17 富士機械製造株式会社 Mounting head cleaning device
WO2016207952A1 (en) * 2015-06-22 2016-12-29 富士機械製造株式会社 Condition assessing device and condition assessing method
WO2017029704A1 (en) * 2015-08-18 2017-02-23 富士機械製造株式会社 Component mounting device

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0556690A (en) * 1991-08-22 1993-03-05 Oki Electric Ind Co Ltd Current setting method for stepping motor
JPH10304700A (en) * 1997-04-25 1998-11-13 Sankyo Seiki Mfg Co Ltd Power swing detection device of stepper motor
JP2001168597A (en) * 1999-12-06 2001-06-22 Matsushita Electric Ind Co Ltd Electronic-component mounting machine and motor control device therefor
JP4152141B2 (en) * 2002-07-29 2008-09-17 株式会社リコー Stepping motor drive control device, rotation drive device, and image forming apparatus
JP4485267B2 (en) * 2004-06-25 2010-06-16 株式会社日立ハイテクインスツルメンツ Electronic component mounting apparatus and electronic component mounting method
JP4688050B2 (en) * 2006-06-13 2011-05-25 株式会社メレック Stepping motor step-out detection method and step-out detection device
JP4708449B2 (en) * 2008-03-19 2011-06-22 ヤマハ発動機株式会社 Head drive control method and surface mount apparatus
JP5788246B2 (en) * 2011-07-11 2015-09-30 富士機械製造株式会社 Electronic component mounting system
US11345048B2 (en) * 2017-04-10 2022-05-31 Fuji Corporation Mounting head

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06276000A (en) * 1993-03-24 1994-09-30 Tescon:Kk Failure self-diagnosing apparatus
JP2010258185A (en) * 2009-04-24 2010-11-11 Fuji Mach Mfg Co Ltd Suction nozzle operation condition inspection device for component mounting machine
WO2013153598A1 (en) * 2012-04-09 2013-10-17 富士機械製造株式会社 Mounting head cleaning device
WO2016207952A1 (en) * 2015-06-22 2016-12-29 富士機械製造株式会社 Condition assessing device and condition assessing method
WO2017029704A1 (en) * 2015-08-18 2017-02-23 富士機械製造株式会社 Component mounting device

Also Published As

Publication number Publication date
CN112913342A (en) 2021-06-04
JPWO2020115912A1 (en) 2021-09-27
JP7080344B2 (en) 2022-06-03
CN112913342B (en) 2022-11-18

Similar Documents

Publication Publication Date Title
JP4620285B2 (en) Operation method of electrical component mounting system
WO2016002055A1 (en) Mounting head cleaning device and mounting head cleaning method
EP2699071B1 (en) Head module for pick and place dedicated components in SMT technology
JP2013026278A (en) Electronic component mounting device
WO2014068766A1 (en) Component mounting apparatus
JP6646055B2 (en) Mounting device
WO2020115912A1 (en) Unit management device and unit management method
KR101893213B1 (en) Electronic component mounting apparatus, and electronic component mounting method
JPWO2018011907A1 (en) Component mounting machine
WO2019064440A1 (en) Component mounting machine
JP2005285840A (en) Component transfer apparatus, surface mounting apparatus, and component testing apparatus
JP6571201B2 (en) Component mounting method
JP2001345597A (en) System and apparatus for attaching electrical component
WO2018179139A1 (en) Component mounting machine
US20200100406A1 (en) Component mounter
WO2020110286A1 (en) Unit management device and unit management method
JP6643894B2 (en) Mounting head cleaning apparatus and mounting head cleaning method
JP3997092B2 (en) Electronic circuit component mounting machine
JP6626750B2 (en) Transfer device
WO2018138911A1 (en) Component mounting machine, component suctioning method, nozzle disposing method, and method for disposing component supplying device
WO2023144862A1 (en) Substrate manufacturing method and component mounting machine
WO2020188711A1 (en) Mounting head maintenance device
JP4147539B2 (en) Electronic circuit component mounting machine
JP2003110290A (en) Electronic component mounting device
JP2017098435A (en) Electronic component mounter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18941958

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020558794

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18941958

Country of ref document: EP

Kind code of ref document: A1