WO2020115837A1 - Black matrix substrate and display device equipped with black matrix substrate - Google Patents

Black matrix substrate and display device equipped with black matrix substrate Download PDF

Info

Publication number
WO2020115837A1
WO2020115837A1 PCT/JP2018/044710 JP2018044710W WO2020115837A1 WO 2020115837 A1 WO2020115837 A1 WO 2020115837A1 JP 2018044710 W JP2018044710 W JP 2018044710W WO 2020115837 A1 WO2020115837 A1 WO 2020115837A1
Authority
WO
WIPO (PCT)
Prior art keywords
black matrix
layer
semi
display device
transmissive film
Prior art date
Application number
PCT/JP2018/044710
Other languages
French (fr)
Japanese (ja)
Inventor
山内 淳
福吉 健蔵
Original Assignee
凸版印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 凸版印刷株式会社 filed Critical 凸版印刷株式会社
Priority to PCT/JP2018/044710 priority Critical patent/WO2020115837A1/en
Priority to CN201880099001.2A priority patent/CN112912948B/en
Priority to KR1020217011985A priority patent/KR102644037B1/en
Priority to JP2020558729A priority patent/JP7081688B2/en
Publication of WO2020115837A1 publication Critical patent/WO2020115837A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/8791Arrangements for improving contrast, e.g. preventing reflection of ambient light
    • H10K59/8792Arrangements for improving contrast, e.g. preventing reflection of ambient light comprising light absorbing layers, e.g. black layers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/201Filters in the form of arrays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/206Filters comprising particles embedded in a solid matrix
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/208Filters for use with infrared or ultraviolet radiation, e.g. for separating visible light from infrared and/or ultraviolet radiation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/22Absorbing filters
    • G02B5/223Absorbing filters containing organic substances, e.g. dyes, inks or pigments
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/126Shielding, e.g. light-blocking means over the TFTs

Definitions

  • the present invention relates to a black matrix substrate used for a liquid crystal display device, a micro LED (LED display), an organic EL display device, and the like, and a display device including the black matrix substrate.
  • a black matrix substrate used for a liquid crystal display device, a micro LED (LED display), an organic EL display device, and the like, and a display device including the black matrix substrate.
  • the liquid crystal display device is a display device that uses a backlight using an LED (Light Emitting Diode) as a light source and uses liquid crystal as a display function layer that switches between transmission and non-transmission of light.
  • LED Light Emitting Diode
  • a technique using a direct type backlight called a mini LED having a configuration in which a plurality of LED chips having a size of about 5 ⁇ m to 100 ⁇ m are arranged in a matrix is used in a liquid crystal display device.
  • the mini LED normally, three types of LED chips of red light emission, green light emission, and blue light emission are used.
  • a technique that locally adjusts the light emission brightness of three types of LED chips, or uses local dimming that partially stops light emission in accordance with the position of the display portion on the display screen is drawing attention.
  • the liquid crystal display device using such local dimming light emission on the display screen can be partially turned off, so that the display contrast can be significantly improved.
  • the backlight since the backlight is constantly turned on, a slight light leakage occurs during black display of the liquid crystal, and it is difficult to obtain a contrast comparable to that of an organic EL.
  • the micro LED is a display device that has a structure in which LED chips having a size of approximately 2 ⁇ m to 50 ⁇ m are arranged in a matrix, and performs display by individually driving each of the plurality of LED chips.
  • Such a micro LED can display without using liquid crystal.
  • the micro LED uses a method of using three types of LED chips of red light emission, green light emission, and blue light emission like the mini LED described above, and a single color light emitting LED chip such as a light emitting LED chip that emits light in the wavelength range from blue to near ultraviolet. It is roughly divided into a method using only. In the micro LED, each LED chip serves as a display function layer.
  • a wavelength conversion element for example, a quantum dot that converts a light emission wavelength into one of red, green, and blue is laminated on each of a plurality of single color light emitting LED chips. It realizes color display.
  • Organic EL is an abbreviation for organic electroluminescence.
  • An organic EL display device is a display device that uses, as a display function layer, light emission resulting from recombination of electrons and holes injected into an organic compound for display.
  • Organic EL display devices are roughly classified into a system that uses three types of light emitting layers that emit red, green, and blue light and a system that combines a white light emitting layer that emits white light with a color filter.
  • the liquid crystal display device In each of the liquid crystal display device, the micro LED, and the organic EL display device, sufficient linearity of the light emitted from the display function layer toward the pixel opening has not been obtained. Therefore, stray light (obliquely emitted light) is generated in adjacent pixels, and the display contrast is lowered. Particularly, as the pixel size becomes finer, the display contrast lowering due to stray light becomes a problem. Further, when the display device is used in a bright environment, there is also a problem that the display contrast is lowered due to the incident light entering the display device from the outside.
  • Circular polarizing plates are used in organic EL display devices and micro LEDs in order to avoid a decrease in contrast due to incident light entering the display device from the outside.
  • the circularly polarizing plate is mounted on the upper surface of the display device for the purpose of eliminating the reflection of external light on the pixel electrode having light reflectivity and improving visibility.
  • the circularly polarizing plate is expensive, it is strongly required to omit the circularly polarizing plate from the viewpoint of the structure of the display device.
  • Patent Document 1 discloses a two-layer black matrix (see FIG. 1).
  • the technique of Patent Document 1 is a technique of displaying a stereoscopic image to an observer with the naked eye.
  • Patent Document 1 does not address the problem of contrast reduction in a display device using various display function layers.
  • Patent Document 1 does not propose a configuration in which an expensive circularly polarizing plate is omitted, and additionally does not disclose a technique for suppressing surface reflection of a black matrix.
  • Patent Document 2 describes a color filter using a first light shielding layer and a second light shielding layer.
  • Patent Document 2 does not propose a configuration in which an expensive circularly polarizing plate is omitted, and additionally does not disclose a technique of suppressing surface reflection of the first light shielding layer.
  • a color filter is not required in a micro LED including a red light emitting element, a green light emitting element, and a blue light emitting element.
  • an organic EL display device having improved color purity does not require a color filter.
  • a color filter is not required in the field sequential mode in which the red light emission, the green light emission, and the blue light emission of the LED backlight are sequentially turned on and displayed.
  • Patent Document 2 does not consider a configuration including no color filter.
  • Patent Document 2 the feature that the second light shielding layer covers the end portion of the colored layer and the feature regarding the width of the second light shielding layer in Claim 3 are almost the same as those of the color filter shown in FIG. 16 of Patent Document 1. It is the same. Patent Document 1 also describes the problem of alignment of the first light shielding layer and the second light shielding layer. The techniques of [0034] to [0036] relating to the second light-shielding layer of Patent Document 2 are also described in the paragraph [0105] of Patent Document 1, for example.
  • the present invention has been made in view of the above background art and problems, and in a display device such as a liquid crystal display device, a micro LED (LED display), and an organic EL display device, which is required to have higher definition, Provided are a black matrix substrate capable of improving display contrast, and a display device including the black matrix substrate.
  • a black matrix substrate includes a transparent substrate, a semi-transmissive film formed on the transparent substrate, and the semi-transmissive film in contact with the semi-transmissive film in a thickness direction of the semi-transmissive film.
  • a first black matrix layer formed on the transparent film and having a plurality of first openings; a transparent resin layer formed on the semi-transparent film so as to cover the first black matrix layer;
  • a second black matrix layer formed on the layer and having a plurality of second openings, and in a plan view seen from a surface opposite to the surface of the transparent substrate on which the semi-transmissive film is formed.
  • the semi-transmissive film overlaps the plurality of first openings and the first black matrix layer, and the plurality of second openings are located at the plurality of first openings in a plan view. It corresponds.
  • the semi-transmissive film contains carbon as a pigment, and the transmissivity of the semi-transmissive film with respect to visible light is in the range of 98% to 60%. Good.
  • the semi-transmissive film may be a dispersion having carbon, optically isotropic fine particles, and a resin in which the carbon and the fine particles are dispersed. Good.
  • the fine particles may be fine particles of silica.
  • the total amount of solids including the resin, the carbon, and the fine particles is 100% by mass, and the amount of the carbon is 0.5% by mass to 15% by mass.
  • the amount of the fine particles may be in the range of 1% by mass to 30% by mass.
  • the line width of the second black matrix layer may be smaller than the line width of the first black matrix layer.
  • the second black matrix layer may have a light transmittance in the near infrared region.
  • Each of the plurality of first openings of the first black matrix layer may have a colored layer.
  • the colored layers are a red layer, a blue layer, and a green layer, so as to correspond to the three first openings in the plurality of first openings.
  • the red layer, the green layer, and the blue layer may be provided in the first opening.
  • a display device includes the black matrix substrate according to the first aspect, a display function layer, and an array substrate including a plurality of active elements.
  • the present invention provides a black matrix substrate and a black matrix capable of improving display contrast in a display device such as a liquid crystal display device, a micro LED (LED display), and an organic EL display device in which high definition is further required.
  • a display device such as a liquid crystal display device, a micro LED (LED display), and an organic EL display device in which high definition is further required.
  • a display device including a substrate can be provided.
  • FIG. 3 is a sectional view partially showing the black matrix substrate according to the first embodiment of the present invention.
  • FIG. 3 is a plan view showing a black matrix substrate according to the first embodiment of the present invention.
  • FIG. 3 is a cross-sectional view partially showing a display device including the black matrix substrate according to the first exemplary embodiment of the present invention, and a diagram for explaining one effect obtained by the exemplary embodiment of the present invention.
  • FIG. 8 is a cross-sectional view partially showing an example of a display device including a conventional black matrix substrate, and is a diagram for comparing and explaining the black matrix substrate shown in FIG. 3 and the conventional black matrix substrate.
  • FIG. 3 is a sectional view partially showing the black matrix substrate according to the first embodiment of the present invention.
  • FIG. 3 is a plan view showing a black matrix substrate according to the first embodiment of the present invention.
  • FIG. 3 is a cross-sectional view partially showing a display device including the black matrix substrate according to the first exemplary embodiment of the present invention, and a
  • FIG. 3 is a cross-sectional view partially showing a display device including the black matrix substrate according to the first embodiment of the present invention, and a diagram for explaining one effect obtained by the embodiment of the present invention.
  • FIG. 7 is a cross-sectional view partially showing an example of a display device including a conventional black matrix substrate, and is a diagram for comparing and explaining the black matrix substrate shown in FIG. 5 and the conventional black matrix substrate. It is sectional drawing which shows the modification 1 of the black matrix substrate which concerns on 1st Embodiment of this invention partially. It is sectional drawing which shows the modification 2 of the black matrix substrate which concerns on 1st Embodiment of this invention partially.
  • FIG. 7 is a sectional view partially showing a display device including a black matrix substrate according to a second embodiment of the present invention.
  • FIG. 7 is an enlarged view partially showing members such as thin film transistors provided on an array substrate of a display device including a black matrix substrate according to a second embodiment of the present invention.
  • FIG. 7 is a sectional view partially showing a display device including a black matrix substrate according to a third embodiment of the present invention.
  • FIG. 11 is a cross-sectional view partially showing a display device including a black matrix substrate according to a fourth embodiment of the present invention.
  • planar view means a planar view in which an observer sees the surface of the transparent substrate on which the semi-transmissive film and the black matrix layer are not formed, in the normal direction.
  • first and second are added to avoid confusion among constituent elements, and the quantity is not limited.
  • the first transparent resin layer and the second transparent resin layer may be simply referred to as a transparent resin layer.
  • the first black matrix layer and the second black matrix layer may be simply referred to as a black matrix layer or a black matrix.
  • the “display function layer” included in the display device includes a plurality of light emitting diode elements called LEDs (Light Emitting Diodes) and a plurality of organic EL elements also called OLEDs (Organic Light Emitting Diodes). Either an (organic electroluminescence) element or a liquid crystal layer can be used.
  • LEDs Light Emitting Diodes
  • OLEDs Organic Light Emitting Diodes
  • FIG. 1 is a sectional view partially showing a black matrix substrate according to a first embodiment of the present invention.
  • the black matrix substrate 150 is formed on the transparent substrate 102, the semi-transmissive film 10 formed on the transparent substrate 102, and the semi-transmissive film 10 in contact with the semi-transmissive film 10 in the thickness direction of the semi-transmissive film 10.
  • the second transparent resin layer 22 formed on the first transparent resin layer 21 so as to cover the second black matrix layer 12.
  • the black matrix substrate 150 includes the semi-transmissive film 10, the first black matrix layer 11, the first transparent resin layer 21, the second black matrix layer 12, and the second transparent resin layer 22 in this order on the transparent substrate 102. It has a laminated structure. In FIG. 1, the second transparent resin layer 22 may not be formed.
  • FIG. 2 is a plan view showing the black matrix substrate 150 shown in FIG. 1, and is a view of the surface of the transparent substrate 102 on which the semi-transmissive film 10 is not formed. That is, FIG. 2 is a plan view when the black matrix substrate 150 is observed in the direction indicated by reference numeral OB in FIG. Therefore, in FIG. 2, the first black matrix layer 11 and the second black matrix layer 12 are arranged so as to overlap with each other below the semi-transmissive film 10. The overlap between the first black matrix layer 11 and the second black matrix layer 12 forms an effective display area when the black matrix substrate 150 is applied to a display device.
  • the semi-transmissive film 10 is formed so as to cover the effective display area in a plan view.
  • a transparent substrate such as a glass substrate, a quartz substrate, a sapphire substrate, or a plastic substrate can be used.
  • the substrate materials of the array substrate and the black matrix substrate 150 are the same.
  • the first black matrix layer 11 has a plurality of first pixel openings 11S (first openings).
  • the second black matrix layer 12 has a plurality of second pixel openings 12S (second openings).
  • the semi-transmissive film 10 has a plurality of first pixel openings 11S. It overlaps so as to cover the first black matrix layer 11.
  • the positions of the plurality of second pixel openings 12S correspond to the positions of the plurality of first pixel openings 11S.
  • the constituent materials of the first black matrix layer 11 and the second black matrix layer 12 may be the same or different.
  • the second black matrix layer 12 is formed by a normal photolithography method after forming the first black matrix layer 11. Therefore, for example, the transmittance of the observation light can be increased so that the transparent substrate 102 can be aligned in the photolithography process.
  • the optical density ( ⁇ OD) of the first black matrix layer 11 may be 2 or more and 4 or less.
  • the optical density of the first black matrix layer 11 may be 4 or more, but in the configuration of the embodiment of the present invention, the first black matrix layer 11 and the second black matrix layer 12 overlap each other, and therefore the first black matrix layer 11 It is not necessary to increase the light-shielding property of each of the second and black matrix layers 12.
  • Carbon is also called carbon black.
  • the second black matrix layer 12 may have a light transmitting property in the near infrared region.
  • the near infrared region can also be used as observation light.
  • the pigment used in the second black matrix layer 12 for example, a red or yellow organic pigment and a blue or violet organic pigment, which are added in the near infrared region, are used. It is possible to perform the alignment of the transparent substrate 102 by using the light.
  • an organic pigment is used to obtain a light-shielding property in the visible range, the addition of carbon to the second black matrix layer 12 may be reduced or the addition of carbon may be eliminated.
  • EBR Electrode Bead Removal
  • the technique of EBR is a technique for removing the swelling of the resist on the end portion (end surface) of the substrate, which is likely to occur during resist application.
  • the applied second black matrix layer by removing only the portion applied to the end portion of the substrate, the alignment mark formed on the end surface when the first black matrix layer 11 as the base is formed is read. It becomes possible.
  • the particle size of carbon used for the first black matrix layer 11 and the second black matrix layer 12 can be set to 10 nm to 100 nm. Preferably, it is 20 nm to 60 nm.
  • a dispersant having an Sp value (solubility parameter) of, for example, 10 or more In order to uniformly disperse carbon in the resist, it is preferable to use a dispersant having an Sp value (solubility parameter) of, for example, 10 or more.
  • Sp value solubility parameter
  • the uniform dispersion of carbon in the resist easily lowers the relative dielectric constant of the black matrix layer. Therefore, it is preferable to increase the dispersibility of carbon in the resist.
  • the black matrix substrate 150 can be effectively applied to a display device including a liquid crystal layer as a display function layer.
  • the film thickness of the black matrix layer applicable to the embodiment of the present invention does not have to be specified, but can be selected from the range of 1 ⁇ m to 2 ⁇ m as a standard film thickness.
  • Other light-shielding pigments such as titanium black may be added to the black matrix resist. Fine particles of titanium oxide, calcium carbonate, silica or the like may be added to the resist for the purpose of improving dispersibility.
  • the line widths BW1 and BW2 of the first black matrix layer 11 and the second black matrix layer 12 do not have to be specified, but for example, the line width BW2 of the second black matrix layer 12 is the first black matrix layer.
  • the line width BW1 of 11 may be smaller, or the line width BW2 and the line width BW1 may be equal.
  • the black matrix substrate 150 according to the embodiment of the present invention can be applied to a display device with high-definition pixels of 300 ppi or more, further 500 ppi or more and 2000 ppi or the like. In a display device having high-definition pixels, the aperture ratio of pixels is important.
  • the first black matrix layer 11 it is preferable to form the first black matrix layer 11 so that the line width BW1 is as thin as possible. If the line width BW2 of the second black matrix layer 12 becomes wider than the line width BW1 of the first black matrix layer 11, the aperture ratio of the pixel decreases, which is not preferable.
  • the line widths BW1 and BW2 and the film thicknesses of the first black matrix layer 11 and the second black matrix layer 12 respectively, or the first black matrix layer 11 and the second black matrix layer 12 in the thickness direction of the black matrix substrate 150 are The separation distance can be changed according to the size of the screen of the display device and the purpose of improving the contrast.
  • the line width BW2 of the second black matrix layer 12 is preferably narrower than the line width BW1 of the first black matrix layer 11 in consideration of alignment accuracy in the photolithography process. For example, if the alignment accuracy is ⁇ 1.5 ⁇ m, the line width BW2 of the second black matrix layer 12 may be narrower than the line width BW1 of the first black matrix layer 11 by 1.5 ⁇ m on one side (3 ⁇ m on both sides). The line width BW2 of the second black matrix layer 12 is reduced in consideration of the alignment allowance.
  • the film thickness of the second black matrix layer 12 may be smaller than the film thickness of the first black matrix layer 11.
  • the transmittance of the alkali-soluble photosensitive resist (carbon dispersion described later) forming the second black matrix layer 12 can be adjusted.
  • the resist of the second black matrix layer 12 can adjust the transmittance at the exposure wavelength and the transmittance at the wavelength in the near infrared region, for example.
  • a yellow pigment which is an organic pigment and a pigment of an opposite color such as a purple pigment can be mixed to obtain “black” in the visible region.
  • the transparency of infrared rays of the organic pigment can be utilized.
  • the semi-transmissive film 10 is a dispersion having carbon, optically isotropic fine particles, and a resin in which carbon and fine particles are dispersed.
  • the material used for the semi-transmissive film 10 basically the same material as the material of the above black matrix can be applied. It is preferable to form the semi-transmissive film 10 with a resin dispersion containing carbon as a main pigment.
  • the transmissivity of the semi-transmissive film 10 with respect to visible light is preferably in the range of 98% to 60%. From the viewpoint of this transmissivity, the amount of carbon added to the resin dispersion is adjusted.
  • Micro-LEDs and organic EL display devices are often equipped with light-reflecting electrodes below the LEDs or organic EL layers that are light emitting elements.
  • the re-reflected light of the external incident light by the light reflective electrode reduces the visibility.
  • an expensive circularly polarizing plate is used together with a display device in order to eliminate re-reflected light of external incident light.
  • two polarizing plates in crossed Nicols polarization axes are orthogonal to each other
  • Optically isotropic fine particles 13 are dispersed in the semi-transmissive film 10.
  • silica fine particles having a solid ratio of 18 mass% are applied.
  • the term “optically isotropic” means that the transparent fine particles applied to the embodiment of the present invention have a crystal structure in which the a-axis, the b-axis, and the c-axis are equal to each other, or are amorphous. Means that the propagation of is isotropic without being affected by the crystal axis or crystal structure.
  • the silica fine particles have an amorphous structure (amorphous).
  • fine particles of resin such as resin beads, fine particles having various properties including the refractive index are known, and these fine particles can be applied. Fine particles of resin such as acrylic, styrene, urethane, nylon, melamine, and benzoguanamine may be used.
  • the fine particles of silicon dioxide are known as a representative of inorganic fine particles that are optically isotropic and transparent in the visible range.
  • the particle size of the silica fine particles can be selected from the range of 5 nm to 300 nm, for example.
  • Two or more kinds of inorganic fine particles which are transparent in the visible region and have different particle sizes may be dispersed in the semi-permeable film 10 together with carbon.
  • the combined use of silica fine particles can prevent the generation of secondary particles that are likely to occur with carbon alone, and can improve the dispersibility of carbon.
  • the addition of the fine particles 13 to the semi-transmissive film 10 is not for giving light scattering to the semi-transmissive film 10.
  • the scattering film which is often applied to the display device, contains particles, as described in claim 1 of Japanese Patent No. 3531615, the average particle size is 1.5 ⁇ m or more and 3.0 ⁇ m or less in units of micron. It is necessary to use fine particles. That is, unless a particle having a particle diameter larger than the wavelength of visible light is used, an appropriate light scattering property as a scattering film cannot be obtained.
  • the refractive index of silicon dioxide is smaller than that of carbon, silicon dioxide has the effect of lowering the refractive index of the semitransparent film 10.
  • the semi-transmissive film 10 having a low refractive index has an effect of suppressing reflection of light at the interface between the semi-transmissive film 10 and the first black matrix layer 11 and improving visibility.
  • the light transmittance of the semi-transmissive film 10 when the light transmittance of the semi-transmissive film 10 is in a high transmittance region such as 98% to 95%, light reflection at the interface between the first black matrix layer 11 and the semi-transmissive film 10 causes ripple due to interference. May occur, and the first black matrix layer 11 may be slightly colored and observed. Such a slight coloring due to the reflected light is likely to be observed in the black display in which the display of the display device is off.
  • the silica fine particles and carbon in combination to form the semi-transmissive film 10 the effect of preventing the occurrence of such ripples can be obtained. From the above viewpoints as well, a semi-transparent film containing inorganic fine particles that is optically isotropic and transparent in the visible region is useful.
  • the reflected light of external light at the interface between the semi-transmissive film containing an organic pigment as a main pigment component and the first black matrix layer 11 becomes yellow. It may appear colored.
  • the semi-transmissive film 10 containing carbon as a main pigment component has a flat reflected light and is hardly colored.
  • Flat reflected light means that in a visible range of 400 nm to 700 nm, for example, in a small range such as 100 nm, there is no unevenness (fluctuation) with a transmittance of 2% or more, and a transmittance curve shown by a substantially straight line is obtained. It means that it has been.
  • the semi-transmissive film 10 is formed so as to be an entire surface coating film (a flat film in which a pattern having irregularities is not formed in the effective display region). Preferably. Thereby, the semi-transmissive film 10 can be easily formed.
  • the thickness of the semi-transmissive film 10 does not have to be specified, but can be selected from the range of 0.5 ⁇ m to 1.5 ⁇ m, for example.
  • a pixel opening may be provided in a part of the semi-transmissive film 10 according to the size of the pixel opening of the display device.
  • the transmittance of the semi-transmissive film 10 for visible light can be selected from the range of 98% to 60%.
  • a semi-transmissive film having a transmittance of 99% or more easily causes ripples due to interference in reflection of external light as described above, and impairs display quality in "black display".
  • the transmissivity of the semi-transmissive film is lower than 60%, the brightness of the display device is deteriorated, which is not preferable.
  • the transmittance is less than 60%, low reflectance cannot be obtained.
  • the transmittance of the semi-transmissive film 10 may be adjusted in the range of 98% to 60% according to the film thickness of the semi-transmissive film used for the black matrix substrate.
  • the black matrix substrate 150 includes the above-mentioned semi-transmissive film 10, a low reflectance of 0.3% to 1% can be obtained at the interface between the transparent substrate 102 and the semi-transmissive film 10.
  • the amount of carbon added to the semi-transmissive film 10 is increased to increase the carbon concentration, the refractive index of the semi-transmissive film 10 increases and the reflectance of the semi-transmissive film 10 increases.
  • the transmissivity of the semi-transmissive film 10 is less than 60%, the refractive index becomes high and the reflectance becomes high.
  • the amount of carbon is , For example, can be selected from the range of 0.5% by mass to 15% by mass.
  • a semi-transmissive film having a carbon content of 0.4% by mass or less reduces the effect of low reflection, and also tends to produce interference colors due to the above-mentioned ripple.
  • the amount of carbon exceeds 15% by mass, the optical density of the semi-transmissive film increases and it becomes difficult to obtain the effect of low reflection.
  • the addition amount of the silica fine particles can be selected from the range of 1% by mass to 30% by mass, for example. If the silica fine particles are 1% by mass or less, an interference color due to ripples is likely to appear. If the amount of carbon and silica fine particles added exceeds 45% by mass or even 50% by mass, the suitability for coating a resist, which will be described later, tends to deteriorate. If the amount of carbon and silica fine particles added is too small, the properties expected of the semi-permeable membrane cannot be obtained.
  • alkali-soluble resin applicable to the resist used when forming the semi-transmissive film 10 or the black matrix layers 11 and 12 include acrylic acid, methacrylic acid, methyl acrylate, methyl methacrylate, ethyl acrylate, ethyl methacrylate and butyl acrylate.
  • a usual photopolymerizable resin such as epoxy (meth)acrylate can be used.
  • a cardo resin having excellent patterning characteristics and heat resistance may be used.
  • the photopolymerization initiator applied to the resist used when forming the semi-transmissive film 10 or the black matrix layers 11 and 12 conventionally known compounds can be appropriately used, but black that does not transmit light is used. It is preferable to use an oxime ester compound that can achieve high sensitivity even when used in a photosensitive resin composition.
  • the solvent used for the resist used when forming the semi-permeable film 10 or the black matrix layers 11 and 12 is, for example, methanol, ethanol, ethyl cellosolve, ethyl cellosolve acetate, diglyme, cyclohexanone, ethylbenzene, xylene, isoamyl acetate, N-amyl acetate, propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether, propylene glycol monoethyl ether acetate, diethylene glycol, diethylene glycol monomethyl ether, diethylene glycol monomethyl ether acetate, diethylene glycol monoethyl ether, diethylene glycol monoethyl ether acetate, Diethylene glycol monobutyl ether, diethylene glycol monobutyl ether acetate, triethylene glycol, triethylene glycol monomethyl ether, triethylene glycol mono
  • FIG. 3 is a cross-sectional view partially showing a display device 250 including the black matrix substrate 150 according to the first embodiment of the present invention, and a diagram for explaining one effect obtained by the embodiment of the present invention. Is.
  • the display device 250 shown in FIG. 3 is configured by bonding the black matrix substrate 150 and the array substrate 201 so as to face each other.
  • the black matrix substrate 150 has the structure described with reference to FIGS. 1 and 2.
  • the array substrate 201 is connected to the substrate 202, a plurality of reflective electrodes 121 formed on the substrate 202, a light emitting element 122 such as an organic EL formed on each of the plurality of reflective electrodes 121, and the reflective electrode 121. And an active element.
  • the active elements are arranged in a matrix on the array substrate 201, and are omitted in FIG.
  • FIG. 4 is a cross-sectional view partially showing a display device 350 including the conventional black matrix substrate 300, and is a diagram for comparing and explaining the black matrix substrate shown in FIG. 3 and the conventional black matrix substrate.
  • the black matrix substrate 300 is different from the black matrix substrate 150 shown in FIGS. 1 and 2 in that a semi-transmissive film is not formed on the transparent substrate 310 and one black matrix layer 30 is formed on the transparent substrate 310.
  • the array substrate 301 is connected to the substrate 302, a plurality of reflective electrodes 31 formed on the substrate 302, a light emitting element 32 such as an organic EL formed on each of the plurality of reflective electrodes 31, and the reflective electrode 31.
  • an active element is arranged in a matrix on the array substrate 301 and are omitted in FIG.
  • the light reflectance of the reflective electrodes 121 and 31 is 100%, and it is presumed that parallel light is generated from the reflective electrodes 121 and 31 (diffusion). The generation of light is not considered).
  • 3 and 4 both describe a configuration in which no polarizing plate is used, and a case where the reflection component on the surface of the transparent substrate is not included. Members such as a polarizing plate are simplified to explain the reflected light.
  • the transmittance described below is the transmittance of visible light (400 nm to 700 nm) using a microspectroscope when a transparent substrate such as glass is used as a reference.
  • external light IL1 and IL2 are incident from the upper surface of the display device 250 (direction indicated by symbol OB in FIG. 1).
  • the light transmittance of the semi-transmissive film 10 is 70%
  • the light amount of the external light IL1 that has passed through the pixel openings 205 is reduced by the semi-transmissive film 10 and reaches 70% of the light amount and reaches the reflective electrode 121.
  • This light is reflected by the reflective electrode 121 to generate reflected light RL1, and the reflected light RL1 passes through the semi-transmissive film 10.
  • the light amount of the reflected light RL2 transmitted through the semi-transmissive film 10 is 49% with respect to the light amount (100%) of the external light IL1, and the semi-transmissive film 10 can suppress the reflected light.
  • the transmittance of the semi-transmissive film 10 By setting the transmittance of the semi-transmissive film 10, the amount of reflected light can be suppressed and the desired visibility can be obtained.
  • the transmittance of the semi-transmissive film 10 may be adjusted according to the emission intensity of the light emitting element 122. Although not shown in FIG. 3, light incident on the outer surface 102T of the transparent substrate 102 from the outside of the display device 250 in an oblique direction enters the first black matrix layer 11 and the second black matrix layer 12. It is cut in a laminated structure. Therefore, an effect superior to the suppression of the re-reflected light described above can be obtained, and the visibility can be greatly improved.
  • the display device 350 including the conventional black matrix substrate 300 shown in FIG. 4 since the semi-transmissive film is not formed, the amount of the external light IL3 passing through the pixel opening 305 is reduced.
  • the reflected light RL3 reaches the reflective electrode 31 without being reflected, is reflected by the reflective electrode 31 as it is, and similarly, the reflected light RL3 having a light amount of 100% is generated without decreasing the light amount.
  • the external light IL2 incident on the first black matrix layer 11 shown in FIG. 3 is transmitted through the semi-transmissive film 10 on the first black matrix layer 11 so as to reciprocate, and is absorbed.
  • the reflectance can be suppressed to 1% or less.
  • the reflectance at the interface between the black matrix layer 30 and the transparent substrate 310 is usually about 3%.
  • the reflectance at the interface between the first black matrix layer 11 and the transparent substrate 310 is 1 ⁇ 3 or less of the conventional reflectance.
  • FIG. 5 is a cross-sectional view partially showing a display device 250 including the black matrix substrate 150 according to the first embodiment of the present invention, and a diagram for explaining one effect obtained by the embodiment of the present invention. Is. Since the display device 250 shown in FIG. 5 corresponds to FIG. 3, the description of the structure of the display device 250 is omitted.
  • FIG. 6 is a cross-sectional view partially showing a display device 350 including a conventional black matrix substrate 300, and is a diagram for comparing and explaining the black matrix substrate shown in FIG. 5 and the conventional black matrix substrate. Since the display device 350 shown in FIG. 6 corresponds to FIG. 4, description of the structure of the display device 350 is omitted.
  • FIG. 5 and FIG. 6 are explanatory diagrams illustrating the influence of light on adjacent pixels when the light emitting elements 122 and 32 emit light.
  • the light emitting elements 122 and 32 are elements that are simplified and illustrated as a micro LED (LED light emitting element), an organic EL element, or a mini LED as a backlight.
  • the emitted light emitted from the light emitting element 122 in FIG. 5 is shown by reference signs E10, E11, E12, E13, and E14.
  • the emitted light emitted from the light emitting element 32 is shown by reference signs E20, E21, E22, E23, and E24.
  • Emitted light indicated by reference signs E10, E11, and E13 in FIG. 5 is legitimately emitted to the outside of the display device 250 through the pixel opening 205 without affecting adjacent pixels, and plays a role of display. ..
  • the emitted lights indicated by reference signs E20, E21, and E23 in FIG. 6 are legitimately emitted to the outside of the display device 350 through the pixel openings 305 without affecting the adjacent pixels, and display light is displayed. Play a role.
  • the second black matrix layer 12 shown in FIG. When light enters the display device 250 from the outside to the inside in an oblique direction with respect to the outer surface 102T of the transparent substrate 102, the second black matrix layer 12 shown in FIG. The effect of suppressing rereflection is obtained. Even when the transmissivity of the semi-transmissive film 10 is as high as 55% or more, the effect of suppressing the reflected light is obtained more than the calculated value.
  • the emitted light E22 generated from the light emitting element 32 It can be understood that E24 enters the adjacent pixels as stray light and the display contrast is reduced.
  • the light emitting element 32 shown in FIG. 6 is a micro LED or an organic EL light emitting layer
  • the conventional black matrix substrate 300 is used, similarly, the emitted lights E22 and E24 generated from the light emitting element 32. Can be understood as stray light entering adjacent pixels, and the display contrast is reduced.
  • the second black matrix layer 12 cuts the emitted light E12 and E14 (stray light), and It can be understood that the adjacent pixels are not affected.
  • FIG. 7 is a sectional view partially showing Modification 1 of the black matrix substrate according to the embodiment of the present invention.
  • the black matrix substrate 550 shown in FIG. 7 is different from the black matrix substrate 150 shown in FIG. 1 in that a semi-transmissive film to which the optically isotropic fine particles 13 are not added is used as the semi-transmissive film 10. ..
  • a black matrix substrate 550 not only the same effects as those of the above-described first embodiment can be obtained, but since the fine particles 13 are not added to the semi-transmissive film 10, the structure of the semi-transmissive film 10 is simple. This contributes to the cost reduction of the black matrix substrate.
  • FIG. 8 is a sectional view partially showing Modification Example 2 of the black matrix substrate according to the embodiment of the present invention.
  • the black matrix substrate 650 shown in FIG. 8 is different from the black matrix substrate 150 shown in FIG. 1 in that the colored layers of the red layer R, the green layer G, and the blue layer B are provided.
  • Each of the plurality of first pixel openings 11S of the first black matrix layer 11 has a coloring layer CF.
  • the coloring layer CF includes a red layer R, a green layer G, and a blue layer B.
  • the red layer R, the green layer G, and the blue layer B are provided in the first pixel opening 11S so as to correspond to the three first pixel openings 11S.
  • the red layer R, the green layer G, and the blue layer B are provided in the first pixel opening portion 11S of the first black matrix layer 11 between the first transparent resin layer 21 and the semi-transmissive film 10.
  • the black matrix substrate 650 is a black matrix substrate (color filter substrate) to which the coloring layer CF is added. According to such a black matrix substrate 650, not only the same effects as those of the above-described first embodiment can be obtained, but also a black matrix substrate having a function as a color filter substrate can be realized.
  • a liquid crystal layer, an organic EL element, and a micro LED element are used as a display function layer constituting a display device to which the black matrix substrates 150, 550, and 650 according to the above-described first embodiment, modification example 1 and modification example 2 are applied. You can choose from.
  • the display function layer is driven by a plurality of thin film transistors (active elements) called TFTs arranged in a matrix on the array substrate.
  • TFTs thin film transistors
  • the display device according to the embodiment of the present invention will be described, but the thin film transistor is not shown.
  • the same members as those in the first embodiment, the modification 1 and the modification 2 are designated by the same reference numerals, and the description thereof will be omitted or simplified.
  • FIG. 9 is a view showing a display device according to the second embodiment of the present invention, and partially shows a micro LED display device 750 to which the black matrix substrate 550 according to the modified example 1 of the first embodiment is applied.
  • FIG. 10 is an enlarged view partially showing the array substrate 501 included in the micro LED display device 750 according to the second embodiment, and is a view showing the position of the thin film transistor 68.
  • a fourth insulating layer 47 is formed on the surface 43 of the array substrate 501.
  • a gate electrode 55, a third insulating layer 148, a sixth insulating layer 49 formed so as to cover the gate electrode 55, and a first planarizing layer 96 formed so as to cover the sixth insulating layer 49. , Are sequentially stacked.
  • a contact hole 93 is formed in the first planarization layer 96, the sixth insulating layer 49, and the third insulating layer 148 at a position corresponding to the drain electrode 56 of the thin film transistor 68.
  • a bank 94 (see FIG. 10) is formed on the first flattening layer 96 at a position corresponding to the channel layer 58.
  • the upper surface of the first planarization layer 96, the inside of the contact hole 93, and the drain electrode 56 are provided in the region between the banks 94 adjacent to each other in cross section, that is, in the region surrounded by the banks 94 in plan view.
  • a reflective electrode 89 (pixel electrode) is formed so as to cover it. The reflective electrode 89 does not have to be formed on the upper surface of the bank 94.
  • the reflective electrode 89 is electrically connected to the lower electrode 88 of the light emitting element CHIP via the conductive bonding layer 77.
  • a second flattening layer 95 is formed so as to fill the inside of the contact hole 93 and cover the reflective electrode 89 and the light emitting element CHIP.
  • a transparent conductive film 76 called ITO (Indium Tin Oxide) is formed on the second flattening layer 95, and the transparent conductive film 76 is connected to an upper electrode 87 forming a light emitting element CHIP.
  • an auxiliary conductor 75 is formed on the transparent conductive film 76, and the transparent conductive film 76 is electrically connected to the auxiliary conductor 75.
  • a sealing layer 109 is formed on the surface of the transparent conductive film 76 so as to cover the auxiliary conductor 75.
  • the auxiliary conductor 75 is a conductor for reducing the resistance value of the transparent conductive film 76 in a plan view.
  • an organic resin such as an acrylic resin, a polyimide resin, or a novolac phenol resin can be used.
  • the bank 94 may be further laminated with an inorganic material such as silicon oxide or silicon oxynitride.
  • acrylic resin polyimide resin, benzocyclobutene resin, polyamide resin, or the like may be used.
  • a low dielectric constant material low-k material can also be used.
  • the light emitting element CHIP has a structure in which an upper electrode 87, an n-type semiconductor layer 90, a light emitting layer 92, a p-type semiconductor layer 91, and a lower electrode 88 are laminated in this order.
  • the light emitting element CHIP has a configuration in which the p-type semiconductor layer 91, the light emitting layer 92, the n-type semiconductor layer 90, and the upper electrode 87 are stacked in this order on the lower electrode 88.
  • the electrodes used for LED light emission are formed on different surfaces and are formed on the surfaces facing each other.
  • the upper electrode 87 and the lower electrode 88 are arranged outside the surfaces facing the n-type semiconductor layer 90 and the p-type semiconductor layer 91, respectively, which are stacked so as to be parallel to each other.
  • the light emitting element CHIP having such a structure is referred to as a vertical light emitting diode.
  • the LED structure has an irregular shape such as a pyramid shape in a cross-sectional view, it is not included in the vertical light emitting diode of the present invention.
  • a structure in which electrodes are arranged on one side surface or a structure in which electrodes are arranged in the horizontal direction is called a horizontal light emitting diode.
  • red light emitting element, green light emitting element, and blue light emitting LED element can be used as the light emitting element CHIP. Since such LED light emission has extremely high red, green, and blue color purity, the color filter can be omitted.
  • a matrix of one type of LED element that emits light in the wavelength range from blue to near ultraviolet may be used. In this case, color display is performed by using three types of quantum dot layers that convert the wavelength of light emitted from the LED element from blue to near-ultraviolet to red, green, and blue in the visible range.
  • the shape of the light emitting element CHIP for example, a square shape having a side length of 2 ⁇ m to 50 ⁇ m can be applied in plan view. However, shapes other than squares and rectangles may be applied. Alternatively, the size of one side may be 50 ⁇ m or more. Further, in plan view, one pixel or two or more light emitting elements can be mounted on each pixel to provide redundancy. In mounting the light emitting element CHIP, for example, the direction of the square light emitting element CHIP can be randomly rotated in units of 90 degrees for mounting. By randomly mounting, it is possible to reduce color unevenness and brightness unevenness on the entire screen due to slight variations in LED crystal growth.
  • the bonding layer 77 for example, a conductive material that can be electrically connected by fusing the lower electrode 88 of the light emitting element CHIP and the reflective electrode 89 within a temperature range of 150° C. to 340° C. can be applied.
  • a conductive aggregate such as silver, carbon or graphite may be dispersed in a heat flow resin.
  • the bonding layer 77 is made of In (indium), InBi alloy, InSb alloy, InSn alloy, InAg alloy, InGa alloy, SnBi alloy, SnSb alloy, or the like, or a low melting point metal that is a ternary or quaternary system of these metals. Can be formed by using.
  • a material having electrical conduction only in the thickness direction such as an anisotropic conductive film, may be used.
  • FIG. 11 is a diagram showing a display device according to a third embodiment of the present invention, and partially shows an organic EL display device 850 to which a black matrix substrate 650 according to a modified example 2 of the first embodiment is applied.
  • FIG. 11 is a diagram showing a display device according to a third embodiment of the present invention, and partially shows an organic EL display device 850 to which a black matrix substrate 650 according to a modified example 2 of the first embodiment is applied.
  • the organic EL display device 850 is configured by bonding a black matrix substrate 650 and an array substrate 801 having an organic EL layer 80 so as to face each other.
  • the organic EL layer 80 is a blue light emitting organic electroluminescent light emitting layer.
  • the black matrix substrate 650 includes color conversion layers such as a red conversion layer CR, a green conversion layer CG, and a blue conversion layer CB.
  • the color conversion layer is a conversion layer that converts blue light emission (which may include a near-ultraviolet region) into light having a wavelength longer than this emission wavelength, for example, red, green, and blue light.
  • Inorganic phosphors, fluorescent dyes, quantum dots and the like can be presented as the material of the color conversion layer.
  • a color filter may be inserted between the color conversion layer (red conversion layer CR, green conversion layer CG, and blue conversion layer CB) and the semitransparent film 10.
  • the color conversion layers the configuration in which the blue color conversion layer CB is omitted may be adopted.
  • the color conversion layer may be omitted and the color filters of red, green, and blue may be arranged.
  • the substrate 802 of the array substrate 801 is not limited to a transparent substrate, and examples of applicable substrates include a glass substrate, a ceramic substrate, a quartz substrate, a sapphire substrate, a silicon semiconductor substrate such as silicon carbide or silicon germanium, Alternatively, a plastic substrate or the like can be used.
  • the fourth insulating layer 47 is formed on the substrate 802 of the array substrate 801.
  • a thin film transistor (not shown) is formed on the fourth insulating layer 47, a fifth insulating layer 248 is formed so as to cover the fourth insulating layer 47 and the thin film transistor, and a fifth insulating layer 248 is formed so as to face the channel layer of the thin film transistor.
  • the gate electrode formed on the first insulating layer 248, the fifth insulating layer 248, the sixth insulating layer 49 formed so as to cover the gate electrode, and the first planarizing layer 96 formed on the sixth insulating layer 49 are sequentially stacked. ing.
  • the thin film transistor 68 having the structure shown in FIG. 10 may be adopted.
  • Contact holes are formed in the first planarization layer 96, the sixth insulating layer 49, and the fifth insulating layer 248 at positions corresponding to the drain electrodes of the thin film transistors.
  • the bank 94 is formed on the first planarization layer 96 at a position corresponding to the channel layer. In the region between the banks 94 adjacent to each other in cross section, that is, in the region surrounded by the banks 94 in plan view, the upper surface of the first planarization layer 96, the inside of the contact hole 93, and the drain electrode 156 are formed.
  • a lower electrode 189 (pixel electrode) is formed so as to cover it. The lower electrode 189 may not be formed on the upper surface of the bank 94.
  • a hole injection layer 191 is formed so as to cover the lower electrode 189, the bank 94, and the first planarization layer 96.
  • a light emitting layer 192, an upper electrode 187, and a sealing layer 195 are sequentially stacked on the hole injection layer 191.
  • the lower electrode 189 (reflection electrode) has a configuration in which a silver or silver alloy layer is sandwiched between conductive oxide layers, as described later.
  • the lower electrode 189 may have a three-layer laminated structure in which a silver alloy layer is sandwiched by conductive metal oxide layers.
  • the composite oxide layer is applied to a conductive metal oxide layer, and the thickness of the silver alloy layer is set within the range of 100 nm to 250 nm or 300 nm or more, and the conductive metal oxide layer is formed.
  • a three-layer laminated structure in which silver alloy layers are sandwiched by may be adopted.
  • the lower electrode 189 having a high reflectance for visible light can be realized.
  • the thickness of the silver alloy layer may be set within the range of 9 nm to 15 nm, and a three-layer laminated film having visible light transparency may be used as the upper electrode.
  • the conductive metal oxide may be a complex oxide of indium oxide or zinc oxide.
  • ITO a mixed oxide containing indium oxide and tin oxide
  • the oxide is nobler than the silver alloy layer (or the copper alloy layer). Therefore, the silver alloy (or the copper alloy layer) is selectively etched, and the line widths of the three layers are likely to be different. Therefore, the corrosion potential is adjusted by adding easily soluble oxides such as zinc oxide, gallium oxide, and antimony oxide to indium oxide, and a mixed oxide in which the corrosion potential is uniform with that of the silver alloy layer (or copper alloy layer). Good as a layer.
  • the three-layer laminated film in which silver or the like is sandwiched between these conductive metal oxides can be used as an electrode or a conductive wiring of a micro LED or a liquid crystal display device.
  • an organic resin such as an acrylic resin, a polyimide resin, or a novolac phenol resin can be used.
  • the bank 94 may be further laminated with an inorganic material such as silicon oxide or silicon oxynitride.
  • acrylic resin polyimide resin, benzocyclobutene resin, polyamide resin or the like may be used.
  • a low dielectric constant material low-k material can also be used.
  • FIG. 12 is a view showing a display device according to the fourth embodiment of the present invention, and is a cross-sectional view partially showing a liquid crystal display device 950 to which a black matrix substrate 650 according to Modification 2 of the first embodiment is applied. It is a figure.
  • an optical film including a polarizing plate, a light control element such as a diffusion plate, an alignment film, and the like are omitted.
  • the liquid crystal display device 950 includes a black matrix substrate 650, an array substrate 901, a liquid crystal layer LC arranged between the array substrate 901, a cover glass 904, and a backlight unit 903.
  • a touch panel may be added between the cover glass 904 and the black matrix substrate 650.
  • the backlight unit 903 is a direct type backlight unit (hereinafter, BLU) in which LED chips of 5 ⁇ m to 100 ⁇ m size are arranged in a matrix, and is called a mini LED.
  • BLU direct type backlight unit
  • the mini LED method usually, in accordance with the image displayed by the liquid crystal display device 950, local light emission of the BLU is partially reduced, dark light emission, or high brightness light emission in the display area. The method of dimming is taken. It should be noted that the LED chip size used for the mini LED may be a size other than the above.
  • the liquid crystal layer is used as the display function layer, and the light emission (brightness) from the display surface is controlled to display an image.
  • the backlight maintains the lighting state during the image display, light leakage from the liquid crystal layer is likely to occur. For this reason, even in the black display state, there is a drawback that the display is not completely black and the contrast is lowered.
  • the mini-LED method depending on the content of the displayed image, for example, the light emission in the display area can be partially turned off, and a complete black display can be obtained.
  • Luminescence efficiency of LED including mini LED is much better than that of organic EL.
  • a mini LED including a local dimming technology capable of obtaining a completely black display may surpass an organic EL.
  • the LED chip size used for the mini LED may be 5 ⁇ m to 100 ⁇ m, but a large display device such as a signage may use an LED chip larger than 100 ⁇ m. Further, instead of using the LED chips for red light emission, green light emission, and blue light emission, the BLU of the mini LED by the LED chip for white light emission and the color filter may be used together. In this case, BLU control becomes simple, including the wiring of the BLU.
  • the color filter can be omitted in the liquid crystal display device to which the field sequential technology that sequentially performs red light emission, green light emission, and blue light emission in time division is applied.
  • the black matrix substrate according to the above-described embodiment or the display device including the black matrix substrate can be applied in various ways.
  • Examples of electronic devices to which the display device according to the above-described embodiment can be applied include mobile phones, portable game devices, personal digital assistants, personal computers, electronic books, video cameras, digital still cameras, head-mounted displays, navigation systems, and audio systems.
  • Electronic devices such as playback devices (car audio, digital audio players, etc.), copiers, facsimiles, printers, printer complex machines, vending machines, automatic teller machines (ATMs), personal authentication devices, optical communication devices, IC cards, etc. Etc.
  • the above embodiments can be freely combined and used. It is desirable that the electronic device on which the black matrix substrate according to the embodiment of the present invention is mounted is further equipped with an antenna to perform communication or contactless power reception and feeding.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Theoretical Computer Science (AREA)
  • Electroluminescent Light Sources (AREA)
  • Optical Filters (AREA)
  • Liquid Crystal (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

A black matrix substrate according to the present invention comprises: a transparent substrate; a semi-transmissive film formed on the transparent substrate; a first black matrix layer formed on the semi-transmissive film in contact with the semi-transmissive film in the thickness direction of the semi-transmissive film, the first black matrix layer having a plurality of first openings; a transparent resin layer formed on the semi-transmissive film to cover the first black matrix layer; and a second black matrix layer formed on the transparent resin layer and having a plurality of second openings. The semi-transmissive film overlaps the plurality of first openings and the first black matrix layer in a plan view viewed from the side opposite the side of the transparent substrate on which the semi-transmissive film is formed, and the positions of the plurality of second openings correspond to the positions of the plurality of first openings in the plan view.

Description

ブラックマトリクス基板、及びブラックマトリクス基板を備えた表示装置Black matrix substrate and display device including black matrix substrate
 本発明は、液晶表示装置、マイクロLED(LEDディスプレイ)、及び有機EL表示装置などに用いられるブラックマトリクス基板、さらにはブラックマトリクス基板を備えた表示装置に関する。 The present invention relates to a black matrix substrate used for a liquid crystal display device, a micro LED (LED display), an organic EL display device, and the like, and a display device including the black matrix substrate.
 液晶表示装置は、LED(Light Emitting Diode)を光源としたバックライトを用い、光の透過・非透過を切り替える表示機能層として液晶を用いる表示装置である。
 近年、およそ5μmから100μmサイズのLEDチップをマトリクス状に複数並べた構成を有するミニLEDと呼称される直下型のバックライトを液晶表示装置に用いる技術が注目されている。ミニLEDでは、通常、赤色発光、緑色発光、青色発光の3種類のLEDチップが用いられている。
The liquid crystal display device is a display device that uses a backlight using an LED (Light Emitting Diode) as a light source and uses liquid crystal as a display function layer that switches between transmission and non-transmission of light.
In recent years, a technique using a direct type backlight called a mini LED having a configuration in which a plurality of LED chips having a size of about 5 μm to 100 μm are arranged in a matrix is used in a liquid crystal display device. In the mini LED, normally, three types of LED chips of red light emission, green light emission, and blue light emission are used.
 また、表示画面における表示部位の位置に応じて、3種類のLEDチップの発光輝度を部分的に調整し、あるいは、部分的に発光を停止させるローカルディミングを併用する技術が注目されている。
 このようなローカルディミングを用いる液晶表示装置においては、表示画面における発光を部分的にオフにすることができるため、表示のコントラストを大きく改善できる。従来の液晶表示装置では、バックライトを常時点灯とするため、液晶の黒表示のときに、僅かな光漏れが発生し、有機EL並みのコントラストを得ることが困難であった。
In addition, a technique that locally adjusts the light emission brightness of three types of LED chips, or uses local dimming that partially stops light emission in accordance with the position of the display portion on the display screen is drawing attention.
In the liquid crystal display device using such local dimming, light emission on the display screen can be partially turned off, so that the display contrast can be significantly improved. In the conventional liquid crystal display device, since the backlight is constantly turned on, a slight light leakage occurs during black display of the liquid crystal, and it is difficult to obtain a contrast comparable to that of an organic EL.
 マイクロLEDは、およそ2μmから50μmサイズのLEDチップがマトリクス状に配列した構造を有し、複数のLEDチップの各々を個別駆動することによって表示を行う表示装置である。このようなマイクロLEDは、液晶を用いずに表示を行うことができる。
 マイクロLEDは、上述したミニLEDと同様に赤色発光、緑色発光、青色発光の3種類のLEDチップを用いる方式と、青色から近紫外の波長域の光を発する発光LEDチップなどの単色発光LEDチップのみを用いる方式とに大別される。マイクロLEDにおいては、個々のLEDチップが表示機能層の役割を果たす。
 単色発光LEDチップを用いる方式では、複数の単色発光LEDチップの各々に、発光波長を赤色、緑色、及び青色のいずれかへ波長を変換する波長変換素子(例えば、量子ドットなど)を積層することで、カラー表示を実現している。
The micro LED is a display device that has a structure in which LED chips having a size of approximately 2 μm to 50 μm are arranged in a matrix, and performs display by individually driving each of the plurality of LED chips. Such a micro LED can display without using liquid crystal.
The micro LED uses a method of using three types of LED chips of red light emission, green light emission, and blue light emission like the mini LED described above, and a single color light emitting LED chip such as a light emitting LED chip that emits light in the wavelength range from blue to near ultraviolet. It is roughly divided into a method using only. In the micro LED, each LED chip serves as a display function layer.
In the method of using a single color light emitting LED chip, a wavelength conversion element (for example, a quantum dot) that converts a light emission wavelength into one of red, green, and blue is laminated on each of a plurality of single color light emitting LED chips. It realizes color display.
 有機ELとは、有機エレクトロルミネセンス(Organic Electroluminescence)の略称である。有機EL表示装置は、表示機能層として、有機化合物中に注入された電子と正孔の再結合による発光を表示に用いる表示装置である。有機EL表示装置は、赤色、緑色、及び青色に発光する3種類の発光層を用いる方式と、白色に発光する白色発光層にカラーフィルタを組み合わせる方式とに大別される。 Organic EL is an abbreviation for organic electroluminescence. An organic EL display device is a display device that uses, as a display function layer, light emission resulting from recombination of electrons and holes injected into an organic compound for display. Organic EL display devices are roughly classified into a system that uses three types of light emitting layers that emit red, green, and blue light and a system that combines a white light emitting layer that emits white light with a color filter.
 液晶表示装置、マイクロLED、及び有機EL表示装置においては、いずれも、表示機能層からの出射光が画素開口部に向かう光の直線性が十分に得られていなかった。従って、隣接する画素に対する迷光(斜め出射光)が発生してしまい、表示コントラストが低下していた。
 特に、画素サイズの微細化が進むに従って、迷光に起因する表示コントラスト低下が問題となる。また、表示装置が明るい環境下で使用される際、外部から表示装置に入射する入射光に起因する表示コントラスト低下も問題となる。
In each of the liquid crystal display device, the micro LED, and the organic EL display device, sufficient linearity of the light emitted from the display function layer toward the pixel opening has not been obtained. Therefore, stray light (obliquely emitted light) is generated in adjacent pixels, and the display contrast is lowered.
Particularly, as the pixel size becomes finer, the display contrast lowering due to stray light becomes a problem. Further, when the display device is used in a bright environment, there is also a problem that the display contrast is lowered due to the incident light entering the display device from the outside.
 有機EL表示装置やマイクロLEDでは、外部から表示装置に入射する入射光に起因するコントラスト低下を避けるため、円偏光板が用いられている。有機EL表示装置やマイクロLEDにおいて、円偏光板は、光反射性を有する画素電極での外光の反射を消して視認性を改善する目的で、表示装置の上面に搭載されている。しかしながら、円偏光板は高価であることから、表示装置の構造の点で、円偏光板を省略することが強く要求されている。 Circular polarizing plates are used in organic EL display devices and micro LEDs in order to avoid a decrease in contrast due to incident light entering the display device from the outside. In the organic EL display device and the micro LED, the circularly polarizing plate is mounted on the upper surface of the display device for the purpose of eliminating the reflection of external light on the pixel electrode having light reflectivity and improving visibility. However, since the circularly polarizing plate is expensive, it is strongly required to omit the circularly polarizing plate from the viewpoint of the structure of the display device.
 特許文献1は、2層構成のブラックマトリクスを開示している(図1参照)。しかしながら、特許文献1の技術は、裸眼の観察者に対して立体画像を表示する技術である。特許文献1は、種々の表示機能層を用いる表示装置でのコントラスト低下を課題としていない。特許文献1では、高価な円偏光板を省く構成を提案しておらず、加えて、ブラックマトリクスの表面反射を抑える技術を開示していない。 Patent Document 1 discloses a two-layer black matrix (see FIG. 1). However, the technique of Patent Document 1 is a technique of displaying a stereoscopic image to an observer with the naked eye. Patent Document 1 does not address the problem of contrast reduction in a display device using various display function layers. Patent Document 1 does not propose a configuration in which an expensive circularly polarizing plate is omitted, and additionally does not disclose a technique for suppressing surface reflection of a black matrix.
 特許文献2には、第1遮光層と第2遮光層を用いたカラーフィルタが記載されている。しかしながら、特許文献2では、高価な円偏光板を省く構成を提案しておらず、加えて、第1遮光層の表面反射を抑える技術を開示していない。さらに、赤色発光素子、緑色発光素子、青色発光素子を具備するマイクロLEDでは、カラーフィルタを必要としない。また、同様に、色純度を向上させた有機EL表示装置もカラーフィルタを必要としない。液晶表示装置においても、LEDバックライトの赤色発光、緑色発光、青色発光を順次点灯させて表示するフィールドシーケンシャルでは、カラーフィルタを必要としない。特許文献2は、カラーフィルタを備えない構成を考慮していない。 Patent Document 2 describes a color filter using a first light shielding layer and a second light shielding layer. However, Patent Document 2 does not propose a configuration in which an expensive circularly polarizing plate is omitted, and additionally does not disclose a technique of suppressing surface reflection of the first light shielding layer. Furthermore, a color filter is not required in a micro LED including a red light emitting element, a green light emitting element, and a blue light emitting element. Similarly, an organic EL display device having improved color purity does not require a color filter. Also in the liquid crystal display device, a color filter is not required in the field sequential mode in which the red light emission, the green light emission, and the blue light emission of the LED backlight are sequentially turned on and displayed. Patent Document 2 does not consider a configuration including no color filter.
 しかしながら、特許文献2において、第2遮光層が着色層の端部を覆う特徴、及び、請求項3の第2遮光層の幅に関する特徴は、特許文献1の図16に示されるカラーフィルタとほぼ同一である。特許文献1には、第1遮光層と第2遮光層のアライメントの課題も記載されている。特許文献2の第2遮光層に関わる[0034]から[0036]の技術も、例えば、特許文献1の[0105]段落に記載されている。 However, in Patent Document 2, the feature that the second light shielding layer covers the end portion of the colored layer and the feature regarding the width of the second light shielding layer in Claim 3 are almost the same as those of the color filter shown in FIG. 16 of Patent Document 1. It is the same. Patent Document 1 also describes the problem of alignment of the first light shielding layer and the second light shielding layer. The techniques of [0034] to [0036] relating to the second light-shielding layer of Patent Document 2 are also described in the paragraph [0105] of Patent Document 1, for example.
日本国特許第5804196号公報Japanese Patent No. 5804196 日本国特許第6225524号公報Japanese Patent No. 6225524
 本発明は、上記の背景技術や課題に鑑みてなされたものであって、高精細化がさらに要求される液晶表示装置、マイクロLED(LEDディスプレイ)、及び有機EL表示装置などの表示装置において、表示コントラストを改善することができるブラックマトリクス基板、及び、ブラックマトリクス基板を備えた表示装置を提供する。 The present invention has been made in view of the above background art and problems, and in a display device such as a liquid crystal display device, a micro LED (LED display), and an organic EL display device, which is required to have higher definition, Provided are a black matrix substrate capable of improving display contrast, and a display device including the black matrix substrate.
 本発明の第1態様に係るブラックマトリクス基板は、透明基板と、前記透明基板上に形成された半透過膜と、前記半透過膜の厚み方向において、前記半透過膜と接触するように前記半透過膜上に形成され、複数の第1開口部を具備する第1ブラックマトリクス層と、前記第1ブラックマトリクス層を覆うように前記半透過膜上に形成された透明樹脂層と、前記透明樹脂層上に形成され、複数の第2開口部を具備する第2ブラックマトリクス層と、を備え、前記半透過膜が形成された前記透明基板の面とは反対側の面から見た平面視において、前記半透過膜は、複数の前記第1開口部と前記第1ブラックマトリクス層とに重なり、平面視において、複数の前記第2開口部の位置は、複数の前記第1開口部の位置に対応している。 A black matrix substrate according to a first aspect of the present invention includes a transparent substrate, a semi-transmissive film formed on the transparent substrate, and the semi-transmissive film in contact with the semi-transmissive film in a thickness direction of the semi-transmissive film. A first black matrix layer formed on the transparent film and having a plurality of first openings; a transparent resin layer formed on the semi-transparent film so as to cover the first black matrix layer; A second black matrix layer formed on the layer and having a plurality of second openings, and in a plan view seen from a surface opposite to the surface of the transparent substrate on which the semi-transmissive film is formed. The semi-transmissive film overlaps the plurality of first openings and the first black matrix layer, and the plurality of second openings are located at the plurality of first openings in a plan view. It corresponds.
 本発明の第1態様に係るブラックマトリクス基板において、前記半透過膜は、顔料としてカーボンを含有し、可視光に対する前記半透過膜の透過率は、98%から60%の範囲内にあってもよい。 In the black matrix substrate according to the first aspect of the present invention, the semi-transmissive film contains carbon as a pigment, and the transmissivity of the semi-transmissive film with respect to visible light is in the range of 98% to 60%. Good.
 本発明の第1態様に係るブラックマトリクス基板において、前記半透過膜は、カーボンと、光学的に等方な微粒子と、前記カーボン及び前記微粒子が分散された樹脂とを有する分散体であってもよい。 In the black matrix substrate according to the first aspect of the present invention, the semi-transmissive film may be a dispersion having carbon, optically isotropic fine particles, and a resin in which the carbon and the fine particles are dispersed. Good.
 本発明の第1態様に係るブラックマトリクス基板において、前記微粒子は、シリカの微粒子であってもよい。 In the black matrix substrate according to the first aspect of the present invention, the fine particles may be fine particles of silica.
 本発明の第1態様に係るブラックマトリクス基板において、前記樹脂と、前記カーボンと、前記微粒子とを含む全固形分を100質量%として、前記カーボンの量は、0.5質量%から15質量%の範囲内にあり、前記微粒子の量は、1質量%から30質量%の範囲内にあってもよい。 In the black matrix substrate according to the first aspect of the present invention, the total amount of solids including the resin, the carbon, and the fine particles is 100% by mass, and the amount of the carbon is 0.5% by mass to 15% by mass. And the amount of the fine particles may be in the range of 1% by mass to 30% by mass.
 本発明の第1態様に係るブラックマトリクス基板において、前記第2ブラックマトリクス層の線幅は、第1ブラックマトリクス層の線幅より小さくてもよい。 In the black matrix substrate according to the first aspect of the present invention, the line width of the second black matrix layer may be smaller than the line width of the first black matrix layer.
 本発明の第1態様に係るブラックマトリクス基板において、前記第2ブラックマトリクス層は、近赤外域に対する光透過性を有してもよい。 In the black matrix substrate according to the first aspect of the present invention, the second black matrix layer may have a light transmittance in the near infrared region.
 前記第1ブラックマトリクス層の複数の前記第1開口部の各々は、着色層を有してもよい。 Each of the plurality of first openings of the first black matrix layer may have a colored layer.
 本発明の第1態様に係るブラックマトリクス基板において、前記着色層は、赤色層、青色層、及び緑色層であり、複数の前記第1開口部における3つの第1開口部に対応するように、前記赤色層、前記緑色層、及び前記青色層が第1開口部に設けられてもよい。 In the black matrix substrate according to the first aspect of the present invention, the colored layers are a red layer, a blue layer, and a green layer, so as to correspond to the three first openings in the plurality of first openings. The red layer, the green layer, and the blue layer may be provided in the first opening.
 本発明の第2態様に係る表示装置は、上記第1態様に係るブラックマトリクス基板と、表示機能層と、複数のアクティブ素子を具備するアレイ基板とを備える。 A display device according to a second aspect of the present invention includes the black matrix substrate according to the first aspect, a display function layer, and an array substrate including a plurality of active elements.
 本発明は、高精細化がさらに要求される液晶表示装置、マイクロLED(LEDディスプレイ)、及び有機EL表示装置などの表示装置において、表示コントラストを改善することができるブラックマトリクス基板、及び、ブラックマトリクス基板を備えた表示装置を提供できる。 The present invention provides a black matrix substrate and a black matrix capable of improving display contrast in a display device such as a liquid crystal display device, a micro LED (LED display), and an organic EL display device in which high definition is further required. A display device including a substrate can be provided.
本発明の第1実施形態に係るブラックマトリクス基板を部分的に示す断面図である。FIG. 3 is a sectional view partially showing the black matrix substrate according to the first embodiment of the present invention. 本発明の第1実施形態に係るブラックマトリクス基板を示す平面図である。FIG. 3 is a plan view showing a black matrix substrate according to the first embodiment of the present invention. 本発明の第1実施形態に係るブラックマトリクス基板を備えた表示装置を部分的に示す断面図であり、かつ、本発明の実施形態によって得られる一つの効果を説明する図である。FIG. 3 is a cross-sectional view partially showing a display device including the black matrix substrate according to the first exemplary embodiment of the present invention, and a diagram for explaining one effect obtained by the exemplary embodiment of the present invention. 従来のブラックマトリクス基板を備えた表示装置の一例を部分的に示す断面図であり、図3に示すブラックマトリクス基板と従来のブラックマトリクス基板とを比較して説明する図である。FIG. 8 is a cross-sectional view partially showing an example of a display device including a conventional black matrix substrate, and is a diagram for comparing and explaining the black matrix substrate shown in FIG. 3 and the conventional black matrix substrate. 本発明の第1実施形態に係るブラックマトリクス基板を備えた表示装置を部分的に示す断面図であり、かつ、本発明の実施形態によって得られる一つの効果を説明する図である。FIG. 3 is a cross-sectional view partially showing a display device including the black matrix substrate according to the first embodiment of the present invention, and a diagram for explaining one effect obtained by the embodiment of the present invention. 従来のブラックマトリクス基板を備えた表示装置の一例を部分的に示す断面図であり、図5に示すブラックマトリクス基板と従来のブラックマトリクス基板とを比較して説明する図である。FIG. 7 is a cross-sectional view partially showing an example of a display device including a conventional black matrix substrate, and is a diagram for comparing and explaining the black matrix substrate shown in FIG. 5 and the conventional black matrix substrate. 本発明の第1実施形態に係るブラックマトリクス基板の変形例1を部分的に示す断面図である。It is sectional drawing which shows the modification 1 of the black matrix substrate which concerns on 1st Embodiment of this invention partially. 本発明の第1実施形態に係るブラックマトリクス基板の変形例2を部分的に示す断面図である。It is sectional drawing which shows the modification 2 of the black matrix substrate which concerns on 1st Embodiment of this invention partially. 本発明の第2実施形態に係るブラックマトリクス基板を備えた表示装置を部分的に示す断面図である。FIG. 7 is a sectional view partially showing a display device including a black matrix substrate according to a second embodiment of the present invention. 本発明の第2実施形態に係るブラックマトリクス基板を備えた表示装置のアレイ基板に設けられた薄膜トランジスタ等の部材を部分的に示す拡大図である。FIG. 7 is an enlarged view partially showing members such as thin film transistors provided on an array substrate of a display device including a black matrix substrate according to a second embodiment of the present invention. 本発明の第3実施形態に係るブラックマトリクス基板を備えた表示装置を部分的に示す断面図である。FIG. 7 is a sectional view partially showing a display device including a black matrix substrate according to a third embodiment of the present invention. 本発明の第4実施形態に係るブラックマトリクス基板を備えた表示装置を部分的に示す断面図である。FIG. 11 is a cross-sectional view partially showing a display device including a black matrix substrate according to a fourth embodiment of the present invention.
 以下、図面を参照しながら本発明の実施形態について説明する。
 以下の説明において、同一又は実質的に同一の機能及び構成要素には、同一の符号を付し、その説明を省略又は簡略化し、或いは、必要な場合のみ説明を行う。各図においては、各構成要素を図面上で認識し得る程度の大きさとするため、各構成要素の寸法及び比率を実際のものとは適宜に異ならせてある。画素数、画素開口部の数、画素開口部の形状は、以下に説明する図面によって制限されない。また、本発明の実施形態を分かり易く説明するため、断面図や平面図では、表示装置を構成する部材の数を少なくし、表示装置の構造を説明する場合がある。表示装置を構成する表示機能層などの図示を簡略化することがある。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
In the following description, the same or substantially the same function and component will be denoted by the same reference numeral, and the description thereof will be omitted or simplified, or will be described only when necessary. In each drawing, in order to make each constituent element recognizable in the drawings, the dimensions and proportions of each constituent element are appropriately different from the actual ones. The number of pixels, the number of pixel openings, and the shape of the pixel openings are not limited by the drawings described below. Further, in order to explain the embodiments of the present invention in an easy-to-understand manner, the structure of the display device may be described in some cases in which the number of members constituting the display device is reduced in the cross-sectional views and plan views. Illustration of a display function layer or the like that constitutes a display device may be simplified.
 以下に述べる各実施形態においては、特徴的な部分について説明し、例えば、通常の表示装置に用いられている構成要素と本実施形態に係る表示装置との差異がない部分については説明を省略することがある。 In each of the embodiments described below, a characteristic part will be described, and, for example, description will be omitted for parts that are not different from the components used in a normal display device and the display device according to the present embodiment. Sometimes.
 なお、明細書中において、文言「平面視」とは、半透過膜やブラックマトリクス層が形成されていない透明基板の面を、観察者が、法線方向に見た平面視を意味する。 Note that in the specification, the wording "planar view" means a planar view in which an observer sees the surface of the transparent substrate on which the semi-transmissive film and the black matrix layer are not formed, in the normal direction.
 また、明細書中において、「第1」や「第2」等の序数詞は、構成要素の混同を避けるために付しており、数量を限定しない。第1透明樹脂層や第2透明樹脂層は、単に透明樹脂層と呼称することがある。また、第1ブラックマトリクス層と第2ブラックマトリクス層は、単にブラックマトリクス層、あるいはブラックマトリクスと呼称することがある。 Also, in the description, ordinal numbers such as “first” and “second” are added to avoid confusion among constituent elements, and the quantity is not limited. The first transparent resin layer and the second transparent resin layer may be simply referred to as a transparent resin layer. The first black matrix layer and the second black matrix layer may be simply referred to as a black matrix layer or a black matrix.
 本発明の実施形態において、表示装置が備える「表示機能層」には、LED(Light Emitting Diode)と呼称される複数の発光ダイオード素子、OLED(Organic Light Emitting Diode)とも呼称される複数の有機EL(有機エレクトロルミネセンス)素子、或いは液晶層のいずれかを用いることができる。 In the embodiment of the present invention, the “display function layer” included in the display device includes a plurality of light emitting diode elements called LEDs (Light Emitting Diodes) and a plurality of organic EL elements also called OLEDs (Organic Light Emitting Diodes). Either an (organic electroluminescence) element or a liquid crystal layer can be used.
(第1実施形態)
(ブラックマトリクス基板)
 図1は、本発明の第1実施形態に係るブラックマトリクス基板を部分的に示す断面図である。
 ブラックマトリクス基板150は、透明基板102と、透明基板102上に形成された半透過膜10と、半透過膜10の厚み方向において半透過膜10と接触するように半透過膜10上に形成された第1ブラックマトリクス層11と、第1ブラックマトリクス層11を覆うように半透過膜10上に形成された第1透明樹脂層21(透明樹脂層)と、第1透明樹脂層21上に形成された第2ブラックマトリクス層12と、第2ブラックマトリクス層12を覆うように第1透明樹脂層21上に形成された第2透明樹脂層22と、を備える。
 即ち、ブラックマトリクス基板150は、透明基板102上に、半透過膜10、第1ブラックマトリクス層11、第1透明樹脂層21、第2ブラックマトリクス層12、及び第2透明樹脂層22がこの順で積層された構造を有する。
 図1においては、第2透明樹脂層22を形成しなくともよい。
(First embodiment)
(Black matrix substrate)
FIG. 1 is a sectional view partially showing a black matrix substrate according to a first embodiment of the present invention.
The black matrix substrate 150 is formed on the transparent substrate 102, the semi-transmissive film 10 formed on the transparent substrate 102, and the semi-transmissive film 10 in contact with the semi-transmissive film 10 in the thickness direction of the semi-transmissive film 10. A first black matrix layer 11, a first transparent resin layer 21 (transparent resin layer) formed on the semi-transmissive film 10 so as to cover the first black matrix layer 11, and formed on the first transparent resin layer 21. And the second transparent resin layer 22 formed on the first transparent resin layer 21 so as to cover the second black matrix layer 12.
That is, the black matrix substrate 150 includes the semi-transmissive film 10, the first black matrix layer 11, the first transparent resin layer 21, the second black matrix layer 12, and the second transparent resin layer 22 in this order on the transparent substrate 102. It has a laminated structure.
In FIG. 1, the second transparent resin layer 22 may not be formed.
 図2は、図1に示したブラックマトリクス基板150を示す平面図であり、半透過膜10が形成されていない透明基板102の面を見た図である。すなわち、図2は、図1の符号OBに示す方向でブラックマトリクス基板150を観察した場合の平面図である。このため、図2においては、半透過膜10の下部に、第1ブラックマトリクス層11及び第2ブラックマトリクス層12が重なって配設されている。第1ブラックマトリクス層11と第2ブラックマトリクス層12との重なりは、ブラックマトリクス基板150が表示装置に適用された場合における有効表示領域を形成する。平面視において、この有効表示領域を覆うように半透過膜10が形成されている。 2 is a plan view showing the black matrix substrate 150 shown in FIG. 1, and is a view of the surface of the transparent substrate 102 on which the semi-transmissive film 10 is not formed. That is, FIG. 2 is a plan view when the black matrix substrate 150 is observed in the direction indicated by reference numeral OB in FIG. Therefore, in FIG. 2, the first black matrix layer 11 and the second black matrix layer 12 are arranged so as to overlap with each other below the semi-transmissive film 10. The overlap between the first black matrix layer 11 and the second black matrix layer 12 forms an effective display area when the black matrix substrate 150 is applied to a display device. The semi-transmissive film 10 is formed so as to cover the effective display area in a plan view.
(透明基板)
 ブラックマトリクス基板150に適用できる透明基板102の材料としては、ガラス基板、石英基板、サファイア基板、プラスチック基板など透明な基板を用いることができる。
 なお、表示機能層及び表示機能層を駆動するアレイ基板とブラックマトリクス基板150とを貼り合わせして表示装置を構成する場合には、アレイ基板及びブラックマトリクス基板150の各々の基板材料は同じであることが好ましい。
 特に、アレイ基板を構成する基板材料の熱膨張率と、ブラックマトリクス基板150を構成する基板材料の熱膨張率とが同じであることが望ましい。異なる基板材料をアレイ基板とブラックマトリクス基板150に用いる場合、熱膨張率の観点から、基板の反りや剥がれなど不具合が生じる恐れがある。
(Transparent substrate)
As a material of the transparent substrate 102 applicable to the black matrix substrate 150, a transparent substrate such as a glass substrate, a quartz substrate, a sapphire substrate, or a plastic substrate can be used.
When the display function layer and the array substrate that drives the display function layer and the black matrix substrate 150 are bonded to each other to form a display device, the substrate materials of the array substrate and the black matrix substrate 150 are the same. Preferably.
In particular, it is desirable that the coefficient of thermal expansion of the substrate material forming the array substrate and the coefficient of thermal expansion of the substrate material forming the black matrix substrate 150 are the same. When different substrate materials are used for the array substrate and the black matrix substrate 150, problems such as warpage and peeling of the substrate may occur from the viewpoint of the coefficient of thermal expansion.
(第1ブラックマトリクス層、第2ブラックマトリクス層)
 第1ブラックマトリクス層11は、複数の第1画素開口部11S(第1開口部)を有する。第2ブラックマトリクス層12は、複数の第2画素開口部12S(第2開口部)を有する。
 半透過膜10が形成された透明基板120の面とは反対側の面(符号OBによって示された面)から見た平面視において、半透過膜10は、複数の第1画素開口部11Sと第1ブラックマトリクス層11とを覆うように重なる。平面視において、複数の第2画素開口部12Sの位置は、複数の第1画素開口部11Sの位置に対応する。
(First Black Matrix Layer, Second Black Matrix Layer)
The first black matrix layer 11 has a plurality of first pixel openings 11S (first openings). The second black matrix layer 12 has a plurality of second pixel openings 12S (second openings).
In a plan view seen from the surface (the surface indicated by the reference numeral OB) opposite to the surface of the transparent substrate 120 on which the semi-transmissive film 10 is formed, the semi-transmissive film 10 has a plurality of first pixel openings 11S. It overlaps so as to cover the first black matrix layer 11. In plan view, the positions of the plurality of second pixel openings 12S correspond to the positions of the plurality of first pixel openings 11S.
(ブラックマトリクス層の構成材料)
 第1ブラックマトリクス層11及び第2ブラックマトリクス層12の構成材料は、同じであってもよいし、あるいは異なってもよい。例えば、第1ブラックマトリクス層11及び第2ブラックマトリクス層12の製造工程に関し、第2ブラックマトリクス層12は、第1ブラックマトリクス層11を形成した後に、通常のフォトリソグラフィの手法で形成する。このため、例えば、フォトリソグラフィ工程における透明基板102のアライメントが可能なように、観察光の透過率を高くすることができる。
(Constituent material of the black matrix layer)
The constituent materials of the first black matrix layer 11 and the second black matrix layer 12 may be the same or different. For example, regarding the manufacturing process of the first black matrix layer 11 and the second black matrix layer 12, the second black matrix layer 12 is formed by a normal photolithography method after forming the first black matrix layer 11. Therefore, for example, the transmittance of the observation light can be increased so that the transparent substrate 102 can be aligned in the photolithography process.
 第1ブラックマトリクス層11及び第2ブラックマトリクス層12の構成材料として、遮光性を有するカーボンが分散されたアルカリに可溶な感光性レジストを用いることが簡便である。第1ブラックマトリクス層11の光学濃度(ΔOD)は、2以上4以下であればよい。第1ブラックマトリクス層11の光学濃度を4以上としてもよいが、本発明の実施形態の構成では、第1ブラックマトリクス層11と第2ブラックマトリクス層12とが重なるため、第1ブラックマトリクス層11及び第2ブラックマトリクス層12の各々の単独の遮光性を高くする必要はない。カーボンは、カーボンブラックとも呼称される。 As the constituent material of the first black matrix layer 11 and the second black matrix layer 12, it is easy to use an alkali-soluble photosensitive resist in which carbon having a light shielding property is dispersed. The optical density (ΔOD) of the first black matrix layer 11 may be 2 or more and 4 or less. The optical density of the first black matrix layer 11 may be 4 or more, but in the configuration of the embodiment of the present invention, the first black matrix layer 11 and the second black matrix layer 12 overlap each other, and therefore the first black matrix layer 11 It is not necessary to increase the light-shielding property of each of the second and black matrix layers 12. Carbon is also called carbon black.
 また、第2ブラックマトリクス層12は、近赤外域に対する光透過性を有してもよい。この場合、フォトリソグラフィ工程において透明基板102のアライメントを行う際、観察光として近赤外域も併用することが可能となる。具体的に、第2ブラックマトリクス層12に用いる顔料として、例えば、赤色あるいは黄色の有機顔料と、青色あるいは紫色の有機顔料を加えて近赤外光を透過する顔料を用いれば、近赤外領域の光を用いて透明基板102のアライメントを行うことが可能である。有機顔料を用いて可視域における遮光性を得る場合、第2ブラックマトリクス層12に対するカーボンの添加を少なくする、あるいはカーボンの添加をなくしてもよい。 Also, the second black matrix layer 12 may have a light transmitting property in the near infrared region. In this case, when the transparent substrate 102 is aligned in the photolithography process, the near infrared region can also be used as observation light. Specifically, as the pigment used in the second black matrix layer 12, for example, a red or yellow organic pigment and a blue or violet organic pigment, which are added in the near infrared region, are used. It is possible to perform the alignment of the transparent substrate 102 by using the light. When an organic pigment is used to obtain a light-shielding property in the visible range, the addition of carbon to the second black matrix layer 12 may be reduced or the addition of carbon may be eliminated.
 あるいは、第1ブラックマトリクス層11を形成する際に基板の端面に形成されたアライメントマークを読み取るために、第2ブラックマトリクス層の塗布形成工程に、EBR(Egde Bead Removal)の技術を用いてもよい。EBRとは、レジスト塗布時に生じやすい基板端部(端面)のレジストの盛り上がりを除去する技術である。例えば、塗布された第2ブラックマトリクス層のうち、基板端部に塗布された部分のみを取り除くことで、下地である第1ブラックマトリクス層11を形成する際に端面に形成されたアライメントマークを読み取ることが可能となる。 Alternatively, in order to read the alignment mark formed on the end surface of the substrate when forming the first black matrix layer 11, the technique of EBR (Egde Bead Removal) may be used in the application forming step of the second black matrix layer. Good. EBR is a technique for removing the swelling of the resist on the end portion (end surface) of the substrate, which is likely to occur during resist application. For example, of the applied second black matrix layer, by removing only the portion applied to the end portion of the substrate, the alignment mark formed on the end surface when the first black matrix layer 11 as the base is formed is read. It becomes possible.
 第1ブラックマトリクス層11及び第2ブラックマトリクス層12に用いるカーボンの粒子径は、10nmから100nmとすることができる。好ましくは、20nmから60nmである。カーボンをレジストに均一に分散させるため、Sp値(溶解度パラメータ)が、例えば、10以上である分散剤を用いることが好ましい。カーボンがレジストに均一に分散することで、ブラックマトリクス層の比誘電率を低下させやすいため、レジストにおいてカーボンの分散性を高めることが好ましい。ブラックマトリクス層の比誘電率を小さくすることで、表示機能層として液晶層を備えた表示装置に、ブラックマトリクス基板150を有効に適用することができる。 The particle size of carbon used for the first black matrix layer 11 and the second black matrix layer 12 can be set to 10 nm to 100 nm. Preferably, it is 20 nm to 60 nm. In order to uniformly disperse carbon in the resist, it is preferable to use a dispersant having an Sp value (solubility parameter) of, for example, 10 or more. The uniform dispersion of carbon in the resist easily lowers the relative dielectric constant of the black matrix layer. Therefore, it is preferable to increase the dispersibility of carbon in the resist. By reducing the relative dielectric constant of the black matrix layer, the black matrix substrate 150 can be effectively applied to a display device including a liquid crystal layer as a display function layer.
(ブラックマトリクス層の膜厚)
 本発明の実施形態に適用できるブラックマトリクス層の膜厚は、特に規定しなくてもよいが、例えば、標準的な膜厚として、1μmから2μmの範囲から選択できる。
(The thickness of the black matrix layer)
The film thickness of the black matrix layer applicable to the embodiment of the present invention does not have to be specified, but can be selected from the range of 1 μm to 2 μm as a standard film thickness.
(ブラックマトリクス層に添加可能な無機材料)
 ブラックマトリクスのレジストに、例えば、チタンブラックなどの他の遮光性顔料を加えてもよい。分散性を改善する目的で、酸化チタン、炭酸カルシウム、シリカなどの微粒子をレジストに加えてもよい。
(Inorganic material that can be added to the black matrix layer)
Other light-shielding pigments such as titanium black may be added to the black matrix resist. Fine particles of titanium oxide, calcium carbonate, silica or the like may be added to the resist for the purpose of improving dispersibility.
(ブラックマトリクス層の線幅)
 第1ブラックマトリクス層11及び第2ブラックマトリクス層12の各々の線幅BW1、BW2は特に規定しなくてもよいが、例えば、第2ブラックマトリクス層12の線幅BW2は、第1ブラックマトリクス層11の線幅BW1よりも小さくてもよいし、線幅BW2と線幅BW1とが等しくてもよい。
 本発明の実施形態に係るブラックマトリクス基板150は、300ppi以上、さらには500ppi以上2000ppiなどの高精細画素の表示装置に適用することが可能である。高精細画素を有する表示装置では、画素の開口率が重要である。従って、線幅BW1が極力細くなるように第1ブラックマトリクス層11を形成することが好ましい。第2ブラックマトリクス層12の線幅BW2が、第1ブラックマトリクス層11の線幅BW1よりも広くなると、画素の開口率が低下し、好ましくない。
(Line width of the black matrix layer)
The line widths BW1 and BW2 of the first black matrix layer 11 and the second black matrix layer 12 do not have to be specified, but for example, the line width BW2 of the second black matrix layer 12 is the first black matrix layer. The line width BW1 of 11 may be smaller, or the line width BW2 and the line width BW1 may be equal.
The black matrix substrate 150 according to the embodiment of the present invention can be applied to a display device with high-definition pixels of 300 ppi or more, further 500 ppi or more and 2000 ppi or the like. In a display device having high-definition pixels, the aperture ratio of pixels is important. Therefore, it is preferable to form the first black matrix layer 11 so that the line width BW1 is as thin as possible. If the line width BW2 of the second black matrix layer 12 becomes wider than the line width BW1 of the first black matrix layer 11, the aperture ratio of the pixel decreases, which is not preferable.
 第1ブラックマトリクス層11及び第2ブラックマトリクス層12の各々の線幅BW1、BW2や膜厚、あるいは、ブラックマトリクス基板150の厚み方向における第1ブラックマトリクス層11と第2ブラックマトリクス層12とが離間する距離は、表示装置の画面の大きさやコントラストの向上の目的によって変えることができる。 The line widths BW1 and BW2 and the film thicknesses of the first black matrix layer 11 and the second black matrix layer 12 respectively, or the first black matrix layer 11 and the second black matrix layer 12 in the thickness direction of the black matrix substrate 150 are The separation distance can be changed according to the size of the screen of the display device and the purpose of improving the contrast.
 あるいは、フォトリソグラフィ工程におけるアライメント精度を考慮して、第2ブラックマトリクス層12の線幅BW2を第1ブラックマトリクス層11の線幅BW1より狭くすることが好ましい。例えば、アライメント精度が±1.5μmであれば、第2ブラックマトリクス層12の線幅BW2を第1ブラックマトリクス層11の線幅BW1より、片側1.5μm狭くすればよい(両側で3μm)。アライメント許容量を考慮して、第2ブラックマトリクス層12の線幅BW2を細くする。 Alternatively, the line width BW2 of the second black matrix layer 12 is preferably narrower than the line width BW1 of the first black matrix layer 11 in consideration of alignment accuracy in the photolithography process. For example, if the alignment accuracy is ±1.5 μm, the line width BW2 of the second black matrix layer 12 may be narrower than the line width BW1 of the first black matrix layer 11 by 1.5 μm on one side (3 μm on both sides). The line width BW2 of the second black matrix layer 12 is reduced in consideration of the alignment allowance.
 膜厚に関し、第1ブラックマトリクス層11の膜厚より第2ブラックマトリクス層12の膜厚を薄くしてもよい。第2ブラックマトリクス層12を形成するアルカリ可溶性感光性レジスト(後述するカーボン分散体)の透過率は調整可能である。第2ブラックマトリクス層12のレジストは、例えば、露光波長での透過率や近赤外域における波長での透過率を調整することができる。近赤外域の透過率の調整(後述)においては、例えば、有機顔料である黄色顔料と紫色顔料などの反対色の顔料などとを混合して、可視域において“黒”を得ることができ、有機顔料の赤外線に対する透過性を活用することができる。 Regarding the film thickness, the film thickness of the second black matrix layer 12 may be smaller than the film thickness of the first black matrix layer 11. The transmittance of the alkali-soluble photosensitive resist (carbon dispersion described later) forming the second black matrix layer 12 can be adjusted. The resist of the second black matrix layer 12 can adjust the transmittance at the exposure wavelength and the transmittance at the wavelength in the near infrared region, for example. In the adjustment of the transmittance in the near infrared region (described later), for example, a yellow pigment which is an organic pigment and a pigment of an opposite color such as a purple pigment can be mixed to obtain “black” in the visible region. The transparency of infrared rays of the organic pigment can be utilized.
(半透過膜)
 半透過膜10は、カーボンと、光学的に等方な微粒子と、カーボン及び微粒子が分散された樹脂とを有する分散体である。
 半透過膜10に用いる材料としては、基本的に上記のブラックマトリクスの材料とほぼ同じ材料が適用できる。カーボンを主な顔料として含有する樹脂分散体で半透過膜10を形成することが好ましい。可視光に対する半透過膜10の透過率を98%から60%の範囲とすることが好ましく、この透過率の観点で、カーボンの樹脂分散体への添加量を調整する。
(Semi-permeable membrane)
The semi-transmissive film 10 is a dispersion having carbon, optically isotropic fine particles, and a resin in which carbon and fine particles are dispersed.
As the material used for the semi-transmissive film 10, basically the same material as the material of the above black matrix can be applied. It is preferable to form the semi-transmissive film 10 with a resin dispersion containing carbon as a main pigment. The transmissivity of the semi-transmissive film 10 with respect to visible light is preferably in the range of 98% to 60%. From the viewpoint of this transmissivity, the amount of carbon added to the resin dispersion is adjusted.
 マイクロLEDや有機EL表示装置では、発光素子であるLEDあるいは有機EL層の下部に光反射性の電極を備えていることが多い。このような構造を有するマイクロLEDや有機EL表示装置では、光反射性の電極による外部入射光の再反射光が、視認性を低下させる。通常、外部入射光の再反射光をなくすため、高価な円偏光板が表示装置に併用されている。あるいは、液晶表示装置の多くでは、クロスニコルでの(偏光軸が直交する)2枚の偏光板を用いている。このような円偏光板や偏光板を用いる場合には、分散性を改善する目的あるいは半透過膜の屈折率を低下させる目的で、偏光くずれを発生させない、光学的に等方で、かつ、可視域において透明な無機微粒子を、半透過膜に加えることが望ましい。 Micro-LEDs and organic EL display devices are often equipped with light-reflecting electrodes below the LEDs or organic EL layers that are light emitting elements. In the micro LED or the organic EL display device having such a structure, the re-reflected light of the external incident light by the light reflective electrode reduces the visibility. Usually, an expensive circularly polarizing plate is used together with a display device in order to eliminate re-reflected light of external incident light. Alternatively, in most liquid crystal display devices, two polarizing plates in crossed Nicols (polarization axes are orthogonal to each other) are used. When such a circularly polarizing plate or a polarizing plate is used, for the purpose of improving dispersibility or lowering the refractive index of the semi-transmissive film, polarization is not generated, it is optically isotropic, and visible. It is desirable to add inorganic fine particles transparent in the region to the semi-permeable membrane.
 半透過膜10には、光学的に等方な微粒子13が分散されている。光学的に等方な微粒子13には、固形比18質量%のシリカ微粒子が適用されている。
 なお、「光学的に等方」とは、本発明の実施形態に適用される透明微粒子が、a軸、b軸、c軸が各々等しい結晶構造を有するか、もしくは、アモルファスであって、光の伝播が結晶軸あるいは結晶構造に影響を受けず等方であることを意味する。シリカ微粒子は、非晶質構造(アモルファス)を有する。樹脂ビーズ等の樹脂の微粒子として、屈折率を含めて様々な性質を有する微粒子が知られておりこれらの微粒子を適用することができる。アクリル、スチレン、ウレタン、ナイロン、メラミン、ベンゾグアナミンなどの樹脂の微粒子を用いてもよい。
Optically isotropic fine particles 13 are dispersed in the semi-transmissive film 10. As the optically isotropic fine particles 13, silica fine particles having a solid ratio of 18 mass% are applied.
The term “optically isotropic” means that the transparent fine particles applied to the embodiment of the present invention have a crystal structure in which the a-axis, the b-axis, and the c-axis are equal to each other, or are amorphous. Means that the propagation of is isotropic without being affected by the crystal axis or crystal structure. The silica fine particles have an amorphous structure (amorphous). As fine particles of resin such as resin beads, fine particles having various properties including the refractive index are known, and these fine particles can be applied. Fine particles of resin such as acrylic, styrene, urethane, nylon, melamine, and benzoguanamine may be used.
 光学的に等方で、かつ、可視域において透明な無機微粒子の代表として、二酸化ケイ素(シリカ)の微粒子が知られている。シリカの微粒子の粒径は、例えば、5nmから300nmの範囲から選ぶことができる。可視域において透明であり、かつ、粒径の異なる2種以上の無機微粒子を、カーボンとともに半透過膜10に分散させてもよい。シリカ微粒子の併用はカーボン単体では生じやすい2次粒子の生成を妨げ、カーボンの分散性を改善できる。  Since the fine particles of silicon dioxide (silica) are known as a representative of inorganic fine particles that are optically isotropic and transparent in the visible range. The particle size of the silica fine particles can be selected from the range of 5 nm to 300 nm, for example. Two or more kinds of inorganic fine particles which are transparent in the visible region and have different particle sizes may be dispersed in the semi-permeable film 10 together with carbon. The combined use of silica fine particles can prevent the generation of secondary particles that are likely to occur with carbon alone, and can improve the dispersibility of carbon.
 なお、半透過膜10に対する上記微粒子13の添加は、半透過膜10に光散乱を付与するためではない。表示装置に多く適用されている散乱膜が粒子を含有する場合、特許第3531615号公報の請求項1に記載されるように、平均粒径が1.5μm以上3.0μm以下のミクロン単位の大きさの粒子を用いる必要がある。つまり、可視域光の波長より大きな粒子径を有する粒子を用いないと、散乱膜として適切な光散乱性が得られない。 The addition of the fine particles 13 to the semi-transmissive film 10 is not for giving light scattering to the semi-transmissive film 10. When the scattering film, which is often applied to the display device, contains particles, as described in claim 1 of Japanese Patent No. 3531615, the average particle size is 1.5 μm or more and 3.0 μm or less in units of micron. It is necessary to use fine particles. That is, unless a particle having a particle diameter larger than the wavelength of visible light is used, an appropriate light scattering property as a scattering film cannot be obtained.
 また、二酸化ケイ素の屈折率はカーボンより小さいため、二酸化ケイ素は半透過膜10の屈折率を下げる効果を有する。低い屈折率を有する半透過膜10は、半透過膜10と第1ブラックマトリクス層11との界面における光の反射を抑制し、視認性を向上できる効果を有する。 Moreover, since the refractive index of silicon dioxide is smaller than that of carbon, silicon dioxide has the effect of lowering the refractive index of the semitransparent film 10. The semi-transmissive film 10 having a low refractive index has an effect of suppressing reflection of light at the interface between the semi-transmissive film 10 and the first black matrix layer 11 and improving visibility.
 例えば、半透過膜10の光透過率が、98%から95%などの高い透過率の領域にある場合は、第1ブラックマトリクス層11と半透過膜10との界面における光反射に干渉によるリップルが生じることがあり、第1ブラックマトリクス層11が僅かに着色して観察されることがある。反射光に起因するこのような僅かな着色は、表示装置の表示をオフとした黒表示のときに観察されやすい。
 これに対し、シリカ微粒子とカーボンとを併用して半透過膜10を形成することで、このようなリップルの発生を防ぐ効果が得られる。上記のような観点からも、光学的に等方で、かつ、可視域において透明な無機微粒子を含む半透過膜は有用である。
For example, when the light transmittance of the semi-transmissive film 10 is in a high transmittance region such as 98% to 95%, light reflection at the interface between the first black matrix layer 11 and the semi-transmissive film 10 causes ripple due to interference. May occur, and the first black matrix layer 11 may be slightly colored and observed. Such a slight coloring due to the reflected light is likely to be observed in the black display in which the display of the display device is off.
On the other hand, by using the silica fine particles and carbon in combination to form the semi-transmissive film 10, the effect of preventing the occurrence of such ripples can be obtained. From the above viewpoints as well, a semi-transparent film containing inorganic fine particles that is optically isotropic and transparent in the visible region is useful.
 なお、上述した第2ブラックマトリクス層12の材料構成のように、主な顔料成分として有機顔料を含有する半透過膜と第1ブラックマトリクス層11との界面における外部光の反射光は、黄色に着色して見えることがある。
 これに対し、主な顔料成分としてカーボンを含有する半透過膜10は、反射光がフラットであり、着色することは殆どない。反射光がフラットとは、400nmから700nmの可視域の範囲において、例えば、100nmなどの小さいレンジで、透過率が2%以上の凹凸(変動)がなく、ほぼ直線で示される透過率曲線が得られていることを意味する。
As in the material configuration of the second black matrix layer 12 described above, the reflected light of external light at the interface between the semi-transmissive film containing an organic pigment as a main pigment component and the first black matrix layer 11 becomes yellow. It may appear colored.
On the other hand, the semi-transmissive film 10 containing carbon as a main pigment component has a flat reflected light and is hardly colored. Flat reflected light means that in a visible range of 400 nm to 700 nm, for example, in a small range such as 100 nm, there is no unevenness (fluctuation) with a transmittance of 2% or more, and a transmittance curve shown by a substantially straight line is obtained. It means that it has been.
 本発明の実施形態に適用できる半透過膜10の形成方法としては、全面塗布膜(有効表示領域内で凹凸を有するパターンが形成されていない平坦な膜)となるように半透過膜10を形成することが好ましい。これにより、簡便に半透過膜10を形成することができる。半透過膜10の膜厚は、特に規定しなくてもよいが、例えば、0.5μmから1.5μmの範囲から選択できる。表示装置の画素開口部の大きさに合わせて、半透過膜10の一部に画素開口部を設けることもできる。 As a method of forming the semi-transmissive film 10 applicable to the embodiment of the present invention, the semi-transmissive film 10 is formed so as to be an entire surface coating film (a flat film in which a pattern having irregularities is not formed in the effective display region). Preferably. Thereby, the semi-transmissive film 10 can be easily formed. The thickness of the semi-transmissive film 10 does not have to be specified, but can be selected from the range of 0.5 μm to 1.5 μm, for example. A pixel opening may be provided in a part of the semi-transmissive film 10 according to the size of the pixel opening of the display device.
 可視光に対する半透過膜10の透過率(代表的に、光の波長が550nmである場合の透過率)は、98%から60%の範囲から選択できる。透過率が99%以上である半透過膜は、上述したように外光反射での干渉によるリップルが生じやすく、「黒表示」における表示品質を損なう。半透過膜の透過率が60%を下回ると、表示装置の明るさの低下を招くため、好ましくない。また、透過率が60%未満になると、低反射率が得られない。
 半透過膜10の透過率は、ブラックマトリクス基板に用いられる半透過膜の膜厚に応じて、98%から60%の範囲に調整すればよい。
 また、ブラックマトリクス基板150が上述した半透過膜10を備えることにより、透明基板102と半透過膜10との界面にて、0.3%から1%の低い反射率が得られる。
 半透過膜10に添加されるカーボン量を増加させてカーボン濃度を高くすると、半透過膜10の屈折率が高くなり、半透過膜10の反射率が増加する。半透過膜10の透過率が60%未満になると、屈折率が高くなり、反射率が高くなる。
The transmittance of the semi-transmissive film 10 for visible light (typically, the transmittance when the wavelength of light is 550 nm) can be selected from the range of 98% to 60%. A semi-transmissive film having a transmittance of 99% or more easily causes ripples due to interference in reflection of external light as described above, and impairs display quality in "black display". When the transmissivity of the semi-transmissive film is lower than 60%, the brightness of the display device is deteriorated, which is not preferable. When the transmittance is less than 60%, low reflectance cannot be obtained.
The transmittance of the semi-transmissive film 10 may be adjusted in the range of 98% to 60% according to the film thickness of the semi-transmissive film used for the black matrix substrate.
Further, since the black matrix substrate 150 includes the above-mentioned semi-transmissive film 10, a low reflectance of 0.3% to 1% can be obtained at the interface between the transparent substrate 102 and the semi-transmissive film 10.
When the amount of carbon added to the semi-transmissive film 10 is increased to increase the carbon concentration, the refractive index of the semi-transmissive film 10 increases and the reflectance of the semi-transmissive film 10 increases. When the transmissivity of the semi-transmissive film 10 is less than 60%, the refractive index becomes high and the reflectance becomes high.
 半透過膜10の透過率の調整に関し、半透過膜10の分散体を構成する樹脂、光学的に等方な微粒子13、及びカーボンを含む全固形分を100質量%とした場合、カーボン量は、例えば、0.5質量%から15質量%の範囲から選択できる。カーボン量が0.4質量%以下である半透過膜は、低反射の効果が小さくなり、また、上述したリップルによる干渉色が出やすい。カーボン量が、15質量%を超えると、半透過膜の光学濃度が上がり、低反射の効果が得られ難くなる。 Regarding the adjustment of the transmittance of the semi-permeable film 10, when the total solid content including the resin that constitutes the dispersion of the semi-permeable film 10, the optically isotropic fine particles 13, and the carbon is 100 mass %, the amount of carbon is , For example, can be selected from the range of 0.5% by mass to 15% by mass. A semi-transmissive film having a carbon content of 0.4% by mass or less reduces the effect of low reflection, and also tends to produce interference colors due to the above-mentioned ripple. When the amount of carbon exceeds 15% by mass, the optical density of the semi-transmissive film increases and it becomes difficult to obtain the effect of low reflection.
 また、上述した樹脂、微粒子13、及びカーボンを含む全固形分を100質量%とした場合、シリカ微粒子の添加量は、例えば、1質量%から30質量%の範囲から選択できる。シリカ微粒子が1質量%以下であればリップルによる干渉色が出やすい。カーボン及びシリカ微粒子の添加量が45質量%さらには50質量%を超えてくると、後述するレジストの塗布適性が低下しやすい。カーボン及びシリカ微粒子の添加量が少なくすぎると、半透過膜に期待される特性が得られない。 Further, when the total solid content containing the resin, the fine particles 13, and carbon is 100% by mass, the addition amount of the silica fine particles can be selected from the range of 1% by mass to 30% by mass, for example. If the silica fine particles are 1% by mass or less, an interference color due to ripples is likely to appear. If the amount of carbon and silica fine particles added exceeds 45% by mass or even 50% by mass, the suitability for coating a resist, which will be described later, tends to deteriorate. If the amount of carbon and silica fine particles added is too small, the properties expected of the semi-permeable membrane cannot be obtained.
 半透過膜10あるいはブラックマトリクス層11、12を形成する際に用いられるレジストに適用できるアルカリ可溶性樹脂としては、例えば、アクリル酸、メタクリル酸、メチルアクリレート、メチルメタクリレート、エチルアクリレート、エチルメタクリレート、ブチルアクリレート、ブチルメタクリレートなどのアルキルアクリレートまたはアルキルメタクリレート、環状のシクロヘキシルアクリレートまたはメタクリレート、ヒドロキシエチルアクリレートまたはメタクリレート、スチレンなどから選択される1~5種類程度のモノマーを用いて、分子量5000~100000程度に合成した樹脂を用いることができる。さらにエポキシ(メタ)アクリレート等の通常の光重合可能な樹脂等も使用することができる。パターニング特性、耐熱性に優れたカルド樹脂を用いてもよい。 Examples of the alkali-soluble resin applicable to the resist used when forming the semi-transmissive film 10 or the black matrix layers 11 and 12 include acrylic acid, methacrylic acid, methyl acrylate, methyl methacrylate, ethyl acrylate, ethyl methacrylate and butyl acrylate. Resins synthesized to have a molecular weight of about 5,000 to 100,000 by using about 1 to 5 kinds of monomers selected from alkyl acrylate or alkyl methacrylate such as butyl methacrylate, cyclic cyclohexyl acrylate or methacrylate, hydroxyethyl acrylate or methacrylate, styrene Can be used. Further, a usual photopolymerizable resin such as epoxy (meth)acrylate can be used. A cardo resin having excellent patterning characteristics and heat resistance may be used.
 半透過膜10あるいはブラックマトリクス層11、12を形成する際に用いられるレジストに適用される光重合開始剤としては、従来より公知である化合物を適宜使用することができるが、光を透過しない黒色感光性樹脂組成物に用いた際にも高感度化を達成することができるオキシムエステル化合物を用いることが好ましい。 As the photopolymerization initiator applied to the resist used when forming the semi-transmissive film 10 or the black matrix layers 11 and 12, conventionally known compounds can be appropriately used, but black that does not transmit light is used. It is preferable to use an oxime ester compound that can achieve high sensitivity even when used in a photosensitive resin composition.
 半透過膜10あるいはブラックマトリクス層11、12を形成する際に用いられるレジストに使用される溶剤は、例えば、メタノール、エタノール、エチルセロソルブ、エチルセロソルブアセテート、ジグライム、シクロヘキサノン、エチルベンゼン、キシレン、酢酸イソアミル、酢酸nアミル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテル、プロピレングリコールモノエチルエーテルアセテート、ジエチレングリコール、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノメチルエーテルアセテート、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノブチルエーテル、ジエチレングリコールモノブチルエーテルアセテート、トリエチレングリコール、トリエチレングリコールモノメチルエーテル、トリエチレングリコールモノメチルエーテルアセテート、トリエチレングリコールモノエチルエーテル、トリエチレングリコールモノエチルエーテルアセテート、液体ポリエチレングリコール、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノメチルエーテルアセテート、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールモノエチルエーテルアセテート、乳酸エステル、エチルエトキシプロピオネートなどが挙げられる。
 さらに、レジストの塗布性を向上させるための界面活性剤、基板に対するレジストの密着性を向上させるためのシランカップリング剤等を併用することができる。
The solvent used for the resist used when forming the semi-permeable film 10 or the black matrix layers 11 and 12 is, for example, methanol, ethanol, ethyl cellosolve, ethyl cellosolve acetate, diglyme, cyclohexanone, ethylbenzene, xylene, isoamyl acetate, N-amyl acetate, propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether, propylene glycol monoethyl ether acetate, diethylene glycol, diethylene glycol monomethyl ether, diethylene glycol monomethyl ether acetate, diethylene glycol monoethyl ether, diethylene glycol monoethyl ether acetate, Diethylene glycol monobutyl ether, diethylene glycol monobutyl ether acetate, triethylene glycol, triethylene glycol monomethyl ether, triethylene glycol monomethyl ether acetate, triethylene glycol monoethyl ether, triethylene glycol monoethyl ether acetate, liquid polyethylene glycol, dipropylene glycol monomethyl ether , Dipropylene glycol monomethyl ether acetate, dipropylene glycol monoethyl ether, dipropylene glycol monoethyl ether acetate, lactic acid ester, ethyl ethoxy propionate and the like.
Further, a surfactant for improving the coatability of the resist, a silane coupling agent for improving the adhesion of the resist to the substrate, etc. can be used in combination.
(本実施形態に係るブラックマトリクス基板によって得られる効果1)
 図3は、本発明の第1実施形態に係るブラックマトリクス基板150を備えた表示装置250を部分的に示す断面図であり、かつ、本発明の実施形態によって得られる一つの効果を説明する図である。
(Effect 1 obtained by the black matrix substrate according to the present embodiment)
FIG. 3 is a cross-sectional view partially showing a display device 250 including the black matrix substrate 150 according to the first embodiment of the present invention, and a diagram for explaining one effect obtained by the embodiment of the present invention. Is.
 図3に示す表示装置250は、ブラックマトリクス基板150とアレイ基板201とを向かい合うよう貼り合わせることで構成されている。
 ブラックマトリクス基板150は、図1及び図2を参照して説明した構造を有する。アレイ基板201は、基板202と、基板202上に形成された複数の反射電極121と、複数の反射電極121の各々に形成された有機ELなどの発光素子122と、反射電極121に接続されたアクティブ素子とを備える。アレイ基板201上において、アクティブ素子は、マトリクス状に配列されており、図3においては省略されている。
The display device 250 shown in FIG. 3 is configured by bonding the black matrix substrate 150 and the array substrate 201 so as to face each other.
The black matrix substrate 150 has the structure described with reference to FIGS. 1 and 2. The array substrate 201 is connected to the substrate 202, a plurality of reflective electrodes 121 formed on the substrate 202, a light emitting element 122 such as an organic EL formed on each of the plurality of reflective electrodes 121, and the reflective electrode 121. And an active element. The active elements are arranged in a matrix on the array substrate 201, and are omitted in FIG.
 図4は、従来のブラックマトリクス基板300を備えた表示装置350を部分的に示す断面図であり、図3に示すブラックマトリクス基板と従来のブラックマトリクス基板とを比較して説明する図である。
 ブラックマトリクス基板300は、図1及び図2に示すブラックマトリクス基板150とは異なり、透明基板310上に半透過膜が形成されておらず、1層のブラックマトリクス層30が透明基板310上に形成された構造を有する。アレイ基板301は、基板302と、基板302上に形成された複数の反射電極31と、複数の反射電極31の各々に形成された有機ELなどの発光素子32と、反射電極31に接続されたアクティブ素子とを備える。アレイ基板301上において、アクティブ素子は、マトリクス状に配列されており、図4においては省略されている。
FIG. 4 is a cross-sectional view partially showing a display device 350 including the conventional black matrix substrate 300, and is a diagram for comparing and explaining the black matrix substrate shown in FIG. 3 and the conventional black matrix substrate.
The black matrix substrate 300 is different from the black matrix substrate 150 shown in FIGS. 1 and 2 in that a semi-transmissive film is not formed on the transparent substrate 310 and one black matrix layer 30 is formed on the transparent substrate 310. Have a structured structure. The array substrate 301 is connected to the substrate 302, a plurality of reflective electrodes 31 formed on the substrate 302, a light emitting element 32 such as an organic EL formed on each of the plurality of reflective electrodes 31, and the reflective electrode 31. And an active element. The active elements are arranged in a matrix on the array substrate 301 and are omitted in FIG.
 図3及び図4を参照する以下の説明において、反射電極121、31の光の反射率は100%とし、おおよそ、反射電極121、31から平行光が発生していることを前提としている(拡散光の発生は考慮していない)。また、図3及び図4においては、いずれも、偏光板を用いない構成を説明し、透明基板の表面の反射成分を含まない場合を説明している。反射光の説明のため、偏光板などの部材は、簡略化している。
 また、以下に説明する透過率は、ガラスなどの透明基板をレファレンスとした場合において顕微分光測定器を用いた可視光(400nm~700nm)の透過率である。
In the following description with reference to FIGS. 3 and 4, the light reflectance of the reflective electrodes 121 and 31 is 100%, and it is presumed that parallel light is generated from the reflective electrodes 121 and 31 (diffusion). The generation of light is not considered). 3 and 4 both describe a configuration in which no polarizing plate is used, and a case where the reflection component on the surface of the transparent substrate is not included. Members such as a polarizing plate are simplified to explain the reflected light.
Further, the transmittance described below is the transmittance of visible light (400 nm to 700 nm) using a microspectroscope when a transparent substrate such as glass is used as a reference.
 図3において、表示装置250の上面より外部光IL1、IL2が入射する(図1における符号OBに示す方向)。例えば、半透過膜10の光透過率が70%であると、画素開口部205を通過した外部光IL1の光量は半透過膜10によって減少し、70%の光量となって反射電極121に到達する。この光は反射電極121によって反射し、反射光RL1が発生し、反射光RL1は、半透過膜10を透過する。半透過膜10を透過した反射光RL2の光量は、外部光IL1の光量(100%)に対して49%となり、半透過膜10によって反射光を抑制することができる。 In FIG. 3, external light IL1 and IL2 are incident from the upper surface of the display device 250 (direction indicated by symbol OB in FIG. 1). For example, when the light transmittance of the semi-transmissive film 10 is 70%, the light amount of the external light IL1 that has passed through the pixel openings 205 is reduced by the semi-transmissive film 10 and reaches 70% of the light amount and reaches the reflective electrode 121. To do. This light is reflected by the reflective electrode 121 to generate reflected light RL1, and the reflected light RL1 passes through the semi-transmissive film 10. The light amount of the reflected light RL2 transmitted through the semi-transmissive film 10 is 49% with respect to the light amount (100%) of the external light IL1, and the semi-transmissive film 10 can suppress the reflected light.
 半透過膜10の透過率を設定することで、反射光の光量を抑え、目的とする視認性が得られる。発光素子122の発光強度に応じて、半透過膜10の透過率を調整してもよい。なお、図3には示されていないが、透明基板102の外面102Tに対して斜め方向に表示装置250の外部から内部に入射した光は、第1ブラックマトリクス層11及び第2ブラックマトリクス層12の積層構成でカットされる。従って、上述した再反射光の抑制よりも優れた効果が得られ、視認性を大きく向上できる。 By setting the transmittance of the semi-transmissive film 10, the amount of reflected light can be suppressed and the desired visibility can be obtained. The transmittance of the semi-transmissive film 10 may be adjusted according to the emission intensity of the light emitting element 122. Although not shown in FIG. 3, light incident on the outer surface 102T of the transparent substrate 102 from the outside of the display device 250 in an oblique direction enters the first black matrix layer 11 and the second black matrix layer 12. It is cut in a laminated structure. Therefore, an effect superior to the suppression of the re-reflected light described above can be obtained, and the visibility can be greatly improved.
 これに対し、図4に示す従来のブラックマトリクス基板300を備えた表示装置350においては、半透過膜が形成されていないので、画素開口部305を通過した外部光IL3は、光量が減少することなく反射電極31に到達し、反射電極31でそのまま反射されて、同様に光量が減少することなく、100%の光量を有する反射光RL3が生じる。 On the other hand, in the display device 350 including the conventional black matrix substrate 300 shown in FIG. 4, since the semi-transmissive film is not formed, the amount of the external light IL3 passing through the pixel opening 305 is reduced. The reflected light RL3 reaches the reflective electrode 31 without being reflected, is reflected by the reflective electrode 31 as it is, and similarly, the reflected light RL3 having a light amount of 100% is generated without decreasing the light amount.
 また、図3に示す第1ブラックマトリクス層11に入射する外部光IL2は、第1ブラックマトリクス層11上の半透過膜10を往復するように透過し、光吸収される。これにより、例えば、反射率を1%以下に押さえることができる。
 これに対し、図4に示す半透過膜が形成されていないブラックマトリクス基板300の場合、ブラックマトリクス層30と透明基板310との界面における反射率は、通常、3%程度である。図3に示す半透過膜10を備える構成では、第1ブラックマトリクス層11と透明基板310との界面における反射率は、従来の1/3以下となる。
Further, the external light IL2 incident on the first black matrix layer 11 shown in FIG. 3 is transmitted through the semi-transmissive film 10 on the first black matrix layer 11 so as to reciprocate, and is absorbed. Thereby, for example, the reflectance can be suppressed to 1% or less.
On the other hand, in the case of the black matrix substrate 300 in which the semi-transmissive film shown in FIG. 4 is not formed, the reflectance at the interface between the black matrix layer 30 and the transparent substrate 310 is usually about 3%. In the configuration including the semi-transmissive film 10 shown in FIG. 3, the reflectance at the interface between the first black matrix layer 11 and the transparent substrate 310 is ⅓ or less of the conventional reflectance.
(本実施形態に係るブラックマトリクス基板によって得られる効果2)
 図5は、本発明の第1実施形態に係るブラックマトリクス基板150を備えた表示装置250を部分的に示す断面図であり、かつ、本発明の実施形態によって得られる一つの効果を説明する図である。図5に示す表示装置250は、図3に対応しているため、表示装置250の構造の説明を省略する。
 図6は、従来のブラックマトリクス基板300を備えた表示装置350を部分的に示す断面図であり、図5に示すブラックマトリクス基板と従来のブラックマトリクス基板とを比較して説明する図である。図6に示す表示装置350は、図4に対応しているため、表示装置350の構造の説明を省略する。
 図5及び図6は、発光素子122、32が発光した場合において、隣接画素に対する光の影響を説明する説明図である。
(Effect 2 obtained by the black matrix substrate according to the present embodiment)
FIG. 5 is a cross-sectional view partially showing a display device 250 including the black matrix substrate 150 according to the first embodiment of the present invention, and a diagram for explaining one effect obtained by the embodiment of the present invention. Is. Since the display device 250 shown in FIG. 5 corresponds to FIG. 3, the description of the structure of the display device 250 is omitted.
FIG. 6 is a cross-sectional view partially showing a display device 350 including a conventional black matrix substrate 300, and is a diagram for comparing and explaining the black matrix substrate shown in FIG. 5 and the conventional black matrix substrate. Since the display device 350 shown in FIG. 6 corresponds to FIG. 4, description of the structure of the display device 350 is omitted.
FIG. 5 and FIG. 6 are explanatory diagrams illustrating the influence of light on adjacent pixels when the light emitting elements 122 and 32 emit light.
 図5及び図6において、発光素子122、32は、マイクロLED(LED発光素子)、有機EL素子、あるいはバックライトとしてのミニLEDを簡略化して図示した素子である。
 図5において発光素子122から出射した出射光は、符号E10、E11、E12、E13、E14で示されている。図6において、発光素子32から出射した出射光は、符号E20、E21、E22、E23、E24で示されている。
In FIGS. 5 and 6, the light emitting elements 122 and 32 are elements that are simplified and illustrated as a micro LED (LED light emitting element), an organic EL element, or a mini LED as a backlight.
The emitted light emitted from the light emitting element 122 in FIG. 5 is shown by reference signs E10, E11, E12, E13, and E14. In FIG. 6, the emitted light emitted from the light emitting element 32 is shown by reference signs E20, E21, E22, E23, and E24.
 図5において符号E10、E11、E13で示された出射光は、隣接画素に影響を与えることなく、画素開口部205を通じて、表示装置250の外部に向けて正当に出射され、表示の役割を担う。
 同様に、図6において符号E20、E21、E23で示された出射光は、隣接画素に影響を与えることなく、画素開口部305を通じて、表示装置350の外部に向けて正当に出射され、表示の役割を担う。
Emitted light indicated by reference signs E10, E11, and E13 in FIG. 5 is legitimately emitted to the outside of the display device 250 through the pixel opening 205 without affecting adjacent pixels, and plays a role of display. ..
Similarly, the emitted lights indicated by reference signs E20, E21, and E23 in FIG. 6 are legitimately emitted to the outside of the display device 350 through the pixel openings 305 without affecting the adjacent pixels, and display light is displayed. Play a role.
 透明基板102の外面102Tに対して斜め方向に表示装置250の外部から内部に光が入射する場合、光の入射時及び光の反射時の両方において、図5に示す第2ブラックマトリクス層12によって再反射抑制の効果が得られる。半透過膜10の透過率が55%以上と高い場合でも、計算値以上に反射光抑制の効果が得られる。 When light enters the display device 250 from the outside to the inside in an oblique direction with respect to the outer surface 102T of the transparent substrate 102, the second black matrix layer 12 shown in FIG. The effect of suppressing rereflection is obtained. Even when the transmissivity of the semi-transmissive film 10 is as high as 55% or more, the effect of suppressing the reflected light is obtained more than the calculated value.
 図6では図示されていないが、表示機能層として例えば、液晶層が用いられ、発光素子32がバックライトに具備されるミニLEDであると想定すれば、発光素子32から発生した出射光E22、E24が迷光として隣接画素に入り込み、表示コントラストが低下することを理解できる。 Although not shown in FIG. 6, assuming that, for example, a liquid crystal layer is used as the display function layer and the light emitting element 32 is a mini LED included in the backlight, the emitted light E22 generated from the light emitting element 32, It can be understood that E24 enters the adjacent pixels as stray light and the display contrast is reduced.
 図6に示す発光素子32がマイクロLEDもしくは有機EL発光層である場合であっても、従来のブラックマトリクス基板300が用いられているため、同様に、発光素子32から発生した出射光E22、E24が迷光として隣接画素に入り込み、表示コントラストが低下することを理解できる。 Even when the light emitting element 32 shown in FIG. 6 is a micro LED or an organic EL light emitting layer, since the conventional black matrix substrate 300 is used, similarly, the emitted lights E22 and E24 generated from the light emitting element 32. Can be understood as stray light entering adjacent pixels, and the display contrast is reduced.
 これに対し、図5に示す本発明の第1実施形態に係るブラックマトリクス基板150を具備する表示装置250では、第2ブラックマトリクス層12が出射光E12、E14(迷光)をカットし、迷光が隣接画素に影響を与えないことが理解できる。 On the other hand, in the display device 250 including the black matrix substrate 150 according to the first embodiment of the present invention shown in FIG. 5, the second black matrix layer 12 cuts the emitted light E12 and E14 (stray light), and It can be understood that the adjacent pixels are not affected.
(変形例1)
 図7は、本発明の実施形態に係るブラックマトリクス基板の変形例1を部分的に示す断面図である。半透過膜10に光学的に等方な微粒子13が添加されていない半透過膜が用いられている点で、図7に示すブラックマトリクス基板550は、図1に示すブラックマトリクス基板150とは異なる。
 このようなブラックマトリクス基板550によれば、上述した第1実施形態と同様の効果が得られるだけでなく、半透過膜10に微粒子13を添加されていないため、半透過膜10の構造が簡易になり、ブラックマトリクス基板のコスト低減に寄与する。
(Modification 1)
FIG. 7 is a sectional view partially showing Modification 1 of the black matrix substrate according to the embodiment of the present invention. The black matrix substrate 550 shown in FIG. 7 is different from the black matrix substrate 150 shown in FIG. 1 in that a semi-transmissive film to which the optically isotropic fine particles 13 are not added is used as the semi-transmissive film 10. ..
According to such a black matrix substrate 550, not only the same effects as those of the above-described first embodiment can be obtained, but since the fine particles 13 are not added to the semi-transmissive film 10, the structure of the semi-transmissive film 10 is simple. This contributes to the cost reduction of the black matrix substrate.
(変形例2)
 図8は、本発明の実施形態に係るブラックマトリクス基板の変形例2を部分的に示す断面図である。赤色層R、緑色層G、及び青色層Bの着色層が設けられている点で、図8に示すブラックマトリクス基板650は、図1に示すブラックマトリクス基板150とは異なる。
(Modification 2)
FIG. 8 is a sectional view partially showing Modification Example 2 of the black matrix substrate according to the embodiment of the present invention. The black matrix substrate 650 shown in FIG. 8 is different from the black matrix substrate 150 shown in FIG. 1 in that the colored layers of the red layer R, the green layer G, and the blue layer B are provided.
 第1ブラックマトリクス層11の複数の第1画素開口部11Sの各々は、着色層CFを有する。着色層CFは、赤色層R、緑色層G、及び青色層Bで構成されている。3つの第1画素開口部11Sに対応するように、赤色層R、緑色層G、及び青色層Bが第1画素開口部11Sに設けられている。 Each of the plurality of first pixel openings 11S of the first black matrix layer 11 has a coloring layer CF. The coloring layer CF includes a red layer R, a green layer G, and a blue layer B. The red layer R, the green layer G, and the blue layer B are provided in the first pixel opening 11S so as to correspond to the three first pixel openings 11S.
 特に、赤色層R、緑色層G、及び青色層Bは、第1透明樹脂層21と半透過膜10との間において、第1ブラックマトリクス層11の第1画素開口部11Sに設けられている。つまり、ブラックマトリクス基板650は、着色層CFを加えたブラックマトリクス基板(カラーフィルタ基板)である。
 このようなブラックマトリクス基板650によれば、上述した第1実施形態と同様の効果が得られるだけでなく、カラーフィルタ基板としての機能を有するブラックマトリクス基板を実現することができる。
In particular, the red layer R, the green layer G, and the blue layer B are provided in the first pixel opening portion 11S of the first black matrix layer 11 between the first transparent resin layer 21 and the semi-transmissive film 10. .. That is, the black matrix substrate 650 is a black matrix substrate (color filter substrate) to which the coloring layer CF is added.
According to such a black matrix substrate 650, not only the same effects as those of the above-described first embodiment can be obtained, but also a black matrix substrate having a function as a color filter substrate can be realized.
(表示装置)
 上述した第1実施形態、変形例1、及び変形例2に係るブラックマトリクス基板150、550、650が適用される表示装置を構成する表示機能層として、液晶層、有機EL素子、及びマイクロLED素子から選択することができる。表示機能層は、アレイ基板上にマトリクス状に配列させたTFTと呼称される複数の薄膜トランジスタ(アクティブ素子)で駆動される。
 以下、本発明の実施形態に係る表示装置について説明するが、薄膜トランジスタの図示を省略している。また、第1実施形態、変形例1、及び変形例2と同一部材には同一符号を付して、その説明は省略または簡略化する。
(Display device)
A liquid crystal layer, an organic EL element, and a micro LED element are used as a display function layer constituting a display device to which the black matrix substrates 150, 550, and 650 according to the above-described first embodiment, modification example 1 and modification example 2 are applied. You can choose from. The display function layer is driven by a plurality of thin film transistors (active elements) called TFTs arranged in a matrix on the array substrate.
Hereinafter, the display device according to the embodiment of the present invention will be described, but the thin film transistor is not shown. Further, the same members as those in the first embodiment, the modification 1 and the modification 2 are designated by the same reference numerals, and the description thereof will be omitted or simplified.
(第2実施形態)
(マイクロLED表示装置)
 図9は、本発明の第2実施形態に係る表示装置を示す図であって、第1実施形態の変形例1に係るブラックマトリクス基板550が適用されたマイクロLED表示装置750を部分的に示す断面図である。
 図10は、第2実施形態に係るマイクロLED表示装置750が備えるアレイ基板501を部分的に示す拡大図であって、薄膜トランジスタ68の位置を示す図である。
(Second embodiment)
(Micro LED display device)
FIG. 9 is a view showing a display device according to the second embodiment of the present invention, and partially shows a micro LED display device 750 to which the black matrix substrate 550 according to the modified example 1 of the first embodiment is applied. FIG.
FIG. 10 is an enlarged view partially showing the array substrate 501 included in the micro LED display device 750 according to the second embodiment, and is a view showing the position of the thin film transistor 68.
 アレイ基板501の表面43上には、第4絶縁層47が形成されている。第4絶縁層47上には、薄膜トランジスタ68、第4絶縁層47及び薄膜トランジスタ68を覆うように形成された第3絶縁層148、薄膜トランジスタ68のチャネル層58に対向するように第3絶縁層148上に形成されたゲート電極55、第3絶縁層148及びゲート電極55を覆うように形成された第6絶縁層49、及び第6絶縁層49を覆うように形成された第1平坦化層96が、順に積層されている。 A fourth insulating layer 47 is formed on the surface 43 of the array substrate 501. On the fourth insulating layer 47, the thin film transistor 68, the fourth insulating layer 47, the third insulating layer 148 formed so as to cover the thin film transistor 68, and the third insulating layer 148 on the third insulating layer 148 so as to face the channel layer 58 of the thin film transistor 68. A gate electrode 55, a third insulating layer 148, a sixth insulating layer 49 formed so as to cover the gate electrode 55, and a first planarizing layer 96 formed so as to cover the sixth insulating layer 49. , Are sequentially stacked.
 第1平坦化層96、第6絶縁層49、及び第3絶縁層148には、薄膜トランジスタ68のドレイン電極56に対応する位置にコンタクトホール93が形成されている。また、第1平坦化層96上には、チャネル層58に対応する位置にバンク94(図10参照)が形成されている。断面視において互いに隣り合うバンク94の間の領域には、即ち、平面視においてバンク94に囲まれた領域には、第1平坦化層96の上面、コンタクトホール93の内部、及びドレイン電極56を覆うように反射電極89(画素電極)が形成されている。なお、反射電極89は、バンク94の上面には形成されていなくてもよい。反射電極89は、導電性の接合層77を介して発光素子CHIPの下部電極88と電気的に接続されている。 A contact hole 93 is formed in the first planarization layer 96, the sixth insulating layer 49, and the third insulating layer 148 at a position corresponding to the drain electrode 56 of the thin film transistor 68. A bank 94 (see FIG. 10) is formed on the first flattening layer 96 at a position corresponding to the channel layer 58. The upper surface of the first planarization layer 96, the inside of the contact hole 93, and the drain electrode 56 are provided in the region between the banks 94 adjacent to each other in cross section, that is, in the region surrounded by the banks 94 in plan view. A reflective electrode 89 (pixel electrode) is formed so as to cover it. The reflective electrode 89 does not have to be formed on the upper surface of the bank 94. The reflective electrode 89 is electrically connected to the lower electrode 88 of the light emitting element CHIP via the conductive bonding layer 77.
 コンタクトホール93の内部を埋めるように、かつ、反射電極89及び発光素子CHIPを覆うように、第2平坦化層95が形成されている。第2平坦化層95上には、ITO(Indium Tin Oxide)と呼称される透明導電膜76が形成されており、透明導電膜76には、発光素子CHIPを構成する上部電極87が接続されている。さらに、透明導電膜76上には補助導体75が形成されており、透明導電膜76は補助導体75と電気的に接続されている。また、透明導電膜76の表面には、補助導体75を覆うように封止層109(接着層)が形成されている。補助導体75は、平面視において、透明導電膜76の抵抗値を減少させるための導体である。 A second flattening layer 95 is formed so as to fill the inside of the contact hole 93 and cover the reflective electrode 89 and the light emitting element CHIP. A transparent conductive film 76 called ITO (Indium Tin Oxide) is formed on the second flattening layer 95, and the transparent conductive film 76 is connected to an upper electrode 87 forming a light emitting element CHIP. There is. Further, an auxiliary conductor 75 is formed on the transparent conductive film 76, and the transparent conductive film 76 is electrically connected to the auxiliary conductor 75. A sealing layer 109 (adhesive layer) is formed on the surface of the transparent conductive film 76 so as to cover the auxiliary conductor 75. The auxiliary conductor 75 is a conductor for reducing the resistance value of the transparent conductive film 76 in a plan view.
 バンク94の材料としては、アクリル樹脂、ポリイミド樹脂、ノボラックフェノール樹脂等の有機樹脂を用いることができる。バンク94には、更に、酸化シリコン、酸窒化シリコン等の無機材料を積層してもよい。 As a material for the bank 94, an organic resin such as an acrylic resin, a polyimide resin, or a novolac phenol resin can be used. The bank 94 may be further laminated with an inorganic material such as silicon oxide or silicon oxynitride.
 第1平坦化層96及び第2平坦化層95の材料としては、アクリル樹脂、ポリイミド樹脂、ベンゾシクロブテン樹脂、ポリアミド樹脂等を用いてもよい。低誘電率材料(low-k材料)を用いることもできる。 As the material of the first flattening layer 96 and the second flattening layer 95, acrylic resin, polyimide resin, benzocyclobutene resin, polyamide resin, or the like may be used. A low dielectric constant material (low-k material) can also be used.
 発光素子CHIPは、上部電極87、n型半導体層90、発光層92、p型半導体層91、及び下部電極88が、この順で積層された構造を有する。換言すると、発光素子CHIPは、下部電極88上に、p型半導体層91、発光層92、n型半導体層90、及び上部電極87がこの順で積層された構成を有する。図10に示すように、LED発光に用いられる電極は、異なる面に形成され、互いに対向する面に形成されている。また、互いに平行となるように積層されているn型半導体層90及びp型半導体層91の各々に対向する面の外側に上部電極87及び下部電極88が配置されている。このような構造を有する発光素子CHIPを本実施形態では、垂直型発光ダイオードと呼称している。断面視において、LED構造が、角錐形状等の異型である場合、本発明の垂直型発光ダイオードに含めない。LED構造において片側の面に電極が並ぶように形成される構造、あるいは、水平方向に電極が並ぶように形成される構造は、水平型発光ダイオードと呼ぶ。 The light emitting element CHIP has a structure in which an upper electrode 87, an n-type semiconductor layer 90, a light emitting layer 92, a p-type semiconductor layer 91, and a lower electrode 88 are laminated in this order. In other words, the light emitting element CHIP has a configuration in which the p-type semiconductor layer 91, the light emitting layer 92, the n-type semiconductor layer 90, and the upper electrode 87 are stacked in this order on the lower electrode 88. As shown in FIG. 10, the electrodes used for LED light emission are formed on different surfaces and are formed on the surfaces facing each other. Further, the upper electrode 87 and the lower electrode 88 are arranged outside the surfaces facing the n-type semiconductor layer 90 and the p-type semiconductor layer 91, respectively, which are stacked so as to be parallel to each other. In the present embodiment, the light emitting element CHIP having such a structure is referred to as a vertical light emitting diode. When the LED structure has an irregular shape such as a pyramid shape in a cross-sectional view, it is not included in the vertical light emitting diode of the present invention. In the LED structure, a structure in which electrodes are arranged on one side surface or a structure in which electrodes are arranged in the horizontal direction is called a horizontal light emitting diode.
 カラー表示を行うため、発光素子CHIPとして、赤色発光、緑色発光、青色発光のLED素子(マイクロLED)を用いることができる。こうしたLED発光は、赤色、緑色、及び青色の色純度が極めて高いため、カラーフィルタを省くことができる。あるいは、青色から近紫外の波長域の光を発する1種のLED素子のマトリクスを用いてもよい。この場合、LED素子から発光される青色から近紫外の波長域の光を、可視域の赤色、緑色、及び青色への波長変換する3種類の量子ドットの層を用い、カラー表示が行われる。 In order to perform color display, red light emitting element, green light emitting element, and blue light emitting LED element (micro LED) can be used as the light emitting element CHIP. Since such LED light emission has extremely high red, green, and blue color purity, the color filter can be omitted. Alternatively, a matrix of one type of LED element that emits light in the wavelength range from blue to near ultraviolet may be used. In this case, color display is performed by using three types of quantum dot layers that convert the wavelength of light emitted from the LED element from blue to near-ultraviolet to red, green, and blue in the visible range.
 発光素子CHIPの形状は、例えば、平面視において、1辺の長さが2μm~50μmの正方形形状が適用できる。ただし、正方形や矩形以外の形状が適用されてもよい。あるいは、1辺の大きさを50μm以上としてもよい。また、平面視において、それぞれ画素には、1個、あるいは2個以上の発光素子を実装し冗長性を付与できる。発光素子CHIPの実装では、例えば、正方形形状の発光素子CHIPの向きを、90度単位でランダムに回転させて実装することができる。ランダム実装することで、LED結晶成長の僅かなバラツキから生じる画面全体の色ムラ、輝度ムラを軽減できる。 As the shape of the light emitting element CHIP, for example, a square shape having a side length of 2 μm to 50 μm can be applied in plan view. However, shapes other than squares and rectangles may be applied. Alternatively, the size of one side may be 50 μm or more. Further, in plan view, one pixel or two or more light emitting elements can be mounted on each pixel to provide redundancy. In mounting the light emitting element CHIP, for example, the direction of the square light emitting element CHIP can be randomly rotated in units of 90 degrees for mounting. By randomly mounting, it is possible to reduce color unevenness and brightness unevenness on the entire screen due to slight variations in LED crystal growth.
 接合層77は、例えば、150℃から340℃の温度範囲内で、発光素子CHIPの下部電極88と反射電極89とを融着させ、電気的な接続ができる導電性材料を適用できる。この導電性材料には、銀、カーボン、グラファイト等の導電性骨材(conductive filler)を熱フロー性樹脂に分散してもよい。あるいは、接合層77を、In(インジウム)、InBi合金、InSb合金、InSn合金、InAg合金、InGa合金、SnBi合金、SnSb合金など、あるいはこれら金属の3元系、4元系である低融点金属を用いて形成できる。あるいは、異方性導電膜のような厚み方向のみに電気的導通持つ材料を用いてもよい。 For the bonding layer 77, for example, a conductive material that can be electrically connected by fusing the lower electrode 88 of the light emitting element CHIP and the reflective electrode 89 within a temperature range of 150° C. to 340° C. can be applied. In this conductive material, a conductive aggregate such as silver, carbon or graphite may be dispersed in a heat flow resin. Alternatively, the bonding layer 77 is made of In (indium), InBi alloy, InSb alloy, InSn alloy, InAg alloy, InGa alloy, SnBi alloy, SnSb alloy, or the like, or a low melting point metal that is a ternary or quaternary system of these metals. Can be formed by using. Alternatively, a material having electrical conduction only in the thickness direction, such as an anisotropic conductive film, may be used.
(第3実施形態)
(有機EL表示装置)
 図11は、本発明の第3実施形態に係る表示装置を示す図であって、第1実施形態の変形例2に係るブラックマトリクス基板650が適用された有機EL表示装置850を部分的に示す断面図である。
(Third Embodiment)
(Organic EL display device)
FIG. 11 is a diagram showing a display device according to a third embodiment of the present invention, and partially shows an organic EL display device 850 to which a black matrix substrate 650 according to a modified example 2 of the first embodiment is applied. FIG.
 有機EL表示装置850は、ブラックマトリクス基板650と有機EL層80を具備したアレイ基板801とを向かい合うように貼り合わせて構成されている。有機EL層80は、青色発光の有機エレクトロルミネセンスの発光層である。ブラックマトリクス基板650は、赤色変換層CR、緑色変換層CG、及び青色変換層CBなどの色変換層を備えている。色変換層は、青色発光(近紫外域を含んでもよい)を、この発光波長より長い波長の光、例えば、赤色、緑色、及び青色の光に変換する変換層である。色変換層の材料には、無機蛍光体、蛍光染料、量子ドットなどが提示できる。 The organic EL display device 850 is configured by bonding a black matrix substrate 650 and an array substrate 801 having an organic EL layer 80 so as to face each other. The organic EL layer 80 is a blue light emitting organic electroluminescent light emitting layer. The black matrix substrate 650 includes color conversion layers such as a red conversion layer CR, a green conversion layer CG, and a blue conversion layer CB. The color conversion layer is a conversion layer that converts blue light emission (which may include a near-ultraviolet region) into light having a wavelength longer than this emission wavelength, for example, red, green, and blue light. Inorganic phosphors, fluorescent dyes, quantum dots and the like can be presented as the material of the color conversion layer.
 色変換層(赤色変換層CR、緑色変換層CG、及び青色変換層CB)と半透過膜10との間にカラーフィルタを挿入してもよい。色変換層のうち、青色変換層CBが省かれた構成が採用されてもよい。なお、発光色の色純度の改善が進む有機EL表示装置では、色変換層を省き、赤色、緑色、及び青色などのカラーフィルタを配設する構成とすることができる。 A color filter may be inserted between the color conversion layer (red conversion layer CR, green conversion layer CG, and blue conversion layer CB) and the semitransparent film 10. Of the color conversion layers, the configuration in which the blue color conversion layer CB is omitted may be adopted. In addition, in the organic EL display device in which the color purity of the emission color is improved, the color conversion layer may be omitted and the color filters of red, green, and blue may be arranged.
 次に、有機EL表示装置850の構造について説明する。
 アレイ基板801の基板802としては、透明基板に限定する必要はなく、例えば、適用可能な基板として、ガラス基板、セラミック基板、石英基板、サファイア基板、シリコン、炭化シリコンやシリコンゲルマニウムなどの半導体基板、あるいはプラスチック基板等が挙げられる。
Next, the structure of the organic EL display device 850 will be described.
The substrate 802 of the array substrate 801 is not limited to a transparent substrate, and examples of applicable substrates include a glass substrate, a ceramic substrate, a quartz substrate, a sapphire substrate, a silicon semiconductor substrate such as silicon carbide or silicon germanium, Alternatively, a plastic substrate or the like can be used.
 アレイ基板801の基板802上には、第4絶縁層47が形成されている。第4絶縁層47上には、薄膜トランジスタ(不図示)、第4絶縁層47及び薄膜トランジスタを覆うように形成された第5絶縁層248、薄膜トランジスタのチャネル層に対向するように第5絶縁層248上に形成されたゲート電極、第5絶縁層248及びゲート電極を覆うように形成された第6絶縁層49、及び第6絶縁層49上に形成された第1平坦化層96が、順に積層されている。
 なお、基板802上に形成される薄膜トランジスタとしては、図10に示す構造を有する薄膜トランジスタ68が採用されてもよい。
The fourth insulating layer 47 is formed on the substrate 802 of the array substrate 801. A thin film transistor (not shown) is formed on the fourth insulating layer 47, a fifth insulating layer 248 is formed so as to cover the fourth insulating layer 47 and the thin film transistor, and a fifth insulating layer 248 is formed so as to face the channel layer of the thin film transistor. The gate electrode formed on the first insulating layer 248, the fifth insulating layer 248, the sixth insulating layer 49 formed so as to cover the gate electrode, and the first planarizing layer 96 formed on the sixth insulating layer 49 are sequentially stacked. ing.
As the thin film transistor formed on the substrate 802, the thin film transistor 68 having the structure shown in FIG. 10 may be adopted.
 第1平坦化層96、第6絶縁層49、及び第5絶縁層248には、薄膜トランジスタのドレイン電極に対応する位置にコンタクトホールが形成されている。また、第1平坦化層96上には、チャネル層に対応する位置にバンク94が形成されている。断面視において互いに隣り合うバンク94の間の領域においては、即ち、平面視においてバンク94に囲まれた領域においては、第1平坦化層96の上面、コンタクトホール93の内部、及びドレイン電極156を覆うように下部電極189(画素電極)が形成されている。なお、下部電極189は、バンク94の上面には形成されていなくてもよい。
 更に、下部電極189、バンク94、及び第1平坦化層96を覆うようにホール注入層191が形成されている。ホール注入層191上には、順に、発光層192、上部電極187、及び封止層195が積層されている。
 下部電極189(反射電極)は、後述するように、銀あるいは銀合金層が導電性酸化物層によって挟持された構成を有する。
Contact holes are formed in the first planarization layer 96, the sixth insulating layer 49, and the fifth insulating layer 248 at positions corresponding to the drain electrodes of the thin film transistors. The bank 94 is formed on the first planarization layer 96 at a position corresponding to the channel layer. In the region between the banks 94 adjacent to each other in cross section, that is, in the region surrounded by the banks 94 in plan view, the upper surface of the first planarization layer 96, the inside of the contact hole 93, and the drain electrode 156 are formed. A lower electrode 189 (pixel electrode) is formed so as to cover it. The lower electrode 189 may not be formed on the upper surface of the bank 94.
Further, a hole injection layer 191 is formed so as to cover the lower electrode 189, the bank 94, and the first planarization layer 96. A light emitting layer 192, an upper electrode 187, and a sealing layer 195 are sequentially stacked on the hole injection layer 191.
The lower electrode 189 (reflection electrode) has a configuration in which a silver or silver alloy layer is sandwiched between conductive oxide layers, as described later.
 下部電極189は、導電性金属酸化物層によって銀合金層が挟持された3層積層構造を有してもよい。上記複合酸化物層を導電性金属酸化物層に適用し、銀合金層の膜厚を、例えば、100nmから250nmの範囲内、あるいは、300nm以上の膜厚に設定し、導電性金属酸化物層によって銀合金層が挟持された3層積層構造を採用してもよい。この場合、可視光に対して高い反射率を有する下部電極189を実現することができる。例えば、銀合金層の膜厚を、例えば、9nmから15nmの範囲内として、可視光透過性のある3層積層膜を上部電極として用いても良い。なお、導電性金属酸化物は、酸化インジウムあるいは酸化亜鉛の複合酸化物が挙げられる。導電性酸化物として代表的なITO(酸化インジウム及び酸化錫を含む混合酸化物)は、酸化物が銀合金層(あるいは銅合金層)より貴(noble)である。このため、選択的に銀合金(あるいは銅合金層)がエッチングされてしまい、3層の線幅が異なるものとなりやすい。そこで、酸化インジウムに、酸化亜鉛、酸化ガリウム、酸化アンチモンなどの易溶性の酸化物を添加することで腐食電位を調整し、銀合金層(あるいは銅合金層)と腐食電位が揃った混合酸化物層としても良い。これら導電性金属酸化物で銀などを挟持する3層積層膜は、マイクロLEDや液晶表示装置の電極や導電配線として用いることができる。 The lower electrode 189 may have a three-layer laminated structure in which a silver alloy layer is sandwiched by conductive metal oxide layers. The composite oxide layer is applied to a conductive metal oxide layer, and the thickness of the silver alloy layer is set within the range of 100 nm to 250 nm or 300 nm or more, and the conductive metal oxide layer is formed. A three-layer laminated structure in which silver alloy layers are sandwiched by may be adopted. In this case, the lower electrode 189 having a high reflectance for visible light can be realized. For example, the thickness of the silver alloy layer may be set within the range of 9 nm to 15 nm, and a three-layer laminated film having visible light transparency may be used as the upper electrode. The conductive metal oxide may be a complex oxide of indium oxide or zinc oxide. In typical ITO (a mixed oxide containing indium oxide and tin oxide) as a conductive oxide, the oxide is nobler than the silver alloy layer (or the copper alloy layer). Therefore, the silver alloy (or the copper alloy layer) is selectively etched, and the line widths of the three layers are likely to be different. Therefore, the corrosion potential is adjusted by adding easily soluble oxides such as zinc oxide, gallium oxide, and antimony oxide to indium oxide, and a mixed oxide in which the corrosion potential is uniform with that of the silver alloy layer (or copper alloy layer). Good as a layer. The three-layer laminated film in which silver or the like is sandwiched between these conductive metal oxides can be used as an electrode or a conductive wiring of a micro LED or a liquid crystal display device.
 バンク94の材料としては、アクリル樹脂、ポリイミド樹脂、ノボラックフェノール樹脂等の有機樹脂を用いることができる。バンク94には、更に、酸化シリコン、酸窒化シリコン等の無機材料を積層してもよい。 As a material for the bank 94, an organic resin such as an acrylic resin, a polyimide resin, or a novolac phenol resin can be used. The bank 94 may be further laminated with an inorganic material such as silicon oxide or silicon oxynitride.
 第1平坦化層96の材料としては、アクリル樹脂、ポリイミド樹脂、ベンゾシクロブテン樹脂、ポリアミド樹脂等を用いてもよい。低誘電率材料(low-k材料)を用いることもできる。 As the material of the first flattening layer 96, acrylic resin, polyimide resin, benzocyclobutene resin, polyamide resin or the like may be used. A low dielectric constant material (low-k material) can also be used.
(第4実施形態)
(液晶表示装置)
 図12は、本発明の第4実施形態に係る表示装置を示す図であって、第1実施形態の変形例2に係るブラックマトリクス基板650が適用された液晶表示装置950を部分的に示す断面図である。
 図12において、偏光板を含む光学フィルムや拡散板など光制御素子、配向膜等の図示は省略している。
(Fourth Embodiment)
(Liquid crystal display device)
FIG. 12 is a view showing a display device according to the fourth embodiment of the present invention, and is a cross-sectional view partially showing a liquid crystal display device 950 to which a black matrix substrate 650 according to Modification 2 of the first embodiment is applied. It is a figure.
In FIG. 12, an optical film including a polarizing plate, a light control element such as a diffusion plate, an alignment film, and the like are omitted.
 液晶表示装置950は、ブラックマトリクス基板650と、アレイ基板901と、アレイ基板901との間に配置された液晶層LCと、カバーガラス904と、バックライトユニット903とを備える。カバーガラス904とブラックマトリクス基板650との間に、タッチパネルを加えてもよい。 The liquid crystal display device 950 includes a black matrix substrate 650, an array substrate 901, a liquid crystal layer LC arranged between the array substrate 901, a cover glass 904, and a backlight unit 903. A touch panel may be added between the cover glass 904 and the black matrix substrate 650.
 図12において、バックライトユニット903は、5μmから100μmサイズのLEDチップをマトリクス状に配列した直下型のバックライトユニット(以下、BLU)であり、ミニLEDと呼称される。ミニLEDの方式では、通常、液晶表示装置950が表示する映像に合わせて、表示領域においてBLUの発光を部分的に落としたり、暗めの発光としたり、あるいは、高輝度に発光したり、といったローカルディミングの手法がとられる。なお、ミニLEDに用いられるLEDチップサイズ、上記以外のサイズでもよい。 In FIG. 12, the backlight unit 903 is a direct type backlight unit (hereinafter, BLU) in which LED chips of 5 μm to 100 μm size are arranged in a matrix, and is called a mini LED. In the mini LED method, usually, in accordance with the image displayed by the liquid crystal display device 950, local light emission of the BLU is partially reduced, dark light emission, or high brightness light emission in the display area. The method of dimming is taken. It should be noted that the LED chip size used for the mini LED may be a size other than the above.
 従来の液晶表示装置では、表示機能層として液晶層のみを用いて、表示面からの発光(明るさ)をコントロールし、画像表示を行う。従来の液晶表示装置では、映像表示の間、バックライトは点灯状態を維持するため、液晶層からの光漏れが生じやすい。このため、黒表示の状態であっても、完全な黒表示とならず、コントラストが低下する欠点があった。ミニLEDの方式では、表示される映像の内容によって、例えば、表示領域における発光を部分的にオフとし、完全な黒表示を得ることができる。 In the conventional liquid crystal display device, only the liquid crystal layer is used as the display function layer, and the light emission (brightness) from the display surface is controlled to display an image. In the conventional liquid crystal display device, since the backlight maintains the lighting state during the image display, light leakage from the liquid crystal layer is likely to occur. For this reason, even in the black display state, there is a drawback that the display is not completely black and the contrast is lowered. In the mini-LED method, depending on the content of the displayed image, for example, the light emission in the display area can be partially turned off, and a complete black display can be obtained.
 ミニLEDを含むLEDの発光効率は有機ELよりはるかに良好である。完全な黒表示を得ることが可能な、ローカルディミング技術を含むミニLEDは有機ELを凌駕する可能性がある。 Luminescence efficiency of LED including mini LED is much better than that of organic EL. A mini LED including a local dimming technology capable of obtaining a completely black display may surpass an organic EL.
 なお、ミニLEDに用いるLEDのチップサイズとしては、5μmから100μmのサイズが挙げられるが、サイネージなど大型の表示装置では、100μmより大きいLEDチップを用いてもよい。
 さらに、赤色発光、緑色発光、青色発光のそれぞれLEDチップを用いる代わりに、白色発光のLEDチップによるミニLEDのBLUとカラーフィルタとを合わせて用いてもよい。この場合、BLU制御がそのBLUの配線を含めて簡便になる。
The LED chip size used for the mini LED may be 5 μm to 100 μm, but a large display device such as a signage may use an LED chip larger than 100 μm.
Further, instead of using the LED chips for red light emission, green light emission, and blue light emission, the BLU of the mini LED by the LED chip for white light emission and the color filter may be used together. In this case, BLU control becomes simple, including the wiring of the BLU.
 また、赤色発光、緑色発光、青色発光を時分割で順次行うフィールドシーケンシャル技術を適用する液晶表示装置では、カラーフィルタを省くことができる。 Also, the color filter can be omitted in the liquid crystal display device to which the field sequential technology that sequentially performs red light emission, green light emission, and blue light emission in time division is applied.
 上述の実施形態に係るブラックマトリクス基板、あるいは、このブラックマトリクス基板を備えた表示装置は、種々の応用が可能である。上述の実施形態に係る表示装置が適用可能な電子機器としては、携帯電話、携帯型ゲーム機器、携帯情報端末、パーソナルコンピュータ、電子書籍、ビデオカメラ、デジタルスチルカメラ、ヘッドマウントディスプレイ、ナビゲーションシステム、音響再生装置(カーオーディオ、デジタルオーディオプレイヤ等)、複写機、ファクシミリ、プリンター、プリンター複合機、自動販売機、現金自動預け入れ払い機(ATM)、個人認証機器、光通信機器、ICカードなどの電子デバイス等が挙げられる。上記の各実施形態は、自由に組み合わせて用いることができる。本発明の実施形態に係るブラックマトリクス基板が搭載された電子デバイスには、さらにアンテナを搭載して通信や非接触での受電給電を行うことが望ましい。 The black matrix substrate according to the above-described embodiment or the display device including the black matrix substrate can be applied in various ways. Examples of electronic devices to which the display device according to the above-described embodiment can be applied include mobile phones, portable game devices, personal digital assistants, personal computers, electronic books, video cameras, digital still cameras, head-mounted displays, navigation systems, and audio systems. Electronic devices such as playback devices (car audio, digital audio players, etc.), copiers, facsimiles, printers, printer complex machines, vending machines, automatic teller machines (ATMs), personal authentication devices, optical communication devices, IC cards, etc. Etc. The above embodiments can be freely combined and used. It is desirable that the electronic device on which the black matrix substrate according to the embodiment of the present invention is mounted is further equipped with an antenna to perform communication or contactless power reception and feeding.
 本発明の好ましい実施形態を説明し、上記で説明してきたが、これらは本発明の例示的なものであり、限定するものとして考慮されるべきではないことを理解すべきである。追加、省略、置換、およびその他の変更は、本発明の範囲から逸脱することなく行うことができる。従って、本発明は、前述の説明によって限定されていると見なされるべきではなく、請求の範囲によって規定されている。 While the preferred embodiments of the invention have been described and described above, it should be understood that these are exemplary of the invention and should not be considered limiting. Additions, omissions, substitutions, and other changes can be made without departing from the scope of the invention. Therefore, the present invention should not be considered limited by the foregoing description, but is defined by the claims.
10・・・半透過膜
11・・・第1ブラックマトリクス層(ブラックマトリクス層)
12・・・第2ブラックマトリクス層(ブラックマトリクス層)
13・・・微粒子
21・・・第1透明樹脂層
22・・・第2透明樹脂層
43・・・表面
47・・・第4絶縁層
49・・・第6絶縁層
55・・・ゲート電極
56・・・ドレイン電極
58・・・チャネル層
68・・・薄膜トランジスタ
75・・・補助導体
76・・・透明導電膜
77・・・接合層
80・・・有機EL層
88・・・下部電極
90・・・n型半導体層
91・・・p型半導体層
93・・・コンタクトホール
94・・・バンク
95・・・第2平坦化層
96・・・第1平坦化層
148・・・第3絶縁層
156・・・ドレイン電極
189・・・下部電極
191・・・ホール注入層
248・・・第5絶縁層
750・・・マイクロLED表示装置
850・・・有機EL表示装置
903・・・バックライトユニット
904・・・カバーガラス
950・・・液晶表示装置
87、187・・・上部電極
92、192・・・発光層
102、310・・・透明基板
109、195・・・封止層
205、305・・・画素開口部
202、302、802・・・基板
150、300、550、650・・・ブラックマトリクス層
250、350、750、850・・・表示装置
201、301、501、801、901・・・アレイ基板
102T・・・外面
11S・・・第1画素開口部
12S・・・第2画素開口部
31、89、121・・・反射電極
32、122、CHIP・・・発光素子
B・・・青色層(着色層)
BW1、BW2・・・線幅
CB・・・青色変換層
CF・・・着色層
CG・・・緑色変換層
CR・・・赤色変換層
G・・・緑色層(着色層)
IL1、IL2、IL3・・・外部光
LC・・・液晶層
R・・・赤色層(着色層)
RL1、RL2、RL3・・・反射光
10... Semi-transmissive film 11... First black matrix layer (black matrix layer)
12... Second black matrix layer (black matrix layer)
13... Fine particles 21... First transparent resin layer 22... Second transparent resin layer 43... Surface 47... Fourth insulating layer 49... Sixth insulating layer 55... Gate electrode 56... Drain electrode 58... Channel layer 68... Thin film transistor 75... Auxiliary conductor 76... Transparent conductive film 77... Bonding layer 80... Organic EL layer 88... Lower electrode 90 ... n-type semiconductor layer 91 ... p-type semiconductor layer 93 ... contact hole 94 ... bank 95 ... second flattening layer 96 ... first flattening layer 148 ... third Insulating layer 156... Drain electrode 189... Lower electrode 191... Hole injection layer 248... Fifth insulating layer 750... Micro LED display device 850... Organic EL display device 903... Back Light unit 904... Cover glass 950... Liquid crystal display device 87, 187... Upper electrode 92, 192... Light emitting layer 102, 310... Transparent substrate 109, 195... Sealing layer 205, 305... Pixel openings 202, 302, 802... Substrates 150, 300, 550, 650... Black matrix layers 250, 350, 750, 850... Display devices 201, 301, 501, 801, 901 ... Array substrate 102T... Outer surface 11S... First pixel opening 12S... Second pixel opening 31, 89, 121... Reflective electrodes 32, 122, CHIP... Light emitting element B... ..Blue layer (colored layer)
BW1, BW2... Line width CB... Blue conversion layer CF... Colored layer CG... Green conversion layer CR... Red conversion layer G... Green layer (colored layer)
IL1, IL2, IL3... External light LC... Liquid crystal layer R... Red layer (colored layer)
RL1, RL2, RL3... Reflected light

Claims (9)

  1.  透明基板と、
     前記透明基板上に形成された半透過膜と、
     前記半透過膜の厚み方向において、前記半透過膜と接触するように前記半透過膜上に形成され、複数の第1開口部を具備する第1ブラックマトリクス層と、
     前記第1ブラックマトリクス層を覆うように前記半透過膜上に形成された透明樹脂層と、
     前記透明樹脂層上に形成され、複数の第2開口部を具備する第2ブラックマトリクス層と、
     を備え、
     前記半透過膜が形成された前記透明基板の面とは反対側の面から見た平面視において、前記半透過膜は、複数の前記第1開口部と前記第1ブラックマトリクス層とを覆うように重なり、
     平面視において、複数の前記第2開口部の位置は、複数の前記第1開口部の位置に対応している、
     ブラックマトリクス基板。
    A transparent substrate,
    A semi-transmissive film formed on the transparent substrate,
    A first black matrix layer formed on the semi-permeable film so as to contact the semi-permeable film in the thickness direction of the semi-permeable film, the first black matrix layer having a plurality of first openings;
    A transparent resin layer formed on the semi-transmissive film so as to cover the first black matrix layer;
    A second black matrix layer formed on the transparent resin layer and having a plurality of second openings;
    Equipped with
    In a plan view seen from the surface opposite to the surface of the transparent substrate on which the semi-transmissive film is formed, the semi-transmissive film covers the plurality of first openings and the first black matrix layer. Overlaps with
    In a plan view, the positions of the plurality of second openings correspond to the positions of the plurality of first openings,
    Black matrix substrate.
  2.  前記半透過膜は、顔料としてカーボンを含有し、
     可視光に対する前記半透過膜の透過率は、98%から60%の範囲内にある、
     請求項1に記載のブラックマトリクス基板。
    The semi-permeable membrane contains carbon as a pigment,
    The transmissivity of the semi-transmissive film for visible light is in the range of 98% to 60%,
    The black matrix substrate according to claim 1.
  3.  前記半透過膜は、
     カーボンと、光学的に等方な微粒子と、前記カーボン及び前記微粒子が分散された樹脂とを有する分散体である、
     請求項1に記載のブラックマトリクス基板。
    The semipermeable membrane is
    A dispersion having carbon, optically isotropic fine particles, and a resin in which the carbon and the fine particles are dispersed,
    The black matrix substrate according to claim 1.
  4.  前記微粒子は、シリカの微粒子である、
     請求項3に記載のブラックマトリクス基板。
    The fine particles are fine particles of silica,
    The black matrix substrate according to claim 3.
  5.  前記樹脂と、前記カーボンと、前記微粒子とを含む全固形分を100質量%として、
     前記カーボンの量は、0.5質量%から15質量%の範囲内にあり、
     前記微粒子の量は、1質量%から30質量%の範囲内にある、
     請求項3又は請求項4に記載のブラックマトリクス基板。
    With the total solid content including the resin, the carbon, and the fine particles being 100% by mass,
    The amount of carbon is in the range of 0.5% to 15% by weight,
    The amount of the fine particles is in the range of 1% by mass to 30% by mass,
    The black matrix substrate according to claim 3 or 4.
  6.  前記第2ブラックマトリクス層の線幅は、第1ブラックマトリクス層の線幅より小さい、
     請求項1に記載のブラックマトリクス基板。
    The line width of the second black matrix layer is smaller than the line width of the first black matrix layer,
    The black matrix substrate according to claim 1.
  7.  前記第2ブラックマトリクス層は、近赤外域に対する光透過性を有する、
     請求項1に記載のブラックマトリクス基板。
    The second black matrix layer has a light transmittance in the near infrared region,
    The black matrix substrate according to claim 1.
  8.  前記第1ブラックマトリクス層の複数の前記第1開口部の各々は、着色層を有する、
     請求項1に記載のブラックマトリクス基板。
    Each of the plurality of first openings of the first black matrix layer has a colored layer,
    The black matrix substrate according to claim 1.
  9.  請求項1から請求項8のいずれか一項に記載のブラックマトリクス基板と、
     表示機能層と、
     複数のアクティブ素子を具備するアレイ基板と
     を備える表示装置。
    A black matrix substrate according to any one of claims 1 to 8,
    Display function layer,
    An array substrate having a plurality of active elements.
PCT/JP2018/044710 2018-12-05 2018-12-05 Black matrix substrate and display device equipped with black matrix substrate WO2020115837A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2018/044710 WO2020115837A1 (en) 2018-12-05 2018-12-05 Black matrix substrate and display device equipped with black matrix substrate
CN201880099001.2A CN112912948B (en) 2018-12-05 2018-12-05 Black matrix substrate and display device provided with same
KR1020217011985A KR102644037B1 (en) 2018-12-05 2018-12-05 Black matrix substrate, and display device including the black matrix substrate
JP2020558729A JP7081688B2 (en) 2018-12-05 2018-12-05 A display device equipped with a black matrix substrate and a black matrix substrate.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/044710 WO2020115837A1 (en) 2018-12-05 2018-12-05 Black matrix substrate and display device equipped with black matrix substrate

Publications (1)

Publication Number Publication Date
WO2020115837A1 true WO2020115837A1 (en) 2020-06-11

Family

ID=70975007

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/044710 WO2020115837A1 (en) 2018-12-05 2018-12-05 Black matrix substrate and display device equipped with black matrix substrate

Country Status (4)

Country Link
JP (1) JP7081688B2 (en)
KR (1) KR102644037B1 (en)
CN (1) CN112912948B (en)
WO (1) WO2020115837A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111900263A (en) * 2020-08-10 2020-11-06 京东方科技集团股份有限公司 Organic light-emitting display panel, manufacturing method thereof and display device
CN113611225A (en) * 2021-08-19 2021-11-05 业成科技(成都)有限公司 Optical display structure
WO2022124178A1 (en) * 2020-12-11 2022-06-16 ソニーグループ株式会社 Light-emitting device and method for manufacturing light-emitting device
WO2022145399A1 (en) * 2020-12-28 2022-07-07 日東電工株式会社 Black matrix sheet, self-luminous display body, and method for manufacturing self-luminous display body
JP7468980B2 (en) 2020-09-25 2024-04-16 アルプスアルパイン株式会社 Liquid crystal display device
JP7476696B2 (en) 2020-07-08 2024-05-01 Toppanホールディングス株式会社 Black matrix substrate, and LED display and liquid crystal display device equipped with the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI763547B (en) * 2021-06-21 2022-05-01 友達光電股份有限公司 Display device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000180899A (en) * 1998-12-14 2000-06-30 Nec Corp Liquid crystal display device
JP2014056228A (en) * 2012-09-12 2014-03-27 Lg Display Co Ltd Stereoscopic image display device
JP2015050059A (en) * 2013-09-02 2015-03-16 株式会社ジャパンディスプレイ Display device
JP2015052718A (en) * 2013-09-06 2015-03-19 大日本印刷株式会社 Color filter and organic el display device with touch panel function
JP2015138199A (en) * 2014-01-23 2015-07-30 株式会社ジャパンディスプレイ Display device
JP2016519173A (en) * 2013-03-13 2016-06-30 キャボット コーポレイションCabot Corporation COATING CONTAINING FILLER-POLYMER COMPOSITION HAVING COMBINED LOW DIELECTRICITY, HIGH RESISTING AND OPTICAL DENSITY CHARACTERISTICS AND CONTROLLED ELECTRICAL RESISTOR, DEVICE PRODUCED THEREFROM, AND METHOD FOR MANUFACTURING THE SAME

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5972Y2 (en) 1981-07-02 1984-01-05 勇一 宇野 pipe case
JPH022580Y2 (en) 1985-07-29 1990-01-22
JPH06174915A (en) * 1992-12-08 1994-06-24 Toshiba Corp Color filter substrate
JP4178760B2 (en) * 2001-03-02 2008-11-12 凸版印刷株式会社 Light scattering film, electrode substrate for liquid crystal display device, and liquid crystal display device
JP4212020B2 (en) 2002-01-25 2009-01-21 日東電工株式会社 Antireflection film, optical element and image display device
KR20040060592A (en) * 2002-12-30 2004-07-06 엘지.필립스 엘시디 주식회사 Liquid crystal display device and fabricating method thereof
KR100829750B1 (en) * 2006-12-06 2008-05-15 삼성에스디아이 주식회사 Organic light emitting display apparatus
KR100829753B1 (en) * 2007-03-02 2008-05-15 삼성에스디아이 주식회사 Organic light emitting display device
JP2009008714A (en) * 2007-06-26 2009-01-15 Toppan Printing Co Ltd Color filter for semitransmissive liquid crystal display device and method for manufacturing the same
WO2010073985A1 (en) * 2008-12-23 2010-07-01 住友化学株式会社 Optical film and liquid crystal display device comprising same
JP2011108395A (en) * 2009-11-13 2011-06-02 Hitachi Displays Ltd Organic light-emitting display device
EP2573595B1 (en) * 2010-05-20 2021-04-28 Toyobo Co., Ltd. Light-shielding film
KR101821255B1 (en) * 2010-11-03 2018-01-24 삼성디스플레이 주식회사 Organic light emitting display apparatus
CN104813223B (en) * 2012-11-29 2017-07-28 Lg化学株式会社 With the FPR for circulating micro- pattern
WO2014103777A1 (en) * 2012-12-27 2014-07-03 凸版印刷株式会社 Liquid crystal display device, liquid display device substrate, and production method for liquid crystal display device substrate
WO2014136738A1 (en) * 2013-03-07 2014-09-12 東レ株式会社 Black matrix substrate
JP5704262B1 (en) * 2013-04-30 2015-04-22 凸版印刷株式会社 DISPLAY DEVICE SUBSTRATE, DISPLAY DEVICE SUBSTRATE MANUFACTURING METHOD, AND DISPLAY DEVICE
JP6232769B2 (en) * 2013-06-19 2017-11-22 凸版印刷株式会社 Display device substrate manufacturing method, display device substrate, and display device
WO2015001896A1 (en) * 2013-07-05 2015-01-08 凸版印刷株式会社 Liquid crystal display device
JP6459170B2 (en) 2013-12-26 2019-01-30 大日本印刷株式会社 Multi-surface color filter, organic electroluminescence display device, and method for manufacturing multi-surface color filter
JP6350656B2 (en) * 2014-06-02 2018-07-04 旭硝子株式会社 Video projection structure, video projection method, and video projection window
CN106537298B (en) * 2014-07-10 2019-07-16 凸版印刷株式会社 The manufacturing method and display device of black electrodes substrate, black electrodes substrate
CN104360534B (en) * 2014-12-04 2018-09-14 京东方科技集团股份有限公司 Production method, color membrane substrates and the display device of color membrane substrates
KR20170050729A (en) * 2015-10-30 2017-05-11 엘지디스플레이 주식회사 Organic light emitting display device
CN206179867U (en) * 2016-09-29 2017-05-17 上海天马微电子有限公司 Display panel and display device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000180899A (en) * 1998-12-14 2000-06-30 Nec Corp Liquid crystal display device
JP2014056228A (en) * 2012-09-12 2014-03-27 Lg Display Co Ltd Stereoscopic image display device
JP2016519173A (en) * 2013-03-13 2016-06-30 キャボット コーポレイションCabot Corporation COATING CONTAINING FILLER-POLYMER COMPOSITION HAVING COMBINED LOW DIELECTRICITY, HIGH RESISTING AND OPTICAL DENSITY CHARACTERISTICS AND CONTROLLED ELECTRICAL RESISTOR, DEVICE PRODUCED THEREFROM, AND METHOD FOR MANUFACTURING THE SAME
JP2015050059A (en) * 2013-09-02 2015-03-16 株式会社ジャパンディスプレイ Display device
JP2015052718A (en) * 2013-09-06 2015-03-19 大日本印刷株式会社 Color filter and organic el display device with touch panel function
JP2015138199A (en) * 2014-01-23 2015-07-30 株式会社ジャパンディスプレイ Display device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7476696B2 (en) 2020-07-08 2024-05-01 Toppanホールディングス株式会社 Black matrix substrate, and LED display and liquid crystal display device equipped with the same
CN111900263A (en) * 2020-08-10 2020-11-06 京东方科技集团股份有限公司 Organic light-emitting display panel, manufacturing method thereof and display device
CN111900263B (en) * 2020-08-10 2023-09-01 京东方科技集团股份有限公司 Organic light-emitting display panel, manufacturing method thereof and display device
JP7468980B2 (en) 2020-09-25 2024-04-16 アルプスアルパイン株式会社 Liquid crystal display device
WO2022124178A1 (en) * 2020-12-11 2022-06-16 ソニーグループ株式会社 Light-emitting device and method for manufacturing light-emitting device
WO2022145399A1 (en) * 2020-12-28 2022-07-07 日東電工株式会社 Black matrix sheet, self-luminous display body, and method for manufacturing self-luminous display body
CN113611225A (en) * 2021-08-19 2021-11-05 业成科技(成都)有限公司 Optical display structure

Also Published As

Publication number Publication date
CN112912948B (en) 2023-06-02
JPWO2020115837A1 (en) 2021-11-04
KR102644037B1 (en) 2024-03-07
KR20210098955A (en) 2021-08-11
CN112912948A (en) 2021-06-04
JP7081688B2 (en) 2022-06-07

Similar Documents

Publication Publication Date Title
WO2020115837A1 (en) Black matrix substrate and display device equipped with black matrix substrate
WO2022163811A1 (en) Display device and wavelength conversion substrate
US20230047411A1 (en) Black matrix substrate assembly and display including the same
KR102427416B1 (en) Display device and method of manufacturing the same
US11409106B2 (en) Display module and head-mounted display device including the same
CN103579283A (en) Organic light emitting diode display device
CN103325811A (en) Organic light emitting diode display device and method of manufacturing the same
TW201837558A (en) Reflective polarizing layer, wavelength conversion layer, and liquid crystal display device
JP2021140077A (en) Black matrix substrate, display device, and manufacturing method for black matrix substrate
JP7413791B2 (en) Color filter substrate and display device
JP7439530B2 (en) Optical module and display device
JP7476696B2 (en) Black matrix substrate, and LED display and liquid crystal display device equipped with the same
TWI787412B (en) Black matrix substrate and display device with black matrix substrate
JP2021179525A (en) Display device
US20220209205A1 (en) Electroluminescence display
JP2023054570A (en) Display
JP2023054571A (en) liquid crystal display
JP2022190359A (en) Black matrix substrate, and display device having black matrix substrate
JP2023006356A (en) Color filter substrate and display device equipped with the same
JP2023054572A (en) Liquid crystal display and color filter substrate
JP2023068904A (en) Liquid crystal display device with touch panel
KR20240095841A (en) Light emitting diode display device
JP2023054573A (en) Display
KR20230169851A (en) Display device
WO2023150045A1 (en) Reflective and transflective displays including quantum dot layers

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18942348

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020558729

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18942348

Country of ref document: EP

Kind code of ref document: A1