WO2020113949A1 - 一种二氧化碳空调及压力控制和保护方法 - Google Patents

一种二氧化碳空调及压力控制和保护方法 Download PDF

Info

Publication number
WO2020113949A1
WO2020113949A1 PCT/CN2019/093312 CN2019093312W WO2020113949A1 WO 2020113949 A1 WO2020113949 A1 WO 2020113949A1 CN 2019093312 W CN2019093312 W CN 2019093312W WO 2020113949 A1 WO2020113949 A1 WO 2020113949A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
pressure side
low
value
controller
Prior art date
Application number
PCT/CN2019/093312
Other languages
English (en)
French (fr)
Inventor
陈广泰
徐峻
庞学博
白刚
赵博
卢文军
鞠盈子
薛鑫
梁晟铭
Original Assignee
中车大连机车研究所有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中车大连机车研究所有限公司 filed Critical 中车大连机车研究所有限公司
Publication of WO2020113949A1 publication Critical patent/WO2020113949A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/005Arrangement or mounting of control or safety devices of safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems

Definitions

  • the present invention relates to the field of refrigeration of rail vehicles, and more specifically, to a carbon dioxide air conditioner and pressure control and protection method.
  • carbon dioxide As a natural working fluid, carbon dioxide has the characteristics of low greenhouse effect index, large unit volume cooling capacity, non-toxic and non-flammable, low viscosity, and easy access to low cost. It has been identified as the first choice for new refrigerants by vehicle companies and air-conditioning companies.
  • the compression cycle of the air-conditioning system using carbon dioxide refrigerant is relatively high.
  • the high-pressure side is generally located in the supercritical region.
  • the pressure value is generally 9 to 11 MPa, which is 4 to 5 times that of the current refrigerant.
  • the requirements for system components and system safety sexual requirements are high. If there are large pressure fluctuations during system operation, there will be a risk of blasting.
  • the current countermeasure is to increase the pressure resistance of system components and increase the wall thickness of the pipeline, but it cannot effectively reduce the risk of system blasting.
  • the purpose of the present invention is to overcome the above-mentioned defects in the prior art, and to provide a pressure control and protection method for carbon dioxide air conditioners. By setting multi-stage pressure limits and using different equipment for protection, it can effectively prevent the occurrence of blasting risks.
  • a carbon dioxide air conditioner includes a refrigeration cycle circuit composed of a compressor, a gas cooler, a throttling expansion device, an evaporator, and a gas-liquid separator and connected in sequence through refrigerant pipes.
  • the refrigeration cycle circuit also includes an intermediate heat exchanger.
  • the high-temperature medium inlet of the intermediate heat exchanger is connected to the medium outlet of the gas cooler, the high-temperature medium outlet of the intermediate heat exchanger is connected to the medium inlet of the throttle expansion device, and the low-temperature medium inlet of the intermediate heat exchanger is connected to the medium outlet of the evaporator ,
  • the low-temperature medium outlet of the intermediate heat exchanger is connected to the medium inlet of the compressor; its characteristics are:
  • the refrigeration cycle circuit also includes a pressure switch 1 and a pressure relief valve 1 installed on the high pressure side of the compressor outlet, a pressure sensor device 1 installed on the high pressure side of the gas cooler outlet, and a temperature sensor, installed on the compressor inlet and gas The pressure sensing device 2 on the low-pressure side, the pressure switch 2 and the pressure relief valve 2 between the liquid separators.
  • the pressure sensing device is a pressure transmitter.
  • the throttle expansion device is an electronic expansion valve.
  • the compressor is a transcritical refrigeration compressor.
  • the throttle expansion device the pressure switch one, the pressure sensing device one, the temperature sensor, the pressure sensing device two, the pressure switch two and the compressor and controller Electrically connected
  • the controller receives electrical signals from the pressure sensing device one, the temperature sensor and the pressure sensing device two, and according to the value of the received electrical signal to the throttle expansion device, all The pressure switch one, the pressure relief valve one, the pressure switch two, and the pressure relief valve two issue action commands.
  • the controller maintains the pressure on the high and low pressure sides and the temperature on the high-pressure side within the normal range by adjusting the opening of the throttle expansion device;
  • the pressure switch 1 When the pressure value measured by the pressure sensing device is greater than the maximum value of the normal pressure range of the high pressure side, and reaches the action value pressure of the high pressure side pressure switch 1, the pressure switch 1 sends a fault signal to the controller, and the controller receives the fault signal Turn off the compressor afterwards; or when the pressure value measured by the pressure sensing device 2 is lower than the minimum value of the normal pressure range on the low pressure side and reaches the operating value pressure of the low pressure side pressure switch 2, the pressure switch 2 sends a fault signal to the controller , The controller turns off the compressor after receiving the fault signal;
  • the pressure switch 1 When the pressure value measured by the pressure sensing device recovers to the recovery value of the high-pressure side pressure switch 1, the pressure switch 1 sends a recovery signal to the controller, and the controller restarts the compressor after receiving the recovery signal; or when the pressure sensor When the pressure value measured by the device 2 recovers to the recovery value pressure of the low-pressure side pressure switch 2, the pressure switch 2 sends a recovery signal to the controller, and the controller restarts the compressor after receiving the recovery signal;
  • the high-pressure side relief valve automatically opens to discharge carbon dioxide; or
  • the pressure value measured by the pressure sensing device 1 is higher than the maximum value in the normal pressure range of the low-pressure side, and reaches the opening value pressure of the low-pressure side relief valve 2, the low-pressure side relief valve 2 automatically opens to discharge carbon dioxide.
  • the controller is an air conditioner central controller, or the controller includes an air conditioner central controller and a throttle expansion device controller.
  • data communication can be performed between the air conditioner central controller and the throttle expansion device controller.
  • a pressure control and protection method for carbon dioxide air conditioner which is characterized by including three-level control,
  • the first level when the pressure on the high pressure side exceeds the normal pressure range on the high pressure side, or the pressure on the low pressure side exceeds the normal pressure range on the low pressure side, or the temperature on the high pressure side exceeds the normal temperature range on the high pressure side, adjust the opening of the throttle expansion device ;
  • Second stage When the pressure on the high pressure side is greater than the maximum value in the normal pressure range of the high pressure side and reaches the first pressure warning value on the high pressure side, or when the pressure on the low pressure side is lower than the minimum value in the normal pressure range on the low pressure side and reaches the low pressure
  • the compressor is turned off;
  • Third level When the pressure on the high-pressure side is greater than the first pressure warning value on the high-pressure side, and when the second pressure warning value on the high-pressure side is reached, release the carbon dioxide refrigerant in the refrigerant piping on the high-pressure side to relieve the pressure on the pipeline; or When the pressure on the side is higher than the maximum value in the normal pressure range of the low-pressure side and reaches the second pressure warning value on the low-pressure side, the carbon dioxide refrigerant in the low-pressure side refrigerant piping is released to relieve the pressure on the pipeline.
  • the present invention sets three levels of pressure limitation and uses different equipment for protection.
  • the first level uses the pressure sensor and temperature sensor to control the high-pressure side pressure and low-pressure side pressure and high-pressure side of the system.
  • Real-time temperature monitoring adjust the opening of the throttle expansion device, adjust the system pressure in time to ensure that the high-pressure side pressure and low-pressure side pressure are within the normal range;
  • the second stage by installing pressure switches on the high-pressure side and low-pressure side, when the pipeline The pressure value exceeds the normal range and triggers the pressure switch action.
  • the central controller of the air conditioner After receiving the pressure switch action signal, the central controller of the air conditioner will turn off the compressor and stop the operation of the air conditioning system; the third stage, by installing pressure relief valves on the high pressure side and the low pressure side, when the pipe After the pressure value in the road exceeds the second level range, the pressure relief valve will be triggered to open, and the carbon dioxide in the system will be discharged in time.
  • the invention can realize the control and protection of the system pressure under pressure fluctuation or abnormal conditions, and effectively prevent the risk of system explosion.
  • FIG. 1 is a schematic diagram of the structure of a carbon dioxide air conditioner according to a first specific embodiment of the present invention
  • FIG. 2 is a schematic diagram of the structure of a carbon dioxide air conditioner according to a second embodiment of the present invention.
  • FIG. 3 is a schematic diagram of the structure of a carbon dioxide air conditioner according to a third embodiment of the present invention.
  • FIG. 4 is a schematic diagram of the pressure control and protection method of the carbon dioxide air conditioner of the present invention.
  • the air-conditioning system of the present invention uses transcritical CO 2 as the refrigerant.
  • the critical point temperature of the CO 2 refrigerant is about 31° C., which is very close to the ambient temperature. Therefore, its heat rejection temperature must exceed the critical point temperature, that is, the CO 2 refrigeration cycle.
  • the heat release is performed in the supercritical region, and the evaporation heat absorption is performed in the subcritical region, thereby forming a transcritical refrigeration cycle.
  • the carbon dioxide air conditioner of the present invention includes a refrigeration cycle circuit composed of a compressor, a gas cooler, a throttling expansion device, an evaporator, and a gas-liquid separator, and sequentially connected by refrigerant pipes.
  • the refrigeration cycle circuit also includes Including the intermediate heat exchanger, the high temperature medium inlet of the intermediate heat exchanger is connected with the medium outlet of the gas cooler, the high temperature medium outlet of the intermediate heat exchanger is connected with the medium inlet of the throttle expansion device, and the low temperature medium inlet of the intermediate heat exchanger is The medium outlet of the evaporator is connected, and the low-temperature medium outlet of the intermediate heat exchanger is connected to the medium inlet of the compressor; thus, the CO2 refrigerant at the medium outlet end of the evaporator is heated again, and the CO2 refrigerant entering the throttle expansion device is again Reduce the temperature and reduce the pressure difference between the gas cooler medium outlet and the evaporator medium inlet, thereby greatly reducing the throttling loss, thereby improving the efficiency of the system.
  • the throttle expansion device is preferably an electronic expansion valve that can control and adjust the opening degree, and the opening degree of the electronic expansion valve can be adjusted according to pressure and/or temperature.
  • the compressor preferentially uses a transcritical refrigeration compressor dedicated to CO2 refrigerant.
  • the transcritical refrigeration compressor is preferably a frequency conversion transcritical refrigeration compressor.
  • the first level when the pressure on the high pressure side exceeds the normal pressure range on the high pressure side, or the pressure on the low pressure side exceeds the normal pressure range on the low pressure side, or the temperature on the high pressure side exceeds the normal temperature range on the high pressure side, adjust the opening of the throttle expansion device , And then adjust the system pressure to maintain the pressure value on the high and low pressure sides stable within the normal range.
  • the first-level protection mainly realizes the detection, control and adjustment of the system pressure, so that the pressure is maintained within the normal working range.
  • Second stage When the pressure on the high pressure side is greater than the maximum value in the normal pressure range of the high pressure side and reaches the first pressure warning value on the high pressure side, or when the pressure on the low pressure side is lower than the minimum value in the normal pressure range on the low pressure side and reaches the low pressure
  • the compressor When the first pressure warning value is on the side, the compressor is turned off.
  • both the high-pressure side pressure and the low-pressure side pressure return to the normal range, the compressor can be restarted.
  • This second-level protection can achieve pressure limit protection, shut down the compressor in time, and stop the system. After the system pressure returns to the normal range, the pressure switch will automatically reset and the air conditioning system can be restarted.
  • Third level When the pressure on the high-pressure side is greater than the first pressure warning value on the high-pressure side, and when the second pressure warning value on the high-pressure side is reached, the carbon dioxide refrigerant in the refrigerant piping on the high-pressure side is released to relieve the pressure on the pipeline; or when the pressure is low When the pressure on the side is higher than the maximum value in the normal pressure range of the low-pressure side and reaches the second pressure warning value on the low-pressure side, the carbon dioxide refrigerant in the low-pressure side refrigerant piping is released to relieve the pressure on the pipeline. If the second level protection fails or fails to shut down the compressor to stop the system in time, the third level can achieve pressure relief to the system and quickly discharge carbon dioxide in the system to avoid equipment damage or more serious consequences and ensure driving safety.
  • the pressure of the air conditioning system can be controlled and protected under pressure fluctuations or abnormal conditions.
  • the pressure control and protection of the carbon dioxide air conditioner are realized by the following pressure control and protection devices, specifically: the refrigeration cycle circuit also includes a pressure switch 1 and a pressure relief valve 1 installed on the high pressure side of the compressor outlet.
  • the pressure sensor device 1 on the high pressure side of the gas cooler outlet and the temperature sensor, the pressure sensor device 2 on the low pressure side installed between the compressor inlet and the gas-liquid separator, the pressure switch two, and the pressure relief valve two.
  • the pressure sensor device 1 and temperature sensor installed on the high pressure side of the gas cooler outlet and the pressure sensor device 2 installed on the low pressure side between the compressor inlet and the gas-liquid separator are used to collect and monitor the pressure and temperature in real time Whether the value is within the normal range, if it is not normal, adjust the opening of the throttle expansion device to ensure that the pressure and/or temperature are within the normal range; then, when the opening of the throttle expansion device is still adjusted, the pressure and temperature cannot be adjusted When it is in the normal range, the compressor can be turned off by the pressure switch. If the pressure and/or temperature still cannot return to the normal range, the carbon dioxide in the pipeline is released by opening the pressure relief valve to avoid the risk of pipeline explosion.
  • the pressure sensing device is a pressure transmitter.
  • this embodiment adds a controller on the basis of the first embodiment, the controller and the throttle expansion device, pressure switch 1, pressure sensor device 1, temperature sensor, pressure sensor device 2, pressure
  • the switch 2 is electrically connected to the compressor, the controller receives electrical signals from the pressure sensor device 1, the temperature sensor and the pressure sensor device 2, and the throttle expansion device, the pressure switch 1, and the pressure relief valve are adjusted according to the value of the received electrical signal. 1.
  • the pressure switch 2 and the pressure relief valve 2 issue action commands to realize automatic control, adjustment and protection of the pressure.
  • the controller maintains the pressure on the high and low pressure sides and the temperature on the high pressure side within the normal range by adjusting the opening of the throttle expansion device.
  • the pressure Switch 1 sends a fault signal to the controller, and the controller turns off the compressor after receiving the fault signal; or when the pressure value measured by the pressure sensing device 2 is lower than the minimum value of the normal pressure range on the low pressure side, and reaches the low pressure side pressure switch 2
  • the pressure switch 2 sends a fault signal to the controller, and the controller turns off the compressor after receiving the fault signal.
  • the pressure switch 1 When the pressure value measured by the pressure sensing device recovers to the recovery value of the high-pressure side pressure switch 1, the pressure switch 1 sends a recovery signal to the controller, and the controller restarts the compressor after receiving the recovery signal; or when the pressure sensor When the pressure value measured by the device 2 recovers to the recovery value pressure of the low-pressure side pressure switch 2, the pressure switch 2 sends a recovery signal to the controller, and the controller restarts the compressor after receiving the recovery signal.
  • the recovery value pressure of pressure switch one is less than the operating value pressure of pressure switch one and greater than or equal to the maximum value in the normal pressure range of the high pressure side.
  • the recovery value pressure of the pressure switch 2 is greater than the operating value pressure of the low pressure side pressure switch 2 and less than or equal to the minimum value of the normal pressure range of the low pressure side.
  • the high-pressure side relief valve automatically opens to discharge carbon dioxide; or
  • the pressure value measured by the pressure sensing device 1 is higher than the maximum value in the normal pressure range of the low-pressure side and reaches the opening value pressure of the low-pressure side relief valve 2, the low-pressure side relief valve 2 automatically opens to discharge carbon dioxide.
  • the controller is a general term for a structure with a control function, which can be realized by one control device, such as an air conditioner central controller, or by a plurality of control devices, for example, a comprehensive use of the air conditioner central controller and For the controller of the flow expansion device, see Embodiment 3 for details.
  • the electronic expansion valve also has a control part, the control of the electronic expansion valve can be improved.
  • the electronic expansion valve is electrically connected to the pressure sensor device 1 on the high pressure side and the temperature sensor and the pressure sensor device 2 on the low pressure side, when the pressure is detected Or the temperature exceeds the normal range, adjust the opening of the electronic expansion valve in time.
  • the pressure switches 1 and 2 can be electrically connected to the central controller of the air conditioner to realize the on and off control of the compressor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

本发明公开了一种二氧化碳空调及压力控制和保护方法,通过设置三级压力限制,并分别采用不同的设备进行保护,第一级,通过采用压力传感装置对***高、低压侧压力进行实时监测,以及采用温度传感装置对高压侧温度进行实时监测,调节节流膨胀装置开度,保证高、低压侧压力和温度在正常范围内;第二级,通过在高、低压侧安装压力开关,当管路内压力值超出正常范围并触发压力开关动作,关闭压缩机,停止空调***工作;第三级,通过在高、低压侧安装泄压阀,当管路内压力值超出第二级范围后,将触发泄压阀开启,及时排出二氧化碳。本发明可实现压力波动或异常情况下对***压力的控制和保护,有效防止******的风险发生。

Description

一种二氧化碳空调及压力控制和保护方法 技术领域
本发明涉及轨道车辆制冷领域,更具体地,涉及一种二氧化碳空调及压力控制和保护方法。
背景技术
随着国际社会对环保要求的不断提高,减少对臭氧层破坏和温室效应,空调用制冷剂已由CFC氯氟烃类改为HCFC氢氟烃类制冷剂,但现在常用的HCFC氢氟烃类制冷剂如R134A,其温室效应指数GWP值仍然较高,为1300。在2016年卢旺达基加利通过并签订了《蒙特利尔协议-基加利修正案》,其中大部分发达国家将从2019年开始削减HFC类制冷剂;绝大部分发展中国家将在2024年对HFC类制冷剂生产和消费进行冻结。因此,全球各国开始寻求替代制冷剂。
二氧化碳作为自然工质具有温室效应指数低、单位体积制冷量大、无毒不可燃、粘度低、容易获得造价低等特点,现已被车辆企业和空调企业确定为新型制冷剂的首选。
采用二氧化碳制冷剂的空调***制冷循环的压缩比较高,高压侧一般都位于超临界区域,压力值一般在9~11MPa,是现用制冷剂的4~5倍,对***部件的要求和***安全性要求较高。如***运用过程中有较大压力波动,将有***的风险。现采用的应对方法是增加***部件的耐压性能,增加管路的壁厚,但不能有效降低******的风险。
发明内容
本发明的目的在于克服现有技术存在的上述缺陷,提供一种二氧化碳空调的压力控制和保护方法,通过设置多级压力限制,并分别采用不同的设备进行保护,能够有效防止***风险的发生。
为实现上述目的,本发明的技术方案如下:
一种二氧化碳空调,包括由压缩机、气体冷却器、节流膨胀装置、蒸发器、气液分离器构成的并通过冷媒配管依次连接构成的制冷循环回路,制冷循环回路还包括中间热交换器,中间热交换器的高温介质入口与气体冷却器的介质出口相连,中间热交换器的高温介质出口与节流膨胀装置的介质入口相连,中间 热交换器的低温介质入口与蒸发器的介质出口相连,中间热交换器的低温介质出口与压缩机的介质入口相连;其特征在于,
制冷循环回路上还包括安装在压缩机出口的高压侧的压力开关一和泄压阀一、安装在气体冷却器出口的高压侧的压力传感装置一和温度传感器、安装在压缩机进口与气液分离器之间的低压侧的压力传感装置二、压力开关二和泄压阀二。
优选地,所述压力传感装置为压力变送器。
优选地,所述节流膨胀装置为电子膨胀阀。
优选地,所述压缩机为跨临界制冷压缩机。
优选地,所述节流膨胀装置、所述压力开关一、所述压力传感装置一、所述温度传感器、所述压力传感装置二、所述压力开关二和所述压缩机与控制器电连接,所述控制器接收来自所述压力传感装置一、所述温度传感器和所述压力传感装置二的电信号,并且根据接收的电信号的值对所述节流膨胀装置、所述压力开关一、所述泄压阀一、所述压力开关二和所述泄压阀二发出动作命令。
优选地,当压力传感装置一测得的压力值超出高压侧正常压力范围时,或当压力传感装置二测得的压力值超出低压侧正常压力范围时,或当温度传感器测得的温度超出高压侧正常温度范围时,控制器通过调节节流膨胀装置的开度使高、低压侧的压力以及高压侧的温度维持在正常范围内;
当压力传感装置一测得的压力值大于高压侧正常压力范围的最大值,并达到高压侧压力开关一的动作值压力时,压力开关一发送故障信号给控制器,控制器收到故障信号后关闭压缩机;或者当压力传感装置二测得的压力值低于低压侧正常压力范围的最小值,并达到低压侧压力开关二的动作值压力时,压力开关二发送故障信号给控制器,控制器收到故障信号后关闭压缩机;
当压力传感装置一测得的压力值恢复到高压侧压力开关一的恢复值压力时,压力开关一发送恢复信号给控制器,控制器收到恢复信号后重启压缩机;或者当压力传感装置二测得的压力值恢复到低压侧压力开关二的恢复值压力时,压力开关二发送恢复信号给控制器,控制器收到恢复信号后重启压缩机;
当压力传感装置一测得的压力值超过高压侧压力开关一的动作值压力,并且达到高压侧泄压阀一的开启值压力时,高压侧泄压阀一自动开启,排出二氧化碳;或者当压力传感装置一测得的压力值高于低压侧正常压力范围的最大值, 并且达到低压侧泄压阀二的开启值压力时,低压侧泄压阀二自动开启,排出二氧化碳。
优选地,所述控制器为空调中央控制器,或者所述控制器包括空调中央控制器和节流膨胀装置控制器。
优选地,所述空调中央控制器和所述节流膨胀装置控制器之间能够进行数据通讯。
一种二氧化碳空调压力控制和保护方法,其特征在于,包括三级控制,
第一级:当高压侧的压力超出高压侧正常压力范围时,或低压侧的压力超出低压侧正常压力范围时,或高压侧温度超出高压侧正常温度范围时,调整节流膨胀装置的开度;
第二级:当高压侧的压力大于高压侧正常压力范围的最大值,并达到高压侧第一压力警戒值时,或者当低压侧的压力低于低压侧正常压力范围的最小值,并达到低压侧第一压力警戒值时,关闭压缩机;
第三级:当高压侧的压力大于高压侧第一压力警戒值时,且达到高压侧第二压力警戒值时,释放高压侧冷媒配管中的二氧化碳冷媒,对管路进行泄压;或者当低压侧的压力高于低压侧正常压力范围的最大值,并且达到低压侧第二压力警戒值时,释放低压侧冷媒配管中的二氧化碳冷媒,对管路进行泄压。
从上述技术方案可以看出,本发明通过设置三级压力限制,并分别采用不同的设备进行保护,第一级,通过采用压力传感器和温度传感器,对***高压侧压力和低压侧压力和高压侧温度进行实时监测,调节节流膨胀装置开度,及时调整***压力,保证高压侧压力和低压侧压力在正常范围内;第二级,通过在高压侧和低压侧安装压力开关,当管路内压力值超出正常范围并触发压力开关动作,空调中央控制器收到压力开关动作信号后会关闭压缩机,停止空调***工作;第三级,通过在高压侧和低压侧安装泄压阀,当管路内压力值超出第二级范围后,将触发泄压阀开启,***内二氧化碳被及时排出。本发明可实现压力波动或异常情况下对***压力的控制和保护,有效防止******的风险发生。
附图说明
图1是本发明的第一具体实施例的二氧化碳空调的构成示意图;
图2是本发明的第二具体实施例的二氧化碳空调的构成示意图;
图3是本发明的第三具体实施例的二氧化碳空调的构成示意图;
图4是本发明的二氧化碳空调压力控制和保护方法的原理图;
图中:1、压缩机,2、气体冷却器,3、中间热交换器,4、电子膨胀阀,5、蒸发器,6、气液分离器,7、高压侧管路,8、低压侧管路,9、控制器,10、高压侧压力变送器一,11、低压侧压力变送器二,12、节流膨胀装置控制器,13、高压压力开关一,14、低压压力开关二,15、高压侧泄压阀一,16、低压侧泄压阀二,17、高压侧温度传感器。
具体实施方式
下面结合附图,对本发明的具体实施方式作进一步的详细说明。
需要说明的是,在下述的具体实施方式中,在详述本发明的实施方式时,为了清楚地表示本发明的结构以便于说明,特对附图中的结构不依照一般比例绘图,并进行了局部放大、变形及简化处理,因此,应避免以此作为对本发明的限定来加以理解。
实施例一
本发明的空调***以跨临界的CO 2为冷媒,CO 2冷媒的临界点温度约为31℃,与环境温度非常接近,因此,其排热温度必须超过临界点温度,即CO 2制冷循环的放热在超临界区进行,而蒸发吸热在亚临界区之中进行,从而形成跨临界制冷循环。
在以下本发明的具体实施方式中,请参阅图1和图4。如图1所示,本发明的二氧化碳空调包括由压缩机、气体冷却器、节流膨胀装置和蒸发器、气液分离器构成的并通过冷媒配管依次连接构成的制冷循环回路,制冷循环回路还包括中间热交换器,中间热交换器的高温介质入口与气体冷却器的介质出口相连,中间热交换器的高温介质出口与节流膨胀装置的介质入口相连,中间热交换器的低温介质入口与蒸发器的介质出口相连,中间热交换器的低温介质出口与压缩机的介质入口相连;如此,蒸发器的介质出口端的CO2冷媒被再一次升温,而进入节流膨胀装置的CO2冷媒被再一次降温,缩小气体冷却器介质出口和蒸发器介质入口间的压差,从而大幅度降低节流损失,进而提高***的效率。
节流膨胀装置优选可控制和调整开度的电子膨胀阀,电子膨胀阀的开度可 以根据压力和/或温度调节。
由于冷媒CO2的临界点较低,临界点压力亦相当高,所以,压缩机优先采用CO2冷媒专用的跨临界制冷压缩机。为了节能减排,跨临界制冷压缩机优选为变频跨临界制冷压缩机。
参考图4,二氧化碳空调压力控制和保护方法共分为三级保护:
第一级:当高压侧的压力超出高压侧正常压力范围时,或低压侧的压力超出低压侧正常压力范围时,或高压侧温度超出高压侧正常温度范围时,调整节流膨胀装置的开度,进而调整***压力,维持高、低压侧的压力值稳定在正常范围内。该第一级保护主要实现对***压力进行检测、控制和调整,使其压力维持在正常工作范围内。
第二级:当高压侧的压力大于高压侧正常压力范围的最大值,并达到高压侧第一压力警戒值时,或者当低压侧的压力低于低压侧正常压力范围的最小值,并达到低压侧第一压力警戒值时,关闭压缩机。当高压侧压力、低压侧压力皆恢复到正常范围内,可以重新启动压缩机。该第二级保护可实现压力限值保护,及时关闭压缩机,停止***工作,待***压力回复到正常范围后,压力开关会自动复位,空调***可重新启动。
第三级:当高压侧的压力大于高压侧第一压力警戒值时,且达到高压侧第二压力警戒值时,释放高压侧冷媒配管中的二氧化碳冷媒,对管路进行泄压;或者当低压侧的压力高于低压侧正常压力范围的最大值,并且达到低压侧第二压力警戒值时,释放低压侧冷媒配管中的二氧化碳冷媒,对管路进行泄压。如第二级保护发生故障失效或未能及时关闭压缩机停止***,第三级可实现对***泄压,将***内二氧化碳迅速排出,避免产生设备损坏或更严重的后果,保证行车安全。
通过上述的压力控制和保护***,可实现空调***压力波动或异常情况下对***压力的控制和保护。
在本实施例中,通过以下压力控制和保护装置实现二氧化碳空调的压力控制和保护,具体为:制冷循环回路上还包括安装在压缩机出口的高压侧的压力开关一和泄压阀一、安装在气体冷却器出口的高压侧的压力传感装置一和温度传感器、安装在压缩机进口与气液分离器之间的低压侧的压力传感装置二、压力开关二和泄压阀二。
安装在气体冷却器出口的高压侧的压力传感装置一和温度传感器以及安装在压缩机进口与气液分离器之间的低压侧的压力传感装置二,用于实时采集和监测压力和温度值是否处于正常范围内,如果非正常,则调整节流膨胀装置的开度,保证压力和/或温度处于正常范围内;然后,当通过调整节流膨胀装置的开度仍不能使压力和温度处于正常范围内时,可以通过压力开关关闭压缩机,如果压力和/或温度仍不能恢复到正常范围内,则通过打开泄压阀释放管路内的二氧化碳,避免管路***危险的发生。
优选地,压力传感装置为压力变送器。
实施例二
参阅图2和图4,本实施例在实施例一的基础上增加了控制器,控制器与节流膨胀装置、压力开关一、压力传感装置一、温度传感器、压力传感装置二、压力开关二和压缩机电连接,控制器接收来自压力传感装置一、温度传感器和压力传感装置二的电信号,并且根据接收的电信号的值对节流膨胀装置、压力开关一、泄压阀一、压力开关二和泄压阀二发出动作命令,实现压力的自动控制、调整和保护。
当压力传感装置一测得的压力值超出高压侧正常压力范围时,或当压力传感装置二测得的压力值超出低压侧正常压力范围时,或当温度传感器测得的温度超出高压侧正常温度范围时,控制器通过调节节流膨胀装置的开度使高、低压侧的压力以及高压侧的温度维持在正常范围内。
设置压力开关一和二的动作值压力和恢复值压力,当压力传感装置一测得的压力值大于高压侧正常压力范围的最大值,并达到高压侧压力开关一的动作值压力时,压力开关一发送故障信号给控制器,控制器收到故障信号后关闭压缩机;或者当压力传感装置二测得的压力值低于低压侧正常压力范围的最小值,并达到低压侧压力开关二的动作值压力时,压力开关二发送故障信号给控制器,控制器收到故障信号后关闭压缩机。
当压力传感装置一测得的压力值恢复到高压侧压力开关一的恢复值压力时,压力开关一发送恢复信号给控制器,控制器收到恢复信号后重启压缩机;或者当压力传感装置二测得的压力值恢复到低压侧压力开关二的恢复值压力时,压力开关二发送恢复信号给控制器,控制器收到恢复信号后重启压缩机。压力开关一的恢复值压力小于压力开关一的动作值压力且大于等于高压侧正常压力范 围的最大值。压力开关二的恢复值压力大于低压侧压力开关二的动作值压力且小于等于低压侧正常压力范围的最小值。
当压力传感装置一测得的压力值超过高压侧压力开关一的动作值压力,并且达到高压侧泄压阀一的开启值压力时,高压侧泄压阀一自动开启,排出二氧化碳;或者当压力传感装置一测得的压力值高于低压侧正常压力范围的最大值,并且达到低压侧泄压阀二的开启值压力时,低压侧泄压阀二自动开启,排出二氧化碳。
在本实施例中,控制器是一个具有控制功能的结构的总称,可以通过一个控制装置实现,例如空调中央控制器,也可以通过多个控制装置协同实现,例如综合利用空调中央控制器和节流膨胀装置控制器,具体见实施例三。
实施例三
参考图3和图4。由于电子膨胀阀也具有控制部分,可以对电子膨胀阀的控制进行改进,电子膨胀阀与高压侧的压力传感装置一和温度传感器以及低压侧的压力传感装置二电连接,当检测到压力或温度超出正常范围,及时调整电子膨胀阀的开度。
由于压缩机是由空调中央控制器控制的,因此,可以将压力开关一和二电连到空调中央控制器上,实现对压缩机的开和关控制。
节流膨胀装置控制器和空调中央控制器之间也进行数据通讯。
其余皆和实施例二内容相同,在此不赘述。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,根据本发明的技术方案及其发明构思加以等同替换或改变,都应涵盖在本发明的保护范围之内。

Claims (9)

  1. 一种二氧化碳空调,包括由压缩机、气体冷却器、节流膨胀装置、蒸发器、气液分离器构成的并通过冷媒配管依次连接构成的制冷循环回路,制冷循环回路还包括中间热交换器,中间热交换器的高温介质入口与气体冷却器的介质出口相连,中间热交换器的高温介质出口与节流膨胀装置的介质入口相连,中间热交换器的低温介质入口与蒸发器的介质出口相连,中间热交换器的低温介质出口与压缩机的介质入口相连;其特征在于,
    制冷循环回路上还包括安装在压缩机出口的高压侧的压力开关一和泄压阀一、安装在气体冷却器出口的高压侧的压力传感装置一和温度传感器、安装在压缩机进口与气液分离器之间的低压侧的压力传感装置二、压力开关二和泄压阀二。
  2. 根据权利要求1所述的二氧化碳空调,其特征在于,所述压力传感装置为压力变送器。
  3. 根据权利要求1所述的二氧化碳空调,其特征在于,所述节流膨胀装置为电子膨胀阀。
  4. 根据权利要求1所述的二氧化碳空调,其特征在于,所述压缩机为跨临界制冷压缩机。
  5. 根据权利要求1所述的二氧化碳空调,其特征在于,所述节流膨胀装置、所述压力开关一、所述压力传感装置一、所述温度传感器、所述压力传感装置二、所述压力开关二和所述压缩机与控制器电连接,所述控制器接收来自所述压力传感装置一、所述温度传感器和所述压力传感装置二的电信号,并且根据接收的电信号的值对所述节流膨胀装置、所述压力开关一、所述泄压阀一、所述压力开关二和所述泄压阀二发出动作命令。
  6. 根据权利要求5所述的二氧化碳空调,其特征在于,
    当压力传感装置一测得的压力值超出高压侧正常压力范围时,或当压力传感装置二测得的压力值超出低压侧正常压力范围时,或当温度传感器测得的温度超出高压侧正常温度范围时,控制器通过调节节流膨胀装置的开度使高、低压侧的压力以及高压侧的温度维持在正常范围内;
    当压力传感装置一测得的压力值大于高压侧正常压力范围的最大值,并达到高压侧压力开关一的动作值压力时,压力开关一发送故障信号给控制器,控制器收到故障信号后关闭压缩机;或者当压力传感装置二测得的压力值低于低 压侧正常压力范围的最小值,并达到低压侧压力开关二的动作值压力时,压力开关二发送故障信号给控制器,控制器收到故障信号后关闭压缩机;
    当压力传感装置一测得的压力值恢复到高压侧压力开关一的恢复值压力时,压力开关一发送恢复信号给控制器,控制器收到恢复信号后重启压缩机;或者当压力传感装置二测得的压力值恢复到低压侧压力开关二的恢复值压力时,压力开关二发送恢复信号给控制器,控制器收到恢复信号后重启压缩机;
    当压力传感装置一测得的压力值超过高压侧压力开关一的动作值压力,并且达到高压侧泄压阀一的开启值压力时,高压侧泄压阀一自动开启,排出二氧化碳;或者当压力传感装置一测得的压力值高于低压侧正常压力范围的最大值,并且达到低压侧泄压阀二的开启值压力时,低压侧泄压阀二自动开启,排出二氧化碳。
  7. 根据权利要求5或6所述的二氧化碳空调,其特征在于,所述控制器为空调中央控制器,或者所述控制器包括空调中央控制器和节流膨胀装置控制器。
  8. 根据权利要求7所述的二氧化碳空调,其特征在于,所述空调中央控制器和所述节流膨胀装置控制器之间能够进行数据通讯。
  9. 一种二氧化碳空调压力控制和保护方法,其特征在于,包括三级控制,
    第一级:当高压侧的压力超出高压侧正常压力范围时,或低压侧的压力超出低压侧正常压力范围时,或高压侧温度超出高压侧正常温度范围时,调整节流膨胀装置的开度;
    第二级:当高压侧的压力大于高压侧正常压力范围的最大值,并达到高压侧第一压力警戒值时,或者当低压侧的压力低于低压侧正常压力范围的最小值,并达到低压侧第一压力警戒值时,关闭压缩机;
    第三级:当高压侧的压力大于高压侧第一压力警戒值时,且达到高压侧第二压力警戒值时,释放高压侧冷媒配管中的二氧化碳冷媒,对管路进行泄压;或者当低压侧的压力高于低压侧正常压力范围的最大值,并且达到低压侧第二压力警戒值时,释放低压侧冷媒配管中的二氧化碳冷媒,对管路进行泄压。
PCT/CN2019/093312 2018-12-06 2019-06-27 一种二氧化碳空调及压力控制和保护方法 WO2020113949A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811483413.4 2018-12-06
CN201811483413.4A CN109425141A (zh) 2018-12-06 2018-12-06 一种二氧化碳空调及压力控制和保护方法

Publications (1)

Publication Number Publication Date
WO2020113949A1 true WO2020113949A1 (zh) 2020-06-11

Family

ID=65514871

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/093312 WO2020113949A1 (zh) 2018-12-06 2019-06-27 一种二氧化碳空调及压力控制和保护方法

Country Status (2)

Country Link
CN (1) CN109425141A (zh)
WO (1) WO2020113949A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220396119A1 (en) * 2021-06-14 2022-12-15 Hyundai Motor Company Device for protecting an air conditioning system of a vehicle

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109425141A (zh) * 2018-12-06 2019-03-05 中车大连机车研究所有限公司 一种二氧化碳空调及压力控制和保护方法
CN111878933B (zh) * 2019-07-22 2021-06-08 北京联合大学 一种安全高效的中央空调调温结构及方法
CN113580876B (zh) * 2021-07-21 2024-06-11 浙江吉利控股集团有限公司 一种二氧化碳空调保护装置及其控制策略

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1014013A1 (en) * 1998-12-18 2000-06-28 Sanden Corporation Vapor compression type refrigeration cycle
KR20040078942A (ko) * 2003-03-05 2004-09-14 한라공조주식회사 초임계 냉동 사이클 보호장치
CN203651780U (zh) * 2013-11-21 2014-06-18 石家庄国祥运输设备有限公司 一种空调机组
CN105890107A (zh) * 2015-02-13 2016-08-24 杭州三花研究院有限公司 空调***的控制方法
CN107101408A (zh) * 2017-06-15 2017-08-29 周登荣 一种用于二氧化碳为媒介的调温***
CN107202446A (zh) * 2017-06-27 2017-09-26 杭州佳力斯韦姆新能源科技有限公司 一种带有缓冲罐的水源二氧化碳热泵***
CN108645027A (zh) * 2018-05-14 2018-10-12 西安交通大学 一种跨临界co2热泵热水器***最优排气压力的极值搜索控制***及方法
CN109425141A (zh) * 2018-12-06 2019-03-05 中车大连机车研究所有限公司 一种二氧化碳空调及压力控制和保护方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101240962B (zh) * 2008-01-18 2010-06-02 西安交通大学 一种基于压力-温度的二氧化碳热泵的控制方法
CN103673416A (zh) * 2012-08-31 2014-03-26 杭州三花研究院有限公司 汽车空调***中制冷剂流量的控制方法及汽车空调***
CN103105021B (zh) * 2013-01-22 2015-12-09 秦海涛 Co2跨临界循环的制冷热泵机组及其控制方法
CN209230061U (zh) * 2018-12-06 2019-08-09 中车大连机车研究所有限公司 一种具有压力保护***的二氧化碳空调

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1014013A1 (en) * 1998-12-18 2000-06-28 Sanden Corporation Vapor compression type refrigeration cycle
KR20040078942A (ko) * 2003-03-05 2004-09-14 한라공조주식회사 초임계 냉동 사이클 보호장치
CN203651780U (zh) * 2013-11-21 2014-06-18 石家庄国祥运输设备有限公司 一种空调机组
CN105890107A (zh) * 2015-02-13 2016-08-24 杭州三花研究院有限公司 空调***的控制方法
CN107101408A (zh) * 2017-06-15 2017-08-29 周登荣 一种用于二氧化碳为媒介的调温***
CN107202446A (zh) * 2017-06-27 2017-09-26 杭州佳力斯韦姆新能源科技有限公司 一种带有缓冲罐的水源二氧化碳热泵***
CN108645027A (zh) * 2018-05-14 2018-10-12 西安交通大学 一种跨临界co2热泵热水器***最优排气压力的极值搜索控制***及方法
CN109425141A (zh) * 2018-12-06 2019-03-05 中车大连机车研究所有限公司 一种二氧化碳空调及压力控制和保护方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220396119A1 (en) * 2021-06-14 2022-12-15 Hyundai Motor Company Device for protecting an air conditioning system of a vehicle

Also Published As

Publication number Publication date
CN109425141A (zh) 2019-03-05

Similar Documents

Publication Publication Date Title
WO2020113949A1 (zh) 一种二氧化碳空调及压力控制和保护方法
WO2020103516A1 (zh) 蒸发冷却式冷水机组换热***及其控制方法
WO2021073098A1 (zh) 一种定频空调器缺冷媒保护方法
CN110621944B (zh) 制冷循环装置
CN204730502U (zh) 一种低温制冷机房空调器
CN104729033A (zh) 空调机组的冷水机组的防冻方法和装置
CN104321598A (zh) 冷冻装置
WO2021089000A1 (zh) 一种跨临界二氧化碳制冷方法及其装置
CN209230061U (zh) 一种具有压力保护***的二氧化碳空调
CN109282425A (zh) 一种空调***及其压力异常的自检测方法
EP4033179A1 (en) Non-stop defrosting multi-connected hot water system and control method thereof
CN109631378B (zh) Co2制冷剂跨临界变频压缩运行的热泵热水装置及其控制方法
CN110234944B (zh) 制冷***
CN106931545B (zh) 一种热泵喷焓***及其控制方法、空调器
CN109612141B (zh) 制冷机组及其控制方法、控制装置
CN105987456A (zh) 一种多联式空调室外机和多联机空调***及其小负荷运行的控制方法
EP3762664A1 (en) Cascade system for use in economizer compressor and related methods
CN104879966A (zh) 一种变频空调器及其控制方法
CN102226551A (zh) 使用碳氢化合物制冷剂的空调***
CN203132194U (zh) 一种空调***
CN107014019A (zh) 一种低温环境下的风冷单冷机组
CN107504706B (zh) 空调器及其快速制冷方法
CN214120464U (zh) 一种安全加氟的制冷***
CN112277988A (zh) 轨道车辆空调机组及控制方法
US10408513B2 (en) Oil line control system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19893117

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 17/09/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19893117

Country of ref document: EP

Kind code of ref document: A1