WO2020113752A1 - 显示器结构及制造方法 - Google Patents

显示器结构及制造方法 Download PDF

Info

Publication number
WO2020113752A1
WO2020113752A1 PCT/CN2019/070214 CN2019070214W WO2020113752A1 WO 2020113752 A1 WO2020113752 A1 WO 2020113752A1 CN 2019070214 W CN2019070214 W CN 2019070214W WO 2020113752 A1 WO2020113752 A1 WO 2020113752A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
display
manufacturing
flexible substrate
substrate
Prior art date
Application number
PCT/CN2019/070214
Other languages
English (en)
French (fr)
Inventor
丁峰
Original Assignee
武汉华星光电半导体显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉华星光电半导体显示技术有限公司 filed Critical 武汉华星光电半导体显示技术有限公司
Priority to US16/333,237 priority Critical patent/US11196029B2/en
Publication of WO2020113752A1 publication Critical patent/WO2020113752A1/zh

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/80Manufacture or treatment specially adapted for the organic devices covered by this subclass using temporary substrates
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K77/00Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
    • H10K77/10Substrates, e.g. flexible substrates
    • H10K77/111Flexible substrates
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/311Flexible OLED
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the invention relates to a display structure and manufacturing method, in particular to a flexible display structure and manufacturing method.
  • the structure of the current flexible organic light-emitting diode is to directly contact a flexible material (such as polyimide) with a glass substrate to form a flexible substrate.
  • a flexible material such as polyimide
  • the peeling of the flexible substrate is to use a laser to crack the contact surface of the flexible substrate and the glass substrate at high temperature, so as to achieve the peeling of the flexible substrate.
  • the flexible substrate is peeled off and transferred to the next station of the bonding industry, there is a risk of scratches, which negatively affects the subsequent bonding process, resulting in a decrease in yield.
  • using a laser to crack the interface between the flexible substrate and the glass substrate at high temperature may damage the structure of the display due to the high temperature of the laser.
  • the flexible substrate and the glass substrate cannot be completely separated, so that part of the flexible substrate remains on the glass substrate, or part of the flexible substrate After carbonization at a high temperature, it remains on the flexible substrate, affecting subsequent processes.
  • the present invention provides a display structure and a manufacturing method to solve the problem in the prior art that the structure of the display is destroyed when the glass substrate is peeled by laser.
  • the main object of the present invention is to provide a display structure and manufacturing method, which can improve the problem of high-temperature cracking of the contact surface of the flexible substrate and the glass substrate by laser, which may damage the structure of the display due to the high temperature of the laser .
  • the secondary object of the present invention is to provide a display structure and a manufacturing method, which uses a sacrificial layer and a graphene layer, thereby avoiding damage to the structure of the display during laser lift-off, and protecting the flexible substrate during the manufacturing process and increasing Flexibility of flexible substrates.
  • an embodiment of the present invention provides a method for manufacturing a flexible display.
  • the method for manufacturing a display includes the following steps:
  • (A) Provide a carrier board with a rigid substrate, a sacrificial layer and a graphene layer formed in sequence;
  • the rigid substrate is a glass substrate; the sacrificial layer is a first polyimide layer; and the flexible substrate is a second polyimide layer .
  • a thickness of the first polyimide layer is 1 ⁇ m to 2 ⁇ m.
  • a thickness of the second polyimide layer is 8 ⁇ m to 10 ⁇ m.
  • the graphene layer has a thickness of 30-50 microns.
  • the graphene layer is formed by low-temperature sputtering deposition.
  • the display element layer has a plurality of organic light emitting diode elements.
  • Another embodiment of the present invention provides a method for manufacturing a flexible display, including the steps of:
  • (A) Provide a carrier board with a rigid substrate, a sacrificial layer and a graphene layer formed in sequence;
  • the rigid substrate is a glass substrate; the sacrificial layer is a first polyimide layer; and the flexible substrate is a second polyimide layer .
  • a thickness of the first polyimide layer is 1 ⁇ m to 2 ⁇ m.
  • a thickness of the second polyimide layer is 8 ⁇ m to 10 ⁇ m.
  • the step (d) further includes: applying a laser to the first polyimide layer to crack the first polyimide layer to remove the rigidity The substrate and the sacrificial layer.
  • the graphene layer has a thickness of 30-50 microns.
  • the graphene layer is formed by low-temperature sputtering deposition.
  • the display element layer has a plurality of organic light emitting diode elements.
  • another embodiment of the present invention further provides a display structure, including: a graphene layer; a polyimide layer, disposed on the graphene layer; and a display element layer, disposed on the polyacryl On the imine layer.
  • a thickness of the polyimide layer is 8 microns to 10 microns.
  • the graphene layer has a thickness of 30-50 microns.
  • the graphene layer is formed by low-temperature sputtering deposition.
  • the display element layer has a plurality of organic light emitting diode elements.
  • the display structure and manufacturing method of the present invention can not only improve the high-temperature cracking of the contact surface of the flexible substrate and the glass substrate by laser, but may damage the structure of the display due to the high temperature of the laser Problem, it can also avoid the risk of scratches before the flexible substrate is peeled off and transferred to the next station bonding industry, thereby avoiding the negative impact of the scratches on the subsequent bonding process, thereby improving the yield of the product.
  • FIGS 1A to 1D are schematic diagrams of the display structure and manufacturing method of the first embodiment of the present invention.
  • an embodiment of the present invention provides a display structure and a manufacturing method, including steps:
  • (A) Provide a carrier board 10 in which a rigid substrate 101, a sacrificial layer 102 and a graphene layer 103 are formed in sequence;
  • FIG. 1A to FIG. 1D will use FIG. 1A to FIG. 1D to explain in detail one by one the detailed structure, assembly relationship and operation principle of the above-mentioned components in an embodiment.
  • the present invention first performs step (a) to provide a carrier 10, which is formed with a rigid substrate 101, a sacrificial layer 102, and a graphene layer 103 in sequence.
  • the rigid substrate 101 is a glass substrate
  • the sacrificial layer 102 is a first polyimide layer.
  • a thickness of the first polyimide layer is 1 ⁇ m to 2 ⁇ m.
  • the sacrificial layer 102 is coated on the glass substrate.
  • the sacrificial layer 102 can also be formed on the glass substrate by printing.
  • a layer of the graphene layer 103 is attached to the sacrificial layer 102.
  • the graphene layer 103 can also be formed by low-temperature sputtering deposition.
  • the graphene layer 103 has a thickness of 30-50 microns.
  • the present invention then proceeds to step (b) to form a flexible substrate 104 on the carrier board 10.
  • the flexible substrate 104 is a second polyimide layer.
  • a thickness of the second polyimide layer is 8 microns to 10 microns.
  • the flexible substrate 104 may be formed on the carrier board 10 by coating.
  • the present invention subsequently performs step (c) to form a display element layer 105 on the flexible substrate 104.
  • the display element layer 105 has a plurality of organic light emitting diode elements.
  • the display element layer 105 may have multiple thin film transistors.
  • the display element layer 105 may be replaced with other elements suitable for flexible displays.
  • a liquid crystal layer, a color film layer, an optical filter layer, a cover plate layer, etc. may be further formed, which will not be repeated here.
  • the present invention finally performs step (d) to remove the rigid substrate 101 and the sacrificial layer 102.
  • the step (d) further includes: applying a laser to the first polyimide layer to crack the first polyimide layer to remove the rigid substrate 101 and all ⁇ dressing layer 102
  • the graphene layer 103 remains under the flexible substrate 104. In this way, after the flexible substrate 104 is peeled off and transferred to a subsequent process, the graphene layer 103 can protect the flexible substrate 104 from the risk of scratches, thereby avoiding a negative impact on the subsequent bonding process, resulting in Yield decreases.
  • the graphene layer 103 can effectively release the stress generated when the flexible display is bent, and can improve the bending capability of the flexible display.
  • the thickness of the first polyimide layer is 1 ⁇ m to 2 ⁇ m, the first polyimide layer can be completely vaporized and vaporized by the laser without remaining on the rigid substrate On 101, the rigid substrate 101 can be recycled and reused, and the first polyimide layer will not remain on the graphene layer 103, thereby contaminating the subsequent process and causing a decrease in yield.
  • the graphene layer 103 can protect the flexible substrate 104 and the display element layer 105 formed on the flexible substrate 104 from applying the first polyimide layer During the laser, the flexible substrate 104 and the display element layer 105 formed on the flexible substrate 104 are destroyed.
  • the graphene layer 103 has the thickness of 30 ⁇ m to 50 ⁇ m, the flexible substrate 104 and the display element layer 105 formed on the flexible substrate 104 can be effectively protected without significant Increasing the cost of products is extremely economical.
  • another embodiment of the present invention further provides a display structure manufactured by the method described above, the display structure comprising:
  • a display element layer is disposed on the polyimide layer.
  • a thickness of the polyimide layer is 8 microns to 10 microns; and the graphene layer has a thickness of 30 microns to 50 microns.
  • another embodiment of the present invention further provides a display carrier structure manufactured by the method described above.
  • the display carrier structure includes:
  • a carrier board is sequentially formed with a rigid substrate, a sacrificial layer and a graphene layer.
  • the rigid substrate is a glass substrate
  • the sacrificial layer is a first polyimide layer.
  • a thickness of the first polyimide layer is 1 ⁇ m to 2 ⁇ m.
  • the graphene layer has a thickness of 30 microns to 50 microns.
  • the graphene layer is formed by low-temperature sputtering deposition.
  • the flexible substrate is often peeled off and transferred to the next station before the cooperation, which leads to the risk of scratches, which will cause subsequent bonding processes. Negative impact, resulting in reduced yield.
  • a laser is used to crack the interface between the flexible substrate and the glass substrate at high temperature, which causes the structure of the display to be damaged due to the high temperature of the laser.
  • part of the flexible substrate remains on the glass substrate, or part of the flexible substrate remains on the flexible substrate, affecting subsequent processes.
  • the display structure and manufacturing method of the present invention prevent the structure of the display from being destroyed by laser stripping by using the sacrificial layer and the graphene layer, and protect the flexible substrate during the manufacturing process, and increase the bending ability of the flexible substrate .

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

一种显示器结构及制造方法。显示器制造方法包含步骤:(a)提供一载板(10),依序形成有一刚性衬底(101)、一可牺牲层(102)及一石墨烯层(103);(b)形成一柔性衬底(104)于载板(10)上;(c)形成一显示器元件层(105)于柔性衬底(104)上;及(d)移除刚性衬底(101)及可牺牲层(102)。通过使用可牺牲层(102)及石墨烯层(103),从而避免利用激光剥离时破坏显示器的结构,及于制造流程中保护柔性衬底(104),并增加柔性衬底(104)的弯折能力。

Description

显示器结构及制造方法 技术领域
本发明是有关于一种显示器结构及制造方法,特别是有关于一种柔性显示器结构及制造方法。
背景技术
近年来,随着显示技术的创新及发展,显示器的应用场景也越来越多样化。随着电子产品朝着轻、薄、短、小的快速发展,各种便携式电子产品使用的液晶显示面板的需求越来越大。其中,柔性有机发光二极管(OLED)具有自发光性、应答速度快、广视角等特点,应用前景广阔。如今,可弯折显示器成为主流。
技术问题
但目前的柔性有机发光二极管的结构是将柔性材料(例如聚酰亚胺)直接与玻璃衬底接触以形成柔性衬底,于制程中将所述柔性衬底与所述玻璃衬底剥离,所述柔性衬底的剥离是利用激光将所述柔性衬底与所述玻璃衬底的接触面高温裂解,从而达到柔性衬底的剥离。所述柔性衬底剥离之后转移到下一站贴合作业之前,会有划伤的风险,从而对后续的贴合工艺产生负面影响,导致良率降低。再者,利用激光将所述柔性衬底与所述玻璃衬底的接触面高温裂解,可能会因为激光的高温破坏显示器的结构。再者,所述柔性衬底高温裂解后,无法完全分离所述柔性衬底与所述玻璃衬底,使得部分的柔性衬底残留在所述玻璃衬底上,或部分的所述柔性衬底高温碳化后残留在所述柔性衬底上,影响后续制程。
故,有必要提供一种显示器结构及制造方法,以解决现有技术所存在的问题。
技术解决方案
有鉴于此,本发明提供一种显示器结构及制造方法,以解决现有技术所存在的利用激光剥离玻璃衬底时破坏显示器的结构的问题。
本发明的主要目的在于提供一种显示器结构及制造方法,其可以改善利用激光将所述柔性衬底与所述玻璃衬底的接触面高温裂解,可能会因为激光的高温破坏显示器的结构的问题。
本发明的次要目的在于提供一种显示器结构及制造方法,其通过使用可牺牲层及石墨烯层,从而避免利用激光剥离时破坏显示器的结构,及于制造流程中保护柔性衬底,并增加柔性衬底的弯折能力。
为达成本发明的前述目的,本发明一实施例提供一种柔性显示器制造方法,所述显示器制造方法包含步骤:
(a)提供一载板,依序形成有一刚性衬底、一可牺牲层及一石墨烯层;
(b)形成一柔性衬底于所述载板上;
(c)形成一显示器元件层于所述柔性衬底上;及
(d)对所述可牺牲层施加一激光,以使所述可牺牲层完全经由所述激光裂解汽化而不会残留在所述刚性衬底上,进而移除所述刚性衬底及所述可牺牲层。
在本发明的一实施例中,所述刚性衬底为一玻璃衬底;所述可牺牲层为一第一聚酰亚胺层;及所述柔性衬底为一第二聚酰亚胺层。
在本发明的一实施例中,所述第一聚酰亚胺层的一厚度为1微米至2微米。
在本发明的一实施例中,所述第二聚酰亚胺层的一厚度为8微米至10微米。
在本发明的一实施例中,所述石墨烯层具有一厚度为30微米至50微米。
在本发明的一实施例中,所述石墨烯层通过低温溅射沉积形成。
在本发明的一实施例中,所述显示器元件层具有多个有机发光二极管元件。
再者,本发明另一实施例提供一种柔性显示器制造方法,包含步骤:
(a)提供一载板,依序形成有一刚性衬底、一可牺牲层及一石墨烯层;
(b)形成一柔性衬底于所述载板上;
(c)形成一显示器元件层于所述柔性衬底上;及
(d)移除所述刚性衬底及所述可牺牲层。
在本发明的一实施例中,所述刚性衬底为一玻璃衬底;所述可牺牲层为一第一聚酰亚胺层;及所述柔性衬底为一第二聚酰亚胺层。
在本发明的一实施例中,所述第一聚酰亚胺层的一厚度为1微米至2微米。
在本发明的一实施例中,所述第二聚酰亚胺层的一厚度为8微米至10微米。
在本发明的一实施例中,所述步骤(d)更包含:对所述第一聚酰亚胺层施加一激光,以使所述第一聚酰亚胺层裂解而移除所述刚性衬底及所述可牺牲层。
在本发明的一实施例中,所述石墨烯层具有一厚度为30微米至50微米。
在本发明的一实施例中,所述石墨烯层通过低温溅射沉积形成。
在本发明的一实施例中,所述显示器元件层具有多个有机发光二极管元件。
另外,本发明又一实施例另提供一种显示器结构,包含:一石墨烯层;一聚酰亚胺层,设置于所述石墨烯层上;及一显示器元件层,设置于所述聚酰亚胺层上。
在本发明的一实施例中,所述聚酰亚胺层的一厚度为8微米至10微米。
在本发明的一实施例中,所述石墨烯层具有一厚度为30微米至50微米。
在本发明的一实施例中,所述石墨烯层通过低温溅射沉积形成。
在本发明的一实施例中,所述显示器元件层具有多个有机发光二极管元件。
有益效果
与现有技术相比较,本发明的显示器结构及制造方法,这样不但可改善利用激光将所述柔性衬底与所述玻璃衬底的接触面高温裂解,可能会因为激光的高温破坏显示器的结构的问题,还可以避免所述柔性衬底剥离之后转移到下一站贴合作业之前被划伤的风险,从而避免划伤对后续的贴合工艺产生负面影响,进而提高产品的良率。
附图说明
为让本发明的上述内容能更明显易懂,下文特举优选实施例,并配合所附图式,作详细说明如下:
图1A至图1D是本发明第一实施例的显示器结构及制造方法示意图。
本发明的实施方式
以下各实施例的说明是参考附加的图式,用以例示本发明可用以实施的特定实施例。再者,本发明所提到的方向用语,例如上、下、顶、底、前、后、左、右、内、外、侧面、周围、中央、水平、横向、垂直、纵向、轴向、径向、最上层或最下层等,仅是参考附加图式的方向。因此,使用的方向用语是用以说明及理解本发明,而非用以限制本发明。
请参照图1A至图1D所示,本发明实施例为达成本发明的前述目的,提供一种显示器结构及制造方法,包含步骤:
(a)提供一载板10,依序形成有一刚性衬底101、一可牺牲层102及一石墨烯层103;
(b)形成一柔性衬底104于所述载板10上;
(c)形成一显示器元件层105于所述柔性衬底104上;及
(d)移除所述刚性衬底101及所述可牺牲层102。
本发明将于下文利用图1A至图1D逐一详细说明在一实施例中上述各元件的细部构造、组装关系及其运作原理。
请参照图1A所示,本发明首先进行步骤(a),以提供一载板10,所述载板10依序形成有一刚性衬底101、一可牺牲层102及一石墨烯层103。较佳地,所述刚性衬底101为一玻璃衬底,所述可牺牲层102为一第一聚酰亚胺层。较佳地,所述第一聚酰亚胺层的一厚度为1微米至2微米。所述载板10可由一供应商提供时,即具有所述刚性衬底101、所述可牺牲层102及所述石墨烯层103。所述载板10也可由一供应商购买一玻璃衬底。可选地,于厂内将所述玻璃衬底进行清洗。在所述玻璃衬底上面涂布所述可牺牲层102。所述可牺牲层102也可以印刷的方式形成于所述玻璃衬底上。接着,在所述可牺牲层102贴附一层所述石墨烯层103。可选地,所述石墨烯层103也可通过低温溅射沉积形成。可选地,所述石墨烯层103具有一厚度为30微米至50微米。
请参照图1B所示,本发明接着进行步骤(b),以形成一柔性衬底104于所述载板10上。较佳地,所述柔性衬底104为一第二聚酰亚胺层。可选地,述第二聚酰亚胺层的一厚度为8微米至10微米。所述柔性衬底104可以通过涂布的方式形成于所述载板10上。
请参照图1C所示,本发明随后进行步骤(c),以形成一显示器元件层105于所述柔性衬底104上。较佳地,所述显示器元件层105具有多个有机发光二极管元件。替代地,所述显示器元件层105可以具有多个薄膜晶体管。本领域普通技术人员应当理解,所述显示器元件层105可以为替换成其他适合于柔性显示器中的元件。在所述显示器元件层105上更可形成有液晶层、彩膜层、滤光片层或盖板层等,在此不一一赘述。
请参照图1D所示,本发明最后进行步骤(d),以移除所述刚性衬底101及所述可牺牲层102。较佳地,所述步骤(d)更包含:对所述第一聚酰亚胺层施加一激光,以使所述第一聚酰亚胺层裂解而移除所述刚性衬底101及所述可牺牲层102。在移除所述刚性衬底101及所述可牺牲层102,所述石墨烯层103保留所述柔性衬底104下。如此,所述柔性衬底104剥离之后转移到后续的制程,所述石墨烯层103能够保护所述柔性衬底104以避免划伤的风险,从而避免对后续的贴合工艺产生负面影响,导致良率降低。再者,所述石墨烯层103能够有效释放柔性显示器在弯折时所产生的应力,并可以提升柔性显示器的弯折能力。另外,由于所述第一聚酰亚胺层的所述厚度为1微米至2微米,所述第一聚酰亚胺层可完全经由所述激光裂解汽化而不会残留在所述刚性衬底101上,使得所述刚性衬底101可以回收再使用,且所述第一聚酰亚胺层不会残留于所述石墨烯层103上,进而污染后续制程而造成良率下降。再者,所述石墨烯层103能够保护所述柔性衬底104及形成在所述柔性衬底104上的所述显示器元件层105,免于对所述第一聚酰亚胺层施加所述激光时,破坏所述柔性衬底104及形成在所述柔性衬底104上的所述显示器元件层105。所述石墨烯层103具有所述厚度为30微米至50微米时,可以有效地保护所述柔性衬底104及形成在所述柔性衬底104上的所述显示器元件层105,又不会大幅增加产品的成本,极具经济效益。
再者,本发明另一实施例另提供一种经由上文所述的方法制造的一种显示器结构,所述显示器结构包含:
一石墨烯层;
一聚酰亚胺层,设置于所述石墨烯层上;及
一显示器元件层,设置于所述聚酰亚胺层上。
较佳地,所述聚酰亚胺层的一厚度为8微米至10微米;及所述石墨烯层具有一厚度为30微米至50微米。
另外,本发明另一实施例另提供一种经由上文所述的方法制造的一种显示器载板结构,所述显示器载板结构包含:
一载板,依序形成有一刚性衬底、一可牺牲层及一石墨烯层。
较佳地,所述刚性衬底为一玻璃衬底,所述可牺牲层为一第一聚酰亚胺层。
较佳地,所述第一聚酰亚胺层的一厚度为1微米至2微米。
较佳地,所述石墨烯层具有一厚度为30微米至50微米。
较佳地,所述石墨烯层通过低温溅射沉积形成。
如上所述,相较于现有的问题,却也常因所述柔性衬底剥离之后转移到下一站贴合作业之前,而导致会有划伤的风险,从而对后续的贴合工艺产生负面影响,导致良率降低。再者,利用激光将所述柔性衬底与所述玻璃衬底的接触面高温裂解,而导致因为激光的高温破坏显示器的结构。再者,所述柔性衬底高温裂解后,而导致部分的柔性衬底残留在所述玻璃衬底上,或部分的所述柔性衬底残留在所述柔性衬底上,影响后续制程。本发明的显示器结构及制造方法通过其通过使用可牺牲层及石墨烯层,从而避免利用激光剥离时破坏显示器的结构,及于制造流程中保护柔性衬底,并增加柔性衬底的弯折能力。
本发明已由上述相关实施例加以描述,然而上述实施例仅为实施本发明的范例。必需指出的是,已公开的实施例并未限制本发明的范围。相反地,包含于权利要求书的精神及范围的修改及均等设置均包括于本发明的范围内。

Claims (20)

  1. 一种柔性显示器制造方法,包含步骤:
    (a)提供一载板,依序形成有一刚性衬底、一可牺牲层及一石墨烯层;
    (b)形成一柔性衬底于所述载板上;
    (c)形成一显示器元件层于所述柔性衬底上;及
    (d)对所述可牺牲层施加一激光,以使所述可牺牲层完全经由所述激光裂解汽化而不会残留在所述刚性衬底上,进而移除所述刚性衬底及所述可牺牲层。
  2. 如权利要求1所述的显示器制造方法,其中所述刚性衬底为一玻璃衬底;所述可牺牲层为一第一聚酰亚胺层;及所述柔性衬底为一第二聚酰亚胺层。
  3. 如权利要求2所述的显示器制造方法,其中所述第一聚酰亚胺层的一厚度为1微米至2微米。
  4. 如权利要求2所述的显示器制造方法,其中所述第二聚酰亚胺层的一厚度为8微米至10微米。
  5. 如权利要求1所述的显示器制造方法,其中所述石墨烯层具有一厚度为30微米至50微米。
  6. 如权利要求1所述的显示器制造方法,其中所述石墨烯层通过低温溅射沉积形成。
  7. 如权利要求1所述的显示器制造方法,其中所述显示器元件层具有多个有机发光二极管元件。
  8. 一种柔性显示器制造方法,包含步骤:
    (a)提供一载板,依序形成有一刚性衬底、一可牺牲层及一石墨烯层;
    (b)形成一柔性衬底于所述载板上;
    (c)形成一显示器元件层于所述柔性衬底上;及
    (d)移除所述刚性衬底及所述可牺牲层。
  9. 如权利要求8所述的显示器制造方法,其中所述刚性衬底为一玻璃衬底;所述可牺牲层为一第一聚酰亚胺层;及所述柔性衬底为一第二聚酰亚胺层。
  10. 如权利要求9所述的显示器制造方法,其中所述第一聚酰亚胺层的一厚度为1微米至2微米。
  11. 如权利要求9所述的显示器制造方法,其中所述第二聚酰亚胺层的一厚度为8微米至10微米。
  12. 如权利要求9所述的显示器制造方法,其中所述步骤(d)更包含:对所述第一聚酰亚胺层施加一激光,以使所述第一聚酰亚胺层裂解而移除所述刚性衬底及所述可牺牲层。
  13. 如权利要求8所述的显示器制造方法,其中所述石墨烯层具有一厚度为30微米至50微米。
  14. 如权利要求8所述的显示器制造方法,其中所述石墨烯层通过低温溅射沉积形成。
  15. 如权利要求8所述的显示器制造方法,其中所述显示器元件层具有多个有机发光二极管元件。
  16. 一种显示器结构,包含:
    一石墨烯层;
    一聚酰亚胺层,设置于所述石墨烯层上;及
    一显示器元件层,设置于所述聚酰亚胺层上。
  17. 如权利要求16所述的显示器制造方法,其中所述聚酰亚胺层的一厚度为8微米至10微米。
  18. 如权利要求16所述的显示器制造方法,其中所述石墨烯层具有一厚度为30微米至50微米。
  19. 如权利要求16所述的显示器制造方法,其中所述石墨烯层通过低温溅射沉积形成。
  20. 如权利要求16所述的显示器制造方法,其中所述显示器元件层具有多个有机发光二极管元件。
PCT/CN2019/070214 2018-12-05 2019-01-03 显示器结构及制造方法 WO2020113752A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/333,237 US11196029B2 (en) 2018-12-05 2019-01-03 Display structure and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811480988.0 2018-12-05
CN201811480988.0A CN109638178A (zh) 2018-12-05 2018-12-05 显示器结构及制造方法

Publications (1)

Publication Number Publication Date
WO2020113752A1 true WO2020113752A1 (zh) 2020-06-11

Family

ID=66071180

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/070214 WO2020113752A1 (zh) 2018-12-05 2019-01-03 显示器结构及制造方法

Country Status (3)

Country Link
US (1) US11196029B2 (zh)
CN (1) CN109638178A (zh)
WO (1) WO2020113752A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113012580A (zh) * 2021-03-09 2021-06-22 深圳市华星光电半导体显示技术有限公司 一种牺牲层、显示面板制程方法及显示面板

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110444116B (zh) * 2019-07-16 2021-07-06 武汉华星光电半导体显示技术有限公司 柔性基板及其制备方法
CN110783389A (zh) * 2019-10-31 2020-02-11 云谷(固安)科技有限公司 柔性显示屏的制作方法及待剥离临时基板的柔性显示屏
WO2021147039A1 (zh) * 2020-01-22 2021-07-29 京东方科技集团股份有限公司 驱动背板及其制备方法、显示面板、显示装置
CN113934311B (zh) 2020-06-29 2024-07-19 瀚宇彩晶股份有限公司 柔性面板及其制作方法
CN111697022B (zh) * 2020-07-08 2023-06-27 深圳市华星光电半导体显示技术有限公司 显示面板和显示装置
CN112002704A (zh) * 2020-08-07 2020-11-27 武汉华星光电半导体显示技术有限公司 柔性显示面板及其制备方法与柔性显示装置
US11963309B2 (en) 2021-05-18 2024-04-16 Mellanox Technologies, Ltd. Process for laminating conductive-lubricant coated metals for printed circuit boards
US12004308B2 (en) * 2021-05-18 2024-06-04 Mellanox Technologies, Ltd. Process for laminating graphene-coated printed circuit boards

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103985665A (zh) * 2014-05-15 2014-08-13 深圳市华星光电技术有限公司 一种柔性显示器的制作方法
CN104332416A (zh) * 2014-08-21 2015-02-04 京东方科技集团股份有限公司 一种柔性显示器的制备方法和柔性显示器
CN104505467A (zh) * 2014-12-05 2015-04-08 上海天马微电子有限公司 一种复合基板、柔性显示器的制造方法以及柔性显示器
CN104716081A (zh) * 2015-03-26 2015-06-17 京东方科技集团股份有限公司 柔性装置及其制作方法
CN108054297A (zh) * 2017-12-12 2018-05-18 武汉华星光电半导体显示技术有限公司 柔性显示面板的制作方法
KR20180074171A (ko) * 2016-12-23 2018-07-03 엘지디스플레이 주식회사 플렉서블 기판과 이를 포함하는 플렉서블 표시장치 및 그 제조 방법

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103606535B (zh) * 2013-11-26 2016-01-06 深圳市华星光电技术有限公司 软性显示器组件的制作方法及其制作的软性显示器组件
US9812604B2 (en) * 2014-05-30 2017-11-07 Klaus Y. J. Hsu Photosensing device with graphene
CN104201283A (zh) * 2014-09-04 2014-12-10 广州新视界光电科技有限公司 衬底与基板分离工艺、牺牲层、柔性显示器件及其制备工艺
KR102581899B1 (ko) * 2015-11-04 2023-09-21 삼성전자주식회사 투명 전극 및 이를 포함하는 소자
CN106356472A (zh) * 2016-10-18 2017-01-25 武汉华星光电技术有限公司 Oled器件制作方法及oled器件
JP7127802B2 (ja) * 2018-04-18 2022-08-30 三国電子有限会社 タッチ検出機能付き表示装置及びその製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103985665A (zh) * 2014-05-15 2014-08-13 深圳市华星光电技术有限公司 一种柔性显示器的制作方法
CN104332416A (zh) * 2014-08-21 2015-02-04 京东方科技集团股份有限公司 一种柔性显示器的制备方法和柔性显示器
CN104505467A (zh) * 2014-12-05 2015-04-08 上海天马微电子有限公司 一种复合基板、柔性显示器的制造方法以及柔性显示器
CN104716081A (zh) * 2015-03-26 2015-06-17 京东方科技集团股份有限公司 柔性装置及其制作方法
KR20180074171A (ko) * 2016-12-23 2018-07-03 엘지디스플레이 주식회사 플렉서블 기판과 이를 포함하는 플렉서블 표시장치 및 그 제조 방법
CN108054297A (zh) * 2017-12-12 2018-05-18 武汉华星光电半导体显示技术有限公司 柔性显示面板的制作方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113012580A (zh) * 2021-03-09 2021-06-22 深圳市华星光电半导体显示技术有限公司 一种牺牲层、显示面板制程方法及显示面板

Also Published As

Publication number Publication date
US11196029B2 (en) 2021-12-07
US20210184181A1 (en) 2021-06-17
CN109638178A (zh) 2019-04-16

Similar Documents

Publication Publication Date Title
WO2020113752A1 (zh) 显示器结构及制造方法
US9673014B2 (en) Method of manufacturing display panel
CN113421839B (zh) 微发光二极管转移方法及制造方法
US9096044B2 (en) Flexible display panel and method of fabricating the same
WO2020177600A1 (zh) 显示基板及其制造方法,显示面板、显示装置
JP3974749B2 (ja) 機能素子の転写方法
KR20100070730A (ko) 플렉서블 표시장치의 제조 방법
KR20130003997A (ko) 캐리어 기판과 박형 글라스의 탈부착 방법
JP2016521247A (ja) ガラス構造体ならびにガラス構造体の製造および加工方法
US20080002118A1 (en) Flexible display substrate module and method of manufacturing flexible display device
US20210181877A1 (en) Touch display assembly and method for manufacturing same
WO2017209087A1 (ja) 表示装置製造方法
WO2021003900A1 (zh) 显示面板及其制备方法
JP6281770B2 (ja) 接合体の製造方法
JP2018081242A (ja) 液晶パネルの製造方法
JP5767663B2 (ja) 表示パネルの製造方法及び積層構造体
US10199576B2 (en) Display panel and fabricating method thereof, and display device
KR20120053601A (ko) 플렉서블 표시장치의 제조 방법
WO2018119752A1 (zh) 显示面板的制造方法
KR101742528B1 (ko) 수지 필름층의 박리 방법 및 박막 소자 디바이스의 제조 방법
CN107611286A (zh) 一种柔性oled显示器的制备方法
JP2019178018A (ja) 薄型ガラス基板製造方法
JP2018026260A (ja) 表示装置製造方法
WO2020118953A1 (zh) 柔性基板、柔性显示面板及其制造方法
US11211561B2 (en) Display panel and manufacturing method thereof, and display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19892301

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19892301

Country of ref document: EP

Kind code of ref document: A1