WO2020113370A1 - 一种飞行器、数据处理***及针对飞行器的数据处理方法 - Google Patents

一种飞行器、数据处理***及针对飞行器的数据处理方法 Download PDF

Info

Publication number
WO2020113370A1
WO2020113370A1 PCT/CN2018/118913 CN2018118913W WO2020113370A1 WO 2020113370 A1 WO2020113370 A1 WO 2020113370A1 CN 2018118913 W CN2018118913 W CN 2018118913W WO 2020113370 A1 WO2020113370 A1 WO 2020113370A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
target
time
data processing
pulse signal
Prior art date
Application number
PCT/CN2018/118913
Other languages
English (en)
French (fr)
Inventor
陈锦熙
杨勇
王钧玉
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to PCT/CN2018/118913 priority Critical patent/WO2020113370A1/zh
Priority to CN201880038370.0A priority patent/CN110892671B/zh
Publication of WO2020113370A1 publication Critical patent/WO2020113370A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L7/00Arrangements for synchronising receiver with transmitter
    • H04L7/0079Receiver details
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/02Details
    • H04J3/06Synchronising arrangements
    • H04J3/0635Clock or time synchronisation in a network
    • H04J3/0638Clock or time synchronisation among nodes; Internode synchronisation
    • H04J3/0658Clock or time synchronisation among packet nodes
    • H04J3/0661Clock or time synchronisation among packet nodes using timestamps
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L7/00Arrangements for synchronising receiver with transmitter
    • H04L7/0079Receiver details
    • H04L7/0087Preprocessing of received signal for synchronisation, e.g. by code conversion, pulse generation or edge detection

Definitions

  • the invention relates to the technical field of data processing, in particular to an aircraft, a data processing system and a data processing method for the aircraft.
  • the communication protocols between UAV modules usually include UART, SPI, IIC, etc. Due to the protocol characteristics of the communication protocols such as UART, SPI, IIC, etc., data transmission between the modules will be delayed, and the real-time performance will be reduced. In addition, most of the modules take the time point after the unpacking of the received data as the time point corresponding to the message; because the software receiving and unpacking and receiving processing also takes a long time, it will further lead to data transmission Lag and real-time performance are reduced. Due to the above reasons, the accuracy of data synchronization between the modules will be low, and the high accuracy requirements will not be met. Therefore, how to achieve high accuracy of data synchronization between modules is a problem to be solved.
  • Embodiments of the present invention disclose an aircraft, a data processing system, and a data processing method for the aircraft, which can obtain the precise time corresponding to the data, thereby achieving high accuracy of data synchronization between modules.
  • a first aspect of an embodiment of the present invention discloses an aircraft.
  • the aircraft includes a data collection device and a data processing device, where:
  • the data collection device is configured to generate a synchronization pulse signal when target data is collected, and send the synchronization pulse signal and the target data to the data processing device;
  • the data processing device is configured to receive the synchronization pulse signal sent by the data collection device and determine a target time for receiving the synchronization pulse signal;
  • the data processing device is also used to determine the target data sent by the data collection device from the data received by the data interface, and use the target time as the target data receiving time, so as to facilitate The receiving time processes the target data.
  • the data processing device is specifically used for:
  • the data received after the synchronization pulse signal among the data received by the data interface is determined as the target data sent by the data collection device.
  • the data processing device is specifically used for:
  • the data received first after the synchronization pulse signal among the data received by the data interface is determined as the target data sent by the data collection device.
  • the data processing device is also used to:
  • the receiving time of the first data is determined according to the target time and a preset time interval, where the preset time interval corresponds to the cycle time of the synchronization pulse signal.
  • the data processing device is also used to:
  • the data processing device is specifically used for:
  • the calibration timestamp is obtained from the second data.
  • the data collection device is any one of a GPS device, an IMU device, a compass device, and a visual sensor device; the data processing device is a flight control device or a shooting device.
  • a second aspect of an embodiment of the present invention discloses a data processing system.
  • the data processing system includes an aircraft and a data processing device, where:
  • the aircraft is configured to generate a synchronization pulse signal when target data is collected, and send the synchronization pulse signal and the target data to the data processing device;
  • the data processing device is configured to receive the synchronization pulse signal sent by the aircraft and determine a target time for receiving the synchronization pulse signal;
  • the data processing device is further configured to determine the target data sent by the aircraft from the data received by the data interface, and use the target time as the reception time of the target data, so as to facilitate Time to process the target data.
  • the data processing device is specifically used to:
  • the data received after the synchronization pulse signal among the data received by the data interface is determined as the target data sent by the aircraft.
  • the data processing device is specifically used to:
  • the data received first after the synchronization pulse signal among the data received by the data interface is determined as the target data sent by the aircraft.
  • the data processing device is also used to:
  • the receiving time of the first data is determined according to the target time and a preset time interval, where the preset time interval corresponds to the cycle time of the synchronization pulse signal.
  • the data processing device is also used to:
  • the aircraft includes a GPS device, and the data processing device is specifically used to:
  • the calibration timestamp is obtained from the second data.
  • a third aspect of an embodiment of the present invention discloses a data processing method for an aircraft.
  • the aircraft includes a data collection device.
  • the data collection device is used to collect target data and generate a synchronization pulse signal when the target data is collected.
  • the method includes:
  • the target time is used as the reception time of the target data, so that the target data can be processed according to the reception time.
  • the data collection device generates the synchronization pulse signal when the target data is collected, and sends the synchronization pulse signal and the target data to the data processing device; the data processing device receives the synchronization pulse signal and determines the received synchronization pulse signal Target time; then determine the target data from the received data, and use the target time as the target data receiving time, so that the precise time corresponding to the data can be obtained, and the data synchronization between the modules can be achieved with high precision.
  • FIG. 1 is a schematic diagram of a data collection time determination method disclosed in an embodiment of the present invention.
  • FIG. 2 is a schematic structural diagram of an aircraft disclosed in an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of information transmission between devices disclosed in an embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of a data processing system disclosed in an embodiment of the present invention.
  • FIG. 5 is a schematic flowchart of a data processing method for an aircraft disclosed in an embodiment of the present invention.
  • An embodiment of the present invention provides an aircraft, which includes functional devices for various purposes, including a data collection device for data collection and a data processing device for processing data.
  • the data collection device for example, It may be a visual sensor, a motion sensor, a compass, and a position sensor such as a GPS sensor, etc.
  • the data processing device may be the flight controller of the aircraft.
  • the data processing device can receive data from the data collection device, on the other hand, it will perform data processing based on the data to facilitate better flight control of the aircraft, for example, based on the VIO algorithm for motion
  • the data of the sensors (accelerometer, gyroscope, etc.) and the data of the visual sensor are calculated to control the aircraft for safer flight, hovering, and landing.
  • flight users can carry some equipment on the aircraft according to their own needs, in order to achieve certain image shooting, geological monitoring, power inspection and other tasks through the aircraft, these devices can be mounted on the aircraft and can receive Data collected by the data collection device on the aircraft. These devices may be, for example, cameras, various third-party function devices, and so on.
  • a data acquisition device such as a position sensor can respectively send synchronization pulse signals and target data to a data processing device such as a flight control controller through two different interfaces.
  • the data processing device takes the time of receiving the synchronization pulse signal as the reception time of the target data, so that the accurate data collection time of the target data can be obtained.
  • the data collection device may also be an inertial measurement unit, a compass, a visual sensor, and the like.
  • the data processing device may also be a camera or other third-party equipment external to the aircraft.
  • the aircraft includes a fuselage 201, a power system 202, a data acquisition device 203 and a data processing device 204.
  • the power system 202 is installed on the fuselage 201 for providing flight power; specifically, the power system 202 may include one or more of a propeller, a motor, and an electric ESC.
  • the data collection device 203 may include a first data collection device 2031 and a second data collection device 2032.
  • the first data collection device 2031 is, for example, an inertial measurement device
  • the second data collection device 2032 is, for example, a visual sensor device.
  • the data collection device 203 not only includes a data bus interface, but also includes a synchronization pulse interface.
  • the synchronization pulse interface may be simply referred to as a synchronization SYNC interface. among them:
  • the data collection device 203 is used to collect target data, and generates a synchronization pulse signal at the synchronization pulse interface of the data collection device 203 when the target data is collected.
  • the synchronization pulse signal may be simply referred to as a SYNC signal, and the SYNC signal may be a falling source pulse signal with a very small delay relative to the actual sampling time of the target data. The delay is usually less than 100 ns.
  • the data acquisition device 203 sends the synchronization pulse signal to the data processing device 204 through the synchronization pulse interface, and sends the target data to the data processing device 204 through the data bus interface.
  • FIG. 3 is a schematic diagram of information transmission between devices according to an embodiment of the present invention. As shown in FIG.
  • the data collection device 203 sends the synchronization pulse signal and the target data to the data processing device 204 through two different interfaces, respectively.
  • the data collection device 203 may be any one of a global positioning system (Global Positioning System, GPS) device, an inertial measurement (Inertial measurement unit, IMU) device, a compass device, and a visual sensor device.
  • GPS Global Positioning System
  • IMU Inertial measurement unit
  • the target data After the data collection device 203 collects the target data, the target data will be processed accordingly, such as packet compression or packetization; and due to factors such as the characteristics of the communication protocol between the data collection device 203 and the data processing device 204, it will cause the target
  • the transmission of data has a longer delay and will be transmitted to the data processing device 204 more slowly.
  • the synchronization pulse signal transmission delay is very small, and will be quickly transmitted to the data processing device 204. Therefore, the data processing device 204 first receives the synchronization pulse signal sent by the data collection device 203, and then receives the target data sent by the data collection device 203.
  • the data processing device 204 After receiving the synchronization pulse signal sent by the data collection device 203, the data processing device 204 determines the target time for receiving the synchronization pulse signal; further, the data processing device 204 determines from the data received by the data interface that the data collection device 203 sends And the target time as the receiving time of the target data, so that the data processing device 204 can process the target data according to the receiving time.
  • the data processing device 204 may be a flight control device; processing the target data includes performing differentiation, integration, three-dimensional mapping, and positioning information time confirmation on the target data. It should be noted that the target data may refer to a data protocol frame containing target data. In the above manner, by using the reception time of the synchronization pulse signal as the reception time of the target data, the precise time when the target data is collected can be obtained, thereby achieving high accuracy of data synchronization between the modules.
  • the data processing device 204 may determine the data received after the synchronization pulse signal among the data received by the data interface as the target data sent by the data collection device 204. In another embodiment, the data processing device 204 may specifically determine the data received first after the synchronization pulse signal among the data received by the data interface as the target data sent by the data collection device 204. Wherein, the target data corresponds to the synchronization pulse signal.
  • the data processing device 204 generates an interrupt when it receives the synchronization pulse signal sent by the data collection device 203, and determines the generation time of the interrupt, and uses the interrupt generation time as the internal time stamp of the data processing device 204.
  • the target data is aligned with the internal time stamp, that is, the time corresponding to the internal time stamp is used as the target data Reception time.
  • internal alignment of external data and internal information of the data processing device 204 can be achieved.
  • the above method is used between the flight control device and the IMU device, which can effectively improve the accuracy of IMU data integration and differentiation algorithms.
  • the data processing device 204 is further configured to receive second data, where the second data carries a calibration time stamp.
  • the calibration timestamp may be a real-time clock (Real-Time Clock, RTC) timestamp, and the calibration timestamp may be sent by the data collection device 203.
  • the data processing device 204 obtains the calibration time stamp from the second data, and adjusts the local time of the data processing device 204 to the time corresponding to the calibration time stamp. In the above manner, the local time of the data processing device 204 can be calibrated, and the accurate time at the time of target data collection can be obtained by the calibrated local time.
  • the data processing device 204 may use only the second data sent by the GPS device as a time calibration. After receiving the second data, the data processing device 204 may detect whether the second data is data sent by the GPS device. Specifically, the data processing device 204 may determine whether the second data is data sent by the GPS device by detecting whether the data receiving pin corresponding to the second data is the data receiving pin corresponding to the GPS device. If it is detected that the second data is data sent by the GPS device, the data processing device 204 obtains the calibration time stamp from the second data, and adjusts the local time of the data processing device 204 to the time corresponding to the calibration time stamp. If it is detected that the second data is not the data sent by the GPS device, the data processing device 204 does not perform local time calibration.
  • the synchronization pulse signal has periodicity.
  • the data processing device 204 determines the first data received after the target data from the data received by the data interface of the data processing device 204 after taking the target time of receiving the synchronization pulse signal as the target data receiving time, and based on The target time and a preset time interval determine the receiving time of the first data, and the preset time interval corresponds to the cycle time of the synchronization pulse signal. For example, assuming that the first data is the first data received by the data processing device 204 after the target data, the target time is added to the duration corresponding to the preset time interval as the reception time of the first data.
  • the target time plus two corresponding time intervals of the preset time interval is taken as the reception time of the first data.
  • the precise time at the target data collection is determined, the precise time at the data collection received after the target data can be known in advance in combination with the cycle time of the synchronization pulse signal.
  • the GPS signal can be used to combine the second pulse signal (Pulse Per Second, PPS) signal in the above manner to accurately confirm the time of the positioning information.
  • PPS Pulse Per Second
  • the data collection device generates the synchronization pulse signal when the target data is collected, and sends the synchronization pulse signal and the target data to the data processing device; the data processing device receives the synchronization pulse signal and determines the received synchronization pulse signal Target time; then determine the target data from the received data, and use the target time as the target data receiving time, so that the precise time corresponding to the data can be obtained, and the data synchronization between the modules can be achieved with high precision.
  • An embodiment of the present invention provides a data processing system.
  • 4 is a schematic structural diagram of a data processing system according to an embodiment of the present invention.
  • the data processing system includes an aircraft 200 and a data processing device 300.
  • a communication connection is established between the aircraft 200 and the data processing device 300.
  • the data processing device 300 may be a device external to the aircraft 200, for example, a shooting device external to the aircraft 200.
  • the aircraft 200 includes a fuselage 201, a power system 202, and a data acquisition device 203.
  • the power system 202 is installed on the fuselage 201 for providing flight power; specifically, the power system 202 may include one or more of a propeller, a motor, and an electric ESC.
  • the data collection device 203 may include a first data collection device 2031 and a second data collection device 2032.
  • the first data collection device 2031 is, for example, an inertial measurement device
  • the second data collection device 2032 is, for example, a visual sensor device.
  • the data acquisition device 203 includes not only a data bus interface, but also a synchronous pulse interface. among them:
  • the aircraft 200 is used to collect target data, and generates synchronized pulse signals when the target data is collected. Specifically, the aircraft 200 collects target data through the data collection device 203, and generates a synchronization pulse signal at the synchronization pulse interface of the data collection device 203 when the target data is collected.
  • the synchronization pulse signal may be a falling source pulse signal with a very small delay relative to the actual sampling time of the target data, and the delay is usually less than 100 ns.
  • the aircraft 200 sends the synchronization pulse signal and the target data to the data processing device 300 through two different interfaces.
  • the aircraft 200 sends the synchronization pulse signal to the data processing device 300 through the synchronization pulse interface of the data collection device 203, and sends the target data to the data processing device 300 through the data bus interface of the data collection device 203.
  • the data collection device 203 may be any one of a GPS device, an IMU device, a compass device, and a visual sensor device.
  • the target data After the aircraft 200 collects the target data, the target data will be processed accordingly, such as packetizing or packetizing; and due to factors such as the communication protocol characteristics between the aircraft 200 and the data processing device 300, the transmission of target data will cause The longer the delay, the slower the transmission to the data processing device 300.
  • the transmission delay of the synchronization pulse signal is very small and will be quickly transmitted to the data processing device 300. Therefore, the data processing device 300 receives the synchronization pulse signal sent by the aircraft 200 first, and then receives the target data sent by the aircraft 200.
  • the data processing device 300 After receiving the synchronization pulse signal sent by the aircraft 200, the data processing device 300 determines the target time for receiving the synchronization pulse signal; further, the data processing device 300 determines the target data sent by the aircraft 200 from the data received by the data interface, The target time is used as the reception time of the target data, so that the data processing device 300 processes the target data according to the reception time.
  • processing the target data includes performing differentiation and integration on the target data.
  • the target data may refer to a data protocol frame containing target data.
  • the data processing device 300 may determine the data received after the synchronization pulse signal among the data received by the data interface as the target data sent by the aircraft 200. In another embodiment, the data processing device 300 may specifically determine the data received first after the synchronization pulse signal among the data received by the data interface as the target data sent by the aircraft 200. Wherein, the target data corresponds to the synchronization pulse signal.
  • the data processing device 300 generates an interruption when receiving the synchronization pulse signal sent by the aircraft 200, and determines the generation time of the interruption, and uses the interruption generation time as the internal time stamp of the data processing device 300. After the data processing device 300 determines the target data sent by the aircraft 200 from the data received by the data interface, the target data is aligned with the internal time stamp, that is, the time corresponding to the internal time stamp is used as the reception of the target data time. In the above manner, internal alignment of external data and internal information of the data processing device 300 can be achieved. The above method can effectively improve the accuracy of algorithms such as data integration and differentiation.
  • the data processing device 300 is further configured to receive second data, where the second data carries a calibration timestamp.
  • the calibration timestamp may be a real-time clock RTC timestamp, and the calibration timestamp may be sent by the aircraft 200.
  • the data processing device 300 acquires the calibration time stamp from the second data, and adjusts the local time of the data processing device 300 to the time corresponding to the calibration time stamp. In the above manner, the local time of the data processing device 300 can be calibrated, and the accurate time at the time of target data collection can be obtained through the calibrated local time.
  • the data processing device 300 may use only the second data sent by the GPS device as a time calibration. After receiving the second data, the data processing device 300 may detect whether the second data is data sent by the GPS device. Specifically, the data processing device 300 may determine whether the second data is data sent by the GPS device by detecting whether the data receiving pin corresponding to the second data is the data receiving pin corresponding to the GPS device. If it is detected that the second data is data sent by the GPS device, the data processing device 300 obtains a calibration time stamp from the second data, and adjusts the local time of the data processing device 300 to the time corresponding to the calibration time stamp. If it is detected that the second data is not the data sent by the GPS device, the data processing device 300 does not perform local time calibration.
  • the synchronization pulse signal has periodicity.
  • the data processing device 300 determines the first data received after the target data from the data received by the data interface of the data processing device 300 after taking the target time of receiving the synchronization pulse signal as the target data receiving time, and based on The target time and a preset time interval determine the receiving time of the first data, and the preset time interval corresponds to the cycle time of the synchronization pulse signal. For example, assuming that the first data is the first data received by the data processing device 300 after the target data, the target time plus the duration corresponding to the preset time interval is taken as the reception time of the first data.
  • the target time plus two durations corresponding to the preset time interval is taken as the reception time of the first data.
  • the precise time at the target data collection is determined, the precise time at the data collection received after the target data can be known in advance in combination with the cycle time of the synchronization pulse signal.
  • the aircraft generates a synchronization pulse signal when collecting target data, and sends the synchronization pulse signal and the target data to the data processing device; the data processing device receives the synchronization pulse signal and determines the target time of receiving the synchronization pulse signal ; Then determine the target data from the received data, and use the target time as the target data receiving time, so that the precise time corresponding to the data can be obtained, and the data synchronization between the aircraft and the data processing device can be achieved with high precision.
  • FIG. 5 is a schematic flowchart of a data processing method for an aircraft according to an embodiment of the present invention.
  • the aircraft includes a data collection device.
  • the data collection device is used to collect target data and generate a synchronization pulse signal when the target data is collected.
  • the data processing method for an aircraft provided by an embodiment of the present invention can be applied not only to the data processing apparatus 204 shown in FIG. 2 but also to the data processing device 300 shown in FIG. 4. Methods can include:
  • S501 Receive a synchronization pulse signal sent by a data collection device, and determine a target time for receiving the synchronization pulse signal.
  • the data collection device is used to collect target data, and when the target data is collected, a synchronization pulse signal is generated at a synchronization pulse interface of the data collection device.
  • the synchronization pulse signal may be a falling source pulse signal with a very small delay relative to the actual sampling time of the target data.
  • the data acquisition device sends the synchronization pulse signal to the data processing device through the synchronization pulse interface, and sends the target data to the data processing device through the data bus interface. After the data collection device collects the target data, the target data will be compressed or packaged and processed accordingly; and due to factors such as the characteristics of the communication protocol between the data collection device and the data processing device, the transmission of the target data will be more Long delays will be transmitted to the data processing device more slowly.
  • the data processing device first receives the synchronization pulse signal sent by the data collection device, and then receives the target data sent by the data collection device. After receiving the synchronization pulse signal sent by the data collection device, the data processing device determines the target time for receiving the synchronization pulse signal.
  • S502 Determine target data sent by the data collection device from the data received by the data interface.
  • the data processing device may determine the data received after the synchronization pulse signal among the data received by the data interface as the target data sent by the data collection device. Specifically, the data received first after the synchronization pulse signal among the data received by the data interface may be determined as the target data sent by the data collection device. It should be noted that the target data may refer to a data protocol frame containing target data.
  • processing the target data includes performing differentiation, integration, three-dimensional mapping, and positioning information time confirmation on the target data.
  • the data processing device determines the first data received after the target data from the data received by the data interface; and determines the reception time of the first data according to the target time and the preset time interval, preset The time interval corresponds to the cycle time of the synchronization pulse signal.
  • the data processing device receives the second data, and the second data carries the calibration timestamp; obtains the calibration timestamp from the second data, and adjusts the local time to the time corresponding to the calibration timestamp.
  • the data processing device after receiving the second data, the data processing device first detects whether the second data is data sent by the GPS device, and only obtains calibration from the second data if the second data is data sent by the GPS device Time stamp, and use the calibration time stamp to calibrate the local time.
  • the target time for receiving the synchronization pulse signal is determined; then the target data sent by the data collection device is determined from the received data, and the target time is determined.
  • the precise time corresponding to the data can be obtained, and the data synchronization between the aircraft and the data processing device can be achieved with high precision.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)
  • Electric Clocks (AREA)

Abstract

一种飞行器(200)、数据处理***及针对飞行器(200)的数据处理方法,其中,所述飞行器(200)包括数据采集装置(203)和数据处理装置(204);所述数据采集装置(203),用于在采集到目标数据时生成同步脉冲信号,并将所述同步脉冲信号以及所述目标数据发送给所述数据处理装置(204);所述数据处理装置(204),用于接收所述数据采集装置(203)发送的所述同步脉冲信号,并确定接收到所述同步脉冲信号的目标时间;所述数据处理装置(204),还用于从数据接口接收到的数据中确定出所述数据采集装置(203)发送的所述目标数据,并将所述目标时间作为所述目标数据的接收时间,以便于根据所述接收时间对所述目标数据进行处理,这样可以获取数据对应的精确时间,从而实现模块间的数据同步高精准度。

Description

一种飞行器、数据处理***及针对飞行器的数据处理方法 技术领域
本发明涉及数据处理技术领域,尤其涉及一种飞行器、数据处理***及针对飞行器的数据处理方法。
背景技术
随着无人机(Unmanned Aerial Vehicle,UAV)技术的高速发展以及广泛应用,无人机各模块间的高精度协作能力需求已日益凸显出来。在一些控制精度要求较高的应用场景中,例如搭载实时动态载波差分定位(Real-time kinematic,RTK)设备以实现无人机厘米级控制作业等应用场景,往往对各模块间的数据同步精准度要求非常高。
目前,无人机模块之间的通信协议通常包括UART、SPI、IIC等,由于UART、SPI、IIC等通信协议的协议特性会导致各模块间的数据传输滞后、实时性降低等问题。另外,大部分模块都是将收到的数据解包完成后的时间点作为该消息对应的时间点;由于软件收包、解包等接收处理也存在较长的耗时,会进一步导致数据传输滞后、实时性降低。由于上述原因,会导致各模块间的数据同步精准度较低,达不到高精准度要求。因此,如何实现模块间的数据同步高精准度是有待解决的问题。
发明内容
本发明实施例公开了一种飞行器、数据处理***及针对飞行器的数据处理方法,可以获取数据对应的精确时间,从而实现模块间的数据同步高精准度。
本发明实施例第一方面公开了一种飞行器,所述飞行器包括数据采集装置和数据处理装置,其中:
所述数据采集装置,用于在采集到目标数据时生成同步脉冲信号,并将所述同步脉冲信号以及所述目标数据发送给所述数据处理装置;
所述数据处理装置,用于接收所述数据采集装置发送的所述同步脉冲信号,并确定接收到所述同步脉冲信号的目标时间;
所述数据处理装置,还用于从数据接口接收到的数据中确定出所述数据采集装置发送的所述目标数据,并将所述目标时间作为所述目标数据的接收时间,以便于根据所述接收时间对所述目标数据进行处理。
在一实施方式中,所述数据处理装置具体用于:
将所述数据接口接收到的数据中在所述同步脉冲信号之后接收到的数据,确定为所述数据采集装置发送的所述目标数据。
在一实施方式中,所述数据处理装置具体用于:
将所述数据接口接收到的数据中在所述同步脉冲信号之后第一个接收到的数据,确定为所述数据采集装置发送的所述目标数据。
在一实施方式中,所述数据处理装置还用于:
从所述数据接口接收到的数据中确定出在所述目标数据之后接收到的第一数据;
根据所述目标时间以及预设时间间隔确定出所述第一数据的接收时间,所述预设时间间隔与所述同步脉冲信号的周期时间对应。
在一实施方式中,所述数据处理装置还用于:
接收第二数据,所述第二数据中携带校准时间戳;
从所述第二数据中获取所述校准时间戳,并将本地时间调整为所述校准时间戳对应的时间。
在一实施方式中,所述数据处理装置具体用于:
检测所述第二数据是否是GPS装置发送的数据;
若所述第二数据是GPS装置发送的数据,则从所述第二数据中获取所述校准时间戳。
在一实施方式中,所述数据采集装置为GPS装置、IMU装置、指南针装置、视觉传感器装置中的任意一种;所述数据处理装置为飞控装置或者拍摄装置。
本发明实施例第二方面公开了一种数据处理***,所述数据处理***包括飞行器和数据处理设备,其中:
所述飞行器,用于在采集到目标数据时生成同步脉冲信号,并将所述同步脉冲信号以及所述目标数据发送给所述数据处理设备;
所述数据处理设备,用于接收所述飞行器发送的所述同步脉冲信号,并确定接收到所述同步脉冲信号的目标时间;
所述数据处理设备,还用于从数据接口接收到的数据中确定出所述飞行器发送的所述目标数据,并将所述目标时间作为所述目标数据的接收时间,以便于根据所述接收时间对所述目标数据进行处理。
在一实施方式中,所述数据处理设备具体用于:
将所述数据接口接收到的数据中在所述同步脉冲信号之后接收到的数据,确定为所述飞行器发送的所述目标数据。
在一实施方式中,所述数据处理设备具体用于:
将所述数据接口接收到的数据中在所述同步脉冲信号之后第一个接收到的数据,确定为所述飞行器发送的所述目标数据。
在一实施方式中,所述数据处理设备还用于:
从所述数据接口接收到的数据中确定出在所述目标数据之后接收到的第一数据;
根据所述目标时间以及预设时间间隔确定出所述第一数据的接收时间,所述预设时间间隔与所述同步脉冲信号的周期时间对应。
在一实施方式中,所述数据处理设备还用于:
接收第二数据,所述第二数据中携带校准时间戳;
从所述第二数据中获取所述校准时间戳,并将本地时间调整为所述校准时间戳对应的时间。
在一实施方式中,所述飞行器包括GPS装置,所述数据处理设备具体用于:
检测所述第二数据是否是所述GPS装置发送的数据;
若所述第二数据是所述GPS装置发送的数据,则从所述第二数据中获取所述校准时间戳。
本发明实施例第三方面公开了一种针对飞行器的数据处理方法,所述飞行器包括数据采集装置,所述数据采集装置用于采集目标数据,并在采集到所述目标数据时生成同步脉冲信号,所述方法包括:
接收所述数据采集装置发送的所述同步脉冲信号,并确定接收到所述同步脉冲信号的目标时间;
从数据接口接收到的数据中确定出所述数据采集装置发送的所述目标数据;
将所述目标时间作为所述目标数据的接收时间,以便于根据所述接收时间对所述目标数据进行处理。
本发明实施例中,数据采集装置在采集到目标数据时生成同步脉冲信号,并将同步脉冲信号以及目标数据发送给数据处理装置;数据处理装置接收同步脉冲信号,并确定接收到同步脉冲信号的目标时间;然后从接收到的数据中确定出目标数据,并将目标时间作为目标数据的接收时间,从而可以获取数据对应的精确时间,实现模块间的数据同步高精准度。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例公开的一种数据采集时间确定方式的示意图;
图2是本发明实施例公开的一种飞行器的结构示意图;
图3是本发明实施例公开的一种装置间信息传输的示意图;
图4是本发明实施例公开的一种数据处理***的架构示意图;
图5是本发明实施例公开的一种针对飞行器的数据处理方法的流程示意图。
具体实施方式
本发明实施例提供一种飞行器,在该飞行器中包括了各种用途的功能装置,其中,包括用于进行数据采集的数据采集装置和用于对数据进行处理的数据处理装置,数据采集装置例如可以是视觉传感器、运动传感器、指南针、以及位置传感器例如GPS传感器等等,而数据处理装置则可以为该飞行器的飞行控制器。在一个实施例中,数据处理装置一方面可以从数据采集装置中接收到数据,另一方面,会基于这些数据进行数据处理,以便于对飞行器进行更好的 飞行控制,例如基于VIO算法对运动传感器(加速度计和陀螺仪等)的数据和视觉传感器的数据进行计算,以对飞行器进行更加安全的飞行、悬停、降落等控制。另外,飞行用户可以根据自身的需要,在飞行器上搭载一些设备,以便于通过飞行器来实现某些影像拍摄、地质监测、电力巡检等等任务,这些设备可挂载在飞行器上,且能够接收飞行器上的数据采集装置采集的数据。这些设备例如可以是相机、各种第三方功能设备等。不管是飞行器中的所述数据处理装置或者是相机等第三方设备,在对数据采集装置采集的数据进行处理时,一般都需要准确的数据采集时间,以便于在一些对数据时间准确度要求比较高的算法、涉及到微分/积分算法的计算、以及照片位置信息精度应用等方面保证达到一定的预期精度。因此,在本发明实施例中,提供了一种数据采集时间确定方式的示意图。如图1所示,数据采集装置例如位置传感器可以通过两个不同接口分别将同步脉冲信号和目标数据发送给数据处理装置例如飞控控制器。数据处理装置将接收到同步脉冲信号的时间作为目标数据的接收时间,从而可以获取到目标数据准确的数据采集时间。其中,该数据采集装置还可以是惯性测量单元、指南针和视觉传感器等。该数据处理装置还可以是飞行器外接的相机或者其他第三方设备等。
图2为本发明实施例提供的一种飞行器的结构示意图。如图2所示,该飞行器包括机身201、动力***202、数据采集装置203和数据处理装置204。该动力***202安装于所述机身201,用于提供飞行动力;具体地,动力***202可以包括螺旋桨、电机、电调中的一种或多种。数据采集装置203可以包括第一数据采集装置2031和第二数据采集装置2032。该第一数据采集装置2031例如是惯性测量装置,第二数据采集装置2032例如是视觉传感器装置。数据采集装置203不仅包括数据总线接口,还包括同步脉冲接口,可以将该同步脉冲接口简称为同步SYNC接口。其中:
数据采集装置203用于采集目标数据,并在采集到目标数据时在数据采集装置203的同步脉冲接口生成同步脉冲信号。该同步脉冲信号可以简称为SYNC信号,该SYNC信号可以是一个相对该目标数据的实际采样时间延迟非常小的下降源脉冲信号,该延迟通常小于100ns。数据采集装置203通过同步脉冲接口将该同步脉冲信号发送给数据处理装置204,并通过数据总线接口将该 目标数据发送给数据处理装置204。请一并参阅图3,图3为本发明实施例提供的一种装置间信息传输的示意图。如图3所示,数据采集装置203通过两个不同接口分别将同步脉冲信号和目标数据发送给数据处理装置204。其中,数据采集装置203可以是全球定位***(Global Positioning System,GPS)装置、惯性测量(Inertial measurement unit,IMU)装置、指南针装置、视觉传感器装置中的任意一种。
由于数据采集装置203采集到目标数据之后,会对目标数据进行相应处理,例如压包或者封包等;且由于数据采集装置203与数据处理装置204之间的通信协议特性等因素,均会导致目标数据的传输具有较长的延迟,会较慢传输至数据处理装置204。而同步脉冲信号传输的延迟非常小,会快速传输至数据处理装置204。因此,数据处理装置204会先接收到数据采集装置203发送的同步脉冲信号,后接收到数据采集装置203发送的目标数据。
数据处理装置204接收到数据采集装置203发送的同步脉冲信号之后,确定接收到该同步脉冲信号的目标时间;进一步地,数据处理装置204从数据接口接收到的数据中确定出数据采集装置203发送的目标数据,并将该目标时间作为该目标数据的接收时间,以便于数据处理装置204根据该接收时间对该目标数据进行处理。其中,该数据处理装置204可以是飞控装置;对该目标数据进行处理包括针对该目标数据进行微分、积分、三维建图、定位信息时间确认等处理。需要说明的是,该目标数据可以指的是包含目标数据的数据协议帧。采用上述方式,通过将同步脉冲信号的接收时间作为目标数据的接收时间,可以获取到目标数据采集时的精确时间,进而可以实现模块间的数据同步高精准度。
本发明实施例中,数据处理装置204可以将数据接口接收到的数据中在该同步脉冲信号之后接收到的数据,确定为数据采集装置204发送的目标数据。在另一实施方式中,数据处理装置204具体可以将数据接口接收到的数据中在该同步脉冲信号之后第一个接收到的数据,确定为数据采集装置204发送的目标数据。其中,该目标数据与该同步脉冲信号对应。
在一实施方式中,数据处理装置204在接收到数据采集装置203发送的同步脉冲信号时生成中断,并确定中断的生成时间,将中断的生成时间作为数据处 理装置204的内部时间戳。数据处理装置204从数据接口接收到的数据中确定出数据采集装置203发送的目标数据之后,将该目标数据与该内部时间戳对齐,也即是将该内部时间戳对应的时间作为该目标数据的接收时间。采用上述方式,可以实现外部数据与数据处理装置204内部信息的内对齐。上述方式例如使用在飞控装置与IMU装置之间,可以有效提高IMU数据积分、微分等算法的准确性。
本发明实施例中,数据处理装置204还用于接收第二数据,该第二数据中携带校准时间戳。该校准时间戳可以是实时时钟(Real-Time Clock,RTC)时间戳,该校准时间戳可以是数据采集装置203发送的。数据处理装置204从该第二数据中获取该校准时间戳,并将数据处理装置204的本地时间调整为该校准时间戳对应的时间。采用上述方式,可以对数据处理装置204的本地时间进行校准,通过校准后的本地时间可以获取得到目标数据采集时的精确时间。
在一实施方式中,由于GPS时钟的精确度高,数据处理装置204可以只将GPS装置发送的第二数据用作时间校准。数据处理装置204可以在接收到第二数据之后,检测该第二数据是否是GPS装置发送的数据。具体地,数据处理装置204可以通过检测该第二数据对应的数据接收管脚,是否是GPS装置对应的数据接收管脚,来判定该第二数据是否是GPS装置发送的数据。若检测到该第二数据是GPS装置发送的数据,数据处理装置204则从该第二数据中获取校准时间戳,并将数据处理装置204的本地时间调整为该校准时间戳对应的时间。若检测到该第二数据不是GPS装置发送的数据,数据处理装置204则不进行本地时间的校准。
在一实施方式中,该同步脉冲信号具有周期性。数据处理装置204将接收到同步脉冲信号的目标时间作为目标数据的接收时间之后,从数据处理装置204的数据接口接收到的数据中确定出在该目标数据之后接收到的第一数据,并基于该目标时间以及预设时间间隔确定出第一数据的接收时间,该预设时间间隔与同步脉冲信号的周期时间对应。例如,假设第一数据为数据处理装置204在该目标数据之后第一个接收到的数据,则将该目标时间加上该预设时间间隔对应的时长作为第一数据的接收时间。假设第一数据为数据处理装置204在该目标数据之后第二个接收到的数据,则将该目标时间加上两个该预设时间间隔 对应的时长作为第一数据的接收时间。采用上述方式,可以在确定出目标数据采集时的精确时间之后,结合同步脉冲信号的周期时间提前获知在目标数据之后接收到的数据采集时的精确时间。例如,GPS信号通过上述方式结合秒脉冲信号(Pulse Per Second,PPS)信号可以实现对定位信息时间的准确确认。
本发明实施例中,数据采集装置在采集到目标数据时生成同步脉冲信号,并将同步脉冲信号以及目标数据发送给数据处理装置;数据处理装置接收同步脉冲信号,并确定接收到同步脉冲信号的目标时间;然后从接收到的数据中确定出目标数据,并将目标时间作为目标数据的接收时间,从而可以获取数据对应的精确时间,实现模块间的数据同步高精准度。
本发明实施例提供一种数据处理***。图4为本发明实施例提供的一种数据处理***的结构示意图。如图4所示,该数据处理***包括飞行器200和数据处理设备300。飞行器200和数据处理设备300之间建立通信连接。该数据处理设备300可以是飞行器200外接的设备,例如是飞行器200外接的拍摄设备等。飞行器200包括机身201、动力***202和数据采集装置203。该动力***202安装于所述机身201,用于提供飞行动力;具体地,动力***202可以包括螺旋桨、电机、电调中的一种或多种。数据采集装置203可以包括第一数据采集装置2031和第二数据采集装置2032。该第一数据采集装置2031例如是惯性测量装置,第二数据采集装置2032例如是视觉传感器装置。数据采集装置203不仅包括数据总线接口,还包括同步脉冲接口。其中:
飞行器200用于采集目标数据,并在采集到目标数据时生成同步脉冲信号。具体地,飞行器200通过数据采集装置203采集目标数据,并在采集到目标数据时在数据采集装置203的同步脉冲接口生成同步脉冲信号。该同步脉冲信号可以是一个相对该目标数据的实际采样时间延迟非常小的下降源脉冲信号,该延迟通常小于100ns。飞行器200通过两个不同接口分别将该同步脉冲信号以及该目标数据发送给数据处理设备300。具体地,飞行器200通过数据采集装置203的同步脉冲接口将该同步脉冲信号发送给数据处理设备300,并通过数据采集装置203的数据总线接口将该目标数据发送给数据处理设备300。其中,数据采集装置203可以是GPS装置、IMU装置、指南针装置、视觉传感器装置中的任意一种。
由于飞行器200采集到目标数据之后,会对目标数据进行相应处理,例如压包或者封包等;且由于飞行器200与数据处理设备300之间的通信协议特性等因素,均会导致目标数据的传输具有较长的延迟,会较慢传输至数据处理设备300。而同步脉冲信号传输的延迟非常小,会快速传输至数据处理设备300。因此,数据处理设备300会先接收到飞行器200发送的同步脉冲信号,后接收到飞行器200发送的目标数据。
数据处理设备300接收到飞行器200发送的同步脉冲信号之后,确定接收到该同步脉冲信号的目标时间;进一步地,数据处理设备300从数据接口接收到的数据中确定出飞行器200发送的目标数据,并将该目标时间作为该目标数据的接收时间,以便于数据处理设备300根据该接收时间对该目标数据进行处理。其中,对该目标数据进行处理包括针对该目标数据进行微分、积分等处理。需要说明的是,该目标数据可以指的是包含目标数据的数据协议帧。采用上述方式,通过将同步脉冲信号的接收时间作为目标数据的接收时间,可以获取到目标数据采集时的精确时间,进而可以实现飞行器和数据处理设备之间的数据同步高精准度。
本发明实施例中,数据处理设备300可以将数据接口接收到的数据中在该同步脉冲信号之后接收到的数据,确定为飞行器200发送的目标数据。在另一实施方式中,数据处理设备300具体可以将数据接口接收到的数据中在该同步脉冲信号之后第一个接收到的数据,确定为飞行器200发送的目标数据。其中,该目标数据与该同步脉冲信号对应。
在一实施方式中,数据处理设备300在接收到飞行器200发送的同步脉冲信号时生成中断,并确定中断的生成时间,将中断的生成时间作为数据处理设备300的内部时间戳。数据处理设备300从数据接口接收到的数据中确定出飞行器200发送的目标数据之后,将该目标数据与该内部时间戳对齐,也即是将该内部时间戳对应的时间作为该目标数据的接收时间。采用上述方式,可以实现外部数据与数据处理设备300内部信息的内对齐。上述方式可以有效提高例如数据积分、微分等算法的准确性。
本发明实施例中,数据处理设备300还用于接收第二数据,该第二数据中携带校准时间戳。该校准时间戳可以是实时时钟RTC时间戳,该校准时间戳可 以是飞行器200发送的。数据处理设备300从该第二数据中获取该校准时间戳,并将数据处理设备300的本地时间调整为该校准时间戳对应的时间。采用上述方式,可以对数据处理设备300的本地时间进行校准,通过校准后的本地时间可以获取得到目标数据采集时的精确时间。
在一实施方式中,由于GPS时钟的精确度高,数据处理设备300可以只将GPS装置发送的第二数据用作时间校准。数据处理设备300可以在接收到第二数据之后,检测该第二数据是否是GPS装置发送的数据。具体地,数据处理设备300可以通过检测该第二数据对应的数据接收管脚,是否是GPS装置对应的数据接收管脚,来判定该第二数据是否是GPS装置发送的数据。若检测到该第二数据是GPS装置发送的数据,数据处理设备300则从该第二数据中获取校准时间戳,并将数据处理设备300的本地时间调整为该校准时间戳对应的时间。若检测到该第二数据不是GPS装置发送的数据,数据处理设备300则不进行本地时间的校准。
在一实施方式中,该同步脉冲信号具有周期性。数据处理设备300将接收到同步脉冲信号的目标时间作为目标数据的接收时间之后,从数据处理设备300的数据接口接收到的数据中确定出在该目标数据之后接收到的第一数据,并基于该目标时间以及预设时间间隔确定出第一数据的接收时间,该预设时间间隔与同步脉冲信号的周期时间对应。例如,假设第一数据为数据处理设备300在该目标数据之后第一个接收到的数据,则将该目标时间加上该预设时间间隔对应的时长作为第一数据的接收时间。假设第一数据为数据处理设备300在该目标数据之后第二个接收到的数据,则将该目标时间加上两个该预设时间间隔对应的时长作为第一数据的接收时间。采用上述方式,可以在确定出目标数据采集时的精确时间之后,结合同步脉冲信号的周期时间提前获知在目标数据之后接收到的数据采集时的精确时间。
本发明实施例中,飞行器在采集到目标数据时生成同步脉冲信号,并将同步脉冲信号以及目标数据发送给数据处理设备;数据处理设备接收同步脉冲信号,并确定接收到同步脉冲信号的目标时间;然后从接收到的数据中确定出目标数据,并将目标时间作为目标数据的接收时间,从而可以获取数据对应的精确时间,实现飞行器与数据处理设备之间的数据同步高精准度。
请参阅图5,图5为本发明实施例提供的一种针对飞行器的数据处理方法的流程示意图。本发明实施例中,所述飞行器包括数据采集装置,所述数据采集装置用于采集目标数据,并在采集到所述目标数据时生成同步脉冲信号。本发明实施例提供的针对飞行器的数据处理方法不仅可以应用于如图2所示的数据处理装置204,还可以应用于如图4所示的数据处理设备300中。其中方法可以包括:
S501、接收数据采集装置发送的同步脉冲信号,并确定接收到所述同步脉冲信号的目标时间。
本发明实施例中,数据采集装置用于采集目标数据,并在采集到目标数据时在数据采集装置的同步脉冲接口生成同步脉冲信号。该同步脉冲信号可以是一个相对该目标数据的实际采样时间延迟非常小的下降源脉冲信号。数据采集装置通过同步脉冲接口将该同步脉冲信号发送给数据处理装置,并通过数据总线接口将该目标数据发送给数据处理装置。由于数据采集装置采集到目标数据之后,会对目标数据进行压包或者封包等相应处理;且由于数据采集装置与数据处理装置之间的通信协议特性等因素,均会导致目标数据的传输具有较长的延迟,会较慢传输至数据处理装置。而同步脉冲信号传输的延迟非常小,会快速传输至数据处理装置。因此,数据处理装置先接收到数据采集装置发送的同步脉冲信号,后接收到数据采集装置发送的目标数据。数据处理装置在接收到数据采集装置发送的同步脉冲信号之后,确定出接收到同步脉冲信号的目标时间。
S502、从数据接口接收到的数据中确定出所述数据采集装置发送的目标数据。
本发明实施例中,数据处理装置可以是将数据接口接收到的数据中在同步脉冲信号之后接收到的数据,确定为数据采集装置发送的目标数据。具体可以是将数据接口接收到的数据中在同步脉冲信号之后第一个接收到的数据,确定为数据采集装置发送的目标数据。需要说明的是,该目标数据可以指的是包含目标数据的数据协议帧。
S503、将所述目标时间作为所述目标数据的接收时间,以便于根据所述接收时间对所述目标数据进行处理。
本发明实施例中,对该目标数据进行处理包括针对该目标数据进行微分、积分、三维建图、定位信息时间确认等处理。采用上述方式,通过将同步脉冲信号的接收时间作为目标数据的接收时间,可以获取到目标数据采集时的精确时间,进而可以实现数据采集装置与数据处理装置之间的数据同步高精准度。
在一实施方式中,数据处理装置从数据接口接收到的数据中确定出在目标数据之后接收到的第一数据;并根据目标时间以及预设时间间隔确定出第一数据的接收时间,预设时间间隔与同步脉冲信号的周期时间对应。
在一实施方式中,数据处理装置接收第二数据,第二数据中携带校准时间戳;从第二数据中获取所述校准时间戳,并将本地时间调整为校准时间戳对应的时间。在另一实施方式中,数据处理装置接收到第二数据之后首先检测第二数据是否是GPS装置发送的数据,若第二数据是GPS装置发送的数据,才从所述第二数据中获取校准时间戳,并利用校准时间戳对本地时间进行校准。
需要说明的是,上述针对飞行器的数据处理方法的具体实现方式可参照前文描述,在此不再赘述。
本发明实施例中,在接收到数据采集装置发送的同步脉冲信号时,确定接收到同步脉冲信号的目标时间;然后从接收到的数据中确定出数据采集装置发送的目标数据,并将目标时间作为目标数据的接收时间,从而可以获取数据对应的精确时间,实现飞行器与数据处理设备之间的数据同步高精准度。
需要说明的是,对于前述的各个实施例,为了简单描述,故将其都表述为一系列的动作组合,但是本领域技术人员应该知悉,本发明并不受所描述的动作顺序的限制,因为依据本发明,某一些步骤可以采用其他顺序或者同时进行。其次,本领域技术人员也应该知悉,说明书中所描述的实施例均属于优选实施例,所涉及的动作和模块并不一定是本发明所必须的。
本领域普通技术人员可以理解上述实施例中的全部或部分步骤是可以通过程序来指令相关的硬件来完成,该程序可以存储于一计算机可读存储介质中,存储介质可以包括:闪存盘、只读存储器(Read-Only Memory,ROM)、随机存取器(Random Access Memory,RAM)、磁盘或光盘等。
以上对本发明实施例所提供的一种飞行器、数据处理***及针对飞行器的数据处理方法进行了介绍,本文中应用了个例对本发明的原理及实施方式进行 了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想。以上所揭露的仅为本发明部分实施例而已,当然不能以此来限定本发明之权利范围,因此依本发明权利要求所作的等同变化,仍属本发明所涵盖的范围。

Claims (14)

  1. 一种飞行器,其特征在于,所述飞行器包括数据采集装置和数据处理装置,其中:
    所述数据采集装置,用于在采集到目标数据时生成同步脉冲信号,并将所述同步脉冲信号以及所述目标数据发送给所述数据处理装置;
    所述数据处理装置,用于接收所述数据采集装置发送的所述同步脉冲信号,并确定接收到所述同步脉冲信号的目标时间;
    所述数据处理装置,还用于从数据接口接收到的数据中确定出所述数据采集装置发送的所述目标数据,并将所述目标时间作为所述目标数据的接收时间,以便于根据所述接收时间对所述目标数据进行处理。
  2. 如权利要求1所述的飞行器,其特征在于,所述数据处理装置具体用于:
    将所述数据接口接收到的数据中在所述同步脉冲信号之后接收到的数据,确定为所述数据采集装置发送的所述目标数据。
  3. 如权利要求1所述的飞行器,其特征在于,所述数据处理装置具体用于:
    将所述数据接口接收到的数据中在所述同步脉冲信号之后第一个接收到的数据,确定为所述数据采集装置发送的所述目标数据。
  4. 如权利要求1至3中任一项所述的飞行器,其特征在于,所述数据处理装置还用于:
    从所述数据接口接收到的数据中确定出在所述目标数据之后接收到的第一数据;
    根据所述目标时间以及预设时间间隔确定出所述第一数据的接收时间,所述预设时间间隔与所述同步脉冲信号的周期时间对应。
  5. 如权利要求1至4中任一项所述的飞行器,其特征在于,所述数据处理装置还用于:
    接收第二数据,所述第二数据中携带校准时间戳;
    从所述第二数据中获取所述校准时间戳,并将本地时间调整为所述校准时间戳对应的时间。
  6. 如权利要求5所述的飞行器,其特征在于,所述数据处理装置具体用于:
    检测所述第二数据是否是GPS装置发送的数据;
    若所述第二数据是GPS装置发送的数据,则从所述第二数据中获取所述校准时间戳。
  7. 如权利要求1至6中任一项所述的飞行器,其特征在于,所述数据采集装置为GPS装置、IMU装置、指南针装置、视觉传感器装置中的任意一种;所述数据处理装置为飞控装置或者拍摄装置。
  8. 一种数据处理***,其特征在于,所述数据处理***包括飞行器和数据处理设备,其中:
    所述飞行器,用于在采集到目标数据时生成同步脉冲信号,并将所述同步脉冲信号以及所述目标数据发送给所述数据处理设备;
    所述数据处理设备,用于接收所述飞行器发送的所述同步脉冲信号,并确定接收到所述同步脉冲信号的目标时间;
    所述数据处理设备,还用于从数据接口接收到的数据中确定出所述飞行器发送的所述目标数据,并将所述目标时间作为所述目标数据的接收时间,以便于根据所述接收时间对所述目标数据进行处理。
  9. 如权利要求8所述的数据处理***,其特征在于,所述数据处理设备具体用于:
    将所述数据接口接收到的数据中在所述同步脉冲信号之后接收到的数据,确定为所述飞行器发送的所述目标数据。
  10. 如权利要求8所述的数据处理***,其特征在于,所述数据处理设备具体用于:
    将所述数据接口接收到的数据中在所述同步脉冲信号之后第一个接收到的数据,确定为所述飞行器发送的所述目标数据。
  11. 如权利要求8至10中任一项所述的数据处理***,其特征在于,所述数据处理设备还用于:
    从所述数据接口接收到的数据中确定出在所述目标数据之后接收到的第一数据;
    根据所述目标时间以及预设时间间隔确定出所述第一数据的接收时间,所述预设时间间隔与所述同步脉冲信号的周期时间对应。
  12. 如权利要求8至11中任一项所述的数据处理***,其特征在于,所述数据处理设备还用于:
    接收第二数据,所述第二数据中携带校准时间戳;
    从所述第二数据中获取所述校准时间戳,并将本地时间调整为所述校准时间戳对应的时间。
  13. 如权利要求12所述的数据处理***,其特征在于,所述飞行器包括GPS装置,所述数据处理设备具体用于:
    检测所述第二数据是否是所述GPS装置发送的数据;
    若所述第二数据是所述GPS装置发送的数据,则从所述第二数据中获取所述校准时间戳。
  14. 一种针对飞行器的数据处理方法,所述飞行器包括数据采集装置,其特征在于,所述数据采集装置用于采集目标数据,并在采集到所述目标数据时生成同步脉冲信号,所述方法包括:
    接收所述数据采集装置发送的所述同步脉冲信号,并确定接收到所述同步脉冲信号的目标时间;
    从数据接口接收到的数据中确定出所述数据采集装置发送的所述目标数据;
    将所述目标时间作为所述目标数据的接收时间,以便于根据所述接收时间对所述目标数据进行处理。
PCT/CN2018/118913 2018-12-03 2018-12-03 一种飞行器、数据处理***及针对飞行器的数据处理方法 WO2020113370A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2018/118913 WO2020113370A1 (zh) 2018-12-03 2018-12-03 一种飞行器、数据处理***及针对飞行器的数据处理方法
CN201880038370.0A CN110892671B (zh) 2018-12-03 2018-12-03 一种飞行器、数据处理***及针对飞行器的数据处理方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/118913 WO2020113370A1 (zh) 2018-12-03 2018-12-03 一种飞行器、数据处理***及针对飞行器的数据处理方法

Publications (1)

Publication Number Publication Date
WO2020113370A1 true WO2020113370A1 (zh) 2020-06-11

Family

ID=69746135

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/118913 WO2020113370A1 (zh) 2018-12-03 2018-12-03 一种飞行器、数据处理***及针对飞行器的数据处理方法

Country Status (2)

Country Link
CN (1) CN110892671B (zh)
WO (1) WO2020113370A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113311735A (zh) * 2021-07-12 2021-08-27 中国航空工业集团公司沈阳飞机设计研究所 一种飞机挂载物总线控制***

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111506004A (zh) * 2020-05-28 2020-08-07 北京理工大学 一种无人机飞行器控制***

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6220099B1 (en) * 1998-02-17 2001-04-24 Ce Nuclear Power Llc Apparatus and method for performing non-destructive inspections of large area aircraft structures
CN102736591A (zh) * 2012-05-28 2012-10-17 北京航空航天大学 一种分布式pos子imu数据同步采集***
CN103279058A (zh) * 2013-05-04 2013-09-04 北京航空航天大学 一种面向无人机电力巡检用的光纤imu数据采集***
CN103744372A (zh) * 2013-12-23 2014-04-23 广东电网公司电力科学研究院 无人机电力巡检的多传感器时间同步方法与***
CN106411418A (zh) * 2016-09-23 2017-02-15 天津大学 用于水听器线列阵的精确数据采集时钟同步方法
CN207036250U (zh) * 2017-04-28 2018-02-23 安徽师范大学 分布式光纤振动传感实时数据处理装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103744092A (zh) * 2013-12-27 2014-04-23 中国电子科技集团公司第二十研究所 一种应用于任务导航的高精度授时卡
CN104764442B (zh) * 2015-04-15 2017-02-22 中测新图(北京)遥感技术有限责任公司 测定轻小型无人机中航测相机曝光时刻的方法及装置
US9555883B1 (en) * 2015-06-25 2017-01-31 Amazon Technologies, Inc. Unmanned aerial vehicle sensor synchronization
WO2017088096A1 (zh) * 2015-11-23 2017-06-01 深圳市大疆创新科技有限公司 飞行设备的数据同步和采集的方法、装置以及飞行设备
US10690448B2 (en) * 2017-01-20 2020-06-23 Raytheon Company Method and apparatus for variable time pulse sampling
CN107743054A (zh) * 2017-08-25 2018-02-27 杭州德泽机器人科技有限公司 一种多传感器同步对时***
CN107655475B (zh) * 2017-11-03 2024-03-26 河南思维轨道交通技术研究院有限公司 同步脉冲信号获取方法、导航数据同步处理方法及***
CN108089160B (zh) * 2017-12-08 2020-01-17 郑州轻工业学院 一种高精度双基地雷达时间同步检测***及检测方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6220099B1 (en) * 1998-02-17 2001-04-24 Ce Nuclear Power Llc Apparatus and method for performing non-destructive inspections of large area aircraft structures
CN102736591A (zh) * 2012-05-28 2012-10-17 北京航空航天大学 一种分布式pos子imu数据同步采集***
CN103279058A (zh) * 2013-05-04 2013-09-04 北京航空航天大学 一种面向无人机电力巡检用的光纤imu数据采集***
CN103744372A (zh) * 2013-12-23 2014-04-23 广东电网公司电力科学研究院 无人机电力巡检的多传感器时间同步方法与***
CN106411418A (zh) * 2016-09-23 2017-02-15 天津大学 用于水听器线列阵的精确数据采集时钟同步方法
CN207036250U (zh) * 2017-04-28 2018-02-23 安徽师范大学 分布式光纤振动传感实时数据处理装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113311735A (zh) * 2021-07-12 2021-08-27 中国航空工业集团公司沈阳飞机设计研究所 一种飞机挂载物总线控制***

Also Published As

Publication number Publication date
CN110892671A (zh) 2020-03-17
CN110892671B (zh) 2022-07-01

Similar Documents

Publication Publication Date Title
CN110329273B (zh) 一种用于无人驾驶获取数据同步的方法及装置
CN103744372B (zh) 无人机电力巡检的多传感器时间同步方法与***
WO2021031604A1 (zh) 仿生眼多通道imu与相机硬件时间同步方法和装置
US11206123B2 (en) Method and device of data synchronization and data collection for aerial vehicle and aerial vehicle
US20220019244A1 (en) Position-based control of unmanned aerial vehicles
CN104764442B (zh) 测定轻小型无人机中航测相机曝光时刻的方法及装置
CN104748730B (zh) 测定无人机中航测相机曝光时刻的装置
WO2020168924A1 (zh) 感应数据计算控制方法以及授时装置
WO2019061159A1 (zh) 定位故障光伏板的方法、设备及无人机
WO2020113370A1 (zh) 一种飞行器、数据处理***及针对飞行器的数据处理方法
Albrektsen et al. Syncboard-a high accuracy sensor timing board for uav payloads
JP2017201757A (ja) 画像取得システム、画像取得方法、画像処理方法
WO2021120525A1 (zh) 无人设备的导航
WO2020062062A1 (zh) 集群渲染方法、设备和***
WO2020133105A1 (zh) 授时方法、切换方法、装置、控制***及无人飞行器
US20210229810A1 (en) Information processing device, flight control method, and flight control system
US20210240185A1 (en) Shooting control method and unmanned aerial vehicle
WO2020107195A1 (zh) 一种信息同步方法、无人机、负载设备、***及存储介质
CN110906922A (zh) 无人机位姿信息的确定方法及装置、存储介质、终端
WO2018214014A1 (zh) 加速度计的安装误差检测方法、设备以及无人机
WO2019144645A1 (zh) 计时装置
CN108426559B (zh) 一种天线姿态检测装置及方法
Lu et al. Ieee 1588-based general and precise time synchronization method for multiple sensors
CN113342899B (zh) 一种数据同步获取方法、装置及***
EP4296619A1 (en) Clock synchronisation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18942488

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18942488

Country of ref document: EP

Kind code of ref document: A1