WO2020111383A1 - Magnetic nano-structure containing iron and method for manufacturing same - Google Patents

Magnetic nano-structure containing iron and method for manufacturing same Download PDF

Info

Publication number
WO2020111383A1
WO2020111383A1 PCT/KR2019/001365 KR2019001365W WO2020111383A1 WO 2020111383 A1 WO2020111383 A1 WO 2020111383A1 KR 2019001365 W KR2019001365 W KR 2019001365W WO 2020111383 A1 WO2020111383 A1 WO 2020111383A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
nanostructure
transition metal
rare earth
magnetic nanostructure
Prior art date
Application number
PCT/KR2019/001365
Other languages
French (fr)
Korean (ko)
Inventor
좌용호
김종렬
이지민
황태연
강민규
이규태
Original Assignee
한양대학교에리카산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020190011807A external-priority patent/KR102207618B1/en
Application filed by 한양대학교에리카산학협력단 filed Critical 한양대학교에리카산학협력단
Priority to US17/260,603 priority Critical patent/US20210327618A1/en
Publication of WO2020111383A1 publication Critical patent/WO2020111383A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/07Alloys based on nickel or cobalt based on cobalt
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5

Definitions

  • the present invention relates to a magnetic nanostructure containing iron and a method of manufacturing the same, and relates to a magnetic nanostructure containing iron and a method of manufacturing the same, using a source solution spinning process comprising a rare earth element.
  • Hard magnetic permanent magnets have been indispensable for electric devices such as motors, speakers, measuring instruments, and small motors in hybrid vehicles (HEV) and electric vehicles (EV).
  • HEV hybrid vehicles
  • EV electric vehicles
  • R 2 Fe 14 B series, R 2 Fe 17 N x series and R 2 TM 17 series R: rare earth elements, TM: transition metal elements
  • R 2 TM 17 system is not easily thermally decomposed and has a high Curie temperature, which has advantages in terms of phase formation and chemical stability.
  • a substrate for example, in the Republic of Korea Patent Publication No. 10-2017-0108468 (application number: 10-2016-0032417, applicant: Yonsei University Industry-University Cooperation Foundation), a substrate, and formed on the substrate, a Bi thin film layer and a Mn thin film layer laminated Disclosed is a non-rare permanent magnet with improved coercive force including a thin film laminate obtained by repeatedly laminating and heat-treating units at least twice or more and a method for manufacturing the same.
  • One technical problem to be solved by the present invention is to provide a magnetic nanostructure including iron (Fe) with improved magnetic properties and a method for manufacturing the same.
  • Another technical problem to be solved by the present invention is to provide a magnetic nanostructure containing iron (Fe) and a method of manufacturing the same, which can improve magnetic properties in a simple process.
  • Another technical problem to be solved by the present invention is to provide a magnetic nano-structure including iron (Fe) and a method of manufacturing the reduced economic cost.
  • the technical problem to be solved by the present invention is not limited to the above.
  • the present invention provides a method for manufacturing a magnetic nano structure.
  • the method of manufacturing the magnetic nanostructure comprises preparing a source solution including a first precursor containing a rare earth element, a second precursor containing a transition metal element, and a third precursor containing Fe. , Electrospinning the source solution to form a preliminary magnetic nanostructure including rare earth oxide, transition metal oxide, and Fe oxide, and reducing the preliminary magnetic nanostructure to reduce the rare earth element, the transition metal element, And manufacturing a magnetic nanostructure including the alloy composition of Fe, but controlling the content of Fe to control the maximum magnetic energy value ((BH) max ).
  • BH maximum magnetic energy value
  • the weight ratio of Fe in the source solution may include more than 3.7 wt% and less than 14.7 wt%.
  • the forming of the magnetic nanostructure may include mixing the preliminary magnetic nanostructure with a reducing agent, heat treating the preliminary magnetic nanostructure mixed with the reducing agent, and heat-treated the preliminary magnetic nanostructure. , Washing with a washing solution.
  • the reducing agent may include calcium (Ca).
  • the method of manufacturing the magnetic nanostructure may include controlling the content of the Fe to control the maximum magnetic energy value ((BH) max ).
  • the present invention provides a magnetic nano structure.
  • the magnetic nanostructure includes a rare earth element, a transition metal element, and an alloy composition of Fe, in the alloy composition, the content of Fe may include more than 3.7 wt% and less than 14.7 wt% have.
  • the alloy composition may be composed of a unit cell represented by Re 2 M 17 (Re: at least one of rare earth elements, M: transition metal elements, or Fe).
  • the crystal structure of Re 2 M 17 may include any one of a hexagonal system or a rhombohedral system.
  • the Fe may be disposed in at least one of 4f, 6g, 12j, and 12k sites in the unit grid.
  • the rare earth element may include any one of La, Ce, Pr, Nd, Sm, or Gd.
  • the transition metal element may include either Co or Ni.
  • the magnetic nanostructure may have a single crystal, and anisotropic (anisotropic) properties.
  • the content of the rare earth element may be greater than 23.1 wt% and less than 23.3 wt%, and the content of the transition metal element may be greater than 62.0 wt% and less than 73.2 wt%.
  • the magnetic nanostructure may include an alloy composition composed of a unit lattice represented by ⁇ Formula 1> below.
  • the magnetic nano-structure, 5% and less than 20% of the TM in the alloy composition composed of a unit lattice represented by ⁇ Formula 2> below is substituted with the Fe, the ⁇ Formula 1 It may include an alloy composition having a unit grid represented by >.
  • the magnetic nanostructure may have a coercive force of 7000 Oe or more.
  • Method of manufacturing a magnetic nanostructure to prepare a source solution comprising a first precursor containing a rare earth element, a second precursor containing a transition metal element, and a third precursor containing Fe Step, electrospinning the source solution to form a preliminary magnetic nanostructure including rare earth oxide, transition metal oxide, and Fe oxide, and reducing the preliminary magnetic nanostructure to reduce the rare earth element and the transition metal element. And, It may include the step of preparing a magnetic nano-structure comprising the alloy composition of Fe.
  • the manufacturing method of the magnetic nanostructure according to the embodiment may have a bottom-up approach.
  • a simple method of controlling the content of the third precursor in the source solution preparation step may control the Fe content in the magnetic nanostructure, which is the final product.
  • the Fe content in the magnetic nanostructure is controlled to be greater than 3.7 wt% and less than 14.7 wt%, or the magnetic nanostructure is 5% of the TM in an alloy composition composed of a unit lattice represented by ⁇ Formula 2>
  • the excess and less than 20% are substituted with Fe, and having a unit lattice represented by ⁇ Formula 1>, the maximum magnetic energy value of the magnetic nanostructure may be improved.
  • a magnetic nanostructure with improved magnetic properties can be provided.
  • a magnetic nanostructure with reduced economic cost can be provided.
  • FIG. 1 is a flowchart illustrating a method of manufacturing a magnetic nano structure according to an embodiment of the present invention.
  • FIG. 2 is a flowchart specifically explaining a step of forming a magnetic nanostructure among methods of manufacturing a magnetic nanostructure according to an embodiment of the present invention.
  • FIG 3 is a view showing a manufacturing process of a magnetic nano structure according to an embodiment of the present invention.
  • FIG 4 is a view showing a unit grid represented by Sm 2 Co 17 to explain the structure of the magnetic nanostructure according to an embodiment of the present invention.
  • 5 and 6 are XRD analysis graphs for analyzing the structure of a magnetic nanostructure according to embodiments and comparative examples of the present invention.
  • FIG. 7 is a graph for comparing the saturation magnetization of a magnetic nanostructure according to embodiments and comparative examples of the present invention.
  • FIG. 9 is a graph comparing the squareness ratio of the magnetic nanostructures according to the embodiments and comparative examples of the present invention.
  • FIG. 10 is a graph comparing the coercive force of a magnetic nanostructure according to embodiments and comparative examples of the present invention.
  • FIG. 11 is a graph comparing the maximum magnetic energy of a magnetic nanostructure according to embodiments and comparative examples of the present invention.
  • a component when referred to as being on another component, it means that it may be formed directly on another component, or a third component may be interposed between them.
  • a third component may be interposed between them.
  • the thickness of the films and regions are exaggerated for effective description of the technical content.
  • first, second, and third are used to describe various components, but these components should not be limited by these terms. These terms are only used to distinguish one component from another component. Therefore, what is referred to as the first component in one embodiment may be referred to as the second component in another embodiment.
  • first component in one embodiment may be referred to as the second component in another embodiment.
  • second component in another embodiment.
  • Each embodiment described and illustrated herein also includes its complementary embodiment.
  • 'and/or' is used to mean including at least one of the components listed before and after.
  • FIG. 1 is a flowchart illustrating a method of manufacturing a magnetic nanostructure according to an embodiment of the present invention
  • FIG. 2 is a flowchart illustrating a step of forming a magnetic nanostructure among methods of manufacturing a magnetic nanostructure according to an embodiment of the present invention
  • Figure 3 is a view showing a manufacturing process of a magnetic nanostructure according to an embodiment of the present invention
  • Figure 4 is a unit grid represented by Sm 2 Co 17 to describe the structure of the magnetic nanostructure according to an embodiment of the present invention It is a figure showing.
  • a source solution including a first precursor, a second precursor, and a third precursor may be prepared (S100).
  • the first precursor may include a rare-earth element.
  • the rare earth element may include any one of La, Ce, Pr, Nd, Sm, or Gd.
  • the second precursor may include a transition-metal element.
  • the transition metal element may include either Co or Ni.
  • the third precursor may include Fe.
  • the source solution may further include a viscous source.
  • the viscous source may include a polymer.
  • the polymer may include at least one of polyvinylpyrrolidone (PVP), polyacrylonitrile (PAN), poly(vinyl acetate) (PVAC), polyvinylbutyral (PVB), poly(vinyl alcohol) (PVA), or polyethylene oxide (PEO). It can contain.
  • PVP polyvinylpyrrolidone
  • PAN polyacrylonitrile
  • PVAC poly(vinyl acetate)
  • PVB polyvinylbutyral
  • PVA poly(vinyl alcohol)
  • PEO polyethylene oxide
  • the viscous source may give viscosity to the source solution, thereby controlling the diameter of the magnetic nanostructure described below.
  • the molar fraction (at %) of the third precursor in the source solution may be controlled.
  • the weight ratio of Fe in the source solution may be controlled to be greater than 3.7 wt% and less than 14.7 wt%.
  • 5% or more and less than 20% of the TM are replaced with Fe in the alloy composition composed of the unit lattice represented by ⁇ Formula 2> below, to ⁇ Formula 1> It may have a unit grid displayed. Accordingly, the maximum magnetic energy index ((BH) max ) of the magnetic nanostructure may be improved. More detailed description will be given later.
  • the source solution may be electrospinned to form a preliminary magnetic nanostructure (S200).
  • the preliminary magnetic nanostructure formed by electrospinning the source solution may include rare earth oxide, transition metal oxide, and Fe oxide.
  • the preliminary hybrid magnetic fiber forming step may include a first preliminary hybrid magnetic fiber forming step, and a second preliminary hybrid magnetic fiber forming step.
  • the first preliminary hybrid magnetic fiber forming step may be performed by a method of electrospinning the source solution.
  • the first preliminary hybrid magnetic fiber may be formed of a solid component of the source solution.
  • the first preliminary hybrid magnetic fiber may include a water-soluble metal salt, a polymer, and the like.
  • the step of forming the second preliminary hybrid magnetic fiber may be performed by a method of calcining the first preliminary hybrid magnetic fiber. That is, the first preliminary hybrid magnetic fiber may be heat-treated to decompose an organic material including a polymer in the first preliminary hybrid magnetic fiber.
  • the second preliminary hybrid magnetic fiber may include rare earth oxide, transition metal oxide, and Fe oxide.
  • the source solution may be injected into a syringe (10), and the source solution may be radiated using a syringe pump (20).
  • the tip 30 of the syringe has a diameter of 0.05 to 2 mm
  • the syringe tip 30 and the pre-hybrid magnetic fiber collector (collector 40) are spaced 10-20 cm apart
  • the syringe pump ( 20) is capable of spinning the source solution at a rate of 0.3 to 0.8 mL/h.
  • the voltage applied for electric radiation may be 16 to 23 kV.
  • the first preliminary hybrid magnetic fiber may be formed through the above-described process.
  • the first preliminary hybrid magnetic fiber may be collected in an alumina crucible and heat-treated in an atmospheric pressure of 500 to 900°C in an atmospheric atmosphere. In this process, all organic substances including polymers can be thermally decomposed. At this time, the temperature increase rate condition may be 1 to 10°C per minute.
  • the second preliminary hybrid magnetic fiber may be formed through the above-described process.
  • the preliminary magnetic nanostructure may be reduced to form a magnetic nanostructure (S300).
  • the magnetic nanostructure may include a rare earth element, a transition metal element, and an alloy composition of Fe.
  • the magnetic nanostructure may be an alloy composition composed of a unit lattice represented by ⁇ Formula 1> below. More specifically, the magnetic nanostructure may include 21 to 30 wt% of the rare earth element, 62 to 73 wt% of the transition metal element, and 5 to 11 wt% of Fe.
  • the magnetic nanostructure may have a wire shape or a fiber shape.
  • the magnetic nanostructure may have a crystal structure (crystal structure).
  • the magnetic nanostructure may have a single crystal structure.
  • the magnetic nanostructure may be composed of a unit cell represented by Re 2 M 17 (Re: rare earth element, M: transition metal element, or at least one of Fe). Can be.
  • the crystal structure of Re 2 M 17 may be hexagonal or rhombohedral.
  • the arrangement of atoms in the unit lattice represented by Re 2 M 17 may be the same as the arrangement of atoms in the unit lattice represented by Sm 2 Co 17 . That is, the arrangement of Re (rare earth element) in the unit lattice represented by Re 2 M 17 may be the same as the arrangement of Sm in the unit lattice represented by Sm 2 Co 17 . In addition, the arrangement of M (at least one of transition metal elements or Fe) in the unit lattice represented by Re 2 M 17 may be the same as the arrangement of Co in the unit lattice represented by Sm 2 Co 17 .
  • a unit grid represented by Sm 2 Co 17 is shown.
  • Co may be disposed at at least one of 4f, 6g, 12j, and 12k sites.
  • M may also be disposed at at least one of 4f, 6g, 12j, and 12k sites. That is, the transition metal element, or Fe, may be disposed at 4f, 6g, 12j, and 12k sites of the unit lattice represented by Re 2 M 17 .
  • the magnetic nanostructure according to the embodiment includes Fe, a saturation magnetization value, a remanant magnetization value, and a coercive force can be improved.
  • the magnetic spin moment value of Fe is greater than the magnetic spin moment value of the transition metal element (for example, Co). Accordingly, as compared with the magnetic nanostructures that do not include Fe, the magnetic nanostructures according to the embodiment may have improved saturation magnetization values and remanant magnetization values.
  • the transition metal element for example, Co
  • the atomic radius of Fe (1.72 mm 2) is greater than the atomic radius of the transition metal element (eg, 1.67 mm 2 for Co). Accordingly, the magnetocrystalline anisotropy of the magnetic nanostructure is improved, and the coercive force can be improved. That is, as compared with the magnetic nano-structure that does not contain the Fe, the magnetic nano-structure according to the embodiment, the coercive force can be improved.
  • a saturation magnetization value and a residual magnetization value may be improved.
  • a problem that a coercive force is reduced may occur.
  • a problem that the maximum magnetic energy value ((BH) max ) expressed as a product of the saturation magnetization value and the coercive force decreases may occur. Accordingly, in order to obtain a high maximum magnetic energy value, the Fe content in the magnetic nanostructure according to the embodiment may be controlled.
  • the Fe content in the magnetic nanostructure may be controlled to more than 3.7 wt% and less than 14.7 wt%.
  • the alloy composition composed of the unit lattice represented by ⁇ Formula 2> below more than 5% and less than 20% of TM are substituted with Fe, the unit represented by ⁇ Formula 1> And alloy compositions having a lattice.
  • the Fe content in the magnetic nanostructure may be greater than 3.7 wt% and less than 14.7 wt%.
  • the magnetic nanostructure may exhibit a Re 2 M 17 single phase, a high coercive force of 7000 Oe or higher, and a high maximum magnetic energy value of 13 MGOe or higher.
  • Re 2 M 17 single phase anisotropic (anisotropic) to show a high coercive force, but when a plurality of phases are mixed, it is isotropic (istropic) to show a low coercive force.
  • the saturation magnetization value of the magnetic nanostructure according to the embodiment is lowered, and the relatively low maximum magnetic An energy value may appear.
  • the Fe content in the magnetic structure is 14.7 wt or more, or when the amount of substitution of Fe is 20% or more, the magnetic structure exhibits a structure in which Re 2 M 7 phase, Fe phase, and Re 2 M 17 phase are mixed. , The coercive force may deteriorate. Accordingly, a problem in which a relatively low maximum magnetic energy value appears may occur.
  • the forming of the magnetic nanostructure comprises mixing the preliminary magnetic nanostructure with a reducing agent (S310), and heat-treating the preliminary magnetic nanostructure mixed with the reducing agent (S320), And washing the pre-treated magnetic nanostructures with a washing solution (S330). That is, after the preliminary magnetic nanostructure is mixed with a reducing agent, and then heat-treated, the magnetic nanostructure may be formed.
  • the reducing agent may include calcium (Ca).
  • the reducing agent may include CaH 2 .
  • the magnetic nanostructure can be easily formed.
  • rare earth elements it has very small oxidation energy, so it can maintain the most stable phase in the form of oxide. Accordingly, in order to reduce the rare earth oxide to a metal, a high temperature and a hydrogen atmosphere of 1500° C. or higher are required, resulting in process difficulties.
  • calcium (Ca) has a smaller oxidation energy than rare earth elements, when it is used as a reducing agent, a relatively low heat treatment temperature (for example, 500 to 800°C) and a rare earth oxide metal in a non-hydrogen atmosphere Can be easily reduced.
  • the washing solution may include at least one of ammonium chloride (NH 4 Cl), and methanol (CH 3 OH).
  • the magnetic nanostructure can be easily formed.
  • a reducing agent containing calcium (Ca) calcium oxide (CaO) may be formed on the surface of the metal on which the rare earth oxide is reduced. Accordingly, a process for removing calcium oxide (CaO) is required.
  • a washing solution in which acetic acid or hydrochloric acid is mixed with ultrapure water was used. In this case, a problem may occur when the acid solution generates a fatal effect such as corrosion and oxidation even in the magnetic phase.
  • a washing solution containing at least one of ammonium chloride (NH 4 Cl) and methanol (CH 3 OH) calcium oxide (CaO) can be easily removed without affecting the magnetic phase. .
  • the manufacturing method of the magnetic nanostructure according to an embodiment of the present invention includes a source solution including a first precursor containing a rare earth element, a second precursor containing a transition metal element, and a third precursor containing Fe.
  • It may include a step of manufacturing a magnetic nanostructure comprising a metal element, and the alloy composition of Fe. That is, the method of manufacturing the magnetic nanostructure according to the embodiment may have a bottom-up approach.
  • a simple method of controlling the content of the third precursor in the source solution preparation step may control the Fe content in the magnetic nanostructure, which is the final product.
  • the Fe content in the magnetic nanostructure is controlled to be greater than 3.7 wt% and less than 14.7 wt%, or the magnetic nanostructure is 5% of the TM in an alloy composition composed of a unit lattice represented by ⁇ Formula 2>
  • the excess and less than 20% are substituted with Fe, and having a unit lattice represented by ⁇ Formula 1>, the maximum magnetic energy value of the magnetic nanostructure may be improved.
  • a magnetic nanostructure with improved magnetic properties can be provided.
  • a magnetic nanostructure with reduced economic cost can be provided.
  • the prepared source solution is placed in a syringe for electrospinning and the solution is continuously pushed at a rate of 0.8 mL/h using a syringe pump.
  • the tip portion of the syringe and the collector where the spun fibers are collected are spaced apart at 15 cm intervals, and a high voltage of 20 kV is applied to cause the source solution to be spun by a potential difference.
  • the material deposited on the collector is collected in an alumina (Al 2 O 3 ) crucible and calcined in an atmosphere at a temperature of about 700° C. for 3 hours to decompose all organic substances including polymers.
  • the calcined material is mixed with CaH 2 in a volume ratio of 1:1, and reduced by heat treatment for 1 hour at a temperature of about 700° C. in an inert atmosphere, followed by washing with a mixed solution of ammonium chloride and methanol to reduce Fe to Co.
  • a magnetic nanostructure according to the first embodiment substituted with 5% was prepared.
  • a second nanostructure in which the magnetic nanostructure was prepared by the method according to Example 1 was controlled, and the ratio of iron nitrate hexahydrate (Fe(NO 3 ) 3 9H 2 O) in the source solution was controlled, whereby Fe was compared with Co by 10%.
  • Magnetic nanostructures according to examples were prepared.
  • a magnetic nanostructure was prepared by the method according to Example 1, but by controlling the ratio of iron nitrate hexahydrate (Fe(NO 3 ) 3 9H 2 O) in the source solution, a third implementation in which Fe was substituted by 20% compared to Co Magnetic nanostructures according to examples were prepared.
  • a magnetic nanostructure was prepared by the method according to Example 1, but the fourth embodiment in which Fe was 40% substituted with Co by controlling the ratio of iron nitrate hexahydrate (Fe(NO 3 ) 3 9H 2 O) in the source solution Magnetic nanostructures according to examples were prepared.
  • the prepared source solution was reduced after spinning by the method according to Example 1, to prepare a magnetic nanostructure according to a comparative example not containing Fe.
  • the magnetic nanostructures according to the examples and comparative examples are summarized through ⁇ Table 1> below, and the specific component ratios of the magnetic nanostructures according to the examples and comparative examples are summarized through ⁇ Table 2> below.
  • 5 and 6 are XRD analysis graphs for analyzing the structure of a magnetic nanostructure according to embodiments and comparative examples of the present invention.
  • the magnetic nanostructures according to Examples 1 and 2 were compared to Sm 2 Co 17 single phases. Compared with the magnetic nanostructure according to the example, it was confirmed that the diffraction pattern was shifted to a low angle. This may be considered to be because lattice shrinkage occurs as Fe is disposed at 4f, 6g, 12j, and 12k sites in the unit lattice.
  • the arrangement of atoms in the unit cell is represented by Re 2 M including the unit cell shown by 17, and Re 2 M 17 as described above, It may be the same as the arrangement of atoms in the unit lattice represented by Sm 2 Co 17 .
  • Re 2 M 17 As the Co and Fe having different atomic radii are arranged at 4f, 6g, 12j, and 12k sites in the unit lattice, lattice warpage Generated, which can lead to a change in the lattice constant, which can cause a shift in the diffraction pattern.
  • the graphs of the diffraction patterns shown in FIGS. 5(c) and (d) and FIGS. 6(c) and (d) show that the magnetic nanostructures according to Examples 1 and 2 are Re 2 M 17 . It consists of the unit lattice displayed, and the arrangement of the atoms in the unit lattice represented by Re 2 M 17 is the same as the arrangement of the atoms in the unit lattice represented by Sm 2 Co 17 , but 4f, 6g, 12j, 12k sites in the unit lattice ( Fe) may be disposed on any one of the sites.
  • FIG. 7 is a graph comparing the saturation magnetization of the magnetic nanostructures according to the embodiments and comparative examples of the present invention
  • Figure 8 is a graph comparing the residual magnetization of the magnetic nanostructures according to embodiments and comparative examples of the present invention
  • 9 is a graph comparing the squareness ratio of the magnetic nanostructures according to the embodiments and comparative examples of the present invention
  • FIG. 10 is a graph comparing the coercive force of the magnetic nanostructures according to the embodiments and comparative examples of the present invention
  • FIG. 11 Is a graph for comparing the maximum magnetic energy of a magnetic nanostructure according to embodiments and comparative examples of the present invention.
  • the magnetic nanostructure according to Example 3 in which the amount of Fe replacement relative to Co was 10%, exhibited a high coercive force of 7374.5 Oe, and the highest magnetic energy was also highest, 13.17 MGOe.
  • the maximum magnetic energy of the magnetic nanostructure according to the comparative example which does not contain Fe, it was found that it shows a significant improvement of about 53%.
  • the magnetic nanostructure including iron (Fe) can be used in various industrial fields such as a permanent magnet, an electric motor, and a sensor.

Abstract

Provided is a method for manufacturing a magnetic nano-structure. The method for manufacturing a magnetic nano-structure may comprise the steps of: preparing a source solution containing a first precursor including a rare-earth element, a second precursor including a transition metal element, and a third precursor including Fe; electrospinning the source solution to form a preliminary magnetic nano-structure containing a rare-earth oxide, a transition metal oxide, and a Fe oxide; and reducing the preliminary magnetic micro-structure to manufacture a magnetic nano-structure containing an alloy composition of the rare-earth element, the transition metal element, and the Fe.

Description

철을 포함하는 자성 나노 구조체 및 그 제조방법Magnetic nano structure containing iron and method for manufacturing the same
본 발명은 철을 포함하는 자성 나노 구조체 및 그 제조방법에 관한 것으로서, 희토류 원소를 포함하는 소스 용액 방사 공정을 이용하는, 철을 포함하는 자성 나노 구조체 및 그 제조방법에 관련된 것이다. The present invention relates to a magnetic nanostructure containing iron and a method of manufacturing the same, and relates to a magnetic nanostructure containing iron and a method of manufacturing the same, using a source solution spinning process comprising a rare earth element.
경자성체 영구자석은 모터, 스피커, 계측기 등의 전기기기와 하이브리드 자동차(HEV), 전기자동차(EV) 내 소형모터에 필수불가결하게 사용되어왔다. 이러한 자석 소재로는 보자력이 큰 R2Fe14B계, R2Fe17Nx계와 R2TM17계(R: 희토류 원소, TM: 전이금속 원소)가 폭 넓게 쓰이는데, 앞에 열거된 두 계와 달리, R2TM17계는 쉽게 열분해 되지 않고 큐리온도(Curie temperature)가 높아 상 형성 및 화학적 안정성 면에서 이점을 갖는다. Hard magnetic permanent magnets have been indispensable for electric devices such as motors, speakers, measuring instruments, and small motors in hybrid vehicles (HEV) and electric vehicles (EV). R 2 Fe 14 B series, R 2 Fe 17 N x series and R 2 TM 17 series (R: rare earth elements, TM: transition metal elements) are widely used as these magnet materials. Unlike, R 2 TM 17 system is not easily thermally decomposed and has a high Curie temperature, which has advantages in terms of phase formation and chemical stability.
최근 전자 제품의 경량화, 초소형화 및 고성능화에 발맞춰, 보다 향상된 최대자기에너지적((BH)max)을 갖는 영구자석 소재가 요구된다. 하지만 소재마다 자성 특성의 임계점이 있기에, 이를 뛰어넘고자 하는 연구들이 진행되고 있다.In recent years, in keeping with the light weight, miniaturization, and high performance of electronic products, a permanent magnet material having an improved maximum magnetic energy ((BH)max) is required. However, since each material has a critical point of magnetic properties, studies are being conducted to overcome this.
예를 들어, 대한민국 특허 공개 번호 10-2017-0108468(출원번호: 10-2016-0032417, 출원인: 연세대학교 산학협력단)에는, 기판, 및 상기 기판 상에 형성되고, Bi 박막층 및 Mn 박막층으로 이루어진 적층 단위를 적어도 2회 이 상 반복 적층 및 열처리한 박막 적층체를 포함하는 보자력이 향상된 비희토류 영구자석 및 이의 제조방법이 개시되어 있다. For example, in the Republic of Korea Patent Publication No. 10-2017-0108468 (application number: 10-2016-0032417, applicant: Yonsei University Industry-University Cooperation Foundation), a substrate, and formed on the substrate, a Bi thin film layer and a Mn thin film layer laminated Disclosed is a non-rare permanent magnet with improved coercive force including a thin film laminate obtained by repeatedly laminating and heat-treating units at least twice or more and a method for manufacturing the same.
본 발명이 해결하고자 하는 일 기술적 과제는, 자성 특성이 향상된 철(Fe)을 포함하는 자성 나노 구조체 및 그 제조방법을 제공하는 데 있다. One technical problem to be solved by the present invention is to provide a magnetic nanostructure including iron (Fe) with improved magnetic properties and a method for manufacturing the same.
본 발명이 해결하고자 하는 다른 기술적 과제는, 간단한 공정으로 자성 특성을 향상시킬 수 있는, 철(Fe)을 포함하는 자성 나노 구조체 및 그 제조방법을 제공하는 데 있다. Another technical problem to be solved by the present invention is to provide a magnetic nanostructure containing iron (Fe) and a method of manufacturing the same, which can improve magnetic properties in a simple process.
본 발명이 해결하고자 하는 또 다른 기술적 과제는, 경제적 비용이 절감된, 철(Fe)을 포함하는 자성 나노 구조체 및 그 제조방법을 제공하는 데 있다. Another technical problem to be solved by the present invention is to provide a magnetic nano-structure including iron (Fe) and a method of manufacturing the reduced economic cost.
본 발명이 해결하고자 하는 기술적 과제는 상술된 것에 제한되지 않는다. The technical problem to be solved by the present invention is not limited to the above.
상술된 기술적 과제들을 해결하기 위해 본 발명은 자성 나노 구조체 제조방법을 제공한다. In order to solve the above-described technical problems, the present invention provides a method for manufacturing a magnetic nano structure.
일 실시 예에 따르면, 상기 자성 나노 구조체 제조방법은, 희토류 원소를 포함하는 제1 전구체, 전이금속 원소를 포함하는 제2 전구체, 및 Fe를 포함하는 제3 전구체를 포함하는 소스 용액을 준비하는 단계, 상기 소스 용액을 전기 방사하여, 희토류 산화물, 전이금속 산화물, 및 Fe 산화물을 포함하는 예비 자성 나노 구조체를 형성하는 단계, 및 상기 예비 자성 나노 구조체를 환원시켜, 상기 희토류 원소, 상기 전이금속 원소, 및 상기 Fe의 합금 조성물을 포함하는 자성 나노 구조체를 제조하는 단계를 포함하되, 상기 Fe의 함량을 제어하여, 최대 자기에너지적값((BH)max)을 제어하는 것을 포함할 수 있다. According to one embodiment, the method of manufacturing the magnetic nanostructure comprises preparing a source solution including a first precursor containing a rare earth element, a second precursor containing a transition metal element, and a third precursor containing Fe. , Electrospinning the source solution to form a preliminary magnetic nanostructure including rare earth oxide, transition metal oxide, and Fe oxide, and reducing the preliminary magnetic nanostructure to reduce the rare earth element, the transition metal element, And manufacturing a magnetic nanostructure including the alloy composition of Fe, but controlling the content of Fe to control the maximum magnetic energy value ((BH) max ).
일 실시 예에 따르면, 상기 소스 용액 내 Fe의 중량 비율 3.7 wt% 초과 14.7 wt%미만인 것을 포함할 수 있다. According to one embodiment, the weight ratio of Fe in the source solution may include more than 3.7 wt% and less than 14.7 wt%.
일 실시 예에 따르면, 상기 자성 나노 구조체 형성 단계는, 상기 예비 자성 나노 구조체를 환원제와 혼합하는 단계, 상기 환원제와 혼합된 상기 예비 자성 나노 구조체를 열처리하는 단계, 및 열처리된 상기 예비 자성 나노 구조체를, 세척 용액으로 세척하는 단계를 포함할 수 있다. According to an embodiment, the forming of the magnetic nanostructure may include mixing the preliminary magnetic nanostructure with a reducing agent, heat treating the preliminary magnetic nanostructure mixed with the reducing agent, and heat-treated the preliminary magnetic nanostructure. , Washing with a washing solution.
일 실시 예에 따르면, 상기 환원제는, 칼슘(Ca)를 포함할 수 있다.According to one embodiment, the reducing agent may include calcium (Ca).
일 실시 예에 따르면, 상기 자성 나노 구조체 제조방법은 상기 Fe의 함량을 제어하여 최대 자기에너지적값((BH)max)을 제어하는 것을 포함할 수 있다. According to one embodiment, the method of manufacturing the magnetic nanostructure may include controlling the content of the Fe to control the maximum magnetic energy value ((BH) max ).
상술된 기술적 과제들을 해결하기 위해 본 발명은 자성 나노 구조체를 제공한다. In order to solve the above technical problems, the present invention provides a magnetic nano structure.
일 실시 예에 따르면, 상기 자성 나노 구조체는 희토류 원소, 전이금속 원소, 및 Fe의 합금 조성물을 포함하되, 상기 합금 조성물 내에서, 상기 Fe의 함량은 3.7 wt% 초과 14.7 wt% 미만인 것을 포함할 수 있다. According to one embodiment, the magnetic nanostructure includes a rare earth element, a transition metal element, and an alloy composition of Fe, in the alloy composition, the content of Fe may include more than 3.7 wt% and less than 14.7 wt% have.
일 실시 예에 따르면, 상기 합금 조성물은 Re2M17(Re: 희토류 원소, M: 전이금속 원소 또는 Fe 중에서 적어도 어느 하나)로 표시되는 단위 격자(unit cell)로 구성될 수 있다. According to one embodiment, the alloy composition may be composed of a unit cell represented by Re 2 M 17 (Re: at least one of rare earth elements, M: transition metal elements, or Fe).
일 실시 예에 따르면, 상기 Re2M17의 결정 구조는, 육방정계(hexagonal) 또는 마름모계(rhombohedral) 중 어느 하나인 것을 포함할 수 있다. According to an embodiment, the crystal structure of Re 2 M 17 may include any one of a hexagonal system or a rhombohedral system.
일 실시 예에 따르면, 상기 Fe는, 상기 단위 격자 내 4f, 6g, 12j, 12k 사이트(site) 중 적어도 어느 하나의 사이트에 배치되는 것을 포함할 수 있다. According to an embodiment, the Fe may be disposed in at least one of 4f, 6g, 12j, and 12k sites in the unit grid.
일 실시 예에 따르면, 상기 희토류 원소는, La, Ce, Pr, Nd, Sm, 또는 Gd 중 어느 하나를 포함할 수 있다. According to one embodiment, the rare earth element may include any one of La, Ce, Pr, Nd, Sm, or Gd.
일 실시 예에 따르면, 상기 전이금속 원소는, Co 또는 Ni 중 어느 하나를 포함할 수 있다. According to an embodiment, the transition metal element may include either Co or Ni.
일 실시 예에 따르면, 상기 자성 나노 구조체는 단결정(single crystal), 및 이방성(anisotropic) 특성을 가질 수 있다. According to one embodiment, the magnetic nanostructure may have a single crystal, and anisotropic (anisotropic) properties.
일 실시 예에 따르면, 상기 합금 조성물 내에서, 상기 희토류 원소의 함량은 23.1 wt% 초과 23.3 wt% 미만이고, 상기 전이금속 원소의 함량은 62.0 wt% 초과 73.2 wt% 미만인 것을 포함할 수 있다. According to an embodiment, in the alloy composition, the content of the rare earth element may be greater than 23.1 wt% and less than 23.3 wt%, and the content of the transition metal element may be greater than 62.0 wt% and less than 73.2 wt%.
다른 실시 예에 따르면, 상기 자성 나노 구조체는 아래의 <화학식 1>로 표시되는 단위 격자로 구성되는 합금 조성물을 포함할 수 있다. According to another embodiment, the magnetic nanostructure may include an alloy composition composed of a unit lattice represented by <Formula 1> below.
<화학식 1><Formula 1>
Re2TMxFe17-x Re 2 TM x Fe 17-x
(Re: 희토류 원소, TM: 전이금속 원소)(Re: rare earth element, TM: transition metal element)
다른 실시 예에 따르면, 상기 자성 나노 구조체는, 아래의 <화학식 2>로 표시되는 단위 격자로 구성되는 합금 조성물에서 상기 TM의 5% 초과 및 20% 미만이 상기 Fe로 치환되어, 상기 <화학식 1>로 표시되는 단위 격자를 갖는 합금 조성물을 포함할 수 있다. According to another embodiment, the magnetic nano-structure, 5% and less than 20% of the TM in the alloy composition composed of a unit lattice represented by <Formula 2> below is substituted with the Fe, the <Formula 1 It may include an alloy composition having a unit grid represented by >.
<화학식 2><Formula 2>
Re2TM17 Re 2 TM 17
(Re: 희토류 원소, TM: 전이금속 원소)(Re: rare earth element, TM: transition metal element)
다른 실시 예에 따르면, 상기 자성 나노 구조체는 7000 Oe 이상의 보자력을 가질 수 있다. According to another embodiment, the magnetic nanostructure may have a coercive force of 7000 Oe or more.
본 발명의 실시 예에 따른 자성 나노 구조체의 제조방법은, 희토류 원소를 포함하는 제1 전구체, 전이금속 원소를 포함하는 제2 전구체, 및 Fe를 포함하는 제3 전구체를 포함하는 소스 용액을 준비하는 단계, 상기 소스 용액을 전기 방사하여, 희토류 산화물, 전이금속 산화물, 및 Fe 산화물을 포함하는 예비 자성 나노 구조체를 형성하는 단계, 및 상기 예비 자성 나노 구조체를 환원시켜, 상기 희토류 원소, 상기 전이금속 원소, 및 상기 Fe의 합금 조성물을 포함하는 자성 나노 구조체를 제조하는 단계를 포함할 수 있다. 상기 실시 예에 따른 자성 나노 구조체의 제조방법은, 상향식(Bottom-up approach) 특징을 가질 수 있다. Method of manufacturing a magnetic nanostructure according to an embodiment of the present invention, to prepare a source solution comprising a first precursor containing a rare earth element, a second precursor containing a transition metal element, and a third precursor containing Fe Step, electrospinning the source solution to form a preliminary magnetic nanostructure including rare earth oxide, transition metal oxide, and Fe oxide, and reducing the preliminary magnetic nanostructure to reduce the rare earth element and the transition metal element. And, It may include the step of preparing a magnetic nano-structure comprising the alloy composition of Fe. The manufacturing method of the magnetic nanostructure according to the embodiment may have a bottom-up approach.
이러한, 상향식 특징을 갖는 제조방법을 통해 자성 나노 구조체를 제조하는 경우, 상기 소스 용액 준비 단계에서 상기 제3 전구체의 함량을 제어하는 간단한 방법으로, 최종 생성 물질인 자성 나노 구조체 내의 Fe 함량을 제어할 수 있다. 상술된 바와 같이 상기 자성 나노 구조체 내의 Fe 함량이 3.7 wt% 초과 14.7 wt% 미만으로 제어되거나, 상기 자성 나노 구조체가 상기 <화학식 2>로 표시되는 단위 격자로 구성되는 합금 조성물에서 상기 TM의 5% 초과 및 20% 미만이 상기 Fe로 치환되어, 상기 <화학식 1>로 표시되는 단위 격자를 갖는 경우, 상기 자성 나노 구조체의 최대자기에너지적 값이 향상될 수 있다. 결과적으로, 자성 특성이 향상된 자성 나노 구조체가 제공될 수 있다. 또한, 가격이 비싼 코발트를 대체하여 철이 사용됨에 따라, 경제적 비용이 절감된 자성 나노 구조체가 제공될 수 있다. When a magnetic nanostructure is manufactured through a manufacturing method having a bottom-up feature, a simple method of controlling the content of the third precursor in the source solution preparation step may control the Fe content in the magnetic nanostructure, which is the final product. Can be. As described above, the Fe content in the magnetic nanostructure is controlled to be greater than 3.7 wt% and less than 14.7 wt%, or the magnetic nanostructure is 5% of the TM in an alloy composition composed of a unit lattice represented by <Formula 2> When the excess and less than 20% are substituted with Fe, and having a unit lattice represented by <Formula 1>, the maximum magnetic energy value of the magnetic nanostructure may be improved. As a result, a magnetic nanostructure with improved magnetic properties can be provided. In addition, as iron is used as a substitute for expensive cobalt, a magnetic nanostructure with reduced economic cost can be provided.
도 1은 본 발명의 실시 예에 따른 자성 나노 구조체 제조방법을 설명하는 순서도이다. 1 is a flowchart illustrating a method of manufacturing a magnetic nano structure according to an embodiment of the present invention.
도 2는 본 발명의 실시 예에 따른 자성 나노 구조체의 제조방법 중 자성 나노 구조체 형성 단계를 구체적으로 설명하는 순서도이다. 2 is a flowchart specifically explaining a step of forming a magnetic nanostructure among methods of manufacturing a magnetic nanostructure according to an embodiment of the present invention.
도 3은 본 발명의 실시 예에 따른 자성 나노 구조체의 제조공정을 나타내는 도면이다. 3 is a view showing a manufacturing process of a magnetic nano structure according to an embodiment of the present invention.
도 4는 본 발명의 실시 예에 따른 자성 나노 구조체의 구조를 설명하기 위해 Sm2Co17로 표시되는 단위 격자를 나타내는 도면이다. 4 is a view showing a unit grid represented by Sm 2 Co 17 to explain the structure of the magnetic nanostructure according to an embodiment of the present invention.
도 5 및 도 6은 본 발명의 실시 예들 및 비교 예에 따른 자성 나노 구조체의 구조를 분석하기 위한 XRD 분석 그래프이다. 5 and 6 are XRD analysis graphs for analyzing the structure of a magnetic nanostructure according to embodiments and comparative examples of the present invention.
도 7은 본 발명의 실시 예들 및 비교 예에 따른 자성 나노 구조체의 포화자화를 비교하는 그래프이다. 7 is a graph for comparing the saturation magnetization of a magnetic nanostructure according to embodiments and comparative examples of the present invention.
도 8은 본 발명의 실시 예들 및 비교 예에 따른 자성 나노 구조체의 잔류자화를 비교하는 그래프이다. 8 is a graph comparing the residual magnetization of the magnetic nanostructures according to the embodiments and comparative examples of the present invention.
도 9는 본 발명의 실시 예들 및 비교 예에 따른 자성 나노 구조체의 각형비를 비교하는 그래프이다. 9 is a graph comparing the squareness ratio of the magnetic nanostructures according to the embodiments and comparative examples of the present invention.
도 10은 본 발명의 실시 예들 및 비교 예에 따른 자성 나노 구조체의 보자력를 비교하는 그래프이다. 10 is a graph comparing the coercive force of a magnetic nanostructure according to embodiments and comparative examples of the present invention.
도 11은 본 발명의 실시 예들 및 비교 예에 따른 자성 나노 구조체의 최대자기에너지적을 비교하는 그래프이다. 11 is a graph comparing the maximum magnetic energy of a magnetic nanostructure according to embodiments and comparative examples of the present invention.
이하, 첨부된 도면들을 참조하여 본 발명의 바람직한 실시 예를 상세히 설명할 것이다. 그러나 본 발명의 기술적 사상은 여기서 설명되는 실시 예에 한정되지 않고 다른 형태로 구체화 될 수도 있다. 오히려, 여기서 소개되는 실시 예는 개시된 내용이 철저하고 완전해질 수 있도록 그리고 당업자에게 본 발명의 사상이 충분히 전달될 수 있도록 하기 위해 제공되는 것이다.Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. However, the technical spirit of the present invention is not limited to the embodiments described herein and may be embodied in other forms. Rather, the embodiments introduced herein are provided to ensure that the disclosed contents are thorough and complete and that the spirit of the present invention is sufficiently conveyed to those skilled in the art.
본 명세서에서, 어떤 구성요소가 다른 구성요소 상에 있다고 언급되는 경우에 그것은 다른 구성요소 상에 직접 형성될 수 있거나 또는 그들 사이에 제 3의 구성요소가 개재될 수도 있다는 것을 의미한다. 또한, 도면들에 있어서, 막 및 영역들의 두께는 기술적 내용의 효과적인 설명을 위해 과장된 것이다. In the present specification, when a component is referred to as being on another component, it means that it may be formed directly on another component, or a third component may be interposed between them. In addition, in the drawings, the thickness of the films and regions are exaggerated for effective description of the technical content.
또한, 본 명세서의 다양한 실시 예 들에서 제1, 제2, 제3 등의 용어가 다양한 구성요소들을 기술하기 위해서 사용되었지만, 이들 구성요소들이 이 같은 용어들에 의해서 한정되어서는 안 된다. 이들 용어들은 단지 어느 구성요소를 다른 구성요소와 구별시키기 위해서 사용되었을 뿐이다. 따라서, 어느 한 실시 예에 제 1 구성요소로 언급된 것이 다른 실시 예에서는 제 2 구성요소로 언급될 수도 있다. 여기에 설명되고 예시되는 각 실시 예는 그것의 상보적인 실시 예도 포함한다. 또한, 본 명세서에서 '및/또는'은 전후에 나열한 구성요소들 중 적어도 하나를 포함하는 의미로 사용되었다.In addition, in various embodiments of the present specification, terms such as first, second, and third are used to describe various components, but these components should not be limited by these terms. These terms are only used to distinguish one component from another component. Therefore, what is referred to as the first component in one embodiment may be referred to as the second component in another embodiment. Each embodiment described and illustrated herein also includes its complementary embodiment. In addition, in this specification,'and/or' is used to mean including at least one of the components listed before and after.
명세서에서 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한 복수의 표현을 포함한다. 또한, "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 구성요소 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징이나 숫자, 단계, 구성요소 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 배제하는 것으로 이해되어서는 안 된다. 또한, 본 명세서에서 "연결"은 복수의 구성 요소를 간접적으로 연결하는 것, 및 직접적으로 연결하는 것을 모두 포함하는 의미로 사용된다.In the specification, a singular expression includes a plural expression unless the context clearly indicates otherwise. Also, terms such as “include” or “have” are intended to indicate the presence of features, numbers, steps, elements, or combinations thereof described in the specification, and one or more other features, numbers, steps, or configurations. It should not be understood as excluding the possibility of the presence or addition of elements or combinations thereof. In addition, in the present specification, “connecting” is used in a sense to include both indirectly connecting a plurality of components, and directly connecting.
또한, 하기에서 본 발명을 설명함에 있어 관련된 공지 기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략할 것이다.In addition, in the following description of the present invention, when it is determined that detailed descriptions of related known functions or configurations may unnecessarily obscure the subject matter of the present invention, detailed descriptions thereof will be omitted.
도 1은 본 발명의 실시 예에 따른 자성 나노 구조체 제조방법을 설명하는 순서도이고, 도 2는 본 발명의 실시 예에 따른 자성 나노 구조체의 제조방법 중 자성 나노 구조체 형성 단계를 구체적으로 설명하는 순서도이고, 도 3은 본 발명의 실시 예에 따른 자성 나노 구조체의 제조공정을 나타내는 도면이고, 도 4는 본 발명의 실시 예에 따른 자성 나노 구조체의 구조를 설명하기 위해 Sm2Co17로 표시되는 단위 격자를 나타내는 도면이다. 1 is a flowchart illustrating a method of manufacturing a magnetic nanostructure according to an embodiment of the present invention, and FIG. 2 is a flowchart illustrating a step of forming a magnetic nanostructure among methods of manufacturing a magnetic nanostructure according to an embodiment of the present invention , Figure 3 is a view showing a manufacturing process of a magnetic nanostructure according to an embodiment of the present invention, Figure 4 is a unit grid represented by Sm 2 Co 17 to describe the structure of the magnetic nanostructure according to an embodiment of the present invention It is a figure showing.
도 1 내지 도 3을 참조하면, 제1 전구체, 제2 전구체, 및 제3 전구체를 포함하는 소스 용액이 준비될 수 있다(S100). 일 실시 예에 따르면, 상기 제1 전구체는 희토류(rare-earth) 원소를 포함할 수 있다. 예를 들어, 상기 희토류 원소는 La, Ce, Pr, Nd, Sm, 또는 Gd 중 어느 하나를 포함할 수 있다. 일 실시 예에 따르면, 상기 제2 전구체는 전이금속(transition-metal) 원소를 포함할 수 있다. 예를 들어, 상기 전이금속 원소는, Co 또는 Ni 중 어느 하나를 포함할 수 있다. 일 실시 예에 따르면, 상기 제3 전구체는 Fe를 포함할 수 있다. 1 to 3, a source solution including a first precursor, a second precursor, and a third precursor may be prepared (S100). According to an embodiment, the first precursor may include a rare-earth element. For example, the rare earth element may include any one of La, Ce, Pr, Nd, Sm, or Gd. According to one embodiment, the second precursor may include a transition-metal element. For example, the transition metal element may include either Co or Ni. According to one embodiment, the third precursor may include Fe.
상기 소스 용액은, 점성 소스를 더 포함할 수 있다. 일 실시 예에 따르면, 상기 점성 소스는, 고분자를 포함할 수 있다. 예를 들어, 상기 고분자는 PVP(polyvinylpyrrolidone), PAN(Polyacrylonitrile), PVAC(Poly(vinyl acetate)), PVB(Polyvinylbutyral), PVA(Poly(vinyl alcohol)) 또는 PEO(Polyethylene oxide) 중 적어도 어느 하나를 포함할 수 있다. 상기 점성 소스는, 상기 소스 용액에 점성을 부여하여, 후술되는 자성 나노 구조체의 직경을 제어할 수 있다. The source solution may further include a viscous source. According to one embodiment, the viscous source may include a polymer. For example, the polymer may include at least one of polyvinylpyrrolidone (PVP), polyacrylonitrile (PAN), poly(vinyl acetate) (PVAC), polyvinylbutyral (PVB), poly(vinyl alcohol) (PVA), or polyethylene oxide (PEO). It can contain. The viscous source may give viscosity to the source solution, thereby controlling the diameter of the magnetic nanostructure described below.
일 실시 예에 따르면, 상기 소스 용액 내 상기 제3 전구체의 몰 분율(at %)이 제어될 수 있다. 구체적으로, 상기 소스 용액 내 상기 Fe의 중량 비율은 3.7 wt% 초과 14.7 wt% 미만으로 제어될 수 있다. 이 경우, 후술되는 자성 나노 구조체는, 아래의 <화학식 2>로 표시되는 단위 격자로 구성되는 합금 조성물에서 상기 TM의 5% 초과 및 20% 미만이 상기 Fe로 치환되어, 상기 <화학식 1>로 표시되는 단위 격자를 가질 수 있다. 이에 따라, 자성 나노 구조체의 최대 자기에너지지적값((BH)max)이 향상될 수 있다. 보다 구체적인 설명은 후술된다. According to one embodiment, the molar fraction (at %) of the third precursor in the source solution may be controlled. Specifically, the weight ratio of Fe in the source solution may be controlled to be greater than 3.7 wt% and less than 14.7 wt%. In this case, in the magnetic nanostructure described below, 5% or more and less than 20% of the TM are replaced with Fe in the alloy composition composed of the unit lattice represented by <Formula 2> below, to <Formula 1> It may have a unit grid displayed. Accordingly, the maximum magnetic energy index ((BH) max ) of the magnetic nanostructure may be improved. More detailed description will be given later.
<화학식 1><Formula 1>
Re2TMxFe17-x Re 2 TM x Fe 17-x
(Re: 희토류 원소, TM: 전이금속 원소)(Re: rare earth element, TM: transition metal element)
<화학식 2><Formula 2>
Re2TM17 Re 2 TM 17
(Re: 희토류 원소, TM: 전이금속 원소)(Re: rare earth element, TM: transition metal element)
상기 소스 용액이 전기 방사되어, 예비 자성 나노 구조체가 형성될 수 있다(S200). 상기 소스 용액이 전기 방사되어 형성된 상기 예비 자성 나노 구조체는, 희토류 산화물, 전이금속 산화물, 및 Fe 산화물을 포함할 수 있다. The source solution may be electrospinned to form a preliminary magnetic nanostructure (S200). The preliminary magnetic nanostructure formed by electrospinning the source solution may include rare earth oxide, transition metal oxide, and Fe oxide.
일 실시 예에 따르면, 상기 예비 하이브리드 자성 섬유 형성 단계는, 제1 예비 하이브리드 자성 섬유 형성 단계, 및 제2 예비 하이브리드 자성 섬유 형성 단계를 포함할 수 있다. 상기 제1 예비 하이브리드 자성 섬유 형성 단계는, 상기 소스 용액을 전기 방사하는 방법으로 수행될 수 있다. 상기 제1 예비 하이브리드 자성 섬유는, 상기 소스 용액의 고형 성분으로 이루어질 수 있다. 상기 제1 예비 하이브리드 자성 섬유는, 수용성 금속염, 고분자 등을 포함할 수 있다. 상기 제2 예비 하이브리드 자성 섬유 형성 단계는, 상기 제1 예비 하이브리드 자성 섬유를 하소하는 방법으로 수행될 수 있다. 즉, 상기 제1 예비 하이브리드 자성 섬유를 열처리하여, 상기 제1 예비 하이브리드 자성 섬유 내의 고분자를 포함한 유기물을 분해시키는 방법으로 수행될 수 있다. 상기 제2 예비 하이브리드 자성 섬유는, 희토류 산화물, 전이금속 산화물, 및 Fe 산화물을 포함할 수 있다.According to one embodiment, the preliminary hybrid magnetic fiber forming step may include a first preliminary hybrid magnetic fiber forming step, and a second preliminary hybrid magnetic fiber forming step. The first preliminary hybrid magnetic fiber forming step may be performed by a method of electrospinning the source solution. The first preliminary hybrid magnetic fiber may be formed of a solid component of the source solution. The first preliminary hybrid magnetic fiber may include a water-soluble metal salt, a polymer, and the like. The step of forming the second preliminary hybrid magnetic fiber may be performed by a method of calcining the first preliminary hybrid magnetic fiber. That is, the first preliminary hybrid magnetic fiber may be heat-treated to decompose an organic material including a polymer in the first preliminary hybrid magnetic fiber. The second preliminary hybrid magnetic fiber may include rare earth oxide, transition metal oxide, and Fe oxide.
보다 구체적으로, 주사기(syringe, 10) 안에 상기 소스 용액을 주입하고, 주사기 펌프(20)를 이용하여 상기 소스 용액을 방사할 수 있다. 이 경우, 상기 주사기의 팁(30)은 직경이 0.05~2mm 이고, 상기 주사기 팁(30)과 상기 예비 하이브리드 자성 섬유가 포집되는 포집기(collector, 40)는 10~20cm 이격되고, 상기 주사기 펌프(20)는 0.3~0.8 mL/h의 속도로 상기 소스 용액을 방사할 수 있다. 또한, 전기 방사를 위해 인가되는 전압은 16~23 kV일 수 있다. 상술된 공정을 통해 상기 제1 예비 하이브리드 자성 섬유가 형성될 수 있다. More specifically, the source solution may be injected into a syringe (10), and the source solution may be radiated using a syringe pump (20). In this case, the tip 30 of the syringe has a diameter of 0.05 to 2 mm, the syringe tip 30 and the pre-hybrid magnetic fiber collector (collector 40) are spaced 10-20 cm apart, and the syringe pump ( 20) is capable of spinning the source solution at a rate of 0.3 to 0.8 mL/h. In addition, the voltage applied for electric radiation may be 16 to 23 kV. The first preliminary hybrid magnetic fiber may be formed through the above-described process.
상기 제1 예비 하이브리드 자성 섬유는, 알루미나(alumina) 도가니에 모아 500~900℃의 상압, 대기 분위기에서 열처리될 수 있다. 이 과정에서 고분자를 포함한 유기물이 모두 열분해 될 수 있다. 이 때 승온 속도 조건은 분당1~10℃ 일 수 있다. 상술된 공정을 통해 상기 제2 예비 하이브리드 자성 섬유가 형성될 수 있다. The first preliminary hybrid magnetic fiber may be collected in an alumina crucible and heat-treated in an atmospheric pressure of 500 to 900°C in an atmospheric atmosphere. In this process, all organic substances including polymers can be thermally decomposed. At this time, the temperature increase rate condition may be 1 to 10°C per minute. The second preliminary hybrid magnetic fiber may be formed through the above-described process.
상기 예비 자성 나노 구조체가 환원되어, 자성 나노 구조체(magnetic structure)가 형성될 수 있다(S300). 상기 자성 나노 구조체는, 희토류 원소, 전이금속 원소, 및 Fe의 합금 조성물을 포함할 수 있다. 또한, 상기 자성 나노 구조체는, 아래의 <화학식 1>로 표시되는 단위 격자로 구성되는 합금 조성물일 수 있다. 보다 구체적으로, 상기 자성 나노 구조체는, 21~30 wt%의 상기 희토류 원소, 62~73 wt%의 상기 전이금속 원소, 및 5~11 wt%의 상기 Fe를 포함할 수 있다. 또한, 상기 자성 나노 구조체는, 상술된 바와 같이 전기방사 방법으로 형성됨에 따라, 와이어(wire) 형태 또는 섬유(fiber) 형태를 가질 수 있다. The preliminary magnetic nanostructure may be reduced to form a magnetic nanostructure (S300). The magnetic nanostructure may include a rare earth element, a transition metal element, and an alloy composition of Fe. In addition, the magnetic nanostructure may be an alloy composition composed of a unit lattice represented by <Formula 1> below. More specifically, the magnetic nanostructure may include 21 to 30 wt% of the rare earth element, 62 to 73 wt% of the transition metal element, and 5 to 11 wt% of Fe. In addition, as the magnetic nanostructure is formed by an electrospinning method as described above, it may have a wire shape or a fiber shape.
<화학식 1><Formula 1>
Re2TMxFe17-x (Re: 희토류 원소, TM: 전이금속 원소)Re 2 TM x Fe 17-x (Re: rare earth element, TM: transition metal element)
일 실시 예에 따르면, 상기 자성 나노 구조체는, 결정 구조(crystal structure)를 가질 수 있다. 예를 들어, 상기 자성 나노 구조체는, 단결정(single crystal) 구조를 가질 수 있다. 상기 자성 나노 구조체가 결정 구조를 갖는 경우, 상기 자성 나노 구조체는 Re2M17(Re: 희토류 원소, M: 전이금속 원소 또는 Fe 중에서 적어도 어느 하나)로 표시되는 단위 격자(unit cell)로 구성될 수 있다. 상기 Re2M17의 결정 구조는, 육방정계(hexagonal) 또는 마름모계(rhombohedral) 일 수 있다. According to one embodiment, the magnetic nanostructure, may have a crystal structure (crystal structure). For example, the magnetic nanostructure may have a single crystal structure. When the magnetic nanostructure has a crystalline structure, the magnetic nanostructure may be composed of a unit cell represented by Re 2 M 17 (Re: rare earth element, M: transition metal element, or at least one of Fe). Can be. The crystal structure of Re 2 M 17 may be hexagonal or rhombohedral.
상기 Re2M17로 표시되는 단위 격자 내 원자들의 배치는, Sm2Co17로 표시되는 단위 격자 내 원자들의 배치와 같을 수 있다. 즉, 상기 Re2M17로 표시되는 단위 격자 내에서 Re(희토류 원소)의 배치는, Sm2Co17로 표시되는 단위 격자 내에서 Sm의 배치와 같을 수 있다. 또한, 상기 Re2M17로 표시되는 단위 격자 내에서 M(전이금속 원소 또는 Fe 중 적어도 어느 하나)의 배치는, Sm2Co17로 표시되는 단위 격자 내에서 Co의 배치와 같을 수 있다. The arrangement of atoms in the unit lattice represented by Re 2 M 17 may be the same as the arrangement of atoms in the unit lattice represented by Sm 2 Co 17 . That is, the arrangement of Re (rare earth element) in the unit lattice represented by Re 2 M 17 may be the same as the arrangement of Sm in the unit lattice represented by Sm 2 Co 17 . In addition, the arrangement of M (at least one of transition metal elements or Fe) in the unit lattice represented by Re 2 M 17 may be the same as the arrangement of Co in the unit lattice represented by Sm 2 Co 17 .
보다 구체적인 설명을 위해, 도 4를 참조하면, Sm2Co17로 표시되는 단위 격자를 나타낸다. 도 4에 도시된 바와 같이, Sm2Co17로 표시되는 단위 격자 내에서 Co는 4f, 6g, 12j, 12k 사이트(site) 중 적어도 어느 하나의 사이트에 배치될 수 있다. 이에 따라, 상기 Re2M17 로 표시되는 단위 격자 내에서 M 역시 4f, 6g, 12j, 12k 사이트(site) 중 적어도 어느 하나의 사이트에 배치될 수 있다. 즉, 상기 Re2M17 로 표시되는 단위 격자의 4f, 6g, 12j, 12k 사이트(site)에는, 상기 전이금속 원소, 또는 Fe가 배치될 수 있다. For more detailed description, referring to FIG. 4, a unit grid represented by Sm 2 Co 17 is shown. As illustrated in FIG. 4, in the unit grid represented by Sm 2 Co 17 , Co may be disposed at at least one of 4f, 6g, 12j, and 12k sites. Accordingly, in the unit grid represented by Re 2 M 17 , M may also be disposed at at least one of 4f, 6g, 12j, and 12k sites. That is, the transition metal element, or Fe, may be disposed at 4f, 6g, 12j, and 12k sites of the unit lattice represented by Re 2 M 17 .
상술된 바와 같이, 상기 실시 예에 따른 자성 나노 구조체는, Fe를 포함함에 따라, 포화자화(saturation magnetization)값, 잔류자화(remanant magnetization)값, 및 보자력(coercive force)이 향상될 수 있다. As described above, as the magnetic nanostructure according to the embodiment includes Fe, a saturation magnetization value, a remanant magnetization value, and a coercive force can be improved.
구체적으로, 상기 Fe의 자기스핀모멘트(magnetic spin moment)값은 상기 전이금속 원소(예를 들어, Co)의 자기스핀모멘트값 보다 크다. 이에 따라, 상기 Fe를 포함하지 않는 자성 나노 구조체와 비교하여, 상기 실시 예에 따른 자성 나노 구조체는, 포화자화(saturation magnetization)값, 및 잔류자화(remanant magnetization)값이 향상될 수 있다. Specifically, the magnetic spin moment value of Fe is greater than the magnetic spin moment value of the transition metal element (for example, Co). Accordingly, as compared with the magnetic nanostructures that do not include Fe, the magnetic nanostructures according to the embodiment may have improved saturation magnetization values and remanant magnetization values.
또한, 상기 Fe의 원자 반경(1.72 Å)은 상기 전이금속 원소의 원자 반경(예를 들어, Co의 경우 1.67 Å) 보다 크다. 이에 따라, 상기 자성 나노구조체의 결정 자기 이방성(magnetocrystalline anisotropy)이 향상되어, 보자력이 향상될 수 있다. 즉, 상기 Fe를 포함하지 않는 자성 나노 구조체와 비교하여, 상기 실시 예에 따른 자성 나노 구조체는, 보자력이 향상될 수 있다. In addition, the atomic radius of Fe (1.72 mm 2) is greater than the atomic radius of the transition metal element (eg, 1.67 mm 2 for Co). Accordingly, the magnetocrystalline anisotropy of the magnetic nanostructure is improved, and the coercive force can be improved. That is, as compared with the magnetic nano-structure that does not contain the Fe, the magnetic nano-structure according to the embodiment, the coercive force can be improved.
상기 실시 예에 따른 자성 나노 구조체는, Fe 함량이 증가함에 따라, 포화자화값 및 잔류자화값이 향상될 수 있다. 다만, Fe 함량이 소정의 기준을 넘어가게 되는 경우, 보자력이 감소되는 문제점이 발생될 수 있다. 결과적으로, Fe 함량이 소정의 기준을 넘어가게 되는 경우, 포화자화값 및 보자력의 곱으로 표현되는 최대자기에너지적값((BH)max)이 감소하는 문제점이 발생될 수 있다. 이에 따라, 높은 최대자기에너지적값을 얻기 위해, 상기 실시 예에 따른 자성 나노 구조체 내의 상기 Fe 함량이 제어될 수 있다. In the magnetic nanostructure according to the embodiment, as the Fe content increases, a saturation magnetization value and a residual magnetization value may be improved. However, when the Fe content exceeds a predetermined criterion, a problem that a coercive force is reduced may occur. As a result, when the Fe content exceeds a predetermined criterion, a problem that the maximum magnetic energy value ((BH) max ) expressed as a product of the saturation magnetization value and the coercive force decreases may occur. Accordingly, in order to obtain a high maximum magnetic energy value, the Fe content in the magnetic nanostructure according to the embodiment may be controlled.
일 실시 예에 따르면, 상기 자성 나노 구조체 내의 상기 Fe 함량은 3.7 wt% 초과 14.7 wt% 미만으로 제어될 수 있다. 또한, 상기 자성 나노 구조체는, 아래의 <화학식 2>로 표시되는 단위 격자로 구성되는 합금 조성물에서 TM의 5 % 초과 및 20 % 미만이 상기 Fe로 치환되어, 상기 <화학식 1>로 표시되는 단위 격자를 갖는 합금 조성물을 포함할 수 있다. According to one embodiment, the Fe content in the magnetic nanostructure may be controlled to more than 3.7 wt% and less than 14.7 wt%. In addition, in the magnetic nanostructures, in the alloy composition composed of the unit lattice represented by <Formula 2> below, more than 5% and less than 20% of TM are substituted with Fe, the unit represented by <Formula 1> And alloy compositions having a lattice.
<화학식 2><Formula 2>
Re2TM17 Re 2 TM 17
(Re: 희토류 원소, TM: 전이금속 원소)(Re: rare earth element, TM: transition metal element)
즉, 상기 자성 나노 구조체 내에서, 상기 TM을 치환하는 상기 Fe의 치환량이 5 % 초과 20 % 미만으로 제어된 경우, 상기 자성 나노 구조체 내의 상기 Fe 함량이 3.7 wt% 초과 14.7 wt% 미만일 수 있다. 상술된 바와 같이 상기 Fe의 함량이 제어된 경우, 상기 자성 나노 구조체는 Re2M17 단일상을 나타내고, 7000Oe 이상의 높은 보자력 및 13MGOe 이상의 높은 최대자기에너지적값을 나타낼 수 있다. Re2M17 단일상의 경우, 이방성(anisotropic)을 나타내어 높은 보자력을 나타내지만, 복수의 상들이 혼합된 경우, 등방성(istropic)을 나타내어 낮은 보자력을 나타낼 수 있다.That is, in the magnetic nanostructure, when the substitution amount of Fe replacing the TM is controlled to be greater than 5% and less than 20%, the Fe content in the magnetic nanostructure may be greater than 3.7 wt% and less than 14.7 wt%. When the content of Fe is controlled as described above, the magnetic nanostructure may exhibit a Re 2 M 17 single phase, a high coercive force of 7000 Oe or higher, and a high maximum magnetic energy value of 13 MGOe or higher. Re 2 M 17 single phase, anisotropic (anisotropic) to show a high coercive force, but when a plurality of phases are mixed, it is isotropic (istropic) to show a low coercive force.
상술된 바와 달리, 상기 자성 구조체 내의 상기 Fe 함량이 3.7 wt% 이하이거나, 상기 Fe의 치환량이 5 % 이하인 경우, 상기 실시 예에 따른 자성 나노 구조체의 포화자화값이 저하되어, 상대적으로 낮은 최대자기에너지적값이 나타나는 문제점이 발생될 수 있다. 또한, 상기 자성 구조체 내의 상기 Fe 함량이 14.7 wt 이상이거나, 상기 Fe의 치환량이 20 % 이상인 경우, 상기 자성 구조체는 Re2M7상, Fe 상, 및 Re2M17상이 혼합된 구조를 나타내게 되어, 보자력이 저하될 수 있다. 이에 따라, 상대적으로 낮은 최대자기에너지적값이 나타나는 문제점이 발생될 수 있다. Unlike the above, when the Fe content in the magnetic structure is 3.7 wt% or less, or when the amount of substitution of Fe is 5% or less, the saturation magnetization value of the magnetic nanostructure according to the embodiment is lowered, and the relatively low maximum magnetic An energy value may appear. In addition, when the Fe content in the magnetic structure is 14.7 wt or more, or when the amount of substitution of Fe is 20% or more, the magnetic structure exhibits a structure in which Re 2 M 7 phase, Fe phase, and Re 2 M 17 phase are mixed. , The coercive force may deteriorate. Accordingly, a problem in which a relatively low maximum magnetic energy value appears may occur.
일 실시 예에 따르면, 상기 자성 나노 구조체 형성 단계(S300)는, 상기 예비 자성 나노 구조체를 환원제와 혼합하는 단계(S310), 상기 환원제와 혼합된 상기 예비 자성 나노 구조체를 열처리하는 단계(S320), 및 열처리된 상기 예비 자성 나노 구조체를 세척 용액으로 세척하는 단계(S330)를 포함할 수 있다. 즉, 상기 예비 자성 나노 구조체가 환원제와 혼합된 후, 열처리됨에 따라, 상기 자성 나노 구조체가 형성될 수 있다. According to one embodiment, the forming of the magnetic nanostructure (S300) comprises mixing the preliminary magnetic nanostructure with a reducing agent (S310), and heat-treating the preliminary magnetic nanostructure mixed with the reducing agent (S320), And washing the pre-treated magnetic nanostructures with a washing solution (S330). That is, after the preliminary magnetic nanostructure is mixed with a reducing agent, and then heat-treated, the magnetic nanostructure may be formed.
상기 환원제는 칼슘(Ca)을 포함할 수 있다. 예를 들어, 상기 환원제는 CaH2를 포함할 수 있다. 이 경우, 상기 자성 나노 구조체가 용이하게 형성될 수 있다. 구체적으로, 희토류계 원소들의 경우, 매우 작은 산화에너지를 갖고 있어, 산화물 형태일 때 가장 안정한 상을 유지할 수 있다. 이에 따라, 희토류 산화물을 금속으로 환원하기 위해서는 1500℃ 이상의 고온 및 수소 분위기가 요구되어, 공정상의 어려움이 발생된다. 하지만, 칼슘(Ca)의 경우 희토류계 원소들보다 더 작은 산화에너지를 갖기 때문에, 이를 환원제로 사용할 경우 상대적으로 낮은 열처리 온도(예를 들어 500~800℃) 및, 비수소 분위기에서 희토류 산화물을 금속으로 용이하게 환원시킬 수 있다. The reducing agent may include calcium (Ca). For example, the reducing agent may include CaH 2 . In this case, the magnetic nanostructure can be easily formed. Specifically, in the case of rare earth elements, it has very small oxidation energy, so it can maintain the most stable phase in the form of oxide. Accordingly, in order to reduce the rare earth oxide to a metal, a high temperature and a hydrogen atmosphere of 1500° C. or higher are required, resulting in process difficulties. However, since calcium (Ca) has a smaller oxidation energy than rare earth elements, when it is used as a reducing agent, a relatively low heat treatment temperature (for example, 500 to 800°C) and a rare earth oxide metal in a non-hydrogen atmosphere Can be easily reduced.
상기 세척 용액은 염화암모늄(NH4Cl), 및 메탄올(CH3OH) 중 적어도 어느 하나를 포함할 수 있다. 이 경우, 상기 자성 나노 구조체가 용이하게 형성될 수 있다. 구체적으로, 칼슘(Ca)을 포함하는 환원제를 이용하여 상기 예비 자성 나노 구조체를 환원시키는 경우, 희토류 산화물이 환원된 금속 표면에 산화칼슘(CaO)이 형성될 수 있다. 이에 따라, 산화칼슘(CaO)을 제거하는 공정이 요구되는데, 기존의 산화칼슘(CaO) 제거 공정은, 아세트산 또는 염산을 초순수와 혼합한 세척 용액을 사용하였다. 이 경우, 산 용액이 자성 상에도 부식, 산화 등의 치명적인 영향을 발생시는 문제점이 발생될 수 있다. 하지만, 염화암모늄(NH4Cl), 및 메탄올(CH3OH) 중 적어도 어느 하나를 포함하는 세척 용액의 경우, 자성상에 영향을 미치지 않으면서, 산화칼슘(CaO)을 용이하게 제거할 수 있다. The washing solution may include at least one of ammonium chloride (NH 4 Cl), and methanol (CH 3 OH). In this case, the magnetic nanostructure can be easily formed. Specifically, when the preliminary magnetic nanostructure is reduced using a reducing agent containing calcium (Ca), calcium oxide (CaO) may be formed on the surface of the metal on which the rare earth oxide is reduced. Accordingly, a process for removing calcium oxide (CaO) is required. In the existing calcium oxide (CaO) removal process, a washing solution in which acetic acid or hydrochloric acid is mixed with ultrapure water was used. In this case, a problem may occur when the acid solution generates a fatal effect such as corrosion and oxidation even in the magnetic phase. However, in the case of a washing solution containing at least one of ammonium chloride (NH 4 Cl) and methanol (CH 3 OH), calcium oxide (CaO) can be easily removed without affecting the magnetic phase. .
종래의 희토류 영구자석을 제조하는 방법은 잉곳(ingot)의 용해 주조, 압출성형 또는 사출성형과 같은 분말 야금법으로 구성되며, 이들은 하향식 접근(Top-dowm approach)의 특징을 갖는다. 하향식 접근 방법을 거쳐 치환형 합금을 제조할 경우, 단결정의 형태가 아닌 결정립-결정립계(grain boundary)의 복합 미세구조가 형성되기 쉽고, 수많은 결정립이 생성되면서 등방성(isotropic)의 합금이 얻어질 수 있다. 이러한 등방성의 합금은 결과적으로 보자력을 낮추게 되어 자기적 특성의 저하를 야기할 수 있다. 뿐만 아니라, 결정립계에 결함(defect) 및 불순물이 발생하기 쉽고, 결정립과 결정립계가 서로 다른 상(phase)으로 이루어지기 쉬우므로 자기이력곡선 상에서 분리된 이성분상(binary-phase)의 거동을 보이며 자성 특성에 악영향을 끼치는 문제점이 발생될 수 있다.Conventional methods for producing rare earth permanent magnets are composed of powder metallurgy methods such as melt casting of ingots, extrusion molding or injection molding, and they have a feature of a top-dowm approach. When a substitution type alloy is manufactured through a top-down approach, it is easy to form a complex microstructure of a grain-grain boundary rather than a single crystal form, and an isotropic alloy can be obtained while numerous grains are generated. . As a result, such an isotropic alloy may lower the coercive force and cause deterioration of magnetic properties. In addition, since defects and impurities are easily generated in the grain boundaries, and the grains and grain boundaries are easily formed in different phases, magnetic properties are exhibited by showing the behavior of the binary-phase separated on the magnetic hysteresis curve. A problem that adversely affects may occur.
하지만, 본 발명의 실시 예에 따른 자성 나노 구조체의 제조방법은, 희토류 원소를 포함하는 제1 전구체, 전이금속 원소를 포함하는 제2 전구체, 및 Fe를 포함하는 제3 전구체를 포함하는 소스 용액을 준비하는 단계, 상기 소스 용액을 전기 방사하여, 희토류 산화물, 전이금속 산화물, 및 Fe 산화물을 포함하는 예비 자성 나노 구조체를 형성하는 단계, 및 상기 예비 자성 나노 구조체를 환원시켜, 상기 희토류 원소, 상기 전이금속 원소, 및 상기 Fe의 합금 조성물을 포함하는 자성 나노 구조체를 제조하는 단계를 포함할 수 있다. 즉, 상기 실시 예에 따른 자성 나노 구조체의 제조방법은, 상향식(Bottom-up approach) 특징을 가질 수 있다. However, the manufacturing method of the magnetic nanostructure according to an embodiment of the present invention includes a source solution including a first precursor containing a rare earth element, a second precursor containing a transition metal element, and a third precursor containing Fe. Preparing, electrospinning the source solution to form a pre-magnetic nanostructure including a rare earth oxide, a transition metal oxide, and Fe oxide, and reducing the pre-magnetic nanostructure to reduce the rare earth element and the transition. It may include a step of manufacturing a magnetic nanostructure comprising a metal element, and the alloy composition of Fe. That is, the method of manufacturing the magnetic nanostructure according to the embodiment may have a bottom-up approach.
이러한, 상향식 특징을 갖는 제조방법을 통해 자성 나노 구조체를 제조하는 경우, 상기 소스 용액 준비 단계에서 상기 제3 전구체의 함량을 제어하는 간단한 방법으로, 최종 생성 물질인 자성 나노 구조체 내의 Fe 함량을 제어할 수 있다. 상술된 바와 같이 상기 자성 나노 구조체 내의 Fe 함량이 3.7 wt% 초과 14.7 wt% 미만으로 제어되거나, 상기 자성 나노 구조체가 상기 <화학식 2>로 표시되는 단위 격자로 구성되는 합금 조성물에서 상기 TM의 5% 초과 및 20% 미만이 상기 Fe로 치환되어, 상기 <화학식 1>로 표시되는 단위 격자를 갖는 경우, 상기 자성 나노 구조체의 최대자기에너지적 값이 향상될 수 있다. 결과적으로, 자성 특성이 향상된 자성 나노 구조체가 제공될 수 있다. 또한, 가격이 비싼 코발트를 대체하여 철이 사용됨에 따라, 경제적 비용이 절감된 자성 나노 구조체가 제공될 수 있다.When a magnetic nanostructure is manufactured through a manufacturing method having a bottom-up feature, a simple method of controlling the content of the third precursor in the source solution preparation step may control the Fe content in the magnetic nanostructure, which is the final product. Can be. As described above, the Fe content in the magnetic nanostructure is controlled to be greater than 3.7 wt% and less than 14.7 wt%, or the magnetic nanostructure is 5% of the TM in an alloy composition composed of a unit lattice represented by <Formula 2> When the excess and less than 20% are substituted with Fe, and having a unit lattice represented by <Formula 1>, the maximum magnetic energy value of the magnetic nanostructure may be improved. As a result, a magnetic nanostructure with improved magnetic properties can be provided. In addition, as iron is used as a substitute for expensive cobalt, a magnetic nanostructure with reduced economic cost can be provided.
이상, 본 발명의 실시 예에 따른 자성 나노 구조체 및 그 제조방법이 설명되었다. 이하, 본 발명의 실시 예에 따른 자성 나노 구조체 및 그 제조방법의 구체적인 실험 예 및 특성 평가 결과가 설명된다. As described above, a magnetic nano structure according to an embodiment of the present invention and a manufacturing method thereof have been described. Hereinafter, specific experimental examples and property evaluation results of the magnetic nanostructures and methods for manufacturing the same according to the embodiment of the present invention will be described.
실시 예 1에 따른 자성 나노 구조체 제조Preparation of magnetic nanostructures according to Example 1
10mL 용량의 초순수에 사마륨(III) 질산 6수화물(Samarium(III) nitrate hexahydrate; Sm(NO3)36H2O), 코발트(II) 질산 6수화물(Cobalt(II) nitrate hexahydrate; Co(NO3)26H2O), 철 질산 9수화물(Fe(NO3)39H2O), 및 3 wt% 농도의 PVP를 혼합하여 소스 용액을 제조하였다. Samarium(III) nitrate hexahydrate; Sm(NO 3 ) 3 6H 2 O), Cobalt(II) nitrate hexahydrate; Co(NO 3) ) 2 6H 2 O), iron nitrate heptahydrate (Fe(NO 3 ) 3 9H 2 O), and 3 wt% concentration of PVP were mixed to prepare a source solution.
제조된 소스 용액은 전기방사를 위해 주사기에 담고 주사기 펌프를 사용하여 0.8 mL/h의 속도로 용액을 지속적으로 밀어준다. 이 때 주사기의 팁(tip) 부분과 방사된 섬유가 포집되는 포집기(collector)는 15cm 간격으로 이격되고, 20 kV의 고전압을 인가해주어 전위차에 의해 소스 용액이 방사되도록 한다. 포집기에 증착된 물질은 알루미나(alumina, Al2O3) 도가니에 모아 대기 분위기에서 약 700℃의 온도로 3시간 동안 하소하여 고분자를 포함한 유기물이 모두 분해되도록 한다. The prepared source solution is placed in a syringe for electrospinning and the solution is continuously pushed at a rate of 0.8 mL/h using a syringe pump. At this time, the tip portion of the syringe and the collector where the spun fibers are collected are spaced apart at 15 cm intervals, and a high voltage of 20 kV is applied to cause the source solution to be spun by a potential difference. The material deposited on the collector is collected in an alumina (Al 2 O 3 ) crucible and calcined in an atmosphere at a temperature of about 700° C. for 3 hours to decompose all organic substances including polymers.
하소된 물질을 CaH2와 1:1의 부피비로 혼합하고 비활성 분위기에서 약 700℃의 온도로, 1시간 동안 열처리하여 환원시킨 후, 염화암모늄과 메탄올 혼합 용액을 이용하여 수세하여, Co 대비 Fe가 5% 치환된 제1 실시 예에 따른 자성 나노 구조체를 제조하였다. The calcined material is mixed with CaH 2 in a volume ratio of 1:1, and reduced by heat treatment for 1 hour at a temperature of about 700° C. in an inert atmosphere, followed by washing with a mixed solution of ammonium chloride and methanol to reduce Fe to Co. A magnetic nanostructure according to the first embodiment substituted with 5% was prepared.
실시 예 2에 따른 자성 나노 구조체 제조Preparation of magnetic nanostructures according to Example 2
상기 실시 예 1에 따른 방법으로 자성 나노 구조체를 제조하되, 소스 용액 내 철 질산 9수화물(Fe(NO3)39H2O)의 비율을 제어하여, Co 대비 Fe가 10% 치환된 제2 실시 예에 따른 자성 나노 구조체를 제조하였다. A second nanostructure in which the magnetic nanostructure was prepared by the method according to Example 1 was controlled, and the ratio of iron nitrate hexahydrate (Fe(NO 3 ) 3 9H 2 O) in the source solution was controlled, whereby Fe was compared with Co by 10%. Magnetic nanostructures according to examples were prepared.
실시 예 3에 따른 자성 나노 구조체 제조Preparation of magnetic nanostructures according to Example 3
상기 실시 예 1에 따른 방법으로 자성 나노 구조체를 제조하되, 소스 용액 내 철 질산 9수화물(Fe(NO3)39H2O)의 비율을 제어하여, Co 대비 Fe가 20% 치환된 제3 실시 예에 따른 자성 나노 구조체를 제조하였다. A magnetic nanostructure was prepared by the method according to Example 1, but by controlling the ratio of iron nitrate hexahydrate (Fe(NO 3 ) 3 9H 2 O) in the source solution, a third implementation in which Fe was substituted by 20% compared to Co Magnetic nanostructures according to examples were prepared.
실시 예 4에 따른 자성 나노 구조체 제조Preparation of magnetic nanostructures according to Example 4
상기 실시 예 1에 따른 방법으로 자성 나노 구조체를 제조하되, 소스 용액 내 철 질산 9수화물(Fe(NO3)39H2O)의 비율을 제어하여, Co 대비 Fe가 40% 치환된 제4 실시 예에 따른 자성 나노 구조체를 제조하였다. A magnetic nanostructure was prepared by the method according to Example 1, but the fourth embodiment in which Fe was 40% substituted with Co by controlling the ratio of iron nitrate hexahydrate (Fe(NO 3 ) 3 9H 2 O) in the source solution Magnetic nanostructures according to examples were prepared.
비교 예에 따른 자성 나노 구조체 제조Preparation of magnetic nanostructures according to comparative examples
초순수에 사마륨(III) 질산 6수화물(Samarium(III) nitrate hexahydrate; Sm(NO3)36H2O), 코발트(II) 질산 6수화물(Cobalt(II) nitrate hexahydrate; Co(NO3)26H2O), 및 PVP를 혼합하여 소스 용액을 준비한다. Samarium(III) nitrate hexahydrate; Sm(NO 3 ) 3 6H 2 O), cobalt(II) nitrate hexahydrate; Co(NO 3 ) 2 6H in ultrapure water 2 O), and PVP are mixed to prepare a source solution.
준비된 소스 용액을 상기 실시 예 1에 따른 방법으로 방사 후 환원시켜, Fe를 포함하지 않는 비교 예에 따른 자성 나노 구조체를 제조하였다. The prepared source solution was reduced after spinning by the method according to Example 1, to prepare a magnetic nanostructure according to a comparative example not containing Fe.
상기 실시 예들 및 비교 예에 따른 자성 나노 구조체가 아래 <표 1>을 통해 정리되고, 상기 실시 예들 및 비교 예에 따른 자성 나조 구조체의 구체적인 성분 비율이 아래 <표 2>를 통해 정리된다. The magnetic nanostructures according to the examples and comparative examples are summarized through <Table 1> below, and the specific component ratios of the magnetic nanostructures according to the examples and comparative examples are summarized through <Table 2> below.
구분division 구성Configuration Co 대비 Fe 치환량Fe substitution amount compared to Co
실시 예 1Example 1 Sm-Co-FeSm-Co-Fe 5 %5%
실시 예 2Example 2 Sm-Co-FeSm-Co-Fe 10 %10%
실시 예 3Example 3 Sm-Co-FeSm-Co-Fe 20 %20%
실시 예 4Example 4 Sm-Co-FeSm-Co-Fe 40 %40%
비교 예Comparison example Sm-CoSm-Co 0 %0 %
구분division SmSm CoCo FeFe
실시 예 1Example 1 23.1 wt%23.1 wt% 73.2 wt%73.2 wt% 3.7 wt%3.7 wt%
실시 예 2Example 2 23.2 wt%23.2 wt% 69.5 wt%69.5 wt% 7.3 wt%7.3 wt%
실시 예 3Example 3 23.3 wt%23.3 wt% 62.0 wt%62.0 wt% 14.7 wt%14.7 wt%
실시 예 4Example 4 23.5 wt%23.5 wt% 46.9 wt%46.9 wt% 29.6 wt%29.6 wt%
비교 예Comparison example 23.1 wt%23.1 wt% 76.9 wt%76.9 wt% 0 wt%0 wt%
도 5 및 도 6은 본 발명의 실시 예들 및 비교 예에 따른 자성 나노 구조체의 구조를 분석하기 위한 XRD 분석 그래프이다. 5 and 6 are XRD analysis graphs for analyzing the structure of a magnetic nanostructure according to embodiments and comparative examples of the present invention.
도 5 및 도 6을 참조하면, 상기 실시 예 1 내지 4에 따른 자성 나노 구조체, 및 비교 예에 따른 자성 나노 구조체 각각에 대해 2theta(deg.)에 따른 Relative intensity(a.u.)를 측정하여, X-ray diffraction 분석 결과를 나타내었다. 도 5의 (a) 내지 (e)는 각각, 실시 예 4, 실시 예 3, 실시 예 2, 실시 예 1, 및 비교 예에 따른 자성 나노 구조체의 X-ray diffraction 분석 결과를 도시하고, 도 6의 (a) 내지 (e)는 도 5의 (a) 내지 (e)에 표시된 A 내지 E 부분을 확대하여 나타낸 그래프이다. 5 and 6, for each of the magnetic nanostructures according to Examples 1 to 4 and the magnetic nanostructures according to Comparative Example, the relative intensity (au) of 2theta (deg.) was measured, and X- Ray diffraction analysis results are shown. 5(a) to 5(e) show X-ray diffraction analysis results of the magnetic nanostructures according to Example 4, Example 3, Example 2, Example 1, and Comparative Example, respectively. (A) to (e) are graphs showing enlarged portions A to E shown in (a) to (e) of FIG. 5.
도 5의 (c) 내지 (e) 및 도 6의 (c) 내지 (e)에서 알 수 있듯이, 상기 실시 예 1 및 실시 예 2에 따른 자성 나노 구조체는, Sm2Co17 단일상을 나타내는 비교 예에 따른 자성 나노 구조체와 비교하여, 회절패턴이 저각(low angle)로 이동된 것을 확인할 수 있었다. 이는, 단위 격자 내 4f, 6g, 12j, 12k 사이트(site)에 Fe가 배치됨에 따라, 격자 뒤틀림(lattice shrinkage)이 발생되기 때문인 것으로 판단될 수 있다. 5(c) to (e) and 6(c) to (e) of FIG. 5, the magnetic nanostructures according to Examples 1 and 2 were compared to Sm 2 Co 17 single phases. Compared with the magnetic nanostructure according to the example, it was confirmed that the diffraction pattern was shifted to a low angle. This may be considered to be because lattice shrinkage occurs as Fe is disposed at 4f, 6g, 12j, and 12k sites in the unit lattice.
즉, 상기 실시 예 1 및 실시 예 2에 따른 자성 나노 구조체의 경우, 상술된 바와 같이 Re2M17로 표시되는 단위 격자를 포함하고, Re2M17로 표시되는 단위 격자 내 원자들의 배치는, Sm2Co17로 표시되는 단위 격자 내 원자들의 배치와 같을 수 있다. 다만, Re2M17로 표시되는 단위 격자로 구성되는 합금 조성물의 경우, 단위 격자 내 4f, 6g, 12j, 12k 사이트(site)에 원자 반경이 서로 다른 Co 및 Fe가 배치됨에 따라, 격자 뒤틀림이 발생되고, 이는 격자 상수의 변화로 이어져, 회절패턴의 shift를 발생시킬 수 있다. That is, the Example 1 and Example case of magnetic nano-structure according to the second, the arrangement of atoms in the unit cell is represented by Re 2 M including the unit cell shown by 17, and Re 2 M 17 as described above, It may be the same as the arrangement of atoms in the unit lattice represented by Sm 2 Co 17 . However, in the case of an alloy composition composed of a unit lattice represented by Re 2 M 17, as the Co and Fe having different atomic radii are arranged at 4f, 6g, 12j, and 12k sites in the unit lattice, lattice warpage Generated, which can lead to a change in the lattice constant, which can cause a shift in the diffraction pattern.
결과적으로, 도 5의 (c) 및 (d), 도 6의 (c) 및 (d)에 나타난 회절패턴 그래프는, 상기 실시 예 1 및 실시 예 2에 따른 자성 나노 구조체가 Re2M17로 표시되는 단위 격자로 구성되며, Re2M17로 표시되는 단위 격자 내 원자들의 배치가 Sm2Co17로 표시되는 단위 격자 내 원자들의 배치와 같되, 단위 격자 내 4f, 6g, 12j, 12k 사이트(site) 중 어느 하나의 사이트에는 Fe가 배치되어 있음을 의미할 수 있다. As a result, the graphs of the diffraction patterns shown in FIGS. 5(c) and (d) and FIGS. 6(c) and (d) show that the magnetic nanostructures according to Examples 1 and 2 are Re 2 M 17 . It consists of the unit lattice displayed, and the arrangement of the atoms in the unit lattice represented by Re 2 M 17 is the same as the arrangement of the atoms in the unit lattice represented by Sm 2 Co 17 , but 4f, 6g, 12j, 12k sites in the unit lattice ( Fe) may be disposed on any one of the sites.
반면, 도 5의 (a) 및 (b), 도6의 (a) 및 (b)에서 알 수 있듯이, 상기 실시 예 3 및 실시 예 4에 따른 자성 나노 구조체는, Sm2Co7 상, Fe 단일상, 및 Sm2Co17상이 혼재된 회절패턴을 나타내는 것을 확인할 수 있었다. 이와 같이, 자성 나노 구조체가 혼재된 상을 포함하는 경우, 보자력이 낮아지는 문제점이 발생될 수 있다. On the other hand, as can be seen from Figures 5 (a) and (b), Figure 6 (a) and (b), the magnetic nanostructures according to Examples 3 and 4, Sm 2 Co 7 phase, Fe It was confirmed that the single phase and the Sm 2 Co 17 phase exhibited a mixed diffraction pattern. As described above, when the magnetic nanostructure includes a mixed phase, a problem that a coercive force is lowered may occur.
도 7은 본 발명의 실시 예들 및 비교 예에 따른 자성 나노 구조체의 포화자화를 비교하는 그래프이고, 도 8은 본 발명의 실시 예들 및 비교 예에 따른 자성 나노 구조체의 잔류자화를 비교하는 그래프이고, 도 9는 본 발명의 실시 예들 및 비교 예에 따른 자성 나노 구조체의 각형비를 비교하는 그래프이고, 도 10은 본 발명의 실시 예들 및 비교 예에 따른 자성 나노 구조체의 보자력를 비교하는 그래프이고, 도 11은 본 발명의 실시 예들 및 비교 예에 따른 자성 나노 구조체의 최대자기에너지적을 비교하는 그래프이다. 7 is a graph comparing the saturation magnetization of the magnetic nanostructures according to the embodiments and comparative examples of the present invention, Figure 8 is a graph comparing the residual magnetization of the magnetic nanostructures according to embodiments and comparative examples of the present invention, 9 is a graph comparing the squareness ratio of the magnetic nanostructures according to the embodiments and comparative examples of the present invention, and FIG. 10 is a graph comparing the coercive force of the magnetic nanostructures according to the embodiments and comparative examples of the present invention, and FIG. 11 Is a graph for comparing the maximum magnetic energy of a magnetic nanostructure according to embodiments and comparative examples of the present invention.
도 7 내지 도 11을 참조하면, 상기 실시 예 1 내지 실시 예 4, 및 비교 예에 따른 자성 나노 구조체의, 포화자화, 잔류자화, 각형비, 보자력, 및 최대자기에너지적을 측정하여 나타내었다. 도 7 내지 도 11을 통해 측정된 자성 특성 값들은 아래 <표 3>을 통해 정리된다. 7 to 11, the saturation magnetization, the residual magnetization, the squareness ratio, the coercive force, and the maximum magnetic energy of the magnetic nanostructures according to Examples 1 to 4 and Comparative Examples were measured and illustrated. The magnetic property values measured through FIGS. 7 to 11 are summarized through <Table 3> below.
구분division 포화자화(emu/g)Saturation magnetization (emu/g) 잔류자화(emu/g)Residual magnetization (emu/g) 각형비(%)Square ratio (%) 보자력(Oe)Coercive Force (Oe) 최대자기에너지적(MGOe)Maximum Magnetic Energy (MGOe)
비교 예 Comparison example 80.19180.191 55.25455.254 68.90468.904 6633.16633.1 8.618.61
실시 예 1Example 1 92.28492.284 62.12262.122 67.31667.316 6724.66724.6 10.2310.23
실시 예 2Example 2 96.03796.037 68.61168.611 71.44371.443 7374.57374.5 13.1713.17
실시 예 3Example 3 101.45101.45 69.65169.651 68.65568.655 6591.06591.0 11.3711.37
실시 예 4Example 4 125.43125.43 70.71270.712 56.37656.376 3784.33784.3 9.369.36
도 7 내지 도 11, 및 <표 3>에서 알 수 있듯이, 포화자화의 경우, 비교 예, 실시 예 1, 실시 예 2, 실시 예 3, 및 실시 예 4에 따른 자성 나노 구조체 순서로 점점 증가하는 것을 확인할 수 있었다. 즉, Co 대비 Fe의 함량이 증가함에 따라, 포화자화 역시 증가하는 것을 알 수 있었다. As can be seen from FIGS. 7 to 11 and Table 3, in the case of saturation magnetization, the magnetic nanostructures according to Comparative Examples, Examples 1, 2, 3, and 4 are gradually increasing. I could confirm that. That is, it was found that as the Fe content increased compared to Co, the saturation magnetization also increased.
하지만, 보자력의 경우, 비교 예, 실시 예 1, 및 실시 예 2 까지는 순서대로 점점 증가하지만, 실시 예 3 및 실시 예 4에서는 오히려 감소되는 것을 확인할 수 있었다. 즉, Co 대비 Fe의 치환량이 20 % 이상인 경우, 보자력이 감소되는데, 이는 도 5 및 도 6을 통해 확인되었듯이, 복수의 상으로 분리됨에 따라 발생되는 것으로 판단될 수 있다. However, in the case of the coercive force, the comparative examples, Examples 1, and 2 were gradually increased in order, but it was confirmed that they were decreased in Examples 3 and 4. That is, when the substitution amount of Fe relative to Co is 20% or more, the coercive force is reduced, which can be judged to be caused by separation into a plurality of phases, as confirmed through FIGS. 5 and 6.
결과적으로, Co 대비 Fe의 치환량이 10 %인 상기 실시 예 3에 따른 자성 나노 구조체는, 7374.5 Oe의 높은 보자력을 나타내며, 최대자기에너지적 역시 13.17MGOe로 가장 높게 나타나는 것을 확인할 수 있었다. 특히, Fe를 포함하지 않는, 비교 예에 따른 자성 나노 구조체의 최대자기에너지적과 비교할 경우, 약 53%의 현저한 향상을 나타내는 것을 알 수 있었다. As a result, it was confirmed that the magnetic nanostructure according to Example 3, in which the amount of Fe replacement relative to Co was 10%, exhibited a high coercive force of 7374.5 Oe, and the highest magnetic energy was also highest, 13.17 MGOe. In particular, when compared with the maximum magnetic energy of the magnetic nanostructure according to the comparative example, which does not contain Fe, it was found that it shows a significant improvement of about 53%.
이상, 본 발명을 바람직한 실시 예를 사용하여 상세히 설명하였으나, 본 발명의 범위는 특정 실시 예에 한정되는 것은 아니며, 첨부된 특허청구범위에 의하여 해석되어야 할 것이다. 또한, 이 기술분야에서 통상의 지식을 습득한 자라면, 본 발명의 범위에서 벗어나지 않으면서도 많은 수정과 변형이 가능함을 이해하여야 할 것이다.As described above, the present invention has been described in detail using preferred embodiments, but the scope of the present invention is not limited to specific embodiments, and should be interpreted by the appended claims. In addition, those skilled in the art should understand that many modifications and variations are possible without departing from the scope of the present invention.
본 발명의 실시 예에 따른 철(Fe)을 포함하는 자성 나노 구조체는 영구 자석, 전기 모터, 센서 등 다양한 산업 분야에 이용될 수 있다.The magnetic nanostructure including iron (Fe) according to an embodiment of the present invention can be used in various industrial fields such as a permanent magnet, an electric motor, and a sensor.

Claims (16)

  1. 희토류 원소를 포함하는 제1 전구체, 전이금속 원소를 포함하는 제2 전구체, 및 Fe를 포함하는 제3 전구체를 포함하는 소스 용액을 준비하는 단계;Preparing a source solution comprising a first precursor comprising a rare earth element, a second precursor comprising a transition metal element, and a third precursor comprising Fe;
    상기 소스 용액을 전기 방사하여, 희토류 산화물, 전이금속 산화물, 및 Fe 산화물을 포함하는 예비 자성 나노 구조체를 형성하는 단계; 및 Electrospinning the source solution to form a pre-magnetic nanostructure including rare earth oxide, transition metal oxide, and Fe oxide; And
    상기 예비 자성 나노 구조체를 환원시켜, 상기 희토류 원소, 상기 전이금속 원소, 및 상기 Fe의 합금 조성물을 포함하는 자성 나노 구조체를 제조하는 단계를 포함하는 자성 나노 구조체 제조방법. And reducing the preliminary magnetic nanostructure to prepare a magnetic nanostructure including the rare earth element, the transition metal element, and the alloy composition of Fe.
  2. 제1 항에 있어서, According to claim 1,
    상기 소스 용액 내 상기 Fe의 중량 비율 3.7 wt% 초과 14.7 wt% 미만인 것을 포함하는 자성 나노 구조체 제조방법. Method of manufacturing a magnetic nano-structure comprising a weight ratio of more than 3.7 wt% and less than 14.7 wt% of the Fe in the source solution.
  3. 제1 항에 있어서, According to claim 1,
    상기 자성 나노 구조체 형성 단계는, The step of forming the magnetic nanostructure,
    상기 예비 자성 나노 구조체를 환원제와 혼합하는 단계; Mixing the preliminary magnetic nanostructure with a reducing agent;
    상기 환원제와 혼합된 상기 예비 자성 나노 구조체를 열처리하는 단계; 및 Heat-treating the pre-magnetic nanostructure mixed with the reducing agent; And
    열처리된 상기 예비 자성 나노 구조체를, 세척 용액으로 세척하는 단계를 포함하는, 자성 나노 구조체 제조방법. A method of manufacturing a magnetic nanostructure, comprising washing the pre-heated pre-magnetic nanostructure with a washing solution.
  4. 제1 항에 있어서, According to claim 1,
    상기 환원제는, 칼슘(Ca)를 포함하는 자성 나노 구조체 제조방법. The reducing agent, a method of manufacturing a magnetic nanostructure containing calcium (Ca).
  5. 제1 항에 있어서, According to claim 1,
    상기 Fe의 함량을 제어하여, 최대 자기에너지적값((BH)max)을 제어하는 것을 포함하는 자성 나노 구조체 제조방법. A method of manufacturing a magnetic nanostructure comprising controlling the content of Fe to control a maximum magnetic energy value ((BH) max ).
  6. 희토류 원소, 전이금속 원소, 및 Fe의 합금 조성물을 포함하되, Rare earth elements, including transition metal elements, and Fe alloy composition,
    상기 합금 조성물 내에서, 상기 Fe의 함량은 3.7 wt% 초과 14.7 wt% 미만인 것을 포함하는 자성 나노 구조체.In the alloy composition, the Fe content is greater than 3.7 wt% and less than 14.7 wt%.
  7. 제6 항에 있어서, The method of claim 6,
    상기 합금 조성물은 Re2M17(Re: 희토류 원소, M: 전이금속 원소 또는 Fe 중에서 적어도 어느 하나)로 표시되는 단위 격자(unit cell)로 구성되는 자성 나노 구조체. The alloy composition is a magnetic nanostructure composed of a unit cell represented by Re 2 M 17 (Re: at least one of rare earth elements, M: transition metal elements, or Fe).
  8. 제7 항에 있어서, The method of claim 7,
    상기 Re2M17의 결정 구조는 육방정계(hexagonal) 또는 마름모계(rhombohedral) 중 어느 하나인 것을 포함하는 자성 나노 구조체. The crystal structure of Re 2 M 17 is a hexagonal (hexagonal) or a magnetic nano-structure comprising any one of rhombohedral (rhombohedral).
  9. 제7 항에 있어서, The method of claim 7,
    상기 Fe는, 상기 단위 격자 내 4f, 6g, 12j, 12k 사이트(site) 중 적어도 어느 하나의 사이트에 배치되는 것을 포함하는 자성 나노 구조체. The Fe is a magnetic nano-structure comprising a 4f, 6g, 12j, 12k site in the unit lattice.
  10. 제6 항에 있어서, The method of claim 6,
    상기 희토류 원소는, La, Ce, Pr, Nd, Sm, 또는 Gd 중 어느 하나를 포함하는 자성 나노 구조체. The rare earth element is a magnetic nanostructure comprising any one of La, Ce, Pr, Nd, Sm, or Gd.
  11. 제6 항에 있어서, The method of claim 6,
    상기 전이금속 원소는, Co 또는 Ni 중 어느 하나를 포함하는 자성 나노 구조체. The transition metal element is a magnetic nanostructure comprising either Co or Ni.
  12. 제6 항에 있어서, The method of claim 6,
    단결정(single crystal), 및 이방성(anisotropic) 특성을 갖는 자성 나노 구조체. Magnetic nanostructures having single crystal and anisotropic properties.
  13. 제6 항에 있어서, The method of claim 6,
    상기 합금 조성물 내에서, 상기 희토류 원소의 함량은 23.1 wt% 초과 23.3 wt% 미만이고, 상기 전이금속 원소의 함량은 62.0 wt% 초과 73.2 wt% 미만인 것을 포함하는 자성 나노 구조체. In the alloy composition, the content of the rare earth element is greater than 23.1 wt% and less than 23.3 wt%, and the content of the transition metal element is greater than 62.0 wt% and less than 73.2 wt%.
  14. 아래의 <화학식 1>로 표시되는 단위 격자로 구성되는 합금 조성물을 포함하는 자성 나노 구조체. Magnetic nanostructure comprising an alloy composition consisting of a unit grid represented by <Formula 1> below.
    <화학식 1><Formula 1>
    Re2TMxFe17-x Re 2 TM x Fe 17-x
    (Re: 희토류 원소, TM: 전이금속 원소)(Re: rare earth element, TM: transition metal element)
  15. 제14 항에 있어서, The method of claim 14,
    아래의 <화학식 2>로 표시되는 단위 격자로 구성되는 합금 조성물에서 상기 TM의 5% 초과 및 20% 미만이 상기 Fe로 치환되어, 상기 <화학식 1>로 표시되는 단위 격자를 갖는 합금 조성물을 포함하는 자성 나노 구조체. In the alloy composition composed of the unit lattice represented by <Formula 2> below, more than 5% and less than 20% of the TM is substituted with the Fe, and includes an alloy composition having the unit lattice represented by <Formula 1> Magnetic nanostructures.
    <화학식 2><Formula 2>
    Re2TM17 Re 2 TM 17
    (Re: 희토류 원소, TM: 전이금속 원소)(Re: rare earth element, TM: transition metal element)
  16. 제14 항에 있어서,The method of claim 14,
    7000 Oe 이상의 보자력을 갖는 자성 나노 구조체. Magnetic nanostructures with a coercive force of 7000 Oe or more.
PCT/KR2019/001365 2018-11-28 2019-01-31 Magnetic nano-structure containing iron and method for manufacturing same WO2020111383A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/260,603 US20210327618A1 (en) 2018-11-28 2019-01-31 Magnetic nano-structure containing iron and method for manufacturing same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2018-0149437 2018-11-28
KR20180149437 2018-11-28
KR10-2019-0011807 2019-01-30
KR1020190011807A KR102207618B1 (en) 2018-11-28 2019-01-30 Magnetic nano structure comprising Fe and fabricating method of the same

Publications (1)

Publication Number Publication Date
WO2020111383A1 true WO2020111383A1 (en) 2020-06-04

Family

ID=70853362

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/001365 WO2020111383A1 (en) 2018-11-28 2019-01-31 Magnetic nano-structure containing iron and method for manufacturing same

Country Status (1)

Country Link
WO (1) WO2020111383A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013520029A (en) * 2010-02-17 2013-05-30 エレクトロン エナジー コーポレーション Rare earth stratified composite magnet with increased electrical resistance
KR20170104118A (en) * 2016-03-04 2017-09-14 한양대학교 에리카산학협력단 Method of fabricating of magnetic nano structure
JP2017535062A (en) * 2014-09-02 2017-11-24 ノースイースタン・ユニバーシティ Rare earth-free permanent magnetic material based on Fe-Ni

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013520029A (en) * 2010-02-17 2013-05-30 エレクトロン エナジー コーポレーション Rare earth stratified composite magnet with increased electrical resistance
JP2017535062A (en) * 2014-09-02 2017-11-24 ノースイースタン・ユニバーシティ Rare earth-free permanent magnetic material based on Fe-Ni
KR20170104118A (en) * 2016-03-04 2017-09-14 한양대학교 에리카산학협력단 Method of fabricating of magnetic nano structure

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CHEN, Z. ET AL.: "Magnetic properties and microstructure of mechanically milled Sm2(Co,M) 17-based powders with M=Zr, Hf, Nb, V, Ti, Cr, Cu and Fe", JOURNAL OF APPLIED PHYSICS, vol. 87, no. 7, 1 April 2000 (2000-04-01), pages 3409 - 3414, XP000964284, DOI: 10.1063/1.372359 *
SREENIVASULU, G. ET AL.: "Spark plasma sintered Sm2Co17-FeCo nanocomposite permanent magnets synthesized by high energy ball milling", NANOTECHNOLOGY, vol. 19, no. 33, 8 July 2008 (2008-07-08), pages 335701, XP020144478 *

Similar Documents

Publication Publication Date Title
KR101886558B1 (en) Method of fabricating of magnetic nano structure
WO2015046732A1 (en) Method of manufacturing anisotropic hot-deformed magnet using hot-deformation process and hot-deformed magnet manufactured thereby
WO2016093379A1 (en) Hot-pressed and deformed magnet comprising nonmagnetic alloy and method for manufacturing same
WO2012102497A2 (en) R-fe-b sintered magnet with enhanced mechanical properties and method for producing the same
KR102125168B1 (en) Hybrid magnetic fiber and fabricating method of the same
KR20120086237A (en) R-Fe-B Sintered magnet with enhancing mechanical property and fabrication method thereof
WO2020111383A1 (en) Magnetic nano-structure containing iron and method for manufacturing same
EP3511956A1 (en) Permanent magnet, rotating electrical machine, and vehicle
WO2020111384A1 (en) Magnetic nanostructures comprising copper and preparation method of same
WO2018030582A1 (en) Nitrogen-added amorphous soft magnetic alloy and manufacturing method therefor
KR102207618B1 (en) Magnetic nano structure comprising Fe and fabricating method of the same
WO2019013442A1 (en) Electrostatic chuck
WO2016010348A1 (en) R-fe-b-based sintered magnet containing no heavy rare earth elements, and preparation method therefor
WO2017191866A1 (en) Method for manufacturing rare-earth sintered magnet
WO2020009303A1 (en) Hybrid magnetic fiber and manufacturing method therefor
EP1239494A2 (en) Fept magnet and manufacturing method thereof
KR102129198B1 (en) Magnetic nano structure comprising Cu and fabricating method of the same
WO2014058218A1 (en) Method for controlling hydrogen desorption-recombination step in hddr process, method for manufacturing rare earth-iron-boron-based rare earth magnetic powder including hydrogen desorption-recombination step, and accordingly manufactured rare earth-iron-boron-based rare earth magnetic powder
WO2022080963A1 (en) Method for manufacturing magnetic powder
WO2013073802A1 (en) Transparent conductive film having superior thermal stability, target for transparent conductive film, and method for manufacturing transparent conductive film
WO2021002564A1 (en) Fibrous magnetic structure and manufacturing method thereof
WO2012141535A2 (en) Inorganic semiconductor ink composition and inorganic semiconductor thin film manufactured by using same
KR102252068B1 (en) ThMn12 TYPE MAGNETIC SUBSTANCE AND FABRICATION THEREOF
WO2020111386A1 (en) Iron nitride magnetic wire and manufacturing method therefor
CN1036880C (en) Rare-earth-iron-nitride permanent-magnet material

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19889389

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19889389

Country of ref document: EP

Kind code of ref document: A1