WO2020111277A1 - Film manufacturing method, organic semiconductor element manufacturing method, and organic semiconductor element - Google Patents

Film manufacturing method, organic semiconductor element manufacturing method, and organic semiconductor element Download PDF

Info

Publication number
WO2020111277A1
WO2020111277A1 PCT/JP2019/046923 JP2019046923W WO2020111277A1 WO 2020111277 A1 WO2020111277 A1 WO 2020111277A1 JP 2019046923 W JP2019046923 W JP 2019046923W WO 2020111277 A1 WO2020111277 A1 WO 2020111277A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
group
film
producing
vapor deposition
Prior art date
Application number
PCT/JP2019/046923
Other languages
French (fr)
Japanese (ja)
Inventor
直人 能塚
順一 西出
礼隆 遠藤
勇人 垣添
Original Assignee
株式会社Kyulux
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Kyulux filed Critical 株式会社Kyulux
Priority to JP2020557887A priority Critical patent/JP7393799B2/en
Priority to CN201980076806.XA priority patent/CN113170549B/en
Priority to KR1020217020178A priority patent/KR20210095933A/en
Publication of WO2020111277A1 publication Critical patent/WO2020111277A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/16Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering
    • H10K71/164Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering using vacuum deposition
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/12Organic material
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/624Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing six or more rings
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/633Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising polycyclic condensed aromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers

Definitions

  • the present invention relates to a method for manufacturing a film used for forming a layer of an organic semiconductor element, for example.
  • Patent Document 1 proposes an organic electroluminescent element in which a fluorescent material and a delayed fluorescent material are allowed to coexist in a light emitting layer to enhance the light emission efficiency (see, for example, Patent Document 1).
  • the “delayed fluorescent material” is an organic material that causes an inverse intersystem crossing from the excited triplet state to the excited singlet state when the molecule transits to the excited triplet state. Each molecule that transits to the excited singlet state then emits fluorescence when it undergoes radiation deactivation from the excited singlet state to the ground singlet state. Fluorescence emitted through such intersystem crossing is called “delayed fluorescence” because it is usually observed later than fluorescence from excited singlet state caused by direct transition from ground state. ..
  • the delayed single fluorescent material coexists with the fluorescent material in the light emitting layer, so that the energy of the excited singlet state generated by the intersystem crossing of the delayed fluorescent material is changed to the fluorescent material.
  • the fluorescent material To be used for light emission of the fluorescent material.
  • a normal fluorescence emitting layer that does not use a delayed fluorescent material, since the transition from the excited triplet state to the ground singlet state is a forbidden transition, even if excited to the excited triplet state, the excited triplet state To the ground singlet state (radiation deactivation) does not occur and deactivates without radiation, and the excited triplet energy cannot be used for light emission.
  • Patent Document 1 describes that a light emitting layer in which a fluorescent material and a delayed fluorescent material coexist is formed by a co-evaporation method in which the fluorescent material and the delayed fluorescent material are deposited from different evaporation sources.
  • the method for producing the light emitting layer since the method for producing the light emitting layer has not been examined in detail, the method for producing the light emitting layer adopted therein is not always satisfactory. Therefore, the present inventors have made earnest studies for the purpose of developing a new manufacturing method for obtaining a film in which a fluorescent material and a delayed fluorescent material coexist.
  • the present inventors have found that co-evaporation from a vapor deposition source containing both a delayed fluorescent material and a fluorescent material enables stable deposition of the delayed fluorescent material and the fluorescent material to form a high-quality film. I found it.
  • the present invention has been proposed on the basis of these findings, and specifically has the following configurations.
  • a film containing the first compound and the second compound is formed by co-evaporating from a vapor deposition source containing both a first compound satisfying the following formula (1) and a second compound satisfying the following formula (2).
  • a method for producing a film comprising the steps of: ⁇ E ST (1) ⁇ 0.3 eV Formula (1) E S1 (1)> E S1 (2) Formula (2) (In the above equation, ⁇ E ST (1) is the difference between the lowest excited singlet energy level E S1 (1) of the first compound and the lowest excited triplet energy level E T1 (1) of the first compound. E S1 (2) is the lowest excited singlet energy level of the second compound.) [2] The method for producing a film according to [1], wherein the second compound satisfies the following formula (3).
  • ⁇ E ST (2) is the difference between the lowest excited singlet energy level E S1 (2) of the second compound and the lowest excited triplet energy level E T1 (2) of the second compound. is there.
  • [3] The method for producing a film according to [1] or [2], wherein the first compound emits delayed fluorescence.
  • [4] The method for producing a film according to [1], wherein the second compound emits fluorescence.
  • [5] The method for producing a film according to any one of [1] to [3], wherein the second compound emits delayed fluorescence.
  • [6] The method for producing a film according to any one of [1] to [5], wherein the film contains the first compound in a larger amount than the second compound.
  • [9] The method for producing a film according to any one of [1] to [8], wherein the vapor deposition source further contains a host material, and the film further contains the host material.
  • thermogravimetric analysis is performed at a constant heating rate to clarify the relationship between the temperature T and the weight reduction rate W, and The temperature T GR at which the dW/dT of the second compound becomes the same is specified
  • a film containing the first compound and the second compound is formed by co-evaporating at a temperature T GR from an evaporation source containing both the mixture of the first compound and the second compound, [1] to [15].
  • a method for producing an organic semiconductor device which comprises a step of forming a layer by the production method according to any one of [1] to [17].
  • the organic semiconductor device according to [20] which emits delayed fluorescence.
  • the first compound and the second compound can be stably deposited to form a good quality film.
  • an organic semiconductor element having a layer containing the first compound and the second compound can be easily produced.
  • thermogravimetric analysis result of compound T9 It is a schematic sectional drawing which shows the example of a layer structure of an organic electroluminescent element. It is a schematic diagram showing an example of a vacuum evaporation system used by a manufacturing method of a film of the present invention. It is a graph which shows the thermogravimetric analysis result of compound T9. It is a graph which shows the thermogravimetric analysis result of compound T10.
  • the numerical range represented by “to” means a range including the numerical values before and after “to” as the lower limit value and the upper limit value.
  • the isotopic species of hydrogen atoms present in the molecule of the compound used in the present invention are not particularly limited, and for example, all the hydrogen atoms in the molecule may be 1 H, or some or all of them may be 2 H. (Deuterium D) may be used.
  • excitation light refers to light that excites an irradiation target, and unless otherwise specified, it is light having a wavelength that matches the absorption wavelength of the irradiation target.
  • ⁇ Membrane manufacturing method> In the method for producing a film of the present invention, the first compound and the second compound are co-evaporated from a vapor deposition source containing both a first compound that satisfies the following formula (1) and a second compound that satisfies the following formula (2). It has a step of forming a film containing a compound.
  • ⁇ E ST (1) ⁇ 0.3 eV Formula (1)
  • E S1 (2) Formula (2)
  • ⁇ E ST (1) is the difference between the lowest excited singlet energy level E S1 (1) of the first compound and the lowest excited triplet energy level E T1 (1) of the first compound.
  • E S1 (2) is the lowest excited singlet energy level of the second compound.
  • the difference between the lowest excited singlet energy level E S1 (2) of the second compound and the lowest excited triplet energy level E T1 (2) of the second compound is expressed as ⁇ E ST (2). Further, generally, the difference between the lowest excited singlet energy level E S1 and the lowest excited triplet energy level E T1 of a particular compound is expressed as ⁇ E ST .
  • a sample of a solution in which the compound to be measured is dissolved in toluene or a sample of a film co-deposited with the host material so that the concentration of the compound to be measured is 6% by weight is prepared.
  • the host material is selected from those having a higher excited singlet energy level than E S1 of the compound to be measured and a higher excited triplet energy level than E T1 of the compound to be measured.
  • Delta] E ST as described in the claims is a value measured using a sample of film with a thickness of 100nm was co-evaporated with mCP as the concentration of the measurement target compounds on the Si substrate of 6 wt%.
  • E S1 Lowest excited singlet energy level
  • the fluorescence spectrum of the sample is measured at room temperature (300K). Emission intensity immediately after the excitation light is incident to 100 nanoseconds after the excitation light is integrated to obtain a fluorescence spectrum with the emission intensity on the vertical axis and the wavelength on the horizontal axis. In the fluorescence spectrum, the vertical axis indicates emission and the horizontal axis indicates wavelength. A tangent line is drawn to the rising edge of the emission spectrum on the short wave side, and the wavelength value ⁇ edge [nm] at the intersection of the tangent line and the horizontal axis is obtained. The value obtained by converting this wavelength value into an energy value by the conversion formula shown below is E S1 .
  • E S1 [eV] 1239.85/ ⁇ edge
  • a nitrogen laser MNL200 manufactured by Lasertechnik Berlin
  • a streak camera C4334 manufactured by Hamamatsu Photonics
  • E T1 Lowest excited triplet energy level
  • the phosphorescence spectrum of the emission intensity on the vertical axis and the wavelength on the horizontal axis is obtained by integrating the emission from 1 millisecond after the excitation light is incident to 10 milliseconds after the incidence.
  • a tangent line is drawn to the rising edge of the phosphorescence spectrum on the short wavelength side, and the wavelength value ⁇ edge [nm] at the intersection of the tangent line and the horizontal axis is obtained.
  • the value obtained by converting this wavelength value into an energy value using the conversion formula shown below is E T1 .
  • Conversion formula: E T1 [eV] 1239.85/ ⁇ edge
  • the tangent to the rising edge of the phosphorescence spectrum on the short wavelength side is drawn as follows.
  • the present invention is characterized in that, when co-evaporating the first compound and the second compound, an evaporation source containing both of these materials is used.
  • an evaporation source containing both of these materials is used.
  • the first compound and the second compound can be stably deposited to form a good quality film.
  • the vapor deposition source used in the present invention will be described.
  • the vapor deposition source contains both the first compound and the second compound.
  • the vapor deposition source used in the present invention may include only the first compound and the second compound, may include other vapor deposition materials, and may include a container or a holding material that holds these materials. Good.
  • the materials that will be the material of the film, that is, the first compound, the second compound, and other vapor deposition materials may be collectively referred to as “vapor deposition material”.
  • the first compound, the second compound, other vapor deposition materials included in the vapor deposition source, the content of each material, and the mode of the vapor deposition source will be described in order.
  • the first compound contained in the vapor deposition source that is, the material having ⁇ E ST of 0.3 eV or less, has the lowest excited singlet energy level E S1 and the lowest excited triplet energy level E T1 close to each other. To an excited singlet state tends to occur. It is confirmed that the first compound causes an intersystem crossing by observing delayed fluorescence emitted when the excited singlet state generated by the intersystem crossing is deactivated by radiation to the ground singlet state. be able to.
  • the “delayed fluorescence” in the present specification means that the fluorescence emission lifetime ( ⁇ ) is 200 ns (nanosecond) or more.
  • fluorescence emission lifetime ( ⁇ ) means the emission decay measurement after completion of photoexcitation in a solution or vapor-deposited film sample in the absence of oxygen such as under a nitrogen atmosphere or under vacuum. It means the time required by doing.
  • the emission lifetime of the fluorescent component having the longest emission lifetime is “fluorescence emission lifetime ( ⁇ )”.
  • the first compound used for the vapor deposition source is preferably a material that causes inverse intersystem crossing from an excited triplet state to an excited singlet state, and more preferably a material that emits delayed fluorescence.
  • the ⁇ E ST of the first compound is preferably lower, specifically 0.2 eV or less, more preferably 0.1 eV or less, and further preferably 0.05 eV or less. More preferably, it is even more preferably 0.01 eV or less, and ideally 0 eV.
  • the smaller the ⁇ E ST the more likely the first compound is to undergo inverse intersystem crossing, and the effect of converting the excited triplet state to the excited singlet state can be effectively exhibited.
  • the first compound used for the vapor deposition source may be a material composed of a single compound satisfying the formula (1) or may be a material composed of two or more kinds of compounds forming an exciplex.
  • the difference ⁇ E ST between the lowest excited singlet energy level E S1 and the lowest excited triplet energy level E T1 of the exciplex is 0.3 eV or less. Is preferred.
  • the first compound is liable to cause radiation deactivation from the excited triplet state to the ground singlet state at room temperature (300 K). It is preferable that the phosphor is not a usual phosphorescent material.
  • the first compound contained in the vapor deposition source may be of one type or of two or more types.
  • the first compounds may have different structures of the compounds constituting the material, or may be composed of a single compound or form an exciplex. It may be different in whether or not it is composed of two or more compounds. Further, the two or more kinds of first compounds may differ in the lowest excited singlet energy level E S1 , the lowest excited triplet energy level E T1 , their energy difference ⁇ E ST, and the like.
  • Examples of the first compound include compounds represented by the following general formula (1a).
  • D represents a substituent having a substituted amino group
  • L represents a substituted or unsubstituted arylene group, or a substituted or unsubstituted heteroarylene group
  • A is a cyano group, or at least one It represents a substituted or unsubstituted heteroaryl group containing a nitrogen atom as a ring skeleton-constituting atom.
  • the arylene group or heteroarylene group represented by L may be a single ring or a condensed ring in which two or more rings are condensed.
  • the number of condensed rings is preferably 2 to 6, and can be selected from, for example, 2 to 4.
  • Specific examples of the ring forming L include a benzene ring, a pyridine ring, a pyrimidine ring, a triazine ring, and a naphthalene ring.
  • arylene group or heteroarylene group represented by L include 1,4-phenylene group, 1,3-phenylene group, 1,2-phenylene group, 1,8-naphthylene group, 2,7-naphthylene group, 2 ,6-naphthylene group, 1,4-naphthylene group, 1,3-naphthylene group, 9,10-anthracenylene group, 1,8-anthracenylene group, 2,7-anthracenylene group, 2,6-anthracenylene group, 1, 4-anthracenylene group, 1,3-anthracenylene group, a group in which one of the ring skeleton constituent atoms of these groups is substituted with a nitrogen atom, a group in which two of the ring skeleton constituent atoms of these groups are substituted with nitrogen atoms, and these A group in which three of the ring skeleton-constituting atoms of the above group are substitute
  • the arylene group or heteroarylene group represented by L may have a substituent or may be unsubstituted. When it has two or more substituents, the plural substituents may be the same or different from each other. Examples of the substituent include a hydroxy group, a halogen atom, an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, an alkylthio group having 1 to 20 carbon atoms, an aryl group having 6 to 40 carbon atoms, and a carbon number.
  • Examples thereof include a trialkylsilylalkyl group having 20 carbon atoms, a trialkylsilylalkenyl group having 5 to 20 carbon atoms, a trialkylsilylalkynyl group having 5 to 20 carbon atoms, a substituent having a substituted amino group, and a cyano group.
  • substitutable with a substituent may be substituted. More preferred substituents are substituted or unsubstituted alkyl groups having 1 to 20 carbon atoms, alkoxy groups having 1 to 20 carbon atoms, substituted or unsubstituted aryl groups having 6 to 40 carbon atoms, and substituted groups having 3 to 40 carbon atoms. Alternatively, it is an unsubstituted heteroaryl group.
  • More preferred substituents are a substituted or unsubstituted alkyl group having 1 to 10 carbon atoms, a substituted or unsubstituted alkoxy group having 1 to 10 carbon atoms, a substituted or unsubstituted aryl group having 6 to 15 carbon atoms, and a carbon number. 3 to 12 substituted or unsubstituted heteroaryl groups.
  • the number of nitrogen atoms as a ring skeleton constituting atom is preferably 1 to 3.
  • the preferred range and specific examples of the heteroarylene group represented by L can be read as a monovalent group.
  • the heteroaryl group for A is preferably a group consisting of a 6-membered ring containing 1 to 3 nitrogen elements as ring skeleton-constituting atoms, more preferably a pyridinyl group, a pyrimidinyl group or a triazinyl group, and triazinyl More preferably, it is a group.
  • the heteroaryl group may be substituted with a substituent.
  • A may be a substituted or unsubstituted heteroaryl group, but is preferably a cyano group. Particularly, those in which A is a cyano group are more preferable than those in which A is a triazinyl group.
  • Examples of the compound represented by the general formula (1a) include a compound containing a cyanobenzene skeleton represented by the following general formula (1b) and a compound containing a triazine skeleton represented by the general formula (1c).
  • one 0-4 of R 1 ⁇ R 5 represents a cyano group, at least one of R 1 ⁇ R 5 is a substituent having a substituted amino group, the remaining R 1 ⁇ R 5 Represents a hydrogen atom, or a substituent having a substituted amino group and a substituent other than a cyano group.
  • the number of cyano groups in R 1 to R 5 may be any number from 0 to 4, but is preferably 2. That is, among the compounds containing the cyanobenzene skeleton, the compounds containing the dicyanobenzene skeleton are more preferable.
  • R 6 ⁇ R 8 is a substituent having a substituted amino group, the remaining R 6 ⁇ R 8 is other than substituent with a cyano group having a hydrogen atom or a substituted amino group, Represents a substituent.
  • the substituent having a substituted amino group in the general formulas (1a) to (1c) is preferably a substituent having a diarylamino group, and the two aryl groups constituting the diarylamino group are linked to each other, for example, carbazolyl. It may be the base. Further, the substituent having a substituted amino group in the general formula (1b) may be any of R 1 to R 5 , and examples thereof include R 2 , R 3 , R 4 , R 1 and R 3 , R 1 and R 5.
  • R 1 and R 5 , R 2 and R 3 , R 2 and R 3 , R 1 and R 3 and R 5 , R 1 and R 2 and R 3 , R 1 and R 3 and R 4 , R 2 and Preferable examples include R 3 and R 4 , R 1 and R 2 , R 3 and R 4 , R 1 , R 2 , R 3 , R 4 and R 5 .
  • the substituent having a substituted amino group in the general formula (1c) may be any of R 6 to R 8 , and examples thereof include R 6 , R 6 and R 7 , R 6 and R 7 and R 8 . can do.
  • the substituent having a substituted amino group in the general formulas (1a) to (1c) is preferably a substituent represented by the following general formula (2a).
  • the number of the substituents represented by the general formula (2a) is preferably 2 or more in the molecule, and more preferably 3 or more.
  • the substitution position of the substituent represented by formula (2a) is not particularly limited.
  • Ar 1 and Ar 2 each independently represent a substituted or unsubstituted aryl group or a substituted or unsubstituted heteroaryl group.
  • L represents a single bond, a substituted or unsubstituted arylene group, or a substituted or unsubstituted heteroarylene group.
  • * Represents a bonding position to the carbon atom (C) in the general formulas (1a) to (1c).
  • Ar 1 and Ar 2 in the general formula (2a) may bond to each other to form a cyclic structure together with the nitrogen atom in the general formula (2a).
  • the arylene group or heteroarylene group represented by Ar 1 and Ar 2 may be a single ring or a condensed ring in which two or more rings are condensed.
  • the number of condensed rings is preferably 2 to 6, and can be selected from, for example, 2 to 4.
  • Specific examples of the ring forming Ar 1 and Ar 2 include a benzene ring, a pyridine ring, a pyrimidine ring, a triazine ring and a naphthalene ring.
  • arylene group or heteroarylene group represented by Ar 1 and Ar 2 include a phenyl group, a 1-naphthyl group, a 2-naphthyl group, a 1-anthracenyl group, a 2-anthracenyl group, a 9-anthracenyl group, and a 2-pyridyl group. Examples thereof include a 3-pyridyl group and a 4-pyridyl group.
  • the arylene group or heteroarylene group represented by Ar 1 and Ar 2 may have a substituent or may be unsubstituted. When it has two or more substituents, the plural substituents may be the same or different from each other.
  • Examples include an alkylamide group having 20 to 20 carbon atoms, an arylamide group having 7 to 21 carbon atoms, and a trialkylsilyl group having 3 to 20 carbon atoms.
  • substitutable with a substituent may be substituted. More preferable substituents are an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, an alkylthio group having 1 to 20 carbon atoms, an alkyl-substituted amino group having 1 to 20 carbon atoms, and an alkyl group having 1 to 20 carbon atoms. An aryl-substituted amino group, an aryl group having 6 to 40 carbon atoms, and a heteroaryl group having 3 to 40 carbon atoms.
  • the substituent represented by the general formula (2a) is preferably a substituent represented by the following general formula (2b).
  • R 11 to R 20 each independently represent a hydrogen atom or a substituent.
  • L represents a single bond, a substituted or unsubstituted arylene group, or a substituted or unsubstituted heteroarylene group.
  • R 11 and R 12 , R 12 and R 13 , R 13 and R 14 , R 14 and R 15 , R 15 and R 16 , R 16 and R 17 , R 17 and R 18 , R 18 and R 19 , R 19 And R 20 may combine with each other to form a linking group necessary for forming a cyclic structure.
  • R 15 and R 16 may be bonded to each other to form a single bond or a linking group.
  • * Represents a bonding position to the carbon atom (C) in the general formulas (1a) to (1c).
  • R 11 to R 20 can have, refer to the corresponding description of the substituents of the arylene group or heteroarylene group represented by Ar 1 and Ar 2 in the general formula (1a). it can.
  • R 11 and R 12 , R 12 and R 13 , R 13 and R 14 , R 14 and R 15 , R 15 and R 16 , R 16 and R 17 , R 17 and R 18 , R 18 and R 19 , R 19 R 20 is a cyclic structure formed by bonding may be aliphatic ring even aromatic rings, also may be one containing a hetero atom, further cyclic structure 2 or more rings fused with May be
  • the hetero atom referred to herein is preferably selected from the group consisting of nitrogen atom, oxygen atom and sulfur atom.
  • Examples of the formed cyclic structure benzene ring, naphthalene ring, pyridine ring, pyridazine ring, pyrimidine ring, pyrazine ring, pyrrole ring, imidazole ring, pyrazole ring, imidazoline ring, oxazole ring, isoxazole ring, thiazole ring, iso Examples thereof include a thiazole ring, a cyclohexadiene ring, a cyclohexene ring, a cyclopentaene ring, a cycloheptatriene ring, a cycloheptadiene ring and a cycloheptaene ring.
  • L represents a single bond, a substituted or unsubstituted arylene group, or a substituted or unsubstituted heteroarylene group.
  • L is preferably a single bond or a substituted or unsubstituted arylene group.
  • the aromatic ring forming the arylene group represented by L may be a single ring, a condensed ring in which two or more aromatic rings are condensed, or a linking ring in which two or more aromatic rings are linked. When two or more aromatic rings are linked, they may be linearly linked or branched.
  • the aromatic ring constituting the arylene group represented by L preferably has 6 to 22 carbon atoms, more preferably 6 to 18 carbon atoms, further preferably 6 to 14 carbon atoms, and 6 to 10 carbon atoms. Are even more preferred.
  • Specific examples of the arylene group include a phenylene group, a naphthalenediyl group, and a biphenylene group.
  • the heterocycle constituting the heteroarylene group represented by L is a monocycle, a condensed ring formed by condensing one or more heterocycles with an aromatic ring or a heterocycle, and one or more heterocycles with an aromatic ring. It may be a linking ring in which a ring or a heterocycle is linked.
  • the carbon number of the heterocycle is preferably 5 to 22, more preferably 5 to 18, even more preferably 5 to 14, and even more preferably 5 to 10.
  • the heteroatoms forming the heterocycle are preferably nitrogen atoms.
  • Specific examples of the heterocycle include a pyridine ring, a pyridazine ring, a pyrimidine ring, a triazole ring and a benzotriazole ring.
  • a more preferred group represented by L is a phenylene group. When L is a phenylene group, the phenylene group may be any of a 1,2-phenylene group, a 1,3-phenylene group and a 1,4-phenylene group, but is preferably a 1,4-phenylene group. preferable.
  • L may be substituted with a substituent.
  • the number and the substitution position of the substituent of L are not particularly limited.
  • the description and the preferable range of the substituent that can be introduced into L the description and the preferable range of the substituent that R 11 to R 20 can take can be referred to.
  • the substituent represented by the general formula (2b) is preferably a substituent represented by any one of the following general formulas (3) to (7).
  • R 21 to R 24 , R 27 to R 38 , R 41 to R 48 , R 51 to R 58 , R 61 to R 65 , and R 81 to R 90 are independent of each other.
  • R 21 to R 24 , R 27 to R 38 , R 41 to R 48 , R 51 to R 58 , R 61 to R 65 , R 71 to R 79 , and R 81 to R 90 are each independently the above general formula ( It is also preferably a group represented by any of 3) to (7).
  • R 21 , R 23 , R 28 , and R 30 in the general formula (3) are preferably substituted or unsubstituted alkyl groups, and R 21 , R 23 , R 28 , and R 30 It is more preferred that all of R are substituted or unsubstituted alkyl groups, R 21 and R 30 are substituted or unsubstituted alkyl groups, or R 23 and R 28 are substituted or unsubstituted alkyl groups. More preferably, the substituted or unsubstituted alkyl group is a substituted or unsubstituted alkyl group having 1 to 6 carbon atoms.
  • R 89 and R 90 in the general formula (7) are preferably substituted or unsubstituted alkyl groups, and more preferably substituted or unsubstituted alkyl groups having 1 to 6 carbon atoms.
  • the number of substituents in the general formulas (3) to (7) is not particularly limited. It is also preferable that all are unsubstituted (that is, hydrogen atoms). When there are two or more substituents in each of formulas (3) to (7), those substituents may be the same or different.
  • the substituent is preferably any one of R 22 to R 24 and R 27 to R 29 in the general formula (3).
  • R 23 and R 28 are more preferable, R 32 to R 37 are preferable in the general formula (4), and R 42 to R 37 are preferable in the general formula (5). It is preferably any one of R 47 , and if it is the general formula (6), it is preferably any one of R 52 , R 53 , R 56 , R 57 and R 62 to R 64 , and the general formula (7) In this case, it is preferably any one of R 82 to R 87 , R 89 and R 90 .
  • L 1 to L 5 represent a single bond, a substituted or unsubstituted arylene group, or a substituted or unsubstituted heteroarylene group.
  • * Represents a bonding position to the carbon atom (C) in the general formulas (1a) to (1c).
  • L 1 to L 5 are preferably a single bond or a substituted or unsubstituted arylene group.
  • the first compound is often a compound known as a compound that emits delayed fluorescence.
  • Examples of such compounds include paragraphs 0008 to 0048 and 0095 to 0133 of WO 2013/154064, paragraphs 0007 to 0047 and 0073 to 0085 of WO 2013/011954, and paragraphs 0007 to 0033 and 0059 to 0066 of WO 2013/011955.
  • JP 2013-253121 A JP 2013-253121 A, WO 2013/133359 A, WO 2014/034535 A, WO 2014/115743 A, WO 2014/122895 A, WO 2014/126200 A.
  • JP 2013/136758 WO2014/133121, WO2014/136860, WO2014/196585, WO2014/189122, WO2014/168101, WO2015/008580, WO2014/203840 JP 2013-253121 A, WO 2013/133359 A, WO 2014/034535 A, WO 2014/115743 A, WO 2014/122895 A, WO 2014/126200 A.
  • WO2014/136758 WO2014/133121, WO2014/136860, WO2014/196585, WO2014/189122, WO2014/168101, WO2015/008580, WO2014/203840 JP 2013-253121 A, WO 2013/133359 A, WO 2014/034535 A, WO 2014/115743
  • the vapor deposition source used in the present invention contains a second compound in addition to the first compound.
  • the second compound is a compound that satisfies the formula (2).
  • E S1 (1)> E S1 (2) Formula (2) In the above equation, E S1 (1) is the lowest excited singlet energy level of the first compound, and E S1 (2) is the lowest excited singlet energy level of the second compound.
  • the difference between E S1 (1) and E S1 (2) [E S1 (1)-E S1 (2)] is, for example, 0.1 eV or more, 0.2 eV or more, 0.3 eV or more, 0.5 eV or more. , 1.2 eV or less, 1.0 eV or less, 0.8 eV or less, 0.6 eV or less.
  • the excited singlet energy of the first compound is easily transferred to the second compound in the obtained film, and the excitation generated by the intersystem crossing of the first compound is excited. Energy in the singlet state can be efficiently used for light emission of the second compound.
  • the second compound is preferably a fluorescent material.
  • the “fluorescent material” in the present invention means an organic material that emits fluorescence when a solution sample such as toluene or dichloromethane or a vapor deposition film sample is irradiated with excitation light at 20° C.
  • fluorescence is light emitted upon deactivation from the excited singlet state to the ground singlet state.
  • the fluorescent material in the present invention may be one that emits phosphorescence together with fluorescence, but in that case, the fluorescence intensity is preferably 9 times or more the phosphorescence intensity.
  • a compound having a fluorescence emission lifetime ( ⁇ ) of less than 200 ns (nanosecond) may be adopted, or a delayed fluorescent material having a fluorescence emission lifetime ( ⁇ ) of 200 ns (nanosecond) or more is adopted. You may.
  • the description of the fluorescence emission lifetime ( ⁇ ) the description of the fluorescence emission lifetime ( ⁇ ) in the (first compound) column can be referred to.
  • the delayed fluorescent material preferably satisfies the following relational expression.
  • ⁇ E ST (2) is the difference between the lowest excited singlet energy level E S1 (2) of the second compound and the lowest excited triplet energy level E T1 (2) of the second compound.
  • the second compound may be selected from the compounds T1 to T57 as long as the relationship between the above formulas (1) and (2) is satisfied.
  • the emission wavelength of the second compound is not particularly limited and can be appropriately selected depending on the application of the obtained film.
  • the second compound is a near infrared region (750 to 2500 nm) or a red region (620 to 750 nm) or It is preferable to have a maximum emission wavelength in the green region (495 to 570 nm) and the blue region (450 to 495 nm).
  • the second compound contained in the vapor deposition source may be one type or two or more types.
  • the second compounds have different structures of the compounds constituting the second compound, and the emission wavelength and emission color, and the lowest excited singlet energy level E S1 and the lowest excited triplet energy level E T1 may be different.
  • Examples of the second compound include anthracene derivative, tetracene derivative, naphthacene derivative, pyrene derivative, perylene derivative, chrysene derivative, rubrene derivative, coumarin derivative, pyran derivative, stilbene derivative, fluorene derivative, anthryl derivative, pyrromethene derivative, terphenyl derivative, and terphenyl derivative.
  • a phenylene derivative a fluoranthene derivative, an amine derivative, a quinacridone derivative, an oxadiazole derivative, a malononitrile derivative, a pyran derivative, a carbazole derivative, a julolidine derivative, a thiazole derivative, and a compound having a mother skeleton of these derivatives.
  • the mother skeleton of these derivatives may or may not have a substituent.
  • specific examples of the compound that can be used as the second compound will be illustrated. However, the compound that can be used as the second compound in the present invention should not be limitedly interpreted by these specific examples.
  • Et represents an ethyl group.
  • a compound containing a cyanobenzene skeleton as the second compound.
  • the evaporation rate (weight reduction rate) during vapor deposition is the same as that of the first compound and the second compound.
  • it is easy to produce a good quality film for the reason that it is easy to match.
  • the compound containing a cyanobenzene skeleton used for the second compound is more preferably a compound containing a dicyanobenzene skeleton, and further preferably a compound containing a 1,4-dicyanobenzene skeleton (terephthalonitrile skeleton). preferable.
  • the compound containing a cyanobenzene skeleton used for the second compound may emit delayed fluorescence.
  • the description of the general formula (1b) in the (first compound) column and specific examples (compounds T1 to T21) can be referred to.
  • the combination of the first compound and the second compound used for the vapor deposition source is not particularly limited.
  • the first compound and the second compound contained in the vapor deposition source may be one kind or two or more kinds, but are preferably one kind of compound.
  • all of the first compounds satisfy the formula (1), and all the second compounds are expressed by the formula (). 1) is satisfied.
  • E S1 of the most lowest excited singlet energy level E S1 (2) is higher compound in a second compound (2) is the most lowest excited singlet energy in the first compound and lower than E S1 (1) of the level E S1 (1) is lower compound.
  • the two or more kinds of the first compound and the second compound are not particularly limited, and for example, a combination that forms an exciplex may be included in the two or more kinds of compounds.
  • a combination of two or more first compounds forming an exciplex is included, the combination of the first compounds forming the exciplex is the lowest excited singlet energy level E S1 (Ex) and the lowest of the exciplex.
  • the excited triplet energy level E T1 (Ex) preferably satisfies the formula (1) in which E S1 (1) and E T1 (1) are replaced. That is, the energy difference ⁇ E ST (Ex) between E S1 (Ex) and E T1 (Ex) of the first compound is preferably 0.3 eV or less.
  • the combination of the second compounds forming the exciplex is the lowest excited singlet energy level E S1 (Ex) of the exciplex. It is preferable to satisfy the expression (2) in which E S1 (2) is replaced with. That is, it is preferable that E S1 (Ex) of the second compound is lower than E S1 (1) of the first compound.
  • the second compound E S1 (Ex) is preferably lower than the first compound E S1 (Ex).
  • the energy levels E S1 (Ex) and E T1 (Ex) of the exciplex can be determined according to the above-mentioned ⁇ E ST calculation method, using a film composed of a set of compounds forming the exciplex as a measurement sample. it can.
  • the combination of the first compound and the second compound that can be used for the vapor deposition source refer to Table 1 listed in the section “Film containing the first compound and the second compound”.
  • the combination of the first compound and the second compound that can be used in the present invention should not be limitedly interpreted by these specific examples.
  • the vapor deposition source may include only the first compound and the second compound as vapor deposition materials, or may include other vapor deposition materials.
  • Other vapor deposition materials include host materials and dopants.
  • the host material it is preferable that the lowest excited singlet energy level E S1 is used higher than the lowest excited singlet energy level E S1 of the first compound and the second compound, its lowest excited singlet energy
  • the level E S1 is higher than the lowest excited singlet energy level E S1 of the first compound and the second compound, and the lowest excited triplet energy level E T1 is the lowest excited triplet energy level of the first compound. It is more preferred to use a position higher than the position E T1 .
  • the host material is preferably an organic compound having a hole transporting ability and an electron transporting ability, preventing the emission from having a long wavelength and having a high glass transition temperature.
  • the host material may be one kind or two or more kinds.
  • the host materials have different structures of the compounds constituting the host materials, the lowest excited singlet energy level E S1 and the lowest excited triplet energy level. E T1 and the like may be different.
  • the compound that can be used as the host material the host materials exemplified in the section (Application of the present invention) can be referred to.
  • the compounds that can be used as the host material in the present invention should not be limitedly interpreted by these specific examples.
  • the compound that can be used as the dopant is, for example, a light-emitting body having a lower minimum excited singlet energy level E S1 than the first compound and the second compound.
  • a dopant receives energy from the first compound and the second compound in the excited singlet state and from the first compound and the second compound which are in the excited singlet state due to reverse intersystem crossing from the excited triplet state. When it transits to the excited singlet state and then returns to the ground state, it emits fluorescence.
  • the luminescent material used as the dopant is not particularly limited as long as it can emit energy by receiving energy from the first compound and the second compound as described above, and the luminescence may be fluorescence or delayed fluorescence, It may be phosphorescent.
  • the luminescent material used as the dopant emits fluorescence when returning from the lowest excited singlet energy level E S1 to the ground singlet energy level E S0 .
  • Two or more kinds of dopants may be used.
  • a desired color can be emitted by using two or more kinds of dopants having different emission colors together.
  • anthracene derivative, tetracene derivative, naphthacene derivative, pyrene derivative, perylene derivative, chrysene derivative, rubrene derivative, coumarin derivative, pyran derivative, stilbene derivative, fluorene derivative, anthryl derivative, pyrromethene derivative, terphenyl derivative, terphenylene derivative , A fluoranthene derivative, an amine derivative, a quinacridone derivative, an oxadiazole derivative, a malononitrile derivative, a pyran derivative, a carbazole derivative, a julolidine derivative, a thiazole derivative, and a compound having a mother skeleton of these derivatives can be used.
  • the mother skeleton of these derivatives may or may not have a substituent.
  • the dopant may include two or more of these skeletons.
  • the specific examples of the dopant the specific examples of the compound that can be used for the second compound, which are shown in the above section of (Second compound), can be referred to.
  • the respective contents of the first compound, the second compound and other vapor deposition materials in the vapor deposition source can be appropriately selected according to the composition of the target film and the conditions of co-evaporation.
  • the content rate of the first compound in the vapor deposition source is preferably higher than the content rate of the second compound, and is preferably 50% by weight or more based on the total amount of the first compound and the second compound. It is more preferably at least wt%, further preferably at least 95 wt%, and preferably at most 99.9 wt%.
  • the content of the second compound in the vapor deposition source is preferably 0.01% by weight or more, more preferably 0.1% by weight or more, based on the total amount of the first compound and the second compound, and 0. It is more preferably 0.5% by weight or more, preferably 50% by weight or less, more preferably 10% by weight or less, and further preferably 5% by weight or less.
  • the content of the host material is preferably 15% by weight or more, more preferably 50% by weight or more, and 65% by weight or more with respect to the total amount of the vapor deposition material. Is more preferable.
  • the content of the host material in the vapor deposition source is preferably 99.9% by weight or less, more preferably 99% by weight or less, and 90% by weight with respect to the total vapor deposition material. The following is more preferable.
  • the content of the first compound in the vapor deposition source is preferably 5 wt% or more, more preferably 10 wt% or more, and 20 wt% with respect to the total amount of the vapor deposition material.
  • the upper limit is preferably 80% by weight or less, and more preferably 50% by weight or less, based on the total amount of the vapor deposition material.
  • the content of the second compound in the vapor deposition source is preferably 0.01% by weight or more, and more preferably 0.1% by weight or more, based on the total amount of the vapor deposition material. Is more preferably 0.5% by weight or more, and the upper limit is preferably 50% by weight or less, more preferably 10% by weight or less, and more preferably 5% by weight with respect to the total amount of the vapor deposition material. It is more preferable that the amount is not more than 3%, and it is further preferable that the amount is 3% by weight or less.
  • the vapor deposition source used in the present invention contains both the first compound and the second compound, and may be one in which each material is contained in the same container or one in which each material is held by the same holding material. Good.
  • a mixed powder obtained by mixing the powder of the first compound and the powder of the second compound, or these powders and other materials used as necessary. What mixed powder mixed powder is housed in the same container, compression molded product obtained by compression molding of these mixed powders, first compound and second compound are heated and melted and mixed, and then solidified by cooling.
  • the solids include solids obtained by heating, melting these materials and other vapor deposition materials used as needed, mixing them by heating, and solidifying by cooling.
  • the compression molded body and the solid obtained by heating and melting may be housed in a container as a vapor deposition source.
  • a crucible or the like which is usually used in a vapor deposition device can be used.
  • FIG. 2 shows an example of a vacuum vapor deposition apparatus used for this co-evaporation.
  • the vacuum vapor deposition apparatus shown in FIG. 2 includes a chamber 100 that is a pressure resistant container, a vapor deposition source 101 installed in the chamber 100, and a substrate holding unit 102 disposed inside the chamber 100 so as to face the vapor deposition source 101. ..
  • the vapor deposition source 101 is configured by accommodating a vapor deposition material 101a containing both a first compound and a second compound in a crucible 101b.
  • the vacuum vapor deposition apparatus is provided with a vacuum pump for bringing the chamber 100 into a vacuum state and a heating device for heating the vapor deposition source.
  • the substrate 10 for forming a film is mounted on the substrate holding unit 102 so that the film formation surface faces the evaporation source 101 side.
  • the base material 10 can be appropriately selected depending on the intended use of the obtained film, and for example, a substrate made of glass, transparent plastic, quartz, silicon or the like can be used. Further, the base material may be a substrate on which a functional film is formed.
  • the functional film constituting the base material for example, in the case of finally manufacturing a specific element, in the element, a film or a laminated film arranged between the film formed here and the substrate may be mentioned. be able to.
  • the element to be manufactured is an organic electroluminescence element
  • an electrode layer, a carrier injection layer, a carrier transport layer and the like can be cited as the functional film constituting the base material.
  • the inside of the chamber 100 is evacuated to heat the vapor deposition source 101.
  • the vapor deposition material 101a is melted, vaporized, or sublimated, and the vaporized or sublimated particles are attached and deposited on the surface of the base material 10.
  • the vapor deposition source contains both the first compound and the second compound, these materials can be stably deposited on the surface of the base material and a good film can be formed.
  • the degree of vacuum in the chamber 100 when forming the film is preferably 10 ⁇ 2 Pa or less, more preferably 10 ⁇ 4 Pa or less, and further preferably 10 ⁇ 5 Pa or less. preferable.
  • the film formation rate of the film is not particularly limited, but is preferably 0.01 to 30 ⁇ /s, more preferably 0.1 to 20 ⁇ /s, and further preferably 1 to 10 ⁇ /s. ..
  • the heating temperature of the vapor deposition source 101 and the film formation rate may be kept constant during film formation, or may be changed with time.
  • the composition corresponding to the composition ratio of the multiple compounds contained in the vapor deposition source is set. It is preferable because a film having a specific ratio can be formed. Then, if a plurality of compounds are mixed at the same composition ratio as that of the film to be realized and used as the vapor deposition source, a film having a desired composition ratio can be easily formed.
  • the specific source is obtained by using a vapor deposition source in which the first compound and the second compound are mixed at a desired composition ratio. If co-evaporation is performed at a temperature, a film having a desired composition ratio can be formed.
  • a specific temperature can be determined by performing thermogravimetric analysis of the first compound and the second compound in advance. For example, how the weight reduction rate W (unit: %) of the compound changes when the temperature T (unit: °C) of the compound is increased at a constant temperature rising rate for the first compound and the second compound, respectively. It can be determined by making a graph.
  • the rate of temperature increase is preferably selected within the range of 5 to 20° C./minute, and can be set to, for example, 10° C./minute.
  • the weight reduction rate W referred to here is expressed as 0% before the start of thermogravimetric analysis and as -100% when the weight becomes 0.
  • T WT the temperature at which the first compound and the second compound have the same weight loss rate is specified and is used as the temperature during co-deposition. That is, when the thermogravimetric analysis graph of the first compound (vertical axis W, horizontal axis T) and the thermogravimetric analysis graph of the second compound (vertical axis W, horizontal axis T) are overlapped, at the intersection point where the two curves intersect.
  • the temperature can be specified as T WT and used as the temperature during co-deposition.
  • T WT temperature at which the dW/dT of the first compound and the second compound are the same is specified and is used as the temperature during co-deposition.
  • T GR temperature at which the dW/dT of the first compound and the second compound are the same is specified and is used as the temperature during co-deposition.
  • These temperatures T WT and T GR are preferably specified as temperatures within the range of ⁇ 5% ⁇ W ⁇ 95%, and are specified as temperatures within the range of ⁇ 90% ⁇ W ⁇ 10%. It is more preferable that the temperature be within the range of ⁇ 80% ⁇ W ⁇ 20%.
  • the temperature T (co-deposition) at the time of co-deposition does not have to be exactly the temperature T WT or the temperature T GR itself, but depending on the intended use of the film to be formed, T WT -10°C ⁇ T (co-deposition). It may be ⁇ T WT +10° C. or T GR ⁇ 10° C. ⁇ T (co-deposition) ⁇ T GR +10° C., or T WT ⁇ 5° C. ⁇ T (co-deposition) ⁇ T WT +5° C. or T GR ⁇ It may be 5° C. ⁇ T (co-deposition) ⁇ T GR +5° C.
  • the vacuum vapor deposition apparatus used for co-vapor deposition in the present invention is not limited to the above configuration, and the configuration of each part constituting the vacuum vapor deposition apparatus may be replaced with any that can exhibit the same function. Alternatively, an arbitrary configuration can be added.
  • the vacuum vapor deposition apparatus includes a crucible that accommodates the second first compound and the second second compound, separately from the crucible 101b, and the vapor deposition source 102 and the second first compound or the second second compound.
  • the vapor deposition may be performed from two vapor deposition sources including a compound, or may include a vapor deposition source 102, a vapor deposition source including a second first compound, and a second second compound.
  • the vapor deposition source may be configured to perform co-deposition from three vapor deposition sources, or the vapor deposition source 102 and two vapor deposition sources including both the second first compound and the second second compound. May be configured to co-deposit.
  • the vapor deposition source 102 it is possible to use a vapor deposition source containing a host material or a vapor deposition source containing a dopant, or to increase the vapor deposition sources for the first compound and the second compound.
  • the descriptions in the columns of (first compound) and (second compound) can be referred to. .
  • the second first compound and the second second compound may each be of one type or of two or more types.
  • the vacuum vapor deposition apparatus may include a rotating device in the substrate holding unit 102 that rotates the substrate 10 at a predetermined speed with a predetermined position of the substrate 10 as a rotation center while holding the substrate 10 horizontally. By rotating the substrate 10 by the rotating device during the co-deposition, the film thickness distribution of the formed film can be made uniform.
  • the vacuum vapor deposition device may include a shutter that blocks evaporation of the vapor deposition material, a film thickness meter that measures the film thickness of the film formed, and the like.
  • the film formed by the present invention is a film containing the first compound and the second compound.
  • the film formed in the present invention may be composed of only the first compound and the second compound, or may contain other materials. Other materials include host materials and dopants.
  • the film containing another material can be formed by including another material in the vapor deposition source in addition to the first compound and the second compound.
  • the first compound, the second compound, the host material and the dopant, and specific examples see the descriptions and preferred ranges of the first compound, the second compound, the host material and the dopant used for the vapor deposition source, and specific examples. can do.
  • the first compound, the second compound, and the host material and the dopant used as necessary, which are contained in the film may be one kind or two or more kinds, respectively.
  • the film preferably contains more of the first compound than the second compound.
  • the content of the first compound in the film is preferably 50% by weight or more, more preferably 80% by weight or more, and further preferably 95% by weight or more.
  • the content of the first compound in the film is preferably 99.9% by weight or less, more preferably 99% by weight or less, and further preferably 95% by weight or less.
  • the content of the second compound in the film is preferably 0.01% by weight or more, more preferably 0.1% by weight or more, and further preferably 0.5% by weight or more.
  • the content of the second compound in the film is preferably less than 10% by weight, more preferably less than 5% by weight, still more preferably less than 3% by weight.
  • the content of the host material is preferably 15% by weight or more, more preferably 50% by weight or more, and further preferably 65% by weight or more.
  • the content of the host material in the film is preferably 99.9% by weight or less, more preferably 99% by weight or less, and further preferably 90% by weight or less.
  • the content of the first compound in the film is preferably 1% by weight or more, more preferably 10% by weight or more, further preferably 20% by weight or more, Further, the upper limit is preferably 99.9% by weight or less, more preferably 80% by weight or less, and further preferably 50% by weight or less.
  • the content of the second compound in the film is preferably 0.01% by weight or more, more preferably 0.1% by weight or more, and 0.5% by weight or more. More preferably, the upper limit is less than 50% by weight, more preferably less than 10% by weight, further preferably 5% by weight or less, further preferably 3% by weight or less. Is more preferable.
  • the content of the dopant in the film is preferably 0.01% by weight or more, more preferably 0.05% by weight or more, and 0.1% by weight or more. More preferable.
  • the content of the dopant in the film is preferably less than 50% by weight, more preferably less than 10% by weight, further preferably less than 5% by weight, and more preferably 3% by weight or less. Even more preferable.
  • the ratio of the total amount of the first compound and the second compound in the film is preferably 10% by weight or more, and more preferably 20% by weight or more. More preferably, it is more preferably 50% by weight or more.
  • the upper limit is preferably less than 85% by weight.
  • the content of the first compound or the second compound in the film can be measured by liquid chromatography (LC) or nuclear magnetic resonance (NMR). Further, the content rates of these materials can be controlled by the content rate of each material in the vapor deposition source, the degree of vacuum of the vacuum vapor deposition apparatus, the heating temperature of the vapor deposition source, the film forming rate, and the like.
  • the film formed by the manufacturing method of the present invention emits light by irradiation with excitation light or current injection. Light emission occurs from the second compound contained in the film, and light emission from the first compound or the host material may occur. Also, if the film further comprises a dopant, light emission will result from the second compound and the dopant.
  • the emitted light may be normal fluorescence only, delayed fluorescence only, or may include fluorescence and delayed fluorescence, but preferably delayed fluorescence. That is, the film formed by the manufacturing method of the present invention preferably emits delayed fluorescence.
  • the fact that the film emits delayed fluorescence means that the inverse triplet crossing from the excited triplet state to the excited singlet state surely occurs in the film.
  • the energy is converted into excited singlet energy, and can be effectively used for fluorescence emission of the first compound and the second compound.
  • the emission of delayed fluorescence in the film can be observed by the emission decay measurement after the completion of photoexcitation in the absence of oxygen such as under nitrogen atmosphere or under vacuum.
  • delayed fluorescence the description in the column of (First compound) can be referred to.
  • the film formed by the present invention should not be limitedly interpreted by these specific examples.
  • Table 1 the number with T (T number) shown in the horizontal row shows the number of the compound used in the first compound, and the number with F shown in the vertical column (F number) shows that of the compound used in the second compound.
  • the numbers at the positions where the columns of the respective numbers intersect indicate the numbers of the membranes containing the compound of the corresponding T number as the first compound and the compound of the corresponding F number as the second compound.
  • preferred membranes are compound T1 and compound F88, compound T2 and compound F88, compound T3 and compound F88, compound T4 and compound F20, compound T4 and compound F21, compound T4 and compound F34, compound T5 and compound F20.
  • the method for producing an organic semiconductor element of the present invention has a step of forming a layer by the method for producing a film of the present invention.
  • the description in the section ⁇ Membrane production method> can be referred to.
  • the organic semiconductor element manufactured by the manufacturing method of the present invention is not particularly limited as long as it has a layer containing the first compound and the second compound.
  • organic electroluminescent elements organic electroluminescent devices
  • organic photoluminescent elements organic photoluminescent devices
  • semiconductor laser elements organic light emitting elements such as light storing elements, organic thin film solar cells, organic field effect transistors
  • organic thermoelectric elements organic piezoelectric elements.
  • a light emitting layer containing a first compound and a second compound can be formed by the method for producing a film of the present invention.
  • the layer is formed with good film quality, and excellent characteristics can be obtained. Show.
  • the method for forming the layers other than the layer containing the first compound and the second compound is not particularly limited, and may be formed by either a dry process or a wet process.
  • the light emitting layer contains the first compound and the second compound, and may further contain the host material.
  • the organic light emitting device comprises a light emitting layer.
  • the light emitting layer comprises a compound of formula (I) as a light emitting material.
  • the organic light emitting device is an organic photoluminescent device (organic PL device).
  • the organic light emitting device is an organic electroluminescent device (organic EL device).
  • the compounds of formula (I) assist (as a so-called co-dopant) the light emission of other emissive materials comprised in the emissive layer.
  • the compound of formula (I) comprised in the emissive layer has a lowest excited singlet energy level in the emissive layer and a lowest excited singlet energy level of the host material comprised in the emissive layer. It is included between the lowest excited singlet energy level of the other luminescent material included.
  • the organic photoluminescent device comprises at least one light emitting layer.
  • the organic electroluminescent device comprises at least an anode, a cathode, and an organic layer between the anode and the cathode.
  • the organic layer comprises at least a light emitting layer.
  • the organic layer comprises only a light emitting layer.
  • the organic layer comprises one or more organic layers in addition to the light emitting layer.
  • organic layers include hole transport layers, hole injection layers, electron barrier layers, hole barrier layers, electron injection layers, electron transport layers and exciton barrier layers.
  • the hole transport layer may be a hole injection transport layer having a hole injection function
  • the electron transport layer may be an electron injection transport layer having an electron injection function. Good. An example of an organic electroluminescent device is shown in FIG.
  • the organic electroluminescent device of the present invention is carried by a substrate, which substrate is not particularly limited and is commonly used in organic electroluminescent devices such as glass, transparent plastics, quartz and silicon. Any material formed by the above method may be used.
  • the anode of the organic electroluminescent device is made of metals, alloys, conductive compounds or combinations thereof.
  • the metal, alloy or conductive compound has a high work function (4 eV or higher).
  • the metal is Au.
  • the conductive transparent material is selected from CuI, indium tin oxide (ITO), SnO 2 and ZnO.
  • an amorphous material that can form a transparent conductive film such as IDIXO (In 2 O 3 —ZnO), is used.
  • the anode is a thin film. In some embodiments, the thin film is made by evaporation or sputtering.
  • the film is patterned by photolithographic methods. In some embodiments, if the pattern does not need to be highly accurate (eg, about 100 ⁇ m or more), the pattern may be formed using a mask having a shape suitable for vapor deposition or sputtering on the electrode material. In some embodiments, wet film forming methods such as printing and coating are used when a coating material such as an organic conductive compound can be applied. In some embodiments, when the emitted light passes through the anode, the anode has a transparency of greater than 10%, and the anode has a sheet resistance of hundreds of ohms or less per unit area. In some embodiments, the thickness of the anode is 10-1,000 nm. In some embodiments, the thickness of the anode is 10-200 nm. In some embodiments, the thickness of the anode will vary depending on the material used.
  • the cathode is made of an electrode material such as a low work function metal (4 eV or less) (referred to as an electron injection metal), an alloy, a conductive compound or a combination thereof.
  • the electrode material is sodium, sodium-potassium alloy, magnesium, lithium, magnesium-copper mixture, magnesium-silver mixture, magnesium-aluminum mixture, magnesium-indium mixture, aluminum-aluminum oxide (Al 2 O 3 ) mixtures, indium, lithium-aluminum mixtures and rare earth elements.
  • a mixture of an electron-injecting metal and a second metal that is a stable metal with a higher work function than the electron-injecting metal is used.
  • the mixture is selected from a magnesium-silver mixture, a magnesium-aluminum mixture, a magnesium-indium mixture, an aluminum-aluminum oxide (Al 2 O 3 ) mixture, a lithium-aluminum mixture and aluminum.
  • the mixture improves electron injection properties and resistance to oxidation.
  • the cathode is manufactured by forming the electrode material as a thin film by vapor deposition or sputtering.
  • the cathode has a sheet resistance of less than a few hundred ohms per unit area.
  • the thickness of the cathode is 10 nm to 5 ⁇ m.
  • the thickness of the cathode is 50-200 nm.
  • any one of the anode and cathode of the organic electroluminescent device is transparent or translucent to transmit emitted light.
  • transparent or translucent electroluminescent devices enhance light radiance.
  • the cathode is formed of a conductive transparent material as described above for the anode to form a transparent or semi-transparent cathode.
  • the device includes an anode and a cathode, both transparent or translucent.
  • the light emitting layer is a layer in which holes and electrons injected from the anode and the cathode are recombined to form excitons.
  • the layer emits light.
  • only luminescent material is used as the luminescent layer.
  • the light emitting layer comprises a light emitting material and a host material.
  • the emissive material is one or more compounds of formula (I).
  • singlet excitons and triplet excitons generated in the emissive material are confined within the emissive material to improve the light emission efficiency of the organic electroluminescent and organic photoluminescent devices.
  • a host material is used in the light emitting layer in addition to the light emitting material.
  • the host material is an organic compound.
  • the organic compound has an excited singlet energy and an excited triplet energy, at least one of which is higher than those of the luminescent materials of the present invention.
  • the singlet excitons and triplet excitons generated in the luminescent material of the present invention are confined in the molecules of the luminescent material of the present invention.
  • the singlet and triplet excitons are well confined to enhance light emission efficiency.
  • the singlet excitons and triplet excitons are not well confined, i.e., a host with high light emission efficiency that can be used in the present invention, even though high light emission efficiency is still obtained.
  • the material is not particularly limited.
  • light emission occurs at the emissive material in the emissive layer of the device of the present invention.
  • the emitted light comprises both fluorescence and delayed fluorescence.
  • the emitted light comprises emitted light from a host material.
  • the emitted light comprises emitted light from a host material.
  • the emitted light comprises emitted light from a compound of formula (I) and emitted light from a host material.
  • TADF molecules and host materials are used.
  • TADF is a co-dopant.
  • the amount of the compound of the present invention as a light emitting material contained in the light emitting layer is 0.1% by weight or more. In some embodiments, when using a host material, the amount of the compound of the present invention as a light emitting material contained in the light emitting layer is 1% by weight or more. In some embodiments, when using a host material, the amount of the compound of the present invention as a light emitting material contained in the light emitting layer is 50% by weight or less.
  • the amount of the compound of the present invention as a light emitting material contained in the light emitting layer is 20% by weight or less. In some embodiments, when using a host material, the amount of the compound of the present invention as a light emitting material contained in the light emitting layer is 10% by weight or less. In some embodiments, the host material of the light emitting layer is an organic compound having a hole transport function and an electron transport function. In some embodiments, the host material of the light emitting layer is an organic compound that prevents the wavelength of emitted light from increasing. In some embodiments, the host material of the light emitting layer is an organic compound having a high glass transition temperature.
  • the injection layer is the layer between the electrode and the organic layer. In some embodiments, the injection layer reduces drive voltage and enhances light radiance. In some embodiments, the injection layer comprises a hole injection layer and an electron injection layer. The injection layer can be arranged between the anode and the light emitting layer or the hole transport layer, and between the cathode and the light emitting layer or the electron transport layer. In some embodiments, an injection layer is present. In some embodiments, there is no injection layer.
  • the barrier layer is a layer capable of preventing charges (electrons or holes) and/or excitons existing in the light emitting layer from diffusing to the outside of the light emitting layer.
  • the electron barrier layer is between the emissive layer and the hole transport layer and blocks electrons from passing through the emissive layer to the hole transport layer.
  • the hole blocking layer is between the emissive layer and the electron transport layer and blocks holes from passing through the emissive layer to the electron transport layer.
  • the barrier layer prevents excitons from diffusing out of the light emitting layer.
  • the electron barrier layer and the hole barrier layer comprise exciton barrier layers.
  • the term “electron barrier layer” or “exciton barrier layer” includes layers that have both the function of an electron barrier layer and the function of an exciton barrier layer.
  • Hole blocking layer functions as an electron transport layer. In some embodiments, the hole blocking layer blocks holes from reaching the electron transport layer during electron transport. In some embodiments, the hole blocking layer enhances the probability of electron and hole recombination in the light emitting layer.
  • the material used for the hole blocking layer may be the same material as described above for the electron transport layer.
  • Electron barrier layer transports holes. In some embodiments, the electron barrier layer blocks electrons from reaching the hole transport layer during hole transport. In some embodiments, the electron barrier layer increases the probability of electron-hole recombination in the light-emitting layer.
  • Exciton barrier layer prevents excitons generated through recombination of holes and electrons in the light emitting layer from diffusing to the charge transport layer. In some embodiments, the exciton barrier layer enables effective confinement of excitons in the light emitting layer. In some embodiments, the light emitting efficiency of the device is improved. In some embodiments, the exciton barrier layer is adjacent to the emissive layer on either or both the anode and cathode sides. In some embodiments, when the exciton barrier layer is on the anode side, the layer may be between and adjacent to the hole transport layer and the light emitting layer.
  • the layer when the exciton barrier layer is on the cathode side, the layer is between the light emitting layer and the cathode and may be adjacent to the light emitting layer. In some embodiments, a hole injection layer, an electron barrier layer or similar layer is present between the anode and the exciton barrier layer adjacent to the light emitting layer on the anode side. In some embodiments, a hole injection layer, an electron barrier layer, a hole barrier layer or similar layer is present between the cathode and the exciton barrier layer adjacent to the cathode side light emitting layer. In some embodiments, the exciton barrier layer comprises excited singlet energy and excited triplet energy, at least one of which is higher than the excited singlet energy and excited triplet energy of the emissive material, respectively.
  • the hole transport layer contains a hole transport material.
  • the hole transport layer is a monolayer.
  • the hole transport layer has multiple layers.
  • the hole transport material has one of a hole injection or transport property and an electron barrier property.
  • the hole transport material is an organic material.
  • the hole transport material is an inorganic material. Examples of known hole transport materials that can be used in the present invention include, but are not limited to, triazole derivatives, oxadiazole derivatives, imidazole derivatives, carbazole derivatives, indolocarbazole derivatives, polyarylalkane derivatives, pyrazoline derivatives, pyrazolones.
  • the hole transport material is selected from porphyrin compounds, aromatic tertiary amine compounds and styrylamine compounds. In some embodiments, the hole transport material is an aromatic tertiary amine compound.
  • Electron transport layer contains an electron transport material.
  • the electron transport layer is a monolayer.
  • the electron transport layer has multiple layers.
  • the electron transport material need only function to transport the electrons injected from the cathode to the light emitting layer.
  • the electron transport material also functions as a hole blocking material.
  • Examples of electron transport layers that can be used in the present invention include, but are not limited to, nitro-substituted fluorene derivatives, diphenylquinone derivatives, thiopyran dioxide derivatives, carbodiimides, fluorenylidene methane derivatives, anthraquinodimethanes, anthrone derivatives, oxadienes.
  • the electron transport material is a thiadiazole inducer or quinoxaline derivative. In some embodiments, the electron transport material is a polymeric material.
  • compounds of formula (I) are included in the emissive layer of devices of the invention. In some embodiments, the compound of formula (I) is included in the light emitting layer and at least one other layer. In some embodiments, compounds of formula (I) are selected for each layer. In some embodiments, the compounds of formula (I) are the same. In some embodiments, each compound of formula (I) is different.
  • the compound represented by the formula (I) can be used in the above-mentioned injection layer, barrier layer, hole barrier layer, electron barrier layer, exciton barrier layer, hole transport layer and electron transport layer.
  • the method for forming a film of the layer is not particularly limited, and the layer can be manufactured by either a dry process or a wet process.
  • the host material is selected from the group consisting of:
  • the compounds of the invention are incorporated into devices.
  • devices include, but are not limited to, OLED bulbs, OLED lamps, television displays, computer monitors, cell phones and tablets.
  • an electronic device includes an OLED having an anode, a cathode, and at least one organic layer that includes a light emitting layer between the anode and the cathode, the light emitting layer comprising a host material and a compound of formula (I ) Compound.
  • the emissive layer of an OLED further comprises a fluorescent material in which the compound of formula (I) converts triplets to singlets for fluorescent emitters.
  • the compositions described herein can be incorporated into various photosensitive or photoactivated devices, such as OLEDs or optoelectronic devices.
  • the composition may be useful in facilitating charge or energy transfer within a device and/or as a hole transport material.
  • the device include an organic light emitting diode (OLED), an organic integrated circuit (OIC), an organic field effect transistor (O-FET), an organic thin film transistor (O-TFT), an organic light emitting transistor (O-LET), and an organic solar cell. (O-SC), organic optical detectors, organic photoreceptors, organic field quench devices (O-FQD), luminescent fuel cells (LEC) or organic laser diodes (O-lasers).
  • an electronic device includes an OLED that includes an anode, a cathode, and at least one organic layer that includes a light emitting layer between the anode and the cathode, the light emitting layer comprising a host material and a light emitting material. And a OLED driver circuit.
  • the device comprises different color OLEDs.
  • the device comprises an array that includes a combination of OLEDs.
  • the combination of OLEDs is a three color combination (eg, RGB).
  • the combination of OLEDs is a combination of colors that are neither red, green, nor blue (eg, orange and yellow-green).
  • the combination of OLEDs is a combination of two colors, four colors or more.
  • the device is A circuit board having a first surface having a mounting surface and an opposite second surface, the circuit board defining at least one opening; At least one OLED on the mounting surface, the at least one OLED including an anode, a cathode, and at least one organic layer including a light emitting layer between the anode and the cathode, the light emitting layer comprising: At least one OLED having a light emitting configuration, comprising a host material and a compound of formula (I) which is a light emitting material; A housing for the circuit board, At least one connector disposed at an end of the housing, the housing and the connector defining at least one connector package suitable for mounting to a lighting fixture.
  • the OLED light comprises multiple OLEDs mounted on a circuit board such that light is emitted in multiple directions. In some embodiments, some of the light emitted in the first direction is polarized and emitted in the second direction. In some embodiments, a reflector is used to polarize the light emitted in the first direction.
  • compounds of formula (I) can be used in screens or displays.
  • the compound of formula (I) is deposited on the substrate using a process such as, but not limited to, vacuum evaporation, deposition, vapor deposition or chemical vapor deposition (CVD).
  • the substrate is a photoplate structure useful in a two-sided etch that provides pixels with unique aspect ratios.
  • the screen also called a mask
  • the corresponding artwork pattern design allows for the placement of very steep narrow tie bars between pixels in the vertical direction, as well as large, wide beveled openings in the horizontal direction.
  • the preferred material for the vapor deposition mask is Invar.
  • Invar is a metal alloy cold-rolled into a long thin sheet at an iron mill. Invar cannot be electrodeposited onto the spin mandrel as a nickel mask.
  • a suitable and low cost method for forming open areas in the deposition mask is by wet chemical etching.
  • the screen or display pattern is a pixel matrix on the substrate.
  • the screen or display pattern is processed using lithography (eg, photolithography and e-beam lithography).
  • the screen or display pattern is processed using wet chemical etching.
  • the screen or display pattern is processed using plasma etching.
  • OLED displays are generally manufactured by forming a large mother panel and then cutting the mother panel into cell panels.
  • each cell panel on the mother panel has a thin film transistor (TFT) having an active layer and source/drain electrodes formed on a base material, a flattening film applied to the TFT, a pixel electrode and a light emitting layer.
  • TFT thin film transistor
  • the counter electrode and the encapsulation layer are sequentially formed over time, and then cut from the mother panel.
  • OLED displays are generally manufactured by forming a large mother panel and then cutting the mother panel into cell panels.
  • each cell panel on the mother panel has a thin film transistor (TFT) having an active layer and source/drain electrodes formed on a base material, a flattening film applied to the TFT, a pixel electrode and a light emitting layer.
  • TFT thin film transistor
  • the counter electrode and the encapsulation layer are sequentially formed over time, and then cut from the mother panel.
  • OLED organic light emitting diode
  • the barrier layer is an inorganic film formed of, for example, SiNx, and the edges of the barrier layer are covered with an organic film formed of polyimide or acrylic.
  • the organic film helps the mother panel to be softly cut into cell panel units.
  • the thin film transistor (TFT) layer has a light emitting layer, a gate electrode, and source/drain electrodes.
  • Each of the plurality of display units may include a thin film transistor (TFT) layer, a flattening film formed on the TFT layer, and a light emitting unit formed on the flattening film.
  • the applied organic film is formed of the same material as the material of the flattening film, and is formed simultaneously with the formation of the flattening film.
  • the light emitting unit is connected to the TFT layer by a passivation layer, a planarizing film in between, and an encapsulation layer that covers and protects the light emitting unit.
  • the organic film is not connected to the display unit or the encapsulation layer.
  • Each of the organic film and the flattening film may include one of polyimide and acrylic.
  • the barrier layer may be an inorganic film.
  • the base substrate may be formed of polyimide. The method further comprises attaching a carrier substrate formed of a glass material to another surface of the base substrate before forming the barrier layer on the one surface of the base substrate formed of polyimide, Separating the carrier substrate from the base substrate prior to cutting along the interface portion.
  • the OLED display is a flexible display.
  • the passivation layer is an organic film disposed on the TFT layer for coating the TFT layer.
  • the planarization film is an organic film formed on the passivation layer.
  • the planarizing film is formed of polyimide or acrylic, similar to the organic film formed on the edges of the barrier layer.
  • the planarizing film and the organic film are formed simultaneously during the manufacture of the OLED display.
  • the organic film may be formed at the edges of the barrier layer, whereby a portion of the organic film is in direct contact with the base substrate and the remaining portion of the organic film is , Contacting the barrier layer while surrounding the edge of the barrier layer.
  • the light emitting layer comprises a pixel electrode, a counter electrode, and an organic light emitting layer disposed between the pixel electrode and the counter electrode.
  • the pixel electrode is connected to the source/drain electrodes of the TFT layer.
  • a suitable voltage is formed between the pixel electrode and the counter electrode, which causes the organic light emitting layer to emit light, which results in an image. Is formed.
  • the image forming unit including the TFT layer and the light emitting unit is referred to as a display unit.
  • the encapsulation layer that covers the display unit and prevents permeation of external moisture may be formed in a thin film encapsulation structure in which organic films and inorganic films are alternately stacked.
  • the encapsulation layer has a thin film encapsulation structure in which a plurality of thin films are stacked.
  • the organic film applied to the interface portion is spaced apart from each of the plurality of display units.
  • the organic film is formed in such a way that a portion of the organic film is in direct contact with the base substrate and the remaining portion of the organic film surrounds the edges of the barrier layer while being in contact with the barrier layer.
  • the OLED display is flexible and uses a flexible base substrate formed of polyimide.
  • the base substrate is formed on a carrier substrate formed of glass material and then the carrier substrate is separated.
  • the barrier layer is formed on the surface of the base substrate opposite the carrier substrate. In one embodiment, the barrier layer is patterned according to the size of each cell panel. For example, the base substrate is formed on all surfaces of the mother panel, while the barrier layer is formed according to the size of each cell panel, thereby forming a groove in the interface portion between the barrier layers of the cell panel. Each cell panel can be cut along the groove.
  • the method of manufacturing further comprises cutting along the interface portion, wherein a groove is formed in the barrier layer, at least a portion of the organic film is formed in the groove, and the groove is formed. Does not penetrate the base substrate.
  • a TFT layer for each cell panel is formed, and a passivation layer, which is an inorganic film, and a planarization film, which is an organic film, are disposed on and cover the TFT layer.
  • the planarization film made of, for example, polyimide or acrylic is formed, the groove of the interface portion is covered with the organic film made of, for example, polyimide or acrylic. This prevents the organic film from being cracked by absorbing the generated impact when each cell panel is cut along the groove at the interface portion.
  • the groove of the interface portion between the barrier layers is covered with an organic film to absorb the shock that can be transmitted to the barrier layer without the organic film, so that each cell panel is softly cut and the barrier layer is cut. It may prevent cracking.
  • the organic film and the planarization film that cover the interface groove are spaced from each other. For example, when the organic film and the flattening film are connected to each other as one layer, external moisture may enter the display unit through the flattening film and the portion where the organic film remains.
  • the organic film and the planarization film are spaced from each other such that the organic film is spaced from the display unit.
  • the display unit is formed by forming a light emitting unit and the encapsulation layer is disposed on the display unit to cover the display unit.
  • the carrier base material carrying the base base material is separated from the base base material.
  • the carrier substrate is separated from the base substrate due to the difference in coefficient of thermal expansion between the carrier substrate and the base substrate.
  • the mother panel is cut into cell panels. In some embodiments, the mother panel is cut along the interface between the cell panels using a cutter.
  • the grooves of the interface along which the mother panel is cut are covered with an organic film so that the organic film absorbs shock during cutting.
  • the barrier layer can be prevented from cracking during cutting.
  • the method reduces the reject rate of a product and stabilizes its quality.
  • Another embodiment is a barrier layer formed on a base substrate, a display unit formed on the barrier layer, an encapsulation layer formed on the display unit, and an organic layer applied to the edge of the barrier layer. And a OLED display having a film.
  • acyl is known in the art and refers to a group of the general formula hydrocarbyl C(O)-, preferably alkyl C(O)-.
  • acylamino is known in the art and refers to an amino group substituted with an acyl group and may be represented, for example, by the formula hydrocarbyl C(O)NH-.
  • alkoxy refers to an alkyl group to which is attached an oxygen atom. Representative alkoxy groups include methoxy group, trifluoromethoxy group, ethoxy group, propoxy group, tert-butoxy group and the like.
  • alkoxyalkyl refers to an alkyl group substituted with an alkoxy group and may be represented by the general formula alkyl-O-alkyl.
  • alkenyl refers to an aliphatic group containing at least one double bond and includes “unsubstituted alkenyl” and “substituted alkenyl”, with the latter being one of the alkenyl groups.
  • alkenyl moiety having a substituent that replaces a hydrogen atom on one or more carbon atoms.
  • straight or branched chain alkenyl groups unless otherwise defined, have 1 to about 20, preferably 1 to about 10 carbon atoms. Such substituents may be present on one or more carbon atoms with or without one or more double bonds.
  • substituents include all that may be contained in an alkyl group, as will be described later, as long as the stability is not impaired.
  • substitution of an alkenyl group with one or more alkyl, carbocyclyl, aryl, heterocyclyl, or heteroaryl groups is meant to be included.
  • alkyl group or “alkane” is a fully saturated, linear or branched, non-aromatic hydrocarbon. Typically, straight or branched chain alkyl groups, unless otherwise defined, have from 1 to about 20, preferably 1 to about 10 carbon atoms. In some embodiments, the alkyl group has 1 to 8 carbon atoms, 1 to 6 carbon atoms, 1 to 4 carbon atoms, or 1 to 3 carbon atoms.
  • linear or branched alkyl groups examples include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, sec-butyl group, tert-butyl group, pentyl group, hexyl group, pentyl. Groups and octyl groups.
  • alkyl as used throughout the specification, examples and claims shall include "unsubstituted alkyl” and "substituted alkyl", the latter of which in the hydrocarbon backbone. Refers to an alkyl moiety having a substituent that replaces hydrogen on one or more substitutable carbon atoms.
  • substituents include, for example, halogen (eg, fluoro group), hydroxyl group, carbonyl group (eg, carboxyl, alkoxycarbonyl, formyl or acyl group), thiocarbonyl group (eg, thioester, thioacetate or thioformate group).
  • alkoxy group alkoxy group, phosphoryl group, phosphate group, phosphonate group, phosphinate group, amino group, amide group, amidine group, imine group, cyano group, nitro group, azido group, sulfhydryl group, alkylthio group, sulfate group, sulfonate group, Mention may be made of sulfamoyl groups, sulfonamide groups, sulfonyl groups, heterocyclyl groups, aralkyl groups or aromatic or heteroaromatic moieties.
  • the substituents on the substituted alkyl group are selected from C 1-6 alkyl groups, C 3-6 cycloalkyl groups, halogens, carbonyl groups, cyano groups or hydroxy groups. In a more preferred embodiment, the substituents on the substituted alkyl group are selected from fluoro groups, carbonyl groups, cyano groups or hydroxyl groups. It will be appreciated by those skilled in the art that the substituted moieties on the hydrocarbon chain may themselves be optionally substituted.
  • the substituent of the substituted alkyl includes a substituted and unsubstituted amino group, azido group, imino group, amide group, phosphoryl group (including phosphonate group and phosphinate group), sulfonyl group (sulfate group, sulfonamide group). , Including a sulfamoyl group and a sulfonate group) and a silyl group, and an ether, an alkylthio group, a carbonyl group (including a ketone group, an aldehyde group, a carboxylate group and an ester), —CF 3 and —CN. . Typical substituted alkyl groups will be described later.
  • the cycloalkyl group may be further substituted with an alkyl group, an alkenyl group, an alkoxy group, an alkylthio group, an aminoalkyl group, an alkyl group substituted with a carbonyl group, —CF 3 , or —CN.
  • C xy when used in connection with a chemical moiety (eg, an acyl group, an acyloxy group, an alkyl group, an alkenyl group, an alkynyl group, or an alkoxy group) has x to y carbon atoms in the chain. Is meant to include groups including.
  • Cx-y alkyl group refers to a substituted or unsubstituted saturated hydrocarbon group, which is a straight chain alkyl group or a branched chain alkyl group containing x to y carbon atoms in the chain. And also includes haloalkyl groups.
  • Preferred haloalkyl groups include trifluoromethyl group, difluoromethyl group, 2,2,2-trifluoroethyl group and pentafluoroethyl group.
  • the C 0 alkyl group represents a hydrogen atom when the group is present at the terminal position, and a bond when the group is present inside.
  • the terms "C2 -y alkenyl group” and “C2 -y alkynyl group” are substituted or unsubstituted unsaturated aliphatic groups similar in length and substitutability to the above alkyl groups, provided that , Each refer to a group having at least one double or triple bond.
  • alkylamino used in the present invention refers to an amino group substituted with at least one alkyl group.
  • alkylthio used in the present invention refers to a thiol group substituted with an alkyl group and may be represented by the general formula alkylS-.
  • arylthio refers to a thiol group substituted with an alkyl group and may be represented by the general formula arylS—.
  • alkynyl refers to an aliphatic group containing at least one triple bond and is meant to include "unsubstituted alkynyl” and "substituted alkynyl", for the latter alkynyl Refers to an alkynyl moiety having a substituent that replaces hydrogen on one or more carbon atoms of the group. Typically, unless otherwise defined, straight or branched chain alkynyl groups have 1 to about 20, preferably 1 to about 10 carbon atoms. Such substituents may be present on one or more carbon atoms with or without one or more triple bonds.
  • substituents include all that may be contained in an alkyl group, as will be described later, as long as the stability is not impaired.
  • substitution of an alkynyl group with one or more alkyl, carbocyclyl, aryl, heterocyclyl, or heteroaryl groups is meant to be included.
  • amide refers to Wherein R A independently represents hydrogen or a hydrocarbyl group, or two R A together with the N atom to which they are attached have 4 to 8 atoms in the ring structure.
  • amine and “amino” are well known in the art and refer to unsubstituted and substituted amines and salts thereof, such as Wherein R A independently represents hydrogen or a hydrocarbyl group, or two R A together with the N atom to which they are attached have 4 to 8 atoms in the ring structure.
  • aminoalkyl used in the present invention refers to an alkyl group substituted with an amino group.
  • aralkyl as used in the present invention refers to an alkyl group substituted with an aryl group.
  • aryl as used in the present invention includes substituted or unsubstituted monocyclic aromatic groups in which each atom of the ring is a carbon atom.
  • the ring is a 6 or 20 membered ring, more preferably a 6 membered ring.
  • aryl also includes polycyclic ring systems having two or more cyclic rings in which two or more carbon atoms are shared by two adjacent rings, at least one of which is aromatic.
  • the other ring may be, for example, a cycloalkyl group, a cycloalkenyl group, a cycloalkynyl group, an aryl group, a heteroaryl group and/or a heterocyclyl group.
  • aryl group examples include benzene, naphthalene, phenanthrene, phenol and aniline.
  • the term "carbamate” is known in the art, Wherein R A independently represents hydrogen or a hydrocarbyl group (eg, an alkyl group), or both R A together with a common atom have from 4 to 8 ring structures. Form a heterocycle having atoms of.
  • carbocycle and “carbocyclic” as used in the present invention refer to a saturated or unsaturated ring in which each atom of the ring is a carbon atom.
  • the carbocyclic group has 3 to 20 carbon atoms.
  • carbocycle includes both aromatic and non-aromatic carbocycles.
  • Non-aromatic carbocycles include cycloalkane rings saturated with all carbon atoms and cycloalkene rings containing at least one double bond.
  • Carbocycles include 5-7 membered monocyclic rings and 8-12 membered bicyclic rings. Each ring of the bicyclic carbocycle may be selected from saturated, unsaturated and aromatic rings.
  • Carbocycle includes bicyclic molecules in which one, two, or three or more atoms are shared by the two rings.
  • the term "fused carbocycle” refers to a bicyclic carbocycle in which each ring shares two adjacent atoms with another ring.
  • Each ring of the fused carbocycle may be selected from saturated, unsaturated and aromatic rings.
  • the aromatic ring eg, phenyl (Ph) group
  • a saturated or unsaturated ring eg, cyclohexane, cyclopentane or cyclohexene. Any combination of saturated, unsaturated and aromatic bicyclic rings is included in the definition of carbocyclic group, as valency permits.
  • Typical "carbocycles” are cyclopentane, cyclohexane, bicyclo[2.2.1]heptane, 1,5-cyclooctadiene, 1,2,3,4-tetrahydronaphthalene, bicyclo[4.2. 0]oct-3-ene, naphthalene and adamantane.
  • fused carbocycles are decalin, naphthalene, 1,2,3,4-tetrahydronaphthalene, bicyclo[4.2.0]octane, 4,5,6,7-tetrahydro-1H-indene and bicyclo[4 .1.0]hepta-3-ene.
  • the “carbocycle” may be substituted at any one or more positions that can carry a hydrogen atom.
  • a “cycloalkyl” group is a fully saturated cyclic hydrocarbon.
  • “Cycloalkyl” includes monocyclic and bicyclic rings. Preferably, the cycloalkyl group has 3 to 20 carbon atoms. Typically, monocyclic cycloalkyl groups have 3 to about 10 carbon atoms, and more typically, 3 to 8 carbon atoms unless otherwise defined.
  • the second ring of the bicyclic cycloalkyl group may be selected from saturated, unsaturated and aromatic rings. Cycloalkyl groups include bicyclic molecules in which one, two, three or more atoms are shared by two rings.
  • fused cycloalkyl refers to a bicyclic cycloalkyl in which each ring shares two adjacent atoms with another ring.
  • the second ring of the fused bicyclic cycloalkyl may be selected from saturated, unsaturated and aromatic rings.
  • a "cycloalkenyl” group is a cyclic hydrocarbon containing one or more double bonds.
  • Carbocyclylalkyl refers to an alkyl group substituted with a carbocyclic group.
  • carbonate as used in the present invention refers to --OCO 2 -R A group, wherein, -R A represents a hydrocarbyl group.
  • carboxy used in the present invention refers to a group represented by the formula —CO 2 H.
  • esteer as used in the present invention refers to a —C(O)OR A group, where R A represents a hydrocarbyl group.
  • ether as used in the present invention refers to a group in which a hydrocarbyl group is linked to another hydrocarbyl group via an oxygen atom.
  • the ether substituent of a hydrocarbyl group can be hydrocarbyl-O-.
  • the ether may be symmetrical or asymmetrical.
  • Examples of ethers include, but are not limited to, heterocycle-O-heterocycle and aryl-O-heterocycle.
  • Ethers include "alkoxyalkyl” groups and may be represented by the general formula alkyl-O-alkyl.
  • halo and “halogen” as used in the present invention mean a halogen atom and includes chlorine, fluorine, bromine and iodine.
  • heteroalkyl and “heteroaralkyl” as used herein refer to an alkyl group substituted with a hetaryl group.
  • heteroalkyl refers to a saturated or unsaturated chain of carbon atoms and at least one heteroatom, wherein the two heteroatoms are not adjacent.
  • heteroaryl and heterotaryl include substituted or unsubstituted, preferably 5-20 membered, more preferably 5-6 membered, aromatic monocyclic ring structures in which the ring structure includes: It includes at least one heteroatom, preferably 1 to 4 heteroatoms, more preferably 1 or 2 heteroatoms.
  • heteroaryl and “hetaryl” also include polycyclic ring systems having two or more cyclic rings in which two or more carbon atoms are shared by two adjacent rings, and at least one of the rings.
  • heterocycle One is a heterocycle and the other may be, for example, a cycloalkyl group, a cycloalkenyl group, a cycloalkynyl group, an aryl group, a heteroaryl group and/or a heterocyclyl group.
  • Heteroaryl groups include, for example, pyrrole, furan, thiophene, imidazole, oxazole, thiazole, pyrazole, pyridine, pyrazine, pyridazine and pyrimidine.
  • heteroatom as used in the present invention means an atom of any element other than a carbon atom or a hydrogen atom. Preferred heteroatoms are nitrogen, oxygen and sulfur atoms.
  • heterocyclyl refers to a substituted or unsubstituted non-aromatic ring structure, preferably a 3-20 membered ring, more preferably a 3-7 membered ring, the ring structure of which Includes at least one heteroatom, preferably 1 to 4 heteroatoms, more preferably 1 or 2 heteroatoms.
  • heterocyclyl and “heterocycle” also include polycyclic ring systems having two or more cyclic rings in which two or more carbon atoms are shared by two adjacent rings, and at least one of the rings
  • One is heterocyclic and the other ring may be, for example, a cycloalkyl group, a cycloalkenyl group, a cycloalkynyl group, an aryl group, a heteroaryl group and/or a heterocyclyl group.
  • heterocyclyl group include piperidine, piperazine, pyrrolidine, morpholine, lactone, lactam and the like.
  • heterocyclylalkyl used in the present invention refers to an alkyl group substituted with a heterocyclic group.
  • hydrocarbyl refers to a group attached through a carbon atom, which carbon atom has no ⁇ O or ⁇ S substituent.
  • the hydrocarbyl group may optionally include heteroatoms.
  • Hydrocarbyl groups include, but are not limited to, alkyl groups, alkenyl groups, alkynyl groups, alkoxyalkyl groups, aminoalkyl groups, aralkyl groups, aryl groups, aralkyl groups, carbocyclyl groups, cycloalkyl groups, carbocyclylalkyl groups, heteroaralkyl groups.
  • a heteroaryl group bonded via a carbon atom a heterocyclyl group bonded via a carbon atom, a heterocyclylalkyl group or a hydroxyalkyl group. That is, groups such as a methyl group, an ethoxyethyl group, a 2-pyridyl group and a trifluoromethyl group are hydrocarbyl groups, but an acetyl group (having an ⁇ O substituent on a carbon atom to which it is attached) and an ethoxy group (having a carbon atom). But not via an oxygen atom).
  • hydroxyalkyl refers to an alkyl group substituted with a hydroxy group.
  • lower when used in connection with a chemical moiety such as an acyl group, an acyloxy group, an alkyl group, an alkenyl group, an alkynyl group or an alkoxy group is a group in which 6 or less non-hydrogen atoms are present in a substituent group. Means that.
  • the "lower alkyl group” refers to an alkyl group having 6 or less carbon atoms. In some embodiments, the alkyl group has 1 to 6 carbon atoms, 1 to 4 carbon atoms, or 1 to 3 carbon atoms.
  • the acyl, acyloxy, alkyl, alkenyl, alkynyl or alkoxy substituents as defined in this invention are present alone or in combination with other substituents (eg hydroxyalkyl and aralkyl groups).
  • substituents eg hydroxyalkyl and aralkyl groups.
  • each is a lower acyl, a lower acyloxy, a lower alkyl, a lower alkenyl, a lower alkynyl or a lower alkoxy group.
  • polycyclyl is formed from two or more, such as, for example, cycloalkyl groups, cycloalkenyl groups, cycloalkynyl groups, aryl groups, heteroaryl groups and/or heterocyclyl groups, It refers to a ring in which two adjacent rings share two or more atoms, in which case the ring is, for example, a “fused ring”.
  • Each ring present in the polycycle may be substituted or unsubstituted.
  • each ring that makes up the polycycle contains 3-10, preferably 5-7, atoms in the ring.
  • poly(metaphenylene oxide) refers generically to a 6-membered aryl or 6-membered heteroaryl moiety. Typical poly(metaphenylene oxide)s are described as the first to twentieth aspects of the present disclosure.
  • sil refers to a silicon moiety with three hydrocarbyl moieties attached.
  • substituted refers to moieties having a substituent that replaces a hydrogen on one or more carbon atoms in the backbone.
  • substitution depends on the valence of the atom to be replaced and the substituent, and the substitution stabilizes the compound (For example, changes such as transfer, cyclization, and removal do not occur spontaneously).
  • the part which may be substituted includes all the suitable substituents described in the present specification, for example, an acyl group, an acylamino group, an acyloxy group, an alkoxy group, an alkoxyalkyl group, an alkenyl group, an alkyl group, an alkylamino group.
  • substituted shall include all substituents which may be present on an organic compound.
  • the possible substituents mentioned above include acyclic and cyclic, branched and unbranched, carbocyclic and heterocyclic, aromatic and nonaromatic, organic Included are compound substituents.
  • the abovementioned possible substituents can be one or more, the same or different, for suitable organic compounds.
  • a heteroatom such as nitrogen, has a hydrogen substituent and/or any substituent described herein that may be present in an organic compound that meets the valence of the heteroatom. May be.
  • Substituents include any substituents described herein, such as halogen, hydroxyl, carbonyl (eg carboxyl, alkoxycarbonyl, formyl or acyl), thiocarbonyl (eg thioester, thioacetate or thioformate).
  • substituents described herein such as halogen, hydroxyl, carbonyl (eg carboxyl, alkoxycarbonyl, formyl or acyl), thiocarbonyl (eg thioester, thioacetate or thioformate).
  • alkoxy group alkoxy group, phosphoryl group, phosphate group, phosphonate group, phosphinate group, amino group, amide group, amidine group, imine group, cyano group, nitro group, azido group, sulfhydryl group, alkylthio group, sulfate group, Included are sulfonate, sulfamoyl, sulfonamide, sulfonyl, heterocyclyl, aralkyl or aromatic or heteroaromatic moieties.
  • the substituents on the substituted alkyl group are selected from C 1-6 alkyl groups, C 3-6 cycloalkyl groups, halogens, carbonyl groups, cyano groups, hydroxy groups. In a more preferred embodiment, the substituents on the substituted alkyl group are selected from fluoro groups, carbonyl groups, cyano groups or hydroxyl groups. Those skilled in the art will appreciate that the substituents may themselves be optionally substituted. Unless otherwise specified as "unsubstituted,” references herein to chemical moieties are understood to include substituted modifications. For example, a reference to an "aryl" group or moiety implicitly includes substituted and unsubstituted modifications.
  • sulfonate is known in the art, it refers to a SO 3 H group, or a pharmaceutically acceptable salt thereof.
  • sulfone is known in the art and refers to a —S(O) 2 —R A group, where R A represents a hydrocarbyl group.
  • thioether as used in the present invention is an ether equivalent in which oxygen is replaced by sulfur.
  • symmetric molecule refers to a molecule that is a symmetric group or a symmetric compound.
  • symmetrical group refers to a molecule that is bilaterally symmetric according to the theory of molecular symmetry for groups.
  • symmetrical compound refers to a molecule selected such that no regioselective synthetic strategy is required.
  • donor refers to a molecular fragment that can be used in an organic light emitting diode and has the property of, upon excitation, supplying an electron from its highest occupied molecular orbital to an acceptor.
  • the donor has an ionization potential of -6.5 eV or higher.
  • acceptor refers to a molecular fragment that can be used in organic light emitting diodes and has the property of accepting an electron from an excited donor into its lowest unoccupied orbital.
  • the receptor has an electron affinity of -0.5 eV or less.
  • bridge or linking group refers to a molecular fragment that can be included in a molecule that covalently bonds between an acceptor and a donor moiety. The bridge may be further conjugated, for example, with an acceptor moiety, a donor moiety, or both.
  • the bridging moiety can limit the acceptor and donor moieties to a specific conformational configuration, which results in a ⁇ -conjugated moiety of the donor and acceptor moieties. Thought to prevent.
  • suitable bridging moieties include phenyl, ethenyl and ethynyl moieties.
  • multivalent refers to the binding of a molecular fragment to at least two other molecular fragments.
  • the bridge part is multi-valued.
  • " refers to the bond site between two atoms.
  • HTL Hole transport layer
  • EML adjacent emitting layer
  • HTL compounds include, but are not limited to, di(p-tolyl)aminophenyl]cyclohexane (TAPC), N,N-diphenyl-N,N-bis(3-methylphenyl)-1,1-biphenyl-4, 4-diamine (TPD), and N,N'-diphenyl-N,N'-bis(1-naphthyl)-(1,1'-biphenyl)-4,4'-diamine (NPB, ⁇ -NPD) Can be mentioned.
  • TAPC di(p-tolyl)aminophenyl]cyclohexane
  • TPD N,N-diphenyl-N,N-bis(3-methylphenyl)-1,1-biphenyl-4, 4-diamine
  • NPB N,N'-diphenyl-N,N'-bis(1-naphthyl)-(1,1'-biphenyl)-4,4'-
  • the host material may be bipolar or unipolar and may be used alone or in combination of two or more host materials.
  • the visual-electrical properties of the host material may differ depending on which type of dopant (phosphorescent or fluorescent) is used.
  • the assisting host material should have a good spectral overlap between the absorption of the dopant and the emission of the host in order to induce a good Foerster transfer to the dopant.
  • the assisting host material should have a high triplet energy to confine the triplet of the dopant.
  • any atom not specified as a particular isotope is included as any stable isotope of that atom.
  • isotope enrichment ratio means a ratio between an isotope amount and a specific isotope amount in nature.
  • the compounds of the invention are at least 3500 (52.5% deuterium atoms), at least 4000 (60% deuterium), at least 4500 (67.5% deuterium), at least 5000 (75%). % Deuterium), at least 5500 (82.5% deuterium), at least 6000 (90% deuterium), at least 6333.3 (95% deuterium), at least 6466.7 (97% deuterium). ), at least 6600 (99% deuterium) or at least 6633.3 (99.5% deuterium) isotope enrichment (for each deuterium atom content).
  • isotopic substitute refers to a species that differs only in isotopic composition from a particular compound of the invention.
  • the term "compound” when referring to a compound of the invention refers to a collection of molecules having the same chemical structure, except that there may be isotopic variations between the constituent atoms of the molecule.
  • a compound represented by a particular chemical structure containing a given deuterium atom will have a hydrogen atom at one or more positions of the given deuterium within the structure. May have some isotopic substitutions.
  • the relative amounts of such isotopic substituents in the compounds of the invention such as the isotopic purity of the deuteration reagents used to prepare the compounds, and the efficiency of deuterium uptake in the various synthetic steps for preparing the compounds. Depends on many factors.
  • the relative amounts of such isotopic substitutes are less than 49.9% of the compound in total. In other embodiments, the relative amount of such isotopic substitutions is less than 47.5%, less than 40%, less than 32.5%, less than 25%, less than 17.5%, 10% of the total compounds. Less than 5%, less than 3%, less than 1%, or less than 0.5%.
  • D and d refer to deuterium. “Substituted with deuterium” means that one or more hydrogen atoms have been replaced by the corresponding number of deuterium atoms.
  • Example 1 Preparation and evaluation of organic electroluminescence device using compound T1 as first compound and compound F88 as second compound Indium tin oxide (100 nm thick) was formed using the vacuum vapor deposition apparatus shown in FIG. An organic layer was laminated by a vacuum deposition method on a glass substrate on which an anode made of (ITO) was formed. First, HAT-CN was formed to a thickness of 10 nm, tris-PCz was formed thereon to a thickness of 15 nm, and mCBP was formed thereon to a thickness of 5 nm.
  • mTRZ1DPBF was formed thereon with a thickness of 10 nm
  • mTRZ1DPBF and Liq (weight ratio 7:3) were formed thereon with a thickness of 40 nm.
  • Liq was formed thereon to a thickness of 2 nm, and then aluminum (Al) was evaporated to a thickness of 100 nm to form a cathode, to obtain an organic electroluminescence device.
  • Example 2 to 21 Preparation and evaluation of organic electroluminescent device using other compound as first compound and second compound First compound (material satisfying formula (1)) and second compound (material satisfying formula (1)) used for vapor deposition material A fluorescent material satisfying the formula (2) is changed to the compound powder shown in Table 2, and coevaporation is performed in the same manner as in Example 1 to form a film.
  • Example 22 Evaluation of Thermal Properties of Compound T9 (Compound 1) and Compound T10 (Compound 2) and Preparation of Membrane Using a thermogravimetric differential thermal analysis (TG-DTA) apparatus (TG-DTA2400SA manufactured by Bruker) 5 mg each of the compound T9 (4CzIPN-Me) and the compound T10 (4CzTPN) were weighed, and thermogravimetric analysis was performed under vacuum at 1 Pa at a heating rate of 10° C./min. Changes in temperature T and weight loss rate W of compound T9 at this time are shown in FIG. 3, and changes in temperature T and weight loss rate W of compound T10 are shown in FIG. From FIG. 3 and FIG.
  • TG-DTA thermogravimetric differential thermal analysis
  • the temperature at which the respective weights of compound T9 and compound T10 are reduced to ⁇ 50% (T WT ) and the temperature at which dW/dT of compound T9 and compound T10 are the same (T GR ) are both It was confirmed to be 351°C.
  • the powder of the compound T9 and the powder of the compound T10 were put in a menor mortar so that the weight ratio was 95:5, and kneaded for about 10 minutes. 100 mg of the mixture was placed in the crucible of the vacuum vapor deposition device shown in FIG. In this state, the temperature was raised to 351° C. to form a film on the substrate.
  • the formed film has a weight ratio of compound T9 and compound T10 of 95:5.
  • Example 23 Preparation and evaluation of organic electroluminescent device using compound T8 as first compound, compound T10 as second compound, and mCBP as host material.
  • compound T8 was 2.71 eV
  • T10 was 2.48 eV.
  • an organic layer was laminated by a vacuum vapor deposition method on a glass substrate on which an anode made of indium tin oxide (ITO) having a film thickness of 100 nm was formed.
  • ITO indium tin oxide
  • HAT-CN was formed to a thickness of 10 nm
  • tris-PCz was formed thereon to a thickness of 25 nm
  • mCBP was formed thereon to a thickness of 5 nm.
  • 183 mg of the powder of compound T8 and 18.8 mg of the powder of compound T10 were kneaded in a Menort mortar for about 10 minutes, and 100 mg of the mixture was placed in the crucible of the vacuum vapor deposition apparatus shown in FIG.
  • mCBP was put in another crucible (not shown) in the vacuum vapor deposition apparatus. In this state, co-evaporation was performed so that the weight ratio of mCBP and the mixture was 45:55 to form a light emitting layer having a thickness of 30 nm.
  • the vapor deposition rate of the mixture of the compound T8 and the compound T10 was 0.28 ⁇ /s.
  • SF3TRZ was formed thereon with a thickness of 10 nm
  • SF3TRZ and Liq (weight ratio 7:3) were formed thereon with a thickness of 40 nm.
  • Liq was formed thereon to a thickness of 2 nm
  • aluminum (Al) was evaporated to a thickness of 100 nm to form a cathode, to obtain an organic electroluminescence device.
  • the same organic electroluminescence device as above was further fabricated twice without additionally filling the crucible of the vacuum vapor deposition device with the material.
  • Example 24 Preparation and evaluation of organic electroluminescence device in which vapor deposition rate of mixture of first compound and second compound was changed. Other than changing vapor deposition rate of mixture to 2.80 ⁇ /s when forming a light emitting layer. An organic electroluminescence device was produced in the same manner as in Example 23.
  • Table 3 shows the external quantum efficiency and CIE chromaticity coordinates when the organic electroluminescent elements produced in Examples 23 and 24 were made to emit light at a luminance of 1000 cd/m 2 .
  • the four organic electroluminescent devices produced in Examples 23 and 24 all showed high external quantum efficiency despite the fact that the amount of the mixture filled in the crucible during vapor deposition and the vapor deposition rate were different. , Their external quantum efficiency and emission color were similar. From this, it was confirmed that the organic electroluminescence device can be stably manufactured with good characteristics by using the vapor deposition source containing both the first compound and the second compound.
  • Example 25 Preparation and evaluation of organic electroluminescence device using compound T8 as first compound, compound T10 as second compound, mCBP as host material, and compound F71 as luminescent dopant When forming a light emitting layer, compound F71 was further added.
  • mCBP a mixture of compound T8 and compound T10, and compound F71 were co-evaporated, and an organic electroluminescence device was produced in the same manner as in Example 23.
  • mCBP:mixture:compound F71 (weight ratio) was set to 44.5:55:0.5.
  • Example 26 Preparation and evaluation of organic electroluminescence device in which compounding ratio of light emitting layer forming material was changed When forming a light emitting layer, mCBP:mixture:compound F71 (weight ratio) was 84.5:15:0.5.
  • An organic electroluminescence device was produced in the same manner as in Example 25, except that the co-evaporation was carried out. After completion of the organic electroluminescence element production through the above steps, the same organic electroluminescence element as described above was produced once more without additionally filling the crucible of the vacuum vapor deposition device with the material.
  • Table 4 shows the external quantum efficiency and CIE chromaticity coordinates when the organic electroluminescent devices produced in Examples 25 and 26 were made to emit light at 1 mA/cm 2 .
  • Example 26 As shown in Table 4, the two organic electroluminescent devices produced in Example 26 exhibited similar external quantum efficiencies, although the mixture filling amount in the crucible during vapor deposition was different. Further, Example 25 in which the compounding ratio of the mixture was increased to 50% by weight or more showed higher external quantum efficiency than Example 26. From this, by using a mixture containing both Compound 1 and Compound 2 as a vapor deposition source, it becomes possible to stably manufacture an organic electroluminescent device, and by increasing the compounding ratio of the mixture, the external quantum efficiency can be increased. Was confirmed to be improved.
  • the film containing the first compound and the second compound has high luminous efficiency, and the film manufacturing method of the present invention can stably form such a film. Therefore, by using the method for producing a film of the present invention in the step of producing an organic semiconductor element, it is possible to obtain an organic semiconductor element having excellent characteristics such as luminous efficiency. Therefore, the present invention has high industrial applicability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

In the present invention, a film is formed by carrying out codeposition from a deposition source containing both a first compound which satisfies ΔEST(1)≤0.3eV and a second compound which satisfies ES 1(1)>ES 1(2). ΔEST(1) is the difference between the minimum excited singlet energy state ES 1(1) of the first compound and the minimum excited triplet energy state of the first compound. ES 1(2) is the minimum excited singlet energy state of the second compound.

Description

膜の製造方法、有機半導体素子の製造方法および有機半導体素子Film manufacturing method, organic semiconductor element manufacturing method, and organic semiconductor element
 本発明は、例えば有機半導体素子の層の形成に用いられる膜の製造方法に関する。 The present invention relates to a method for manufacturing a film used for forming a layer of an organic semiconductor element, for example.
 有機エレクトロルミネッセンス素子(有機EL素子)などの有機発光素子の発光効率を高める研究が盛んに行われている。特に、有機エレクトロルミネッセンス素子を構成する発光層の材料、電子輸送材料、正孔輸送材料などを新たに開発して組み合わせることにより、発光効率を高める工夫が種々なされてきている。
 例えば、特許文献1には、発光層に蛍光材料と遅延蛍光材料を共存させることで発光効率を高めた有機エレクトロルミネッセンス素子が提案されている(例えば、特許文献1参照)。ここで「遅延蛍光材料」は、その分子が励起三重項状態に遷移したとき、励起三重項状態から励起一重項状態への逆項間交差を起こす有機材料である。励起一重項状態へ遷移した各分子は、その後、その励起一重項状態から基底一重項状態へ輻射失活する際に蛍光を放射する。こうした逆項間交差を経由して放射される蛍光は、基底状態からの直接遷移により生じた励起一重項状態からの蛍光に比べて通常遅れて観測されるため「遅延蛍光」と称されている。一方、特許文献1に記載された有機エレクトロルミネッセンス素子では、発光層に遅延蛍光材料を蛍光材料と共存させることで、遅延蛍光材料の逆項間交差により生じた励起一重項状態のエネルギーを蛍光材料へ移動させて蛍光材料の発光に利用する。ここで、遅延蛍光材料を用いない通常の蛍光発光層では、励起三重項状態から基底一重項状態への遷移は禁制遷移であるために、励起三重項状態に励起されても、励起三重項状態から基底一重項状態への遷移(輻射失活)が起こらずに無輻射失活してしまい、その励起三重項エネルギーを発光に利用することができない。これに対して、上記のような蛍光材料と遅延蛍光材料を共存させた発光層では、遅延蛍光材料で励起三重項状態から励起一重項状態への逆項間交差が起こり、その励起一重項エネルギーが蛍光材料へ移動するため、結果として、その励起三重項状態のエネルギーも励起一重項エネルギーとして蛍光材料の発光に有効利用される。そのため、通常の蛍光発光層に比べて、高い発光効率が得られることになる。そして、特許文献1には、蛍光材料と遅延蛍光材料が共存した発光層を、蛍光材料と遅延蛍光材料を異なる蒸着源から蒸着する共蒸着法により実際に形成して有機エレクトロルミネッセンス素子を製造し、その素子において高い発光効率が得られたことが記載されている。
2. Description of the Related Art Researches for increasing the luminous efficiency of organic light emitting elements such as organic electroluminescent elements (organic EL elements) have been actively conducted. In particular, various efforts have been made to enhance the light emission efficiency by newly developing and combining the materials of the light emitting layer, the electron transporting material, the hole transporting material, and the like, which constitute the organic electroluminescence element.
For example, Patent Document 1 proposes an organic electroluminescent element in which a fluorescent material and a delayed fluorescent material are allowed to coexist in a light emitting layer to enhance the light emission efficiency (see, for example, Patent Document 1). Here, the “delayed fluorescent material” is an organic material that causes an inverse intersystem crossing from the excited triplet state to the excited singlet state when the molecule transits to the excited triplet state. Each molecule that transits to the excited singlet state then emits fluorescence when it undergoes radiation deactivation from the excited singlet state to the ground singlet state. Fluorescence emitted through such intersystem crossing is called "delayed fluorescence" because it is usually observed later than fluorescence from excited singlet state caused by direct transition from ground state. .. On the other hand, in the organic electroluminescence element described in Patent Document 1, the delayed single fluorescent material coexists with the fluorescent material in the light emitting layer, so that the energy of the excited singlet state generated by the intersystem crossing of the delayed fluorescent material is changed to the fluorescent material. To be used for light emission of the fluorescent material. Here, in a normal fluorescence emitting layer that does not use a delayed fluorescent material, since the transition from the excited triplet state to the ground singlet state is a forbidden transition, even if excited to the excited triplet state, the excited triplet state To the ground singlet state (radiation deactivation) does not occur and deactivates without radiation, and the excited triplet energy cannot be used for light emission. On the other hand, in the light-emitting layer in which the fluorescent material and the delayed fluorescent material coexist as described above, an inverse intersystem crossing from the excited triplet state to the excited singlet state occurs in the delayed fluorescent material, and the excited singlet energy Are transferred to the fluorescent material, and as a result, the energy of the excited triplet state is also effectively utilized as the excited singlet energy for the emission of the fluorescent material. Therefore, higher luminous efficiency can be obtained as compared with the usual fluorescent light emitting layer. Then, in Patent Document 1, an organic electroluminescence device is manufactured by actually forming a light emitting layer in which a fluorescent material and a delayed fluorescent material coexist by a co-evaporation method in which the fluorescent material and the delayed fluorescent material are evaporated from different evaporation sources. , It was described that high luminous efficiency was obtained in the device.
国際公開第2015/022974号パンフレットInternational Publication No. 2015/022974 Pamphlet
 上記のように、特許文献1には、蛍光材料と遅延蛍光材料が共存した発光層を、蛍光材料と遅延蛍光材料を異なる蒸着源から蒸着する共蒸着法により形成したことが記載されている。しかし、同文献では、その発光層の製造方法について詳細な検討を行っていないため、そこで採用している発光層の製造方法は、必ずしも満足の行くものとは言えないのが実情である。
 そこで本発明者らは、蛍光材料と遅延蛍光材料が共存した膜を得るための新たな製造方法を開発することを目的として鋭意検討を進めた。
As described above, Patent Document 1 describes that a light emitting layer in which a fluorescent material and a delayed fluorescent material coexist is formed by a co-evaporation method in which the fluorescent material and the delayed fluorescent material are deposited from different evaporation sources. However, in this document, since the method for producing the light emitting layer has not been examined in detail, the method for producing the light emitting layer adopted therein is not always satisfactory.
Therefore, the present inventors have made earnest studies for the purpose of developing a new manufacturing method for obtaining a film in which a fluorescent material and a delayed fluorescent material coexist.
 鋭意検討を進めた結果、本発明者らは、遅延蛍光材料と蛍光材料をともに含む蒸着源から共蒸着することにより、遅延蛍光材料と蛍光材料が安定に堆積して良質な膜が形成できることを見出した。本発明は、こうした知見に基づいて提案されたものであり、具体的に以下の構成を有する。 As a result of earnest studies, the present inventors have found that co-evaporation from a vapor deposition source containing both a delayed fluorescent material and a fluorescent material enables stable deposition of the delayed fluorescent material and the fluorescent material to form a high-quality film. I found it. The present invention has been proposed on the basis of these findings, and specifically has the following configurations.
[1] 下記式(1)を満たす第1化合物と下記式(2)を満たす第2化合物をともに含む蒸着源から共蒸着することにより、前記第1化合物と前記第2化合物を含む膜を形成する工程を有する、膜の製造方法。
     ΔEST(1) ≦ 0.3eV      式(1)
      ES1(1) > ES1(2)      式(2)
(上式において、ΔEST(1)は、前記第1化合物の最低励起一重項エネルギー準位ES1(1)と前記第1化合物の最低励起三重項エネルギー準位ET1(1)の差である。ES1(2)は前記第2化合物の最低励起一重項エネルギー準位である。)
[2] 前記第2化合物が下記式(3)を満たす、[1]に記載の膜の製造方法。
           ΔEST(2) ≦ 0.3eV      式(3)
(上式において、ΔEST(2)は、前記第2化合物の最低励起一重項エネルギー準位ES1(2)と前記第2化合物の最低励起三重項エネルギー準位ET1(2)の差である。
[3] 前記第1化合物が遅延蛍光を放射する、[1]または[2]に記載の膜の製造方法。
[4] 前記第2化合物が蛍光を放射する、[1]に記載の膜の製造方法。
[5] 前記第2化合物が遅延蛍光を放射する、[1]~[3]のいずれか1つに記載の膜の製造方法。
[6] 前記膜に、前記第1化合物が前記第2化合物よりも多く含まれている、[1]~[5]のいずれか1つに記載の膜の製造方法。
[7] 前記膜における前記第1化合物の含有率が20重量%以上である、[1]~[6]のいずれか1つに記載の膜の製造方法。
[8] 前記膜における前記第2化合物の含有率が10重量%未満である、[1]~[7]のいずれか1つに記載の膜の製造方法。
[9] 前記蒸着源がさらにホスト材料を含み、前記膜がさらに前記ホスト材料を含む、[1]~[8]のいずれか1つに記載の膜の製造方法。
[10] 前記膜における前記第1化合物の含有率が20~50重量%であり、前記第2化合物の含有率が0.1~5重量%である、[9]に記載の膜の製造方法。
[11] 前記第1化合物が、前記式(1)を満たす単一の化合物からなる、[1]~[10]のいずれか1つに記載の膜の製造方法。
[12] 前記第1化合物がシアノベンゼン骨格を含む、[11]に記載の膜の製造方法。
[13] 前記第2化合物がシアノベンゼン骨格を含む、[12]に記載の膜の製造方法。
[14] 前記第2化合物がテレフタロニトリル骨格を含む、[13]に記載の膜の製造方法。
[15] 前記第1化合物がトリアジン骨格を含む、[11]に記載の膜の製造方法。
[16] 前記第1化合物と前記第2化合物のそれぞれについて、一定の昇温速度下で熱重量分析を行うことにより、温度Tと重量減少率Wの関係を明らかにし、前記第1化合物と前記第2化合物が同じ重量減少率になる温度TWTを特定しておき、
 前記第1化合物と前記第2化合物の混合物をともに含む蒸着源から温度TWTで共蒸着することにより、前記第1化合物と前記第2化合物を含む膜を形成する、[1]~[15]のいずれか1つに記載の膜の製造方法。
[17] 前記第1化合物と前記第2化合物のそれぞれについて、一定の昇温速度下で熱重量分析を行うことにより、温度Tと重量減少率Wの関係を明らかにし、前記第1化合物と前記第2化合物のdW/dTが同じになる温度TGRを特定しておき、
 前記第1化合物と前記第2化合物の混合物をともに含む蒸着源から温度TGRで共蒸着することにより、前記第1化合物と前記第2化合物を含む膜を形成する、[1]~[15]のいずれか1つに記載の膜の製造方法。
[18] [1]~[17]のいずれか1つに記載の製造方法により層を形成する工程を有する、有機半導体素子の製造方法。
[19] [18]に記載の製造方法により製造される有機半導体素子。
[20] 前記有機半導体素子が有機エレクトロルミネッセンス素子である、[19]に記載の有機半導体素子。
[21] 遅延蛍光を放射する、[20]に記載の有機半導体素子。
[1] A film containing the first compound and the second compound is formed by co-evaporating from a vapor deposition source containing both a first compound satisfying the following formula (1) and a second compound satisfying the following formula (2). A method for producing a film, comprising the steps of:
ΔE ST (1) ≦ 0.3 eV Formula (1)
E S1 (1)> E S1 (2) Formula (2)
(In the above equation, ΔE ST (1) is the difference between the lowest excited singlet energy level E S1 (1) of the first compound and the lowest excited triplet energy level E T1 (1) of the first compound. E S1 (2) is the lowest excited singlet energy level of the second compound.)
[2] The method for producing a film according to [1], wherein the second compound satisfies the following formula (3).
ΔE ST (2) ≦ 0.3 eV Formula (3)
(In the above formula, ΔE ST (2) is the difference between the lowest excited singlet energy level E S1 (2) of the second compound and the lowest excited triplet energy level E T1 (2) of the second compound. is there.
[3] The method for producing a film according to [1] or [2], wherein the first compound emits delayed fluorescence.
[4] The method for producing a film according to [1], wherein the second compound emits fluorescence.
[5] The method for producing a film according to any one of [1] to [3], wherein the second compound emits delayed fluorescence.
[6] The method for producing a film according to any one of [1] to [5], wherein the film contains the first compound in a larger amount than the second compound.
[7] The method for producing a film according to any one of [1] to [6], wherein the content of the first compound in the film is 20% by weight or more.
[8] The method for producing a film according to any one of [1] to [7], wherein the content of the second compound in the film is less than 10% by weight.
[9] The method for producing a film according to any one of [1] to [8], wherein the vapor deposition source further contains a host material, and the film further contains the host material.
[10] The method for producing a film according to [9], wherein the content of the first compound in the film is 20 to 50% by weight and the content of the second compound is 0.1 to 5% by weight. .
[11] The method for producing a film according to any one of [1] to [10], wherein the first compound is a single compound satisfying the formula (1).
[12] The method for producing a film according to [11], wherein the first compound contains a cyanobenzene skeleton.
[13] The method for producing a film according to [12], wherein the second compound contains a cyanobenzene skeleton.
[14] The method for producing a film according to [13], wherein the second compound contains a terephthalonitrile skeleton.
[15] The method for producing a film according to [11], wherein the first compound contains a triazine skeleton.
[16] The relationship between the temperature T and the weight loss rate W is clarified by performing thermogravimetric analysis at a constant temperature rising rate for each of the first compound and the second compound, The temperature T WT at which the second compound has the same weight loss rate is specified,
A film containing the first compound and the second compound is formed by co-evaporating at a temperature T WT from an evaporation source containing both the mixture of the first compound and the second compound, [1] to [15]. A method for producing the film according to any one of 1.
[17] With respect to each of the first compound and the second compound, thermogravimetric analysis is performed at a constant heating rate to clarify the relationship between the temperature T and the weight reduction rate W, and The temperature T GR at which the dW/dT of the second compound becomes the same is specified,
A film containing the first compound and the second compound is formed by co-evaporating at a temperature T GR from an evaporation source containing both the mixture of the first compound and the second compound, [1] to [15]. A method for producing the film according to any one of 1.
[18] A method for producing an organic semiconductor device, which comprises a step of forming a layer by the production method according to any one of [1] to [17].
[19] An organic semiconductor device manufactured by the manufacturing method according to [18].
[20] The organic semiconductor device according to [19], wherein the organic semiconductor device is an organic electroluminescence device.
[21] The organic semiconductor device according to [20], which emits delayed fluorescence.
 本発明の膜の製造方法によれば、第1化合物と第2化合物を安定に堆積させて良質な膜を形成することができる。本発明の膜の製造方法を用いることにより、第1化合物と第2化合物を含む層を有する有機半導体素子を容易に製造することができる。 According to the method for producing a film of the present invention, the first compound and the second compound can be stably deposited to form a good quality film. By using the method for producing a film of the present invention, an organic semiconductor element having a layer containing the first compound and the second compound can be easily produced.
有機エレクトロルミネッセンス素子の層構成例を示す概略断面図である。It is a schematic sectional drawing which shows the example of a layer structure of an organic electroluminescent element. 本発明の膜の製造方法で用いる真空蒸着装置の一例を示す概略図である。It is a schematic diagram showing an example of a vacuum evaporation system used by a manufacturing method of a film of the present invention. 化合物T9の熱重量分析結果を示すグラフである。It is a graph which shows the thermogravimetric analysis result of compound T9. 化合物T10の熱重量分析結果を示すグラフである。It is a graph which shows the thermogravimetric analysis result of compound T10.
 以下において、本発明の内容について詳細に説明する。以下に記載する構成要件の説明は、本発明の代表的な実施態様や具体例に基づいてなされることがあるが、本発明はそのような実施態様や具体例に限定されるものではない。なお、本明細書において「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値および上限値として含む範囲を意味する。また、本発明に用いられる化合物の分子内に存在する水素原子の同位体種は特に限定されず、例えば分子内の水素原子がすべて1Hであってもよいし、一部または全部が2H(デューテリウムD)であってもよい。本明細書中において「励起光」とは、照射対象物に励起を引き起こす光のことをいい、特に記載がない限り、照射対象物の吸収波長に一致する波長の光であることとする。 The contents of the present invention will be described in detail below. The description of the constituents described below may be made based on the representative embodiments and specific examples of the present invention, but the present invention is not limited to such embodiments and specific examples. In the present specification, the numerical range represented by “to” means a range including the numerical values before and after “to” as the lower limit value and the upper limit value. Further, the isotopic species of hydrogen atoms present in the molecule of the compound used in the present invention are not particularly limited, and for example, all the hydrogen atoms in the molecule may be 1 H, or some or all of them may be 2 H. (Deuterium D) may be used. In the present specification, “excitation light” refers to light that excites an irradiation target, and unless otherwise specified, it is light having a wavelength that matches the absorption wavelength of the irradiation target.
<膜の製造方法>
 本発明の膜の製造方法は、下記式(1)を満たす第1化合物と下記式(2)を満たす第2化合物をともに含む蒸着源から共蒸着することにより、前記第1化合物と前記第2化合物を含む膜を形成する工程を有するものである。
     ΔEST(1)  ≦  0.3eV           式(1)
      ES1(1) > ES1(2)           式(2)
 上式において、ΔEST(1)は、第1化合物の最低励起一重項エネルギー準位ES1(1)と第1化合物の最低励起三重項エネルギー準位ET1(1)の差である。ES1(2)は前記第2化合物の最低励起一重項エネルギー準位である。
 本明細書では、第2化合物の最低励起一重項エネルギー準位ES1(2)と第2化合物の最低励起三重項エネルギー準位ET1(2)の差をΔEST(2)と表記する。
 また、一般に、ある特定の化合物の最低励起一重項エネルギー準位ES1と最低励起三重項エネルギー準位ET1の差をΔESTと表記する。ΔESTは、測定対象化合物の最低励起一重項エネルギー準位ES1と最低励起三重項エネルギー準位ET1を以下の方法で算出し、ΔEST=ES1-ET1により求められる値である。測定に際しては、測定対象化合物をトルエンに溶解させた溶液の試料や、測定対象化合物の濃度が6重量%となるようにホスト材料と共蒸着した膜の試料を用意する。ホスト材料は、測定対象化合物のES1よりも最低励起一重項エネルギー準位が高くて、測定対象化合物のET1よりも最低励起三重項エネルギー準位が高いものの中から選択する。なお、請求項に記載されるΔESTは、Si基板上に測定対象化合物の濃度が6重量%となるようにmCPと共蒸着した厚さ100nmの膜の試料を用いて測定した値である。
(1)最低励起一重項エネルギー準位ES1
 常温(300K)で試料の蛍光スペクトルを測定する。励起光入射直後から入射後100ナノ秒までの発光を積算することで、縦軸を発光強度、横軸を波長の蛍光スペクトルを得る。蛍光スペクトルは、縦軸を発光、横軸を波長とする。この発光スペクトルの短波側の立ち上がりに対して接線を引き、その接線と横軸との交点の波長値 λedge[nm]を求める。この波長値を次に示す換算式でエネルギー値に換算した値をES1とする。
  換算式:ES1[eV]=1239.85/λedge
 発光スペクトルの測定には、例えば励起光源に窒素レーザー(Lasertechnik Berlin社製、MNL200)を用い、検出器にストリークカメラ(浜松ホトニクス社製、C4334)を用いることができる。
(2) 最低励起三重項エネルギー準位ET1
 最低励起一重項エネルギー準位ES1と同じ試料を77[K]に冷却し、励起光(337nm)を燐光測定用試料に照射し、ストリークカメラを用いて、燐光強度を測定する。励起光入射後1ミリ秒から入射後10ミリ秒の発光を積算することで、縦軸を発光強度、横軸を波長の燐光スペクトルを得る。この燐光スペクトルの短波長側の立ち上がりに対して接線を引き、その接線と横軸との交点の波長値λedge[nm]を求める。この波長値を次に示す換算式でエネルギー値に換算した値をET1とする。
  換算式:ET1[eV]=1239.85/λedge
 燐光スペクトルの短波長側の立ち上がりに対する接線は以下のように引く。燐光スペクトルの短波長側から、スペクトルの極大値のうち、最も短波長側の極大値までスペクトル曲線上を移動する際に、長波長側に向けて曲線上の各点における接線を考える。この接線は、曲線が立ち上がるにつれ(つまり縦軸が増加するにつれ)、傾きが増加する。この傾きの値が極大値をとる点において引いた接線を、当該燐光スペクトルの短波長側の立ち上がりに対する接線とする。
 なお、スペクトルの最大ピーク強度の10%以下のピーク強度をもつ極大点は、上述の最も短波長側の極大値には含めず、最も短波長側の極大値に最も近い、傾きの値が極大値をとる点において引いた接線を当該燐光スペクトルの短波長側の立ち上がりに対する接線とする。
<Membrane manufacturing method>
In the method for producing a film of the present invention, the first compound and the second compound are co-evaporated from a vapor deposition source containing both a first compound that satisfies the following formula (1) and a second compound that satisfies the following formula (2). It has a step of forming a film containing a compound.
ΔE ST (1) ≦ 0.3 eV Formula (1)
E S1 (1)> E S1 (2) Formula (2)
In the above equation, ΔE ST (1) is the difference between the lowest excited singlet energy level E S1 (1) of the first compound and the lowest excited triplet energy level E T1 (1) of the first compound. E S1 (2) is the lowest excited singlet energy level of the second compound.
In the present specification, the difference between the lowest excited singlet energy level E S1 (2) of the second compound and the lowest excited triplet energy level E T1 (2) of the second compound is expressed as ΔE ST (2).
Further, generally, the difference between the lowest excited singlet energy level E S1 and the lowest excited triplet energy level E T1 of a particular compound is expressed as ΔE ST . ΔE ST is a value obtained by calculating the lowest excited singlet energy level E S1 and the lowest excited triplet energy level E T1 of the compound to be measured by the following method, and obtaining ΔE ST =E S1 −E T1 . At the time of measurement, a sample of a solution in which the compound to be measured is dissolved in toluene or a sample of a film co-deposited with the host material so that the concentration of the compound to be measured is 6% by weight is prepared. The host material is selected from those having a higher excited singlet energy level than E S1 of the compound to be measured and a higher excited triplet energy level than E T1 of the compound to be measured. Incidentally, Delta] E ST as described in the claims is a value measured using a sample of film with a thickness of 100nm was co-evaporated with mCP as the concentration of the measurement target compounds on the Si substrate of 6 wt%.
(1) Lowest excited singlet energy level E S1
The fluorescence spectrum of the sample is measured at room temperature (300K). Emission intensity immediately after the excitation light is incident to 100 nanoseconds after the excitation light is integrated to obtain a fluorescence spectrum with the emission intensity on the vertical axis and the wavelength on the horizontal axis. In the fluorescence spectrum, the vertical axis indicates emission and the horizontal axis indicates wavelength. A tangent line is drawn to the rising edge of the emission spectrum on the short wave side, and the wavelength value λedge [nm] at the intersection of the tangent line and the horizontal axis is obtained. The value obtained by converting this wavelength value into an energy value by the conversion formula shown below is E S1 .
Conversion formula: E S1 [eV]=1239.85/λedge
For the measurement of the emission spectrum, for example, a nitrogen laser (MNL200 manufactured by Lasertechnik Berlin) can be used as an excitation light source, and a streak camera (C4334 manufactured by Hamamatsu Photonics) can be used as a detector.
(2) Lowest excited triplet energy level E T1
The same sample as the lowest excited singlet energy level E S1 is cooled to 77 [K], the sample for phosphorescence measurement is irradiated with excitation light (337 nm), and the phosphorescence intensity is measured using a streak camera. The phosphorescence spectrum of the emission intensity on the vertical axis and the wavelength on the horizontal axis is obtained by integrating the emission from 1 millisecond after the excitation light is incident to 10 milliseconds after the incidence. A tangent line is drawn to the rising edge of the phosphorescence spectrum on the short wavelength side, and the wavelength value λedge [nm] at the intersection of the tangent line and the horizontal axis is obtained. The value obtained by converting this wavelength value into an energy value using the conversion formula shown below is E T1 .
Conversion formula: E T1 [eV]=1239.85/λedge
The tangent to the rising edge of the phosphorescence spectrum on the short wavelength side is drawn as follows. When moving from the short wavelength side of the phosphorescence spectrum to the maximum value on the shortest wavelength side among the maximum values of the spectrum on the spectrum curve, consider the tangent line at each point on the curve toward the long wavelength side. The slope of this tangent increases as the curve rises (ie as the vertical axis increases). The tangent line drawn at the point where the value of this slope has a maximum value is taken as the tangent line to the rising on the short wavelength side of the phosphorescence spectrum.
In addition, the maximum point having a peak intensity of 10% or less of the maximum peak intensity of the spectrum is not included in the maximum value on the shortest wavelength side described above, and the slope value that is the closest to the maximum value on the shortest wavelength side has the maximum value. The tangent line drawn at the point where the value is taken is the tangent line to the rising on the short wavelength side of the phosphorescence spectrum.
 本発明では、上記の第1化合物と第2化合物を共蒸着する際、これらの材料をともに含む蒸着源を用いる点に特徴がある。これにより、第1化合物と第2化合物を安定に堆積させて良質な膜を形成することができる。
 以下において、まず本発明で用いる蒸着源について説明する。
The present invention is characterized in that, when co-evaporating the first compound and the second compound, an evaporation source containing both of these materials is used. Thus, the first compound and the second compound can be stably deposited to form a good quality film.
In the following, first, the vapor deposition source used in the present invention will be described.
[蒸着源]
 蒸着源は、第1化合物と第2化合物をともに含むものである。
 本発明で用いる蒸着源は、第1化合物と第2化合物のみを含んでいてもよいし、その他の蒸着材料を含んでいてもよいし、これらの材料を保持する容器や保持材を含んでいてもよい。なお、以下の説明では、蒸着源のうち、膜の材料となるもの、すなわち、第1化合物、第2化合物およびその他の蒸着材料を総称して「蒸着材料」ということがある。
 以下、蒸着源が含む第1化合物、第2化合物、その他の蒸着材料、各材料の含有率および蒸着源の態様について順に説明する。
[Deposition source]
The vapor deposition source contains both the first compound and the second compound.
The vapor deposition source used in the present invention may include only the first compound and the second compound, may include other vapor deposition materials, and may include a container or a holding material that holds these materials. Good. In the following description, of the vapor deposition sources, the materials that will be the material of the film, that is, the first compound, the second compound, and other vapor deposition materials may be collectively referred to as “vapor deposition material”.
Hereinafter, the first compound, the second compound, other vapor deposition materials included in the vapor deposition source, the content of each material, and the mode of the vapor deposition source will be described in order.
(第1化合物)
 蒸着源が含む第1化合物、すなわち、ΔESTが0.3eV以下である材料は、最低励起一重項エネルギー準位ES1と最低励起三重項エネルギー準位ET1が近いことにより、励起三重項状態から励起一重項状態への逆項間交差を起こし易い傾向がある。第1化合物が逆項間交差を起こすものであることは、逆項間交差により生じた励起一重項状態が基底一重項状態へ輻射失活する際に放射する遅延蛍光を観測することで確認することができる。
 ここで、本明細書中における「遅延蛍光」とは、蛍光発光寿命(τ)が200ns(ナノ秒)以上であるものを意味する。また、本明細書中における「蛍光発光寿命(τ)」とは、溶液もしくは蒸着膜試料に、窒素雰囲気下や真空下のような酸素非存在下の条件で、光励起終了後の発光減衰測定を行うことにより求められる時間のことをいう。ここで、蛍光発光寿命が異なる2種類以上の蛍光成分が観測された場合には、発光寿命が最も長い蛍光成分の発光寿命が「蛍光発光寿命(τ)」であることとする。
 蒸着源に用いる第1化合物は、励起三重項状態から励起一重項状態への逆項間交差を起こす材料であることが好ましく、遅延蛍光を放射する材料であることがより好ましい。第1化合物が逆項間交差を起こすものであることにより、得られた膜において、励起三重項状態が励起一重項状態へ変換されるようになり、その励起一重項エネルギーを第2化合物の発光に有効に利用することができる。
 また、第1化合物のΔESTは、より低いことが好ましく、具体的には0.2eV以下であることが好ましく、0.1eV以下であることがより好ましく、0.05eV以下であることがさらにより好ましく、0.01eV以下であることがなおより好ましく、理想的には0eVである。第1化合物は、ΔESTが小さいもの程、逆項間交差を起こし易い傾向があり、励起三重項状態を励起一重項状態に変換する作用を効果的に発現することができる。
 蒸着源に用いる第1化合物は、式(1)を満たす単一の化合物からなる材料であってもよいし、エキサイプレックスを形成するような2種以上の化合物からなる材料であってもよい。第1化合物がエキサイプレックスを形成する2種以上の化合物からなる場合、そのエキサイプレックスの最低励起一重項エネルギー準位ES1と最低励起三重項エネルギー準位ET1の差ΔESTは0.3eV以下であることが好ましい。なお、第1化合物は、常温(300K)で励起三重項状態から基底一重項状態への輻射失活を生じ易いことから、IrやPtのような重金属元素を中心金属とする金属錯体のような、通常の燐光材料ではないことが好ましい。
 また、蒸着源が含む第1化合物は、1種類であっても2種類以上であってもよい。蒸着源が、第1化合物を2種類以上含む場合、それらの第1化合物は、その材料を構成する化合物の構造が互いに異なっていてもよいし、単一の化合物からなるか、エキサイプレックスを形成する2種以上の化合物からなるかが異なっていてもよい。さらに、2種類以上の第1化合物は、最低励起一重項エネルギー準位ES1や最低励起三重項エネルギー準位ET1、それらのエネルギー差ΔEST等が異なっていてもよい。
(First compound)
The first compound contained in the vapor deposition source, that is, the material having ΔE ST of 0.3 eV or less, has the lowest excited singlet energy level E S1 and the lowest excited triplet energy level E T1 close to each other. To an excited singlet state tends to occur. It is confirmed that the first compound causes an intersystem crossing by observing delayed fluorescence emitted when the excited singlet state generated by the intersystem crossing is deactivated by radiation to the ground singlet state. be able to.
Here, the “delayed fluorescence” in the present specification means that the fluorescence emission lifetime (τ) is 200 ns (nanosecond) or more. In addition, the term “fluorescence emission lifetime (τ)” as used in the present specification means the emission decay measurement after completion of photoexcitation in a solution or vapor-deposited film sample in the absence of oxygen such as under a nitrogen atmosphere or under vacuum. It means the time required by doing. Here, when two or more kinds of fluorescent components having different fluorescence emission lifetimes are observed, the emission lifetime of the fluorescent component having the longest emission lifetime is “fluorescence emission lifetime (τ)”.
The first compound used for the vapor deposition source is preferably a material that causes inverse intersystem crossing from an excited triplet state to an excited singlet state, and more preferably a material that emits delayed fluorescence. Since the first compound causes inverse intersystem crossing, the excited triplet state is converted into the excited singlet state in the obtained film, and the excited singlet energy is emitted from the second compound. Can be used effectively.
The ΔE ST of the first compound is preferably lower, specifically 0.2 eV or less, more preferably 0.1 eV or less, and further preferably 0.05 eV or less. More preferably, it is even more preferably 0.01 eV or less, and ideally 0 eV. The smaller the ΔE ST , the more likely the first compound is to undergo inverse intersystem crossing, and the effect of converting the excited triplet state to the excited singlet state can be effectively exhibited.
The first compound used for the vapor deposition source may be a material composed of a single compound satisfying the formula (1) or may be a material composed of two or more kinds of compounds forming an exciplex. When the first compound is composed of two or more compounds forming an exciplex, the difference ΔE ST between the lowest excited singlet energy level E S1 and the lowest excited triplet energy level E T1 of the exciplex is 0.3 eV or less. Is preferred. The first compound is liable to cause radiation deactivation from the excited triplet state to the ground singlet state at room temperature (300 K). It is preferable that the phosphor is not a usual phosphorescent material.
The first compound contained in the vapor deposition source may be of one type or of two or more types. When the vapor deposition source contains two or more kinds of the first compound, the first compounds may have different structures of the compounds constituting the material, or may be composed of a single compound or form an exciplex. It may be different in whether or not it is composed of two or more compounds. Further, the two or more kinds of first compounds may differ in the lowest excited singlet energy level E S1 , the lowest excited triplet energy level E T1 , their energy difference ΔE ST, and the like.
 第1化合物として、例えば下記一般式(1a)で表される化合物を挙げることができる。
一般式(1a)
  D-L-A
 一般式(1a)において、Dは置換アミノ基を有する置換基を表し、Lは置換もしくは無置換のアリーレン基、または置換もしくは無置換のヘテロアリーレン基を表し、Aはシアノ基、または少なくとも1つの窒素原子を環骨格構成原子として含む置換もしくは無置換のヘテロアリール基を表す。
 Lが表すアリーレン基またはヘテロアリーレン基は、単環であってもよいし、2つ以上の環が縮合した縮合環であってもよい。Lが縮合環である場合、縮合している環の数は2~6であることが好ましく、例えば2~4の中から選択することができる。Lを構成する環の具体例として、ベンゼン環、ピリジン環、ピリミジン環、トリアジン環、ナフタレン環を挙げることができる。Lが表すアリーレン基またはヘテロアリーレン基の具体例として、1,4-フェニレン基、1,3-フェニレン基、1,2-フェニレン基、1,8-ナフチレン基、2,7-ナフチレン基、2,6-ナフチレン基、1,4-ナフチレン基、1,3-ナフチレン基、9,10-アントラセニレン基、1,8-アントラセニレン基、2,7-アントラセニレン基、2,6-アントラセニレン基、1,4-アントラセニレン基、1,3-アントラセニレン基、これらの基の環骨格構成原子の1つが窒素原子に置換した基、これらの基の環骨格構成原子の2つが窒素原子に置換した基、およびこれらの基の環骨格構成原子の3つが窒素原子に置換した基を挙げることができる。Lが表すアリーレン基またはヘテロアリーレン基は、置換基を有していてもよいし、無置換であってもよい。置換基を2つ以上有する場合、複数の置換基は互いに同一であっても異なっていてもよい。置換基としては、例えばヒドロキシ基、ハロゲン原子、炭素数1~20のアルキル基、炭素数1~20のアルコキシ基、炭素数1~20のアルキルチオ基、炭素数6~40のアリール基、炭素数3~40のヘテロアリール基、炭素数2~10のアルケニル基、炭素数2~10のアルキニル基、炭素数1~10のハロアルキル基、炭素数3~20のトリアルキルシリル基、炭素数4~20のトリアルキルシリルアルキル基、炭素数5~20のトリアルキルシリルアルケニル基、炭素数5~20のトリアルキルシリルアルキニル基、置換アミノ基を有する置換基、シアノ基等が挙げられる。これらの具体例のうち、さらに置換基により置換可能なものは置換されていてもよい。より好ましい置換基は、炭素数1~20の置換もしくは無置換のアルキル基、炭素数1~20のアルコキシ基、炭素数6~40の置換もしくは無置換のアリール基、炭素数3~40の置換もしくは無置換のヘテロアリール基である。さらに好ましい置換基は、炭素数1~10の置換もしくは無置換のアルキル基、炭素数1~10の置換もしくは無置換のアルコキシ基、炭素数6~15の置換もしくは無置換のアリール基、炭素数3~12の置換もしくは無置換のヘテロアリール基である。
 Aにおける、少なくとも1つの窒素原子を環骨格構成原子として含むヘテロアリール基において、環骨格構成原子としての窒素原子の数は1~3つであることが好ましい。ヘテロアリール基の好ましい範囲と具体例については、上記のLが表すヘテロアリーレン基の好ましい範囲と具体例を1価の基に読み替えて参照することができる。中でも、Aにおけるヘテロアリール基は、1~3つの窒素元素を環骨格構成原子として含む6員環からなる基であることが好ましく、ピリジニル基、ピリミジニル基、トリアジニル基であることがより好ましく、トリアジニル基であることがさらに好ましい。ヘテロアリール基は置換基で置換されていてもよい。置換基の好ましい範囲と具体例については、上記のLが表すアリーレン基またはヘテロアリーレン基に置換してもよい置換基の好ましい範囲と具体例を参照することができる。
 Aはこれらの置換もしくは無置換のヘテロアリール基もとりうるが、シアノ基であることが好ましい。特にAがシアノ基であるものは、Aがトリアジニル基であるものよりも好ましい。
Examples of the first compound include compounds represented by the following general formula (1a).
General formula (1a)
DLA
In the general formula (1a), D represents a substituent having a substituted amino group, L represents a substituted or unsubstituted arylene group, or a substituted or unsubstituted heteroarylene group, A is a cyano group, or at least one It represents a substituted or unsubstituted heteroaryl group containing a nitrogen atom as a ring skeleton-constituting atom.
The arylene group or heteroarylene group represented by L may be a single ring or a condensed ring in which two or more rings are condensed. When L is a condensed ring, the number of condensed rings is preferably 2 to 6, and can be selected from, for example, 2 to 4. Specific examples of the ring forming L include a benzene ring, a pyridine ring, a pyrimidine ring, a triazine ring, and a naphthalene ring. Specific examples of the arylene group or heteroarylene group represented by L include 1,4-phenylene group, 1,3-phenylene group, 1,2-phenylene group, 1,8-naphthylene group, 2,7-naphthylene group, 2 ,6-naphthylene group, 1,4-naphthylene group, 1,3-naphthylene group, 9,10-anthracenylene group, 1,8-anthracenylene group, 2,7-anthracenylene group, 2,6-anthracenylene group, 1, 4-anthracenylene group, 1,3-anthracenylene group, a group in which one of the ring skeleton constituent atoms of these groups is substituted with a nitrogen atom, a group in which two of the ring skeleton constituent atoms of these groups are substituted with nitrogen atoms, and these A group in which three of the ring skeleton-constituting atoms of the above group are substituted with nitrogen atoms can be mentioned. The arylene group or heteroarylene group represented by L may have a substituent or may be unsubstituted. When it has two or more substituents, the plural substituents may be the same or different from each other. Examples of the substituent include a hydroxy group, a halogen atom, an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, an alkylthio group having 1 to 20 carbon atoms, an aryl group having 6 to 40 carbon atoms, and a carbon number. A heteroaryl group having 3 to 40 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, an alkynyl group having 2 to 10 carbon atoms, a haloalkyl group having 1 to 10 carbon atoms, a trialkylsilyl group having 3 to 20 carbon atoms, and 4 to 4 carbon atoms Examples thereof include a trialkylsilylalkyl group having 20 carbon atoms, a trialkylsilylalkenyl group having 5 to 20 carbon atoms, a trialkylsilylalkynyl group having 5 to 20 carbon atoms, a substituent having a substituted amino group, and a cyano group. Of these specific examples, those substitutable with a substituent may be substituted. More preferred substituents are substituted or unsubstituted alkyl groups having 1 to 20 carbon atoms, alkoxy groups having 1 to 20 carbon atoms, substituted or unsubstituted aryl groups having 6 to 40 carbon atoms, and substituted groups having 3 to 40 carbon atoms. Alternatively, it is an unsubstituted heteroaryl group. More preferred substituents are a substituted or unsubstituted alkyl group having 1 to 10 carbon atoms, a substituted or unsubstituted alkoxy group having 1 to 10 carbon atoms, a substituted or unsubstituted aryl group having 6 to 15 carbon atoms, and a carbon number. 3 to 12 substituted or unsubstituted heteroaryl groups.
In the heteroaryl group containing at least one nitrogen atom as a ring skeleton constituting atom in A, the number of nitrogen atoms as a ring skeleton constituting atom is preferably 1 to 3. Regarding the preferred range and specific examples of the heteroaryl group, the preferred range and specific examples of the heteroarylene group represented by L can be read as a monovalent group. Among them, the heteroaryl group for A is preferably a group consisting of a 6-membered ring containing 1 to 3 nitrogen elements as ring skeleton-constituting atoms, more preferably a pyridinyl group, a pyrimidinyl group or a triazinyl group, and triazinyl More preferably, it is a group. The heteroaryl group may be substituted with a substituent. For the preferred range and specific examples of the substituent, the preferred range and specific examples of the substituent that may be substituted on the arylene group or heteroarylene group represented by L can be referred to.
A may be a substituted or unsubstituted heteroaryl group, but is preferably a cyano group. Particularly, those in which A is a cyano group are more preferable than those in which A is a triazinyl group.
 一般式(1a)で表される化合物として、以下の一般式(1b)で表されるシアノベンゼン骨格を含む化合物や一般式(1c)で表されるトリアジン骨格を含む化合物を挙げることができる。
Figure JPOXMLDOC01-appb-C000001
Examples of the compound represented by the general formula (1a) include a compound containing a cyanobenzene skeleton represented by the following general formula (1b) and a compound containing a triazine skeleton represented by the general formula (1c).
Figure JPOXMLDOC01-appb-C000001
 一般式(1b)において、R1~R5の0~4つはシアノ基を表し、R1~R5の少なくとも1つは置換アミノ基を有する置換基を表し、残りのR1~R5は水素原子、または置換アミノ基を有する置換基とシアノ基以外の置換基を表す。R1~R5のうちのシアノ基の数は、0~4つのいずれの数であってもよいが、2つであることが好ましい。すなわち、シアノベンゼン骨格を含む化合物の中では、ジシアノベンゼン骨格を含む化合物がより好ましい。 In the general formula (1b), one 0-4 of R 1 ~ R 5 represents a cyano group, at least one of R 1 ~ R 5 is a substituent having a substituted amino group, the remaining R 1 ~ R 5 Represents a hydrogen atom, or a substituent having a substituted amino group and a substituent other than a cyano group. The number of cyano groups in R 1 to R 5 may be any number from 0 to 4, but is preferably 2. That is, among the compounds containing the cyanobenzene skeleton, the compounds containing the dicyanobenzene skeleton are more preferable.
Figure JPOXMLDOC01-appb-C000002
 一般式(1c)において、R6~R8の少なくとも1つは置換アミノ基を有する置換基を表し、残りのR6~R8は水素原子、または置換アミノ基を有する置換基とシアノ基以外の置換基を表す。
Figure JPOXMLDOC01-appb-C000002
In the general formula (1c), at least one of R 6 ~ R 8 is a substituent having a substituted amino group, the remaining R 6 ~ R 8 is other than substituent with a cyano group having a hydrogen atom or a substituted amino group, Represents a substituent.
 一般式(1a)~(1c)でいう置換アミノ基を有する置換基は、ジアリールアミノ基を有する置換基であることが好ましく、ジアリールアミノ基を構成する2つのアリール基は互いに連結して例えばカルバゾリル基となっていてもよい。また、一般式(1b)における置換アミノ基を有する置換基はR1~R5のいずれであってもよいが、例えばR2、R3、R4、R1とR3、R1とR4、R1とR5、R2とR3、R2とR3、R1とR3とR5、R1とR2とR3、R1とR3とR4、R2とR3とR4、R1とR2とR3とR4、R1とR2とR3とR4とR5などを好ましく例示することができる。また、一般式(1c)における置換アミノ基を有する置換基はR6~R8のいずれであってもよいが、例えばR6、R6とR7、R6とR7とR8を例示することができる。 The substituent having a substituted amino group in the general formulas (1a) to (1c) is preferably a substituent having a diarylamino group, and the two aryl groups constituting the diarylamino group are linked to each other, for example, carbazolyl. It may be the base. Further, the substituent having a substituted amino group in the general formula (1b) may be any of R 1 to R 5 , and examples thereof include R 2 , R 3 , R 4 , R 1 and R 3 , R 1 and R 5. 4 , R 1 and R 5 , R 2 and R 3 , R 2 and R 3 , R 1 and R 3 and R 5 , R 1 and R 2 and R 3 , R 1 and R 3 and R 4 , R 2 and Preferable examples include R 3 and R 4 , R 1 and R 2 , R 3 and R 4 , R 1 , R 2 , R 3 , R 4 and R 5 . Further, the substituent having a substituted amino group in the general formula (1c) may be any of R 6 to R 8 , and examples thereof include R 6 , R 6 and R 7 , R 6 and R 7 and R 8 . can do.
 一般式(1a)~(1c)でいう置換アミノ基を有する置換基は、以下の一般式(2a)で表される置換基であることが好ましい。昇華性調整のため、一般式(2a)で表される置換基は、分子内に2つ以上存在していることが好ましく、3つ以上存在していることがより好ましい。一般式(1a)または一般式(1b)で表される化合物である場合は、一般式(2a)で表される置換基は分子内に4つ以上存在していることがさらに好ましい。一般式(2a)で表される置換基の置換位置は特に制限されない。
Figure JPOXMLDOC01-appb-C000003
 一般式(2a)において、Ar1とAr2は、各々独立に置換もしくは無置換のアリール基、または置換もしくは無置換のヘテロアリール基を表す。Lは単結合、置換もしくは無置換のアリーレン基、または置換もしくは無置換のヘテロアリーレン基を表す。*は、一般式(1a)~(1c)における炭素原子(C)への結合位置を表す。
 一般式(2a)におけるAr1とAr2は、互いに結合することにより一般式(2a)の窒素原子とともに環状構造を形成していてもよい。
 Ar1およびAr2が表すアリーレン基またはヘテロアリーレン基は、単環であってもよいし、2つ以上の環が縮合した縮合環であってもよい。縮合環である場合、縮合している環の数は2~6であることが好ましく、例えば2~4の中から選択することができる。Ar1およびAr2を構成する環の具体例として、ベンゼン環、ピリジン環、ピリミジン環、トリアジン環、ナフタレン環を挙げることができる。Ar1およびAr2が表すアリーレン基またはヘテロアリーレン基の具体例として、フェニル基、1-ナフチル基、2-ナフチル基、1-アントラセニル基、2-アントラセニル基、9-アントラセニル基、2-ピリジル基、3-ピリジル基、4-ピリジル基を挙げることができる。Ar1およびAr2が表すアリーレン基またはヘテロアリーレン基は、置換基を有していてもよいし、無置換であってもよい。置換基を2つ以上有する場合、複数の置換基は互いに同一であっても異なっていてもよい。置換基としては、ヒドロキシ基、ハロゲン原子、炭素数1~20のアルキル基、炭素数1~20のアルコキシ基、炭素数1~20のアルキルチオ基、炭素数1~20のアルキル置換アミノ基、炭素数1~20のアリール置換アミノ基、炭素数6~40のアリール基、炭素数3~40のヘテロアリール基、炭素数2~10のアルケニル基、炭素数2~10のアルキニル基、炭素数2~20のアルキルアミド基、炭素数7~21のアリールアミド基、炭素数3~20のトリアルキルシリル基等が挙げられる。これらの具体例のうち、さらに置換基により置換可能なものは置換されていてもよい。より好ましい置換基は、炭素数1~20のアルキル基、炭素数1~20のアルコキシ基、炭素数1~20のアルキルチオ基、炭素数1~20のアルキル置換アミノ基、炭素数1~20のアリール置換アミノ基、炭素数6~40のアリール基、炭素数3~40のヘテロアリール基である。
The substituent having a substituted amino group in the general formulas (1a) to (1c) is preferably a substituent represented by the following general formula (2a). In order to adjust the sublimation property, the number of the substituents represented by the general formula (2a) is preferably 2 or more in the molecule, and more preferably 3 or more. In the case of the compound represented by the general formula (1a) or the general formula (1b), it is more preferable that four or more substituents represented by the general formula (2a) are present in the molecule. The substitution position of the substituent represented by formula (2a) is not particularly limited.
Figure JPOXMLDOC01-appb-C000003
In Formula (2a), Ar 1 and Ar 2 each independently represent a substituted or unsubstituted aryl group or a substituted or unsubstituted heteroaryl group. L represents a single bond, a substituted or unsubstituted arylene group, or a substituted or unsubstituted heteroarylene group. * Represents a bonding position to the carbon atom (C) in the general formulas (1a) to (1c).
Ar 1 and Ar 2 in the general formula (2a) may bond to each other to form a cyclic structure together with the nitrogen atom in the general formula (2a).
The arylene group or heteroarylene group represented by Ar 1 and Ar 2 may be a single ring or a condensed ring in which two or more rings are condensed. In the case of a condensed ring, the number of condensed rings is preferably 2 to 6, and can be selected from, for example, 2 to 4. Specific examples of the ring forming Ar 1 and Ar 2 include a benzene ring, a pyridine ring, a pyrimidine ring, a triazine ring and a naphthalene ring. Specific examples of the arylene group or heteroarylene group represented by Ar 1 and Ar 2 include a phenyl group, a 1-naphthyl group, a 2-naphthyl group, a 1-anthracenyl group, a 2-anthracenyl group, a 9-anthracenyl group, and a 2-pyridyl group. Examples thereof include a 3-pyridyl group and a 4-pyridyl group. The arylene group or heteroarylene group represented by Ar 1 and Ar 2 may have a substituent or may be unsubstituted. When it has two or more substituents, the plural substituents may be the same or different from each other. As the substituent, a hydroxy group, a halogen atom, an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, an alkylthio group having 1 to 20 carbon atoms, an alkyl-substituted amino group having 1 to 20 carbon atoms, carbon Aryl-substituted amino group having 1 to 20 carbon atoms, aryl group having 6 to 40 carbon atoms, heteroaryl group having 3 to 40 carbon atoms, alkenyl group having 2 to 10 carbon atoms, alkynyl group having 2 to 10 carbon atoms, and 2 carbon atoms Examples include an alkylamide group having 20 to 20 carbon atoms, an arylamide group having 7 to 21 carbon atoms, and a trialkylsilyl group having 3 to 20 carbon atoms. Of these specific examples, those substitutable with a substituent may be substituted. More preferable substituents are an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, an alkylthio group having 1 to 20 carbon atoms, an alkyl-substituted amino group having 1 to 20 carbon atoms, and an alkyl group having 1 to 20 carbon atoms. An aryl-substituted amino group, an aryl group having 6 to 40 carbon atoms, and a heteroaryl group having 3 to 40 carbon atoms.
 一般式(2a)で表される置換基は、以下の一般式(2b)で表される置換基であることが好ましい。
Figure JPOXMLDOC01-appb-C000004
 一般式(2b)において、R11~R20は、各々独立に水素原子または置換基を表す。Lは単結合、置換もしくは無置換のアリーレン基、または置換もしくは無置換のヘテロアリーレン基を表す。R11とR12、R12とR13、R13とR14、R14とR15、R15とR16、R16とR17、R17とR18、R18とR19、R19とR20は互いに結合して環状構造を形成するために必要な連結基を形成してもよい。また、R15とR16は互いに結合して単結合または連結基を形成してもよい。*は、一般式(1a)~(1c)における炭素原子(C)への結合位置を表す。
 R11~R20がとりうる置換基の具体例と好ましい範囲については、一般式(1a)におけるAr1およびAr2が表すアリーレン基またはヘテロアリーレン基の置換基の対応する記載を参照することができる。
The substituent represented by the general formula (2a) is preferably a substituent represented by the following general formula (2b).
Figure JPOXMLDOC01-appb-C000004
In formula (2b), R 11 to R 20 each independently represent a hydrogen atom or a substituent. L represents a single bond, a substituted or unsubstituted arylene group, or a substituted or unsubstituted heteroarylene group. R 11 and R 12 , R 12 and R 13 , R 13 and R 14 , R 14 and R 15 , R 15 and R 16 , R 16 and R 17 , R 17 and R 18 , R 18 and R 19 , R 19 And R 20 may combine with each other to form a linking group necessary for forming a cyclic structure. R 15 and R 16 may be bonded to each other to form a single bond or a linking group. * Represents a bonding position to the carbon atom (C) in the general formulas (1a) to (1c).
For specific examples and preferred ranges of the substituents that R 11 to R 20 can have, refer to the corresponding description of the substituents of the arylene group or heteroarylene group represented by Ar 1 and Ar 2 in the general formula (1a). it can.
 R11とR12、R12とR13、R13とR14、R14とR15、R15とR16、R16とR17、R17とR18、R18とR19、R19とR20は、互いに結合して形成する環状構造は芳香環であっても脂肪環であってもよく、またヘテロ原子を含むものであってもよく、さらに環状構造は2環以上の縮合環であってもよい。ここでいうヘテロ原子としては、窒素原子、酸素原子および硫黄原子からなる群より選択されるものであることが好ましい。形成される環状構造の例として、ベンゼン環、ナフタレン環、ピリジン環、ピリダジン環、ピリミジン環、ピラジン環、ピロール環、イミダゾール環、ピラゾール環、イミダゾリン環、オキサゾール環、イソオキサゾール環、チアゾール環、イソチアゾール環、シクロヘキサジエン環、シクロヘキセン環、シクロペンタエン環、シクロヘプタトリエン環、シクロヘプタジエン環、シクロヘプタエン環などを挙げることができる。 R 11 and R 12 , R 12 and R 13 , R 13 and R 14 , R 14 and R 15 , R 15 and R 16 , R 16 and R 17 , R 17 and R 18 , R 18 and R 19 , R 19 R 20 is a cyclic structure formed by bonding may be aliphatic ring even aromatic rings, also may be one containing a hetero atom, further cyclic structure 2 or more rings fused with May be The hetero atom referred to herein is preferably selected from the group consisting of nitrogen atom, oxygen atom and sulfur atom. Examples of the formed cyclic structure, benzene ring, naphthalene ring, pyridine ring, pyridazine ring, pyrimidine ring, pyrazine ring, pyrrole ring, imidazole ring, pyrazole ring, imidazoline ring, oxazole ring, isoxazole ring, thiazole ring, iso Examples thereof include a thiazole ring, a cyclohexadiene ring, a cyclohexene ring, a cyclopentaene ring, a cycloheptatriene ring, a cycloheptadiene ring and a cycloheptaene ring.
 一般式(2a)および(2b)において、Lは、単結合、置換もしくは無置換のアリーレン基、または置換もしくは無置換のヘテロアリーレン基を表す。Lは、単結合、または置換もしくは無置換のアリーレン基であることが好ましい。
 Lが表すアリーレン基を構成する芳香環は、単環であっても、2以上の芳香環が縮合した縮合環であっても、2以上の芳香環が連結した連結環であってもよい。2以上の芳香環が連結している場合は、直鎖状に連結したものであってもよいし、分枝状に連結したものであってもよい。Lが表すアリーレン基を構成する芳香環の炭素数は、6~22であることが好ましく、6~18であることがより好ましく、6~14であることがさらに好ましく、6~10であることがさらにより好ましい。アリーレン基の具体例として、フェニレン基、ナフタレンジイル基、ビフェニレン基を挙げることができる。
 また、Lが表すヘテロアリーレン基を構成する複素環は、単環であっても、1以上の複素環と芳香環または複素環が縮合した縮合環であっても、1以上の複素環と芳香環または複素環が連結した連結環であってもよい。複素環の炭素数は5~22であることが好ましく、5~18であることがより好ましく、5~14であることがさらに好ましく、5~10であることがさらにより好ましい。複素環を構成する複素原子は窒素原子であることが好ましい。複素環の具体例として、ピリジン環、ピリダジン環、ピリミジン環、トリアゾール環、ベンゾトリアゾール環を挙げることができる。
 Lが表すより好ましい基はフェニレン基である。Lがフェニレン基であるとき、フェニレン基は1,2-フェニレン基、1,3-フェニレン基、1,4-フェニレン基のいずれであってもよいが、1,4-フェニレン基であることが好ましい。また、Lは置換基により置換されていてもよい。Lの置換基の数および置換位置は特に制限されない。Lに導入しうる置換基の説明と好ましい範囲については、上記のR11~R20がとりうる置換基の説明と好ましい範囲を参照することができる。
In formulas (2a) and (2b), L represents a single bond, a substituted or unsubstituted arylene group, or a substituted or unsubstituted heteroarylene group. L is preferably a single bond or a substituted or unsubstituted arylene group.
The aromatic ring forming the arylene group represented by L may be a single ring, a condensed ring in which two or more aromatic rings are condensed, or a linking ring in which two or more aromatic rings are linked. When two or more aromatic rings are linked, they may be linearly linked or branched. The aromatic ring constituting the arylene group represented by L preferably has 6 to 22 carbon atoms, more preferably 6 to 18 carbon atoms, further preferably 6 to 14 carbon atoms, and 6 to 10 carbon atoms. Are even more preferred. Specific examples of the arylene group include a phenylene group, a naphthalenediyl group, and a biphenylene group.
In addition, the heterocycle constituting the heteroarylene group represented by L is a monocycle, a condensed ring formed by condensing one or more heterocycles with an aromatic ring or a heterocycle, and one or more heterocycles with an aromatic ring. It may be a linking ring in which a ring or a heterocycle is linked. The carbon number of the heterocycle is preferably 5 to 22, more preferably 5 to 18, even more preferably 5 to 14, and even more preferably 5 to 10. The heteroatoms forming the heterocycle are preferably nitrogen atoms. Specific examples of the heterocycle include a pyridine ring, a pyridazine ring, a pyrimidine ring, a triazole ring and a benzotriazole ring.
A more preferred group represented by L is a phenylene group. When L is a phenylene group, the phenylene group may be any of a 1,2-phenylene group, a 1,3-phenylene group and a 1,4-phenylene group, but is preferably a 1,4-phenylene group. preferable. Further, L may be substituted with a substituent. The number and the substitution position of the substituent of L are not particularly limited. For the description and the preferable range of the substituent that can be introduced into L, the description and the preferable range of the substituent that R 11 to R 20 can take can be referred to.
 一般式(2b)で表される置換基は、下記の一般式(3)~(7)のいずれかの一般式で表される置換基であることが好ましい。
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
The substituent represented by the general formula (2b) is preferably a substituent represented by any one of the following general formulas (3) to (7).
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
 一般式(3)~(7)において、R21~R24、R27~R38、R41~R48、R51~R58、R61~R65、R81~R90は、各々独立に水素原子または置換基を表す。ここでいう置換基の説明と好ましい範囲については、上記のR11~R20の置換基の説明と好ましい範囲を参照することができる。R21~R24、R27~R38、R41~R48、R51~R58、R61~R65、R71~R79、R81~R90は、各々独立に上記一般式(3)~(7)のいずれかで表される基であることも好ましい。また、一般式(3)のR21、R23、R28、R30のうちの少なくとも2つは置換もしくは無置換のアルキル基であることが好ましく、R21、R23、R28、R30の全てが置換もしくは無置換のアルキル基であるか、R21とR30が置換もしくは無置換のアルキル基であるか、R23とR28が置換もしくは無置換のアルキル基であることがより好ましく、その置換もしく無置換のアルキル基は炭素数1~6の置換もしくは無置換のアルキル基であることがより好ましい。一般式(7)のR89およびR90は置換もしくは無置換のアルキル基であることが好ましく、炭素数1~6の置換もしくは無置換のアルキル基であることがより好ましい。一般式(3)~(7)における置換基の数は特に制限されない。すべてが無置換(すなわち水素原子)である場合も好ましい。また、一般式(3)~(7)のそれぞれにおいて置換基が2つ以上ある場合、それらの置換基は同一であっても異なっていてもよい。一般式(3)~(7)に置換基が存在している場合、その置換基は一般式(3)であればR22~R24、R27~R29のいずれかであることが好ましく、R23およびR28の少なくとも1つであることがより好ましく、一般式(4)であればR32~R37のいずれかであることが好ましく、一般式(5)であればR42~R47のいずれかであることが好ましく、一般式(6)であればR52、R53、R56、R57、R62~R64のいずれかであることが好ましく、一般式(7)であればR82~R87、R89、R90のいずれかであることが好ましい。 In the general formulas (3) to (7), R 21 to R 24 , R 27 to R 38 , R 41 to R 48 , R 51 to R 58 , R 61 to R 65 , and R 81 to R 90 are independent of each other. Represents a hydrogen atom or a substituent. For the description and the preferred range of the substituents, the description and the preferred range of the substituents of R 11 to R 20 can be referred to. R 21 to R 24 , R 27 to R 38 , R 41 to R 48 , R 51 to R 58 , R 61 to R 65 , R 71 to R 79 , and R 81 to R 90 are each independently the above general formula ( It is also preferably a group represented by any of 3) to (7). Further, at least two of R 21 , R 23 , R 28 , and R 30 in the general formula (3) are preferably substituted or unsubstituted alkyl groups, and R 21 , R 23 , R 28 , and R 30 It is more preferred that all of R are substituted or unsubstituted alkyl groups, R 21 and R 30 are substituted or unsubstituted alkyl groups, or R 23 and R 28 are substituted or unsubstituted alkyl groups. More preferably, the substituted or unsubstituted alkyl group is a substituted or unsubstituted alkyl group having 1 to 6 carbon atoms. R 89 and R 90 in the general formula (7) are preferably substituted or unsubstituted alkyl groups, and more preferably substituted or unsubstituted alkyl groups having 1 to 6 carbon atoms. The number of substituents in the general formulas (3) to (7) is not particularly limited. It is also preferable that all are unsubstituted (that is, hydrogen atoms). When there are two or more substituents in each of formulas (3) to (7), those substituents may be the same or different. When a substituent is present in the general formulas (3) to (7), the substituent is preferably any one of R 22 to R 24 and R 27 to R 29 in the general formula (3). , R 23 and R 28 are more preferable, R 32 to R 37 are preferable in the general formula (4), and R 42 to R 37 are preferable in the general formula (5). It is preferably any one of R 47 , and if it is the general formula (6), it is preferably any one of R 52 , R 53 , R 56 , R 57 and R 62 to R 64 , and the general formula (7) In this case, it is preferably any one of R 82 to R 87 , R 89 and R 90 .
 一般式(3)~(7)において、R21とR22、R22とR23、R23とR24、R27とR28、R28とR29、R29とR30、R31とR32、R32とR33、R33とR34、R35とR36、R36とR37、R37とR38、R41とR42、R42とR43、R43とR44、R45とR46、R46とR47、R47とR48、R51とR52、R52とR53、R53とR54、R55とR56、R56とR57、R57とR58、R61とR62、R62とR63、R63とR64、R64とR65、R54とR61、R55とR65、R81とR82、R82とR83、R83とR84、R85とR86、R86とR87、R87とR88、R89とR90は、互いに結合して環状構造を形成していてもよい。環状構造の説明と好ましい例については、上記の一般式(2b)において、R11とR12等が互いに結合して形成する環状構造の説明と好ましい例を参照することができる。 In the general formulas (3) to (7), R 21 and R 22 , R 22 and R 23 , R 23 and R 24 , R 27 and R 28 , R 28 and R 29 , R 29 and R 30 , R 31 and R 32 , R 32 and R 33 , R 33 and R 34 , R 35 and R 36 , R 36 and R 37 , R 37 and R 38 , R 41 and R 42 , R 42 and R 43 , R 43 and R 44 , R 45 and R 46 , R 46 and R 47 , R 47 and R 48 , R 51 and R 52 , R 52 and R 53 , R 53 and R 54 , R 55 and R 56 , R 56 and R 57 , R 57 and R 58 , R 61 and R 62 , R 62 and R 63 , R 63 and R 64 , R 64 and R 65 , R 54 and R 61 , R 55 and R 65 , R 81 and R 82 , R 82 and R 83 , R 83 and R 84 , R 85 and R 86 , R 86 and R 87 , R 87 and R 88 , and R 89 and R 90 may combine with each other to form a cyclic structure. For the description and the preferred examples of the cyclic structure, the description and the preferred examples of the cyclic structure formed by combining R 11 and R 12 with each other in the above general formula (2b) can be referred to.
 一般式(3)~(7)において、L1~L5は、単結合、置換もしくは無置換のアリーレン基、または置換もしくは無置換のヘテロアリーレン基を表す。*は、一般式(1a)~(1c)における炭素原子(C)への結合位置を表す。L1~L5が表すアリーレン基またはヘテロアリーレン基、これらの基に導入しうる置換基の説明と好ましい範囲については、Lが表すアリーレン基またはヘテロアリーレン基、これらの基に導入しうる置換基の説明と好ましい範囲を参照することができる。L1~L5は、単結合、置換もしくは無置換のアリーレン基であることが好ましい。 In formulas (3) to (7), L 1 to L 5 represent a single bond, a substituted or unsubstituted arylene group, or a substituted or unsubstituted heteroarylene group. * Represents a bonding position to the carbon atom (C) in the general formulas (1a) to (1c). For the description and the preferred range of the arylene group or heteroarylene group represented by L 1 to L 5 and the substituents that can be introduced into these groups, see the arylene group or heteroarylene group represented by L and the substituents that can be introduced into these groups. Can be referred to for the description and the preferable range. L 1 to L 5 are preferably a single bond or a substituted or unsubstituted arylene group.
 第1化合物は、遅延蛍光を放射する化合物として知られている化合物が多い。そのような化合物として、WO2013/154064号公報の段落0008~0048および0095~0133、WO2013/011954号公報の段落0007~0047および0073~0085、WO2013/011955号公報の段落0007~0033および0059~0066、WO2013/081088号公報の段落0008~0071および0118~0133、特開2013-256490号公報の段落0009~0046および0093~0134、特開2013-116975号公報の段落0008~0020および0038~0040、WO2013/133359号公報の段落0007~0032および0079~0084、WO2013/161437号公報の段落0008~0054および0101~0121、特開2014-9352号公報の段落0007~0041および0060~0069、特開2014-9224号公報の段落0008~0048および0067~0076に記載される一般式に包含される化合物、特に例示化合物を好ましく挙げることができる。これらの公報は、本明細書の一部としてここに引用している。
 また、遅延蛍光を放射する化合物(遅延蛍光体)として、特開2013-253121号公報、WO2013/133359号公報、WO2014/034535号公報、WO2014/115743号公報、WO2014/122895号公報、WO2014/126200号公報、WO2014/136758号公報、WO2014/133121号公報、WO2014/136860号公報、WO2014/196585号公報、WO2014/189122号公報、WO2014/168101号公報、WO2015/008580号公報、WO2014/203840号公報、WO2015/002213号公報、WO2015/016200号公報、WO2015/019725号公報、WO2015/072470号公報、WO2015/108049号公報、WO2015/080182号公報、WO2015/072537号公報、WO2015/080183号公報、特開2015-129240号公報、WO2015/129714号公報、WO2015/129715号公報、WO2015/133501号公報、WO2015/136880号公報、WO2015/137244号公報、WO2015/137202号公報、WO2015/137136号公報、WO2015/146541号公報、WO2015/159541号公報に記載される一般式に包含される化合物、特に例示化合物を好ましく挙げることができる。これらの公報は、本明細書の一部としてここに引用している。
The first compound is often a compound known as a compound that emits delayed fluorescence. Examples of such compounds include paragraphs 0008 to 0048 and 0095 to 0133 of WO 2013/154064, paragraphs 0007 to 0047 and 0073 to 0085 of WO 2013/011954, and paragraphs 0007 to 0033 and 0059 to 0066 of WO 2013/011955. , WO 2013/081088, paragraphs 0008 to 0071 and 0118 to 0133, JP 2013-256490 A, paragraphs 0009 to 0046 and 0093 to 0134, and JP 2013-116975 A, paragraphs 0008 to 0020 and 0038 to 0040, Paragraphs 0007 to 0032 and 0079 to 0084 of WO2013/133359, Paragraphs 0008 to 0054 and 0101 to 0121 of WO2013/161437, Paragraphs 0007 to 0041 and 0060 to 0069 of JP2014-9352A, and JP2014. Compounds included in the general formulas described in paragraphs 0008 to 0048 and 0067 to 0076 of JP-A-9224, particularly exemplified compounds, can be preferably mentioned. These publications are incorporated herein by reference.
In addition, as a compound that emits delayed fluorescence (delayed fluorescent substance), JP 2013-253121 A, WO 2013/133359 A, WO 2014/034535 A, WO 2014/115743 A, WO 2014/122895 A, WO 2014/126200 A. Publications, WO2014/136758, WO2014/133121, WO2014/136860, WO2014/196585, WO2014/189122, WO2014/168101, WO2015/008580, WO2014/203840. , WO 2015/002213, WO 2015/016200, WO 2015/019725, WO 2015/072470, WO 2015/108049, WO 2015/080182, WO 2015/072537, WO 2015/080183, and special features. Open 2015-129240 publication, WO2015/129714 publication, WO2015/129715 publication, WO2015/133501 publication, WO2015/136880 publication, WO2015/137244 publication, WO2015/137202 publication, WO2015/137136 publication, WO2015. The compounds included in the general formulas described in JP-A/146541 and WO 2015/159541, particularly exemplified compounds can be preferably mentioned. These publications are incorporated herein by reference.
 以下において、第1化合物の具体例を例示する。ただし、本発明において用いることができる第1化合物はこれらの具体例によって限定的に解釈されるべきものではない。
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Below, the specific example of a 1st compound is illustrated. However, the first compound that can be used in the present invention should not be limitedly interpreted by these specific examples.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
(第2化合物)
 本発明で用いる蒸着源は、第1化合物とともに第2化合物を含む。第2化合物は、式(2)を満たす化合物である。
      ES1(1) > ES1(2)      式(2)
上式において、ES1(1)は第1化合物の最低励起一重項エネルギー準位であり、ES1(2)は第2化合物の最低励起一重項エネルギー準位である。ES1(1)とES1(2)の差[ES1(1)-ES1(2)]は、例えば0.1eV以上、0.2eV以上、0.3eV以上、0.5eV以上にしたり、1.2eV以下、1.0eV以下、0.8eV以下、0.6eV以下にしたりしてもよい。式(2)を満たす第2化合物を採用することにより、得られる膜において、第1化合物の励起一重項エネルギーが第2化合物へ移動し易くなり、第1化合物の逆項間交差で生じた励起一重項状態のエネルギーを第2化合物の発光に効率よく利用することができる。
 第2化合物は、蛍光材料であることが好ましい。本発明における「蛍光材料」とは、トルエンやジクロロメタンのような溶液試料もしくは蒸着膜試料に、20℃で励起光を照射したとき蛍光を放射する有機材料のことを意味する。ここで、「蛍光」とは、励起一重項状態から基底一重項状態への失活の際に放射される光である。本発明における蛍光材料は、蛍光とともに燐光を放射するものであってもよいが、その場合の蛍光強度は燐光強度の9倍以上であることが好ましい。
 第2化合物には、蛍光発光寿命(τ)が200ns(ナノ秒)未満であるものを採用してもよいし、蛍光発光寿命(τ)が200ns(ナノ秒)以上である遅延蛍光材料を採用してもよい。蛍光発光寿命(τ)の説明については、(第1化合物)の欄の蛍光発光寿命(τ)についての説明を参照することができる。
 第2化合物として遅延蛍光材料を採用する場合、その遅延蛍光材料は下記の関係式を満たすものであることが好ましい。
     ΔEST(2) ≦ 0.3eV
上式において、ΔEST(2)は、第2化合物の最低励起一重項エネルギー準位ES1(2)と第2化合物の最低励起三重項エネルギー準位ET1(2)の差である。また、上記の式(1)と式(2)の関係を満たす限り、第2化合物は上記の化合物T1~T57の中から選択してもよい。
 第2化合物の発光波長は特に制限されず、得られる膜の用途に応じて適宜選択することができる。例えば、得られる膜を、画像表示や色表示のための有機発光素子の発光層に用いる場合には、第2化合物は、近赤外領域(750~2500nm)や赤色領域(620~750nm)や緑色領域(495~570nm)、青色領域(450~495nm)に発光極大波長を有するものであることが好ましい。
 蒸着源が含む第2化合物は、1種類であっても2種類以上であってもよい。蒸着源が、第2化合物を2種類以上含む場合、それらの第2化合物は、その第2化合物を構成する化合物の構造が互いに異なる他、発光波長や発光色、最低励起一重項エネルギー準位ES1、最低励起三重項エネルギー準位ET1等が異なっていてもよい。
(Second compound)
The vapor deposition source used in the present invention contains a second compound in addition to the first compound. The second compound is a compound that satisfies the formula (2).
E S1 (1)> E S1 (2) Formula (2)
In the above equation, E S1 (1) is the lowest excited singlet energy level of the first compound, and E S1 (2) is the lowest excited singlet energy level of the second compound. The difference between E S1 (1) and E S1 (2) [E S1 (1)-E S1 (2)] is, for example, 0.1 eV or more, 0.2 eV or more, 0.3 eV or more, 0.5 eV or more. , 1.2 eV or less, 1.0 eV or less, 0.8 eV or less, 0.6 eV or less. By adopting the second compound satisfying the formula (2), the excited singlet energy of the first compound is easily transferred to the second compound in the obtained film, and the excitation generated by the intersystem crossing of the first compound is excited. Energy in the singlet state can be efficiently used for light emission of the second compound.
The second compound is preferably a fluorescent material. The “fluorescent material” in the present invention means an organic material that emits fluorescence when a solution sample such as toluene or dichloromethane or a vapor deposition film sample is irradiated with excitation light at 20° C. Here, "fluorescence" is light emitted upon deactivation from the excited singlet state to the ground singlet state. The fluorescent material in the present invention may be one that emits phosphorescence together with fluorescence, but in that case, the fluorescence intensity is preferably 9 times or more the phosphorescence intensity.
As the second compound, a compound having a fluorescence emission lifetime (τ) of less than 200 ns (nanosecond) may be adopted, or a delayed fluorescent material having a fluorescence emission lifetime (τ) of 200 ns (nanosecond) or more is adopted. You may. For the description of the fluorescence emission lifetime (τ), the description of the fluorescence emission lifetime (τ) in the (first compound) column can be referred to.
When a delayed fluorescent material is used as the second compound, the delayed fluorescent material preferably satisfies the following relational expression.
ΔE ST (2) ≦ 0.3 eV
In the above equation, ΔE ST (2) is the difference between the lowest excited singlet energy level E S1 (2) of the second compound and the lowest excited triplet energy level E T1 (2) of the second compound. Further, the second compound may be selected from the compounds T1 to T57 as long as the relationship between the above formulas (1) and (2) is satisfied.
The emission wavelength of the second compound is not particularly limited and can be appropriately selected depending on the application of the obtained film. For example, when the obtained film is used for a light emitting layer of an organic light emitting element for image display or color display, the second compound is a near infrared region (750 to 2500 nm) or a red region (620 to 750 nm) or It is preferable to have a maximum emission wavelength in the green region (495 to 570 nm) and the blue region (450 to 495 nm).
The second compound contained in the vapor deposition source may be one type or two or more types. When the vapor deposition source contains two or more kinds of second compounds, the second compounds have different structures of the compounds constituting the second compound, and the emission wavelength and emission color, and the lowest excited singlet energy level E S1 and the lowest excited triplet energy level E T1 may be different.
 第2化合物としては、アントラセン誘導体、テトラセン誘導体、ナフタセン誘導体、ピレン誘導体、ペリレン誘導体、クリセン誘導体、ルブレン誘導体、クマリン誘導体、ピラン誘導体、スチルベン誘導体、フルオレン誘導体、アントリル誘導体、ピロメテン誘導体、ターフェニル誘導体、ターフェニレン誘導体、フルオランテン誘導体、アミン誘導体、キナクリドン誘導体、オキサジアゾール誘導体、マロノニトリル誘導体、ピラン誘導体、カルバゾール誘導体、ジュロリジン誘導体、チアゾール誘導体およびこれら誘導体の母骨格からなる化合物等を用いることが可能である。これら誘導体の母骨格には置換基を有してもよいし、置換基を有していなくてもよい。
 以下において、第2化合物に用いることができる化合物の具体例を例示する。ただし、本発明において第2化合物に用いることができる化合物はこれらの具体例によって限定的に解釈されるべきものではない。下記式において、Etはエチル基を表す。
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
Examples of the second compound include anthracene derivative, tetracene derivative, naphthacene derivative, pyrene derivative, perylene derivative, chrysene derivative, rubrene derivative, coumarin derivative, pyran derivative, stilbene derivative, fluorene derivative, anthryl derivative, pyrromethene derivative, terphenyl derivative, and terphenyl derivative. It is possible to use a phenylene derivative, a fluoranthene derivative, an amine derivative, a quinacridone derivative, an oxadiazole derivative, a malononitrile derivative, a pyran derivative, a carbazole derivative, a julolidine derivative, a thiazole derivative, and a compound having a mother skeleton of these derivatives. The mother skeleton of these derivatives may or may not have a substituent.
Hereinafter, specific examples of the compound that can be used as the second compound will be illustrated. However, the compound that can be used as the second compound in the present invention should not be limitedly interpreted by these specific examples. In the following formula, Et represents an ethyl group.
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
 また、第2化合物としてシアノベンゼン骨格を含む化合物を用いることも好ましい。特に、第1化合物がシアノベンゼン骨格を含む化合物である場合に、第2化合物もシアノベンゼン骨格を含む化合物であると、蒸着時の蒸発速度(重量減少速度)を第1化合物と第2化合物とで一致させ易い等の理由により、良質な膜を製造し得やすい傾向がある。ここで、第2化合物に用いるシアノベンゼン骨格を含む化合物は、ジシアノベンゼン骨格を含む化合物であることがより好ましく、1,4-ジシアノベンゼン骨格(テレフタロニトリル骨格)を含む化合物であることがさらに好ましい。また、第2化合物に用いるシアノベンゼン骨格を含む化合物は遅延蛍光を放射するものであってもよい。シアノベンゼン骨格を含む化合物の説明と好ましい範囲、具体例については、(第1化合物)の欄における一般式(1b)についての記載や具体例(化合物T1~T21)を参照することができる。 It is also preferable to use a compound containing a cyanobenzene skeleton as the second compound. In particular, when the first compound is a compound containing a cyanobenzene skeleton and the second compound is also a compound containing a cyanobenzene skeleton, the evaporation rate (weight reduction rate) during vapor deposition is the same as that of the first compound and the second compound. There is a tendency that it is easy to produce a good quality film for the reason that it is easy to match. Here, the compound containing a cyanobenzene skeleton used for the second compound is more preferably a compound containing a dicyanobenzene skeleton, and further preferably a compound containing a 1,4-dicyanobenzene skeleton (terephthalonitrile skeleton). preferable. The compound containing a cyanobenzene skeleton used for the second compound may emit delayed fluorescence. For the description of compounds containing a cyanobenzene skeleton, preferred ranges, and specific examples, the description of the general formula (1b) in the (first compound) column and specific examples (compounds T1 to T21) can be referred to.
(第1化合物と第2化合物の組み合わせ)
 蒸着源に用いる第1化合物と第2化合物の組み合わせは特に限定されない。また、蒸着源が含む第1化合物および第2化合物は、それぞれ1種類であっても2種類以上であってもよいが、それぞれ1種類の化合物であることが好ましい。蒸着源が第1化合物、第2化合物を2種類以上含む場合、その全ての第1化合物が式(1)を満たし、且つ、全ての第2化合物が全ての第1化合物との間で式(1)を満たすこととする。式(2)について言い換えれば、第2化合物の中で最も最低励起一重項エネルギー準位ES1(2)が高い化合物のES1(2)が、第1化合物の中で最も最低励起一重項エネルギー準位ES1(1)が低い化合物のES1(1)よりも低いこととする。この条件を満たす限り、2種類以上の第1化合物および第2化合物に特に制限はなく、例えば2種類以上の化合物の中にエキサイプレックスを形成する組み合わせを含んでいてもよい。2種類以上の第1化合物の中にエキサイプレックスを形成する組み合わせを含む場合、そのエキサイプレックスを形成する第1化合物の組み合わせは、エキサイプレックスの最低励起一重項エネルギー準位ES1(Ex)および最低励起三重項エネルギー準位ET1(Ex)で、ES1(1)、ET1(1)をそれぞれ置き換えた式(1)を満たすことが好ましい。すなわち、第1化合物のES1(Ex)とET1(Ex)のエネルギー差ΔEST(Ex)は0.3eV以下であることが好ましい。また、2種類以上の第2化合物の中にエキサイプレックスを形成する組み合わせを含む場合、そのエキサイプレックスを形成する第2化合物の組み合わせは、エキサイプレックスの最低励起一重項エネルギー準位ES1(Ex)でES1(2)を置き換えた式(2)を満たすことが好ましい。すなわち、第2化合物のES1(Ex)は、第1化合物のES1(1)よりも低いことが好ましい。また、蒸着源がエキサイプレックスを形成する第1化合物の組合せを含む場合には、第2化合物のES1(Ex)は、その第1化合物のES1(Ex)よりも低いことが好ましい。エキサイプレックスのエネルギー準位ES1(Ex)、ET1(Ex)は、エキサイプレックスを形成する1組の化合物からなる膜を測定試料に用い、上記のΔESTの算出方法に準じて求めることができる。
 蒸着源に用いることができる第1化合物と第2化合物の組み合わせの具体例については、[第1化合物と第2化合物を含む膜]の欄に掲載した表1を参照することができる。ただし、本発明において用いることができる第1化合物と第2化合物の組み合わせは、これらの具体例によって限定的に解釈されるべきものではない。
(Combination of the first compound and the second compound)
The combination of the first compound and the second compound used for the vapor deposition source is not particularly limited. The first compound and the second compound contained in the vapor deposition source may be one kind or two or more kinds, but are preferably one kind of compound. When the vapor deposition source contains two or more kinds of the first compound and the second compound, all of the first compounds satisfy the formula (1), and all the second compounds are expressed by the formula (). 1) is satisfied. In other words for formula (2), E S1 of the most lowest excited singlet energy level E S1 (2) is higher compound in a second compound (2) is the most lowest excited singlet energy in the first compound and lower than E S1 (1) of the level E S1 (1) is lower compound. As long as this condition is satisfied, the two or more kinds of the first compound and the second compound are not particularly limited, and for example, a combination that forms an exciplex may be included in the two or more kinds of compounds. When a combination of two or more first compounds forming an exciplex is included, the combination of the first compounds forming the exciplex is the lowest excited singlet energy level E S1 (Ex) and the lowest of the exciplex. The excited triplet energy level E T1 (Ex) preferably satisfies the formula (1) in which E S1 (1) and E T1 (1) are replaced. That is, the energy difference ΔE ST (Ex) between E S1 (Ex) and E T1 (Ex) of the first compound is preferably 0.3 eV or less. When a combination of two or more second compounds forming an exciplex is included, the combination of the second compounds forming the exciplex is the lowest excited singlet energy level E S1 (Ex) of the exciplex. It is preferable to satisfy the expression (2) in which E S1 (2) is replaced with. That is, it is preferable that E S1 (Ex) of the second compound is lower than E S1 (1) of the first compound. When the vapor deposition source contains a combination of the first compounds forming an exciplex, the second compound E S1 (Ex) is preferably lower than the first compound E S1 (Ex). The energy levels E S1 (Ex) and E T1 (Ex) of the exciplex can be determined according to the above-mentioned ΔE ST calculation method, using a film composed of a set of compounds forming the exciplex as a measurement sample. it can.
For specific examples of the combination of the first compound and the second compound that can be used for the vapor deposition source, refer to Table 1 listed in the section “Film containing the first compound and the second compound”. However, the combination of the first compound and the second compound that can be used in the present invention should not be limitedly interpreted by these specific examples.
(その他の蒸着材料)
 蒸着源は、蒸着材料として、第1化合物と第2化合物のみを含んでいてもよいし、その他の蒸着材料を含んでいてもよい。その他の蒸着材料として、ホスト材料やドーパントを挙げることができる。
 ホスト材料には、その最低励起一重項エネルギー準位ES1が第1化合物および第2化合物の各最低励起一重項エネルギー準位ES1よりも高いものを用いることが好ましく、その最低励起一重項エネルギー準位ES1が第1化合物および第2化合物の各最低励起一重項エネルギー準位ES1よりも高く、且つ、その最低励起三重項エネルギー準位ET1が第1化合物の最低励起三重項エネルギー準位ET1よりも高いものを用いることがより好ましい。これにより、得られた膜において、ホスト材料から第1化合物や第2化合物への励起一重項エネルギーの移動が容易になる。また、第1化合物の分子中に励起三重項エネルギーが閉じ込められ、その励起三重項状態から励起一重項状態への逆項間交差の発生確率を向上させることができる。その結果、発光効率が高い膜が得られる。ホスト材料の最低励起一重項エネルギー準位ES1および最低励起三重項エネルギー準位ET1の測定方法については、第1化合物の最低励起一重項エネルギー準位ES1および最低励起三重項エネルギー準位ET1の測定方法についての記載を参照することができる。
 また、ホスト材料としては、正孔輸送能、電子輸送能を有し、かつ発光の長波長化を防ぎ、なおかつ高いガラス転移温度を有する有機化合物であることが好ましい。
 蒸着源がホスト材料を含む場合、そのホスト材料は1種類であっても2種類以上であってもよい。蒸着源が、ホスト材料を2種類以上含む場合、それらのホスト材料は、そのホスト材料を構成する化合物の構造が互いに異なる他、最低励起一重項エネルギー準位ES1や最低励起三重項エネルギー準位ET1等が異なっていてもよい。
 ホスト材料に用いることができる化合物の具体例については、(本発明の応用例)の欄に例示したホスト材料を参照することができる。ただし、本発明においてホスト材料に用いることができる化合物はこれらの具体例によって限定的に解釈されるべきものではない。
(Other evaporation materials)
The vapor deposition source may include only the first compound and the second compound as vapor deposition materials, or may include other vapor deposition materials. Other vapor deposition materials include host materials and dopants.
The host material, it is preferable that the lowest excited singlet energy level E S1 is used higher than the lowest excited singlet energy level E S1 of the first compound and the second compound, its lowest excited singlet energy The level E S1 is higher than the lowest excited singlet energy level E S1 of the first compound and the second compound, and the lowest excited triplet energy level E T1 is the lowest excited triplet energy level of the first compound. It is more preferred to use a position higher than the position E T1 . This facilitates the transfer of excited singlet energy from the host material to the first compound and the second compound in the obtained film. In addition, the excited triplet energy is trapped in the molecule of the first compound, and the probability of occurrence of reverse intersystem crossing from the excited triplet state to the excited singlet state can be improved. As a result, a film having high luminous efficiency can be obtained. A method for measuring the lowest excited singlet energy level E S1 and the lowest excited triplet energy level E T1 of the host material, the lowest excited singlet of the first compound energy level E S1 and the lowest excited triplet energy level E Reference can be made to the description of the method for measuring T1 .
Further, the host material is preferably an organic compound having a hole transporting ability and an electron transporting ability, preventing the emission from having a long wavelength and having a high glass transition temperature.
When the vapor deposition source contains a host material, the host material may be one kind or two or more kinds. When the vapor deposition source contains two or more types of host materials, the host materials have different structures of the compounds constituting the host materials, the lowest excited singlet energy level E S1 and the lowest excited triplet energy level. E T1 and the like may be different.
For specific examples of the compound that can be used as the host material, the host materials exemplified in the section (Application of the present invention) can be referred to. However, the compounds that can be used as the host material in the present invention should not be limitedly interpreted by these specific examples.
 ドーパントとして用いることができる化合物は、例えば、第1化合物および第2化合物よりも最低励起一重項エネルギー準位ES1が小さい発光体である。そのようなドーパントは、励起一重項状態の第1化合物および第2化合物と、励起三重項状態から逆項間交差して励起一重項状態になった第1化合物や第2化合物からエネルギーを受け取って励起一重項状態に遷移し、その後基底状態に戻るときに蛍光を放射する。ドーパントとして用いる発光体としては、このように第1化合物および第2化合物からエネルギーを受け取って発光し得るものであれば特に限定されず、発光は蛍光であっても、遅延蛍光であっても、りん光であっても構わない。中でも、ドーパントとして用いる発光体は、最低励起一重項エネルギー準位ES1から基底一重項エネルギー準位ES0に戻るときに蛍光を放射するものであることが好ましい。ドーパントは、2種以上を用いてもよい。例えば、発光色が異なる2種以上のドーパントを併用することにより、所望の色を発光させることが可能になる。
 ドーパントとしては、アントラセン誘導体、テトラセン誘導体、ナフタセン誘導体、ピレン誘導体、ペリレン誘導体、クリセン誘導体、ルブレン誘導体、クマリン誘導体、ピラン誘導体、スチルベン誘導体、フルオレン誘導体、アントリル誘導体、ピロメテン誘導体、ターフェニル誘導体、ターフェニレン誘導体、フルオランテン誘導体、アミン誘導体、キナクリドン誘導体、オキサジアゾール誘導体、マロノニトリル誘導体、ピラン誘導体、カルバゾール誘導体、ジュロリジン誘導体、チアゾール誘導体およびこれら誘導体の母骨格からなる化合物等を用いることが可能である。これら誘導体の母骨格には置換基を有してもよいし、置換基を有していなくてもよい。また、ドーパントは、これらの骨格を2種以上含んでいてもよい。
 ドーパントの具体例については、上記の(第2化合物)の欄に示した、第2化合物に用いることができる化合物の具体例を参照することができる。
The compound that can be used as the dopant is, for example, a light-emitting body having a lower minimum excited singlet energy level E S1 than the first compound and the second compound. Such a dopant receives energy from the first compound and the second compound in the excited singlet state and from the first compound and the second compound which are in the excited singlet state due to reverse intersystem crossing from the excited triplet state. When it transits to the excited singlet state and then returns to the ground state, it emits fluorescence. The luminescent material used as the dopant is not particularly limited as long as it can emit energy by receiving energy from the first compound and the second compound as described above, and the luminescence may be fluorescence or delayed fluorescence, It may be phosphorescent. Above all, it is preferable that the luminescent material used as the dopant emits fluorescence when returning from the lowest excited singlet energy level E S1 to the ground singlet energy level E S0 . Two or more kinds of dopants may be used. For example, a desired color can be emitted by using two or more kinds of dopants having different emission colors together.
As the dopant, anthracene derivative, tetracene derivative, naphthacene derivative, pyrene derivative, perylene derivative, chrysene derivative, rubrene derivative, coumarin derivative, pyran derivative, stilbene derivative, fluorene derivative, anthryl derivative, pyrromethene derivative, terphenyl derivative, terphenylene derivative , A fluoranthene derivative, an amine derivative, a quinacridone derivative, an oxadiazole derivative, a malononitrile derivative, a pyran derivative, a carbazole derivative, a julolidine derivative, a thiazole derivative, and a compound having a mother skeleton of these derivatives can be used. The mother skeleton of these derivatives may or may not have a substituent. In addition, the dopant may include two or more of these skeletons.
For specific examples of the dopant, the specific examples of the compound that can be used for the second compound, which are shown in the above section of (Second compound), can be referred to.
(蒸着源における各材料の含有率)
 蒸着源における第1化合物、第2化合物およびその他の蒸着材料の各含有率は、目的の膜の組成や共蒸着の条件に応じて適宜選択することができる。
 例えば、蒸着源における第1化合物の含有率は、第2化合物の含有率よりも大きいことが好ましく、第1化合物と第2化合物の合計量に対して50重量%以上であることが好ましく、80重量%以上であることがより好ましく、95重量%以上であることがさらに好ましく、また、99.9重量%以下であることが好ましい。
 蒸着源における第2化合物の含有率は、第1化合物と第2化合物の合計量に対して0.01重量%以上であることが好ましく、0.1重量%以上であることがより好ましく、0.5重量%以上であることがさらに好ましく、また、50重量%以下であることが好ましく、10重量%以下であることがより好ましく、5重量%以下であることがさらに好ましい。
(Content rate of each material in the vapor deposition source)
The respective contents of the first compound, the second compound and other vapor deposition materials in the vapor deposition source can be appropriately selected according to the composition of the target film and the conditions of co-evaporation.
For example, the content rate of the first compound in the vapor deposition source is preferably higher than the content rate of the second compound, and is preferably 50% by weight or more based on the total amount of the first compound and the second compound. It is more preferably at least wt%, further preferably at least 95 wt%, and preferably at most 99.9 wt%.
The content of the second compound in the vapor deposition source is preferably 0.01% by weight or more, more preferably 0.1% by weight or more, based on the total amount of the first compound and the second compound, and 0. It is more preferably 0.5% by weight or more, preferably 50% by weight or less, more preferably 10% by weight or less, and further preferably 5% by weight or less.
 蒸着源がホスト材料を含む場合、そのホスト材料の含有率は、蒸着材料全量に対して15重量%以上であることが好ましく、50重量%以上であることがより好ましく、65重量%以上であることがさらに好ましい。また、蒸着源におけるホスト材料の含有率は、蒸着源全量に対して99.9重量%以下であることが好ましく、99重量%以下であることがより好ましく、蒸着材料全量に対して90重量%以下であることがさらに好ましい。
 蒸着源がホスト材料を含む場合、蒸着源における第1化合物の含有率は、蒸着材料全量に対して5重量%以上であることが好ましく、10重量%以上であることがより好ましく、20重量%以上であることがさらに好ましく、また、上限については、蒸着材料全量に対して80重量%以下であることが好ましく、50重量%以下であることがより好ましい。
 蒸着源がホスト材料を含む場合、蒸着源における第2化合物の含有率は、蒸着材料全量に対して0.01重量%以上であることが好ましく、0.1重量%以上であることがより好ましく、0.5重量%以上であることがさらに好ましく、また、上限については、蒸着材料全量に対して50重量%以下であることが好ましく、10重量%以下であることがより好ましく、5重量%以下であることがさらに好ましく、3重量%以下であることがさらに好ましくい。
When the vapor deposition source contains a host material, the content of the host material is preferably 15% by weight or more, more preferably 50% by weight or more, and 65% by weight or more with respect to the total amount of the vapor deposition material. Is more preferable. The content of the host material in the vapor deposition source is preferably 99.9% by weight or less, more preferably 99% by weight or less, and 90% by weight with respect to the total vapor deposition material. The following is more preferable.
When the vapor deposition source contains a host material, the content of the first compound in the vapor deposition source is preferably 5 wt% or more, more preferably 10 wt% or more, and 20 wt% with respect to the total amount of the vapor deposition material. The above is more preferable, and the upper limit is preferably 80% by weight or less, and more preferably 50% by weight or less, based on the total amount of the vapor deposition material.
When the vapor deposition source contains a host material, the content of the second compound in the vapor deposition source is preferably 0.01% by weight or more, and more preferably 0.1% by weight or more, based on the total amount of the vapor deposition material. Is more preferably 0.5% by weight or more, and the upper limit is preferably 50% by weight or less, more preferably 10% by weight or less, and more preferably 5% by weight with respect to the total amount of the vapor deposition material. It is more preferable that the amount is not more than 3%, and it is further preferable that the amount is 3% by weight or less.
(蒸着源の態様)
 本発明で用いる蒸着源は、第1化合物と第2化合物をともに含むものであり、各材料が同一容器内に収容されたものや、各材料が同一保持材に保持されたものであってもよい。
 第1化合物と第2化合物をともに含む蒸着源の具体例として、第1化合物の粉末と第2化合物の粉末を混合した混合粉、または、これらの粉末と、必要に応じて用いる他の材料の粉末を混合した混合粉を、同一の容器内に収容してなるものや、これら混合粉を圧縮成形した圧縮成形体、第1化合物と第2化合物を加熱溶融して混合した後、冷却により固化した固体、または、これらの材料と、必要に応じて用いるその他の蒸着材料を加熱溶融して混合した後、冷却により固化した固体等を挙げることができる。上記の圧縮成形体および加熱溶融による固体も容器内に収容して蒸着源としてもよい。容器には、蒸着装置で通常用いられるルツボ等を用いることができる。
(Aspect of evaporation source)
The vapor deposition source used in the present invention contains both the first compound and the second compound, and may be one in which each material is contained in the same container or one in which each material is held by the same holding material. Good.
As a specific example of the vapor deposition source containing both the first compound and the second compound, a mixed powder obtained by mixing the powder of the first compound and the powder of the second compound, or these powders and other materials used as necessary. What mixed powder mixed powder is housed in the same container, compression molded product obtained by compression molding of these mixed powders, first compound and second compound are heated and melted and mixed, and then solidified by cooling. Examples of the solids include solids obtained by heating, melting these materials and other vapor deposition materials used as needed, mixing them by heating, and solidifying by cooling. The compression molded body and the solid obtained by heating and melting may be housed in a container as a vapor deposition source. For the container, a crucible or the like which is usually used in a vapor deposition device can be used.
[共蒸着]
 本発明では、上記の蒸着源から共蒸着することにより、第1化合物と第2化合物を含む膜を形成する。
 図2に、この共蒸着に用いる真空蒸着装置の一例を示す。
 図2に示す真空蒸着装置は、耐圧容器であるチャンバー100と、チャンバー100内に設置された蒸着源101と、チャンバー100内に蒸着源101と対向して配置された基板保持部102とを有する。ここで、蒸着源101は、第1化合物と第2化合物をともに含む蒸着材料101aをルツボ101bに収容してなるものである。さらに、真空蒸着装置には、チャンバー100内を真空状態にする真空ポンプと蒸着源を加熱する加熱装置が設けられている。
 この真空蒸着装置にて共蒸着を行うには、膜を形成するための基材10を、その膜形成面が蒸着源101側に向くように基板保持部102に装着する。基材10としては、得られる膜の用途に応じて適宜選択することができ、例えばガラス、透明プラスチック、石英、シリコンなどからなる基板を用いることができる。また、基材は、基板に機能膜が形成されたものであってもよい。基材を構成する機能膜としては、例えば、最終的に特定の素子を製造しようとする場合には、その素子において、ここで形成する膜と基板の間に配される膜や積層膜を挙げることができる。具体的には、製造する素子が有機エレクトロルミネッセンス素子である場合には、基材を構成する機能膜として電極層、キャリア注入層、キャリア輸送層等を挙げることができる。
 続いて、チャンバー100内を真空状態にし、蒸着源101を加熱する。これにより、蒸着材料101aが溶融・蒸発または昇華して、その蒸発または昇華した粒子が基材10の表面に付着、堆積する。その結果、目的の第1化合物と第2化合物を含む膜が形成される。このとき、蒸着源が第1化合物と第2化合物をともに含むことにより、これらの材料が基材表面に安定に堆積し、良好な膜を形成することができる。
 ここで、膜を形成する際のチャンバー100内の真空度は、10-2Pa以下であることが好ましく、10-4Pa以下であることがより好ましく、10-5Pa以下であることがさらに好ましい。
 膜の成膜レートは、特に制限されないが、0.01~30Å/sであることが好ましく、0.1~20Å/sであることがより好ましく、1~10Å/sであることがさらに好ましい。
 蒸着源101の加熱温度および成膜レートは、成膜の間、一定に保持してもよいし、経時的に変化させてもよい。
[Co-deposition]
In the present invention, a film containing the first compound and the second compound is formed by co-evaporating from the above evaporation source.
FIG. 2 shows an example of a vacuum vapor deposition apparatus used for this co-evaporation.
The vacuum vapor deposition apparatus shown in FIG. 2 includes a chamber 100 that is a pressure resistant container, a vapor deposition source 101 installed in the chamber 100, and a substrate holding unit 102 disposed inside the chamber 100 so as to face the vapor deposition source 101. .. Here, the vapor deposition source 101 is configured by accommodating a vapor deposition material 101a containing both a first compound and a second compound in a crucible 101b. Further, the vacuum vapor deposition apparatus is provided with a vacuum pump for bringing the chamber 100 into a vacuum state and a heating device for heating the vapor deposition source.
To perform co-deposition with this vacuum evaporation apparatus, the substrate 10 for forming a film is mounted on the substrate holding unit 102 so that the film formation surface faces the evaporation source 101 side. The base material 10 can be appropriately selected depending on the intended use of the obtained film, and for example, a substrate made of glass, transparent plastic, quartz, silicon or the like can be used. Further, the base material may be a substrate on which a functional film is formed. As the functional film constituting the base material, for example, in the case of finally manufacturing a specific element, in the element, a film or a laminated film arranged between the film formed here and the substrate may be mentioned. be able to. Specifically, when the element to be manufactured is an organic electroluminescence element, an electrode layer, a carrier injection layer, a carrier transport layer and the like can be cited as the functional film constituting the base material.
Then, the inside of the chamber 100 is evacuated to heat the vapor deposition source 101. As a result, the vapor deposition material 101a is melted, vaporized, or sublimated, and the vaporized or sublimated particles are attached and deposited on the surface of the base material 10. As a result, a film containing the desired first compound and second compound is formed. At this time, since the vapor deposition source contains both the first compound and the second compound, these materials can be stably deposited on the surface of the base material and a good film can be formed.
Here, the degree of vacuum in the chamber 100 when forming the film is preferably 10 −2 Pa or less, more preferably 10 −4 Pa or less, and further preferably 10 −5 Pa or less. preferable.
The film formation rate of the film is not particularly limited, but is preferably 0.01 to 30 Å/s, more preferably 0.1 to 20 Å/s, and further preferably 1 to 10 Å/s. ..
The heating temperature of the vapor deposition source 101 and the film formation rate may be kept constant during film formation, or may be changed with time.
 共蒸着時の条件を、蒸着源に含まれる複数の化合物の蒸着速度(重量減少速度)が一致ないしほぼ一致する条件に設定すれば、蒸着源に含まれる複数の化合物の組成比に対応する組成比の膜を形成することができるため好ましい。そうすれば、実現したい膜の組成比と同じ組成比で複数の化合物を混合して蒸着源とすれば、所望の組成比を有する膜を簡便に形成することができる。例えば、特定の温度における第1化合物と第2化合物の蒸着速度(重量減少速度)が同じであれば、所望の組成比で第1化合物と第2化合物を混合した蒸着源を用いてその特定の温度で共蒸着を行えば、所望の組成比を有する膜を形成することができる。
 そのような特定の温度は、第1化合物と第2化合物の熱重量分析をあらかじめ行っておくことにより決定することができる。例えば、一定の昇温速度で化合物の温度T(単位℃)を上昇させたときに、その化合物の重量減少率W(単位%)がどう変化するかを、第1化合物と第2化合物についてそれぞれグラフ化しておくことにより決定することが可能である。昇温速度は、5~20℃/分の範囲内で選択することが好ましく、例えば10℃/分とすることができる。また、ここでいう重量減少率Wは、熱重量分析開始前を0%とし、重量が0になったときを-100%として表したものである。
 簡易な決定法としては、第1化合物と第2化合物が同じ重量減少率になる温度TWTを特定して、それを共蒸着時の温度として採用する方法を挙げることができる。すなわち、第1化合物の熱重量分析グラフ(縦軸W、横軸T)と第2化合物の熱重量分析グラフ(縦軸W、横軸T)を重ねたときに、2つの曲線が交わる交点における温度をTWTと特定し、それを共蒸着時の温度として採用することができる。より精密な決定法としては、第1化合物と第2化合物のdW/dTが同じになる温度TGRを特定して、それを共蒸着時の温度として採用する方法を挙げることができる。これらの温度TWTと温度TGRは、-5%<W<-95%の範囲内の温度として特定されることが好ましく、-90%<W<-10%の範囲内の温度として特定されることがより好ましく、-80%<W<-20%の範囲内の温度として特定されることがさらに好ましい。また、共蒸着時の温度T(共蒸着)は、厳密に温度TWTや温度TGRそのものでなくてもよく、形成したい膜の使用目的によっては、TWT-10℃<T(共蒸着)<TWT+10℃やTGR-10℃<T(共蒸着)<TGR+10℃であってもよく、また、TWT-5℃<T(共蒸着)<TWT+5℃やTGR-5℃<T(共蒸着)<TGR+5℃であってもよい。
If the co-deposition conditions are set so that the vapor deposition rates (weight reduction rates) of the multiple compounds contained in the vapor deposition source are the same or almost the same, the composition corresponding to the composition ratio of the multiple compounds contained in the vapor deposition source is set. It is preferable because a film having a specific ratio can be formed. Then, if a plurality of compounds are mixed at the same composition ratio as that of the film to be realized and used as the vapor deposition source, a film having a desired composition ratio can be easily formed. For example, if the vapor deposition rate (weight reduction rate) of the first compound and the second compound at a specific temperature is the same, the specific source is obtained by using a vapor deposition source in which the first compound and the second compound are mixed at a desired composition ratio. If co-evaporation is performed at a temperature, a film having a desired composition ratio can be formed.
Such a specific temperature can be determined by performing thermogravimetric analysis of the first compound and the second compound in advance. For example, how the weight reduction rate W (unit: %) of the compound changes when the temperature T (unit: °C) of the compound is increased at a constant temperature rising rate for the first compound and the second compound, respectively. It can be determined by making a graph. The rate of temperature increase is preferably selected within the range of 5 to 20° C./minute, and can be set to, for example, 10° C./minute. The weight reduction rate W referred to here is expressed as 0% before the start of thermogravimetric analysis and as -100% when the weight becomes 0.
As a simple determination method, there can be mentioned a method in which the temperature T WT at which the first compound and the second compound have the same weight loss rate is specified and is used as the temperature during co-deposition. That is, when the thermogravimetric analysis graph of the first compound (vertical axis W, horizontal axis T) and the thermogravimetric analysis graph of the second compound (vertical axis W, horizontal axis T) are overlapped, at the intersection point where the two curves intersect. The temperature can be specified as T WT and used as the temperature during co-deposition. As a more precise determination method, a method in which the temperature T GR at which the dW/dT of the first compound and the second compound are the same is specified and is used as the temperature during co-deposition can be mentioned. These temperatures T WT and T GR are preferably specified as temperatures within the range of −5%<W<−95%, and are specified as temperatures within the range of −90%<W<−10%. It is more preferable that the temperature be within the range of −80%<W<−20%. The temperature T (co-deposition) at the time of co-deposition does not have to be exactly the temperature T WT or the temperature T GR itself, but depending on the intended use of the film to be formed, T WT -10°C<T (co-deposition). It may be <T WT +10° C. or T GR −10° C.<T (co-deposition) <T GR +10° C., or T WT −5° C.<T (co-deposition) <T WT +5° C. or T GR − It may be 5° C.<T (co-deposition)<T GR +5° C.
 また、本発明で共蒸着に用いる真空蒸着装置は、上記の構成のものに限るものではなく、真空蒸着装置を構成する各部の構成は、同様の機能を発揮し得る任意のものと置換することができ、あるいは、任意の構成のものを付加することもできる。例えば、真空蒸着装置は、ルツボ101bとは別に、第2の第1化合物や第2の第2化合物を収容するルツボを備え、蒸着源102と、第2の第1化合物または第2の第2化合物を含む蒸着源の2つの蒸着源から共蒸着を行うように構成されていてもよいし、蒸着源102と、第2の第1化合物を含む蒸着源と、第2の第2化合物を含む蒸着源の3つの蒸着源から共蒸着を行うように構成されていてもよいし、蒸着源102と、第2の第1化合物および第2の第2化合物をともに含む蒸着源の2つの蒸着源から共蒸着を行うように構成されていてもよい。さらに、蒸着源102とは別に、ホスト材料を含む蒸着源やドーパントを含む蒸着源を用いることや、第1化合物や第2化合物のための蒸着源を増やすことも可能である。ここで、第2の第1化合物および第2の第2化合物の説明と好ましい範囲、具体例については、それぞれ、(第1化合物)、(第2化合物)の欄の記載を参照することができる。また、第2の第1化合物および第2の第2化合物は、それぞれ1種類であっても2種類以上であってもよい。
 また、真空蒸着装置は、基板保持部102に、基板10を水平に保持した状態で、基板10の所定位置を回転中心として所定の速度で回転させる回転装置を有していてもよい。共蒸着中に基板10を回転装置により回転させることで、形成される膜の膜厚分布の均一化を図ることができる。また、真空蒸着装置は、蒸着材料の蒸散を遮蔽するシャッタや、成膜された膜の膜厚を計測する膜厚計などを備えていてもよい。
Further, the vacuum vapor deposition apparatus used for co-vapor deposition in the present invention is not limited to the above configuration, and the configuration of each part constituting the vacuum vapor deposition apparatus may be replaced with any that can exhibit the same function. Alternatively, an arbitrary configuration can be added. For example, the vacuum vapor deposition apparatus includes a crucible that accommodates the second first compound and the second second compound, separately from the crucible 101b, and the vapor deposition source 102 and the second first compound or the second second compound. The vapor deposition may be performed from two vapor deposition sources including a compound, or may include a vapor deposition source 102, a vapor deposition source including a second first compound, and a second second compound. The vapor deposition source may be configured to perform co-deposition from three vapor deposition sources, or the vapor deposition source 102 and two vapor deposition sources including both the second first compound and the second second compound. May be configured to co-deposit. In addition to the vapor deposition source 102, it is possible to use a vapor deposition source containing a host material or a vapor deposition source containing a dopant, or to increase the vapor deposition sources for the first compound and the second compound. Here, for the description and preferable ranges of the second first compound and the second second compound, and specific examples, the descriptions in the columns of (first compound) and (second compound) can be referred to. . Further, the second first compound and the second second compound may each be of one type or of two or more types.
Further, the vacuum vapor deposition apparatus may include a rotating device in the substrate holding unit 102 that rotates the substrate 10 at a predetermined speed with a predetermined position of the substrate 10 as a rotation center while holding the substrate 10 horizontally. By rotating the substrate 10 by the rotating device during the co-deposition, the film thickness distribution of the formed film can be made uniform. Further, the vacuum vapor deposition device may include a shutter that blocks evaporation of the vapor deposition material, a film thickness meter that measures the film thickness of the film formed, and the like.
[第1化合物と第2化合物を含む膜]
 本発明で形成する膜は、第1化合物と第2化合物を含む膜である。
 本発明で形成する膜は、第1化合物と第2化合物のみから構成されていてもよいし、その他の材料を含んでいてもよい。その他の材料としてホスト材料やドーパントを挙げることができる。その他の材料を含む膜は、蒸着源に、第1化合物と第2化合物に加えて、その他の材料を含有させることにより形成することができる。
 第1化合物、第2化合物、ホスト材料およびドーパントの説明と好ましい範囲、具体例については、蒸着源に用いる第1化合物、第2化合物、ホスト材料およびドーパントについての説明と好ましい範囲、具体例を参照することができる。また、膜が含む第1化合物、第2化合物および必要に応じて用いるホスト材料、ドーパントは、それぞれ1種類であっても、2種類以上であってもよい。
[Film Containing First Compound and Second Compound]
The film formed by the present invention is a film containing the first compound and the second compound.
The film formed in the present invention may be composed of only the first compound and the second compound, or may contain other materials. Other materials include host materials and dopants. The film containing another material can be formed by including another material in the vapor deposition source in addition to the first compound and the second compound.
For the description and preferred ranges of the first compound, the second compound, the host material and the dopant, and specific examples, see the descriptions and preferred ranges of the first compound, the second compound, the host material and the dopant used for the vapor deposition source, and specific examples. can do. In addition, the first compound, the second compound, and the host material and the dopant used as necessary, which are contained in the film, may be one kind or two or more kinds, respectively.
 膜には、第1化合物が第2化合物よりも多く含まれていることが好ましい。また、膜における第1化合物の含有率は、50重量%以上であることが好ましく、80重量%以上であることがより好ましく、95重量%以上であることがさらに好ましい。また、膜における第1化合物の含有率は、99.9重量%以下であることが好ましく、99重量%以下であることがより好ましく、95重量%以下であることがさらに好ましい。
 膜における第2化合物の含有率は、0.01重量%以上であることが好ましく、0.1重量%以上であることがより好ましく、0.5重量%以上であることがさらに好ましい。また、膜における第2化合物の含有率は、10重量%未満であることが好ましく、5重量%未満であることがより好ましく、3重量%未満であることがさらに好ましい。
 膜がホスト材料を含む場合、そのホスト材料の含有率は、15重量%以上であることが好ましく、50重量%以上であることがより好ましく、65重量%以上であることがさらに好ましい。また、膜におけるホスト材料の含有率は、99.9重量%以下であることが好ましく、99重量%以下であることがより好ましく、90重量%以下であることがさらに好ましい。
 膜がホスト材料を含む場合、膜における第1化合物の含有率は、1重量%以上であることが好ましく、10重量%以上であることがより好ましく、20重量%以上であることがさらに好ましく、また、上限については、99.9重量%以下であることが好ましく、80重量%以下であることがより好ましく、50重量%以下であることがさらに好ましい。
 膜がホスト材料を含む場合、膜における第2化合物の含有率は、0.01重量%以上であることが好ましく、0.1重量%以上であることがより好ましく、0.5重量%以上であることがさらに好ましく、また、上限については、50重量%未満であることが好ましく、10重量%未満であることがより好ましく、5重量%以下であることがさらに好ましく、3重量%以下であることがさらに好ましくい。
 膜がドーパントを含む場合、膜におけるドーパントの含有率は、0.01重量%以上であることが好ましく、0.05重量%以上であることがより好ましく、0.1重量%以上であることがさらに好ましい。また、膜におけるドーパントの含有率は、50重量%未満であることが好ましく、10重量%未満であることがより好ましく、5重量%未満であることがさらに好ましく、3重量%以下であることがさらに好ましくい。
 膜が第1化合物と第2化合物以外の材料を含む場合、膜における第1化合物と第2化合物の合計量の割合は、10重量%以上であることが好ましく、20重量%以上であることがより好ましく、50重量%以上であることがさらに好ましい。また、上限については、85重量%未満であることが好ましい。
 膜における第1化合物や第2化合物の含有率は、液体クロマトグラフ(LC)や核磁気共鳴(NMR)により測定することができる。また、これらの含有率は、各材料の蒸着源における含有率や、真空蒸着装置の真空度、蒸着源の加熱温度、成膜レート等により制御することができる。
The film preferably contains more of the first compound than the second compound. The content of the first compound in the film is preferably 50% by weight or more, more preferably 80% by weight or more, and further preferably 95% by weight or more. The content of the first compound in the film is preferably 99.9% by weight or less, more preferably 99% by weight or less, and further preferably 95% by weight or less.
The content of the second compound in the film is preferably 0.01% by weight or more, more preferably 0.1% by weight or more, and further preferably 0.5% by weight or more. The content of the second compound in the film is preferably less than 10% by weight, more preferably less than 5% by weight, still more preferably less than 3% by weight.
When the film contains the host material, the content of the host material is preferably 15% by weight or more, more preferably 50% by weight or more, and further preferably 65% by weight or more. The content of the host material in the film is preferably 99.9% by weight or less, more preferably 99% by weight or less, and further preferably 90% by weight or less.
When the film contains a host material, the content of the first compound in the film is preferably 1% by weight or more, more preferably 10% by weight or more, further preferably 20% by weight or more, Further, the upper limit is preferably 99.9% by weight or less, more preferably 80% by weight or less, and further preferably 50% by weight or less.
When the film contains a host material, the content of the second compound in the film is preferably 0.01% by weight or more, more preferably 0.1% by weight or more, and 0.5% by weight or more. More preferably, the upper limit is less than 50% by weight, more preferably less than 10% by weight, further preferably 5% by weight or less, further preferably 3% by weight or less. Is more preferable.
When the film contains a dopant, the content of the dopant in the film is preferably 0.01% by weight or more, more preferably 0.05% by weight or more, and 0.1% by weight or more. More preferable. The content of the dopant in the film is preferably less than 50% by weight, more preferably less than 10% by weight, further preferably less than 5% by weight, and more preferably 3% by weight or less. Even more preferable.
When the film contains a material other than the first compound and the second compound, the ratio of the total amount of the first compound and the second compound in the film is preferably 10% by weight or more, and more preferably 20% by weight or more. More preferably, it is more preferably 50% by weight or more. The upper limit is preferably less than 85% by weight.
The content of the first compound or the second compound in the film can be measured by liquid chromatography (LC) or nuclear magnetic resonance (NMR). Further, the content rates of these materials can be controlled by the content rate of each material in the vapor deposition source, the degree of vacuum of the vacuum vapor deposition apparatus, the heating temperature of the vapor deposition source, the film forming rate, and the like.
 本発明の製造方法で形成された膜は、励起光の照射や電流注入により発光する。発光は膜に含まれる第2化合物から生じ、第1化合物やホスト材料からの発光があってもかまわない。また、膜がドーパントをさらに含む場合には、発光は第2化合物とドーパントから生じる。発光する光は、通常の蛍光のみであってもよいし、遅延蛍光のみであってもよいし、蛍光と遅延蛍光を含んでいてもよいが、遅延蛍光を含むことが好ましい。すなわち、本発明の製造方法で形成された膜は遅延蛍光を放射することが好ましい。膜が遅延蛍光を放射するということは、その膜において励起三重項状態から励起一重項状態への逆項間交差が確実に生じることを意味しており、その逆項間交差により、励起三重項エネルギーが励起一重項エネルギーに変換されて、第1化合物や第2化合物の蛍光発光に有効に利用されうる。
 膜における遅延蛍光の放射は、窒素雰囲気下や真空下のような酸素非存在下の条件で、光励起終了後の発光減衰測定により観測することができる。遅延蛍光の定義については、(第1化合物)の欄の記載を参照することができる。
The film formed by the manufacturing method of the present invention emits light by irradiation with excitation light or current injection. Light emission occurs from the second compound contained in the film, and light emission from the first compound or the host material may occur. Also, if the film further comprises a dopant, light emission will result from the second compound and the dopant. The emitted light may be normal fluorescence only, delayed fluorescence only, or may include fluorescence and delayed fluorescence, but preferably delayed fluorescence. That is, the film formed by the manufacturing method of the present invention preferably emits delayed fluorescence. The fact that the film emits delayed fluorescence means that the inverse triplet crossing from the excited triplet state to the excited singlet state surely occurs in the film. The energy is converted into excited singlet energy, and can be effectively used for fluorescence emission of the first compound and the second compound.
The emission of delayed fluorescence in the film can be observed by the emission decay measurement after the completion of photoexcitation in the absence of oxygen such as under nitrogen atmosphere or under vacuum. For the definition of delayed fluorescence, the description in the column of (First compound) can be referred to.
 以下において、本発明で形成する膜の具体例を例示する。ただし、本発明で形成する膜はこれらの具体例によって限定的に解釈されるべきものではない。表1中、横列に示すTを付した番号(T番号)は第1化合物に用いた化合物の番号を示し、縦列に示すFを付した番号(F番号)は第2化合物に用いた化合物の番号を示し、各番号の欄が交差した位置にある番号は、対応するT番号の化合物を第1化合物として含み、対応するF番号の化合物を第2化合物として含む膜の番号を示す。これらの中で、好ましい膜は、化合物T1と化合物F88、化合物T2と化合物F88、化合物T3と化合物F88、化合物T4と化合物F20、化合物T4と化合物F21、化合物T4と化合物F34、化合物T5と化合物F20、化合物T5と化合物F21、化合物T5と化合物F34、化合物T6と化合物F20、化合物T6と化合物F21、化合物T6と化合物F34、化合物T7と化合物F20、化合物T7と化合物F21、化合物T7と化合物F34、化合物T8と化合物F76、化合物T9と化合物F76、化合物T10と化合物F71、化合物T11と化合物F71をそれぞれ組み合わせた膜である。 Specific examples of the film formed by the present invention will be exemplified below. However, the film formed in the present invention should not be limitedly interpreted by these specific examples. In Table 1, the number with T (T number) shown in the horizontal row shows the number of the compound used in the first compound, and the number with F shown in the vertical column (F number) shows that of the compound used in the second compound. The numbers at the positions where the columns of the respective numbers intersect indicate the numbers of the membranes containing the compound of the corresponding T number as the first compound and the compound of the corresponding F number as the second compound. Among these, preferred membranes are compound T1 and compound F88, compound T2 and compound F88, compound T3 and compound F88, compound T4 and compound F20, compound T4 and compound F21, compound T4 and compound F34, compound T5 and compound F20. Compound T5 and compound F21, compound T5 and compound F34, compound T6 and compound F20, compound T6 and compound F21, compound T6 and compound F34, compound T7 and compound F20, compound T7 and compound F21, compound T7 and compound F34, compound The films are combinations of T8 and compound F76, compound T9 and compound F76, compound T10 and compound F71, and compound T11 and compound F71.
Figure JPOXMLDOC01-appb-T000026
Figure JPOXMLDOC01-appb-T000026
Figure JPOXMLDOC01-appb-T000027
Figure JPOXMLDOC01-appb-T000027
Figure JPOXMLDOC01-appb-T000028
Figure JPOXMLDOC01-appb-T000028
Figure JPOXMLDOC01-appb-T000029
Figure JPOXMLDOC01-appb-T000029
Figure JPOXMLDOC01-appb-T000030
Figure JPOXMLDOC01-appb-T000030
Figure JPOXMLDOC01-appb-T000031
Figure JPOXMLDOC01-appb-T000031
Figure JPOXMLDOC01-appb-T000032
Figure JPOXMLDOC01-appb-T000032
Figure JPOXMLDOC01-appb-T000033
Figure JPOXMLDOC01-appb-T000033
Figure JPOXMLDOC01-appb-T000034
Figure JPOXMLDOC01-appb-T000034
Figure JPOXMLDOC01-appb-T000035
Figure JPOXMLDOC01-appb-T000035
Figure JPOXMLDOC01-appb-T000036
Figure JPOXMLDOC01-appb-T000036
Figure JPOXMLDOC01-appb-T000037
Figure JPOXMLDOC01-appb-T000037
Figure JPOXMLDOC01-appb-T000038
Figure JPOXMLDOC01-appb-T000038
Figure JPOXMLDOC01-appb-T000039
Figure JPOXMLDOC01-appb-T000039
Figure JPOXMLDOC01-appb-T000040
Figure JPOXMLDOC01-appb-T000040
Figure JPOXMLDOC01-appb-T000041
Figure JPOXMLDOC01-appb-T000041
Figure JPOXMLDOC01-appb-T000042
Figure JPOXMLDOC01-appb-T000042
Figure JPOXMLDOC01-appb-T000043
Figure JPOXMLDOC01-appb-T000043
<有機半導体素子の製造方法>
 次に、本発明の有機半導体素子の製造方法について説明する。
 本発明の有機半導体素子の製造方法は、本発明の膜の製造方法により層を形成する工程を有する。
 本発明の膜の製造方法については、<膜の製造方法>の欄の記載を参照することができる。
 本発明の製造方法により製造する有機半導体素子は、第1化合物と第2化合物を含む層を有するものであればよく、特に限定されない。具体例として、有機エレクトロルミネッセンス素子(有機エレクトロルミネッセンスデバイス)、有機フォトルミネッセンス素子(有機光ルミネッセンスデバイス)、半導体レーザー素子、蓄光素子等の有機発光素子や、有機薄膜太陽電池、有機電界効果型トランジスタ、有機熱電素子、有機圧電素子等を挙げることができる。これらの素子のうち、有機発光素子では、例えば第1化合物と第2化合物を含む発光層を本発明の膜の製造方法により形成することができる。いずれの有機半導体素子においても、本発明の膜の製造方法を用いて、第1化合物と第2化合物を含む層を形成することにより、その層が良好な膜質で形成されて、優れた特性を示す。特に、形成された第1化合物と第2化合物を含む層が遅延蛍光を放射する場合には、[第1化合物と第2化合物を含む膜]の欄で説明したのと同様の理由により、高い発光効率が得られる。
 なお、有機半導体素子を構成する層のうち、第1化合物と第2化合物を含む層以外の層の製膜方法は特に限定されず、ドライプロセス、ウェットプロセスのどちらで作製してもよい。
<Method for manufacturing organic semiconductor element>
Next, a method for manufacturing the organic semiconductor device of the present invention will be described.
The method for producing an organic semiconductor element of the present invention has a step of forming a layer by the method for producing a film of the present invention.
Regarding the method for producing the membrane of the present invention, the description in the section <Membrane production method> can be referred to.
The organic semiconductor element manufactured by the manufacturing method of the present invention is not particularly limited as long as it has a layer containing the first compound and the second compound. As specific examples, organic electroluminescent elements (organic electroluminescent devices), organic photoluminescent elements (organic photoluminescent devices), semiconductor laser elements, organic light emitting elements such as light storing elements, organic thin film solar cells, organic field effect transistors, Examples thereof include organic thermoelectric elements and organic piezoelectric elements. Among these elements, in an organic light emitting element, for example, a light emitting layer containing a first compound and a second compound can be formed by the method for producing a film of the present invention. In any of the organic semiconductor devices, by forming a layer containing the first compound and the second compound by using the method for producing a film of the present invention, the layer is formed with good film quality, and excellent characteristics can be obtained. Show. In particular, when the formed layer containing the first compound and the second compound emits delayed fluorescence, it is high due to the same reason as described in the section of [Film containing the first compound and the second compound]. Luminous efficiency can be obtained.
It should be noted that, of the layers constituting the organic semiconductor element, the method for forming the layers other than the layer containing the first compound and the second compound is not particularly limited, and may be formed by either a dry process or a wet process.
<本発明の応用例>
 以下において、本発明の有機発光デバイス(有機発光素子)への応用について説明する。以下の説明において「式(I)の化合物」、「本発明の発光材料」、「本発明の化合物」および「TADF分子」は『第1化合物』へと読み替えるものとし、「他の発光材料」は『第2化合物』と読み替えるものとする。また、「発光層」の欄における「いくつかの実施形態では、発光材料のみが発光層として用いられる。いくつかの実施形態では、前記発光層は発光材料とホスト材料とを含む。」という記載は「発光層は、第1化合物と第2化合物を含み、さらにホスト材料を含んでいてもよい。」へと読み替えるものとする。以下において有機発光デバイスへの応用について説明した後に、用語の定義についても説明する。ただし、これまでの明細書の記載にてすでに説明されているものについては、すでになされている説明が優先する。
<Application example of the present invention>
The application of the present invention to an organic light emitting device (organic light emitting element) will be described below. In the following description, "compound of formula (I)", "luminescent material of the present invention", "compound of the present invention" and "TADF molecule" shall be read as "first compound", and "other luminescent material" Should be read as "second compound". Further, in the column of “light emitting layer”, “in some embodiments, only a light emitting material is used as a light emitting layer. In some embodiments, the light emitting layer includes a light emitting material and a host material”. Should be read as "the light emitting layer contains the first compound and the second compound, and may further contain the host material." After the application to the organic light emitting device is described below, the definition of terms is also described. However, regarding the matters already explained in the description of the specification so far, the already explained explanation takes precedence.
 本発明の1つの態様は、有機発光デバイスに関する。いくつかの実施形態では、前記有機発光デバイスは発光層を含む。いくつかの実施形態では、前記発光層は発光材料として式(I)の化合物を含む。いくつかの実施形態では、前記有機発光デバイスは有機光ルミネッセンスデバイス(有機PLデバイス)である。いくつかの実施形態では、有機発光デバイスは、有機エレクトロルミネッセンスデバイス(有機ELデバイス)である。いくつかの実施形態では、式(I)の化合物は、発光層に含まれる他の発光材料の光放射を(いわゆる補助ドーパントとして)補助する。いくつかの実施形態では、発光層に含まれる式(I)の化合物は、その最低の励起一重項エネルギー準位が、発光層に含まれるホスト材料の最低励起一重項エネルギー準位と発光層に含まれる他の発光材料の最低励起一重項エネルギー準位との間に含まれる。
 いくつかの実施形態では、前記有機光ルミネッセンスデバイスは、少なくとも1つの発光層を含む。いくつかの実施形態では、前記有機エレクトロルミネッセンスデバイスは、少なくとも陽極、陰極、および当該陽極と当該陰極との間の有機層を含む。いくつかの実施形態では、前記有機層は、少なくとも発光層を含む。いくつかの実施形態では、前記有機層は、発光層のみを含む。いくつかの実施形態では、前記有機層は、発光層に加えて1つ以上の有機層を含む。有機層の例としては、正孔輸送層、正孔注入層、電子障壁層、正孔障壁層、電子注入層、電子輸送層および励起子障壁層が挙げられる。いくつかの実施形態では、前記正孔輸送層は、正孔注入機能を有する正孔注入輸送層であってもよく、前記電子輸送層は、電子注入機能を有する電子注入輸送層であってもよい。有機エレクトロルミネッセンスデバイスの例を図1に示す。
One aspect of the invention relates to organic light emitting devices. In some embodiments, the organic light emitting device comprises a light emitting layer. In some embodiments, the light emitting layer comprises a compound of formula (I) as a light emitting material. In some embodiments, the organic light emitting device is an organic photoluminescent device (organic PL device). In some embodiments, the organic light emitting device is an organic electroluminescent device (organic EL device). In some embodiments, the compounds of formula (I) assist (as a so-called co-dopant) the light emission of other emissive materials comprised in the emissive layer. In some embodiments, the compound of formula (I) comprised in the emissive layer has a lowest excited singlet energy level in the emissive layer and a lowest excited singlet energy level of the host material comprised in the emissive layer. It is included between the lowest excited singlet energy level of the other luminescent material included.
In some embodiments, the organic photoluminescent device comprises at least one light emitting layer. In some embodiments, the organic electroluminescent device comprises at least an anode, a cathode, and an organic layer between the anode and the cathode. In some embodiments, the organic layer comprises at least a light emitting layer. In some embodiments, the organic layer comprises only a light emitting layer. In some embodiments, the organic layer comprises one or more organic layers in addition to the light emitting layer. Examples of organic layers include hole transport layers, hole injection layers, electron barrier layers, hole barrier layers, electron injection layers, electron transport layers and exciton barrier layers. In some embodiments, the hole transport layer may be a hole injection transport layer having a hole injection function, and the electron transport layer may be an electron injection transport layer having an electron injection function. Good. An example of an organic electroluminescent device is shown in FIG.
基材:
 いくつかの実施形態では、本発明の有機エレクトロルミネッセンスデバイスは基材により保持され、当該基材は特に限定されず、有機エレクトロルミネッセンスデバイスで一般的に用いられる、例えばガラス、透明プラスチック、クォーツおよびシリコンにより形成されたいずれかの材料を用いればよい。
Base material:
In some embodiments, the organic electroluminescent device of the present invention is carried by a substrate, which substrate is not particularly limited and is commonly used in organic electroluminescent devices such as glass, transparent plastics, quartz and silicon. Any material formed by the above method may be used.
陽極:
 いくつかの実施形態では、有機エレクトロルミネッセンス装置の陽極は、金属、合金、導電性化合物またはそれらの組み合わせから製造される。いくつかの実施形態では、前記の金属、合金または導電性化合物は高い仕事関数(4eV以上)を有する。いくつかの実施形態では、前記金属はAuである。いくつかの実施形態では、導電性の透明材料は、CuI、酸化インジウム・スズ(ITO)、SnO2およびZnOから選択される。いくつかの実施形態では、IDIXO(In23-ZnO)などの、透明な導電性フィルムを形成できるアモルファス材料を使用する。いくつかの実施形態では、前記陽極は薄膜である。いくつかの実施形態では、前記薄膜は蒸着またはスパッタリングにより作製される。いくつかの実施形態では、前記フィルムはフォトリソグラフィー方法によりパターン化される。いくつかの実施形態では、パターンが高精度である必要がない(例えば約100μm以上)場合、当該パターンは、電極材料への蒸着またはスパッタリングに好適な形状のマスクを用いて形成してもよい。いくつかの実施形態では、有機導電性化合物などのコーティング材料を塗布しうるとき、プリント法やコーティング法などの湿式フィルム形成方法が用いられる。いくつかの実施形態では、放射光が陽極を通過するとき、陽極は10%超の透過度を有し、当該陽極は、単位面積あたり数百オーム以下のシート抵抗を有する。いくつかの実施形態では、陽極の厚みは10~1,000nmである。いくつかの実施形態では、陽極の厚みは10~200nmである。いくつかの実施形態では、陽極の厚みは用いる材料に応じて変動する。
anode:
In some embodiments, the anode of the organic electroluminescent device is made of metals, alloys, conductive compounds or combinations thereof. In some embodiments, the metal, alloy or conductive compound has a high work function (4 eV or higher). In some embodiments, the metal is Au. In some embodiments, the conductive transparent material is selected from CuI, indium tin oxide (ITO), SnO 2 and ZnO. In some embodiments, an amorphous material that can form a transparent conductive film, such as IDIXO (In 2 O 3 —ZnO), is used. In some embodiments, the anode is a thin film. In some embodiments, the thin film is made by evaporation or sputtering. In some embodiments, the film is patterned by photolithographic methods. In some embodiments, if the pattern does not need to be highly accurate (eg, about 100 μm or more), the pattern may be formed using a mask having a shape suitable for vapor deposition or sputtering on the electrode material. In some embodiments, wet film forming methods such as printing and coating are used when a coating material such as an organic conductive compound can be applied. In some embodiments, when the emitted light passes through the anode, the anode has a transparency of greater than 10%, and the anode has a sheet resistance of hundreds of ohms or less per unit area. In some embodiments, the thickness of the anode is 10-1,000 nm. In some embodiments, the thickness of the anode is 10-200 nm. In some embodiments, the thickness of the anode will vary depending on the material used.
陰極:
 いくつかの実施形態では、前記陰極は、低い仕事関数を有する金属(4eV以下)(電子注入金属と称される)、合金、導電性化合物またはその組み合わせなどの電極材料で作製される。いくつかの実施形態では、前記電極材料は、ナトリウム、ナトリウム-カリウム合金、マグネシウム、リチウム、マグネシウム-銅混合物、マグネシウム-銀混合物、マグネシウム-アルミニウム混合物、マグネシウム-インジウム混合物、アルミニウム-酸化アルミニウム(Al23)混合物、インジウム、リチウム-アルミニウム混合物および希土類元素から選択される。いくつかの実施形態では、電子注入金属と、電子注入金属より高い仕事関数を有する安定な金属である第2の金属との混合物が用いられる。いくつかの実施形態では、前記混合物は、マグネシウム-銀混合物、マグネシウム-アルミニウム混合物、マグネシウム-インジウム混合物、アルミニウム-酸化アルミニウム(Al23)混合物、リチウム-アルミニウム混合物およびアルミニウムから選択される。いくつかの実施形態では、前記混合物は電子注入特性および酸化に対する耐性を向上させる。いくつかの実施形態では、陰極は、蒸着またはスパッタリングにより電極材料を薄膜として形成させることによって製造される。いくつかの実施形態では、前記陰極は単位面積当たり数百オーム以下のシート抵抗を有する。いくつかの実施形態では、前記陰極の厚は10nm~5μmである。いくつかの実施形態では、前記陰極の厚は50~200nmである。いくつかの実施形態では、放射光を透過させるため、有機エレクトロルミネッセンスデバイスの陽極および陰極のいずれか1つは透明または半透明である。いくつかの実施形態では、透明または半透明のエレクトロルミネッセンスデバイスは光放射輝度を向上させる。
 いくつかの実施形態では、前記陰極を、前記陽極に関して前述した導電性の透明な材料で形成されることにより、透明または半透明の陰極が形成される。いくつかの実施形態では、デバイスは陽極と陰極とを含むが、いずれも透明または半透明である。
cathode:
In some embodiments, the cathode is made of an electrode material such as a low work function metal (4 eV or less) (referred to as an electron injection metal), an alloy, a conductive compound or a combination thereof. In some embodiments, the electrode material is sodium, sodium-potassium alloy, magnesium, lithium, magnesium-copper mixture, magnesium-silver mixture, magnesium-aluminum mixture, magnesium-indium mixture, aluminum-aluminum oxide (Al 2 O 3 ) mixtures, indium, lithium-aluminum mixtures and rare earth elements. In some embodiments, a mixture of an electron-injecting metal and a second metal that is a stable metal with a higher work function than the electron-injecting metal is used. In some embodiments, the mixture is selected from a magnesium-silver mixture, a magnesium-aluminum mixture, a magnesium-indium mixture, an aluminum-aluminum oxide (Al 2 O 3 ) mixture, a lithium-aluminum mixture and aluminum. In some embodiments, the mixture improves electron injection properties and resistance to oxidation. In some embodiments, the cathode is manufactured by forming the electrode material as a thin film by vapor deposition or sputtering. In some embodiments, the cathode has a sheet resistance of less than a few hundred ohms per unit area. In some embodiments, the thickness of the cathode is 10 nm to 5 μm. In some embodiments, the thickness of the cathode is 50-200 nm. In some embodiments, any one of the anode and cathode of the organic electroluminescent device is transparent or translucent to transmit emitted light. In some embodiments, transparent or translucent electroluminescent devices enhance light radiance.
In some embodiments, the cathode is formed of a conductive transparent material as described above for the anode to form a transparent or semi-transparent cathode. In some embodiments, the device includes an anode and a cathode, both transparent or translucent.
発光層:
 いくつかの実施形態では、前記発光層は、陽極および陰極からそれぞれ注入された正孔および電子が再結合して励起子を形成する層である。いくつかの実施形態では、前記層は光を発する。
 いくつかの実施形態では、発光材料のみが発光層として用いられる。いくつかの実施形態では、前記発光層は発光材料とホスト材料とを含む。いくつかの実施形態では、前記発光材料は、式(I)の1つ以上の化合物である。いくつかの実施形態では、有機エレクトロルミネッセンスデバイスおよび有機光ルミネッセンスデバイスの光放射効率を向上させるため、前記発光材料において発生する一重項励起子および三重項励起子を、前記発光材料内に閉じ込める。いくつかの実施形態では、前記発光層中に発光材料に加えてホスト材料を用いる。いくつかの実施形態では、前記ホスト材料は有機化合物である。いくつかの実施形態では、前記有機化合物は励起一重項エネルギーおよび励起三重項エネルギーを有し、その少なくとも1つは、本発明の発光材料のそれらよりも高い。いくつかの実施形態では、本発明の発光材料中で発生する一重項励起子および三重項励起子は、本発明の発光材料の分子中に閉じ込められる。いくつかの実施形態では、前記一重項および三重項の励起子は、光放射効率を向上させるために十分に閉じ込められる。いくつかの実施形態では、高い光放射効率が未だ得られるにもかかわらず、前記一重項励起子および三重項励起子は十分に閉じ込められず、すなわち、本発明で使用できる光放射効率の高いホスト材料は、特に限定されない。いくつかの実施形態では、本発明のデバイスの発光層中の発光材料において、光放射が生じる。いくつかの実施形態では、放射光は蛍光および遅延蛍光の両方を含む。いくつかの実施形態では、前記放射光は、ホスト材料からの放射光を含む。いくつかの実施形態では、前記放射光は、ホスト材料からの放射光からなる。いくつかの実施形態では、前記放射光は、式(I)の化合物からの放射光と、ホスト材料からの放射光とを含む。いくつかの実施形態では、TADF分子とホスト材料とが用いられる。いくつかの実施形態では、TADFは補助ドーパントである。
 いくつかの実施形態では、ホスト材料を用いるとき、前記発光層に含まれる発光材料としての本発明の化合物の量は0.1重量%以上である。いくつかの実施形態では、ホスト材料を用いるとき、前記発光層に含まれる発光材料としての本発明の化合物の量は1重量%以上である。いくつかの実施形態では、ホスト材料を用いるとき、前記発光層に含まれる発光材料としての本発明の化合物の量は50重量%以下である。いくつかの実施形態では、ホスト材料を用いるとき、前記発光層に含まれる発光材料としての本発明の化合物の量は20重量%以下である。いくつかの実施形態では、ホスト材料を用いるとき、前記発光層に含まれる発光材料としての本発明の化合物の量は10重量%以下である。
 いくつかの実施形態では、前記発光層のホスト材料は、正孔輸送機能および電子輸送機能を有する有機化合物である。いくつかの実施形態では、前記発光層のホスト材料は、放射光の波長が増加することを防止する有機化合物である。いくつかの実施形態では、前記発光層のホスト材料は、高いガラス転移温度を有する有機化合物である。
Emitting layer:
In some embodiments, the light emitting layer is a layer in which holes and electrons injected from the anode and the cathode are recombined to form excitons. In some embodiments, the layer emits light.
In some embodiments, only luminescent material is used as the luminescent layer. In some embodiments, the light emitting layer comprises a light emitting material and a host material. In some embodiments, the emissive material is one or more compounds of formula (I). In some embodiments, singlet excitons and triplet excitons generated in the emissive material are confined within the emissive material to improve the light emission efficiency of the organic electroluminescent and organic photoluminescent devices. In some embodiments, a host material is used in the light emitting layer in addition to the light emitting material. In some embodiments, the host material is an organic compound. In some embodiments, the organic compound has an excited singlet energy and an excited triplet energy, at least one of which is higher than those of the luminescent materials of the present invention. In some embodiments, the singlet excitons and triplet excitons generated in the luminescent material of the present invention are confined in the molecules of the luminescent material of the present invention. In some embodiments, the singlet and triplet excitons are well confined to enhance light emission efficiency. In some embodiments, the singlet excitons and triplet excitons are not well confined, i.e., a host with high light emission efficiency that can be used in the present invention, even though high light emission efficiency is still obtained. The material is not particularly limited. In some embodiments, light emission occurs at the emissive material in the emissive layer of the device of the present invention. In some embodiments, the emitted light comprises both fluorescence and delayed fluorescence. In some embodiments, the emitted light comprises emitted light from a host material. In some embodiments, the emitted light comprises emitted light from a host material. In some embodiments, the emitted light comprises emitted light from a compound of formula (I) and emitted light from a host material. In some embodiments, TADF molecules and host materials are used. In some embodiments, TADF is a co-dopant.
In some embodiments, when a host material is used, the amount of the compound of the present invention as a light emitting material contained in the light emitting layer is 0.1% by weight or more. In some embodiments, when using a host material, the amount of the compound of the present invention as a light emitting material contained in the light emitting layer is 1% by weight or more. In some embodiments, when using a host material, the amount of the compound of the present invention as a light emitting material contained in the light emitting layer is 50% by weight or less. In some embodiments, when using a host material, the amount of the compound of the present invention as a light emitting material contained in the light emitting layer is 20% by weight or less. In some embodiments, when using a host material, the amount of the compound of the present invention as a light emitting material contained in the light emitting layer is 10% by weight or less.
In some embodiments, the host material of the light emitting layer is an organic compound having a hole transport function and an electron transport function. In some embodiments, the host material of the light emitting layer is an organic compound that prevents the wavelength of emitted light from increasing. In some embodiments, the host material of the light emitting layer is an organic compound having a high glass transition temperature.
注入層:
 注入層は、電極と有機層との間の層である。いくつかの実施形態では、前記注入層は駆動電圧を減少させ、光放射輝度を増強する。いくつかの実施形態では、前記注入層は、正孔注入層と電子注入層とを含む。前記注入層は、陽極と発光層または正孔輸送層との間、並びに陰極と発光層または電子輸送層との間に配置することがきる。いくつかの実施形態では、注入層が存在する。いくつかの実施形態では、注入層が存在しない。
Injection layer:
The injection layer is the layer between the electrode and the organic layer. In some embodiments, the injection layer reduces drive voltage and enhances light radiance. In some embodiments, the injection layer comprises a hole injection layer and an electron injection layer. The injection layer can be arranged between the anode and the light emitting layer or the hole transport layer, and between the cathode and the light emitting layer or the electron transport layer. In some embodiments, an injection layer is present. In some embodiments, there is no injection layer.
障壁層:
 障壁層は、発光層に存在する電荷(電子または正孔)および/または励起子が、発光層の外側に拡散することを阻止できる層である。いくつかの実施形態では、電子障壁層は、発光層と正孔輸送層との間に存在し、電子が発光層を通過して正孔輸送層へ至ることを阻止する。いくつかの実施形態では、正孔障壁層は、発光層と電子輸送層との間に存在し、正孔が発光層を通過して電子輸送層へ至ることを阻止する。いくつかの実施形態では、障壁層は、励起子が発光層の外側に拡散することを阻止する。いくつかの実施形態では、電子障壁層および正孔障壁層は励起子障壁層を構成する。本明細書で用いる用語「電子障壁層」または「励起子障壁層」には、電子障壁層の、および励起子障壁層の機能の両方を有する層が含まれる。
Barrier layer:
The barrier layer is a layer capable of preventing charges (electrons or holes) and/or excitons existing in the light emitting layer from diffusing to the outside of the light emitting layer. In some embodiments, the electron barrier layer is between the emissive layer and the hole transport layer and blocks electrons from passing through the emissive layer to the hole transport layer. In some embodiments, the hole blocking layer is between the emissive layer and the electron transport layer and blocks holes from passing through the emissive layer to the electron transport layer. In some embodiments, the barrier layer prevents excitons from diffusing out of the light emitting layer. In some embodiments, the electron barrier layer and the hole barrier layer comprise exciton barrier layers. As used herein, the term “electron barrier layer” or “exciton barrier layer” includes layers that have both the function of an electron barrier layer and the function of an exciton barrier layer.
正孔障壁層:
 正孔障壁層は、電子輸送層として機能する。いくつかの実施形態では、電子の輸送の間、正孔障壁層は正孔が電子輸送層に至ることを阻止する。いくつかの実施形態では、正孔障壁層は、発光層における電子と正孔との再結合の確率を高める。正孔障壁層に用いる材料は、電子輸送層について前述したのと同じ材料であってもよい。
Hole blocking layer:
The hole blocking layer functions as an electron transport layer. In some embodiments, the hole blocking layer blocks holes from reaching the electron transport layer during electron transport. In some embodiments, the hole blocking layer enhances the probability of electron and hole recombination in the light emitting layer. The material used for the hole blocking layer may be the same material as described above for the electron transport layer.
電子障壁層:
 電子障壁層は、正孔を輸送する。いくつかの実施形態では、正孔の輸送の間、電子障壁層は電子が正孔輸送層に至ることを阻止する。いくつかの実施形態では、電子障壁層は、発光層における電子と正孔との再結合の確率を高める。
Electron barrier layer:
The electron barrier layer transports holes. In some embodiments, the electron barrier layer blocks electrons from reaching the hole transport layer during hole transport. In some embodiments, the electron barrier layer increases the probability of electron-hole recombination in the light-emitting layer.
励起子障壁層:
 励起子障壁層は、発光層における正孔と電子との再結合を通じて生じた励起子が電荷輸送層まで拡散することを阻止する。いくつかの実施形態では、励起子障壁層は、発光層における励起子の有効な閉じ込め(confinement)を可能にする。いくつかの実施形態では、装置の光放射効率が向上する。いくつかの実施形態では、励起子障壁層は、陽極の側と陰極の側のいずれかで、およびその両側の発光層に隣接する。いくつかの実施形態では、励起子障壁層が陽極側に存在するとき、当該層は、正孔輸送層と発光層との間に存在し、当該発光層に隣接してもよい。いくつかの実施形態では、励起子障壁層が陰極側に存在するとき、当該層は、発光層と陰極との間に存在し、当該発光層に隣接してもよい。いくつかの実施形態では、正孔注入層、電子障壁層または同様の層は、陽極と、陽極側の発光層に隣接する励起子障壁層との間に存在する。いくつかの実施形態では、正孔注入層、電子障壁層、正孔障壁層または同様の層は、陰極と、陰極側の発光層に隣接する励起子障壁層との間に存在する。いくつかの実施形態では、励起子障壁層は、励起一重項エネルギーと励起三重項エネルギーを含み、その少なくとも1つが、それぞれ、発光材料の励起一重項エネルギーと励起三重項エネルギーより高い。
Exciton barrier layer:
The exciton barrier layer prevents excitons generated through recombination of holes and electrons in the light emitting layer from diffusing to the charge transport layer. In some embodiments, the exciton barrier layer enables effective confinement of excitons in the light emitting layer. In some embodiments, the light emitting efficiency of the device is improved. In some embodiments, the exciton barrier layer is adjacent to the emissive layer on either or both the anode and cathode sides. In some embodiments, when the exciton barrier layer is on the anode side, the layer may be between and adjacent to the hole transport layer and the light emitting layer. In some embodiments, when the exciton barrier layer is on the cathode side, the layer is between the light emitting layer and the cathode and may be adjacent to the light emitting layer. In some embodiments, a hole injection layer, an electron barrier layer or similar layer is present between the anode and the exciton barrier layer adjacent to the light emitting layer on the anode side. In some embodiments, a hole injection layer, an electron barrier layer, a hole barrier layer or similar layer is present between the cathode and the exciton barrier layer adjacent to the cathode side light emitting layer. In some embodiments, the exciton barrier layer comprises excited singlet energy and excited triplet energy, at least one of which is higher than the excited singlet energy and excited triplet energy of the emissive material, respectively.
正孔輸送層:
 正孔輸送層は、正孔輸送材料を含む。いくつかの実施形態では、正孔輸送層は単層である。いくつかの実施形態では、正孔輸送層は複数の層を有する。
 いくつかの実施形態では、正孔輸送材料は、正孔の注入または輸送特性および電子の障壁特性のうちの1つの特性を有する。いくつかの実施形態では、正孔輸送材料は有機材料である。いくつかの実施形態では、正孔輸送材料は無機材料である。本発明で使用できる公知の正孔輸送材料の例としては、限定されないが、トリアゾール誘導体、オキサジアゾール誘導剤、イミダゾール誘導体、カルバゾール誘導体、インドロカルバゾール誘導体、ポリアリールアルカン誘導剤、ピラゾリン誘導体、ピラゾロン誘導体、フェニレンジアミン誘導体、アリルアミン誘導体、アミノ置換カルコン誘導体、オキサゾール誘導体、スチリルアントラセン誘導剤、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、アニリンコポリマーおよび導電性ポリマーオリゴマー(特にチオフェンオリゴマー)、またはその組合せが挙げられる。いくつかの実施形態では、正孔輸送材料はポルフィリン化合物、芳香族三級アミン化合物およびスチリルアミン化合物から選択される。いくつかの実施形態では、正孔輸送材料は芳香族三級アミン化合物である。
Hole transport layer:
The hole transport layer contains a hole transport material. In some embodiments, the hole transport layer is a monolayer. In some embodiments, the hole transport layer has multiple layers.
In some embodiments, the hole transport material has one of a hole injection or transport property and an electron barrier property. In some embodiments, the hole transport material is an organic material. In some embodiments, the hole transport material is an inorganic material. Examples of known hole transport materials that can be used in the present invention include, but are not limited to, triazole derivatives, oxadiazole derivatives, imidazole derivatives, carbazole derivatives, indolocarbazole derivatives, polyarylalkane derivatives, pyrazoline derivatives, pyrazolones. Derivative, phenylenediamine derivative, allylamine derivative, amino-substituted chalcone derivative, oxazole derivative, styrylanthracene derivative, fluorenone derivative, hydrazone derivative, stilbene derivative, silazane derivative, aniline copolymer and conductive polymer oligomer (particularly thiophene oligomer), or a combination thereof Is mentioned. In some embodiments, the hole transport material is selected from porphyrin compounds, aromatic tertiary amine compounds and styrylamine compounds. In some embodiments, the hole transport material is an aromatic tertiary amine compound.
電子輸送層:
 電子輸送層は、電子輸送材料を含む。いくつかの実施形態では、電子輸送層は単層である。いくつかの実施形態では、電子輸送層は複数の層を有する。
 いくつかの実施形態では、電子輸送材料は、陰極から注入された電子を発光層に輸送する機能さえあればよい。いくつかの実施形態では、電子輸送材料はまた、正孔障壁材料としても機能する。本発明で使用できる電子輸送層の例としては、限定されないが、ニトロ置換フルオレン誘導体、ジフェニルキノン誘導体、チオピランジオキシド誘導体、カルボジイミド、フルオレニリデンメタン誘導体、アントラキノジメタン、アントロン誘導体、オキサジアゾール誘導体、ピリジン誘導体、ジアジン誘導体、トリアジン誘導体、またはその組合せ、またはそのポリマーが挙げられる。いくつかの実施形態では、電子輸送材料はチアジアゾール誘導剤またはキノキサリン誘導体である。いくつかの実施形態では、電子輸送材料はポリマー材料である。
Electron transport layer:
The electron transport layer contains an electron transport material. In some embodiments, the electron transport layer is a monolayer. In some embodiments, the electron transport layer has multiple layers.
In some embodiments, the electron transport material need only function to transport the electrons injected from the cathode to the light emitting layer. In some embodiments, the electron transport material also functions as a hole blocking material. Examples of electron transport layers that can be used in the present invention include, but are not limited to, nitro-substituted fluorene derivatives, diphenylquinone derivatives, thiopyran dioxide derivatives, carbodiimides, fluorenylidene methane derivatives, anthraquinodimethanes, anthrone derivatives, oxadienes. Azole derivatives, pyridine derivatives, diazine derivatives, triazine derivatives, or combinations thereof, or polymers thereof. In some embodiments, the electron transport material is a thiadiazole inducer or quinoxaline derivative. In some embodiments, the electron transport material is a polymeric material.
 いくつかの実施形態では、式(I)の化合物は本発明のデバイスの発光層に含まれる。いくつかの実施形態では、式(I)の化合物は、発光層および少なくとも1つの他の層に含まれる。いくつかの実施形態では、式(I)の化合物は、各層毎にそれぞれ選択される。いくつかの実施形態では、式(I)の化合物は同じものである。いくつかの実施形態では、式(I)の化合物は各々異なる。例えば、式(I)で表される化合物は、前述した注入層、障壁層、正孔障壁層、電子障壁層、励起子障壁層、正孔輸送層および電子輸送層などで使用できる。前記層のフィルム形成方法は特に限定されず、当該層は乾式工程および湿式工程のいずれかにより製造されうる。 In some embodiments, compounds of formula (I) are included in the emissive layer of devices of the invention. In some embodiments, the compound of formula (I) is included in the light emitting layer and at least one other layer. In some embodiments, compounds of formula (I) are selected for each layer. In some embodiments, the compounds of formula (I) are the same. In some embodiments, each compound of formula (I) is different. For example, the compound represented by the formula (I) can be used in the above-mentioned injection layer, barrier layer, hole barrier layer, electron barrier layer, exciton barrier layer, hole transport layer and electron transport layer. The method for forming a film of the layer is not particularly limited, and the layer can be manufactured by either a dry process or a wet process.
 以下に、有機エレクトロルミネッセンス素子に用いることができる好ましい材料を具体的に例示する。ただし、本発明において用いることができる材料は、以下の例示化合物によって限定的に解釈されることはない。また、特定の機能を有する材料として例示した化合物であっても、その他の機能を有する材料として転用することも可能である。
 いくつかの実施形態では、ホスト材料は以下からなる群から選択される:
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000045
Specific examples of preferred materials that can be used for the organic electroluminescent element are shown below. However, the materials that can be used in the present invention are not limitedly interpreted by the following exemplary compounds. Further, even the compounds exemplified as the material having a specific function can be diverted as a material having another function.
In some embodiments, the host material is selected from the group consisting of:
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000045
デバイス:
 いくつかの実施形態では、本発明の化合物はデバイス中に組み込まれる。例えば、デバイスには、OLEDバルブ、OLEDランプ、テレビ用ディスプレイ、コンピューター用モニター、携帯電話およびタブレットが含まれるが、これらに限定されない。
 いくつかの実施形態では、電子デバイスは、陽極、陰極、および当該陽極と当該陰極との間の発光層を含む少なくとも1つの有機層を有するOLEDを含み、前記発光層はホスト材料と式(I)の化合物とを含む。
 いくつかの実施形態では、OLEDの発光層は、式(I)の化合物が蛍光エミッタのために三重項を一重項に変換する蛍光材料を更に含む。
 いくつかの実施形態では、本願明細書に記載の構成物は、OLEDまたは光電子デバイスなどの、様々な感光性または光活性化デバイスに組み込まれうる。いくつかの実施形態では、前記構成物はデバイス内の電荷移動またはエネルギー移動の促進に、および/または正孔輸送材料として有用でありうる。前記デバイスとしては、例えば有機発光ダイオード(OLED)、有機集積回線(OIC)、有機電界効果トランジスタ(O-FET)、有機薄膜トランジスタ(O-TFT)、有機発光トランジスタ(O-LET)、有機太陽電池(O-SC)、有機光学検出装置、有機光受容体、有機磁場クエンチ(field-quench)装置(O-FQD)、発光燃料電池(LEC)または有機レーザダイオード(O-レーザー)が挙げられる。
device:
In some embodiments, the compounds of the invention are incorporated into devices. For example, devices include, but are not limited to, OLED bulbs, OLED lamps, television displays, computer monitors, cell phones and tablets.
In some embodiments, an electronic device includes an OLED having an anode, a cathode, and at least one organic layer that includes a light emitting layer between the anode and the cathode, the light emitting layer comprising a host material and a compound of formula (I ) Compound.
In some embodiments, the emissive layer of an OLED further comprises a fluorescent material in which the compound of formula (I) converts triplets to singlets for fluorescent emitters.
In some embodiments, the compositions described herein can be incorporated into various photosensitive or photoactivated devices, such as OLEDs or optoelectronic devices. In some embodiments, the composition may be useful in facilitating charge or energy transfer within a device and/or as a hole transport material. Examples of the device include an organic light emitting diode (OLED), an organic integrated circuit (OIC), an organic field effect transistor (O-FET), an organic thin film transistor (O-TFT), an organic light emitting transistor (O-LET), and an organic solar cell. (O-SC), organic optical detectors, organic photoreceptors, organic field quench devices (O-FQD), luminescent fuel cells (LEC) or organic laser diodes (O-lasers).
バルブまたはランプ:
 いくつかの実施形態では、電子デバイスは、陽極、陰極、当該陽極と当該陰極との間の発光層を含む少なくとも1つの有機層を含むOLEDを含み、当該発光層は、ホスト材料と、発光材料である式(I)の化合物と、OLEDドライバ回路と、を含む。
 いくつかの実施形態では、デバイスは色彩の異なるOLEDを含む。いくつかの実施形態では、デバイスはOLEDの組合せを含むアレイを含む。いくつかの実施形態では、OLEDの前記組合せは、3色の組合せ(例えばRGB)である。いくつかの実施形態では、OLEDの前記組合せは、赤色でも緑色でも青色でもない色(例えばオレンジ色および黄緑色)の組合せである。いくつかの実施形態では、OLEDの前記組合せは、2色、4色またはそれ以上の色の組合せである。
 いくつかの実施形態では、デバイスは、
 取り付け面を有する第1面とそれと反対の第2面とを有し、少なくとも1つの開口部を画定する回路基板と、
 前記取り付け面上の少なくとも1つのOLEDであって、当該少なくとも1つのOLEDが、陽極、陰極、および当該陽極と当該陰極との間の発光層を含む少なくとも1つの有機層を含み、当該発光層がホスト材料と発光材料である式(I)の化合物とを含む、発光する構成を有する少なくとも1つのOLEDと、
 回路基板用のハウジングと、
 前記ハウジングの端部に配置された少なくとも1つのコネクターであって、前記ハウジングおよび前記コネクターが照明設備への取付けに適するパッケージを画定する、少なくとも1つのコネクターと、を備えるOLEDライトである。
 いくつかの実施形態では、前記OLEDライトは、複数の方向に光が放射されるように回路基板に取り付けられた複数のOLEDを有する。いくつかの実施形態では、第1方向に発せられた一部の光は偏光されて第2方向に放射される。いくつかの実施形態では、反射器を用いて第1方向に発せられた光を偏光する。
Bulb or lamp:
In some embodiments, an electronic device includes an OLED that includes an anode, a cathode, and at least one organic layer that includes a light emitting layer between the anode and the cathode, the light emitting layer comprising a host material and a light emitting material. And a OLED driver circuit.
In some embodiments, the device comprises different color OLEDs. In some embodiments, the device comprises an array that includes a combination of OLEDs. In some embodiments, the combination of OLEDs is a three color combination (eg, RGB). In some embodiments, the combination of OLEDs is a combination of colors that are neither red, green, nor blue (eg, orange and yellow-green). In some embodiments, the combination of OLEDs is a combination of two colors, four colors or more.
In some embodiments, the device is
A circuit board having a first surface having a mounting surface and an opposite second surface, the circuit board defining at least one opening;
At least one OLED on the mounting surface, the at least one OLED including an anode, a cathode, and at least one organic layer including a light emitting layer between the anode and the cathode, the light emitting layer comprising: At least one OLED having a light emitting configuration, comprising a host material and a compound of formula (I) which is a light emitting material;
A housing for the circuit board,
At least one connector disposed at an end of the housing, the housing and the connector defining at least one connector package suitable for mounting to a lighting fixture.
In some embodiments, the OLED light comprises multiple OLEDs mounted on a circuit board such that light is emitted in multiple directions. In some embodiments, some of the light emitted in the first direction is polarized and emitted in the second direction. In some embodiments, a reflector is used to polarize the light emitted in the first direction.
ディスプレイまたはスクリーン:
 いくつかの実施形態では、式(I)の化合物はスクリーンまたはディスプレイにおいて使用できる。いくつかの実施形態では、式(I)の化合物は、限定されないが真空蒸発、堆積、蒸着または化学蒸着(CVD)などの工程を用いて基材上へ堆積させる。いくつかの実施形態では、前記基材は、独特のアスペクト比のピクセルを提供する2面エッチングにおいて有用なフォトプレート構造である。前記スクリーン(またマスクとも呼ばれる)は、OLEDディスプレイの製造工程で用いられる。対応するアートワークパターンの設計により、垂直方向ではピクセルの間の非常に急な狭いタイバーの、並びに水平方向では大きな広範囲の斜角開口部の配置を可能にする。これにより、TFTバックプレーン上への化学蒸着を最適化しつつ、高解像度ディスプレイに必要とされるピクセルの微細なパターン構成が可能となる。
 ピクセルの内部パターニングにより、水平および垂直方向での様々なアスペクト比の三次元ピクセル開口部を構成することが可能となる。更に、ピクセル領域中の画像化された「ストライプ」またはハーフトーン円の使用は、これらの特定のパターンをアンダーカットし基材から除くまで、特定の領域におけるエッチングが保護される。その時、全てのピクセル領域は同様のエッチング速度で処理されるが、その深さはハーフトーンパターンにより変化する。ハーフトーンパターンのサイズおよび間隔を変更することにより、ピクセル内での保護率が様々異なるエッチングが可能となり、急な垂直斜角を形成するのに必要な局在化された深いエッチングが可能となる。
 蒸着マスク用の好ましい材料はインバーである。インバーは、製鉄所で長い薄型シート状に冷延された金属合金である。インバーは、ニッケルマスクとしてスピンマンドレル上へ電着することができない。蒸着用マスク内に開口領域を形成するための適切かつ低コストの方法は、湿式化学エッチングによる方法である。
 いくつかの実施形態では、スクリーンまたはディスプレイパターンは、基材上のピクセルマトリックスである。いくつかの実施形態では、スクリーンまたはディスプレイパターンは、リソグラフィー(例えばフォトリソグラフィーおよびeビームリソグラフィー)を使用して加工される。いくつかの実施形態では、スクリーンまたはディスプレイパターンは、湿式化学エッチングを使用して加工される。更なる実施形態では、スクリーンまたはディスプレイパターンは、プラズマエッチングを使用して加工される。
Display or screen:
In some embodiments, compounds of formula (I) can be used in screens or displays. In some embodiments, the compound of formula (I) is deposited on the substrate using a process such as, but not limited to, vacuum evaporation, deposition, vapor deposition or chemical vapor deposition (CVD). In some embodiments, the substrate is a photoplate structure useful in a two-sided etch that provides pixels with unique aspect ratios. The screen (also called a mask) is used in the manufacturing process of OLED displays. The corresponding artwork pattern design allows for the placement of very steep narrow tie bars between pixels in the vertical direction, as well as large, wide beveled openings in the horizontal direction. This allows for fine patterning of the pixels needed for high resolution displays while optimizing chemical vapor deposition on the TFT backplane.
Internal patterning of pixels allows for the construction of three-dimensional pixel openings of varying aspect ratios in the horizontal and vertical directions. In addition, the use of imaged "stripes" or halftone circles in the pixel areas protects the etch in certain areas until these particular patterns are undercut and removed from the substrate. At that time, all pixel areas are processed at the same etching rate, but the depth thereof is changed by the halftone pattern. By varying the size and spacing of the halftone pattern, it is possible to etch with varying degrees of protection within the pixel, allowing the localized deep etching needed to form the steep vertical bevel. ..
The preferred material for the vapor deposition mask is Invar. Invar is a metal alloy cold-rolled into a long thin sheet at an iron mill. Invar cannot be electrodeposited onto the spin mandrel as a nickel mask. A suitable and low cost method for forming open areas in the deposition mask is by wet chemical etching.
In some embodiments, the screen or display pattern is a pixel matrix on the substrate. In some embodiments, the screen or display pattern is processed using lithography (eg, photolithography and e-beam lithography). In some embodiments, the screen or display pattern is processed using wet chemical etching. In a further embodiment, the screen or display pattern is processed using plasma etching.
本発明の化合物を用いた、デバイスの製造方法:
 OLEDディスプレイは、一般的には、大型のマザーパネルを形成し、次に当該マザーパネルをセルパネル単位で切断することによって製造される。通常は、マザーパネル上の各セルパネルは、ベース基材上に、活性層とソース/ドレイン電極とを有する薄膜トランジスタ(TFT)を形成し、前記TFTに平坦化フィルムを塗布し、ピクセル電極、発光層、対電極およびカプセル化層、を順に経時的に形成し、前記マザーパネルから切断することにより形成される。
 OLEDディスプレイは、一般的には、大型のマザーパネルを形成し、次に当該マザーパネルをセルパネル単位で切断することによって製造される。通常は、マザーパネル上の各セルパネルは、ベース基材上に、活性層とソース/ドレイン電極とを有する薄膜トランジスタ(TFT)を形成し、前記TFTに平坦化フィルムを塗布し、ピクセル電極、発光層、対電極およびカプセル化層、を順に経時的に形成し、前記マザーパネルから切断することにより形成される。
 本発明の他の態様では、有機発光ダイオード(OLED)ディスプレイの製造方法を提供し、当該方法は、
  マザーパネルのベース基材上に障壁層を形成する工程と、
  前記障壁層上に、セルパネル単位で複数のディスプレイユニットを形成する工程と、
  前記セルパネルのディスプレイユニットのそれぞれの上にカプセル化層を形成する工程と、
  前記セルパネル間のインタフェース部に有機フィルムを塗布する工程と、を含む。
 いくつかの実施形態では、障壁層は、例えばSiNxで形成された無機フィルムであり、障壁層の端部はポリイミドまたはアクリルで形成された有機フィルムで被覆される。いくつかの実施形態では、有機フィルムは、マザーパネルがセルパネル単位で軟らかく切断されるように補助する。
A method for manufacturing a device using the compound of the present invention:
OLED displays are generally manufactured by forming a large mother panel and then cutting the mother panel into cell panels. Generally, each cell panel on the mother panel has a thin film transistor (TFT) having an active layer and source/drain electrodes formed on a base material, a flattening film applied to the TFT, a pixel electrode and a light emitting layer. , The counter electrode and the encapsulation layer are sequentially formed over time, and then cut from the mother panel.
OLED displays are generally manufactured by forming a large mother panel and then cutting the mother panel into cell panels. Generally, each cell panel on the mother panel has a thin film transistor (TFT) having an active layer and source/drain electrodes formed on a base material, a flattening film applied to the TFT, a pixel electrode and a light emitting layer. , The counter electrode and the encapsulation layer are sequentially formed over time, and then cut from the mother panel.
In another aspect of the invention, there is provided a method of manufacturing an organic light emitting diode (OLED) display, the method comprising:
Forming a barrier layer on the base material of the mother panel,
Forming a plurality of display units in cell panel units on the barrier layer;
Forming an encapsulation layer on each of the display units of the cell panel;
Applying an organic film to the interface between the cell panels.
In some embodiments, the barrier layer is an inorganic film formed of, for example, SiNx, and the edges of the barrier layer are covered with an organic film formed of polyimide or acrylic. In some embodiments, the organic film helps the mother panel to be softly cut into cell panel units.
 いくつかの実施形態では、薄膜トランジスタ(TFT)層は、発光層と、ゲート電極と、ソース/ドレイン電極と、を有する。複数のディスプレイユニットの各々は、薄膜トランジスタ(TFT)層と、TFT層上に形成された平坦化フィルムと、平坦化フィルム上に形成された発光ユニットと、を有してもよく、前記インタフェース部に塗布された有機フィルムは、前記平坦化フィルムの材料と同じ材料で形成され、前記平坦化フィルムの形成と同時に形成される。いくつかの実施形態では、前記発光ユニットは、不動態化層と、その間の平坦化フィルムと、発光ユニットを被覆し保護するカプセル化層と、によりTFT層と連結される。前記製造方法のいくつかの実施形態では、前記有機フィルムは、ディスプレイユニットにもカプセル化層にも連結されない。
 前記有機フィルムと平坦化フィルムの各々は、ポリイミドおよびアクリルのいずれか1つを含んでもよい。いくつかの実施形態では、前記障壁層は無機フィルムであってもよい。いくつかの実施形態では、前記ベース基材はポリイミドで形成されてもよい。前記方法は更に、ポリイミドで形成されたベース基材の1つの表面に障壁層を形成する前に、当該ベース基材のもう1つの表面にガラス材料で形成されたキャリア基材を取り付ける工程と、インタフェース部に沿った切断の前に、前記キャリア基材をベース基材から分離する工程と、を含んでもよい。いくつかの実施形態では、前記OLEDディスプレイはフレキシブルなディスプレイである。
 いくつかの実施形態では、前記不動態化層は、TFT層の被覆のためにTFT層上に配置された有機フィルムである。いくつかの実施形態では、前記平坦化フィルムは、不動態化層上に形成された有機フィルムである。いくつかの実施形態では、前記平坦化フィルムは、障壁層の端部に形成された有機フィルムと同様、ポリイミドまたはアクリルで形成される。いくつかの実施形態では、OLEDディスプレイの製造の際、前記平坦化フィルムおよび有機フィルムは同時に形成される。いくつかの実施形態では、前記有機フィルムは、障壁層の端部に形成されてもよく、それにより、当該有機フィルムの一部が直接ベース基材と接触し、当該有機フィルムの残りの部分が、障壁層の端部を囲みつつ、障壁層と接触する。
 いくつかの実施形態では、前記発光層は、ピクセル電極と、対電極と、当該ピクセル電極と当該対電極との間に配置された有機発光層と、を有する。いくつかの実施形態では、前記ピクセル電極は、TFT層のソース/ドレイン電極に連結している。
 いくつかの実施形態では、TFT層を通じてピクセル電極に電圧が印加されるとき、ピクセル電極と対電極との間に適切な電圧が形成され、それにより有機発光層が光を放射し、それにより画像が形成される。以下、TFT層と発光ユニットとを有する画像形成ユニットを、ディスプレイユニットと称する。
 いくつかの実施形態では、ディスプレイユニットを被覆し、外部の水分の浸透を防止するカプセル化層は、有機フィルムと無機フィルムとが交互に積層する薄膜状のカプセル化構造に形成されてもよい。いくつかの実施形態では、前記カプセル化層は、複数の薄膜が積層した薄膜状カプセル化構造を有する。いくつかの実施形態では、インタフェース部に塗布される有機フィルムは、複数のディスプレイユニットの各々と間隔を置いて配置される。いくつかの実施形態では、前記有機フィルムは、一部の有機フィルムが直接ベース基材と接触し、有機フィルムの残りの部分が障壁層の端部を囲む一方で障壁層と接触する態様で形成される。
 一実施形態では、OLEDディスプレイはフレキシブルであり、ポリイミドで形成された柔軟なベース基材を使用する。いくつかの実施形態では、前記ベース基材はガラス材料で形成されたキャリア基材上に形成され、次に当該キャリア基材が分離される。
 いくつかの実施形態では、障壁層は、キャリア基材の反対側のベース基材の表面に形成される。一実施形態では、前記障壁層は、各セルパネルのサイズに従いパターン化される。例えば、ベース基材がマザーパネルの全ての表面上に形成される一方で、障壁層が各セルパネルのサイズに従い形成され、それにより、セルパネルの障壁層の間のインタフェース部に溝が形成される。各セルパネルは、前記溝に沿って切断できる。
In some embodiments, the thin film transistor (TFT) layer has a light emitting layer, a gate electrode, and source/drain electrodes. Each of the plurality of display units may include a thin film transistor (TFT) layer, a flattening film formed on the TFT layer, and a light emitting unit formed on the flattening film. The applied organic film is formed of the same material as the material of the flattening film, and is formed simultaneously with the formation of the flattening film. In some embodiments, the light emitting unit is connected to the TFT layer by a passivation layer, a planarizing film in between, and an encapsulation layer that covers and protects the light emitting unit. In some embodiments of the manufacturing method, the organic film is not connected to the display unit or the encapsulation layer.
Each of the organic film and the flattening film may include one of polyimide and acrylic. In some embodiments, the barrier layer may be an inorganic film. In some embodiments, the base substrate may be formed of polyimide. The method further comprises attaching a carrier substrate formed of a glass material to another surface of the base substrate before forming the barrier layer on the one surface of the base substrate formed of polyimide, Separating the carrier substrate from the base substrate prior to cutting along the interface portion. In some embodiments the OLED display is a flexible display.
In some embodiments, the passivation layer is an organic film disposed on the TFT layer for coating the TFT layer. In some embodiments, the planarization film is an organic film formed on the passivation layer. In some embodiments, the planarizing film is formed of polyimide or acrylic, similar to the organic film formed on the edges of the barrier layer. In some embodiments, the planarizing film and the organic film are formed simultaneously during the manufacture of the OLED display. In some embodiments, the organic film may be formed at the edges of the barrier layer, whereby a portion of the organic film is in direct contact with the base substrate and the remaining portion of the organic film is , Contacting the barrier layer while surrounding the edge of the barrier layer.
In some embodiments, the light emitting layer comprises a pixel electrode, a counter electrode, and an organic light emitting layer disposed between the pixel electrode and the counter electrode. In some embodiments, the pixel electrode is connected to the source/drain electrodes of the TFT layer.
In some embodiments, when a voltage is applied to the pixel electrode through the TFT layer, a suitable voltage is formed between the pixel electrode and the counter electrode, which causes the organic light emitting layer to emit light, which results in an image. Is formed. Hereinafter, the image forming unit including the TFT layer and the light emitting unit is referred to as a display unit.
In some embodiments, the encapsulation layer that covers the display unit and prevents permeation of external moisture may be formed in a thin film encapsulation structure in which organic films and inorganic films are alternately stacked. In some embodiments, the encapsulation layer has a thin film encapsulation structure in which a plurality of thin films are stacked. In some embodiments, the organic film applied to the interface portion is spaced apart from each of the plurality of display units. In some embodiments, the organic film is formed in such a way that a portion of the organic film is in direct contact with the base substrate and the remaining portion of the organic film surrounds the edges of the barrier layer while being in contact with the barrier layer. To be done.
In one embodiment, the OLED display is flexible and uses a flexible base substrate formed of polyimide. In some embodiments, the base substrate is formed on a carrier substrate formed of glass material and then the carrier substrate is separated.
In some embodiments, the barrier layer is formed on the surface of the base substrate opposite the carrier substrate. In one embodiment, the barrier layer is patterned according to the size of each cell panel. For example, the base substrate is formed on all surfaces of the mother panel, while the barrier layer is formed according to the size of each cell panel, thereby forming a groove in the interface portion between the barrier layers of the cell panel. Each cell panel can be cut along the groove.
 いくつかの実施形態では、前記の製造方法は、更にインタフェース部に沿って切断する工程を含み、そこでは溝が障壁層に形成され、少なくとも一部の有機フィルムが溝で形成され、当該溝がベース基材に浸透しない。いくつかの実施形態では、各セルパネルのTFT層が形成され、無機フィルムである不動態化層と有機フィルムである平坦化フィルムが、TFT層上に配置され、TFT層を被覆する。例えばポリイミドまたはアクリル製の平坦化フィルムが形成されるのと同時に、インタフェース部の溝は、例えばポリイミドまたはアクリル製の有機フィルムで被覆される。これは、各セルパネルがインタフェース部で溝に沿って切断されるとき、生じた衝撃を有機フィルムに吸収させることによってひびが生じるのを防止する。すなわち、全ての障壁層が有機フィルムなしで完全に露出している場合、各セルパネルがインタフェース部で溝に沿って切断されるとき、生じた衝撃が障壁層に伝達され、それによりひびが生じるリスクが増加する。しかしながら、一実施形態では、障壁層間のインタフェース部の溝が有機フィルムで被覆されて、有機フィルムがなければ障壁層に伝達されうる衝撃を吸収するため、各セルパネルをソフトに切断し、障壁層でひびが生じるのを防止してもよい。一実施形態では、インタフェース部の溝を被覆する有機フィルムおよび平坦化フィルムは、互いに間隔を置いて配置される。例えば、有機フィルムおよび平坦化フィルムが1つの層として相互に接続している場合には、平坦化フィルムと有機フィルムが残っている部分とを通じてディスプレイユニットに外部の水分が浸入するおそれがあるため、有機フィルムおよび平坦化フィルムは、有機フィルムがディスプレイユニットから間隔を置いて配置されるように、相互に間隔を置いて配置される。
 いくつかの実施形態では、ディスプレイユニットは、発光ユニットの形成により形成され、カプセル化層は、ディスプレイユニットを被覆するためディスプレイユニット上に配置される。これにより、マザーパネルが完全に製造された後、ベース基材を担持するキャリア基材がベース基材から分離される。いくつかの実施形態では、レーザー光線がキャリア基材へ放射されると、キャリア基材は、キャリア基材とベース基材との間の熱膨張率の相違により、ベース基材から分離される。
 いくつかの実施形態では、マザーパネルは、セルパネル単位で切断される。いくつかの実施形態では、マザーパネルは、カッターを用いてセルパネル間のインタフェース部に沿って切断される。いくつかの実施形態では、マザーパネルが沿って切断されるインタフェース部の溝が有機フィルムで被覆されているため、切断の間、当該有機フィルムが衝撃を吸収する。いくつかの実施形態では、切断の間、障壁層でひびが生じるのを防止できる。
 いくつかの実施形態では、前記方法は製品の不良率を減少させ、その品質を安定させる。
 他の態様は、ベース基材上に形成された障壁層と、障壁層上に形成されたディスプレイユニットと、ディスプレイユニット上に形成されたカプセル化層と、障壁層の端部に塗布された有機フィルムと、を有するOLEDディスプレイである。
In some embodiments, the method of manufacturing further comprises cutting along the interface portion, wherein a groove is formed in the barrier layer, at least a portion of the organic film is formed in the groove, and the groove is formed. Does not penetrate the base substrate. In some embodiments, a TFT layer for each cell panel is formed, and a passivation layer, which is an inorganic film, and a planarization film, which is an organic film, are disposed on and cover the TFT layer. At the same time that the planarization film made of, for example, polyimide or acrylic is formed, the groove of the interface portion is covered with the organic film made of, for example, polyimide or acrylic. This prevents the organic film from being cracked by absorbing the generated impact when each cell panel is cut along the groove at the interface portion. That is, when all the barrier layers are completely exposed without the organic film, when each cell panel is cut along the groove at the interface part, the generated impact is transmitted to the barrier layer, which may cause a crack. Will increase. However, in one embodiment, the groove of the interface portion between the barrier layers is covered with an organic film to absorb the shock that can be transmitted to the barrier layer without the organic film, so that each cell panel is softly cut and the barrier layer is cut. It may prevent cracking. In one embodiment, the organic film and the planarization film that cover the interface groove are spaced from each other. For example, when the organic film and the flattening film are connected to each other as one layer, external moisture may enter the display unit through the flattening film and the portion where the organic film remains. The organic film and the planarization film are spaced from each other such that the organic film is spaced from the display unit.
In some embodiments, the display unit is formed by forming a light emitting unit and the encapsulation layer is disposed on the display unit to cover the display unit. Thereby, after the mother panel is completely manufactured, the carrier base material carrying the base base material is separated from the base base material. In some embodiments, when the laser beam is emitted to the carrier substrate, the carrier substrate is separated from the base substrate due to the difference in coefficient of thermal expansion between the carrier substrate and the base substrate.
In some embodiments, the mother panel is cut into cell panels. In some embodiments, the mother panel is cut along the interface between the cell panels using a cutter. In some embodiments, the grooves of the interface along which the mother panel is cut are covered with an organic film so that the organic film absorbs shock during cutting. In some embodiments, the barrier layer can be prevented from cracking during cutting.
In some embodiments, the method reduces the reject rate of a product and stabilizes its quality.
Another embodiment is a barrier layer formed on a base substrate, a display unit formed on the barrier layer, an encapsulation layer formed on the display unit, and an organic layer applied to the edge of the barrier layer. And a OLED display having a film.
<定義>
 本願明細書中で特に定義されない限り、本願で用いられる科学的および専門的用語は、当業者により一般的に理解されている意味を有する。全般的には、本願明細書に記載の化学物質に関する命名法および技術は、当該技術分野において周知であり、一般的に用いられている。
 「アシル」という用語は、当該技術分野で公知であり、一般式ヒドロカルビルC(O)-、好ましくはアルキルC(O)-で表される基を指す。
 「アシルアミノ」という用語は、当技術分野で公知であり、アシル基で置換されたアミノ基を指し、例えば、式ヒドロカルビルC(O)NH-で表すことができる。
 「アシルオキシ」という用語は、当技術分野で公知であり、一般式ヒドロカルビルC(O)O-、好ましくはアルキルC(O)O-で表される基を指す。
 「アルコキシ」という用語は、酸素原子が結合したアルキル基を指す。代表的なアルコキシ基として、メトキシ基、トリフルオロメトキシ基、エトキシ基、プロポキシ基、tert-ブトキシ基などを挙げることができる。
 「アルコキシアルキル」という用語は、アルコキシ基で置換されたアルキル基を指し、一般式アルキル-O-アルキルで表すことができる。
 本発明で用いられる「アルケニル」という用語は、少なくとも1つの二重結合を含む脂肪族基を指し、「非置換アルケニル」および「置換アルケニル」が含まれるものとし、後者については、アルケニル基の一つ以上の炭素原子上の水素原子を置換する置換基を有するアルケニル部分を指す。典型的には、直鎖状若しくは分岐鎖状のアルケニル基は、特に定義されない限り、1~約20、好ましくは1~約10の炭素原子数である。そのような置換基は、1つ以上の二重結合に含まれるか若しくは含まれない1つ以上の炭素原子に存在しうる。更に、そのような置換基には、安定性を損なわない限りにおいて、後述するように、アルキル基に含まれ得る全てのものが含まれる。例えば、1つ以上のアルキル基、カルボシクリル基、アリール基、ヘテロシクリル基またはヘテロアリール基によるアルケニル基の置換が含まれるものとする。
<Definition>
Unless defined otherwise herein, scientific and technical terms used herein have meanings commonly understood by a person of ordinary skill in the art. In general, the nomenclature and techniques for chemicals described herein are well known and commonly used in the art.
The term "acyl" is known in the art and refers to a group of the general formula hydrocarbyl C(O)-, preferably alkyl C(O)-.
The term "acylamino" is known in the art and refers to an amino group substituted with an acyl group and may be represented, for example, by the formula hydrocarbyl C(O)NH-.
The term "acyloxy" is known in the art and refers to a group of general formula hydrocarbyl C(O)O-, preferably alkyl C(O)O-.
The term "alkoxy" refers to an alkyl group to which is attached an oxygen atom. Representative alkoxy groups include methoxy group, trifluoromethoxy group, ethoxy group, propoxy group, tert-butoxy group and the like.
The term "alkoxyalkyl" refers to an alkyl group substituted with an alkoxy group and may be represented by the general formula alkyl-O-alkyl.
The term “alkenyl” as used in the present invention refers to an aliphatic group containing at least one double bond and includes “unsubstituted alkenyl” and “substituted alkenyl”, with the latter being one of the alkenyl groups. Refers to an alkenyl moiety having a substituent that replaces a hydrogen atom on one or more carbon atoms. Typically, straight or branched chain alkenyl groups, unless otherwise defined, have 1 to about 20, preferably 1 to about 10 carbon atoms. Such substituents may be present on one or more carbon atoms with or without one or more double bonds. Further, such substituents include all that may be contained in an alkyl group, as will be described later, as long as the stability is not impaired. For example, substitution of an alkenyl group with one or more alkyl, carbocyclyl, aryl, heterocyclyl, or heteroaryl groups is meant to be included.
 「アルキル」基または「アルカン」は、完全に飽和した、直鎖状若しくは分岐鎖状の非芳香族炭化水素である。典型的には、直鎖状若しくは分岐鎖状のアルキル基は、特に定義されない限り、1~約20、好ましくは1~約10の炭素原子数である。いくつかの実施形態では、アルキル基は、1~8の炭素原子数、1~6の炭素原子数、1~4の炭素原子数、または1~3の炭素原子数である。直鎖上若しくは分岐鎖状のアルキル基の例として、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、ヘキシル基、ペンチル基およびオクチル基が挙げられる。
 更に、明細書、実施例および特許請求の範囲全体を通じて用いられる「アルキル」という用語には、「非置換アルキル」および「置換されたアルキル」が含まれるものとし、後者については、炭化水素骨格中の1つ以上の置換可能な炭素原子上の水素を置換する置換基を有するアルキル部分を指す。そのような置換基としては、特定されない限り、例えばハロゲン(例えばフルオロ基)、ヒドロキシル基、カルボニル基(例えばカルボキシル、アルコキシカルボニル、ホルミルまたはアシル基)、チオカルボニル基(例えばチオエステル、チオアセテートまたはチオホルメート基)、アルコキシ基、ホスホリル基、ホスフェート基、ホスホネート基、ホスフィネート基、アミノ基、アミド基、アミジン基、イミン基、シアノ基、ニトロ基、アジド基、スルフヒドリル基、アルキルチオ基、スルフェート基、スルホネート基、スルファモイル基、スルホンアミド基、スルホニル基、ヘテロシクリル基、アラルキル基または芳香族若しくは複素環式芳香族部分を挙げることができる。好ましい実施形態では、置換アルキル基上の置換基は、C1-6アルキル基、C3-6シクロアルキル基、ハロゲン、カルボニル基、シアノ基またはヒドロキシ基から選択される。より好ましい実施形態では、置換アルキル基上の置換基は、フルオロ基、カルボニル基、シアノ基またはヒドロキシル基から選択される。炭化水素鎖上の置換された部分が、それ自身必要に応じて置換されうることは、当業者に理解されるとおりである。例えば、置換アルキルの置換基としては、置換されたおよび非置換のアミノ基、アジド基、イミノ基、アミド基、ホスホリル基(ホスホネート基およびホスフィネート基を含む)、スルホニル基(スルフェート基、スルホンアミド基、スルファモイル基およびスルホネート基を含む)およびシリル基、並びに、エーテル、アルキルチオ基、カルボニル基(ケトン基、アルデヒド基、カルボキシレート基およびエステルを含む)、-CF3、-CNなどを挙げることができる。典型的な置換アルキル基については後述する。シクロアルキル基は更に、アルキル基、アルケニル基、アルコキシ基、アルキルチオ基、アミノアルキル基、カルボニル基で置換されたアルキル基、-CF3、-CNなどで更に置換されうる。
An "alkyl" group or "alkane" is a fully saturated, linear or branched, non-aromatic hydrocarbon. Typically, straight or branched chain alkyl groups, unless otherwise defined, have from 1 to about 20, preferably 1 to about 10 carbon atoms. In some embodiments, the alkyl group has 1 to 8 carbon atoms, 1 to 6 carbon atoms, 1 to 4 carbon atoms, or 1 to 3 carbon atoms. Examples of linear or branched alkyl groups include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, sec-butyl group, tert-butyl group, pentyl group, hexyl group, pentyl. Groups and octyl groups.
Furthermore, the term "alkyl" as used throughout the specification, examples and claims shall include "unsubstituted alkyl" and "substituted alkyl", the latter of which in the hydrocarbon backbone. Refers to an alkyl moiety having a substituent that replaces hydrogen on one or more substitutable carbon atoms. Unless otherwise specified, such substituents include, for example, halogen (eg, fluoro group), hydroxyl group, carbonyl group (eg, carboxyl, alkoxycarbonyl, formyl or acyl group), thiocarbonyl group (eg, thioester, thioacetate or thioformate group). ), alkoxy group, phosphoryl group, phosphate group, phosphonate group, phosphinate group, amino group, amide group, amidine group, imine group, cyano group, nitro group, azido group, sulfhydryl group, alkylthio group, sulfate group, sulfonate group, Mention may be made of sulfamoyl groups, sulfonamide groups, sulfonyl groups, heterocyclyl groups, aralkyl groups or aromatic or heteroaromatic moieties. In a preferred embodiment, the substituents on the substituted alkyl group are selected from C 1-6 alkyl groups, C 3-6 cycloalkyl groups, halogens, carbonyl groups, cyano groups or hydroxy groups. In a more preferred embodiment, the substituents on the substituted alkyl group are selected from fluoro groups, carbonyl groups, cyano groups or hydroxyl groups. It will be appreciated by those skilled in the art that the substituted moieties on the hydrocarbon chain may themselves be optionally substituted. For example, the substituent of the substituted alkyl includes a substituted and unsubstituted amino group, azido group, imino group, amide group, phosphoryl group (including phosphonate group and phosphinate group), sulfonyl group (sulfate group, sulfonamide group). , Including a sulfamoyl group and a sulfonate group) and a silyl group, and an ether, an alkylthio group, a carbonyl group (including a ketone group, an aldehyde group, a carboxylate group and an ester), —CF 3 and —CN. . Typical substituted alkyl groups will be described later. The cycloalkyl group may be further substituted with an alkyl group, an alkenyl group, an alkoxy group, an alkylthio group, an aminoalkyl group, an alkyl group substituted with a carbonyl group, —CF 3 , or —CN.
 「Cx-y」という用語は、化学基部分(例えばアシル基、アシルオキシ基、アルキル基、アルケニル基、アルキニル基またはアルコキシ基)に関連して用いられるときは、鎖中にx~y個の炭素原子を含む基を包含することを意味する。例えば、「Cx-yアルキル基」という用語には、置換若しくは非置換の飽和炭化水素基であって、鎖中にx~y個の炭素原子を含む直鎖状アルキル基および分岐鎖状アルキル基が含まれ、またハロアルキル基が含まれる。好ましいハロアルキル基としては、トリフルオロメチル基、ジフルオロメチル基、2,2,2-トリフルオロエチル基およびペンタフルオロエチル基が挙げられる。C0アルキル基とは、基が末端の位置に存在する場合には水素原子を、内部に存在する場合には結合を示す。用語「C2-yアルケニル基」および「C2-yアルキニル基」は、長さおよび置換可能性において上記のアルキル基と類似する、置換若しくは非置換の不飽和脂肪族基であって、但し、それぞれ、少なくとも1つの二重または三重結合を有する基を指す。
 本発明で用いられる「アルキルアミノ」という用語は、少なくとも1つのアルキル基で置換されたアミノ基を指す。
 本発明で用いられる「アルキルチオ」という用語は、アルキル基で置換されたチオール基を指し、一般式アルキルS-で表されうる。
 本発明で用いられる「アリールチオ」という用語は、アルキル基で置換されたチオール基を指し、一般式アリールS-で表されうる。
 本発明で用いられる「アルキニル」という用語は、少なくとも1つの三重結合を含んでいる脂肪族基を指し、「非置換アルキニル」および「置換されたアルキニル」が含まれるものとし、後者については、アルキニル基の1つ以上の炭素原子上の水素を置換する置換基を有するアルキニル部分を指す。典型的には、特に定義されない限り、直鎖状若しくは分岐鎖状のアルキニル基は、1~約20、好ましくは1~約10の炭素原子数である。そのような置換基は、1つ以上の三重結合に含まれるか若しくは含まれない1つ以上の炭素原子上に存在しうる。更に、そのような置換基には、安定性を損なわない限りにおいて、後述するように、アルキル基に含まれ得る全てのものが含まれる。例えば、1つ以上のアルキル基、カルボシクリル基、アリール基、ヘテロシクリル基またはヘテロアリール基によるアルキニル基の置換が含まれるものとする。
The term “C xy ” when used in connection with a chemical moiety (eg, an acyl group, an acyloxy group, an alkyl group, an alkenyl group, an alkynyl group, or an alkoxy group) has x to y carbon atoms in the chain. Is meant to include groups including. For example, the term “Cx-y alkyl group” refers to a substituted or unsubstituted saturated hydrocarbon group, which is a straight chain alkyl group or a branched chain alkyl group containing x to y carbon atoms in the chain. And also includes haloalkyl groups. Preferred haloalkyl groups include trifluoromethyl group, difluoromethyl group, 2,2,2-trifluoroethyl group and pentafluoroethyl group. The C 0 alkyl group represents a hydrogen atom when the group is present at the terminal position, and a bond when the group is present inside. The terms "C2 -y alkenyl group" and "C2 -y alkynyl group" are substituted or unsubstituted unsaturated aliphatic groups similar in length and substitutability to the above alkyl groups, provided that , Each refer to a group having at least one double or triple bond.
The term "alkylamino" used in the present invention refers to an amino group substituted with at least one alkyl group.
The term "alkylthio" used in the present invention refers to a thiol group substituted with an alkyl group and may be represented by the general formula alkylS-.
The term “arylthio” as used in the present invention refers to a thiol group substituted with an alkyl group and may be represented by the general formula arylS—.
The term "alkynyl" as used in the present invention refers to an aliphatic group containing at least one triple bond and is meant to include "unsubstituted alkynyl" and "substituted alkynyl", for the latter alkynyl Refers to an alkynyl moiety having a substituent that replaces hydrogen on one or more carbon atoms of the group. Typically, unless otherwise defined, straight or branched chain alkynyl groups have 1 to about 20, preferably 1 to about 10 carbon atoms. Such substituents may be present on one or more carbon atoms with or without one or more triple bonds. Further, such substituents include all that may be contained in an alkyl group, as will be described later, as long as the stability is not impaired. For example, substitution of an alkynyl group with one or more alkyl, carbocyclyl, aryl, heterocyclyl, or heteroaryl groups is meant to be included.
 本発明で用いられる「アミド」という用語は、
Figure JPOXMLDOC01-appb-C000046
で表される基を指し、式中、RAは各々独立に水素またはヒドロカルビル基を表すか、または、2つのRAは、それらが結合するN原子と共に環構造中に4~8の原子を有する複素環を形成する。
 用語「アミン」および「アミノ」は、当技術分野で周知であり、非置換のおよび置換されたアミンおよびその塩を指し、例えば、
Figure JPOXMLDOC01-appb-C000047
で表される部分を指し、式中、RAは各々独立に水素またはヒドロカルビル基を表すか、または、2つのRAは、それらが結合するN原子と共に環構造中に4~8の原子を有する複素環を形成する。
 本発明で用いられる「アミノアルキル」という用語は、アミノ基で置換されたアルキル基を指す。
 本発明で用いられる「アラルキル」という用語は、アリール基で置換されたアルキル基を指す。
The term "amide" as used in the present invention refers to
Figure JPOXMLDOC01-appb-C000046
Wherein R A independently represents hydrogen or a hydrocarbyl group, or two R A together with the N atom to which they are attached have 4 to 8 atoms in the ring structure. To form a heterocycle having.
The terms "amine" and "amino" are well known in the art and refer to unsubstituted and substituted amines and salts thereof, such as
Figure JPOXMLDOC01-appb-C000047
Wherein R A independently represents hydrogen or a hydrocarbyl group, or two R A together with the N atom to which they are attached have 4 to 8 atoms in the ring structure. To form a heterocycle having.
The term "aminoalkyl" used in the present invention refers to an alkyl group substituted with an amino group.
The term "aralkyl" as used in the present invention refers to an alkyl group substituted with an aryl group.
 本発明で用いられる「アリール」という用語には、環の各原子が炭素原子である、置換されたか若しくは非置換の単環式芳香族基が含まれる。好ましくは、前記環は6または20員環、より好ましくは6員環である。「アリール」という用語にはまた、2つ以上の炭素原子が2つの隣接する環に共有される2つ以上の環式環を有する多環系が含まれ、当該環のうちの少なくとも1つが芳香族であり、他の環が、例えばシクロアルキル基、シクロアルケニル基、シクロアルキニル基、アリール基、ヘテロアリール基および/またはヘテロシクリル基であってもよい。アリール基としては、ベンゼン、ナフタレン、フェナントレン、フェノール、アニリン等が挙げられる。
 「カルバメート」という用語は、当技術分野で公知であり、
Figure JPOXMLDOC01-appb-C000048
で表される基を指し、式中、RAは各々独立に水素またはヒドロカルビル基(例えばアルキル基)を意味するか、または両方のRAは、共通する原子と共に、環構造中に4~8の原子を有する複素環を形成する。
The term "aryl" as used in the present invention includes substituted or unsubstituted monocyclic aromatic groups in which each atom of the ring is a carbon atom. Preferably, the ring is a 6 or 20 membered ring, more preferably a 6 membered ring. The term "aryl" also includes polycyclic ring systems having two or more cyclic rings in which two or more carbon atoms are shared by two adjacent rings, at least one of which is aromatic. The other ring may be, for example, a cycloalkyl group, a cycloalkenyl group, a cycloalkynyl group, an aryl group, a heteroaryl group and/or a heterocyclyl group. Examples of the aryl group include benzene, naphthalene, phenanthrene, phenol and aniline.
The term "carbamate" is known in the art,
Figure JPOXMLDOC01-appb-C000048
Wherein R A independently represents hydrogen or a hydrocarbyl group (eg, an alkyl group), or both R A together with a common atom have from 4 to 8 ring structures. Form a heterocycle having atoms of.
 本発明で用いられる用語「炭素環」および「炭素環式」は、環の各原子が炭素原子である、飽和若しくは不飽和環を指す。好ましくは、炭素環式基は、3~20の炭素原子数である。用語「炭素環」には、芳香族の炭素環および非芳香族の炭素環の両方が含まれる。非芳香族の炭素環には、全ての炭素原子が飽和したシクロアルカン環と、少なくとも1つの二重結合を含むシクロアルケン環が含まれる。炭素環には、5~7員の単環式環および8~12員の二環式環が含まれる。二環式炭素環の各環は、飽和、不飽和および芳香族の環から選択されうる。炭素環には、1つ、2つまたは3つ以上の原子が2つの環で共有された二環式分子が含まれる。「融合炭素環」という用語は、環の各々が2つの隣接する原子を他の環と共有する二環式炭素環を指す。融合炭素環の各環は、飽和、不飽和および芳香族の環から選択されうる。典型的な実施形態では、芳香環(例えばフェニル(Ph)基)は、飽和若しくは不飽和環(例えばシクロヘキサン、シクロペンタンまたはシクロヘキセン)と融合してもよい。価数の許す限り、飽和、不飽和および芳香族二環式環のいかなる組合せも、炭素環式基の定義に含まれる。典型的な「炭素環」としては、シクロペンタン、シクロヘキサン、ビシクロ[2.2.1]ヘプタン、1,5-シクロオクタジエン、1,2,3,4-テトラヒドロナフタレン、ビシクロ[4.2.0]オクタ-3-エン、ナフタレンおよびアダマンタンが挙げられる。融合炭素環の例としては、デカリン、ナフタレン、1,2,3,4-テトラヒドロナフタレン、ビシクロ[4.2.0]オクタン、4,5,6,7-テトラヒドロ-1H-インデンおよびビシクロ[4.1.0]ヘプタ-3-エンが挙げられる。「炭素環」は、水素原子を保持できる1つ以上のいかなる位置で置換されてもよい。
 「シクロアルキル」基は、完全に飽和した環状炭化水素である。「シクロアルキル」には、単環式および二環式の環が含まれる。好ましくは、シクロアルキル基は3~20の炭素原子数である。典型的には、単環式シクロアルキル基は、3~約10の炭素原子数、より典型的には、特に定義されない限り、3~8の炭素原子数である。二環式シクロアルキル基の第2の環は、飽和、不飽和および芳香族の環から選択されうる。シクロアルキル基には、1つ、2つまたは、3つ以上の原子が2つの環で共有された二環式分子が含まれる。「融合シクロアルキル」という用語は、環の各々が2つの隣接する原子を他の環と共有する二環式シクロアルキルを指す。融合二環式シクロアルキルの第2の環は、飽和、不飽和および芳香族の環から選択されうる。「シクロアルケニル」基は、1つ以上の二重結合を含む環状炭化水素である。
The terms "carbocycle" and "carbocyclic" as used in the present invention refer to a saturated or unsaturated ring in which each atom of the ring is a carbon atom. Preferably, the carbocyclic group has 3 to 20 carbon atoms. The term "carbocycle" includes both aromatic and non-aromatic carbocycles. Non-aromatic carbocycles include cycloalkane rings saturated with all carbon atoms and cycloalkene rings containing at least one double bond. Carbocycles include 5-7 membered monocyclic rings and 8-12 membered bicyclic rings. Each ring of the bicyclic carbocycle may be selected from saturated, unsaturated and aromatic rings. Carbocycle includes bicyclic molecules in which one, two, or three or more atoms are shared by the two rings. The term "fused carbocycle" refers to a bicyclic carbocycle in which each ring shares two adjacent atoms with another ring. Each ring of the fused carbocycle may be selected from saturated, unsaturated and aromatic rings. In an exemplary embodiment, the aromatic ring (eg, phenyl (Ph) group) may be fused with a saturated or unsaturated ring (eg, cyclohexane, cyclopentane or cyclohexene). Any combination of saturated, unsaturated and aromatic bicyclic rings is included in the definition of carbocyclic group, as valency permits. Typical "carbocycles" are cyclopentane, cyclohexane, bicyclo[2.2.1]heptane, 1,5-cyclooctadiene, 1,2,3,4-tetrahydronaphthalene, bicyclo[4.2. 0]oct-3-ene, naphthalene and adamantane. Examples of fused carbocycles are decalin, naphthalene, 1,2,3,4-tetrahydronaphthalene, bicyclo[4.2.0]octane, 4,5,6,7-tetrahydro-1H-indene and bicyclo[4 .1.0]hepta-3-ene. The "carbocycle" may be substituted at any one or more positions that can carry a hydrogen atom.
A "cycloalkyl" group is a fully saturated cyclic hydrocarbon. “Cycloalkyl” includes monocyclic and bicyclic rings. Preferably, the cycloalkyl group has 3 to 20 carbon atoms. Typically, monocyclic cycloalkyl groups have 3 to about 10 carbon atoms, and more typically, 3 to 8 carbon atoms unless otherwise defined. The second ring of the bicyclic cycloalkyl group may be selected from saturated, unsaturated and aromatic rings. Cycloalkyl groups include bicyclic molecules in which one, two, three or more atoms are shared by two rings. The term "fused cycloalkyl" refers to a bicyclic cycloalkyl in which each ring shares two adjacent atoms with another ring. The second ring of the fused bicyclic cycloalkyl may be selected from saturated, unsaturated and aromatic rings. A "cycloalkenyl" group is a cyclic hydrocarbon containing one or more double bonds.
 本発明で用いられる「カルボシクリルアルキル」という用語は、炭素環基で置換されたアルキル基を指す。
 本発明で用いられる「カーボネート」という用語は、-OCO2-RA基を指し、式中、-RAはヒドロカルビル基を表す。
 本発明で用いられる「カルボキシ」という用語は、式-CO2Hで表される基を指す。
 本発明で用いられる「エステル」という用語は、-C(O)ORA基を指し、式中、RAはヒドロカルビル基を表す。
 本発明で用いられる「エーテル」という用語は、ヒドロカルビル基が酸素原子を介してもう1つのヒドロカルビル基に連結した基を指す。したがって、ヒドロカルビル基のエーテル置換基は、ヒドロカルビル-O-でありうる。エーテルは対称型であっても非対称型であってもよい。エーテルの例としては、限定されないが、複素環-O-複素環およびアリール-O-複素環が挙げられる。エーテルには「アルコキシアルキル」基が含まれ、一般式アルキル-O-アルキルで表されうる。
 本発明で用いられる用語「ハロ」および「ハロゲン」は、ハロゲン原子を意味し、塩素、フッ素、臭素およびヨウ素が含まれる。
 本発明で用いられる用語「ヘタルアルキル(hetaralkyl)」および「ヘテロアラルキル」は、ヘタリール基で置換されたアルキル基を指す。
The term "carbocyclylalkyl" as used in the present invention refers to an alkyl group substituted with a carbocyclic group.
The term "carbonate", as used in the present invention refers to --OCO 2 -R A group, wherein, -R A represents a hydrocarbyl group.
The term “carboxy” used in the present invention refers to a group represented by the formula —CO 2 H.
The term “ester” as used in the present invention refers to a —C(O)OR A group, where R A represents a hydrocarbyl group.
The term "ether" as used in the present invention refers to a group in which a hydrocarbyl group is linked to another hydrocarbyl group via an oxygen atom. Thus, the ether substituent of a hydrocarbyl group can be hydrocarbyl-O-. The ether may be symmetrical or asymmetrical. Examples of ethers include, but are not limited to, heterocycle-O-heterocycle and aryl-O-heterocycle. Ethers include "alkoxyalkyl" groups and may be represented by the general formula alkyl-O-alkyl.
The terms "halo" and "halogen" as used in the present invention mean a halogen atom and includes chlorine, fluorine, bromine and iodine.
The terms “hetaralkyl” and “heteroaralkyl” as used herein refer to an alkyl group substituted with a hetaryl group.
 本発明で用いられる「ヘテロアルキル」という用語は、炭素原子と少なくとも1つのヘテロ原子の飽和若しくは不飽和の鎖であって、2つのヘテロ原子が隣接していないものを指す。
 用語「ヘテロアリール」および「ヘタリール」には、置換若しくは非置換、好ましくは5~20員環、より好ましくは5~6員環の芳香族単環構造が含まれ、その環構造中には、少なくとも1個のヘテロ原子、好ましくは1~4個のヘテロ原子、より好ましくは1または2個のヘテロ原子が含まれる。用語「ヘテロアリール」および「ヘタリール」にはまた、2つ以上の炭素原子が2つの隣接する環に共有される2つ以上の環式環を有する多環系が含まれ、環のうちの少なくとも1つは複素環であり、他の環は、例えばシクロアルキル基、シクロアルケニル基、シクロアルキニル基、アリール基、ヘテロアリール基および/またはヘテロシクリル基であってもよい。ヘテロアリール基としては、例えばピロール、フラン、チオフェン、イミダゾール、オキサゾール、チアゾール、ピラゾール、ピリジン、ピラジン、ピリダジンおよびピリミジンなどが挙げられる。
 本発明で用いられる「ヘテロ原子」という用語は、炭素原子または水素原子以外のあらゆる元素の原子を意味する。好ましいヘテロ原子は、窒素、酸素および硫黄原子である。
 用語「ヘテロシクリル」、「複素環」および「複素環式」は、置換若しくは非置換の、好ましくは3~20員環、より好ましくは3~7員環の非芳香環構造を指し、その環構造には、少なくとも1個のヘテロ原子、好ましくは1~4個のヘテロ原子、より好ましくは1または2個のヘテロ原子が含まれる。用語「ヘテロシクリル」および「複素環」にはまた、2つ以上の炭素原子が隣接する2つの環に共有された2つ以上の環式環を有する多環系が含まれ、環のうちの少なくとも1つは複素環式であり、他の環は、例えばシクロアルキル基、シクロアルケニル基、シクロアルキニル基、アリール基、ヘテロアリール基および/またはヘテロシクリル基であってもよい。ヘテロシクリル基としては、例えばピペリジン、ピペラジン、ピロリジン、モルホリン、ラクトン、ラクタムなどが挙げられる。
 本発明で用いられる「ヘテロシクリルアルキル」という用語は、複素環基で置換されたアルキル基を指す。
The term "heteroalkyl" as used in the present invention refers to a saturated or unsaturated chain of carbon atoms and at least one heteroatom, wherein the two heteroatoms are not adjacent.
The terms "heteroaryl" and "hetaryl" include substituted or unsubstituted, preferably 5-20 membered, more preferably 5-6 membered, aromatic monocyclic ring structures in which the ring structure includes: It includes at least one heteroatom, preferably 1 to 4 heteroatoms, more preferably 1 or 2 heteroatoms. The terms "heteroaryl" and "hetaryl" also include polycyclic ring systems having two or more cyclic rings in which two or more carbon atoms are shared by two adjacent rings, and at least one of the rings. One is a heterocycle and the other may be, for example, a cycloalkyl group, a cycloalkenyl group, a cycloalkynyl group, an aryl group, a heteroaryl group and/or a heterocyclyl group. Heteroaryl groups include, for example, pyrrole, furan, thiophene, imidazole, oxazole, thiazole, pyrazole, pyridine, pyrazine, pyridazine and pyrimidine.
The term "heteroatom" as used in the present invention means an atom of any element other than a carbon atom or a hydrogen atom. Preferred heteroatoms are nitrogen, oxygen and sulfur atoms.
The terms “heterocyclyl”, “heterocycle” and “heterocyclic” refer to a substituted or unsubstituted non-aromatic ring structure, preferably a 3-20 membered ring, more preferably a 3-7 membered ring, the ring structure of which Includes at least one heteroatom, preferably 1 to 4 heteroatoms, more preferably 1 or 2 heteroatoms. The terms “heterocyclyl” and “heterocycle” also include polycyclic ring systems having two or more cyclic rings in which two or more carbon atoms are shared by two adjacent rings, and at least one of the rings One is heterocyclic and the other ring may be, for example, a cycloalkyl group, a cycloalkenyl group, a cycloalkynyl group, an aryl group, a heteroaryl group and/or a heterocyclyl group. Examples of the heterocyclyl group include piperidine, piperazine, pyrrolidine, morpholine, lactone, lactam and the like.
The term "heterocyclylalkyl" used in the present invention refers to an alkyl group substituted with a heterocyclic group.
 本発明で用いられる「ヒドロカルビル」という用語は、炭素原子を介して結合し、当該炭素原子が=Oまたは=S置換基を有さない基を指す。ヒドロカルビル基は、ヘテロ原子を任意に含んでもよい。ヒドロカルビル基としては、限定されないが、アルキル基、アルケニル基、アルキニル基、アルコキシアルキル基、アミノアルキル基、アラルキル基、アリール基、アラルキル基、カルボシクリル基、シクロアルキル基、カルボシクリルアルキル基、ヘテロアラルキル基、炭素原子を介して結合したヘテロアリール基、炭素原子を介して結合したヘテロシクリル基、ヘテロシクリルアルキル基またはヒドロキシアルキル基が挙げられる。すなわち、メチル基、エトキシエチル基、2-ピリジル基およびトリフルオロメチル基などの基はヒドロカルビル基であるが、アセチル基(結合する炭素原子上に=O置換基を有する)およびエトキシ基(炭素原子ではなく酸素原子を介して連結する)などの置換基は該当しない。
 本発明で用いられる「ヒドロキシアルキル」という用語は、ヒドロキシ基で置換されたアルキル基を指す。
 用語「低級」は、例えばアシル基、アシルオキシ基、アルキル基、アルケニル基、アルキニル基またはアルコキシ基などの化学部分に関連して用いられるとき、6以下の非水素原子が置換基中に存在する基のことを意味する。「低級アルキル基」は、例えば6以下の炭素原子数のアルキル基を指す。いくつかの実施形態では、アルキル基は炭素原子数1~6、炭素原子数1~4、または炭素原子数1~3である。特定の実施形態では、本発明で定義されるアシル、アシルオキシ、アルキル、アルケニル、アルキニルまたはアルコキシ置換基は、それらが単独でまたは他の置換基との組み合わせ(例えばヒドロキシアルキルおよびアラルキル基)で存在する場合(例えば、アルキル置換基の炭素原子数をカウントする場合にはアリール基内の原子はカウントしない)、それぞれ低級アシル、低級アシルオキシ、低級アルキル、低級アルケニル、低級アルキニルまたは低級アルコキシ基である。
The term “hydrocarbyl” as used in the present invention refers to a group attached through a carbon atom, which carbon atom has no ═O or ═S substituent. The hydrocarbyl group may optionally include heteroatoms. Hydrocarbyl groups include, but are not limited to, alkyl groups, alkenyl groups, alkynyl groups, alkoxyalkyl groups, aminoalkyl groups, aralkyl groups, aryl groups, aralkyl groups, carbocyclyl groups, cycloalkyl groups, carbocyclylalkyl groups, heteroaralkyl groups. And a heteroaryl group bonded via a carbon atom, a heterocyclyl group bonded via a carbon atom, a heterocyclylalkyl group or a hydroxyalkyl group. That is, groups such as a methyl group, an ethoxyethyl group, a 2-pyridyl group and a trifluoromethyl group are hydrocarbyl groups, but an acetyl group (having an ═O substituent on a carbon atom to which it is attached) and an ethoxy group (having a carbon atom). But not via an oxygen atom).
The term "hydroxyalkyl" as used in the present invention refers to an alkyl group substituted with a hydroxy group.
The term "lower" when used in connection with a chemical moiety such as an acyl group, an acyloxy group, an alkyl group, an alkenyl group, an alkynyl group or an alkoxy group is a group in which 6 or less non-hydrogen atoms are present in a substituent group. Means that. The "lower alkyl group" refers to an alkyl group having 6 or less carbon atoms. In some embodiments, the alkyl group has 1 to 6 carbon atoms, 1 to 4 carbon atoms, or 1 to 3 carbon atoms. In a particular embodiment, the acyl, acyloxy, alkyl, alkenyl, alkynyl or alkoxy substituents as defined in this invention are present alone or in combination with other substituents (eg hydroxyalkyl and aralkyl groups). In this case (for example, when counting the carbon atoms of an alkyl substituent, the atoms in the aryl group are not counted), each is a lower acyl, a lower acyloxy, a lower alkyl, a lower alkenyl, a lower alkynyl or a lower alkoxy group.
 用語「ポリシクリル」、「多環」および「多環式」は、例えばシクロアルキル基、シクロアルケニル基、シクロアルキニル基、アリール基、ヘテロアリール基および/またはヘテロシクリル基などの2つ以上から形成され、隣接する2つの環が2つ以上の原子を共有する環のことを指し、その場合、当該環は例えば「融合環」となる。多環に存在する各環は、置換されてもよく、または未置換であってもよい。特定の実施形態では、多環を構成する各環は、環中に3~10個、好ましくは5~7個の原子を含む。
 用語「ポリ(メタフェニレンオキシド)」中、「フェニレン」という用語は、包括的には、6員のアリールまたは6員のヘテロアリール部分を指す。典型的なポリ(メタフェニレンオキシド)は、本発明の開示における第1~第20番目の態様として記載する。
 「シリル」という用語は、3つのヒドロカルビル部分が結合したシリコン部分を指す。
 「置換された」という用語は、主鎖中の1つ以上の炭素原子上の水素を置換する置換基を有する部分を指す。当然ながら、「置換」または「~で置換された」というときは、そのような置換が、置換される原子と置換基との価数に従うものであって、当該置換により化合物が安定化する(例えば、転移、環化、除去などの変化が自発的に生じない)ことを暗に含むものである。置換されてもよい部分には、本明細書に記載のあらゆる適切な置換基が含まれ、例えばアシル基、アシルアミノ基、アシルオキシ基、アルコキシ基、アルコキシアルキル基、アルケニル基、アルキル基、アルキルアミノ基、アルキルチオ基、アリールチオ基、アルキニル基、アミド基、アミノ基、アミノアルキル基、アラルキル基、カルバメート基、カルボシクリル基、シクロアルキル基、カルボシクリルアルキル基、カーボネート基、エステル基、エーテル基、ヘテロアラルキル基、ヘテロシクリル基、ヘテロシクリルアルキル基、ヒドロカルビル基、シリル基、スルホン基またはチオエーテル基が挙げられる。本明細書において、「置換された」という用語は、有機化合物に存在しうる全ての置換基が含まれるものとする。広義には、前記の存在しうる置換基には、非環式および環式の、分岐鎖状および非分岐鎖状の、炭素環式および複素環式の、芳香族および非芳香族の、有機化合物の置換基が含まれる。前記の存在し得る置換基は、適切な有機化合物に対して、1以上の、同じまたは異なるものでありうる。本発明の目的においては、窒素などのヘテロ原子は、水素置換基、および/または、本願明細書に記載の、当該ヘテロ原子の価数を満たす、有機化合物に存在しうるあらゆる置換基を有してもよい。置換基には、本願明細書に記載のあらゆる置換基が含まれ、例えばハロゲン、ヒドロキシル基、カルボニル基(例えばカルボキシル、アルコキシカルボニル、ホルミルまたはアシル基)、チオカルボニル基(例えばチオエステル、チオアセテートまたはチオホルメート基)、アルコキシ基、ホスホリル基、リン酸塩基、ホスホン酸塩基、ホスフィネート基、アミノ基、アミド基、アミジン基、イミン基、シアノ基、ニトロ基、アジド基、スルフヒドリル基、アルキルチオ基、スルフェート基、スルホネート基、スルファモイル基、スルホンアミド基、スルホニル基、ヘテロシクリル基、アラルキル基または芳香族若しくは複素環式芳香族部分が含まれる。好ましい実施形態では、置換されたアルキル基の置換基は、C1-6アルキル基、C3-6シクロアルキル基、ハロゲン、カルボニル基、シアノ基、ヒドロキシ基から選択される。より好ましい実施形態では、置換されたアルキル基の置換基は、フルオロ基、カルボニル基、シアノ基またはヒドロキシル基から選択される。当業者であれば、当該置換基はそれ自身適宜置換されうることを理解するであろう。「非置換の」として特に記載のない限り、本願明細書中の化学基部分に関する言及には、置換された修飾体が含まれるものとして理解される。例えば、「アリール」基または部分に関する言及には、置換されたおよび非置換の修飾体が暗に含まれる。
 「スルホネート」という用語は、当技術分野で公知であり、SO3H基またはその薬学的に許容できる塩を指す。
 「スルホン」という用語は、当技術分野で公知であり、-S(O)2-RA基を指し、式中、RAはヒドロカルビル基を表す。
 本発明で用いられる「チオエーテル」という用語は、酸素が硫黄で置換されたエーテル等価体である。
The terms “polycyclyl”, “polycyclic” and “polycyclic” are formed from two or more, such as, for example, cycloalkyl groups, cycloalkenyl groups, cycloalkynyl groups, aryl groups, heteroaryl groups and/or heterocyclyl groups, It refers to a ring in which two adjacent rings share two or more atoms, in which case the ring is, for example, a “fused ring”. Each ring present in the polycycle may be substituted or unsubstituted. In certain embodiments, each ring that makes up the polycycle contains 3-10, preferably 5-7, atoms in the ring.
In the term "poly(metaphenylene oxide)," the term "phenylene" refers generically to a 6-membered aryl or 6-membered heteroaryl moiety. Typical poly(metaphenylene oxide)s are described as the first to twentieth aspects of the present disclosure.
The term "silyl" refers to a silicon moiety with three hydrocarbyl moieties attached.
The term "substituted" refers to moieties having a substituent that replaces a hydrogen on one or more carbon atoms in the backbone. Of course, when referring to “substituted” or “substituted with”, such substitution depends on the valence of the atom to be replaced and the substituent, and the substitution stabilizes the compound ( (For example, changes such as transfer, cyclization, and removal do not occur spontaneously). The part which may be substituted includes all the suitable substituents described in the present specification, for example, an acyl group, an acylamino group, an acyloxy group, an alkoxy group, an alkoxyalkyl group, an alkenyl group, an alkyl group, an alkylamino group. , Alkylthio group, arylthio group, alkynyl group, amide group, amino group, aminoalkyl group, aralkyl group, carbamate group, carbocyclyl group, cycloalkyl group, carbocyclylalkyl group, carbonate group, ester group, ether group, heteroaralkyl A group, a heterocyclyl group, a heterocyclylalkyl group, a hydrocarbyl group, a silyl group, a sulfone group or a thioether group. As used herein, the term "substituted" shall include all substituents which may be present on an organic compound. Broadly, the possible substituents mentioned above include acyclic and cyclic, branched and unbranched, carbocyclic and heterocyclic, aromatic and nonaromatic, organic Included are compound substituents. The abovementioned possible substituents can be one or more, the same or different, for suitable organic compounds. For purposes of this invention, a heteroatom, such as nitrogen, has a hydrogen substituent and/or any substituent described herein that may be present in an organic compound that meets the valence of the heteroatom. May be. Substituents include any substituents described herein, such as halogen, hydroxyl, carbonyl (eg carboxyl, alkoxycarbonyl, formyl or acyl), thiocarbonyl (eg thioester, thioacetate or thioformate). Group), alkoxy group, phosphoryl group, phosphate group, phosphonate group, phosphinate group, amino group, amide group, amidine group, imine group, cyano group, nitro group, azido group, sulfhydryl group, alkylthio group, sulfate group, Included are sulfonate, sulfamoyl, sulfonamide, sulfonyl, heterocyclyl, aralkyl or aromatic or heteroaromatic moieties. In a preferred embodiment, the substituents on the substituted alkyl group are selected from C 1-6 alkyl groups, C 3-6 cycloalkyl groups, halogens, carbonyl groups, cyano groups, hydroxy groups. In a more preferred embodiment, the substituents on the substituted alkyl group are selected from fluoro groups, carbonyl groups, cyano groups or hydroxyl groups. Those skilled in the art will appreciate that the substituents may themselves be optionally substituted. Unless otherwise specified as "unsubstituted," references herein to chemical moieties are understood to include substituted modifications. For example, a reference to an "aryl" group or moiety implicitly includes substituted and unsubstituted modifications.
The term "sulfonate" is known in the art, it refers to a SO 3 H group, or a pharmaceutically acceptable salt thereof.
The term “sulfone” is known in the art and refers to a —S(O) 2 —R A group, where R A represents a hydrocarbyl group.
The term "thioether" as used in the present invention is an ether equivalent in which oxygen is replaced by sulfur.
 本発明で用いられる「対称性の分子」という用語は、対称形の基または対称形の化合物である分子を指す。本発明で用いられる「対称形の基」という用語は、基に関する分子対称性理論に従い左右対称である分子を指す。本発明で用いられる「対称形の化合物」という用語は、レギオ選択的な合成ストラテジーが必要でないように選択される分子を指す。
 本発明で用いられる「供与体」という用語は、有機発光ダイオードで使用でき、励起により、その最高被占分子軌道から電子を受容体に対して供給する性質を有する分子断片を指す。例示的実施形態では、供与体は-6.5eV以上のイオン化ポテンシャルを有する。
 本発明で用いられる「受容体」という用語は、有機発光ダイオードで使用でき、励起した供与体から電子をその最低空軌道に受容する性質を有する分子断片を指す。例示的な実施形態では、受容体は-0.5eV以下の電子親和力を有する。
 本発明で用いられる「ブリッジもしくは連結基」という用語は、受容体と供与体部分との間で共有結合する分子に含まれうる分子断片を指す。前記ブリッジは、例えば受容体部分、供与体部分またはその両方と更に共役しうる。特定の理論に拘束されないが、ブリッジ部分が受容体と供与体部分とを、特異的な立体配置的構成に制限でき、それにより、供与体と受容体部分とのπ共役系部分が生じるのを防止すると考えられる。適切なブリッジ部分の例としては、フェニル、エテニルおよびエチニル部分が挙げられる。
 本発明で用いられる「多価」という用語は、分子断片が少なくとも2つの他の分子断片と結合することを指す。例えば、ブリッジ部分は多価である。
 本願明細書で用いられる「~~~」は、2つの原子間の結合部位を指す。
The term "symmetric molecule" as used in the present invention refers to a molecule that is a symmetric group or a symmetric compound. The term "symmetrical group" as used herein refers to a molecule that is bilaterally symmetric according to the theory of molecular symmetry for groups. The term "symmetrical compound" as used in the present invention refers to a molecule selected such that no regioselective synthetic strategy is required.
The term "donor" as used in the present invention refers to a molecular fragment that can be used in an organic light emitting diode and has the property of, upon excitation, supplying an electron from its highest occupied molecular orbital to an acceptor. In an exemplary embodiment, the donor has an ionization potential of -6.5 eV or higher.
The term "acceptor" as used in the present invention refers to a molecular fragment that can be used in organic light emitting diodes and has the property of accepting an electron from an excited donor into its lowest unoccupied orbital. In an exemplary embodiment, the receptor has an electron affinity of -0.5 eV or less.
The term “bridge or linking group” as used in the present invention refers to a molecular fragment that can be included in a molecule that covalently bonds between an acceptor and a donor moiety. The bridge may be further conjugated, for example, with an acceptor moiety, a donor moiety, or both. Without being bound by any particular theory, it is believed that the bridging moiety can limit the acceptor and donor moieties to a specific conformational configuration, which results in a π-conjugated moiety of the donor and acceptor moieties. Thought to prevent. Examples of suitable bridging moieties include phenyl, ethenyl and ethynyl moieties.
The term "multivalent" as used in the present invention refers to the binding of a molecular fragment to at least two other molecular fragments. For example, the bridge part is multi-valued.
As used herein, "..." refers to the bond site between two atoms.
 「正孔輸送層(HTL)」および同様の用語は、正孔を輸送する材料から作製された層を意味する。高い正孔輸送能を有することが推奨される。HTLは、発光層により輸送される電子の通過をブロックするのに用いられる。低い電子親和力は、典型的には電子のブロックに必要となる。HTLは、隣接する発光層(EML)からの励起子移動をブロックするため、好ましくは高い三重項を有するべきである。HTL化合物の例としては、限定されないがジ(p-トリル)アミノフェニル]シクロヘキサン(TAPC)、N,N-ジフェニル-N,N-ビス(3-メチルフェニル)-1,1-ビフェニル-4,4-ジアミン(TPD)、およびN,N’-ジフェニル-N,N’-ビス(1-ナフチル)-(1,1’-ビフェニル)-4,4’-ジアミン(NPB、α-NPD)が挙げられる。
 「発光層」および同様の用語は、ホストとドーパントとからなる層を意味する。ホスト材料はバイポーラ性またはユニポーラ性であってもよく、それ単独または2以上のホスト材料の組合せで用いられてもよい。ホスト材料の視覚的-電気的特性は、いずれのタイプのドーパント(燐光または蛍光)が用いられるかにより異なりうる。蛍光ドーパントの場合、アシスト用のホスト材料は、ドーパントへの良好なフェルスター(Foerster)移動を誘導するために、ドーパントの吸収とホストの放出との良好なスペクトル重複部分を有するべきである。燐光ドーパントの場合、アシスト用のホスト材料は、ドーパントの三重項を閉じ込めるために、高い三重項エネルギーを有するべきである。
 本発明の化合物において、特定のアイソトープとして特定されないいかなる原子も、当該原子のいかなる安定なアイソトープとして包含される。特に明記しない限り、「H」または「水素」として状態が特定されるとき、その状態は、その天然におけるアイソトープ組成の水素を有するものとして理解される。また、特に明記しない限り、状態が「D」または「重水素」として特定されるとき、その状態は、天然における重水素の量0.015%より少なくとも3340倍高い量の重水素を有する(すなわち、少なくとも重水素の含量が50.1%の)ものとして理解される。
 本発明で用いられる「アイソトープ濃縮率」という用語は、アイソトープ量と天然における特定のアイソトープ量との比率を意味する。
"Hole transport layer (HTL)" and like terms mean a layer made of a material that transports holes. It is recommended to have a high hole transporting ability. HTLs are used to block the passage of electrons transported by the light emitting layer. Low electron affinity is typically required for blocking electrons. The HTL should preferably have a high triplet as it blocks exciton migration from the adjacent emitting layer (EML). Examples of HTL compounds include, but are not limited to, di(p-tolyl)aminophenyl]cyclohexane (TAPC), N,N-diphenyl-N,N-bis(3-methylphenyl)-1,1-biphenyl-4, 4-diamine (TPD), and N,N'-diphenyl-N,N'-bis(1-naphthyl)-(1,1'-biphenyl)-4,4'-diamine (NPB, α-NPD) Can be mentioned.
"Emitting layer" and like terms mean a layer consisting of a host and a dopant. The host material may be bipolar or unipolar and may be used alone or in combination of two or more host materials. The visual-electrical properties of the host material may differ depending on which type of dopant (phosphorescent or fluorescent) is used. In the case of fluorescent dopants, the assisting host material should have a good spectral overlap between the absorption of the dopant and the emission of the host in order to induce a good Foerster transfer to the dopant. For phosphorescent dopants, the assisting host material should have a high triplet energy to confine the triplet of the dopant.
In the compounds of this invention any atom not specified as a particular isotope is included as any stable isotope of that atom. Unless otherwise stated, when a condition is identified as "H" or "hydrogen," that condition is understood to have hydrogen in its natural isotopic composition. Also, unless otherwise stated, when a condition is identified as "D" or "deuterium," it has an amount of deuterium that is at least 3340 times higher than the 0.015% amount of deuterium in nature (ie, , With a deuterium content of at least 50.1%).
The term “isotope enrichment ratio” as used in the present invention means a ratio between an isotope amount and a specific isotope amount in nature.
 様々な実施形態において、本発明の化合物は、少なくとも3500(重水素原子52.5%)、少なくとも4000(60%の重水素)、少なくとも4500(67.5%の重水素)、少なくとも5000(75%の重水素)、少なくとも5500(82.5%の重水素)、少なくとも6000(90%の重水素)、少なくとも6333.3(95%の重水素)、少なくとも6466.7(97%の重水素)、少なくとも6600(99%の重水素)または少なくとも6633.3(99.5%の重水素)のアイソトープ濃縮率(各重水素原子含量毎)を有する。
 「同位体置換体」という用語は、アイソトープ組成だけが本発明の具体的化合物と異なる種のことを指す。
 本発明の化合物に言及する場合、「化合物」という用語は、同一の化学構造を有する分子の集まりを指すが、但し、分子の構成原子間にアイソトープ変動が存在する場合がある。ゆえに、当業者に自明であるように、所定の重水素原子を含有する特定の化学構造で表される化合物は、当該構造内の所定の重水素のうちの1つ以上の位置において水素原子を有する、同位体置換体を若干含むこともありうる。本発明の化合物におけるそのような同位体置換体の相対量は、化合物の調製に用いられる重水素化試薬のアイソトープ純度、および化合物を調製するための様々な合成ステップにおける重水素の取り込み効率などの多くの要因に依存する。しかしながら、前述のように、そのような同位体置換体の相対量は、全体で化合物の49.9%未満である。他の実施形態では、そのような同位体置換体の相対量は、全体で化合物の47.5%未満、40%未満、32.5%未満、25%未満、17.5%未満、10%未満、5%未満、3%未満、1%未満または0.5%未満である。
 「D」および「d」はいずれも重水素を指す。
 「重水素で置換された」とは、対応する重水素原子の数により1つ以上の水素原子が置換されたことを指す。
In various embodiments, the compounds of the invention are at least 3500 (52.5% deuterium atoms), at least 4000 (60% deuterium), at least 4500 (67.5% deuterium), at least 5000 (75%). % Deuterium), at least 5500 (82.5% deuterium), at least 6000 (90% deuterium), at least 6333.3 (95% deuterium), at least 6466.7 (97% deuterium). ), at least 6600 (99% deuterium) or at least 6633.3 (99.5% deuterium) isotope enrichment (for each deuterium atom content).
The term “isotopic substitute” refers to a species that differs only in isotopic composition from a particular compound of the invention.
The term "compound" when referring to a compound of the invention, refers to a collection of molecules having the same chemical structure, except that there may be isotopic variations between the constituent atoms of the molecule. Thus, as will be apparent to one of skill in the art, a compound represented by a particular chemical structure containing a given deuterium atom will have a hydrogen atom at one or more positions of the given deuterium within the structure. May have some isotopic substitutions. The relative amounts of such isotopic substituents in the compounds of the invention, such as the isotopic purity of the deuteration reagents used to prepare the compounds, and the efficiency of deuterium uptake in the various synthetic steps for preparing the compounds. Depends on many factors. However, as noted above, the relative amounts of such isotopic substitutes are less than 49.9% of the compound in total. In other embodiments, the relative amount of such isotopic substitutions is less than 47.5%, less than 40%, less than 32.5%, less than 25%, less than 17.5%, 10% of the total compounds. Less than 5%, less than 3%, less than 1%, or less than 0.5%.
Both "D" and "d" refer to deuterium.
"Substituted with deuterium" means that one or more hydrogen atoms have been replaced by the corresponding number of deuterium atoms.
 以下に実施例を挙げて本発明の特徴をさらに具体的に説明する。以下に示す材料、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができる。したがって、本発明の範囲は以下に示す具体例により限定的に解釈されるべきものではない。なお、膜の形成は、図2に示す真空蒸着装置を用いて行った。 The features of the present invention will be described more specifically with reference to the following examples. The materials, processing contents, processing procedures, and the like shown below can be appropriately changed without departing from the spirit of the present invention. Therefore, the scope of the present invention should not be limitedly interpreted by the following specific examples. The film was formed using the vacuum vapor deposition device shown in FIG.
(実施例1)第1化合物として化合物T1、第2化合物として化合物F88を用いた有機エレクトロルミネッセンス素子の作製と評価
 図2に示す真空蒸着装置を用いて、膜厚100nmのインジウム・スズ酸化物(ITO)からなる陽極が形成されたガラス基板上に真空蒸着法で有機層を積層した。まず、HAT-CNを10nmの厚みで形成し、その上にtris-PCzを15nmの厚みで形成し、さらにその上にmCBPを5nmの厚みで形成した。
 化合物T1の粉末96mgと化合物F88の粉末4mgをメノー乳鉢で約10分間混練し、混合物100mgを図2に示す真空蒸着装置のルツボ内に入れた。また、真空蒸着装置内の別のルツボ(図示せず)にmCBPを入れた。この状態で、化合物T1と化合物F88の混合物を0.15Å/s、mCBPを0.45Å/sで共蒸着し、30nmの厚みの発光層を形成した。
 さらにその上に、mTRZ1DPBFを10nmの厚みで形成し、さらにその上にmTRZ1DPBFとLiq(重量比7:3)を40nmの厚みで形成した。さらにその上にLiqを2nmの厚みで形成し、次いでアルミニウム(Al)を100nmの厚みで蒸着することにより陰極を形成し、有機エレクトロルミネッセンス素子とした。
(Example 1) Preparation and evaluation of organic electroluminescence device using compound T1 as first compound and compound F88 as second compound Indium tin oxide (100 nm thick) was formed using the vacuum vapor deposition apparatus shown in FIG. An organic layer was laminated by a vacuum deposition method on a glass substrate on which an anode made of (ITO) was formed. First, HAT-CN was formed to a thickness of 10 nm, tris-PCz was formed thereon to a thickness of 15 nm, and mCBP was formed thereon to a thickness of 5 nm.
96 mg of the powder of the compound T1 and 4 mg of the powder of the compound F88 were kneaded in a Menort mortar for about 10 minutes, and 100 mg of the mixture was put in the crucible of the vacuum vapor deposition apparatus shown in FIG. Further, mCBP was put in another crucible (not shown) in the vacuum vapor deposition apparatus. In this state, a mixture of compound T1 and compound F88 was co-evaporated at 0.15Å/s and mCBP at 0.45Å/s to form a light emitting layer having a thickness of 30 nm.
Further, mTRZ1DPBF was formed thereon with a thickness of 10 nm, and mTRZ1DPBF and Liq (weight ratio 7:3) were formed thereon with a thickness of 40 nm. Further, Liq was formed thereon to a thickness of 2 nm, and then aluminum (Al) was evaporated to a thickness of 100 nm to form a cathode, to obtain an organic electroluminescence device.
(実施例2~21)第1化合物および第2化合物として他の化合物を用いた有機エレクトロルミネッセンス素子の作製と評価
 蒸着材料に用いる第1化合物(式(1)を満たす材料)および第2化合物(式(2)を満たす蛍光材料)を表2に示す化合物の粉末に変更して、実施例1と同様にして共蒸着を行い、膜を形成する。
(Examples 2 to 21) Preparation and evaluation of organic electroluminescent device using other compound as first compound and second compound First compound (material satisfying formula (1)) and second compound (material satisfying formula (1)) used for vapor deposition material A fluorescent material satisfying the formula (2) is changed to the compound powder shown in Table 2, and coevaporation is performed in the same manner as in Example 1 to form a film.
Figure JPOXMLDOC01-appb-T000049
Figure JPOXMLDOC01-appb-T000049
(実施例22)化合物T9(化合物1)および化合物T10(化合物2)の熱特性の評価と膜の作製
 熱重量示差熱分析(TG-DTA)装置(Bruker社製、TG-DTA2400SA)を用いて、化合物T9(4CzIPN-Me)と化合物T10(4CzTPN)をそれぞれ5mg秤量し、真空下1Paにおいて昇温速度毎分10℃で熱重量分析を行った。この時の温度Tと化合物T9の重量減少率Wの変化を図3に示し、温度Tと化合物T10の重量減少率Wの変化を図4に示す。図3および図4から、化合物T9と化合物T10の各重量が-50%まで減少した温度(TWT)と化合物T9と化合物T10のdW/dTが同じになる温度(TGR)は、いずれも351℃であることが確認された。
 化合物T9の粉末と化合物T10の粉末を重量比が95:5となるようにメノー乳鉢に入れ、約10分間混練した。混合物100mgを図2に示す真空蒸着装置のルツボ内に入れた。この状態で、351℃まで昇温し、基板上に膜を形成させた。形成された膜は、化合物T9と化合物T10の重量比が95:5である。
Example 22 Evaluation of Thermal Properties of Compound T9 (Compound 1) and Compound T10 (Compound 2) and Preparation of Membrane Using a thermogravimetric differential thermal analysis (TG-DTA) apparatus (TG-DTA2400SA manufactured by Bruker) 5 mg each of the compound T9 (4CzIPN-Me) and the compound T10 (4CzTPN) were weighed, and thermogravimetric analysis was performed under vacuum at 1 Pa at a heating rate of 10° C./min. Changes in temperature T and weight loss rate W of compound T9 at this time are shown in FIG. 3, and changes in temperature T and weight loss rate W of compound T10 are shown in FIG. From FIG. 3 and FIG. 4, the temperature at which the respective weights of compound T9 and compound T10 are reduced to −50% (T WT ) and the temperature at which dW/dT of compound T9 and compound T10 are the same (T GR ) are both It was confirmed to be 351°C.
The powder of the compound T9 and the powder of the compound T10 were put in a menor mortar so that the weight ratio was 95:5, and kneaded for about 10 minutes. 100 mg of the mixture was placed in the crucible of the vacuum vapor deposition device shown in FIG. In this state, the temperature was raised to 351° C. to form a film on the substrate. The formed film has a weight ratio of compound T9 and compound T10 of 95:5.
(実施例23)第1化合物として化合物T8、第2化合物として化合物T10、ホスト材料としてmCBPを用いた有機エレクトロルミネッセンス素子の作製と評価
 T8のトルエン溶液とT10のトルエン溶液を用いて、前述の測定法にしたがってES1を測定したところ、T8は2.71eV、T10は2.48eVであった。
 図2に示す真空蒸着装置を用いて、膜厚100nmのインジウム・スズ酸化物(ITO)からなる陽極が形成されたガラス基板上に真空蒸着法で有機層を積層した。まず、HAT-CNを10nmの厚みで形成し、その上にtris-PCzを25nmの厚みで形成し、さらにその上にmCBPを5nmの厚みで形成した。
 化合物T8の粉末183mgと化合物T10の粉末18.8mgをメノー乳鉢で約10分間混練し、混合物100mgを図2に示す真空蒸着装置のルツボ内に入れた。また、真空蒸着装置内の別のルツボ(図示せず)にmCBPを入れた。この状態で、mCBPと混合物の重量比が45:55となるよう共蒸着し、30nmの厚みの発光層を形成した。このとき化合物T8と化合物T10の混合物の蒸着速度は0.28Å/sであった。
 さらにその上に、SF3TRZを10nmの厚みで形成し、さらにその上にSF3TRZとLiq(重量比7:3)を40nmの厚みで形成した。さらにその上にLiqを2nmの厚みで形成し、次いでアルミニウム(Al)を100nmの厚みで蒸着することにより陰極を形成し、有機エレクトロルミネッセンス素子とした。
 以上の工程による有機エレクトロルミネッセンス素子作成終了後、真空蒸着装置のルツボ内へ材料の追加充填を行わず、上記と同じ有機エレクトロルミネッセンス素子をさらに2回繰り返して作製した。
(Example 23) Preparation and evaluation of organic electroluminescent device using compound T8 as first compound, compound T10 as second compound, and mCBP as host material. Using toluene solution of T8 and toluene solution of T10, the above measurement was conducted. When E S1 was measured according to the method, T8 was 2.71 eV and T10 was 2.48 eV.
Using the vacuum vapor deposition apparatus shown in FIG. 2, an organic layer was laminated by a vacuum vapor deposition method on a glass substrate on which an anode made of indium tin oxide (ITO) having a film thickness of 100 nm was formed. First, HAT-CN was formed to a thickness of 10 nm, tris-PCz was formed thereon to a thickness of 25 nm, and mCBP was formed thereon to a thickness of 5 nm.
183 mg of the powder of compound T8 and 18.8 mg of the powder of compound T10 were kneaded in a Menort mortar for about 10 minutes, and 100 mg of the mixture was placed in the crucible of the vacuum vapor deposition apparatus shown in FIG. Further, mCBP was put in another crucible (not shown) in the vacuum vapor deposition apparatus. In this state, co-evaporation was performed so that the weight ratio of mCBP and the mixture was 45:55 to form a light emitting layer having a thickness of 30 nm. At this time, the vapor deposition rate of the mixture of the compound T8 and the compound T10 was 0.28Å/s.
Further, SF3TRZ was formed thereon with a thickness of 10 nm, and SF3TRZ and Liq (weight ratio 7:3) were formed thereon with a thickness of 40 nm. Further, Liq was formed thereon to a thickness of 2 nm, and then aluminum (Al) was evaporated to a thickness of 100 nm to form a cathode, to obtain an organic electroluminescence device.
After completion of the organic electroluminescence device fabrication by the above steps, the same organic electroluminescence device as above was further fabricated twice without additionally filling the crucible of the vacuum vapor deposition device with the material.
(実施例24)第1化合物と第2化合物の混合物の蒸着速度を変えた有機エレクトロルミネッセンス素子の作製と評価
 発光層を形成する際、混合物の蒸着速度を2.80Å/sに変えたこと以外は実施例23と同様にして有機エレクトロルミネッセンス素子を作製した。
(Example 24) Preparation and evaluation of organic electroluminescence device in which vapor deposition rate of mixture of first compound and second compound was changed. Other than changing vapor deposition rate of mixture to 2.80Å/s when forming a light emitting layer. An organic electroluminescence device was produced in the same manner as in Example 23.
 実施例23、24において作製した有機エレクトロルミネッセンス素子を1000cd/m2の輝度で発光させた場合の外部量子効率およびCIE色度座標を表3に示す。 Table 3 shows the external quantum efficiency and CIE chromaticity coordinates when the organic electroluminescent elements produced in Examples 23 and 24 were made to emit light at a luminance of 1000 cd/m 2 .
Figure JPOXMLDOC01-appb-T000050
Figure JPOXMLDOC01-appb-T000050
 表3に示すように、実施例23、24で作製した4つの有機エレクトロルミネッセンス素子は、蒸着時のルツボ内の混合物充填量や蒸着速度が異なるにも関わらず、いずれも高い外部量子効率を示し、その外部量子効率と発光色は同程度であった。このことから、第1化合物と第2化合物をともに含む蒸着源を用いることにより、有機エレクトロルミネッセンス素子を、良好な特性を与えて安定に製造できることが確認された。 As shown in Table 3, the four organic electroluminescent devices produced in Examples 23 and 24 all showed high external quantum efficiency despite the fact that the amount of the mixture filled in the crucible during vapor deposition and the vapor deposition rate were different. , Their external quantum efficiency and emission color were similar. From this, it was confirmed that the organic electroluminescence device can be stably manufactured with good characteristics by using the vapor deposition source containing both the first compound and the second compound.
(実施例25)第1化合物として化合物T8、第2化合物として化合物T10、ホスト材料としてmCBP、発光ドーパントとして化合物F71を用いた有機エレクトロルミネッセンス素子の作製と評価
 発光層を形成する際、さらに化合物F71を真空蒸着装置内の別のルツボに入れ、mCBP、化合物T8と化合物T10の混合物、化合物F71を共蒸着したこと以外は、実施例23と同様にして有機エレクトロルミネッセンス素子を作製した。このときmCBP:混合物:化合物F71(重量比)は44.5:55:0.5とした。
(Example 25) Preparation and evaluation of organic electroluminescence device using compound T8 as first compound, compound T10 as second compound, mCBP as host material, and compound F71 as luminescent dopant When forming a light emitting layer, compound F71 was further added. Was placed in another crucible in a vacuum evaporation apparatus, and mCBP, a mixture of compound T8 and compound T10, and compound F71 were co-evaporated, and an organic electroluminescence device was produced in the same manner as in Example 23. At this time, mCBP:mixture:compound F71 (weight ratio) was set to 44.5:55:0.5.
(実施例26)発光層形成材料の配合比を変えた有機エレクトロルミネッセンス素子の作製と評価
 発光層を形成する際、mCBP:混合物:化合物F71(重量比)を84.5:15:0.5として共蒸着したこと以外は、実施例25と同様にして有機エレクトロルミネッセンス素子を作製した。
 以上の工程による有機エレクトロルミネッセンス素子作成終了後、真空蒸着装置のルツボ内へ材料の追加充填を行わず、上記と同じ有機エレクトロルミネッセンス素子をさらに1回繰り返して作製した。
(Example 26) Preparation and evaluation of organic electroluminescence device in which compounding ratio of light emitting layer forming material was changed When forming a light emitting layer, mCBP:mixture:compound F71 (weight ratio) was 84.5:15:0.5. An organic electroluminescence device was produced in the same manner as in Example 25, except that the co-evaporation was carried out.
After completion of the organic electroluminescence element production through the above steps, the same organic electroluminescence element as described above was produced once more without additionally filling the crucible of the vacuum vapor deposition device with the material.
 実施例25、26において作製した有機エレクトロルミネッセンス素子を1mA/cm2で発光させたときの外部量子効率およびCIE色度座標を表4に示す。 Table 4 shows the external quantum efficiency and CIE chromaticity coordinates when the organic electroluminescent devices produced in Examples 25 and 26 were made to emit light at 1 mA/cm 2 .
Figure JPOXMLDOC01-appb-T000051
Figure JPOXMLDOC01-appb-T000051
 表4に示すように、実施例26で作製した2つの有機エレクトロルミネッセンス素子は、蒸着時のルツボ内の混合物充填量が異なるにも関わらず、同程度の外部量子効率を示した。また、混合物の配合比を50重量%以上に大きくした実施例25は、実施例26よりも高い外部量子効率を示した。このことから、化合物1と化合物2をともに含む混合物を蒸着源に用いることにより、有機エレクトロルミネッセンス素子を安定に製造できるようになり、また、その混合物の配合比を大きくすることにより、外部量子効率が改善されることが確認された。さらに、実施例25、26の色度座標が、発光ドーパントを使用していない実施例23、24の色度座標に対して鋭敏に変化していることから、第1化合物と第2化合物の混合物と発光ドーパントを組み合わせて用いることにより、発光色を容易に制御できることがわかった。 As shown in Table 4, the two organic electroluminescent devices produced in Example 26 exhibited similar external quantum efficiencies, although the mixture filling amount in the crucible during vapor deposition was different. Further, Example 25 in which the compounding ratio of the mixture was increased to 50% by weight or more showed higher external quantum efficiency than Example 26. From this, by using a mixture containing both Compound 1 and Compound 2 as a vapor deposition source, it becomes possible to stably manufacture an organic electroluminescent device, and by increasing the compounding ratio of the mixture, the external quantum efficiency can be increased. Was confirmed to be improved. Furthermore, since the chromaticity coordinates of Examples 25 and 26 are sharply changed with respect to the chromaticity coordinates of Examples 23 and 24 in which the light emitting dopant is not used, the mixture of the first compound and the second compound. It was found that the emission color can be easily controlled by using a combination of and a light emitting dopant.
Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-C000052
 第1化合物と第2化合物を含む膜は発光効率が高く、本発明の膜の製造方法によれば、このような膜を安定に形成することができる。このため本発明の膜の製造方法を有機半導体素子の製造工程で用いることにより、発光効率等の特性に優れた有機半導体素子を得ることが可能である。このため、本発明は産業上の利用可能性が高い。 The film containing the first compound and the second compound has high luminous efficiency, and the film manufacturing method of the present invention can stably form such a film. Therefore, by using the method for producing a film of the present invention in the step of producing an organic semiconductor element, it is possible to obtain an organic semiconductor element having excellent characteristics such as luminous efficiency. Therefore, the present invention has high industrial applicability.
 1 基板
 2 陽極
 3 正孔注入層
 4 正孔輸送層
 5 発光層
 6 電子輸送層
 7 陰極
 10 基材
 100 チャンバー
 101 蒸着源
 101a 蒸着材料
 101b ルツボ
 102 基板保持部
1 substrate 2 anode 3 hole injection layer 4 hole transport layer 5 light emitting layer 6 electron transport layer 7 cathode 10 base material 100 chamber 101 vapor deposition source 101a vapor deposition material 101b crucible 102 substrate holder

Claims (21)

  1.  下記式(1)を満たす第1化合物と下記式(2)を満たす第2化合物をともに含む蒸着源から共蒸着することにより、前記第1化合物と前記第2化合物を含む膜を形成する工程を有する、膜の製造方法。
         ΔEST(1) ≦ 0.3eV      式(1)
          ES1(1) > ES1(2)      式(2)
    (上式において、ΔEST(1)は、前記第1化合物の最低励起一重項エネルギー準位ES1(1)と前記第1化合物の最低励起三重項エネルギー準位ET1(1)の差である。ES1(2)は前記第2化合物の最低励起一重項エネルギー準位である。)
    A step of forming a film containing the first compound and the second compound by co-evaporating from a vapor deposition source containing both a first compound satisfying the following formula (1) and a second compound satisfying the following formula (2). A method of manufacturing a film having.
    ΔE ST (1) ≦ 0.3 eV Formula (1)
    E S1 (1)> E S1 (2) Formula (2)
    (In the above equation, ΔE ST (1) is the difference between the lowest excited singlet energy level E S1 (1) of the first compound and the lowest excited triplet energy level E T1 (1) of the first compound. E S1 (2) is the lowest excited singlet energy level of the second compound.)
  2.  前記第2化合物が下記式(3)を満たす、請求項1に記載の膜の製造方法。
               ΔEST(2) ≦ 0.3eV      式(3)
    (上式において、ΔEST(2)は、前記第2化合物の最低励起一重項エネルギー準位ES1(2)と前記第2化合物の最低励起三重項エネルギー準位ET1(2)の差である。
    The method for producing a film according to claim 1, wherein the second compound satisfies the following formula (3).
    ΔE ST (2) ≦ 0.3 eV Formula (3)
    (In the above formula, ΔE ST (2) is the difference between the lowest excited singlet energy level E S1 (2) of the second compound and the lowest excited triplet energy level E T1 (2) of the second compound. is there.
  3.  前記第1化合物が遅延蛍光を放射する、請求項1または2に記載の膜の製造方法。 The method for producing a film according to claim 1 or 2, wherein the first compound emits delayed fluorescence.
  4.  前記第2化合物が蛍光を放射する、請求項1に記載の膜の製造方法。 The method for producing a film according to claim 1, wherein the second compound emits fluorescence.
  5.  前記第2化合物が遅延蛍光を放射する、請求項1~3のいずれか1項に記載の膜の製造方法。 The method for producing a film according to any one of claims 1 to 3, wherein the second compound emits delayed fluorescence.
  6.  前記膜に、前記第1化合物が前記第2化合物よりも多く含まれている、請求項1~5のいずれか1項に記載の膜の製造方法。 The method for producing a film according to any one of claims 1 to 5, wherein the film contains more of the first compound than the second compound.
  7.  前記膜における前記第1化合物の含有率が20重量%以上である、請求項1~6のいずれか1項に記載の膜の製造方法。 The method for producing a film according to any one of claims 1 to 6, wherein the content of the first compound in the film is 20% by weight or more.
  8.  前記膜における前記第2化合物の含有率が10重量%未満である、請求項1~7のいずれか1項に記載の膜の製造方法。 The method for producing a film according to any one of claims 1 to 7, wherein the content of the second compound in the film is less than 10% by weight.
  9.  前記蒸着源がさらにホスト材料を含み、前記膜がさらに前記ホスト材料を含む、請求項1~8のいずれか1項に記載の膜の製造方法。 The method for producing a film according to claim 1, wherein the vapor deposition source further contains a host material, and the film further contains the host material.
  10.  前記膜における前記第1化合物の含有率が20~50重量%であり、前記第2化合物の含有率が0.1~5重量%である、請求項9に記載の膜の製造方法。 The method for producing a film according to claim 9, wherein the content of the first compound in the film is 20 to 50% by weight and the content of the second compound is 0.1 to 5% by weight.
  11.  前記第1化合物が、前記式(1)を満たす単一の化合物からなる、請求項1~10のいずれか1項に記載の膜の製造方法。 The method for producing a film according to any one of claims 1 to 10, wherein the first compound is a single compound satisfying the formula (1).
  12.  前記第1化合物がシアノベンゼン骨格を含む、請求項11に記載の膜の製造方法。 The method for producing a film according to claim 11, wherein the first compound contains a cyanobenzene skeleton.
  13.  前記第2化合物がシアノベンゼン骨格を含む、請求項12に記載の膜の製造方法。 The method for producing a film according to claim 12, wherein the second compound contains a cyanobenzene skeleton.
  14.  前記第2化合物がテレフタロニトリル骨格を含む、請求項13に記載の膜の製造方法。 The method for producing a film according to claim 13, wherein the second compound contains a terephthalonitrile skeleton.
  15.  前記第1化合物がトリアジン骨格を含む、請求項11に記載の膜の製造方法。 The method for producing a membrane according to claim 11, wherein the first compound contains a triazine skeleton.
  16.  前記第1化合物と前記第2化合物のそれぞれについて、一定の昇温速度下で熱重量分析を行うことにより、温度Tと重量減少率Wの関係を明らかにし、前記第1化合物と前記第2化合物が同じ重量減少率になる温度TWTを特定しておき、
     前記第1化合物と前記第2化合物の混合物をともに含む蒸着源から温度TWTで共蒸着することにより、前記第1化合物と前記第2化合物を含む膜を形成する、請求項1~15のいずれか1項に記載の膜の製造方法。
    By performing thermogravimetric analysis on each of the first compound and the second compound at a constant heating rate, the relationship between the temperature T and the weight loss rate W is clarified, and the first compound and the second compound are clarified. Has specified the temperature T WT at which the weight loss rate is the same,
    16. The film containing the first compound and the second compound is formed by co-evaporating at a temperature T WT from an evaporation source containing both the mixture of the first compound and the second compound. 2. The method for producing a film according to item 1.
  17.  前記第1化合物と前記第2化合物のそれぞれについて、一定の昇温速度下で熱重量分析を行うことにより、温度Tと重量減少率Wの関係を明らかにし、前記第1化合物と前記第2化合物のdW/dTが同じになる温度TGRを特定しておき、
     前記第1化合物と前記第2化合物の混合物をともに含む蒸着源から温度TGRで共蒸着することにより、前記第1化合物と前記第2化合物を含む膜を形成する、請求項1~15のいずれか1項に記載の膜の製造方法。
    By performing thermogravimetric analysis on each of the first compound and the second compound at a constant heating rate, the relationship between the temperature T and the weight loss rate W is clarified, and the first compound and the second compound are clarified. Temperature T GR at which dW/dT of
    The film containing the first compound and the second compound is formed by co-evaporating at a temperature T GR from an evaporation source containing both the mixture of the first compound and the second compound. 2. The method for producing a film according to item 1.
  18.  請求項1~17のいずれか1項に記載の製造方法により層を形成する工程を有する、有機半導体素子の製造方法。 A method for manufacturing an organic semiconductor element, comprising a step of forming a layer by the method according to any one of claims 1 to 17.
  19.  請求項18に記載の製造方法により製造される有機半導体素子。 An organic semiconductor device manufactured by the manufacturing method according to claim 18.
  20.  前記有機半導体素子が有機エレクトロルミネッセンス素子である、請求項19に記載の有機半導体素子。 The organic semiconductor element according to claim 19, wherein the organic semiconductor element is an organic electroluminescence element.
  21.  遅延蛍光を放射する、請求項20に記載の有機半導体素子。 The organic semiconductor device according to claim 20, which emits delayed fluorescence.
PCT/JP2019/046923 2018-11-30 2019-11-29 Film manufacturing method, organic semiconductor element manufacturing method, and organic semiconductor element WO2020111277A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020557887A JP7393799B2 (en) 2018-11-30 2019-11-29 Membrane manufacturing method
CN201980076806.XA CN113170549B (en) 2018-11-30 2019-11-29 Film manufacturing method, organic semiconductor element manufacturing method, and organic semiconductor element
KR1020217020178A KR20210095933A (en) 2018-11-30 2019-11-29 Film manufacturing method, organic semiconductor device manufacturing method and organic semiconductor device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018224556 2018-11-30
JP2018-224556 2018-11-30

Publications (1)

Publication Number Publication Date
WO2020111277A1 true WO2020111277A1 (en) 2020-06-04

Family

ID=70853317

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/046923 WO2020111277A1 (en) 2018-11-30 2019-11-29 Film manufacturing method, organic semiconductor element manufacturing method, and organic semiconductor element

Country Status (4)

Country Link
JP (1) JP7393799B2 (en)
KR (1) KR20210095933A (en)
CN (1) CN113170549B (en)
WO (1) WO2020111277A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022009790A1 (en) * 2020-07-06 2022-01-13 株式会社Kyulux Organic luminescent element
WO2022168825A1 (en) * 2021-02-04 2022-08-11 株式会社Kyulux Organic electroluminescence element, method for designing luminous composition, and program
US11482681B2 (en) 2018-07-27 2022-10-25 Idemitsu Kosan Co., Ltd. Compound, material for organic electroluminescence element, organic electroluminescence element, and electronic device
WO2023017856A1 (en) * 2021-08-13 2023-02-16 出光興産株式会社 Mixed powder, method for manufacturing organic electroluminescent element that uses mixed powder, and vapor deposition composition
WO2023063163A1 (en) * 2021-10-14 2023-04-20 出光興産株式会社 Mixed powder for organic electroluminescent element, production method therefor, method for manufacturing organic electroluminescent element using said mixed powder, method for selecting compound in said mixed powder, and composition for vacuum deposition
JP7456997B2 (en) 2019-03-25 2024-03-27 日鉄ケミカル&マテリアル株式会社 Molten mixture for organic electroluminescent device and organic electroluminescent device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4223853A1 (en) * 2022-02-04 2023-08-09 Samsung Display Co., Ltd. Organic electroluminescent devices

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014182898A (en) * 2013-03-18 2014-09-29 Idemitsu Kosan Co Ltd Manufacturing method of organic electroluminescent element, organic electroluminescent element, and electronic apparatus
JP2015179817A (en) * 2013-08-14 2015-10-08 国立大学法人九州大学 Organic electroluminescent device
JP2016019002A (en) * 2014-07-09 2016-02-01 ユニバーサル ディスプレイ コーポレイション Organic electroluminescent material and device
WO2016042997A1 (en) * 2014-09-17 2016-03-24 新日鉄住金化学株式会社 Organic electroluminescent element
JP2016076700A (en) * 2014-10-06 2016-05-12 ユニバーサル ディスプレイ コーポレイション Organic electroluminescent material and device
US20160149139A1 (en) * 2014-11-25 2016-05-26 Universal Display Corporation Organic electroluminescent materials and devices
WO2017146191A1 (en) * 2016-02-24 2017-08-31 出光興産株式会社 Organic electroluminescent element, and electronic device
JP2018501660A (en) * 2014-12-31 2018-01-18 北京維信諾科技有限公司 Organic electroluminescence device
EP3291319A1 (en) * 2016-08-30 2018-03-07 Novaled GmbH Method for preparing an organic semiconductor layer
WO2018133836A1 (en) * 2017-01-20 2018-07-26 昆山工研院新型平板显示技术中心有限公司 Organic electroluminescent device and fabrication method thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2980877B1 (en) 2013-03-29 2017-11-29 Kyulux, Inc. Organic electroluminescent element
JP6482782B2 (en) * 2014-07-18 2019-03-13 国立大学法人九州大学 Organic light emitting device
CN108666433A (en) 2018-05-16 2018-10-16 云谷(固安)科技有限公司 Organnic electroluminescent device

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014182898A (en) * 2013-03-18 2014-09-29 Idemitsu Kosan Co Ltd Manufacturing method of organic electroluminescent element, organic electroluminescent element, and electronic apparatus
JP2015179817A (en) * 2013-08-14 2015-10-08 国立大学法人九州大学 Organic electroluminescent device
JP2016019002A (en) * 2014-07-09 2016-02-01 ユニバーサル ディスプレイ コーポレイション Organic electroluminescent material and device
WO2016042997A1 (en) * 2014-09-17 2016-03-24 新日鉄住金化学株式会社 Organic electroluminescent element
JP2016076700A (en) * 2014-10-06 2016-05-12 ユニバーサル ディスプレイ コーポレイション Organic electroluminescent material and device
US20160149139A1 (en) * 2014-11-25 2016-05-26 Universal Display Corporation Organic electroluminescent materials and devices
JP2018501660A (en) * 2014-12-31 2018-01-18 北京維信諾科技有限公司 Organic electroluminescence device
WO2017146191A1 (en) * 2016-02-24 2017-08-31 出光興産株式会社 Organic electroluminescent element, and electronic device
EP3291319A1 (en) * 2016-08-30 2018-03-07 Novaled GmbH Method for preparing an organic semiconductor layer
WO2018133836A1 (en) * 2017-01-20 2018-07-26 昆山工研院新型平板显示技术中心有限公司 Organic electroluminescent device and fabrication method thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11482681B2 (en) 2018-07-27 2022-10-25 Idemitsu Kosan Co., Ltd. Compound, material for organic electroluminescence element, organic electroluminescence element, and electronic device
JP7456997B2 (en) 2019-03-25 2024-03-27 日鉄ケミカル&マテリアル株式会社 Molten mixture for organic electroluminescent device and organic electroluminescent device
WO2022009790A1 (en) * 2020-07-06 2022-01-13 株式会社Kyulux Organic luminescent element
WO2022168825A1 (en) * 2021-02-04 2022-08-11 株式会社Kyulux Organic electroluminescence element, method for designing luminous composition, and program
WO2023017856A1 (en) * 2021-08-13 2023-02-16 出光興産株式会社 Mixed powder, method for manufacturing organic electroluminescent element that uses mixed powder, and vapor deposition composition
WO2023063163A1 (en) * 2021-10-14 2023-04-20 出光興産株式会社 Mixed powder for organic electroluminescent element, production method therefor, method for manufacturing organic electroluminescent element using said mixed powder, method for selecting compound in said mixed powder, and composition for vacuum deposition

Also Published As

Publication number Publication date
CN113170549A (en) 2021-07-23
CN113170549B (en) 2024-02-23
JP7393799B2 (en) 2023-12-07
KR20210095933A (en) 2021-08-03
JPWO2020111277A1 (en) 2021-10-14

Similar Documents

Publication Publication Date Title
JP7226806B2 (en) Composition for use in organic light-emitting diodes
JP7412773B2 (en) Compositions used in organic light emitting diodes
WO2020111277A1 (en) Film manufacturing method, organic semiconductor element manufacturing method, and organic semiconductor element
WO2018237385A1 (en) Composition of matter for use in organic light-emitting diodes
WO2021157593A1 (en) Composition, film, organic light emitting element, method for providing light emitting composition, and program
JP7144065B2 (en) Composition for use in organic light-emitting diodes
JP2020096178A (en) Organic light-emitting element
KR102571882B1 (en) Compositions Used in Organic Light-Emitting Diodes
US11447473B2 (en) Composition of matter for use in organic light-emitting diodes
US11440901B2 (en) Composition of matter for use in organic light-emitting diodes
US11444250B2 (en) Composition of matter for use in organic light-emitting diodes
US20210305517A1 (en) Composition of matter for use in organic light-emitting diodes
US20180370993A1 (en) Composition of matter for use in organic light-emitting diodes
WO2022168825A1 (en) Organic electroluminescence element, method for designing luminous composition, and program
WO2020090843A1 (en) Charge transport material, compound and organic light emitting element
JP7153363B2 (en) Composition for use in organic light-emitting diodes
WO2021141046A1 (en) Light emitting material, delayed phosphor, organic light emitting diode, screen, display and method for producing display
WO2023276918A1 (en) Compound, electronic barrier material, and organic semiconductor element and compound
WO2022264857A1 (en) Organic light emitting element and method for producing same
WO2022244503A1 (en) Organic light emitting element
JP2023002880A (en) Compound, light-emitting material, and organic light-emitting element
JP2022175141A (en) Compound, light-emitting material and organic light-emitting element
JP2023069652A (en) Compound, composition, host material, and organic electroluminescent element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19890905

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020557887

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217020178

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 19890905

Country of ref document: EP

Kind code of ref document: A1