WO2020111200A1 - 空気調和装置 - Google Patents

空気調和装置 Download PDF

Info

Publication number
WO2020111200A1
WO2020111200A1 PCT/JP2019/046651 JP2019046651W WO2020111200A1 WO 2020111200 A1 WO2020111200 A1 WO 2020111200A1 JP 2019046651 W JP2019046651 W JP 2019046651W WO 2020111200 A1 WO2020111200 A1 WO 2020111200A1
Authority
WO
WIPO (PCT)
Prior art keywords
defrosting
air conditioner
heat exchanger
indoor
start condition
Prior art date
Application number
PCT/JP2019/046651
Other languages
English (en)
French (fr)
Inventor
淳 上重
泰久 菊池
智子 杉崎
Original Assignee
東芝キヤリア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東芝キヤリア株式会社 filed Critical 東芝キヤリア株式会社
Priority to CN201980078965.3A priority Critical patent/CN113167518B/zh
Priority to EP19889376.0A priority patent/EP3889522A4/en
Priority to JP2020557836A priority patent/JP7098751B2/ja
Publication of WO2020111200A1 publication Critical patent/WO2020111200A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/41Defrosting; Preventing freezing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/41Defrosting; Preventing freezing
    • F24F11/42Defrosting; Preventing freezing of outdoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/02Defrosting cycles
    • F25B47/022Defrosting cycles hot gas defrosting
    • F25B47/025Defrosting cycles hot gas defrosting by reversing the cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/06Several compression cycles arranged in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/01Timing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/23Time delays
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2103Temperatures near a heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2104Temperatures of an indoor room or compartment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2106Temperatures of fresh outdoor air

Definitions

  • the present invention relates to an air conditioner including a plurality of air conditioners.
  • An air conditioner that has a heat pump type refrigeration cycle that circulates a refrigerant by sequentially connecting a compressor, a four-way valve, an outdoor heat exchanger, a decompressor, and an indoor heat exchanger to heat indoor air by pumping heat from the outside air
  • frost gradually adheres to the surface of the outdoor heat exchanger functioning as an evaporator, and when the amount of frost increases, the amount of heat pumped from the outside air decreases and the heating capacity decreases.
  • the frosted state of the outdoor heat exchanger is monitored from the temperature of the outdoor heat exchanger, and when the frost increases, the refrigerant discharged from the compressor (high temperature refrigerant) is directly supplied to the outdoor heat exchanger.
  • the defrosting operation of defrosting the outdoor heat exchanger by the heat of the high-temperature refrigerant is executed.
  • the purpose of this embodiment is to provide an air conditioner that can suppress a decrease in indoor temperature due to defrosting as much as possible.
  • the air conditioner according to claim 1 includes a heat pump type refrigeration cycle including a compressor, a four-way valve, an outdoor heat exchanger, a pressure reducer, and an indoor heat exchanger, and when the defrosting start condition of the outdoor heat exchanger is satisfied.
  • a plurality of air conditioners that perform defrosting operation on the outdoor heat exchanger; and when defrosting of one of these air conditioners is started, the remaining air conditioners other than the air conditioner that starts defrosting are removed.
  • a controller that changes the frost start condition.
  • the figure which shows the structure of one Embodiment. 6 is a flowchart showing control executed by the parent device in one embodiment regarding communication with the child device. 6 is a flowchart showing the control executed by each of the master unit and the slave unit in the embodiment. The figure which shows the execution of the defrosting operation
  • indoor units 20 of a plurality of air conditioners 1a, 1b,... 1n that constitute an air conditioner are arranged in the same air conditioning area R.
  • the air conditioner 1a which is a master unit, has a heat pump type refrigeration cycle in which a compressor 11, a four-way valve 12, an outdoor heat exchanger 13, a pressure reducer such as an electric expansion valve 14, and an indoor heat exchanger 21 are sequentially connected by piping.
  • the refrigerant discharged from the compressor 11 flows into the outdoor heat exchanger (condenser) 13 through the four-way valve 12, and the refrigerant flowing out of the outdoor heat exchanger 13 passes through the electric expansion valve 14.
  • the refrigerant flowing into the indoor heat exchanger (evaporator) 21 and flowing out of the indoor heat exchanger 21 is sucked into the compressor 11 through the four-way valve 12.
  • the refrigerant discharged from the compressor 11 flows into the indoor heat exchanger (condenser) 21 through the four-way valve 12 as shown by the arrow.
  • the refrigerant flowing out of the indoor heat exchanger 21 flows into the outdoor heat exchanger (evaporator) 13 through the electric expansion valve 14, and the refrigerant flowing out of the outdoor heat exchanger 13 passes through the four-way valve 12 and the compressor 11 Is sucked into.
  • the return of the flow path of the four-way valve 12 forms the same refrigerant flow as during the cooling operation.
  • An outdoor fan 15 that sucks outside air and passes it through the outdoor heat exchanger 13 is arranged near the outdoor heat exchanger 13, and an outside air temperature sensor 16 that detects the outside air temperature To is arranged in the suction air passage of the outdoor fan 15.
  • An indoor fan 22 that draws in the indoor air in the air-conditioned area and passes through the indoor heat exchanger 21 is arranged near the indoor heat exchanger 21, and an indoor temperature sensor 23 that detects the temperature Ta of the indoor air (referred to as the indoor temperature) is an indoor fan. 22 are arranged in the suction air passage.
  • the compressor 11, the four-way valve 12, the outdoor heat exchanger 13, the electric expansion valve 14, the outdoor fan 15, and the outdoor air temperature sensor 16 are housed in the outdoor unit 10 together with the outdoor controller 18a, and the indoor unit 21, the indoor fan 22, and the indoor unit are installed.
  • the temperature sensor 23 is housed in the indoor unit 20 together with the indoor controller 24a.
  • the outdoor controller 18a and the indoor controller 24a are connected to each other through a serial signal line 31 synchronized with the power supply voltage, and the indoor controller 24a has a remote control type operation device (abbreviated as a remote controller) for driving operation and setting operating conditions. ) 33 is connected via the cable 32.
  • the remote controller 33 is attached to the wall surface or the like of the air-conditioned area and can be easily operated by the user.
  • the outdoor controller 18a includes a microcomputer and its peripheral circuits, controls the compressor 11, the four-way valve 12, the electric expansion valve 14, the outdoor fan 15 in accordance with an instruction from the indoor controller 24a, and detects the outside air temperature sensor 16. Data such as a temperature (referred to as outside air temperature) To and a temperature detected by the heat exchange temperature sensor 17 (referred to as heat exchanger temperature) Te are sent to the indoor controller 24a via the serial signal line 31.
  • the indoor controller 24a is composed of a microcomputer and its peripheral circuits, and controls the operation of the air conditioner 1a according to the operation of the remote controller 33, the operating conditions set by the remote controller 33, the transmission data from the outdoor controller 18a, and the like.
  • the indoor controller 24a stores the defrosting start condition for the outdoor heat exchanger 13 in the internal memory in advance, and executes the defrosting operation for the outdoor heat exchanger 13 when the defrosting start condition is satisfied.
  • the defrosting start condition is a reference value Teo that is determined according to the heat exchanger temperature Te of the outdoor heat exchanger 13 (the temperature detected by the heat exchange temperature sensor 17) and the heat exchanger temperature Te of the outdoor heat exchanger 13 at the start of heating.
  • the second defrosting start condition of less than the value Tex is included.
  • the threshold value A is a value selected according to the outside air temperature To. For example, 6° C. is selected when To ⁇ 0° C. and 4° C. is selected when 0° C. ⁇ To ⁇ 10° C. When ⁇ -10°C, 2°C is selected, for example.
  • a bus line 40 for control and data transmission is connected between the indoor controller 24a and the indoor controllers 24b to 24n.
  • the air conditioners 1b to 1n are the same as the air conditioner 1a except that the air conditioners 1b to 1n have outdoor controllers 18b to 24n and indoor controllers 24b to 24n.
  • the indoor controllers 24b to 24n are composed of a microcomputer and its peripheral circuits, and comprehensively control the operation of each air conditioner in accordance with transmission data from the outdoor controllers 18b to 18n and instructions from the indoor controller 24a.
  • the indoor controllers 24b to 24n store the defrosting start condition for each outdoor heat exchanger 13 in the internal memory in advance, and when the defrosting start condition is satisfied, the defrosting operation for each outdoor heat exchanger 13 is performed.
  • the frost operation is executed together with the outdoor controllers 18b-18n.
  • the defrosting start condition is the same as the defrosting start condition of the indoor controller 24a (first defrosting start condition and second defrosting start condition).
  • the air conditioner 1a and the indoor controller 24a function as the master unit that serves as the center of control, and the rest.
  • the air conditioners 1b to 1n and the indoor controllers 24b to 24n function as slave units in accordance with instructions from the master unit.
  • the indoor controller 24a of the air conditioner 1a includes a first control unit C1, a second control unit C2, a third control unit C3, and a fourth control unit C4 as main functions related to the coordination between the master unit and the slave units.
  • the first control unit C1 executes mutual communication between the indoor controllers 24a to 24n via the data bus line 40 periodically and as needed. Through this communication, it is possible for the master unit and the slave unit to recognize each other whether or not the defrosting start condition is satisfied, the operating state, and the like.
  • the second control unit C2 starts the defrosting.
  • Machines air conditioners for which the defrosting start condition has been satisfied
  • the air conditioners are changed to a direction ("defrosting" mode) in which the establishment of the air conditioner is delayed than usual.
  • the third control unit C3 delays the delay when the air conditioner that satisfies the defrosting start condition enters the defrosting operation and the defrosting operation ends.
  • the defrosting start condition of the air conditioner whose direction has been changed is changed to a direction in which the condition is established faster than usual (“early defrosting” mode).
  • the fourth controller C4 When the defrosting start condition of the air conditioner whose delay direction has been changed by the second controller C2 is satisfied and the air conditioner enters the defrosting operation, the fourth controller C4 performs the defrosting operation.
  • the start-up capability for resuming heating of the air conditioner after the completion of is reduced.
  • the indoor controller 24a When the start operation of the heating operation is performed by the remote controller 33 (YES in S1), the indoor controller 24a instructs the indoor controllers 24b to 24n to start the heating operation (S2), and the target room set by the remote controller 33. A temperature (also called a set temperature) Ts is instructed to the indoor controllers 24b to 24n (S3). After the heating operation is started, the indoor controller 24a monitors the "in-defrosting" notification (notifying that the defrosting start condition is satisfied) of the indoor controller 24a and the indoor controllers 24b to 24n (S4).
  • the indoor controller 24a monitors the "defrost end” notification (notification that the defrosting operation has ended) of the indoor controller 24a and the indoor controllers 24b to 24n. Yes (S6).
  • the indoor controller 24a monitors the stop operation of the remote controller 33 (S8).
  • the indoor controller 24a If there is no stop operation (NO in S8), the indoor controller 24a returns to S3 and repeats the same processing as above. When the stop operation is performed (YES in S8), the indoor controller 24a instructs the indoor controllers 24b to 24n to stop the heating operation (S9).
  • the indoor controller 24a determines that all the indoor controllers 24b to 22 "Defrosting" is notified to 24n (S5), and the process proceeds to the determination of S8.
  • the indoor controller 24a determines that all the indoor controllers 24b to 22 24n is notified of "end of defrosting” (S7), and the process proceeds to the determination of S8.
  • the indoor controller 24a and the indoor controllers 24b to 24n start the heating operation of the respective air conditioners (S12), and the target room set by the remote controller 33.
  • Each heating capacity (operating frequency F of each compressor 11) is controlled according to the difference ⁇ T between the temperature Ts and the room temperature Ta detected by the room temperature sensor 23 (S13).
  • the indoor controller 24b when the defrosting start condition is satisfied in the indoor controller 24b of the child device, the indoor controller 24b notifies the indoor controller 24a of the parent device that "defrosting".
  • the indoor controller 24a of the parent device that has received the "defrosting" notification notifies all of the indoor controllers 24b to 24n of the child devices that the defrosting is in progress (YES in S4, S5).
  • the control performed by the indoor controller 24a will be described below as a representative of the indoor controllers 24a to 24n that have received the "defrosting" notification.
  • the indoor controller 24a determines that a certain time, for example, 40 minutes has elapsed from the start of the heating operation, and the heat exchange of the outdoor heat exchanger 13 at the present time. It is monitored whether or not the vessel temperature Te is lower than a predetermined limit value (eg, ⁇ 20° C.) Tex (S21). When 40 minutes after a fixed time has not elapsed from the start of the heating operation or when the heat exchanger temperature Te of the outdoor heat exchanger 13 at the present time is not less than the limit value Tex (NO in S21), the indoor controller 24a is The process shifts to the determination of the stop instruction in S29.
  • a predetermined limit value eg, ⁇ 20° C.
  • the frost on the outdoor heat exchanger 13 may not be removed even if the defrosting operation is executed.
  • the determination of S21 is adopted as the defrosting start condition.
  • the indoor controller. 24a starts the defrosting operation of the air conditioner 1a based on the determination that the outdoor heat exchanger 13 needs to be defrosted (S22), and sets "during defrosting" to all the indoor units of the slave unit. Notify the controllers 24b to 24n (S23).
  • the high temperature refrigerant discharged from the compressor 11 is directly supplied to the outdoor heat exchanger 13 through the four-way valve 12, and adheres to the surface of the outdoor heat exchanger 13 by the heat of the high temperature refrigerant. Removed frost.
  • the indoor controller 24a waits for establishment of a defrosting end condition defined based on the heat exchanger temperature Te of the outdoor heat exchanger 13 (S24).
  • the indoor controller 24a terminates the defrosting operation of the air conditioner 1a and notifies all the indoor controllers 24b to 24n of the slave units of "end of defrosting". (S25). Then, since the indoor controller 24a continues to set the "normal defrosting" mode in which the reference value Teo and the limit value Tex are not changed at this time (YES in S26), the shift canceling process in the next S27 is performed. Bypass without restarting and restart heating operation (S28). When restarting the heating operation, the indoor controller 24a bypasses the heating without performing the capacity reduction process of S30 because the "normal defrosting" mode setting continues at this point (YES in S29). The operation stop instruction is monitored (S31). If there is no stop instruction (NO in S31), the process returns to S16 and the same process as above is repeated.
  • the indoor controller 24a newly adds a value obtained by subtracting a predetermined value, for example, 1°C, from the initial reference value Teo updated and stored in S15.
  • the indoor controller 24a regardless of whether or not the defrosting operation of the air conditioner 1b that is in the defrosting operation after the defrosting start condition is satisfied first is still continuing.
  • the defrosting operation of the air conditioner 1a is started (S22), and "in-defrosting" is notified to the indoor controllers 24b to 24n of the slave units (S23). After the start of the defrosting operation, the indoor controller 24a waits for the satisfaction of the defrosting end condition (S24).
  • the indoor controller 24a terminates the defrosting operation of the air conditioner 1a and notifies all the indoor controllers 24b to 24n of the slave units of "end of defrosting". (S25). Then, since the reference value Teo and the limit value Tex are changed and the "delayed defrosting" mode is set at this time (NO in S26), the indoor controller 24a determines that the reference value Teo and the limit value Tex The change is canceled and the normal defrosting mode is returned (S27), and the heating operation is restarted (S28).
  • the indoor controller 24a sets the operating frequency F of the compressor 11 to the normal frequency over a predetermined time because the defrosting operation up to now is the "delayed defrosting" mode (NO in S29). It is suppressed to about 80% to reduce the start-up ability for restarting heating (S30).
  • the indoor controller 24a monitors the heating operation stop instruction (S31). When there is no stop instruction (NO in S31), the indoor controller 24a proceeds to the determination in S16. When there is a stop instruction (YES in S31), the indoor controller 24a stops the heating operation (S32).
  • the defrosting start condition is satisfied in the air conditioner 1b and the air conditioner 1b enters the defrosting operation, all the remaining air conditioners 1a and 1c except the air conditioner 1b Even if the air conditioner 1b starts the defrosting operation by changing the defrosting start condition of 1n to a direction in which the establishment is delayed (-1° C.) and setting the “delayed defrosting” mode. At the same time, the other air conditioners 1a and 1c to 1n do not start the defrosting operation. Therefore, the decrease in the indoor temperature Ta in the air-conditioned area due to defrosting can be suppressed as much as possible, and the occupants will not feel discomfort.
  • the indoor controllers 24b to 24n of the slaves need only notify the indoor controller 24a of the master of the "defrosting" notification, and notify the identification information such as an address indicating which of the air conditioners is the own air conditioner. Is unnecessary.
  • the indoor controller 24a of the parent device only transfers the notification of "during defrosting" from any of the child devices to all the child devices, and the air conditioner in which the defrosting start condition is satisfied. It is not necessary to notify the identification information such as the address indicating which is. Therefore, the communication control between the master unit and the slave unit can be simplified.
  • the defrosting start timing of the air conditioners 1a to 1n is merely shifted by changing the defrosting start condition, the defrosting operation of one of the air conditioners is not prohibited, and therefore the outdoor of each air conditioner is prevented. There is no problem that the heat exchanger 13 is in a so-called overfrost state without removing the frost.
  • the indoor controller 24b issues a "defrosting end" notification (YES in S18).
  • the air conditioners 1a and 1c in which the "delayed defrosting" mode is set when the defrosting operation is finished and the air conditioner 1b that has entered the defrosting operation first finishes the defrosting operation, the air conditioners 1a and 1c in which the "delayed defrosting" mode is set.
  • the defrosting start conditions of 1 to 1n are changed so as to be established earlier than usual. In this way, by switching the air conditioners 1a, 1c to 1n from the "delayed defrosting" mode to the "early defrosting” mode, the defrosting start condition of the air conditioner 1b that has restarted heating is reestablished at an early time.
  • the timing of establishment of the defrosting start condition of the air conditioners 1a, 1c to 1n can be shifted. That is, it is possible to reduce the possibility that defrosting of a plurality of air conditioners will start at the same timing.
  • the air conditioner 1b that has previously satisfied the defrosting start condition is still in the defrosting operation.
  • the defrosting operations of multiple air conditioners will be executed simultaneously.
  • the plurality of air conditioners respectively finish the defrosting operation and restart the heating as they are, the progress of frost formation of the outdoor heat exchanger 13 of each air conditioner becomes the same, and eventually the plurality of air conditioners are defrosted. The start of frost may come around again at the same timing.
  • the compressor 11 is operated for a predetermined time.
  • the operating frequency F of is reduced to about 80% of the normal frequency to reduce the rising capacity for restarting heating.
  • the reference value Teo and the limit value Tex of the defrosting start condition are shifted by -1° C. in the "delayed defrosting" mode, and the reference value Teo and the limit value Tex of the defrosting start condition are set in the early defrosting mode.
  • the value to be shifted is not limited to -1°C, and can be appropriately selected according to the capacity of the outdoor heat exchanger 13, the capacity of the heat pump type refrigeration cycle, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

複数の空気調和機のいずれかの除霜開始に際し、その除霜開始する空気調和機を除く残りの空気調和機の除霜開始条件を変更する。

Description

空気調和装置
 本発明は、複数の空気調和機を備えた空気調和装置に関する。
 圧縮機、四方弁、室外熱交換器、減圧器、室内熱交換器を順に配管接続して冷媒を循環させるヒートポンプ式冷凍サイクルを備え、外気から熱を汲み上げて室内空気を暖房する空気調和機では、暖房の進行に伴い、蒸発器として機能する室外熱交換器の表面に徐々に霜が付着し、その着霜量が多くなると外気からの汲み上げ熱量が減少して暖房能力が減少する。
 対策として、室外熱交換器の温度などから室外熱交換器の着霜状態を監視し、着霜が増えた場合に圧縮機の吐出冷媒(高温冷媒)を室外熱交換器に直接的に供給し、その高温冷媒の熱で室外熱交換器の霜を解かす除霜運転が実行される。
特開2010-121798号公報
 複数の空気調和機で同一の空調エリアを空調する空気調和装置の場合、複数の空気調和機が同時に除霜運転に入ると、暖房能力が不足気味となって空調エリアの室内温度が低下し、居住者に不快感を与えることがある。
 本実施形態の目的は、除霜による室内温度の低下をできるだけ抑えることができる空気調和装置を提供することである。
 請求項1の空気調和装置は、圧縮機、四方弁、室外熱交換器、減圧器、室内熱交換器からなるヒートポンプ式冷凍サイクルを備え、前記室外熱交換器の除霜開始条件が成立した場合にその室外熱交換器に対する除霜運転を実行する複数の空気調和機と;これら空気調和機のいずれかの除霜開始に際し、その除霜開始する空気調和機を除く残りの空気調和機の除霜開始条件を変更するコントローラと;を備える。
一実施形態の構成を示す図。 一実施形態における親機が子機との通信に関して実行する制御を示すフローチャート。 一実施形態における親機および子機がそれぞれ実行する制御を示すフローチャート。 一実施形態における各空気調和機の除霜運転の実行およびその実行に伴う除霜開始条件の変化を示す図。
 以下、本発明の一実施形態について図面を参照して説明する。
 図1に示すように、空気調和装置を構成する複数の空気調和機1a,1b,…1nの室内ユニット20が同一の空調エリアRに配置されている。
 親機である空気調和機1aは、圧縮機11、四方弁12、室外熱交換器13、減圧器たとえば電動膨張弁14、室内熱交換器21を順次に配管接続してなるヒートポンプ式冷凍サイクルを備える。
 冷房運転時は、圧縮機11から吐出される冷媒が四方弁12を通って室外熱交換器(凝縮器)13に流入し、その室外熱交換器13から流出する冷媒が電動膨張弁14を通って室内熱交換器(蒸発器)21に流入し、その室内熱交換器21から流出する冷媒が四方弁12を通って圧縮機11に吸込まれる。
 暖房運転時は、四方弁12の流路の切換えにより、矢印で示すように、圧縮機11から吐出される冷媒が四方弁12を通って室内熱交換器(凝縮器)21に流入し、その室内熱交換器21から流出する冷媒が電動膨張弁14を通って室外熱交換器(蒸発器)13に流入し、その室外熱交換器13から流出する冷媒が四方弁12を通って圧縮機11に吸込まれる。暖房運転中の室外熱交換器13に対する除霜運転に際しては、四方弁12の流路の復帰により、冷房運転時と同じ冷媒の流れが形成される。
 外気を吸込んで室外熱交換器13に通す室外ファン15が室外熱交換器13の近傍に配置され、外気温度Toを検知する外気温度センサ16が室外ファン15の吸込み風路に配置されている。空調エリアの室内空気を吸込んで室内熱交換器21に通す室内ファン22が室内熱交換器21の近傍に配置され、室内空気の温度(室内温度という)Taを検知する室内温度センサ23が室内ファン22の吸込み風路に配置されている。
 上記圧縮機11、四方弁12、室外熱交換器13、電動膨張弁14、室外ファン15、外気温度センサ16が室外コントローラ18aと共に室外ユニット10に収容され、上記室内ユニット21、室内ファン22、室内温度センサ23が室内コントローラ24aと共に室内ユニット20に収容されている。室外コントローラ18aと室内コントローラ24aとが電源電圧同期のシリアル信号ライン31を介して相互に接続され、室内コントローラ24aには運転操作用および運転条件設定用のリモートコントロール式の操作器(リモコンと略称する)33がケーブル32を介して接続されている。リモコン33は、空調エリアの壁面等に取付けられ、ユーザによる容易な操作が可能である。
 室外コントローラ18aは、マイクロコンピュータおよびその周辺回路からなり、室内コントローラ24aからの指示に応じて圧縮機11、四方弁12、電動膨張弁14、室外ファン15を制御するとともに、外気温度センサ16の検知温度(外気温度という)Toおよび熱交温度センサ17の検知温度(熱交換器温度という)Teなどのデータをシリアル信号ライン31により室内コントローラ24aに送る。
 室内コントローラ24aは、マイクロコンピュータおよびその周辺回路からなり、リモコン33の操作、リモコン33で設定される運転条件、室外コントローラ18aからの伝送データなどに応じて空気調和機1aの運転を制御する。また、室内コントローラ24aは、室外熱交換器13に対する除霜開始条件を予め内部メモリに記憶しており、その除霜開始条件が成立した場合に室外熱交換器13に対する除霜運転を実行する。
 除霜開始条件は、室外熱交換器13の熱交換器温度(熱交温度センサ17の検知温度)Teと暖房開始時の室外熱交換器13の熱交換器温度Teに応じて定まる基準値Teoとの差ΔTe(=Teo-Te)が閾値A以上という第1除霜開始条件、および暖房開始から一定時間後t2後の室外熱交換器13の熱交換器温度Teが予め定められている制限値Tex未満という第2除霜開始条件を含む。閾値Aは、外気温度Toに応じて選定される値であり、To≧0℃の場合に例えば6℃が選定され、0℃>To≧-10℃の場合に例えば4℃が選定され、To<-10℃の場合に例えば2℃が選定される。
 この室内コントローラ24aと室内コントローラ24b~24nの相互間に、制御用およびデータ伝送用のバスライン40が接続されている。
 空気調和機1b~1nは、室外コントローラ18b~24nと室内コントローラ24b~24nを有する点が空気調和機1aと異なるだけで、基本的な構成は空気調和機1aと同じである。
 室内コントローラ24b~24nは、マイクロコンピュータおよびその周辺回路からなり、それぞれ室外コントローラ18b~18nからの伝送データおよび室内コントローラ24aからの指示に応じてそれぞれの空気調和機の運転を総合的に制御する。
 また、室内コントローラ24b~24nは、それぞれの室外熱交換器13に対する除霜開始条件を予め内部メモリに記憶しており、その除霜開始条件が成立した場合にそれぞれの室外熱交換器13に対する除霜運転を室外コントローラ18b~18nと共に実行する。除霜開始条件は、室内コントローラ24aの除霜開始条件(第1除霜開始条件および第2除霜開始条件)と同じである。
 空気調和機1a,1b,…1nを1つのグループとして制御するグループ制御モードがリモコン33で設定された場合に、空気調和機1aおよび室内コントローラ24aが制御の中枢となる親機として機能し、残りの空気調和機1b~1nおよび室内コントローラ24b~24nが親機の指示に従う子機として機能する。
 空気調和機1aの室内コントローラ24aは、親機と子機の連係に関わる主要な機能として第1制御部C1,第2制御部C2,第3制御部C3,第4制御部C4を備える。
 第1制御部C1は、室内コントローラ24a~24nの相互の通信をデータバスライン40を介して定期的および必要に応じて実行する。この通信により、除霜開始条件の成立の有無および運転状態等を親機および子機の相互で認識することができる。
 第2制御部C2は、空気調和機1a~1nのいずれかの空気調和機の除霜開始条件が成立して同空気調和機が除霜運転を開始する際に、その除霜開始する空気調和機(除霜開始条件が成立した空気調和機)を除く残りの空気調和機の除霜開始条件を通常より成立が遅れる方向(“遅め除霜”モード)に変更する。
 第3制御部C3は、上記第2制御部C2よる遅れ方向の変更後、上記除霜開始条件が成立した空気調和機が除霜運転に入ってその除霜運転が終了した際に、上記遅れ方向の変更がなされた空気調和機の除霜開始条件を通常より成立が早まる方向(“早め除霜”モード)に変更する。
 第4制御部C4は、上記第2制御部C2による遅れ方向の変更がなされた空気調和機の除霜開始条件が成立して同空気調和機が除霜運転に入った場合、その除霜運転が終了した後の同空気調和機の暖房再開の立ち上り能力を低減する。
 [親機の制御]
 親機の室内コントローラ24aが子機との通信に関して実行する制御を図2のフローチャートを参照しながら説明する。フローチャート中のステップS1,S2…については、単にS1,S2…と略称する。
 暖房運転の開始操作がリモコン33でなされた場合(S1のYES)、室内コントローラ24aは、暖房運転の開始を室内コントローラ24b~24nに指示し(S2)、かつリモコン33で設定されている目標室内温度(設定温度ともいう)Tsを室内コントローラ24b~24nに指示する(S3)。そして、室内コントローラ24aは、暖房運転の開始後、当該室内コントローラ24aおよび室内コントローラ24b~24nの“除霜中”通知(除霜開始条件が成立した旨の通知)を監視する(S4)。“除霜中”通知がない場合(S4のNO)、室内コントローラ24aは、当該室内コントローラ24aおよび室内コントローラ24b~24nの“除霜終了”通知(除霜運転が終了した旨の通知)を監視する(S6)。“除霜終了”通知がない場合(S6のNO)、室内コントローラ24aは、リモコン33の停止操作を監視する(S8)。
 停止操作がない場合(S8のNO)、室内コントローラ24aは、上記S3に戻って上記同様の処理を繰り返す。停止操作がある場合(S8のYES)、室内コントローラ24aは、暖房運転の停止を室内コントローラ24b~24nに指示する(S9)。
 上記S4の判定において、当該室内コントローラ24aおよび室内コントローラ24b~24nのいずれかから“除霜中”通知がある場合(S4のYES)、室内コントローラ24aは、子機である全ての室内コントローラ24b~24nに対し“除霜中”を通知し(S5)、上記S8の判定に移行する。
 上記S6の判定において、当該室内コントローラ24aおよび室内コントローラ24b~24nのいずれかから“除霜終了”通知がある場合(S6のYES)、室内コントローラ24aは、子機である全ての室内コントローラ24b~24nに対し“除霜終了”を通知し(S7)、上記S8の判定に移行する。
 [親機および子機の制御]
 親機および子機がそれぞれ実行する制御を図3のフローチャートを参照しながら説明する。空気調和機1a~1cにおいて実行される除霜運転の一例およびこれら空気調和機1a~1cの除霜運転の実行に伴い空気調和機1aの除霜開始条件がどのように変化するかの例を図4に示している。
 暖房運転の開始指示があった場合(S11のYES)、室内コントローラ24aおよび室内コントローラ24b~24nは、それぞれの空気調和機の暖房運転を開始し(S12)、リモコン33で設定されている目標室内温度Tsと室内温度センサ23で検知される室内温度Taとの差ΔTに応じてそれぞれの暖房能力(各圧縮機11の運転周波数F)を制御する(S13)。この暖房運転の開始から一定時間t1(例えば15分)が経過した後(S14のYES)、室内コントローラ24a~24nは、それぞれの室外熱交換器13の現時点の熱交換器温度Teから所定値たとえば2℃を減じた値をそれぞれの除霜開始条件の基準値Teo(=Te-2℃)として内部メモリに更新記憶する(S15)。そして、室内コントローラ24a~24nは、“除霜中”通知を監視する(S16)。
 例えば子機の室内コントローラ24bにおいて除霜開始条件が成立した場合、室内コントローラ24bは親機の室内コントローラ24aに対し“除霜中”を通知する。この“除霜中”通知を受けた親機の室内コントローラ24aは、子機の全ての室内コントローラ24b~24nに対し“除霜中”を通知する(S4のYES,S5)。
 以下、“除霜中”通知を受けた室内コントローラ24a~24nのうち、代表して、室内コントローラ24aが実行する制御について説明する。
 “除霜中”通知がない場合(S16のNO)、しかも除霜終了”通知がない場合(S18のNO)、室内コントローラ24aは、S17の“遅め除霜”モード設定処理およびS19の“早め除霜”モード設定処理を実行することなくバイパスしてS20の判定に移行し、上記S15で記憶した基準値Teo(=Te-2℃)と現時点の室外熱交換器13の熱交換器温度Teとの差ΔTe(=Teo-Te)が閾値A以上であるか否かを監視する(S20)。S17の“遅め除霜”モード設定処理およびS19の“早め除霜”モード設定処理が実行されないことで、“通常除霜”モードの設定が継続される。
 差ΔTeが閾値A以上でない場合(S20のNO;着霜が少ない場合)、室内コントローラ24aは、暖房運転の開始から一定時間たとえば40分後が経過しかつ現時点の室外熱交換器13の熱交換器温度Teが予め定められている制限値(例えば-20℃)Tex未満であるか否かを監視する(S21)。暖房運転の開始から一定時間の40分後が経過していない場合または現時点の室外熱交換器13の熱交換器温度Teが制限値Tex未満でない場合(S21のNO)、室内コントローラ24aは、後段のS29の停止指示の判定に移行する。
 外気温度Toが例えば-20℃ぐらいまで低下したまま暖房運転が例えば40分を超えて継続すると、除霜運転を実行しても室外熱交換器13の霜を除去しきれない可能性があるため、そのような低外気温度環境に対処するべく上記S21の判定を除霜開始条件として採用している。
 差ΔTeが閾値A以上の場合(S20のYES)、または暖房運転の開始から一定時間たとえば40分後が経過しかつ熱交換器温度Teが制限値Tex未満の場合(S21のYES)、室内コントローラ24aは、室外熱交換器13に対する除霜が必要であるとの判断の下に、空気調和機1aの除霜運転を開始し(S22)、かつ“除霜中”を子機の全ての室内コントローラ24b~24nに通知する(S23)。この除霜運転の開始により、圧縮機11から吐出される高温冷媒が四方弁12を通って室外熱交換器13に直接的に供給され、高温冷媒の熱で室外熱交換器13の表面に付着した霜が除去される。
 除霜運転の開始後、室内コントローラ24aは、例えば室外熱交換器13の熱交換器温度Teに基づいて定められた除霜終了条件の成立を待つ(S24)。
 除霜終了条件が成立した場合(S24のYES)、室内コントローラ24aは、空気調和機1aの除霜運転を終了しかつ“除霜終了”を子機の全ての室内コントローラ24b~24nに通知する(S25)。そして、室内コントローラ24aは、この時点では基準値Teoおよび制限値Texの変更がない“通常除霜”モードの設定が継続していることから(S26のYES)、次のS27のシフト解除処理を実行することなくバイパスして暖房運転を再開する(S28)。この暖房運転の再開に際し、室内コントローラ24aは、この時点では“通常除霜”モードの設定が継続していることから(S29のYES)、S30の能力低減処理を実行することなくバイパスして暖房運転の停止指示を監視する(S31)。停止指示がなければ(S31のNO)、上記S16に戻って上記同様の処理を繰り返す。
 上記S16の判定において、“除霜中”通知がある場合(S16のYES)、室内コントローラ24aは、上記S15で更新記憶した当初の基準値Teoから所定値たとえば1℃を減じた値を新たな基準値Teo(=当初Teo-1℃)として内部メモリに記憶するとともに、室外熱交換器13の熱交換器温度Teに対する制限値Texから所定値たとえば1℃を減じた値を新たな制限値Tex(=当初Tex-1℃)として内部メモリに記憶する(S17)。すなわち、除霜開始条件が通常より成立が遅れる方向に変更される。この変更により、“遅め除霜”モードが設定される。
 続いて、室内コントローラ24aは、記憶した新たな基準値Teo(=当初Teo-1℃)と現時点の室外熱交換器13の熱交換器温度Teとの差ΔTe(=新Teo-Te)が閾値A以上であるか否かを監視する(S20)。差ΔTeが閾値A以上でない場合(S20のNO)、室内コントローラ24aは、暖房運転の開始から一定時間の40分後が経過しかつ現時点の室外熱交換器13の熱交換器温度Teが上記S17で記憶した新たな制限値Tex(=当初Tex-1℃)未満であるか否かを監視する(S21)。
 差ΔTeが閾値A以上の場合(S20のYES)、または暖房運転の開始から一定時間の40分後が経過しかつ熱交換器温度Teが制限値Tex未満の場合(S21のYES)、つまり除霜開始条件が成立した場合、室内コントローラ24aは、先に除霜開始条件が成立して除霜運転に入っている空気調和機1bの除霜運転がまだ継続中であっても、それにかかわらず空気調和機1aの除霜運転を開始し(S22)、かつ“除霜中”を子機の室内コントローラ24b~24nに通知する(S23)。この除霜運転の開始後、室内コントローラ24aは、除霜終了条件の成立を待つ(S24)。
 除霜終了条件が成立した場合(S24のYES)、室内コントローラ24aは、空気調和機1aの除霜運転を終了しかつ“除霜終了”を子機の全ての室内コントローラ24b~24nに通知する(S25)。そして、室内コントローラ24aは、この時点では基準値Teoおよび制限値Texが変更されて“遅め除霜”モードが設定されていることから(S26のNO)、その基準値Teoおよび制限値Texの変更を解除して通常除霜モードに戻り(S27)、暖房運転を再開する(S28)。
 この暖房運転の再開に際し、室内コントローラ24aは、これまでの除霜運転が“遅め除霜”モードであったことから(S29のNO)、所定時間にわたり、圧縮機11の運転周波数Fを通常の80%程度に抑えて暖房再開の立ち上り能力を低減する(S30)。
 続いて、室内コントローラ24aは、暖房運転の停止指示を監視する(S31)。停止指示がない場合(S31のNO)、室内コントローラ24aは、上記S16の判定に移行する。停止指示がある場合(S31のYES)、室内コントローラ24aは、暖房運転を停止する(S32)。
 以上のように、空気調和機1bで除霜開始条件が成立して空気調和機1bが除霜運転に入った場合に、その空気調和機1bを除く残りの全ての空気調和機1a,1c~1nの除霜開始条件を通常より成立が遅れる方向に変更(-1℃)して“遅め除霜”モードを設定することにより、空気調和機1bが除霜運転を開始しても、それと同時に他の空気調和機1a,1c~1nが除霜運転を開始することはない。したがって、除霜による空調エリアの室内温度Taの低下をできるだけ抑えることができ、居住者に不快感を与えない。
 “除霜中”通知を受けた空気調和機の室内コントローラが除霜開始条件の基準値Teoおよび制限値Texをそれぞれの室内コントローラにおいて単にシフトするだけなので、室内コントローラ24a~24nの制御が複雑化することはない。
 子機の室内コントローラ24b~24nとしては、“除霜中”通知を親機の室内コントローラ24aに通知するだけでよく、自身の空気調和機がどれであるかを示すアドレス等の識別情報の通知は不要である。親機の室内コントローラ24aとしては、子機のいずれかからの“除霜中”通知を受けた際にそれを全ての子機に転送するだけであり、除霜開始条件が成立した空気調和機がどれであるかを示すアドレス等の識別情報の通知は不要である。したがって、親機と子機の通信制御も簡素化できる。
 除霜開始条件の変更によって空気調和機1a~1nの除霜開始のタイミングをずらすだけなので、いずれかの空気調和機の除霜運転を禁止してしまうことはなく、よって各空気調和機の室外熱交換器13の着霜が除去されないままいわゆる過着霜の状態となる不具合は生じない。
 一方、先に除霜開始条件が成立して除霜運転に入った空気調和機1bが除霜運転を終了して室内コントローラ24bから“除霜終了”通知が発せられた場合(S18のYES)、室内コントローラ24aは、上記S15で更新記憶した当初の基準値Teoに所定値たとえば1℃を加えた値を新たな基準値Teo(=当初Teo+1℃)として内部メモリに記憶するとともに、室外熱交換器13の熱交換器温度Teに対して予め定められている制限値Texに所定値たとえば1℃を加えた値を新たな制限値Tex(=当初Tex+1℃)として内部メモリに記憶する(S19)。すなわち、除霜開始条件が通常より成立が早まる方向に変更される。これにより、“早め除霜”モードが設定される。
 続いて、室内コントローラ24aは、記憶した新たな基準値Teoと現時点の室外熱交換器13の熱交換器温度Teとの差ΔTe(=新Teo-Te)が閾値A以上であるか否かを監視する(S20)。差ΔTeが閾値A以上でない場合(S20のNO)、室内コントローラ24aは、暖房運転の開始から一定時間の40分後が経過しかつ現時点の室外熱交換器13の熱交換器温度Teが上記S19で記憶した新たな制限値Tex(=当初Tex+1℃)未満であるか否かを監視する(S21)。
 先に除霜開始条件が成立して除霜運転に入った空気調和機1bが除霜運転を終了して暖房を再開すると、その空気調和機1bの除霜開始条件が再び成立するころに、“遅れ除霜”モードが設定されている空気調和機1a,1c~1nの除霜開始条件の成立が重なる可能性がある。
 そこで、先に除霜開始条件が成立して除霜運転に入った空気調和機1bが除霜運転を終了した際には、“遅れ除霜”モードが設定されている空気調和機1a,1c~1nの除霜開始条件を通常より成立が早まる方向に変更するようにしている。こうして、空気調和機1a,1c~1nを“遅れ除霜”モードから“早め除霜”モードに切換えることにより、暖房を再開した空気調和機1bの除霜開始条件が再び成立する早い時期に、空気調和機1a,1c~1nの除霜開始条件の成立のタイミングを移すことができる。つまり、複数の空気調和機の除霜開始が同じタイミングで巡ってくる可能性を低くすることができる。
 また、“遅め除霜”モードの空気調和機1a,1c~1nのいずれかが除霜運転を開始するタイミングでは、先に除霜開始条件が成立した空気調和機1bがまだ除霜運転を実行中である可能性があり、その場合は複数の空気調和機の除霜運転が同時に実行されることになる。このまま複数の空気調和機がそれぞれ除霜運転を終了して暖房を再開すると、それぞれの空気調和機の室外熱交換器13の着霜の進み具合が同じになり、やがて複数の空気調和機の除霜開始が再び同じタイミングで巡ってくる可能性がある。
 そこで、“遅め除霜”モードの空気調和機1a,1c~1nのいずれかが除霜運転に入ってその除霜運転が終了し暖房を再開する際には、所定時間にわたり、圧縮機11の運転周波数Fを通常の80%程度に抑えて暖房再開の立ち上り能力を低減するようにしている。これにより、たとえ複数の空気調和機が同時に除霜運転を実行することになっても、それぞれの空気調和機の室外熱交換器13の着霜の進み具合を異ならせることができる。つまり、複数の空気調和機の除霜開始が同じタイミングで巡ってくる可能性を低くすることができる。
 [変形例]
 上記実施形態では、“遅め除霜”モードとして除霜開始条件の基準値Teoおよび制限値Texを-1℃シフトし、早め除霜モードとして除霜開始条件の基準値Teoおよび制限値Texを+1℃シフトしたが、シフトする値については、-1℃に限らず、室外熱交換器13の容量やヒートポンプ式冷凍サイクルの能力などに応じて適宜に選定可能である。
 上記実施形態では、熱交換器温度Teと基準値Teoとの差ΔTe(=Teo-Te)が閾値A以上という第1除霜開始条件を用いたが、外気温度センサ16が検知する外気温度Toをこの第1除霜開始条件に加味してもよい。
 その他、上記実施形態および変形例は、例として提示したものであり、発明の範囲を限定することは意図していない。この新規な実施形態および変形例は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、書き換え、変更を行うことができる。これら実施形態や変形は、発明の範囲は要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
 1a,1b,…1n……空気調和機、10…室外ユニット、11…圧縮機、13…室外熱交換器、18a,18b,…18n……室外コントローラ、20…室内ユニット、24a,24b,…24n……室内コントローラ、33…リモコン、40…バスライン

Claims (4)

  1.  圧縮機、四方弁、室外熱交換器、減圧器、室内熱交換器からなるヒートポンプ式冷凍サイクルを備え、前記室外熱交換器の除霜開始条件が成立した場合にその室外熱交換器に対する除霜運転を実行する複数の空気調和機と、
     前記各空気調和機のいずれかの除霜開始に際し、その除霜開始する空気調和機を除く残りの空気調和機の除霜開始条件を変更するコントローラと、
     を備えることを特徴とする空気調和装置。
  2.  前記コントローラは、前記各空気調和機のいずれかの空気調和機の除霜開始条件が成立した際に、その除霜開始条件が成立した空気調和機を除く残りの空気調和機の除霜開始条件を通常より成立が遅れる方向に変更する、
     ことを特徴とする請求項1に記載の空気調和装置。
  3.  前記コントローラは、前記遅れ方向の変更後、前記除霜開始条件が成立した空気調和機が除霜運転に入ってその除霜運転が終了した際に、前記遅れ方向の変更がなされた空気調和機の除霜開始条件を通常より成立が早まる方向に変更する、
     ことを特徴とする請求項2に記載の空気調和装置。
  4.  前記コントローラは、前記遅れ方向の変更がなされた空気調和機の除霜開始条件が成立して同空気調和機が除霜運転に入った場合、その除霜運転が終了した後の同空気調和機の暖房再開の立ち上り能力を低減する、
     ことを特徴とする請求項2または請求項3に記載の空気調和装置。
PCT/JP2019/046651 2018-11-29 2019-11-28 空気調和装置 WO2020111200A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201980078965.3A CN113167518B (zh) 2018-11-29 2019-11-28 空调装置
EP19889376.0A EP3889522A4 (en) 2018-11-29 2019-11-28 AIR CONDITIONING DEVICE
JP2020557836A JP7098751B2 (ja) 2018-11-29 2019-11-28 空気調和装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-223498 2018-11-29
JP2018223498 2018-11-29

Publications (1)

Publication Number Publication Date
WO2020111200A1 true WO2020111200A1 (ja) 2020-06-04

Family

ID=70852102

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/046651 WO2020111200A1 (ja) 2018-11-29 2019-11-28 空気調和装置

Country Status (4)

Country Link
EP (1) EP3889522A4 (ja)
JP (1) JP7098751B2 (ja)
CN (1) CN113167518B (ja)
WO (1) WO2020111200A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111998444A (zh) * 2020-08-07 2020-11-27 深圳中集天达吉荣航空制冷有限公司 一种飞机地面空调机组及其除霜方法
JP7034227B1 (ja) 2020-09-30 2022-03-11 日立ジョンソンコントロールズ空調株式会社 空気調和機及び管理装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01107056A (ja) * 1987-10-21 1989-04-24 Toshiba Corp 空気調和機
JPH0228056A (ja) * 1988-07-15 1990-01-30 Toshiba Corp 車両用空気調和装置
JP2002327976A (ja) * 2001-04-27 2002-11-15 Gac Corp 空気調和システムの制御方法
JP2002372282A (ja) * 2001-04-13 2002-12-26 Gac Corp 空気調和システム
JP2010121798A (ja) 2008-11-17 2010-06-03 Mitsubishi Electric Corp 空気調和装置
WO2018042611A1 (ja) * 2016-09-02 2018-03-08 三菱電機株式会社 冷凍空調システム

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5919255B2 (ja) * 1979-07-24 1984-05-04 三菱電機株式会社 空調機の除霜制御方法
JPH06100358B2 (ja) * 1985-12-04 1994-12-12 松下冷機株式会社 空気調和装置
JP3662707B2 (ja) * 1997-03-27 2005-06-22 日本建鐵株式会社 冷凍冷蔵ショーケースの通信制御方法
JP2005090784A (ja) * 2003-09-12 2005-04-07 Matsushita Electric Ind Co Ltd 除霜調節装置と制御方法、およびヒートポンプ式給湯装置
US9835368B2 (en) * 2011-09-13 2017-12-05 Mitsubishi Electric Corporation Refrigerating and air-conditioning apparatus for use in a defrosting operation
JP5836083B2 (ja) 2011-11-24 2015-12-24 三菱重工業株式会社 ヒートポンプシステムの除霜運転方法及びヒートポンプシステム
JP5590195B1 (ja) * 2013-07-11 2014-09-17 株式会社富士通ゼネラル 空気調和装置
JP5574028B1 (ja) * 2013-07-31 2014-08-20 株式会社富士通ゼネラル 空気調和装置
CN108731321B (zh) * 2017-04-25 2020-04-24 同方人工环境有限公司 一种空气源热泵***的除霜控制方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01107056A (ja) * 1987-10-21 1989-04-24 Toshiba Corp 空気調和機
JPH0228056A (ja) * 1988-07-15 1990-01-30 Toshiba Corp 車両用空気調和装置
JP2002372282A (ja) * 2001-04-13 2002-12-26 Gac Corp 空気調和システム
JP2002327976A (ja) * 2001-04-27 2002-11-15 Gac Corp 空気調和システムの制御方法
JP2010121798A (ja) 2008-11-17 2010-06-03 Mitsubishi Electric Corp 空気調和装置
WO2018042611A1 (ja) * 2016-09-02 2018-03-08 三菱電機株式会社 冷凍空調システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3889522A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111998444A (zh) * 2020-08-07 2020-11-27 深圳中集天达吉荣航空制冷有限公司 一种飞机地面空调机组及其除霜方法
JP7034227B1 (ja) 2020-09-30 2022-03-11 日立ジョンソンコントロールズ空調株式会社 空気調和機及び管理装置
JP2022057100A (ja) * 2020-09-30 2022-04-11 日立ジョンソンコントロールズ空調株式会社 空気調和機及び管理装置

Also Published As

Publication number Publication date
JP7098751B2 (ja) 2022-07-11
CN113167518A (zh) 2021-07-23
EP3889522A1 (en) 2021-10-06
CN113167518B (zh) 2022-12-27
JPWO2020111200A1 (ja) 2021-09-27
EP3889522A4 (en) 2022-08-10

Similar Documents

Publication Publication Date Title
EP2876384B1 (en) Air-conditioning apparatus
JP5634682B2 (ja) 空気調和機
AU2014297788B2 (en) Air conditioner
JP6768546B2 (ja) 空気調和機
WO2013077167A1 (ja) ヒートポンプシステムの除霜運転方法及びヒートポンプシステム
JP4899549B2 (ja) 冷凍装置の圧縮機運転方法、および冷凍装置
JP6137461B2 (ja) 空気調和機
WO2020111200A1 (ja) 空気調和装置
JPWO2018042611A1 (ja) 冷凍空調システムおよびシステムコントローラ
JP6033416B2 (ja) 空気調和装置
JP2019148382A (ja) ヒートポンプ式暖房装置
CN112074692B (zh) 空调机
JP2001272083A (ja) 空気調和装置
JP7192102B2 (ja) 空気調和装置
WO2019087630A1 (ja) 空調装置
JPH10292950A (ja) 冷凍装置の油戻し運転制御装置
JP5954995B2 (ja) 空気調和装置
EP3093573B1 (en) Heat pump hot and cold water system
JPH10246543A (ja) 空気調和機の制御方法
JP5871040B2 (ja) 空気調和システム
JP2024064351A (ja) 空気調和機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19889376

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020557836

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019889376

Country of ref document: EP

Effective date: 20210629