WO2020110785A1 - Film-like adhesive agent for semiconductor, semiconductor device, and method for manufacturing same - Google Patents

Film-like adhesive agent for semiconductor, semiconductor device, and method for manufacturing same Download PDF

Info

Publication number
WO2020110785A1
WO2020110785A1 PCT/JP2019/044953 JP2019044953W WO2020110785A1 WO 2020110785 A1 WO2020110785 A1 WO 2020110785A1 JP 2019044953 W JP2019044953 W JP 2019044953W WO 2020110785 A1 WO2020110785 A1 WO 2020110785A1
Authority
WO
WIPO (PCT)
Prior art keywords
adhesive
film
semiconductor
semiconductor chip
resin
Prior art date
Application number
PCT/JP2019/044953
Other languages
French (fr)
Japanese (ja)
Inventor
明子 林出
利泰 秋吉
幸一 茶花
Original Assignee
日立化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成株式会社 filed Critical 日立化成株式会社
Priority to KR1020217007145A priority Critical patent/KR102652707B1/en
Priority to CN201980070535.7A priority patent/CN113169141A/en
Priority to JP2020558357A priority patent/JP7384171B2/en
Publication of WO2020110785A1 publication Critical patent/WO2020110785A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • C09J7/35Heat-activated
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J133/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Adhesives based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J163/00Adhesives based on epoxy resins; Adhesives based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J171/00Adhesives based on polyethers obtained by reactions forming an ether link in the main chain; Adhesives based on derivatives of such polymers
    • C09J171/08Polyethers derived from hydroxy compounds or from their metallic derivatives
    • C09J171/10Polyethers derived from hydroxy compounds or from their metallic derivatives from phenols
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J175/00Adhesives based on polyureas or polyurethanes; Adhesives based on derivatives of such polymers
    • C09J175/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J201/00Adhesives based on unspecified macromolecular compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/52Mounting semiconductor bodies in containers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2203/00Applications of adhesives in processes or use of adhesives in the form of films or foils
    • C09J2203/326Applications of adhesives in processes or use of adhesives in the form of films or foils for bonding electronic components such as wafers, chips or semiconductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/1302Disposition
    • H01L2224/13025Disposition the bump connector being disposed on a via connection of the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16135Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/16145Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/8119Arrangement of the bump connectors prior to mounting
    • H01L2224/81191Arrangement of the bump connectors prior to mounting wherein the bump connectors are disposed only on the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8319Arrangement of the layer connectors prior to mounting
    • H01L2224/83191Arrangement of the layer connectors prior to mounting wherein the layer connectors are disposed only on the semiconductor or solid-state body

Definitions

  • the present invention relates to a film adhesive for semiconductors, a semiconductor device and a method for manufacturing the same.
  • connection method FC connection method
  • the COB (Chip On Board) type connection method that is actively used in BGA (Ball Grid Array), CSP (Chip Size Package), etc. also corresponds to the FC connection method.
  • the FC connection method is also widely used in a COC (Chip On Chip) type connection method in which a connection portion (for example, a bump and a wiring) is formed on a semiconductor chip to connect the semiconductor chips.
  • chip stack type packages POP (Package On Package), TSV (Throughh), in which chips are stacked using the connection method described above to form multiple stages. -Silicon Via) etc. are beginning to spread widely. Since such a stacking/multi-stage technology arranges semiconductor chips and the like in three dimensions, the package can be made smaller than the method of arranging in two dimensions. Further, since it is effective in improving the performance of semiconductors, reducing noise, reducing the mounting area, and saving power, it is drawing attention as a next-generation semiconductor wiring technology.
  • connection portion for example, solder, tin, gold, silver, copper, nickel and the like can be mentioned, and a conductive material containing plural kinds of these is also used. ..
  • the surface of the metal used for the connection portion may be oxidized to form an oxide film, and impurities such as oxides may be attached. If such an oxide film and impurities remain, the connectivity and insulation reliability between the semiconductor chip and the substrate or between the two semiconductor chips may deteriorate, and the merit of adopting the above-described connection method may be impaired. It
  • this anti-oxidation film may cause a decrease in solder wettability during the connection process, a decrease in connection property, and the like.
  • Patent Document 1 As a method for removing the above oxide film and impurities, a method using an adhesive film containing a flux agent has been proposed (see, for example, Patent Document 1).
  • a semiconductor chip mounting substrate for example, a semiconductor chip, a semiconductor wafer, a printed circuit board, etc.
  • the adhesive cures and shrinks. Due to the influence of heat history during the reflow process, stress may be applied to the base body and the semiconductor chip, causing warpage. The occurrence of warpage leads to cracking of the substrate and the semiconductor chip, improper fixing of the substrate in the sealing process, and the like, so it is required to reduce the amount of warpage.
  • the inventors of the present invention include a thermoplastic resin having a Tg of less than 35° C. in a film adhesive for semiconductors made of a thermosetting adhesive to reduce the elastic modulus after curing, thereby reducing the amount of warpage. It has been found that can reduce.
  • the semiconductor film adhesive may remain on the pick-up tool when picking up a semiconductor chip in the mounting process, thus contaminating the pick-up tool. It became clear. Contamination of the pick-up tool leads to deterioration of production efficiency due to process stop for cleaning the pick-up tool and quality abnormality due to spread of pollution from the pick-up tool to the bonding tool. It is required to reduce the warp.
  • an object of the present invention is to provide a film-like adhesive for semiconductors, which can suppress the occurrence of warpage of the substrate and the semiconductor chip in the mounting process and the contamination of the pickup tool.
  • Another object of the present invention is to provide a semiconductor device using the above film adhesive for semiconductors and a method for manufacturing the same.
  • the film adhesive for semiconductors comprises a first thermosetting adhesive layer and a second thermosetting adhesive layer provided on the first thermosetting adhesive layer.
  • the first thermosetting adhesive layer includes a first thermoplastic resin having a Tg of less than 35° C.
  • the second thermosetting adhesive layer has a second Tg of 35° C. or more. Containing a thermoplastic resin.
  • the conductive adhesive layer contains a thermoplastic resin (first thermoplastic resin) having a Tg of less than 35° C., warpage of the base and the semiconductor chip can be reduced.
  • the above film-like adhesive for semiconductors is particularly suitable for use in producing a flip chip package (semiconductor device) by the wafer level packaging technology.
  • the wafer-level packaging technology is a technology for efficiently manufacturing a plurality of packages by mounting a plurality of semiconductor chips on a semiconductor wafer, encapsulating them all at once, and dicing them into individual pieces.
  • the wafer level packaging technology is useful as a technology for improving productivity because it can shorten the assembly time of the flip chip package.
  • the wafer level packaging technology as the number of mounted semiconductor chips increases, the stress on the semiconductor wafer tends to increase, and the amount of warpage tends to increase.
  • the above film adhesive for semiconductors it is possible to suppress the warp of the semiconductor wafer and the contamination of the pickup tool even when the semiconductor device is manufactured by the wafer level packaging technique.
  • the film-like adhesive for semiconductors preferably has an elastic modulus at 35° C. of 5 MPa or less after curing. In this case, the amount of warp can be further reduced.
  • the Tg of the second thermoplastic resin is preferably 60° C. or higher. In this case, contamination of the pickup tool can be further reduced.
  • the second thermoplastic resin preferably contains a phenoxy resin. In this case, the contamination of the pickup tool can be further reduced, and the amount of warpage can be further reduced.
  • At least one of the first thermosetting adhesive layer and the second thermosetting adhesive layer preferably contains a flux compound.
  • the oxide film on the metal surface is sufficiently reduced and removed so that the metal can be easily melted, the molten metal is not hindered from spreading, and the state where a metal joint is formed ( Flux activity) is obtained. Therefore, excellent connectivity can be obtained.
  • the flux compound preferably has a carboxyl group, and more preferably has two or more carboxyl groups. In this case, more excellent connection reliability (for example, connectability and insulation reliability) is likely to be obtained.
  • the flux compound is preferably a compound represented by the following formula (2).
  • R 1 and R 2 each independently represent a hydrogen atom or an electron-donating group, and n represents 0 or an integer of 1 or more.
  • the melting point of the flux compound is preferably 150°C or lower.
  • the flux is melted before the adhesive is hardened during thermocompression bonding, and the oxide film of solder or the like is reduced and removed, so that more excellent connection reliability is likely to be obtained.
  • the first thermoplastic resin preferably contains a (meth)acrylic resin or a urethane resin. In this case, the amount of warp can be further reduced.
  • At least one of the first thermosetting adhesive layer and the second thermosetting adhesive layer preferably contains a thermosetting resin and a curing agent, and an epoxy resin and an imidazole curing agent. It is more preferable to contain
  • a film adhesive for semiconductors is a first thermosetting adhesive layer and a second thermosetting adhesive layer provided on the first thermosetting adhesive layer.
  • the elastic modulus at 35° C. after curing is 5 MPa or less
  • the probe tack value of the second thermosetting adhesive layer at a probe temperature of 50° C. and a stage temperature of 25° C. is 60 N/cm 2 or less. Is.
  • the second thermosetting adhesive layer may come into contact with the pickup tool. Can be used to suppress the contamination of the pickup tool.
  • the elastic modulus at 35° C. after curing is 5 MPa or less, it is possible to reduce the warpage of the substrate and the semiconductor chip.
  • a method of manufacturing a semiconductor device includes a semiconductor wafer having a connecting portion on one main surface, and the above-mentioned film adhesive for semiconductors provided on the main surface of the semiconductor wafer.
  • a laminate including a semiconductor wafer, a first thermosetting adhesive layer, and a second thermosetting adhesive layer, which are laminated in this order;
  • connection of a semiconductor chip with a film adhesive by arranging from the film adhesive side on the main surface where the connection part of the semiconductor chip mounting substrate having a connection part on the main surface is provided and heating. And a step of electrically connecting the portion and the connecting portion of the semiconductor chip mounting substrate. According to this manufacturing method, it is possible to suppress the warp of the base body and the semiconductor chip and the contamination of the pickup tool.
  • a semiconductor device is a semiconductor device in which respective connecting portions of a semiconductor chip and a semiconductor chip mounting substrate are electrically connected to each other, and at least a part of the connecting portion is the above-mentioned semiconductor. It is sealed with a cured product of a film-type adhesive for use. The warp amount of this semiconductor device is reduced.
  • the present invention it is possible to provide a film adhesive for semiconductors, which can suppress the occurrence of warpage of the substrate and the semiconductor chip in the mounting process and the contamination of the pickup tool. Further, according to the present invention, it is possible to provide a semiconductor device using the film adhesive for semiconductors and a method for manufacturing the same.
  • FIG. 1 is a schematic cross-sectional view showing an embodiment of the film adhesive for semiconductors of the present invention.
  • 2A to 2D are process sectional views schematically showing an embodiment of the method for manufacturing a semiconductor device of the present invention.
  • 3A to 3D are process cross-sectional views schematically showing an embodiment of the method for manufacturing a semiconductor device of the present invention.
  • 4A to 4D are process cross-sectional views schematically showing an embodiment of the method for manufacturing a semiconductor device of the present invention.
  • FIG. 5 is a process sectional view schematically showing an embodiment of the method for manufacturing a semiconductor device of the present invention.
  • 6A to 6D are process cross-sectional views schematically showing an embodiment of the method for manufacturing a semiconductor device of the present invention.
  • FIG. 7 is a schematic cross-sectional view showing an embodiment of the semiconductor device of the present invention.
  • FIG. 8 is a schematic cross-sectional view showing another embodiment of the semiconductor device of the present invention.
  • FIG. 1 is a schematic cross-sectional view showing a film-like adhesive for semiconductors of one embodiment.
  • the film adhesive 1 for a semiconductor includes a first thermosetting adhesive layer 2 (hereinafter, also simply referred to as “first layer”) and a second thermosetting adhesive layer 2 provided on the first layer 2.
  • Thermosetting adhesive layer 3 (hereinafter, also simply referred to as “second layer”).
  • the first layer 2 is a layer made of a first thermosetting adhesive (hereinafter, also simply referred to as “first adhesive”)
  • the second layer 3 is a second thermosetting adhesive. (Hereinafter, also simply referred to as “second adhesive”).
  • the film adhesive 1 for a semiconductor is used, for example, in a semiconductor device in which respective connecting portions of a semiconductor chip and a semiconductor chip mounting substrate (for example, a semiconductor chip, a semiconductor wafer, a wiring circuit board, etc.) are electrically connected to each other. It is used to seal at least a part of the connection portion. Specifically, it can be used to manufacture a semiconductor device by the method described below.
  • the first layer 2 contains a first thermoplastic resin having a Tg of less than 35° C. (hereinafter, also simply referred to as “first thermoplastic resin”), and the second layer 3 Contains a second thermoplastic resin having a Tg of 35° C. or higher (hereinafter, also simply referred to as “second thermoplastic resin”). That is, the first adhesive contains the first thermoplastic resin and the second adhesive contains the second thermoplastic resin. According to the film adhesive 1 for a semiconductor as described above, by using the second layer 3 so as to be in contact with the pickup tool, the pickup tool can be prevented from being contaminated, and the first layer 2 is Since it contains a thermoplastic resin having a Tg of less than 35° C. (first thermoplastic resin), it is possible to reduce the warpage of the semiconductor chip mounting base and the semiconductor chip.
  • first thermoplastic resin a thermoplastic resin having a Tg of less than 35° C.
  • the first adhesive is, for example, a composition containing a thermosetting resin and a curing agent as thermosetting components, and a first thermoplastic resin.
  • a radically polymerizable compound and a thermal polymerization initiator may be used as the thermosetting component.
  • thermosetting resin examples include epoxy resin, phenol resin (excluding cases where it is contained as a curing agent), polyimide resin, bismaleimide resin, and the like.
  • the thermosetting resin is preferably an epoxy resin from the viewpoint that more excellent heat resistance and adhesiveness are easily obtained.
  • the epoxy resin can be used without particular limitation as long as it has two or more epoxy groups in the molecule.
  • the epoxy resin include bisphenol A type epoxy resin, bisphenol F type epoxy resin, naphthalene type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, phenol aralkyl type epoxy resin, biphenyl type epoxy resin, triphenylmethane.
  • Type epoxy resin, dicyclopentadiene type epoxy resin and various polyfunctional epoxy resins can be used. These can be used alone or as a mixture of two or more kinds.
  • the epoxy resin it is preferable to use an epoxy resin having a thermal weight loss rate of 5% or less at the temperature at the time of connection, from the viewpoint of suppressing decomposition of volatile components at the time of connection at a high temperature.
  • the connecting temperature is 250° C.
  • the connecting temperature is 300° C.
  • the thermogravimetric weight at 300° C. It is preferable to use an epoxy resin with a reduction rate of 5% or less.
  • the content of the thermosetting resin is, for example, 5% by mass or more, preferably 10% by mass or more, and more preferably 15% by mass or more, based on the total mass of the first adhesive.
  • the content of the thermosetting resin is, for example, 75% by mass or less, preferably 50% by mass or less, and more preferably 45% by mass or less, based on the total mass of the first adhesive.
  • the content of the thermosetting resin may be, for example, 5 to 75% by mass, 10 to 50% by mass or 15 to 45% by mass based on the total mass of the first adhesive.
  • the thermosetting resin contains an epoxy resin
  • the content of the epoxy resin is preferably within the above range.
  • the “total mass of the first adhesive” in the present specification does not include the mass of the organic solvent.
  • the curing agent can be appropriately selected according to the thermosetting resin used.
  • a phenol resin-based curing agent, an acid anhydride-based curing agent, an amine-based curing agent, an imidazole-based curing agent, a phosphine-based curing agent, etc. may be used as the curing agent. it can. Since the phenol resin-based curing agent and the acid anhydride-based curing agent exhibit flux activity, the connection reliability can be further improved by using these curing agents as the curing agent.
  • each curing agent will be described.
  • Phenolic resin-based curing agent is not particularly limited as long as it has two or more phenolic hydroxyl groups in the molecule, and examples thereof include phenol novolac resin, cresol novolac resin, and phenol aralkyl resin. , Cresol naphthol formaldehyde polycondensate, triphenylmethane type polyfunctional phenol resin and various polyfunctional phenol resins can be used. These can be used alone or as a mixture of two or more kinds.
  • the equivalent ratio of the phenolic resin-based curing agent to the epoxy resin is good curability, adhesiveness and storage stability. From the viewpoint, 0.3 to 1.5 is preferable, 0.4 to 1.0 is more preferable, and 0.5 to 1.0 is further preferable.
  • the equivalent ratio is 0.3 or more, the curability and the adhesive strength tend to be improved, and when it is 1.5 or less, the unreacted phenolic hydroxyl group does not remain excessively and the water absorption is It tends to be kept low and the insulation reliability tends to be improved.
  • Acid Anhydride Curing Agent examples include methylcyclohexanetetracarboxylic dianhydride, trimellitic anhydride, pyromellitic dianhydride, benzophenonetetracarboxylic dianhydride, and ethylene glycol bis.
  • Anhydrotrimellitate can be used. These can be used alone or as a mixture of two or more kinds.
  • the equivalent ratio of the acid anhydride-based curing agent to the epoxy resin is good curability, adhesiveness and storage. From the viewpoint of stability, 0.3 to 1.5 is preferable, 0.4 to 1.0 is more preferable, and 0.5 to 1.0 is further preferable. If the equivalent ratio is 0.3 or more, the curability and the adhesive strength tend to be improved, and if it is 1.5 or less, the unreacted acid anhydride does not remain excessively and the water absorption is It tends to be kept low and the insulation reliability tends to be improved.
  • (Iii) Amine-Based Curing Agent As the amine-based curing agent, for example, dicyandiamide can be used.
  • the equivalent ratio of the amine-based curing agent to the epoxy resin is from the viewpoint of good curability, adhesiveness and storage stability. 0.3 to 1.5 is preferable, 0.4 to 1.0 is more preferable, and 0.5 to 1.0 is further preferable.
  • the equivalent ratio is 0.3 or more, the curability and the adhesive strength tend to be improved, and when it is 1.5 or less, unreacted amine does not remain excessively and the insulation reliability is improved. Tend to do.
  • Imidazole type curing agent examples include 2-phenylimidazole, 2-phenyl-4-methylimidazole, 1-benzyl-2-methylimidazole, 1-benzyl-2-phenylimidazole, 1- Cyanoethyl-2-undecylimidazole, 1-cyano-2-phenylimidazole, 1-cyanoethyl-2-undecylimidazole trimellitate, 1-cyanoethyl-2-phenylimidazolium trimellitate, 2,4-diamino-6 -[2'-Methylimidazolyl-(1')]-ethyl-s-triazine, 2,4-diamino-6-[2'-undecylimidazolyl-(1')]-ethyl-s-triazine, 2, 4-diamino-6-[2'-ethyl-4'-methylimidazole, 1-benzyl-2-methylimid
  • 1-cyanoethyl-2-undecylimidazole, 1-cyano-2-phenylimidazole, 1-cyanoethyl-2-undecylimidazole trimellitic acid from the viewpoint of excellent curability, storage stability and connection reliability.
  • Tate 1-cyanoethyl-2-phenylimidazolium trimellitate, 2,4-diamino-6-[2'-methylimidazolyl-(1')]-ethyl-s-triazine, 2,4-diamino-6- [2′-Ethyl-4′-methylimidazolyl-(1′)]-ethyl-s-triazine, 2,4-diamino-6-[2′-methylimidazolyl-(1′)]-ethyl-s-triazine Isocyanuric acid adducts, 2-phenylimidazole isocyanuric acid adducts, 2-phenyl-4,5-dihydroxymethylimidazole and 2-phenyl-4-methyl-5-hydroxymethylimidazole are preferred. These can be used alone or in combination of two or more. Further, these may be microencapsulated latent curing agents.
  • the content of the imidazole-based curing agent is preferably 0.1 to 20 parts by mass, more preferably 0.1 to 10 parts by mass, based on 100 parts by mass of the epoxy resin.
  • the content of the imidazole-based curing agent is 0.1 part by mass or more, the curability tends to be improved.
  • the content of the imidazole-based curing agent is 20 parts by mass or less, the fluidity of the first adhesive at the time of pressure bonding can be ensured, and the first adhesive between the connecting portions can be sufficiently removed. be able to. As a result, the first adhesive is suppressed from being hardened in the state where it intervenes between the solder and the connection portion, so that poor connection is less likely to occur.
  • phosphine-based curing agents include triphenylphosphine, tetraphenylphosphonium tetraphenylborate, tetraphenylphosphonium tetra(4-methylphenyl)borate and tetraphenylphosphonium(4-fluorophenyl)borate. Be raised.
  • the content of the phosphine-based curing agent is preferably 0.1 to 10 parts by mass, more preferably 0.1 to 5 parts by mass with respect to 100 parts by mass of the epoxy resin.
  • the content of the phosphine-based curing agent is 0.1 part by mass or more, the curability tends to be improved, and when it is 10 parts by mass or less, the first adhesive is cured before the metal bond is formed. There is no problem, and poor connection is less likely to occur.
  • Each of the phenol resin-based curing agent, the acid anhydride-based curing agent and the amine-based curing agent may be used alone or as a mixture of two or more kinds.
  • the imidazole-based curing agent and the phosphine-based curing agent may be used alone, or may be used together with a phenol resin-based curing agent, an acid anhydride-based curing agent or an amine-based curing agent.
  • the first thermoplastic resin has the function of reducing the elastic modulus of the film adhesive for semiconductors after curing, and contributes to the reduction of the amount of warpage.
  • the Tg (glass transition temperature) of the first thermoplastic resin is less than 35° C., and from the viewpoint of being able to further reduce the amount of warpage, it is preferably 25° C. or less, more preferably 10° C. or less, and further preferably 0. It is below °C.
  • the Tg of the first thermoplastic resin is preferably ⁇ 70° C. or higher, more preferably ⁇ 50° C. or higher, and further preferably ⁇ 30° C., from the viewpoint that the tack value of the first layer does not become too high. That is all.
  • the Tg of the first thermoplastic resin may be, for example, ⁇ 70° C. or higher and lower than 35° C., ⁇ 50 to 25° C., ⁇ 30 to 10° C., or ⁇ 30 to 0° C.
  • the first adhesive may include, as the first thermoplastic resin, a plurality of thermoplastic resins having different Tgs.
  • the Tg of the first thermoplastic resin mainly contained is preferably within the above range, and the Tg of all the first thermoplastic resins is more preferably within the above range.
  • Tg is a value obtained by, for example, DMA measurement.
  • thermoplastic resin examples include phenoxy resin, polyimide resin, polyamide resin, polycarbodiimide resin, cyanate ester resin, (meth)acrylic resin, polyester resin, polyethylene resin, polyethersulfone resin, polyetherimide resin, Examples thereof include polyvinyl acetal resin and urethane resin.
  • the first thermoplastic resin is a (meth)acrylic resin, a urethane resin, a polyamideimide resin, or a polyimide resin from the viewpoint of excellent heat resistance and film-forming property, and the effect of reducing elastic modulus.
  • the (meth)acrylic resin is preferably an acrylic rubber from the viewpoint of excellent heat resistance and film forming property, and also from the viewpoint of excellent effect of reducing elastic modulus. That is, it is particularly preferable that the first thermoplastic resin contains at least one selected from the group consisting of acrylic rubber and urethane resin.
  • the (meth)acrylic resin is a polymer compound obtained by polymerizing one or both of an acrylic ester and a methacrylic ester as a raw material. These thermoplastic resins may be used alone or as a mixture or copolymer of two or more kinds.
  • the weight average molecular weight of the first thermoplastic resin is, for example, 10,000 or more, preferably 20,000 or more, and more preferably 30,000 or more. With such a thermoplastic resin, the heat resistance and the film forming property of the first adhesive can be improved.
  • the weight average molecular weight of the first thermoplastic resin is preferably 1,000,000 or less, and more preferably 500000 or less. From these viewpoints, the weight average molecular weight of the first thermoplastic resin may be, for example, 10,000 to 1,000,000, 20,000 to 500,000, or 30,000 to 500,000. With such a thermoplastic resin, the heat resistance of the first adhesive can be improved.
  • the weight average molecular weight means the weight average molecular weight measured by polystyrene conversion using high performance liquid chromatography (manufactured by Shimadzu Corporation, trade name: C-R4A).
  • Detector LV4000 UV Detector (Hitachi, Ltd., trade name)
  • Pump L6000 Pump (Hitachi, Ltd., trade name)
  • Eluent: THF/DMF 1/1 (volume ratio)+LiBr (0.03 mol/L)+H3PO4 (0.06 mol/L) Flow rate: 1 mL/min
  • the content of the first thermoplastic resin is, for example, 1% by mass or more, preferably 2% by mass or more, and more preferably 5% by mass or more, based on the total mass of the first adhesive.
  • the content of the first thermoplastic resin is, for example, 30 mass% or less, preferably 20 mass% or less, and more preferably 15 mass% or less, based on the total mass of the first adhesive.
  • the content of the first thermoplastic resin may be, for example, 1 to 30% by mass, 2 to 20% by mass or 5 to 15% by mass based on the total mass of the first adhesive.
  • the ratio (mass ratio) of the content of the thermosetting resin to the content of the first thermoplastic resin in the first adhesive is preferably 0.01 to 5, and 0.05 to 3. It is more preferable, and 0.1 to 2 is even more preferable.
  • the first adhesive may further contain a flux compound, if necessary.
  • the flux compound is a compound having a flux activity and functions as a flux agent.
  • any known flux compound can be used without particular limitation as long as it reduces and removes an oxide film on the surface of solder or the like to facilitate metal bonding.
  • As the flux compound one kind may be used alone, or two or more kinds may be used in combination. However, the flux compound does not include the above-mentioned curing agent.
  • the flux compound preferably has a carboxyl group, and more preferably has two or more carboxyl groups, from the viewpoint of obtaining sufficient flux activity and more excellent connection reliability.
  • compounds having two carboxyl groups are preferable.
  • the compound having two carboxyl groups is less likely to volatilize even at a high temperature at the time of connection as compared with the compound having one carboxyl group (monocarboxylic acid), and the generation of voids can be further suppressed.
  • the increase in the viscosity of the film adhesive for semiconductors during storage and connection work is further suppressed, as compared with the case where a compound having three or more carboxyl groups is used. Therefore, the connection reliability of the semiconductor device can be further improved.
  • the flux compound having a carboxyl group a compound having a group represented by the following formula (1) is preferably used.
  • R 1 represents a hydrogen atom or an electron donating group.
  • Examples of the flux compound include dicarboxylic acids selected from succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, undecanedioic acid and dodecanedioic acid, and dicarboxylic acids thereof.
  • a compound having an electron donating group substituted at the position can be used.
  • the melting point of the flux compound is preferably 150°C or lower, more preferably 140°C or lower, and further preferably 130°C or lower. Such a flux compound is likely to exhibit sufficient flux activity before the curing reaction between the epoxy resin and the curing agent occurs. Therefore, according to the film-like adhesive for semiconductors using the first adhesive containing such a flux compound, a semiconductor device having further excellent connection reliability can be realized.
  • the melting point of the flux compound is preferably 25°C or higher, more preferably 50°C or higher.
  • the melting point of the flux compound may be, for example, 25-150°C, 50-140°C or 50-130°C.
  • the flux compound is preferably solid at room temperature (25°C).
  • the melting point of the flux compound can be measured using a general melting point measuring device.
  • the sample whose melting point is to be measured is pulverized into fine powder and it is required to reduce the temperature deviation in the sample by using a trace amount.
  • a capillary tube with one end closed is often used, but depending on the measuring device, there is also one that is sandwiched between two microscope cover glasses to form a container. Further, when the temperature is rapidly raised, a temperature gradient is generated between the sample and the thermometer, which causes a measurement error. Therefore, the heating at the time of measuring the melting point can be measured at an increase rate of 1° C. or less per minute. desirable.
  • the sample whose melting point is measured is prepared as a fine powder, so the sample before melting is opaque due to diffuse reflection on the surface. It is usual to set the temperature at which the appearance of the sample begins to become transparent as the lower limit point of the melting point and the temperature at which the sample has completely melted as the upper limit point.
  • the most classical device is a device in which a capillary tube filled with a sample is attached to a double-tube thermometer and heating is performed in a warm bath. A highly viscous liquid is used as the liquid for the hot bath for the purpose of attaching a capillary tube to the double-tube thermometer, and concentrated sulfuric acid or silicone oil is often used, so that the sample comes near the reservoir at the tip of the thermometer. Install.
  • the melting point measuring device it is possible to use a device that heats using a metal heat block and automatically determines the melting point while adjusting the heating while measuring the light transmittance.
  • the melting point of 150° C. or lower means that the upper limit of the melting point is 150° C. or lower
  • the melting point of 25° C. or higher means that the lower limit of the melting point is 25° C. or higher. means.
  • the content of the flux compound is, based on the total mass of the first adhesive, preferably 0.5 mass% or more.
  • the content of the flux compound is preferably 10% by mass or less, and more preferably 5% by mass or less, based on the total mass of the first adhesive.
  • the content of the flux compound may be, for example, 0.5 to 10 mass% or 0.5 to 5 mass% based on the total mass of the first adhesive.
  • the first adhesive may further contain a filler, if necessary.
  • the filler is preferably used for controlling the viscosity of the adhesive and the physical properties of the cured product of the adhesive. Specifically, by containing the filler, for example, it is possible to suppress the generation of voids at the time of connection, reduce the moisture absorption rate of the cured product of the adhesive, and the like.
  • the filler examples include inorganic filler (inorganic particles) and organic filler (organic particles).
  • the inorganic filler include glass, silica, alumina, titanium oxide, mica, insulating inorganic fillers such as boron nitride, and among them, at least one selected from the group consisting of silica, alumina, titanium oxide and boron nitride. At least one selected from the group consisting of silica, alumina and boron nitride is more preferable.
  • the insulating inorganic filler may be whiskers. Examples of the whiskers include aluminum borate, aluminum titanate, zinc oxide, calcium silicate, boron nitride and the like.
  • organic filler examples include resin fillers (resin particles).
  • resin filler examples include polyurethane and polyimide. Compared with inorganic fillers, resin fillers can impart flexibility at high temperatures such as 260° C., and thus are suitable for improving reflow resistance and, at the same time, can impart flexibility, thereby improving film formability. effective.
  • the filler is preferably insulative (is an insulative filler) from the viewpoint of further excellent insulation reliability. It is preferable that the first adhesive does not contain a conductive metal filler (metal particles) such as a silver filler or a solder filler, and a conductive inorganic filler such as carbon black.
  • a conductive metal filler metal particles
  • carbon black a conductive inorganic filler
  • the content of the insulating filler is such that the elastic modulus can be easily adjusted to a desired range, and the occurrence of voids can be more sufficiently reduced while suppressing warpage, and further excellent connection reliability can be obtained.
  • the amount may be 50% by mass or more, 70% by mass or more, or 90% by mass or more based on the total mass of the filler.
  • the filler may consist essentially of insulating filler. That is, the filler may be substantially free of conductive filler. "Substantially free" means that the content of the conductive filler in the filler is less than 0.5% by mass based on the total mass of the filler.
  • the physical properties of the filler may be appropriately adjusted by surface treatment.
  • the filler is preferably a surface-treated filler.
  • the surface treatment agent include glycidyl (epoxy), amine, phenyl, phenylamino, (meth)acrylic, and vinyl compounds.
  • silane treatment with a silane compound such as epoxysilane type, aminosilane type, acrylsilane type, etc. is preferable because of the ease of surface treatment.
  • a silane compound such as epoxysilane type, aminosilane type, acrylsilane type, etc.
  • the surface treatment agent at least one selected from the group consisting of glycidyl compounds, phenylamino compounds, and (meth)acrylic compounds is preferable from the viewpoint of excellent dispersibility, fluidity and adhesive strength. .. From the viewpoint of excellent storage stability, the surface treatment agent is preferably at least one selected from the group consisting of phenyl compounds and (meth)acrylic compounds.
  • the average particle size of the filler is preferably 1.5 ⁇ m or less from the viewpoint of preventing biting during flip chip connection, and more preferably 1.0 ⁇ m or less from the viewpoint of excellent visibility (transparency).
  • the content of the filler is determined from the viewpoint that the heat dissipation is suppressed to be low, and that the generation of voids and the tendency to increase the moisture absorption rate are likely to be suppressed, with respect to the total mass of the first adhesive.
  • 30% by mass or more is preferable, and 40% by mass or more is more preferable.
  • the content of the filler it is easy to suppress that the fluidity of the first adhesive decreases due to the increase in viscosity and the trapping of the filler into the connection portion (trapping) is easily suppressed, and the connection reliability decreases.
  • the content of the filler is preferably 30 to 90% by mass, and more preferably 40 to 80% by mass, based on the total mass of the first adhesive.
  • the first adhesive may further contain additives such as an antioxidant, a silane coupling agent, a titanium coupling agent, a leveling agent and an ion trap agent, if necessary. These may be used alone or in combination of two or more. The blending amount of these may be appropriately adjusted so that the effect of each additive is exhibited.
  • additives such as an antioxidant, a silane coupling agent, a titanium coupling agent, a leveling agent and an ion trap agent, if necessary. These may be used alone or in combination of two or more. The blending amount of these may be appropriately adjusted so that the effect of each additive is exhibited.
  • the first adhesive may contain a thermoplastic resin having Tg of 35° C. or higher (hereinafter referred to as “high Tg thermoplastic resin”), but a thermoplastic resin having Tg of less than 35° C. (hereinafter, It is preferable to mainly contain "a low Tg thermoplastic resin” (for example, to contain more than 50% by mass based on the total mass of the thermoplastic resin contained in the first adhesive), and to have a high Tg heat. It is further preferable that no plastic resin is contained.
  • the content of the low Tg thermoplastic resin (first thermoplastic resin) in the first adhesive is 75 mass% or more and 85 mass% or more based on the total mass of the thermoplastic resin contained in the first adhesive. % Or 95% by mass may be used.
  • the content of the high Tg thermoplastic resin in the first adhesive is, for example, 5% by mass or less, preferably 1% by mass or less, and more preferably 0% by mass, based on the total mass of the first adhesive. Is.
  • the second adhesive contains, for example, a thermosetting resin and a curing agent as thermosetting components, and a second thermoplastic resin.
  • a radically polymerizable compound and a thermal polymerization initiator may be used as the thermosetting component.
  • the second adhesive may further contain a flux compound, a filler and other additives, if necessary.
  • the thermosetting component, the flux compound, the filler and other additives in the second adhesive the components described above as the components contained in the first adhesive can be used, and the type and content of each component The same applies to preferred examples such as.
  • the second thermoplastic resin contributes to the reduction of tack on the surface of the second layer.
  • the Tg of the second thermoplastic resin is 35° C. or higher. That is, the second thermoplastic resin is a high Tg thermoplastic resin.
  • the Tg of the second thermoplastic resin is preferably 50° C. or higher, and more preferably 60° C. or higher, from the viewpoint that the tack of the second layer can be further reduced and the contamination of the pickup tool can be further suppressed. is there.
  • the Tg of the second thermoplastic resin is preferably 250° C. or lower, more preferably 200° C. or lower, still more preferably 160° C. or lower, from the viewpoint of further reducing the amount of warpage. From these viewpoints, the Tg of the second thermoplastic resin may be, for example, 35 to 250°C, 50 to 200°C or 60 to 160°C.
  • the second adhesive may include, as the second thermoplastic resin, a plurality of thermoplastic resins having different Tg's. In this case, the Tg of the second thermoplastic resin mainly contained is preferably in the above range, and the Tg of all the second thermoplastic resins is more preferably in the above range.
  • thermoplastic resin examples include phenoxy resin, polyimide resin, polyamide resin, polycarbodiimide resin, cyanate ester resin, (meth)acrylic resin, polyester resin, polyethylene resin, polyethersulfone resin, polyetherimide resin, Examples thereof include polyvinyl acetal resin and urethane resin.
  • the second thermoplastic resin preferably contains at least one selected from the group consisting of a phenoxy resin, a (meth)acrylic resin and a polyimide resin, from the viewpoint of excellent heat resistance and film-forming property, and phenoxy It is more preferable to include a resin.
  • thermoplastic resins may be used alone or as a mixture or copolymer of two or more kinds.
  • the weight average molecular weight of the second thermoplastic resin is, for example, 10,000 or more, preferably 20,000 or more, and more preferably 30,000 or more. With such a thermoplastic resin, the heat resistance and the film forming property of the second adhesive can be improved.
  • the weight average molecular weight of the second thermoplastic resin is preferably 1,000,000 or less, and more preferably 500000 or less. With such a thermoplastic resin, the heat resistance of the second adhesive can be improved. From these viewpoints, the weight average molecular weight of the second thermoplastic resin may be, for example, 10,000 to 1,000,000, 20,000 to 500,000, or 30,000 to 500,000.
  • the content of the second thermoplastic resin is, for example, 4% by mass or more, preferably 7% by mass or more, and more preferably 10% by mass or more, based on the total mass of the second adhesive.
  • the content of the second thermoplastic resin is, for example, 40% by mass or less, preferably 30% by mass or less, and more preferably 20% by mass or less, based on the total mass of the second adhesive.
  • the content of the second thermoplastic resin may be, for example, 4 to 40% by mass, 7 to 30% by mass or 10 to 20% by mass based on the total mass of the second adhesive.
  • the “total mass of the second adhesive” in the present specification does not include the mass of the organic solvent.
  • the content of the thermoplastic resin having Tg of 50° C. or higher is preferably in the above range based on the total mass of the second adhesive, and the content of the thermoplastic resin having Tg of 60° C. or higher is More preferably, the above range is based on the total mass of the second adhesive.
  • the content of the thermoplastic resin having Tg of 250° C. or lower is more preferably in the above range based on the total mass of the second adhesive, and the content of the thermoplastic resin having Tg of 200° C. or lower is It is more preferable that the content is in the above range based on the total mass of the second adhesive, and the content of the thermoplastic resin having Tg of 160° C. or less is further within the range based on the total mass of the second adhesive. preferable.
  • the ratio (mass ratio) of the content of the thermosetting resin to the content of the second thermoplastic resin in the second adhesive is preferably 0.01 to 5, and 0.05 to 3. It is more preferable, and 0.1 to 2 is even more preferable.
  • the second adhesive preferably contains mainly a high Tg thermoplastic resin (for example, contains more than 50% by mass based on the total mass of the thermoplastic resin contained in the second adhesive), and has a low content. It is preferable not to contain Tg thermoplastic resin.
  • the content of the high Tg thermoplastic resin (second thermoplastic resin) in the second adhesive is 75 mass% or more and 85 mass% or more based on the total mass of the thermoplastic resin contained in the second adhesive. % Or 95% by mass may be used.
  • the content of the low Tg thermoplastic resin in the second adhesive is, for example, 5% by mass or less, preferably 1% by mass or less, and more preferably 0% by mass, based on the total mass of the second adhesive. Is.
  • the thickness of the layer containing the flux compound may be appropriately adjusted so that the flux compound functions.
  • the thickness of the first layer 2 may be adjusted to be equal to or higher than the height of the connecting portion of the semiconductor chip.
  • connection surface At least a part (for example, a portion containing solder) of the surface connected to the connection portion of the semiconductor chip mounting base comes into contact with the first adhesive forming the first layer, and impurities on the contact surface are contacted. Is eliminated and the connection reliability is improved.
  • the thickness of the film adhesive for semiconductors when the sum of the heights of the connection portions is x and the total thickness of the film adhesive for semiconductors is y, the relationship between x and y is as follows. From the viewpoints of connectivity and filling of the adhesive, it is preferable to satisfy 0.70x ⁇ y ⁇ 1.3x, and it is more preferable to satisfy 0.80x ⁇ y ⁇ 1.2x.
  • the total thickness of the film adhesive for semiconductors may be, for example, 10 to 100 ⁇ m, 10 to 80 ⁇ m, or 10 to 50 ⁇ m.
  • the first layer 2 it is preferable to thicken the first layer 2 from the viewpoint that the elastic modulus of the film adhesive for semiconductor 1 after curing can be further reduced and the effect of reducing warpage can be further obtained.
  • the thickness of the first layer 2 may be, for example, 1 to 50 ⁇ m, 3 to 50 ⁇ m, 4 to 30 ⁇ m, or 5 to 20 ⁇ m.
  • the thickness of the second layer 3 may be, for example, 7 to 50 ⁇ m, 8 to 45 ⁇ m, or 10 to 40 ⁇ m.
  • the ratio of the thickness of the second layer 3 to the thickness of the first layer 2 is, for example, 0.1 to 10.0. May be from 0.5 to 6.0, from 1.0 to 4.0, from 0.1 to 1.5, from 0.1 to 1.2 Well, it may be 0.1 to 1.0.
  • the probe tack value of the second layer can be made smaller than the probe tack value of the first layer 2, and contamination of the pickup tool can be prevented.
  • Probe tack value of the first layer 2 is, for example, 70N / cm 2 or more and 150 N / cm 2 or less, is 70 ⁇ 150N / cm 2.
  • the probe tack value of the second layer 3 is preferably 60 N/cm 2 or less, more preferably 50 N/cm 2 or less, and further preferably 30 N/cm 2 or less.
  • the probe tack value of the second layer 3 may be 5 N/cm 2 or more.
  • Probe tack value of the second layer 3 may be, for example, 5 ⁇ 60N / cm 2, 5 ⁇ 50N / cm 2 or 5 ⁇ 30N / cm 2.
  • the probe tack value is a probe tack value at a probe temperature of 50° C. and a stage temperature of 25° C. Specifically, it is measured by the method described in Examples.
  • the elastic modulus of the film adhesive 1 for a semiconductor after curing is, for example, 5 MPa or less, and is preferably 4.5 MPa or less, and more preferably 3.5 MPa or less from the viewpoint of further obtaining the effect of reducing warpage. is there.
  • the elastic modulus of the film adhesive 1 for a semiconductor after curing may be 1 MPa or more.
  • the elastic modulus of the film adhesive for semiconductor 1 after curing may be 1 to 5 MPa, 1 to 4.5 MPa, or 1 to 3.5 MPa.
  • the above elastic modulus can be measured by the method described in Examples. That is, the elastic modulus of the film adhesive for semiconductor 1 after curing is the elastic modulus of a cured product of the film adhesive for semiconductor 1 obtained by heating the film adhesive for semiconductor 1 at 240° C. for 1 hour. You can call it back.
  • the film adhesive for semiconductors of the present embodiment may further include layers other than the first layer and the second layer, and may be composed of only the first layer and the second layer.
  • the film adhesive for semiconductors preferably does not include another layer on the side of the second layer opposite to the first layer. Further, the film adhesive for semiconductors of the present embodiment is on the surface of the second layer opposite to the first layer and/or the surface of the first layer opposite to the second layer.
  • a base film and/or a protective film may be provided on the top.
  • the film adhesive 1 for a semiconductor has an elastic modulus at curing of 35° C. of 5 MPa or less (for example, 1 to 5 MPa), and the probe tack value of the second layer 3 (probe temperature 50° C.).
  • the probe tack value at a stage temperature of 25° C. is 60 N/cm 2 or less (for example, 5 to 60 N/cm 2 ).
  • Examples of the elastic modulus at 35° C. after curing of the film adhesive 1 for a semiconductor, the range of the probe tack value of the first layer 2 and the probe tack value of the second layer 3, and examples of these measuring methods are: This is the same as in the first embodiment.
  • examples of the type and content of each component in the first layer 2 and the second layer 3 and the layer configuration (layer thickness of the first layer 2 and the second layer 3) are as follows. It is the same as the example of the type and content of each component and the layer thickness illustrated in the embodiment, and the same is true of the preferable example.
  • the film adhesive for semiconductors according to the second embodiment includes, for example, the first thermoplastic resin described above in the first layer 2 and the second thermoplastic resin described above in the second layer 3. It can be easily obtained. That is, typically, as the adhesive contains a thermoplastic resin having a lower Tg, the elastic modulus after curing of the adhesive can be decreased, while the tack value of the adhesive tends to increase. By including the first thermoplastic resin in the first layer 2, the elastic modulus at 35° C. after curing can be easily set to 5 MPa or less, and the second layer 3 can include the second thermoplastic resin. By including the above, the probe tack value of the second layer (probe tack value at a probe temperature of 50° C. and a stage temperature of 25° C.) can be set to 60 N/cm 2 or less.
  • a first film adhesive having a first layer and a second film adhesive having a second layer are prepared, and a first film adhesive is prepared. It can be obtained by laminating a first film adhesive having a layer and a second film adhesive having a second layer.
  • thermosetting resin and a curing agent as thermosetting components, a first thermoplastic resin, and a flux compound added as necessary
  • a resin varnish is prepared by adding other components such as a filler to an organic solvent and dissolving or dispersing the mixture by stirring, mixing, kneading and the like. Then, on the base film or protective film that has been subjected to a release treatment, after coating the resin varnish using a knife coater, roll coater, applicator, etc., reduce the organic solvent by heating, the base film or protective film A first layer of a first adhesive can be formed on top.
  • the organic solvent used for preparing the resin varnish is preferably one having the property of uniformly dissolving or dispersing each component.
  • the organic solvent include dimethylformamide, dimethylacetamide, N-methyl-2-pyrrolidone, dimethyl sulfoxide, diethylene glycol dimethyl ether, toluene, benzene, xylene, methyl ethyl ketone, tetrahydrofuran, ethyl cellosolve, ethyl cellosolve acetate, butyl cellosolve, dioxane, cyclohexanone, And ethyl acetate.
  • These organic solvents can be used alone or in combination of two or more kinds.
  • Stirring and mixing and kneading at the time of preparing the resin varnish can be performed using, for example, a stirrer, a raker, a three-roll, a ball mill, a bead mill or a homodisper.
  • the substrate film and the protective film are not particularly limited as long as they have heat resistance that can withstand the heating conditions when volatilizing the organic solvent, polypropylene film, polyolefin film such as polymethylpentene film, polyethylene terephthalate film, Examples thereof include polyester films such as polyethylene naphthalate film, polyimide films and polyetherimide films.
  • the base film and the protective film are not limited to single-layer films made of these films, and may be multilayer films made of two or more materials. Moreover, the above-mentioned base film and protective film may be provided with an adhesive layer on one surface thereof.
  • Drying conditions for volatilizing the organic solvent from the resin varnish applied to the base film are preferably conditions under which the organic solvent is sufficiently volatilized, specifically, 50 to 200° C. and 0.1 to 90 minutes. Is preferably heated.
  • the organic solvent is preferably removed up to 1.5% by mass or less with respect to the total mass of the first film adhesive, as long as the voids or the viscosity adjustment after mounting are not affected.
  • the second layer made of the second adhesive can be formed on the base film or the protective film by the same method as the first layer.
  • a protective film may be used to form the second layer
  • a substrate film may be used for formation.
  • Lamination may be performed under heating conditions of, for example, 30 to 120°C.
  • the film adhesive for semiconductors of the present embodiment for example, after forming one of the first layer or the second layer on the substrate film, on the obtained first layer or the second layer, It may be obtained by forming the other of the first layer and the second layer.
  • the first layer and the second layer may be formed by the same method as the method for forming the first layer and the second layer in the production of the film adhesive described above.
  • the film adhesive for semiconductors of the present embodiment may be obtained, for example, by forming the first layer and the second layer substantially simultaneously on the base film.
  • Examples of the method for simultaneously applying and manufacturing the first adhesive and the second adhesive include a coating method such as a sequential coating method or a multilayer coating method.
  • the semiconductor device manufacturing method of the present embodiment is (A) A semiconductor wafer A having a connecting portion 5 on one main surface, and a semiconductor wafer A provided on the main surface of the semiconductor wafer A such that the surface on the first layer 2 side is the semiconductor wafer A side.
  • a step of preparing a laminate 6 including the film adhesive 1 (see FIG. 2 )
  • B) The side of the laminated body 6 opposite to the side where the film adhesive 1 for semiconductor is provided (the side opposite to the side where the connecting portion 5 of the semiconductor wafer A is provided) is ground to perform the semiconductor wafer A.
  • the step of thinning see FIG.
  • step (C) a step of dividing the laminated body 6 after the step (b) into individual pieces to obtain a semiconductor chip 8 having a film-like adhesive and having a connecting portion 5 (see FIG. 4 ).
  • step D) a step of picking up the semiconductor chip 8 with the film adhesive from the film adhesive 1a side (see FIG. 5)
  • step E) The film-shaped adhesive 1a is provided on the main surface of the semiconductor chip mounting substrate 9 having the connection portion 10 on one main surface thereof.
  • the step (b) may not be performed.
  • the step (a) may be a step of preparing the laminated body 6 prepared in advance, or a step of manufacturing the laminated body 6.
  • the laminated body 6 may be produced by the following method, for example.
  • a substrate-attached film adhesive for semiconductor in which a substrate 4 is provided on the second layer 3 side of the film adhesive for semiconductor 1 is prepared and placed in a predetermined device (FIG. 2(a )reference).
  • a semiconductor wafer A having a connection portion 5 (wiring, bump, etc.) on one main surface is prepared, and a semiconductor film-like adhesive is applied onto the main surface of the semiconductor wafer A (the surface on which the connection portion 5 is provided).
  • Apply Agent 1 As a result, a laminated body with a substrate is obtained, which includes the laminated body 6 in which the semiconductor wafer A, the first layer 2, and the second layer 3 are laminated in this order (see FIG. 2B).
  • the sticking of the film adhesive 1 for semiconductors can be performed by hot pressing, roll laminating, vacuum laminating, or the like.
  • the supply area and thickness of the film adhesive 1 for a semiconductor are appropriately set depending on the sizes of the semiconductor wafer and the semiconductor chip mounting base, the height of the connecting portion, and the like.
  • the semiconductor wafer A of the laminated body 6 is ground by using, for example, a grinder G (see FIGS. 3A and 3B).
  • the thickness of the semiconductor wafer after grinding may be, for example, 10 ⁇ m to 300 ⁇ m. From the viewpoint of miniaturization and thinning of the semiconductor device, the thickness of the semiconductor wafer is preferably 20 ⁇ m to 100 ⁇ m.
  • the dicing tape 7 is attached to the semiconductor wafer A side of the laminated body 6, the dicing tape 7 is placed in a predetermined device, and the base material 4 is peeled off (see FIG. 4A).
  • the base material 4 may be peeled off before the laminated body 6 is attached to the dicing tape 7.
  • the laminated body 6 is diced by the dicing saw D. In this way, the laminated body 6 is divided into individual pieces, and the semiconductor chip 8 with the film adhesive, which is provided with the film adhesive 1a on the semiconductor chip A′, is obtained (see FIG. 4B).
  • a connection portion 5 is provided on the surface of the semiconductor chip A′ on the film adhesive 1a side.
  • the film adhesive 1a has a layer 2a made of a first adhesive and a layer 3a made of a second adhesive.
  • step (d) for example, by expanding (expanding) the dicing tape 7, the film-like adhesive semiconductor chips 8 obtained by the dicing are separated from each other and pushed up from the dicing tape 7 side by the needle N.
  • the semiconductor chip 8 with the film adhesive is picked up from the film adhesive 1a side by the pickup tool P (see FIG. 5).
  • step (e) for example, after the semiconductor chip 8 with the film adhesive is delivered to the bonding tool, the semiconductor chip 8 with the film adhesive is mounted from the side of the film adhesive 1a using the bonding tool.
  • the substrate 9 is placed on the main surface provided with the connecting portions 10 (wiring, bumps, etc.) and heated (see FIGS. 6A and 6B).
  • the semiconductor chip 8 with the film adhesive and the semiconductor chip mounting base 9 are aligned.
  • the connecting portion 5 of the semiconductor chip 8 with the film adhesive and the connecting portion 10 of the semiconductor chip mounting base 9 are electrically connected, and the semiconductor chip A′ and the semiconductor chip mounting base 9 are connected to each other.
  • a sealing portion 1a′ made of a cured product of the film adhesive 1a is formed on the substrate 1 and the connecting portion 5 and the connecting portion 10 are sealed to obtain the semiconductor device 11.
  • the sealing portion 1a' has an upper portion 2a' containing a cured product of the first adhesive and a lower portion 3a' containing a cured product of the second adhesive.
  • connection portion 5 or the connection portion 10 when a solder bump is used for one of the connection portion 5 or the connection portion 10 (for example, when the connection portion 5 or the connection portion 10 is a wiring provided with the solder bump), the connection portion 5 and the connection portion 10 are connected to each other. Are connected to each other electrically and mechanically.
  • the heating in step (e) may be performed while arranging the semiconductor chip, or may be performed after arranging the semiconductor chip.
  • the heating and placement in step (e) may be thermocompression bonding.
  • the bumps (for example, solder bumps) provided in the connection part are temporarily fixed after alignment (in a state where a film adhesive for semiconductors is used) and heat-treated in a reflow furnace to remove bumps (for example, solder bumps) provided in the connection part.
  • the semiconductor chip A′ and the semiconductor chip mounting substrate 9 may be melted and connected to each other.
  • the heating temperature is preferably a temperature at which the film adhesive is cured, and more preferably a temperature at which the film adhesive is completely cured.
  • the heating temperature and the heating time are set appropriately.
  • connection load is set in consideration of variations in the number and height of the connection parts, the amount of deformation of the connection parts due to pressure, and the like.
  • the connection temperature is preferably such that the temperature of the connection portion is equal to or higher than the melting point of the connection portion (for example, the melting point of the bump), but may be a temperature at which a metal bond of each connection portion is formed.
  • solder bumps are used for the connecting portion, it is preferably about 240° C. or higher.
  • connection time at the time of connection varies depending on the constituent metal of the connection part, but from the viewpoint of improving productivity, the shorter the connection time, the better.
  • the connection time is preferably 20 seconds or less, more preferably 10 seconds or less, and further preferably 5 seconds or less.
  • the connection time is preferably 60 seconds or less.
  • a wafer composed of an elemental semiconductor composed of the same kind of element such as silicon or germanium, a wafer composed of a compound semiconductor such as gallium arsenide or indium phosphide can be used. Details of the semiconductor chip mounting base body and the connecting portion will be described later.
  • FIG. 7 is a schematic cross-sectional view showing an embodiment of a semiconductor device.
  • the semiconductor device 100 shown in FIG. 7A includes a semiconductor chip 20 and a semiconductor chip mounting base 25 facing each other, and wirings 15 arranged on the surfaces of the semiconductor chip 20 and the semiconductor chip mounting base 25 facing each other.
  • the semiconductor chip 20 and the semiconductor chip mounting base 25 are flip-chip connected by the wiring 15 and the connection bumps 30.
  • the wiring 15 and the connection bumps 30 are sealed with a cured product of an adhesive and are shielded from the external environment.
  • the sealing portion 40 has an upper portion 40a containing a cured product of the first adhesive and a lower portion 40b containing a cured product of the second adhesive.
  • a semiconductor device 200 shown in FIG. 7B includes a semiconductor chip 20 and a semiconductor chip mounting base 25 that face each other, and bumps 32 that are respectively arranged on surfaces of the semiconductor chip 20 and the semiconductor chip mounting base 25 that face each other. And a sealing portion 40 made of a cured product of an adhesive (first adhesive and second adhesive) filled in a space between the semiconductor chip 20 and the semiconductor chip mounting base 25 without any gap. ..
  • the semiconductor chip 20 and the semiconductor chip mounting base 25 are flip-chip connected by connecting opposite bumps 32 to each other.
  • the bump 32 is sealed with a cured product of an adhesive and is shielded from the external environment.
  • the sealing portion 40 has an upper portion 40a containing a cured product of the first adhesive and a lower portion 40b containing a cured product of the second adhesive.
  • the semiconductor chip 20 is not particularly limited, and a semiconductor chip composed of an elemental semiconductor composed of the same kind of element such as silicon or germanium, or a semiconductor chip composed of a compound semiconductor such as gallium arsenide or indium phosphide is used. be able to.
  • the semiconductor chip mounting base 25 is not particularly limited as long as it can be used for mounting the semiconductor chip 20, and examples thereof include a semiconductor chip, a semiconductor wafer, and a printed circuit board.
  • the example of the semiconductor chip that can be used as the semiconductor chip mounting base 25 is the same as the example of the semiconductor chip 20 described above, and the same semiconductor chip as the semiconductor chip 20 may be used as the semiconductor chip mounting base 25.
  • the semiconductor wafer that can be used as the semiconductor chip mounting base 25 is not particularly limited, and may have a configuration in which a plurality of semiconductor chips exemplified as the semiconductor chip 20 are connected.
  • the wired circuit board that can be used as the semiconductor chip mounting substrate 25 is not particularly limited, and a metal such as glass epoxy, polyimide, polyester, ceramic, epoxy, or bismaleimide triazine may be used on the surface of the insulating board.
  • a circuit board or the like in which a wiring 15 is formed by printing a conductive substance can be used.
  • connection parts such as the wiring 15 and the bumps 32 are mainly composed of gold, silver, copper, and solder (main components are, for example, tin-silver, tin-lead, tin-bismuth, tin-copper, tin-silver-copper, etc.). ), nickel, tin, lead, etc., and may contain a plurality of metals.
  • gold, silver, and copper are preferable, and silver and copper are more preferable, from the viewpoint of forming a package having excellent electrical and thermal conductivity of the connection portion.
  • silver, copper, and solder which are inexpensive materials, are preferable, copper and solder are more preferable, and solder is still more preferable.
  • gold, silver, copper and solder are preferable from the viewpoint of suppressing the formation of the oxide film, and gold and silver.
  • Solder is more preferable, and gold and silver are more preferable.
  • Gold, silver, copper, solder main components are, for example, tin-silver, tin-lead, tin-bismuth, tin-copper, etc.), tin, nickel, etc. are mainly formed on the surfaces of the wiring 15 and the bumps 32.
  • the metal layer as a component may be formed by plating, for example. This metal layer may be composed of only a single component or may be composed of a plurality of components. Further, the metal layer may have a structure in which a single layer or a plurality of metal layers are laminated.
  • the above semiconductor devices 100 and 200 can be obtained by the method for manufacturing a semiconductor device described above.
  • the semiconductor device of this embodiment may have a structure in which a plurality of structures (packages) as shown in the semiconductor devices 100 and 200 are stacked.
  • the semiconductor devices 100 and 200 include gold, silver, copper, solder (main components are, for example, tin-silver, tin-lead, tin-bismuth, tin-copper, tin-silver-copper, etc.), tin, nickel. They may be electrically connected to each other by bumps, wires, etc.
  • FIG. 8 is a schematic cross-sectional view showing another embodiment of the semiconductor device of the present invention, which is a semiconductor device using the TSV technique.
  • the wiring 15 formed on the interposer 50 is connected to the wiring 15 of the semiconductor chip 20 via the connection bumps 30, so that the semiconductor chip 20 and the interposer 50 are flip-chip connected.
  • the void between the semiconductor chip 20 and the interposer 50 is filled with a cured product of an adhesive (first adhesive and second adhesive) without any gap, and constitutes the sealing portion 40.
  • the semiconductor chip 20 On the surface of the semiconductor chip 20 opposite to the interposer 50, the semiconductor chip 20 is repeatedly laminated via the wiring 15, the connection bump 30, and the sealing portion 40.
  • the wirings 15 on the pattern surfaces on the front and back of the semiconductor chip 20 are connected to each other by the through electrodes 34 filled in the holes penetrating the inside of the semiconductor chip 20.
  • the material of the through electrode 34 may be copper, aluminum or the like.
  • the penetrating electrode 34 is vertically passed through the semiconductor chip 20, the distance between the semiconductor chips 20 facing each other and the distance between the semiconductor chip 20 and the interposer 50 can be shortened to enable flexible connection.
  • the film adhesive for semiconductors of this embodiment can be applied as a film adhesive for semiconductors between the semiconductor chips 20 facing each other and between the semiconductor chips 20 and the interposer 50 in such a TSV technique.
  • the semiconductor chip can be directly mounted on the motherboard without the interposer.
  • the film-shaped adhesive for semiconductors of this embodiment can be applied to the case where such a semiconductor chip is directly mounted on a mother board.
  • the film adhesive for semiconductors of the present embodiment can be applied when sealing the gap between the substrates when the two printed circuit boards are laminated.
  • EP1032 polyfunctional solid epoxy containing triphenol methane skeleton, manufactured by Mitsubishi Chemical Corporation, trade name "jER1032H60", “jER” is a registered trademark (the same applies below)
  • ⁇ YL983U bisphenol F type liquid epoxy, manufactured by Mitsubishi Chemical Corporation, trade name "jERYL983U"
  • Thermoplastic resin LA2140 (acrylic resin, manufactured by Kuraray Co., Ltd., trade name "Clarity LA2140", "Clarity” is a registered trademark, Tg: about -24°C, Mw: about 60000) -D-21 (acrylic resin, manufactured by Hitachi Chemical Co., Ltd., trade name "CT-D21", Tg: about -11°C, Mw: about 550000) -T-8175N (urethane resin, manufactured by DIC Covestro Polymer Co., Ltd., trade name "Pandex T-8175N", "Pandex” is a registered trademark, Tg: -23°C, Mw: 120,000)
  • [Filler] ⁇ SE2050 sica filler, manufactured by Admatechs Co., Ltd., trade name, average particle size: 0.5 ⁇ m
  • SE2050-SEJ epoxysilane surface-treated filler, manufactured by Admatechs Co., Ltd., trade name, average particle size: 0.5 ⁇ m
  • ⁇ YA050C-HGF methacryl surface treated nano silica filler, Admatechs Co., Ltd., trade name, average particle size: about 50 nm
  • EXL-2655 organic filler, manufactured by Rohm and Haas Japan Co., Ltd., trade name "Paraloid EXL-2655", "Paraloid” is a registered trademark, core-shell type organic fine particles
  • the epoxy resin, the curing agent, the flux compound, the thermoplastic resin, and the filler having the blending amounts (unit: parts by mass) shown in Table 1 were measured by NV value ([mass of paint after drying]/[mass of paint before drying] ⁇ 100) was added to the organic solvent (cyclohexanone) so that it would be 50%. After that, ⁇ 1.0 mm beads and ⁇ 2.0 mm beads were added in the same mass as the solid content (epoxy resin, curing agent, flux compound, thermoplastic resin and filler), and a bead mill (Fritsch Japan Co., Ltd. The mixture was stirred for 30 minutes with a pulverizer P-7). After stirring, the beads were removed by filtration to prepare coating varnishes a1 to a3 containing the first adhesive.
  • the obtained coating varnishes a1 to a3 are coated on a base film (manufactured by Teijin DuPont Films Ltd., trade name "Purex A54”) with a small precision coating device (manufactured by Rensai Seiki Co., Ltd.). Then, it was dried (100° C./5 min) in a clean oven (manufactured by ESPEC Co., Ltd.) to obtain a single layer film A including layers (thermosetting adhesive layers) having the thickness shown in Table 2.
  • the epoxy value, the curing agent, the flux compound, the thermoplastic resin and the filler of the compounding amounts (units: parts by mass) shown in Table 3 were measured by NV value ([mass of paint after drying]/[mass of paint before drying] ⁇ 100) was added to the organic solvent (cyclohexanone) so that it would be 50%. After that, ⁇ 1.0 mm beads and ⁇ 2.0 mm beads were added in the same mass as the solid content (epoxy resin, curing agent, flux compound, thermoplastic resin and filler), and a bead mill (Fritsch Japan Co., Ltd. The mixture was stirred for 30 minutes with a pulverizer P-7). After stirring, the beads were removed by filtration to prepare coating varnishes b1 and b2 containing the second adhesive.
  • the obtained coating varnishes b1 and b2 are coated on a base film (manufactured by Teijin DuPont Films Ltd., trade name "Purex A54”) with a small precision coating device (manufactured by Renui Seiki Co., Ltd.). Then, it was dried (100° C./5 min) in a clean oven (manufactured by ESPEC Co., Ltd.) to obtain a monolayer film B including layers (thermosetting adhesive layers) having the thickness shown in Table 4.
  • Examples 1 to 7 and Comparative Examples 1 to 8 Two of the single-layer films prepared above were prepared as a first film and a second film, and the first film and the second film were laminated at 50° C. to form a film having a total thickness of 40 ⁇ m. An adhesive was prepared.
  • the combinations of single-layer films were as shown in Tables 5 and 6.
  • the layer (thermosetting adhesive layer) formed on the first film is referred to as a first layer
  • the layer (thermosetting adhesive layer) formed on the second film is referred to as a second layer. Of layers.
  • the elastic modulus at 35° C. of the test sample was measured using a dynamic viscoelasticity measuring device. Details of the method for measuring the elastic modulus are as follows.
  • Device name Dynamic viscoelasticity measurement device (UBM Co., Ltd., Rheogel-E4000) Measurement temperature range: 30-270°C Temperature rising rate: 5°C/min Frequency: 10Hz Distortion: 0.05%
  • the film adhesive is cut into a predetermined size (length 76 mm x width 26 mm), the base film on the second layer side is peeled off, and the glass plate (size: length 76 mm x width 26 mm x thickness) is peeled off from the base film peeled side. 1.2 to 1.5 mm) was attached. Then, the base film on the first layer side was peeled off, and the tack value (probe tack value) of the first layer was measured using a tacking tester with the surface of the first layer facing upward. ..
  • the film adhesive is cut into a predetermined size (length 76 mm x width 26 mm), the base film on the first layer side is peeled off, and a glass plate (size: length 76 mm x width 26 mm x thickness) 1.2 to 1.5 mm) was attached. Then, the base film on the second layer side was peeled off, and the tack value (probe tack value) of the second layer was measured using a tacking tester with the surface of the second layer facing upward. ..
  • Tacking tester (Resc Co., Ltd., trade name: TAC-1000) Pressing speed 2.0mm/s Pressing load 200gf Pressing time 1.00s Lifting speed 10.0 mm/s Stage temperature 25°C Probe temperature 50°C
  • the film-shaped adhesive is a silicon chip whose surface is covered with an oxide film from the first layer side by using a vacuum laminator (LM-50X50-S manufactured by NPC Co., Ltd.) (vertical 10 mm ⁇ horizontal). It was laminated on the oxide film of 10 mm ⁇ thickness of 0.05 mm). Next, the silicon chip laminated with the film adhesive was cured (240° C., 1 h) in a clean oven (manufactured by ESPEC). Thereby, a test sample was obtained.
  • a vacuum laminator LM-50X50-S manufactured by NPC Co., Ltd.
  • the amount of chip warpage of the test sample was measured. Specifically, in a state where the test sample is arranged so that the silicon chip is on the lower side (the cured product of the film-like adhesive is on the upper side), the surface shape measuring device is used to measure the cured product side of the film-shaped adhesive. The maximum value of the height difference on the surface was measured, and this was taken as the amount of warpage.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Adhesive Tapes (AREA)
  • Wire Bonding (AREA)
  • Die Bonding (AREA)

Abstract

Provided is a film-like adhesive agent 1 for a semiconductor, the adhesive agent 1 having a first thermosetting adhesive agent layer 2 and a second thermosetting adhesive agent layer 3 laid on the first thermosetting adhesive agent layer 2, the first thermosetting adhesive agent layer 2 containing a first thermoplastic resin in which Tg is lower than 35°C, and the second thermosetting adhesive agent layer 3 containing a second thermoplastic resin in which Tg is 35°C or higher.

Description

半導体用フィルム状接着剤、半導体装置及びその製造方法Film adhesive for semiconductor, semiconductor device and manufacturing method thereof
 本発明は、半導体用フィルム状接着剤、半導体装置及びその製造方法に関する。 The present invention relates to a film adhesive for semiconductors, a semiconductor device and a method for manufacturing the same.
 従来、半導体チップと基板とを接続するには、金ワイヤ等の金属細線を用いるワイヤーボンディング方式が広く適用されている。一方、半導体装置に対する高機能化、高集積化、高速化等の要求に対応するため、半導体チップ又は基板にバンプと呼ばれる導電性突起を形成して、半導体チップと基板とを直接接続するフリップチップ接続方式(FC接続方式)が広まりつつある。 Conventionally, a wire bonding method using a fine metal wire such as a gold wire has been widely applied to connect a semiconductor chip and a substrate. On the other hand, in order to meet the demands for higher functionality, higher integration, higher speed, etc. of semiconductor devices, flip chips that directly connect the semiconductor chip and the substrate by forming conductive protrusions called bumps on the semiconductor chip or substrate. The connection method (FC connection method) is spreading.
 例えば、半導体チップ及び基板間の接続に関して、BGA(Ball Grid Array)、CSP(Chip Size Package)等に盛んに用いられているCOB(Chip On Board)型の接続方式もFC接続方式に該当する。また、FC接続方式は、半導体チップ上に接続部(例えば、バンプ及び配線)を形成して、半導体チップ間を接続するCOC(Chip On Chip)型の接続方式にも広く用いられている。 For example, regarding the connection between the semiconductor chip and the substrate, the COB (Chip On Board) type connection method that is actively used in BGA (Ball Grid Array), CSP (Chip Size Package), etc. also corresponds to the FC connection method. The FC connection method is also widely used in a COC (Chip On Chip) type connection method in which a connection portion (for example, a bump and a wiring) is formed on a semiconductor chip to connect the semiconductor chips.
 また、さらなる小型化、薄型化、高機能化が強く要求されるパッケージでは、上述した接続方式を用いてチップを積層し多段化した、チップスタック型パッケージ、POP(Package On Package)、TSV(Through-Silicon Via)等も広く普及し始めている。このような積層・多段化技術は、半導体チップ等を三次元的に配置することから、二次元的に配置する手法と比較してパッケージを小さくできる。また、半導体の性能向上、ノイズ低減、実装面積の削減、省電力化等にも有効であることから、次世代の半導体配線技術として注目されている。 In addition, for packages that are strongly demanded for further miniaturization, thinning, and high functionality, chip stack type packages, POP (Package On Package), TSV (Throughh), in which chips are stacked using the connection method described above to form multiple stages. -Silicon Via) etc. are beginning to spread widely. Since such a stacking/multi-stage technology arranges semiconductor chips and the like in three dimensions, the package can be made smaller than the method of arranging in two dimensions. Further, since it is effective in improving the performance of semiconductors, reducing noise, reducing the mounting area, and saving power, it is drawing attention as a next-generation semiconductor wiring technology.
 ところで、上記接続部(バンプ又は配線)に用いられる主な金属としては、例えば、はんだ、スズ、金、銀、銅、ニッケル等が挙げられ、これらの複数種を含む導電材料も用いられている。接続部の接続面には、接続部に用いられる金属の表面が酸化して酸化膜が生成してしまうことがあり、また、酸化物等の不純物が付着してしまうことがある。このような酸化膜及び不純物が残存すると、半導体チップ及び基板間又は2つの半導体チップ間における接続性及び絶縁信頼性が低下し、上述した接続方式を採用するメリットが損なわれてしまうことが懸念される。 By the way, as a main metal used for the connection portion (bump or wiring), for example, solder, tin, gold, silver, copper, nickel and the like can be mentioned, and a conductive material containing plural kinds of these is also used. .. On the connection surface of the connection portion, the surface of the metal used for the connection portion may be oxidized to form an oxide film, and impurities such as oxides may be attached. If such an oxide film and impurities remain, the connectivity and insulation reliability between the semiconductor chip and the substrate or between the two semiconductor chips may deteriorate, and the merit of adopting the above-described connection method may be impaired. It
 これらの酸化膜及び不純物の発生を抑制する方法として、OSP(Organic Solderbility Preservatives)処理等で知られる接続部を酸化防止膜でコーティングする方法がある。しかしながら、この酸化防止膜は接続プロセス時のはんだ濡れ性の低下、接続性の低下等の原因となる場合がある。 As a method of suppressing the generation of these oxide films and impurities, there is a method of coating the connection part with an antioxidant film, which is known for OSP (Organic Solderability Preservatives) processing and the like. However, this anti-oxidation film may cause a decrease in solder wettability during the connection process, a decrease in connection property, and the like.
 そこで、上述の酸化膜及び不純物を除去する方法として、フラックス剤を含有する接着剤フィルムを用いる方法が提案されている(例えば特許文献1参照。)。 Therefore, as a method for removing the above oxide film and impurities, a method using an adhesive film containing a flux agent has been proposed (see, for example, Patent Document 1).
国際公開2013/125086号International publication 2013/125086
 ところで、半導体用のフィルム状接着剤を用いて半導体チップを半導体チップ搭載用基体(例えば、半導体チップ、半導体ウエハ、配線回路基板等)に実装し半導体装置を作製する場合、接着剤の硬化収縮、リフロー工程時の熱履歴等の影響により、基体及び半導体チップに応力がかかり、反りが発生する場合がある。反りの発生は、基体及び半導体チップの割れ、封止工程での基体の固定不備等に繋がるため、反り量を低減することが求められる。 By the way, when a semiconductor chip is mounted on a semiconductor chip mounting substrate (for example, a semiconductor chip, a semiconductor wafer, a printed circuit board, etc.) using a film adhesive for semiconductors to manufacture a semiconductor device, the adhesive cures and shrinks, Due to the influence of heat history during the reflow process, stress may be applied to the base body and the semiconductor chip, causing warpage. The occurrence of warpage leads to cracking of the substrate and the semiconductor chip, improper fixing of the substrate in the sealing process, and the like, so it is required to reduce the amount of warpage.
 これに対し、本発明者らは、熱硬化性接着剤からなる半導体用フィルム状接着剤にTgが35℃未満の熱可塑性樹脂を含有させ、硬化後の弾性率を低減させることで、反り量を低減できることを見いだした。 On the other hand, the inventors of the present invention include a thermoplastic resin having a Tg of less than 35° C. in a film adhesive for semiconductors made of a thermosetting adhesive to reduce the elastic modulus after curing, thereby reducing the amount of warpage. It has been found that can reduce.
 しかしながら、Tgが35℃未満の熱可塑性樹脂を用いた場合、実装プロセスにおいて半導体チップをピックアップする際に半導体用フィルム状接着剤がピックアップツールに付着して残り、ピックアップツールを汚染してしまう場合があることが明らかになった。ピックアップツールの汚染は、ピックアップツール洗浄のためのプロセス停止等による生産効率の低下、及び、ピックアップツールからボンディングツールへ汚染が広がることによる品質異常に繋がるため、ピックアップツールの汚染を低減しつつ、上記の反りを低減することが求められる。 However, when a thermoplastic resin having a Tg of less than 35° C. is used, the semiconductor film adhesive may remain on the pick-up tool when picking up a semiconductor chip in the mounting process, thus contaminating the pick-up tool. It became clear. Contamination of the pick-up tool leads to deterioration of production efficiency due to process stop for cleaning the pick-up tool and quality abnormality due to spread of pollution from the pick-up tool to the bonding tool. It is required to reduce the warp.
 そこで、本発明は、実装プロセスでの基体及び半導体チップの反りの発生と、ピックアップツールの汚染とを抑制することができる、半導体用フィルム状接着剤を提供することを目的とする。また、本発明は、上記半導体用フィルム状接着剤を用いた半導体装置及びその製造方法を提供することを目的とする。 Therefore, an object of the present invention is to provide a film-like adhesive for semiconductors, which can suppress the occurrence of warpage of the substrate and the semiconductor chip in the mounting process and the contamination of the pickup tool. Another object of the present invention is to provide a semiconductor device using the above film adhesive for semiconductors and a method for manufacturing the same.
 本発明の一側面の半導体用フィルム状接着剤は、第1の熱硬化性接着剤層と、第1の熱硬化性接着剤層上に設けられた第2の熱硬化性接着剤層とを備え、第1の熱硬化性接着剤層は、Tgが35℃未満である第1の熱可塑性樹脂を含有し、第2の熱硬化性接着剤層は、Tgが35℃以上である第2の熱可塑性樹脂を含有する。この半導体用フィルム状接着剤によれば、第2の熱硬化性接着剤層がピックアップツールと接触するように用いることで、ピックアップツールの汚染を抑制することができ、また、第1の熱硬化性接着剤層が35℃未満のTgを有する熱可塑性樹脂(第1の熱可塑性樹脂)を含有するため、基体及び半導体チップの反りを低減することができる。 The film adhesive for semiconductors according to one aspect of the present invention comprises a first thermosetting adhesive layer and a second thermosetting adhesive layer provided on the first thermosetting adhesive layer. The first thermosetting adhesive layer includes a first thermoplastic resin having a Tg of less than 35° C., and the second thermosetting adhesive layer has a second Tg of 35° C. or more. Containing a thermoplastic resin. According to this film-like adhesive for semiconductors, by using the second thermosetting adhesive layer so as to be in contact with the pickup tool, it is possible to suppress the contamination of the pickup tool, and the first thermosetting adhesive is used. Since the conductive adhesive layer contains a thermoplastic resin (first thermoplastic resin) having a Tg of less than 35° C., warpage of the base and the semiconductor chip can be reduced.
 上記の半導体用フィルム状接着剤は、特にウエハレベルパッケージ技術によりフリップチップパッケージ(半導体装置)を作製する用途において好適に用いられる。ウエハレベルパッケージ技術は、半導体チップを半導体ウエハ上に複数個実装した後、一括封止し、ダイシングにより個片化することで、複数個のパッケージを効率良く作製する技術である。ウエハレベルパッケージ技術は、フリップチップパッケージの組み立て時間を短縮することができるため、生産性を向上させる技術として有用である。しかしながら、ウエハレベルパッケージ技術では、半導体チップの実装数の増加に伴って、半導体ウエハへの応力が増加しやすく、反り量が増加しやすい。一方、上記半導体用フィルム状接着剤を用いる場合、ウエハレベルパッケージ技術で半導体装置を作製する場合であっても、半導体ウエハの反りの発生と、ピックアップツールの汚染とを抑制することができる。 The above film-like adhesive for semiconductors is particularly suitable for use in producing a flip chip package (semiconductor device) by the wafer level packaging technology. The wafer-level packaging technology is a technology for efficiently manufacturing a plurality of packages by mounting a plurality of semiconductor chips on a semiconductor wafer, encapsulating them all at once, and dicing them into individual pieces. The wafer level packaging technology is useful as a technology for improving productivity because it can shorten the assembly time of the flip chip package. However, in the wafer level packaging technology, as the number of mounted semiconductor chips increases, the stress on the semiconductor wafer tends to increase, and the amount of warpage tends to increase. On the other hand, when the above film adhesive for semiconductors is used, it is possible to suppress the warp of the semiconductor wafer and the contamination of the pickup tool even when the semiconductor device is manufactured by the wafer level packaging technique.
 半導体用フィルム状接着剤は、硬化後の35℃での弾性率が5MPa以下であることが好ましい。この場合、反り量をより低減することができる。 The film-like adhesive for semiconductors preferably has an elastic modulus at 35° C. of 5 MPa or less after curing. In this case, the amount of warp can be further reduced.
 第2の熱可塑性樹脂のTgは60℃以上であることが好ましい。この場合、ピックアップツールの汚染をより低減することができる。 The Tg of the second thermoplastic resin is preferably 60° C. or higher. In this case, contamination of the pickup tool can be further reduced.
 第2の熱可塑性樹脂はフェノキシ樹脂を含むことが好ましい。この場合、ピックアップツールの汚染をより低減することができるとともに、反り量をより低減することができる。 The second thermoplastic resin preferably contains a phenoxy resin. In this case, the contamination of the pickup tool can be further reduced, and the amount of warpage can be further reduced.
 第1の熱硬化性接着剤層及び第2の熱硬化性接着剤層の少なくとも一方は、フラックス化合物を含有することが好ましい。この場合、十分に金属表面の酸化膜を還元除去して、金属が容易に溶融できるようにし、溶融した金属が濡れ広がるのを阻害せず、金属接合部が形成される状態を達成できる性能(フラックス活性)が得られる。そのため、優れた接続性が得られる。 At least one of the first thermosetting adhesive layer and the second thermosetting adhesive layer preferably contains a flux compound. In this case, the oxide film on the metal surface is sufficiently reduced and removed so that the metal can be easily melted, the molten metal is not hindered from spreading, and the state where a metal joint is formed ( Flux activity) is obtained. Therefore, excellent connectivity can be obtained.
 フラックス化合物はカルボキシル基を有することが好ましく、2つ以上のカルボキシル基を有することがより好ましい。この場合、一層優れた接続信頼性(例えば接続性及び絶縁信頼性)が得られやすい。 The flux compound preferably has a carboxyl group, and more preferably has two or more carboxyl groups. In this case, more excellent connection reliability (for example, connectability and insulation reliability) is likely to be obtained.
 フラックス化合物は、下記式(2)で表される化合物であることが好ましい。この場合、一層優れた接続信頼性が得られやすい。
Figure JPOXMLDOC01-appb-C000001
[式(2)中、R及びRは、それぞれ独立して、水素原子又は電子供与性基を示し、nは0又は1以上の整数を示す。]
The flux compound is preferably a compound represented by the following formula (2). In this case, more excellent connection reliability is likely to be obtained.
Figure JPOXMLDOC01-appb-C000001
[In the formula (2), R 1 and R 2 each independently represent a hydrogen atom or an electron-donating group, and n represents 0 or an integer of 1 or more. ]
 フラックス化合物の融点は150℃以下であることが好ましい。この場合、熱圧着時に接着剤が硬化する前にフラックスが溶融し、はんだ等の酸化膜が還元除去されるため、一層優れた接続信頼性が得られやすい。 The melting point of the flux compound is preferably 150°C or lower. In this case, the flux is melted before the adhesive is hardened during thermocompression bonding, and the oxide film of solder or the like is reduced and removed, so that more excellent connection reliability is likely to be obtained.
 第1の熱可塑性樹脂は、(メタ)アクリル樹脂又はウレタン樹脂を含むことが好ましい。この場合、反り量をより低減することができる。 The first thermoplastic resin preferably contains a (meth)acrylic resin or a urethane resin. In this case, the amount of warp can be further reduced.
 第1の熱硬化性接着剤層及び第2の熱硬化性接着剤層の少なくとも一方は、熱硬化性樹脂と、硬化剤と、を含有することが好ましく、エポキシ樹脂と、イミダゾール系硬化剤とを含有することがより好ましい。 At least one of the first thermosetting adhesive layer and the second thermosetting adhesive layer preferably contains a thermosetting resin and a curing agent, and an epoxy resin and an imidazole curing agent. It is more preferable to contain
 本発明の他の一側面の半導体用フィルム状接着剤は、第1の熱硬化性接着剤層と、第1の熱硬化性接着剤層上に設けられた第2の熱硬化性接着剤層とを備え、硬化後の35℃での弾性率が5MPa以下であり、第2の熱硬化性接着剤層の、プローブ温度50℃、ステージ温度25℃でのプローブタック値が60N/cm以下である。この半導体用フィルム状接着剤によれば、第2熱硬化性接着剤層の上記プローブタック値が60N/cm以下であるため、第2の熱硬化性接着剤層がピックアップツールと接触するように用いることで、ピックアップツールの汚染を抑制することができる。また、硬化後の35℃での弾性率が5MPa以下であるため、基体及び半導体チップの反りを低減することができる。 A film adhesive for semiconductors according to another aspect of the present invention is a first thermosetting adhesive layer and a second thermosetting adhesive layer provided on the first thermosetting adhesive layer. The elastic modulus at 35° C. after curing is 5 MPa or less, and the probe tack value of the second thermosetting adhesive layer at a probe temperature of 50° C. and a stage temperature of 25° C. is 60 N/cm 2 or less. Is. According to this film adhesive for semiconductors, since the probe tack value of the second thermosetting adhesive layer is 60 N/cm 2 or less, the second thermosetting adhesive layer may come into contact with the pickup tool. Can be used to suppress the contamination of the pickup tool. Further, since the elastic modulus at 35° C. after curing is 5 MPa or less, it is possible to reduce the warpage of the substrate and the semiconductor chip.
 本発明の他の一側面の半導体装置の製造方法は、一方の主面に接続部を有する半導体ウエハと、半導体ウエハの主面上に設けられた、上述した半導体用フィルム状接着剤と、を備える積層体であって、半導体ウエハと、第1の熱硬化性接着剤層と、第2の熱硬化性接着剤層とがこの順に積層された積層体を用意する工程と、積層体を個片化し、接続部を有するフィルム状接着剤付き半導体チップを得る工程と、フィルム状接着剤付き半導体チップを、フィルム状接着剤側からピックアップする工程と、フィルム状接着剤付き半導体チップを、一方の主面に接続部を有する半導体チップ搭載用基体の当該接続部が設けられている当該主面上に、フィルム状接着剤側から配置し、加熱することにより、フィルム状接着剤付き半導体チップの接続部と、半導体チップ搭載用基体の接続部とを、電気的に接続する工程と、を備える。この製造方法によれば、基体及び半導体チップの反りの発生と、ピックアップツールの汚染とを抑制することができる。 A method of manufacturing a semiconductor device according to another aspect of the present invention includes a semiconductor wafer having a connecting portion on one main surface, and the above-mentioned film adhesive for semiconductors provided on the main surface of the semiconductor wafer. A laminate including a semiconductor wafer, a first thermosetting adhesive layer, and a second thermosetting adhesive layer, which are laminated in this order; One of the steps of obtaining a semiconductor chip with a film-like adhesive having a connecting portion, a step of picking up the semiconductor chip with a film-like adhesive from the film-like adhesive side, and a semiconductor chip with a film-like adhesive. Connection of a semiconductor chip with a film adhesive by arranging from the film adhesive side on the main surface where the connection part of the semiconductor chip mounting substrate having a connection part on the main surface is provided and heating. And a step of electrically connecting the portion and the connecting portion of the semiconductor chip mounting substrate. According to this manufacturing method, it is possible to suppress the warp of the base body and the semiconductor chip and the contamination of the pickup tool.
 本発明の他の一側面の半導体装置は、半導体チップ及び半導体チップ搭載用基体のそれぞれの接続部が互いに電気的に接続された半導体装置であって、接続部の少なくとも一部が、上述した半導体用フィルム状接着剤の硬化物によって封止されている。この半導体装置は、反り量が低減されている。 A semiconductor device according to another aspect of the present invention is a semiconductor device in which respective connecting portions of a semiconductor chip and a semiconductor chip mounting substrate are electrically connected to each other, and at least a part of the connecting portion is the above-mentioned semiconductor. It is sealed with a cured product of a film-type adhesive for use. The warp amount of this semiconductor device is reduced.
 本発明によれば、実装プロセスでの基体及び半導体チップの反りの発生と、ピックアップツールの汚染とを抑制することができる、半導体用フィルム状接着剤を提供することができる。また、本発明によれば、上記半導体用フィルム状接着剤を用いた半導体装置及びその製造方法を提供することができる。 According to the present invention, it is possible to provide a film adhesive for semiconductors, which can suppress the occurrence of warpage of the substrate and the semiconductor chip in the mounting process and the contamination of the pickup tool. Further, according to the present invention, it is possible to provide a semiconductor device using the film adhesive for semiconductors and a method for manufacturing the same.
図1は、本発明の半導体用フィルム状接着剤の一実施形態を示す模式断面図である。FIG. 1 is a schematic cross-sectional view showing an embodiment of the film adhesive for semiconductors of the present invention. 図2は、本発明の半導体装置の製造方法の一実施形態を模式的に示す工程断面図である。2A to 2D are process sectional views schematically showing an embodiment of the method for manufacturing a semiconductor device of the present invention. 図3は、本発明の半導体装置の製造方法の一実施形態を模式的に示す工程断面図である。3A to 3D are process cross-sectional views schematically showing an embodiment of the method for manufacturing a semiconductor device of the present invention. 図4は、本発明の半導体装置の製造方法の一実施形態を模式的に示す工程断面図である。4A to 4D are process cross-sectional views schematically showing an embodiment of the method for manufacturing a semiconductor device of the present invention. 図5は、本発明の半導体装置の製造方法の一実施形態を模式的に示す工程断面図である。FIG. 5 is a process sectional view schematically showing an embodiment of the method for manufacturing a semiconductor device of the present invention. 図6は、本発明の半導体装置の製造方法の一実施形態を模式的に示す工程断面図である。6A to 6D are process cross-sectional views schematically showing an embodiment of the method for manufacturing a semiconductor device of the present invention. 図7は、本発明の半導体装置の一実施形態を示す模式断面図である。FIG. 7 is a schematic cross-sectional view showing an embodiment of the semiconductor device of the present invention. 図8は、本発明の半導体装置の他の一実施形態を示す模式断面図である。FIG. 8 is a schematic cross-sectional view showing another embodiment of the semiconductor device of the present invention.
 以下、場合により図面を参照しつつ本発明の実施形態について詳細に説明する。なお、図面中、同一又は相当部分には同一符号を付し、重複する説明は省略する。また、上下左右等の位置関係は、特に断らない限り、図面に示す位置関係に基づくものとする。さらに、図面の寸法比率は図示の比率に限られるものではない。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings in some cases. In the drawings, the same or corresponding parts will be denoted by the same reference symbols, without redundant description. Further, the positional relationship such as up, down, left and right is based on the positional relationship shown in the drawings unless otherwise specified. Further, the dimensional ratios in the drawings are not limited to the illustrated ratios.
<半導体用フィルム状接着剤>
 図1は、一実施形態の半導体用フィルム状接着剤を示す模式断面図である。一実施形態の半導体用フィルム状接着剤1は、第1の熱硬化性接着剤層2(以下、単に「第1の層」ともいう)と、第1の層2上に設けられた第2の熱硬化性接着剤層3(以下、単に「第2の層」ともいう)とを備える。第1の層2は、第1の熱硬化性接着剤(以下、単に「第1の接着剤」ともいう)からなる層であり、第2の層3は、第2の熱硬化性接着剤(以下、単に「第2の接着剤」ともいう)からなる層である。
<Film-shaped adhesive for semiconductors>
FIG. 1 is a schematic cross-sectional view showing a film-like adhesive for semiconductors of one embodiment. The film adhesive 1 for a semiconductor according to one embodiment includes a first thermosetting adhesive layer 2 (hereinafter, also simply referred to as “first layer”) and a second thermosetting adhesive layer 2 provided on the first layer 2. Thermosetting adhesive layer 3 (hereinafter, also simply referred to as “second layer”). The first layer 2 is a layer made of a first thermosetting adhesive (hereinafter, also simply referred to as “first adhesive”), and the second layer 3 is a second thermosetting adhesive. (Hereinafter, also simply referred to as “second adhesive”).
 半導体用フィルム状接着剤1は、例えば、半導体チップ及び半導体チップ搭載用基体(例えば、半導体チップ、半導体ウエハ、配線回路基板等)のそれぞれの接続部が互いに電気的に接続された半導体装置において、上記接続部の少なくとも一部を封止するために用いられる。具体的には、後述する方法で半導体装置を製造するために用いることができる。 The film adhesive 1 for a semiconductor is used, for example, in a semiconductor device in which respective connecting portions of a semiconductor chip and a semiconductor chip mounting substrate (for example, a semiconductor chip, a semiconductor wafer, a wiring circuit board, etc.) are electrically connected to each other. It is used to seal at least a part of the connection portion. Specifically, it can be used to manufacture a semiconductor device by the method described below.
(第一実施形態)
 第一実施形態において、第1の層2は、Tgが35℃未満である第1の熱可塑性樹脂(以下、単に「第1の熱可塑性樹脂」ともいう)を含有し、第2の層3は、Tgが35℃以上である第2の熱可塑性樹脂(以下、単に「第2の熱可塑性樹脂」ともいう)を含有する。すなわち、第1の接着剤が、第1の熱可塑性樹脂を含有し、第2の接着剤が第2の熱可塑性樹脂を含有する。このような半導体用フィルム状接着剤1によれば、第2の層3がピックアップツールと接触するように用いることで、ピックアップツールの汚染を抑制することができ、また、第1の層2が35℃未満のTgを有する熱可塑性樹脂(第1の熱可塑性樹脂)を含有するため、半導体チップ搭載用基体及び半導体チップの反りを低減することができる。
(First embodiment)
In the first embodiment, the first layer 2 contains a first thermoplastic resin having a Tg of less than 35° C. (hereinafter, also simply referred to as “first thermoplastic resin”), and the second layer 3 Contains a second thermoplastic resin having a Tg of 35° C. or higher (hereinafter, also simply referred to as “second thermoplastic resin”). That is, the first adhesive contains the first thermoplastic resin and the second adhesive contains the second thermoplastic resin. According to the film adhesive 1 for a semiconductor as described above, by using the second layer 3 so as to be in contact with the pickup tool, the pickup tool can be prevented from being contaminated, and the first layer 2 is Since it contains a thermoplastic resin having a Tg of less than 35° C. (first thermoplastic resin), it is possible to reduce the warpage of the semiconductor chip mounting base and the semiconductor chip.
 第1の接着剤は、例えば、熱硬化性成分としての熱硬化性樹脂及び硬化剤と、第1の熱可塑性樹脂と、を含有する組成物である。熱硬化性成分としては、ラジカル重合性化合物及び熱重合開始剤を用いてもよい。 The first adhesive is, for example, a composition containing a thermosetting resin and a curing agent as thermosetting components, and a first thermoplastic resin. A radically polymerizable compound and a thermal polymerization initiator may be used as the thermosetting component.
 熱硬化性樹脂としては、例えば、エポキシ樹脂、フェノール樹脂(硬化剤として含有される場合を除く)、ポリイミド樹脂、ビスマレイミド樹脂等が挙げられる。これらの中でも、より優れた耐熱性及び接着性が得られやすい観点から、熱硬化性樹脂がエポキシ樹脂であることが好ましい。 Examples of the thermosetting resin include epoxy resin, phenol resin (excluding cases where it is contained as a curing agent), polyimide resin, bismaleimide resin, and the like. Among these, the thermosetting resin is preferably an epoxy resin from the viewpoint that more excellent heat resistance and adhesiveness are easily obtained.
 エポキシ樹脂としては、分子内に2個以上のエポキシ基を有するものであれば特に制限なく用いることができる。エポキシ樹脂としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ナフタレン型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂、ビフェニル型エポキシ樹脂、トリフェニルメタン型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂及び各種多官能エポキシ樹脂を使用することができる。これらは単独で又は2種以上の混合物として使用することができる。 The epoxy resin can be used without particular limitation as long as it has two or more epoxy groups in the molecule. Examples of the epoxy resin include bisphenol A type epoxy resin, bisphenol F type epoxy resin, naphthalene type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, phenol aralkyl type epoxy resin, biphenyl type epoxy resin, triphenylmethane. Type epoxy resin, dicyclopentadiene type epoxy resin and various polyfunctional epoxy resins can be used. These can be used alone or as a mixture of two or more kinds.
 エポキシ樹脂は、高温での接続時に分解して揮発成分が発生することを抑制する観点から、接続時の温度における熱重量減少量率が5%以下のエポキシ樹脂を用いることが好ましい。例えば、接続時の温度が250℃の場合は、250℃における熱重量減少量率が5%以下のエポキシ樹脂を用いることが好ましく、接続時の温度が300℃の場合は、300℃における熱重量減少量率が5%以下のエポキシ樹脂を用いることが好ましい。 As the epoxy resin, it is preferable to use an epoxy resin having a thermal weight loss rate of 5% or less at the temperature at the time of connection, from the viewpoint of suppressing decomposition of volatile components at the time of connection at a high temperature. For example, when the connecting temperature is 250° C., it is preferable to use an epoxy resin having a thermogravimetric weight loss ratio at 250° C. of 5% or less, and when the connecting temperature is 300° C., the thermogravimetric weight at 300° C. It is preferable to use an epoxy resin with a reduction rate of 5% or less.
 熱硬化性樹脂の含有量は、第1の接着剤の全質量基準で、例えば5質量%以上であり、好ましくは10質量%以上であり、より好ましくは15質量%以上である。熱硬化性樹脂の含有量は、第1の接着剤の全質量基準で、例えば75質量%以下であり、好ましくは50質量%以下であり、より好ましくは45質量%以下である。熱硬化性樹脂の含有量は、第1の接着剤の全質量基準で、例えば5~75質量%、10~50質量%又は15~45質量%であってよい。熱硬化性樹脂がエポキシ樹脂を含む場合、エポキシ樹脂の含有量が上記範囲であることが好ましい。なお、第1の接着剤に有機溶剤が含まれる場合、本明細書中の「第1の接着剤の全質量」には有機溶剤の質量は含まれない。 The content of the thermosetting resin is, for example, 5% by mass or more, preferably 10% by mass or more, and more preferably 15% by mass or more, based on the total mass of the first adhesive. The content of the thermosetting resin is, for example, 75% by mass or less, preferably 50% by mass or less, and more preferably 45% by mass or less, based on the total mass of the first adhesive. The content of the thermosetting resin may be, for example, 5 to 75% by mass, 10 to 50% by mass or 15 to 45% by mass based on the total mass of the first adhesive. When the thermosetting resin contains an epoxy resin, the content of the epoxy resin is preferably within the above range. When the first adhesive contains an organic solvent, the “total mass of the first adhesive” in the present specification does not include the mass of the organic solvent.
 硬化剤としては、使用する熱硬化性樹脂に応じて適宜選択可能である。例えば、熱硬化性樹脂としてエポキシ樹脂を用いる場合、硬化剤としては、フェノール樹脂系硬化剤、酸無水物系硬化剤、アミン系硬化剤、イミダゾール系硬化剤、ホスフィン系硬化剤等を用いることができる。フェノール樹脂系硬化剤及び酸無水物系硬化剤はフラックス活性を示すため、硬化剤としてこれらの硬化剤を用いることで接続信頼性を更に向上させることができる。以下、各硬化剤について説明する。 The curing agent can be appropriately selected according to the thermosetting resin used. For example, when an epoxy resin is used as the thermosetting resin, a phenol resin-based curing agent, an acid anhydride-based curing agent, an amine-based curing agent, an imidazole-based curing agent, a phosphine-based curing agent, etc. may be used as the curing agent. it can. Since the phenol resin-based curing agent and the acid anhydride-based curing agent exhibit flux activity, the connection reliability can be further improved by using these curing agents as the curing agent. Hereinafter, each curing agent will be described.
(i)フェノール樹脂系硬化剤
 フェノール樹脂系硬化剤としては、分子内に2個以上のフェノール性水酸基を有するものであれば特に制限はなく、例えば、フェノールノボラック樹脂、クレゾールノボラック樹脂、フェノールアラルキル樹脂、クレゾールナフトールホルムアルデヒド重縮合物、トリフェニルメタン型多官能フェノール樹脂及び各種多官能フェノール樹脂を使用することができる。これらは単独で又は2種以上の混合物として使用することができる。
(I) Phenolic resin-based curing agent The phenolic resin-based curing agent is not particularly limited as long as it has two or more phenolic hydroxyl groups in the molecule, and examples thereof include phenol novolac resin, cresol novolac resin, and phenol aralkyl resin. , Cresol naphthol formaldehyde polycondensate, triphenylmethane type polyfunctional phenol resin and various polyfunctional phenol resins can be used. These can be used alone or as a mixture of two or more kinds.
 エポキシ樹脂に対するフェノール樹脂系硬化剤の当量比(フェノール樹脂系硬化剤が有するフェノール性水酸基のモル数/エポキシ樹脂が有するエポキシ基のモル数)は、良好な硬化性、接着性及び保存安定性の観点から、0.3~1.5が好ましく、0.4~1.0がより好ましく、0.5~1.0が更に好ましい。当量比が0.3以上であると、硬化性が向上し接着力が向上する傾向があり、1.5以下であると未反応のフェノール性水酸基が過剰に残存することがなく、吸水率が低く抑えられ、絶縁信頼性が向上する傾向がある。 The equivalent ratio of the phenolic resin-based curing agent to the epoxy resin (the number of moles of the phenolic hydroxyl group of the phenolic resin-based curing agent/the number of moles of the epoxy group of the epoxy resin) is good curability, adhesiveness and storage stability. From the viewpoint, 0.3 to 1.5 is preferable, 0.4 to 1.0 is more preferable, and 0.5 to 1.0 is further preferable. When the equivalent ratio is 0.3 or more, the curability and the adhesive strength tend to be improved, and when it is 1.5 or less, the unreacted phenolic hydroxyl group does not remain excessively and the water absorption is It tends to be kept low and the insulation reliability tends to be improved.
(ii)酸無水物系硬化剤
 酸無水物系硬化剤としては、例えば、メチルシクロヘキサンテトラカルボン酸二無水物、無水トリメリット酸、無水ピロメリット酸、ベンゾフェノンテトラカルボン酸二無水物及びエチレングリコールビスアンヒドロトリメリテートを使用することができる。これらは単独で又は2種以上の混合物として使用することができる。
(Ii) Acid Anhydride Curing Agent Examples of the acid anhydride curing agent include methylcyclohexanetetracarboxylic dianhydride, trimellitic anhydride, pyromellitic dianhydride, benzophenonetetracarboxylic dianhydride, and ethylene glycol bis. Anhydrotrimellitate can be used. These can be used alone or as a mixture of two or more kinds.
 エポキシ樹脂に対する酸無水物系硬化剤の当量比(酸無水物系硬化剤が有する酸無水物基のモル数/エポキシ樹脂が有するエポキシ基のモル数)は、良好な硬化性、接着性及び保存安定性の観点から、0.3~1.5が好ましく、0.4~1.0がより好ましく、0.5~1.0が更に好ましい。当量比が0.3以上であると、硬化性が向上し接着力が向上する傾向があり、1.5以下であると未反応の酸無水物が過剰に残存することがなく、吸水率が低く抑えられ、絶縁信頼性が向上する傾向がある。 The equivalent ratio of the acid anhydride-based curing agent to the epoxy resin (the number of moles of the acid anhydride group of the acid anhydride-based curing agent/the number of moles of the epoxy group of the epoxy resin) is good curability, adhesiveness and storage. From the viewpoint of stability, 0.3 to 1.5 is preferable, 0.4 to 1.0 is more preferable, and 0.5 to 1.0 is further preferable. If the equivalent ratio is 0.3 or more, the curability and the adhesive strength tend to be improved, and if it is 1.5 or less, the unreacted acid anhydride does not remain excessively and the water absorption is It tends to be kept low and the insulation reliability tends to be improved.
 (iii)アミン系硬化剤
 アミン系硬化剤としては、例えばジシアンジアミドを使用することができる。
(Iii) Amine-Based Curing Agent As the amine-based curing agent, for example, dicyandiamide can be used.
 エポキシ樹脂に対するアミン系硬化剤の当量比(アミン系硬化剤が有する活性水素基のモル数/エポキシ樹脂が有するエポキシ基のモル数)は、良好な硬化性、接着性及び保存安定性の観点から0.3~1.5が好ましく、0.4~1.0がより好ましく、0.5~1.0が更に好ましい。当量比が0.3以上であると、硬化性が向上し接着力が向上する傾向があり、1.5以下であると未反応のアミンが過剰に残存することがなく、絶縁信頼性が向上する傾向がある。 The equivalent ratio of the amine-based curing agent to the epoxy resin (the number of active hydrogen groups of the amine-based curing agent/the number of moles of the epoxy groups of the epoxy resin) is from the viewpoint of good curability, adhesiveness and storage stability. 0.3 to 1.5 is preferable, 0.4 to 1.0 is more preferable, and 0.5 to 1.0 is further preferable. When the equivalent ratio is 0.3 or more, the curability and the adhesive strength tend to be improved, and when it is 1.5 or less, unreacted amine does not remain excessively and the insulation reliability is improved. Tend to do.
(iv)イミダゾール系硬化剤
 イミダゾール系硬化剤としては、例えば、2-フェニルイミダゾール、2-フェニル-4-メチルイミダゾール、1-ベンジル-2-メチルイミダゾール、1-ベンジル-2-フェニルイミダゾール、1-シアノエチル-2-ウンデシルイミダゾール、1-シアノ-2-フェニルイミダゾール、1-シアノエチル-2-ウンデシルイミダゾールトリメリテイト、1-シアノエチル-2-フェニルイミダゾリウムトリメリテイト、2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]-エチル-s-トリアジン、2,4-ジアミノ-6-[2’-ウンデシルイミダゾリル-(1’)]-エチル-s-トリアジン、2,4-ジアミノ-6-[2’-エチル-4’-メチルイミダゾリル-(1’)]-エチル-s-トリアジン、2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]-エチル-s-トリアジンイソシアヌル酸付加体、2-フェニルイミダゾールイソシアヌル酸付加体、2-フェニル-4,5-ジヒドロキシメチルイミダゾール、2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾール、及び、エポキシ樹脂とイミダゾール類の付加体が挙げられる。これらの中でも、優れた硬化性、保存安定性及び接続信頼性の観点から、1-シアノエチル-2-ウンデシルイミダゾール、1-シアノ-2-フェニルイミダゾール、1-シアノエチル-2-ウンデシルイミダゾールトリメリテイト、1-シアノエチル-2-フェニルイミダゾリウムトリメリテイト、2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]-エチル-s-トリアジン、2,4-ジアミノ-6-[2’-エチル-4’-メチルイミダゾリル-(1’)]-エチル-s-トリアジン、2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]-エチル-s-トリアジンイソシアヌル酸付加体、2-フェニルイミダゾールイソシアヌル酸付加体、2-フェニル-4,5-ジヒドロキシメチルイミダゾール及び2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾールが好ましい。これらは単独で又は2種以上を併用して用いることができる。また、これらをマイクロカプセル化した潜在性硬化剤としてもよい。
(Iv) Imidazole type curing agent Examples of the imidazole type curing agent include 2-phenylimidazole, 2-phenyl-4-methylimidazole, 1-benzyl-2-methylimidazole, 1-benzyl-2-phenylimidazole, 1- Cyanoethyl-2-undecylimidazole, 1-cyano-2-phenylimidazole, 1-cyanoethyl-2-undecylimidazole trimellitate, 1-cyanoethyl-2-phenylimidazolium trimellitate, 2,4-diamino-6 -[2'-Methylimidazolyl-(1')]-ethyl-s-triazine, 2,4-diamino-6-[2'-undecylimidazolyl-(1')]-ethyl-s-triazine, 2, 4-diamino-6-[2'-ethyl-4'-methylimidazolyl-(1')]-ethyl-s-triazine, 2,4-diamino-6-[2'-methylimidazolyl-(1')] -Ethyl-s-triazine isocyanuric acid adduct, 2-phenylimidazole isocyanuric acid adduct, 2-phenyl-4,5-dihydroxymethylimidazole, 2-phenyl-4-methyl-5-hydroxymethylimidazole, and epoxy resin And imidazole adducts. Among these, 1-cyanoethyl-2-undecylimidazole, 1-cyano-2-phenylimidazole, 1-cyanoethyl-2-undecylimidazole trimellitic acid, from the viewpoint of excellent curability, storage stability and connection reliability. Tate, 1-cyanoethyl-2-phenylimidazolium trimellitate, 2,4-diamino-6-[2'-methylimidazolyl-(1')]-ethyl-s-triazine, 2,4-diamino-6- [2′-Ethyl-4′-methylimidazolyl-(1′)]-ethyl-s-triazine, 2,4-diamino-6-[2′-methylimidazolyl-(1′)]-ethyl-s-triazine Isocyanuric acid adducts, 2-phenylimidazole isocyanuric acid adducts, 2-phenyl-4,5-dihydroxymethylimidazole and 2-phenyl-4-methyl-5-hydroxymethylimidazole are preferred. These can be used alone or in combination of two or more. Further, these may be microencapsulated latent curing agents.
 イミダゾール系硬化剤の含有量は、エポキシ樹脂100質量部に対して、0.1~20質量部が好ましく、0.1~10質量部がより好ましい。イミダゾール系硬化剤の含有量が0.1質量部以上であると硬化性が向上する傾向がある。また、イミダゾール系硬化剤の含有量が20質量部以下であると、圧着時における第1の接着剤の流動性を確保することができ、接続部間の第1の接着剤を十分に排除することができる。その結果、第1の接着剤がはんだと接続部との間に介入した状態で硬化することが抑制されるため、接続不良が発生しにくい。 The content of the imidazole-based curing agent is preferably 0.1 to 20 parts by mass, more preferably 0.1 to 10 parts by mass, based on 100 parts by mass of the epoxy resin. When the content of the imidazole-based curing agent is 0.1 part by mass or more, the curability tends to be improved. When the content of the imidazole-based curing agent is 20 parts by mass or less, the fluidity of the first adhesive at the time of pressure bonding can be ensured, and the first adhesive between the connecting portions can be sufficiently removed. be able to. As a result, the first adhesive is suppressed from being hardened in the state where it intervenes between the solder and the connection portion, so that poor connection is less likely to occur.
(v)ホスフィン系硬化剤
 ホスフィン系硬化剤としては、例えば、トリフェニルホスフィン、テトラフェニルホスホニウムテトラフェニルボレート、テトラフェニルホスホニウムテトラ(4-メチルフェニル)ボレート及びテトラフェニルホスホニウム(4-フルオロフェニル)ボレートが挙られる。
(V) Phosphine-Based Curing Agent Examples of phosphine-based curing agents include triphenylphosphine, tetraphenylphosphonium tetraphenylborate, tetraphenylphosphonium tetra(4-methylphenyl)borate and tetraphenylphosphonium(4-fluorophenyl)borate. Be raised.
 ホスフィン系硬化剤の含有量は、エポキシ樹脂100質量部に対して、0.1~10質量部が好ましく、0.1~5質量部がより好ましい。ホスフィン系硬化剤の含有量が0.1質量部以上であると硬化性が向上する傾向があり、10質量部以下であると金属接合が形成される前に第1の接着剤が硬化することがなく、接続不良が発生しにくい。 The content of the phosphine-based curing agent is preferably 0.1 to 10 parts by mass, more preferably 0.1 to 5 parts by mass with respect to 100 parts by mass of the epoxy resin. When the content of the phosphine-based curing agent is 0.1 part by mass or more, the curability tends to be improved, and when it is 10 parts by mass or less, the first adhesive is cured before the metal bond is formed. There is no problem, and poor connection is less likely to occur.
 フェノール樹脂系硬化剤、酸無水物系硬化剤及びアミン系硬化剤は、それぞれ1種を単独で又は2種以上の混合物として使用することができる。イミダゾール系硬化剤及びホスフィン系硬化剤はそれぞれ単独で用いてもよいが、フェノール樹脂系硬化剤、酸無水物系硬化剤又はアミン系硬化剤と共に用いてもよい。 Each of the phenol resin-based curing agent, the acid anhydride-based curing agent and the amine-based curing agent may be used alone or as a mixture of two or more kinds. The imidazole-based curing agent and the phosphine-based curing agent may be used alone, or may be used together with a phenol resin-based curing agent, an acid anhydride-based curing agent or an amine-based curing agent.
 第1の熱可塑性樹脂は、半導体用フィルム状接着剤の硬化後の弾性率を低減する機能を有し、反り量の低減に寄与する。第1の熱可塑性樹脂のTg(ガラス転移温度)は35℃未満であり、反り量をより低減できる観点から、好ましくは25℃以下であり、より好ましくは10℃以下であり、更に好ましくは0℃以下である。第1の熱可塑性樹脂のTgは、第1の層のタック値が高くなりすぎない観点から、好ましくは-70℃以上であり、より好ましくは-50℃以上であり、更に好ましくは-30℃以上である。これらの観点から、第1の熱可塑性樹脂のTgは、例えば、-70℃以上35℃未満、-50~25℃、-30~10℃又は-30~0℃であってよい。第1の接着剤は、第1の熱可塑性樹脂として、互いにTgが異なる複数の熱可塑性樹脂を含んでいてもよい。この場合、主として含まれる第1の熱可塑性樹脂のTgが上記範囲であることが好ましく、全ての第1の熱可塑性樹脂のTgが上記範囲であることがより好ましい。なお、本明細書においてTgは例えばDMA測定によって得られる値である。 The first thermoplastic resin has the function of reducing the elastic modulus of the film adhesive for semiconductors after curing, and contributes to the reduction of the amount of warpage. The Tg (glass transition temperature) of the first thermoplastic resin is less than 35° C., and from the viewpoint of being able to further reduce the amount of warpage, it is preferably 25° C. or less, more preferably 10° C. or less, and further preferably 0. It is below ℃. The Tg of the first thermoplastic resin is preferably −70° C. or higher, more preferably −50° C. or higher, and further preferably −30° C., from the viewpoint that the tack value of the first layer does not become too high. That is all. From these viewpoints, the Tg of the first thermoplastic resin may be, for example, −70° C. or higher and lower than 35° C., −50 to 25° C., −30 to 10° C., or −30 to 0° C. The first adhesive may include, as the first thermoplastic resin, a plurality of thermoplastic resins having different Tgs. In this case, the Tg of the first thermoplastic resin mainly contained is preferably within the above range, and the Tg of all the first thermoplastic resins is more preferably within the above range. In the present specification, Tg is a value obtained by, for example, DMA measurement.
 第1の熱可塑性樹脂としては、例えば、フェノキシ樹脂、ポリイミド樹脂、ポリアミド樹脂、ポリカルボジイミド樹脂、シアネートエステル樹脂、(メタ)アクリル樹脂、ポリエステル樹脂、ポリエチレン樹脂、ポリエーテルスルホン樹脂、ポリエーテルイミド樹脂、ポリビニルアセタール樹脂及びウレタン樹脂が挙げられる。第1の熱可塑性樹脂は、これらの中でも、耐熱性及びフィルム形成性に優れる観点、並びに、弾性率の低減効果に優れる観点から、(メタ)アクリル樹脂、ウレタン樹脂、ポリアミドイミド樹脂及びポリイミド樹脂からなる群より選択される少なくとも一種を含むことが好ましく、(メタ)アクリル樹脂及びウレタン樹脂からなる群より選択される少なくとも一種を含むことがより好ましい。(メタ)アクリル樹脂は、耐熱性及びフィルム形成性に優れる観点、並びに、弾性率の低減効果に優れる観点から、アクリルゴムであることが好ましい。すなわち、第1の熱可塑性樹脂は、アクリルゴム及びウレタン樹脂からなる群より選択される少なくとも一種を含むことが特に好ましい。ここで、(メタ)アクリル樹脂とは、アクリル酸エステル及びメタクリル酸エステルのうちいずれか一方又は両方を原材料として重合させることにより得られる高分子化合物である。これらの熱可塑性樹脂は単独で又は2種以上の混合物又は共重合体として使用することもできる。 Examples of the first thermoplastic resin include phenoxy resin, polyimide resin, polyamide resin, polycarbodiimide resin, cyanate ester resin, (meth)acrylic resin, polyester resin, polyethylene resin, polyethersulfone resin, polyetherimide resin, Examples thereof include polyvinyl acetal resin and urethane resin. Among them, the first thermoplastic resin is a (meth)acrylic resin, a urethane resin, a polyamideimide resin, or a polyimide resin from the viewpoint of excellent heat resistance and film-forming property, and the effect of reducing elastic modulus. It is preferable to contain at least one selected from the group consisting of, and it is more preferable to contain at least one selected from the group consisting of (meth)acrylic resin and urethane resin. The (meth)acrylic resin is preferably an acrylic rubber from the viewpoint of excellent heat resistance and film forming property, and also from the viewpoint of excellent effect of reducing elastic modulus. That is, it is particularly preferable that the first thermoplastic resin contains at least one selected from the group consisting of acrylic rubber and urethane resin. Here, the (meth)acrylic resin is a polymer compound obtained by polymerizing one or both of an acrylic ester and a methacrylic ester as a raw material. These thermoplastic resins may be used alone or as a mixture or copolymer of two or more kinds.
 第1の熱可塑性樹脂の重量平均分子量は、例えば10000以上であり、20000以上であることが好ましく、30000以上であることがより好ましい。このような熱可塑性樹脂によれば、第1の接着剤の耐熱性及びフィルム形成性を向上させることができる。第1の熱可塑性樹脂の重量平均分子量は、1000000以下であることが好ましく、500000以下であることがより好ましい。これらの観点から、第1の熱可塑性樹脂の重量平均分子量は、例えば、10000~1000000、20000~500000又は30000~500000であってよい。このような熱可塑性樹脂によれば、第1の接着剤の耐熱性を向上させることができる。 The weight average molecular weight of the first thermoplastic resin is, for example, 10,000 or more, preferably 20,000 or more, and more preferably 30,000 or more. With such a thermoplastic resin, the heat resistance and the film forming property of the first adhesive can be improved. The weight average molecular weight of the first thermoplastic resin is preferably 1,000,000 or less, and more preferably 500000 or less. From these viewpoints, the weight average molecular weight of the first thermoplastic resin may be, for example, 10,000 to 1,000,000, 20,000 to 500,000, or 30,000 to 500,000. With such a thermoplastic resin, the heat resistance of the first adhesive can be improved.
 なお、本明細書において、重量平均分子量とは、高速液体クロマトグラフィー(株式会社島津製作所製、商品名:C-R4A)を用いて、ポリスチレン換算で測定したときの重量平均分子量を意味する。測定には、例えば、下記の条件を用いることができる。
 検出器:LV4000 UV Detector(株式会社日立製作所製、商品名)
 ポンプ:L6000 Pump(株式会社日立製作所製、商品名)
 カラム:Gelpack GL-S300MDT-5(計2本)(日立化成株式会社製、商品名)
 溶離液:THF/DMF=1/1(容積比)+LiBr(0.03mol/L)+H3PO4(0.06mol/L)
 流量:1mL/分
In the present specification, the weight average molecular weight means the weight average molecular weight measured by polystyrene conversion using high performance liquid chromatography (manufactured by Shimadzu Corporation, trade name: C-R4A). The following conditions can be used for the measurement, for example.
Detector: LV4000 UV Detector (Hitachi, Ltd., trade name)
Pump: L6000 Pump (Hitachi, Ltd., trade name)
Column: Gelpack GL-S300MDT-5 (2 in total) (Hitachi Chemical Co., Ltd., trade name)
Eluent: THF/DMF=1/1 (volume ratio)+LiBr (0.03 mol/L)+H3PO4 (0.06 mol/L)
Flow rate: 1 mL/min
 第1の熱可塑性樹脂の含有量は、第1の接着剤の全質量基準で、例えば1質量%以上であり、好ましくは2質量%以上であり、より好ましくは5質量%以上である。第1の熱可塑性樹脂の含有量は、第1の接着剤の全質量基準で、例えば30質量%以下であり、好ましくは20質量%以下であり、より好ましくは15質量%以下である。第1の熱可塑性樹脂の含有量は、第1の接着剤の全質量基準で、例えば、1~30質量%、2~20質量%又は5~15質量%であってよい。 The content of the first thermoplastic resin is, for example, 1% by mass or more, preferably 2% by mass or more, and more preferably 5% by mass or more, based on the total mass of the first adhesive. The content of the first thermoplastic resin is, for example, 30 mass% or less, preferably 20 mass% or less, and more preferably 15 mass% or less, based on the total mass of the first adhesive. The content of the first thermoplastic resin may be, for example, 1 to 30% by mass, 2 to 20% by mass or 5 to 15% by mass based on the total mass of the first adhesive.
 第1の接着剤における、第1の熱可塑性樹脂の含有量に対する熱硬化性樹脂の含有量の比(質量比)は、0.01~5であることが好ましく、0.05~3であることがより好ましく、0.1~2であることが更に好ましい。上記の比を0.01以上とすることで、より良好な硬化性及び接着力が得られ、上記の比を5以下とすることで弾性率をより低減できるとともに、より良好なフィルム形成性が得られる。 The ratio (mass ratio) of the content of the thermosetting resin to the content of the first thermoplastic resin in the first adhesive is preferably 0.01 to 5, and 0.05 to 3. It is more preferable, and 0.1 to 2 is even more preferable. By setting the above ratio to 0.01 or more, better curability and adhesive strength can be obtained, and by setting the above ratio to 5 or less, the elastic modulus can be further reduced and a better film forming property can be obtained. can get.
 第1の接着剤は、必要に応じて、フラックス化合物を更に含有してよい。フラックス化合物は、フラックス活性を有する化合物であり、フラックス剤として機能する。フラックス化合物としては、はんだ等の表面の酸化膜を還元除去して、金属接合を容易にするものであれば、特に制限なく公知のものを用いることができる。フラックス化合物としては、1種を単独で用いてもよく、2種以上を併用してもよい。ただし、フラックス化合物には上述した硬化剤は含まれない。 The first adhesive may further contain a flux compound, if necessary. The flux compound is a compound having a flux activity and functions as a flux agent. As the flux compound, any known flux compound can be used without particular limitation as long as it reduces and removes an oxide film on the surface of solder or the like to facilitate metal bonding. As the flux compound, one kind may be used alone, or two or more kinds may be used in combination. However, the flux compound does not include the above-mentioned curing agent.
 フラックス化合物は、十分なフラックス活性が得られ、より優れた接続信頼性が得られる観点から、カルボキシル基を有することが好ましく、2つ以上のカルボキシル基を有することがより好ましい。この中でも、カルボキシル基を2つ有する化合物が好ましい。カルボキシル基を2つ有する化合物は、カルボキシル基を1つ有する化合物(モノカルボン酸)と比較して、接続時の高温によっても揮発し難く、ボイドの発生を一層抑制できる。また、カルボキシル基を2つ有する化合物を用いると、カルボキシル基を3つ以上有する化合物を用いた場合と比較して、保管時・接続作業時等における半導体用フィルム状接着剤の粘度上昇を一層抑制することができ、半導体装置の接続信頼性を一層向上させることができる。 The flux compound preferably has a carboxyl group, and more preferably has two or more carboxyl groups, from the viewpoint of obtaining sufficient flux activity and more excellent connection reliability. Among these, compounds having two carboxyl groups are preferable. The compound having two carboxyl groups is less likely to volatilize even at a high temperature at the time of connection as compared with the compound having one carboxyl group (monocarboxylic acid), and the generation of voids can be further suppressed. Further, when a compound having two carboxyl groups is used, the increase in the viscosity of the film adhesive for semiconductors during storage and connection work is further suppressed, as compared with the case where a compound having three or more carboxyl groups is used. Therefore, the connection reliability of the semiconductor device can be further improved.
 カルボキシル基を有するフラックス化合物としては、下記式(1)で表される基を有する化合物が好ましく用いられる。
Figure JPOXMLDOC01-appb-C000002
As the flux compound having a carboxyl group, a compound having a group represented by the following formula (1) is preferably used.
Figure JPOXMLDOC01-appb-C000002
 式(1)中、Rは、水素原子又は電子供与性基を示す。 In formula (1), R 1 represents a hydrogen atom or an electron donating group.
 フラックス化合物としては、例えば、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、ウンデカン二酸及びドデカン二酸から選択されるジカルボン酸、並びに、これらのジカルボン酸の2位に電子供与性基が置換した化合物を用いることができる。 Examples of the flux compound include dicarboxylic acids selected from succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, undecanedioic acid and dodecanedioic acid, and dicarboxylic acids thereof. A compound having an electron donating group substituted at the position can be used.
 フラックス化合物の融点は、150℃以下が好ましく、140℃以下がより好ましく、130℃以下が更に好ましい。このようなフラックス化合物は、エポキシ樹脂と硬化剤との硬化反応が生じる前にフラックス活性が十分に発現しやすい。そのため、このようなフラックス化合物を含有する第1の接着剤を用いた半導体用フィルム状接着剤によれば、接続信頼性に一層優れる半導体装置を実現できる。また、フラックス化合物の融点は、25℃以上が好ましく、50℃以上がより好ましい。フラックス化合物の融点は、例えば、25~150℃、50~140℃又は50~130℃であってよい。また、フラックス化合物は、室温(25℃)で固形であるものが好ましい。 The melting point of the flux compound is preferably 150°C or lower, more preferably 140°C or lower, and further preferably 130°C or lower. Such a flux compound is likely to exhibit sufficient flux activity before the curing reaction between the epoxy resin and the curing agent occurs. Therefore, according to the film-like adhesive for semiconductors using the first adhesive containing such a flux compound, a semiconductor device having further excellent connection reliability can be realized. The melting point of the flux compound is preferably 25°C or higher, more preferably 50°C or higher. The melting point of the flux compound may be, for example, 25-150°C, 50-140°C or 50-130°C. The flux compound is preferably solid at room temperature (25°C).
 フラックス化合物の融点は、一般的な融点測定装置を用いて測定できる。融点を測定する試料は、微粉末に粉砕され且つ微量を用いることで試料内の温度の偏差を少なくすることが求められる。試料の容器としては一方の端を閉じた毛細管が用いられることが多いが、測定装置によっては2枚の顕微鏡用カバーグラスに挟み込んで容器とするものもある。また急激に温度を上昇させると試料と温度計との間に温度勾配が発生して測定誤差を生じるため融点を計測する時点での加温は毎分1℃以下の上昇率で測定することが望ましい。 The melting point of the flux compound can be measured using a general melting point measuring device. The sample whose melting point is to be measured is pulverized into fine powder and it is required to reduce the temperature deviation in the sample by using a trace amount. As a sample container, a capillary tube with one end closed is often used, but depending on the measuring device, there is also one that is sandwiched between two microscope cover glasses to form a container. Further, when the temperature is rapidly raised, a temperature gradient is generated between the sample and the thermometer, which causes a measurement error. Therefore, the heating at the time of measuring the melting point can be measured at an increase rate of 1° C. or less per minute. desirable.
 前述のように融点を測定する試料は微粉末として調製されるので、融解前の試料は表面での乱反射により不透明である。試料の外見が透明化し始めた温度を融点の下限点とし、融解しきった温度を上限点とすることが通常である。測定装置は種々の形態のものが存在するが、最も古典的な装置は二重管式温度計に試料を詰めた毛細管を取り付けて温浴で加温する装置が使用される。二重管式温度計に毛細管を貼り付ける目的で温浴の液体として粘性の高い液体が用いられ、濃硫酸ないしはシリコンオイルが用いられることが多く、温度計先端の溜めの近傍に試料が来るように取り付ける。また、融点測定装置としては金属のヒートブロックを使って加温し、光の透過率を測定しながら加温を調整しつつ自動的に融点を決定するものを使用することもできる。 As mentioned above, the sample whose melting point is measured is prepared as a fine powder, so the sample before melting is opaque due to diffuse reflection on the surface. It is usual to set the temperature at which the appearance of the sample begins to become transparent as the lower limit point of the melting point and the temperature at which the sample has completely melted as the upper limit point. There are various types of measuring devices, but the most classical device is a device in which a capillary tube filled with a sample is attached to a double-tube thermometer and heating is performed in a warm bath. A highly viscous liquid is used as the liquid for the hot bath for the purpose of attaching a capillary tube to the double-tube thermometer, and concentrated sulfuric acid or silicone oil is often used, so that the sample comes near the reservoir at the tip of the thermometer. Install. Further, as the melting point measuring device, it is possible to use a device that heats using a metal heat block and automatically determines the melting point while adjusting the heating while measuring the light transmittance.
 なお、本明細書中、融点が150℃以下とは、融点の上限点が150℃以下であることを意味し、融点が25℃以上とは、融点の下限点が25℃以上であることを意味する。 In the present specification, the melting point of 150° C. or lower means that the upper limit of the melting point is 150° C. or lower, and the melting point of 25° C. or higher means that the lower limit of the melting point is 25° C. or higher. means.
 フラックス化合物の含有量は、第1の接着剤の全質量基準で、好ましくは0.5質量%以上である。フラックス化合物の含有量は、第1の接着剤の全質量基準で、好ましくは10質量%以下であり、より好ましくは5質量%以下である。フラックス化合物の含有量は、第1の接着剤の全質量基準で、例えば、0.5~10質量%又は0.5~5質量%であってよい。 The content of the flux compound is, based on the total mass of the first adhesive, preferably 0.5 mass% or more. The content of the flux compound is preferably 10% by mass or less, and more preferably 5% by mass or less, based on the total mass of the first adhesive. The content of the flux compound may be, for example, 0.5 to 10 mass% or 0.5 to 5 mass% based on the total mass of the first adhesive.
 第1の接着剤は、必要に応じて、フィラーを更に含有してよい。フィラーは、接着剤の粘度、接着剤の硬化物の物性等を制御するために好適に用いられる。具体的には、フィラーを含有させることにより、例えば、接続時のボイド発生の抑制、接着剤の硬化物の吸湿率の低減等を図ることができる。 The first adhesive may further contain a filler, if necessary. The filler is preferably used for controlling the viscosity of the adhesive and the physical properties of the cured product of the adhesive. Specifically, by containing the filler, for example, it is possible to suppress the generation of voids at the time of connection, reduce the moisture absorption rate of the cured product of the adhesive, and the like.
 フィラーとしては、無機フィラー(無機粒子)、有機フィラー(有機粒子)等が挙げられる。無機フィラーとしては、ガラス、シリカ、アルミナ、酸化チタン、マイカ、窒化ホウ素等の絶縁性無機フィラーが挙げられ、その中でも、シリカ、アルミナ、酸化チタン及び窒化ホウ素からなる群より選ばれる少なくとも1種が好ましく、シリカ、アルミナ及び窒化ホウ素からなる群より選ばれる少なくとも1種がより好ましい。絶縁性無機フィラーはウィスカーであってもよい。ウィスカーとしては、ホウ酸アルミニウム、チタン酸アルミニウム、酸化亜鉛、珪酸カルシウム、窒化ホウ素等が挙げられる。有機フィラーとしては、例えば、樹脂フィラー(樹脂粒子)が挙げられる。樹脂フィラーとしては、ポリウレタン、ポリイミド等が挙げられる。樹脂フィラーは、無機フィラーに比べて、260℃等の高温で柔軟性を付与することができるため、耐リフロー性向上に適していると共に、柔軟性付与が可能であるためフィルム形成性向上にも効果がある。 Examples of the filler include inorganic filler (inorganic particles) and organic filler (organic particles). Examples of the inorganic filler include glass, silica, alumina, titanium oxide, mica, insulating inorganic fillers such as boron nitride, and among them, at least one selected from the group consisting of silica, alumina, titanium oxide and boron nitride. At least one selected from the group consisting of silica, alumina and boron nitride is more preferable. The insulating inorganic filler may be whiskers. Examples of the whiskers include aluminum borate, aluminum titanate, zinc oxide, calcium silicate, boron nitride and the like. Examples of the organic filler include resin fillers (resin particles). Examples of the resin filler include polyurethane and polyimide. Compared with inorganic fillers, resin fillers can impart flexibility at high temperatures such as 260° C., and thus are suitable for improving reflow resistance and, at the same time, can impart flexibility, thereby improving film formability. effective.
 絶縁信頼性に更に優れる観点から、フィラーは絶縁性である(絶縁性フィラーである)ことが好ましい。第1の接着剤は、銀フィラー、はんだフィラー等の導電性の金属フィラー(金属粒子)、及び、カーボンブラック等の導電性の無機フィラーを含有していないことが好ましい。 The filler is preferably insulative (is an insulative filler) from the viewpoint of further excellent insulation reliability. It is preferable that the first adhesive does not contain a conductive metal filler (metal particles) such as a silver filler or a solder filler, and a conductive inorganic filler such as carbon black.
 絶縁性フィラーの含有量は、弾性率を所望の範囲に調整しやすい観点、並びに、反りを抑制しつつ、ボイドの発生をより十分に低減することができ、更には優れた接続信頼性が得られる観点から、フィラーの全質量を基準として、50質量%以上、70質量%以上又は90質量%以上であってよい。フィラーは、実質的に絶縁性フィラーのみからなっていてよい。すなわち、フィラーは、導電性フィラーを実質的に含有しなくてよい。「実質的に含有しない」とは、フィラーにおける導電性フィラーの含有量が、フィラーの全質量基準で、0.5質量%未満であることを意味する。 The content of the insulating filler is such that the elastic modulus can be easily adjusted to a desired range, and the occurrence of voids can be more sufficiently reduced while suppressing warpage, and further excellent connection reliability can be obtained. From the viewpoint, the amount may be 50% by mass or more, 70% by mass or more, or 90% by mass or more based on the total mass of the filler. The filler may consist essentially of insulating filler. That is, the filler may be substantially free of conductive filler. "Substantially free" means that the content of the conductive filler in the filler is less than 0.5% by mass based on the total mass of the filler.
 フィラーの物性は、表面処理によって適宜調整されてもよい。フィラーは、分散性又は接着力が向上する観点から、表面処理を施したフィラーであることが好ましい。表面処理剤としては、グリシジル系(エポキシ系)、アミン系、フェニル系、フェニルアミノ系、(メタ)アクリル系、ビニル系の化合物等が挙げられる。 The physical properties of the filler may be appropriately adjusted by surface treatment. From the viewpoint of improving dispersibility or adhesive strength, the filler is preferably a surface-treated filler. Examples of the surface treatment agent include glycidyl (epoxy), amine, phenyl, phenylamino, (meth)acrylic, and vinyl compounds.
 表面処理としては、表面処理のしやすさから、エポキシシラン系、アミノシラン系、アクリルシラン系等のシラン化合物によるシラン処理が好ましい。表面処理剤としては、分散性、流動性及び接着力に優れる観点から、グリシジル系の化合物、フェニルアミノ系の化合物、及び、(メタ)アクリル系の化合物からなる群より選ばれる少なくとも1種が好ましい。表面処理剤としては、保存安定性に優れる観点から、フェニル系の化合物、及び、(メタ)アクリル系の化合物からなる群より選ばれる少なくとも1種が好ましい。 As the surface treatment, silane treatment with a silane compound such as epoxysilane type, aminosilane type, acrylsilane type, etc. is preferable because of the ease of surface treatment. As the surface treatment agent, at least one selected from the group consisting of glycidyl compounds, phenylamino compounds, and (meth)acrylic compounds is preferable from the viewpoint of excellent dispersibility, fluidity and adhesive strength. .. From the viewpoint of excellent storage stability, the surface treatment agent is preferably at least one selected from the group consisting of phenyl compounds and (meth)acrylic compounds.
 フィラーの平均粒径は、フリップチップ接続時のかみ込み防止の観点から、1.5μm以下が好ましく、視認性(透明性)に優れる観点から、1.0μm以下がより好ましい。 The average particle size of the filler is preferably 1.5 μm or less from the viewpoint of preventing biting during flip chip connection, and more preferably 1.0 μm or less from the viewpoint of excellent visibility (transparency).
 フィラーの含有量は、放熱性が低くなることが抑制される観点、及び、ボイドの発生、吸湿率が大きくなること等を抑制しやすい傾向がある観点から、第1の接着剤の全質量を基準として、30質量%以上が好ましく、40質量%以上がより好ましい。フィラーの含有量は、粘度が高くなって第1の接着剤の流動性が低下すること、及び、接続部へのフィラーの噛み込み(トラッピング)が生じることが抑制されやすく、接続信頼性が低下することを抑制しやすい傾向がある観点から、第1の接着剤の全質量を基準として、90質量%以下が好ましく、80質量%以下がより好ましい。これらの観点から、フィラーの含有量は、第1の接着剤の全質量を基準として、30~90質量%が好ましく、40~80質量%がより好ましい。 The content of the filler is determined from the viewpoint that the heat dissipation is suppressed to be low, and that the generation of voids and the tendency to increase the moisture absorption rate are likely to be suppressed, with respect to the total mass of the first adhesive. As a standard, 30% by mass or more is preferable, and 40% by mass or more is more preferable. Regarding the content of the filler, it is easy to suppress that the fluidity of the first adhesive decreases due to the increase in viscosity and the trapping of the filler into the connection portion (trapping) is easily suppressed, and the connection reliability decreases. From the viewpoint that it is easy to suppress this, 90% by mass or less is preferable, and 80% by mass or less is more preferable, based on the total mass of the first adhesive. From these viewpoints, the content of the filler is preferably 30 to 90% by mass, and more preferably 40 to 80% by mass, based on the total mass of the first adhesive.
 第1の接着剤は、必要に応じて、酸化防止剤、シランカップリング剤、チタンカップリング剤、レベリング剤、イオントラップ剤等の添加剤を更に含有してよい。これらは1種を単独で又は2種以上を組み合わせて用いることができる。これらの配合量については、各添加剤の効果が発現するように適宜調整すればよい。 The first adhesive may further contain additives such as an antioxidant, a silane coupling agent, a titanium coupling agent, a leveling agent and an ion trap agent, if necessary. These may be used alone or in combination of two or more. The blending amount of these may be appropriately adjusted so that the effect of each additive is exhibited.
 第1の接着剤は、Tgが35℃以上である熱可塑性樹脂(以下、「高Tg熱可塑性樹脂」という)を含有してもよいが、Tgが35℃未満である熱可塑性樹脂(以下、「低Tg熱可塑性樹脂」ともいう)を主として含有する(例えば、第1の接着剤に含有される熱可塑性樹脂の全質量を基準として、50質量%超含有する)ことが好ましく、高Tg熱可塑性樹脂を含有しないことが更に好ましい。第1の接着剤における低Tg熱可塑性樹脂(第1の熱可塑性樹脂)の含有量は、第1の接着剤に含有される熱可塑性樹脂の全質量を基準として、75質量%以上、85質量%以上又は95質量%以上であってもよい。第1の接着剤における高Tg熱可塑性樹脂の含有量は、第1の接着剤の全質量基準で、例えば5質量%以下であり、好ましくは1質量%以下であり、より好ましくは0質量%である。 The first adhesive may contain a thermoplastic resin having Tg of 35° C. or higher (hereinafter referred to as “high Tg thermoplastic resin”), but a thermoplastic resin having Tg of less than 35° C. (hereinafter, It is preferable to mainly contain "a low Tg thermoplastic resin" (for example, to contain more than 50% by mass based on the total mass of the thermoplastic resin contained in the first adhesive), and to have a high Tg heat. It is further preferable that no plastic resin is contained. The content of the low Tg thermoplastic resin (first thermoplastic resin) in the first adhesive is 75 mass% or more and 85 mass% or more based on the total mass of the thermoplastic resin contained in the first adhesive. % Or 95% by mass may be used. The content of the high Tg thermoplastic resin in the first adhesive is, for example, 5% by mass or less, preferably 1% by mass or less, and more preferably 0% by mass, based on the total mass of the first adhesive. Is.
 第2の接着剤は、例えば、熱硬化性成分としての熱硬化性樹脂及び硬化剤と、第2の熱可塑性樹脂と、を含有する。熱硬化性成分としては、ラジカル重合性化合物及び熱重合開始剤を用いてもよい。第2の接着剤は、必要に応じて、フラックス化合物、フィラー及びその他の添加剤を更に含有していてもよい。第2の接着剤における熱硬化性成分、フラックス化合物、フィラー及びその他の添加剤としては、第1の接着剤に含有される成分として上述した成分を用いることができ、各成分の種類、含有量等の好ましい例も同じである。 The second adhesive contains, for example, a thermosetting resin and a curing agent as thermosetting components, and a second thermoplastic resin. A radically polymerizable compound and a thermal polymerization initiator may be used as the thermosetting component. The second adhesive may further contain a flux compound, a filler and other additives, if necessary. As the thermosetting component, the flux compound, the filler and other additives in the second adhesive, the components described above as the components contained in the first adhesive can be used, and the type and content of each component The same applies to preferred examples such as.
 第2の熱可塑性樹脂は、第2の層の表面のタックの低減に寄与する。第2の熱可塑性樹脂のTgは35℃以上である。すなわち、第2の熱可塑性樹脂は、高Tg熱可塑性樹脂である。 The second thermoplastic resin contributes to the reduction of tack on the surface of the second layer. The Tg of the second thermoplastic resin is 35° C. or higher. That is, the second thermoplastic resin is a high Tg thermoplastic resin.
 第2の熱可塑性樹脂のTgは、第2の層のタックをより低減することができ、ピックアップツールの汚染をより抑制できる観点から、好ましくは50℃以上であり、より好ましくは60℃以上である。第2の熱可塑性樹脂のTgは、反り量をより低減できる観点では、好ましくは250℃以下であり、より好ましくは200℃以下であり、更に好ましくは160℃以下である。これらの観点から、第2の熱可塑性樹脂のTgは、例えば、35~250℃、50~200℃又は60~160℃であってよい。第2の接着剤は、第2の熱可塑性樹脂として、互いにTgが異なる複数の熱可塑性樹脂を含んでいてもよい。この場合、主として含まれる第2の熱可塑性樹脂のTgが上記範囲であることが好ましく、全ての第2の熱可塑性樹脂のTgが上記範囲であることがより好ましい。 The Tg of the second thermoplastic resin is preferably 50° C. or higher, and more preferably 60° C. or higher, from the viewpoint that the tack of the second layer can be further reduced and the contamination of the pickup tool can be further suppressed. is there. The Tg of the second thermoplastic resin is preferably 250° C. or lower, more preferably 200° C. or lower, still more preferably 160° C. or lower, from the viewpoint of further reducing the amount of warpage. From these viewpoints, the Tg of the second thermoplastic resin may be, for example, 35 to 250°C, 50 to 200°C or 60 to 160°C. The second adhesive may include, as the second thermoplastic resin, a plurality of thermoplastic resins having different Tg's. In this case, the Tg of the second thermoplastic resin mainly contained is preferably in the above range, and the Tg of all the second thermoplastic resins is more preferably in the above range.
 第2の熱可塑性樹脂としては、例えば、フェノキシ樹脂、ポリイミド樹脂、ポリアミド樹脂、ポリカルボジイミド樹脂、シアネートエステル樹脂、(メタ)アクリル樹脂、ポリエステル樹脂、ポリエチレン樹脂、ポリエーテルスルホン樹脂、ポリエーテルイミド樹脂、ポリビニルアセタール樹脂及びウレタン樹脂が挙げられる。第2の熱可塑性樹脂は、これらの中でも、耐熱性及びフィルム形成性に優れる観点から、フェノキシ樹脂、(メタ)アクリル樹脂及びポリイミド樹脂からなる群より選択される少なくとも一種を含むことが好ましく、フェノキシ樹脂を含むことがより好ましい。これらの熱可塑性樹脂は単独で又は2種以上の混合物又は共重合体として使用することもできる。 Examples of the second thermoplastic resin include phenoxy resin, polyimide resin, polyamide resin, polycarbodiimide resin, cyanate ester resin, (meth)acrylic resin, polyester resin, polyethylene resin, polyethersulfone resin, polyetherimide resin, Examples thereof include polyvinyl acetal resin and urethane resin. Among these, the second thermoplastic resin preferably contains at least one selected from the group consisting of a phenoxy resin, a (meth)acrylic resin and a polyimide resin, from the viewpoint of excellent heat resistance and film-forming property, and phenoxy It is more preferable to include a resin. These thermoplastic resins may be used alone or as a mixture or copolymer of two or more kinds.
 第2の熱可塑性樹脂の重量平均分子量は、例えば10000以上であり、20000以上であることが好ましく、30000以上であることがより好ましい。このような熱可塑性樹脂によれば、第2の接着剤の耐熱性及びフィルム形成性を向上させることができる。第2の熱可塑性樹脂の重量平均分子量は、1000000以下であることが好ましく、500000以下であることがより好ましい。このような熱可塑性樹脂によれば、第2の接着剤の耐熱性を向上させることができる。これらの観点から、第2の熱可塑性樹脂の重量平均分子量は、例えば10000~1000000、20000~500000又は30000~500000であってよい。 The weight average molecular weight of the second thermoplastic resin is, for example, 10,000 or more, preferably 20,000 or more, and more preferably 30,000 or more. With such a thermoplastic resin, the heat resistance and the film forming property of the second adhesive can be improved. The weight average molecular weight of the second thermoplastic resin is preferably 1,000,000 or less, and more preferably 500000 or less. With such a thermoplastic resin, the heat resistance of the second adhesive can be improved. From these viewpoints, the weight average molecular weight of the second thermoplastic resin may be, for example, 10,000 to 1,000,000, 20,000 to 500,000, or 30,000 to 500,000.
 第2の熱可塑性樹脂の含有量は、第2の接着剤の全質量基準で、例えば4質量%以上であり、好ましくは7質量%以上であり、より好ましくは10質量%以上である。第2の熱可塑性樹脂の含有量は、第2の接着剤の全質量基準で、例えば40質量%以下であり、好ましくは30質量%以下であり、より好ましくは20質量%以下である。第2の熱可塑性樹脂の含有量は、第2の接着剤の全質量基準で、例えば4~40質量%、7~30質量%又は10~20質量%であってよい。なお、第2の接着剤に有機溶剤が含まれる場合、本明細書中の「第2の接着剤の全質量」には有機溶剤の質量は含まれない。 The content of the second thermoplastic resin is, for example, 4% by mass or more, preferably 7% by mass or more, and more preferably 10% by mass or more, based on the total mass of the second adhesive. The content of the second thermoplastic resin is, for example, 40% by mass or less, preferably 30% by mass or less, and more preferably 20% by mass or less, based on the total mass of the second adhesive. The content of the second thermoplastic resin may be, for example, 4 to 40% by mass, 7 to 30% by mass or 10 to 20% by mass based on the total mass of the second adhesive. When the second adhesive contains an organic solvent, the “total mass of the second adhesive” in the present specification does not include the mass of the organic solvent.
 本実施形態では、Tgが50℃以上の熱可塑性樹脂の含有量が、第2の接着剤の全質量基準で上記範囲であることが好ましく、Tgが60℃以上の熱可塑性樹脂の含有量が、第2の接着剤の全質量基準で上記範囲であることがより好ましい。同様に、Tgが250℃以下の熱可塑性樹脂の含有量が、第2の接着剤の全質量基準で上記範囲であることがより好ましく、Tgが200℃以下の熱可塑性樹脂の含有量が、第2の接着剤の全質量基準で上記範囲であることがより好ましく、Tgが160℃以下の熱可塑性樹脂の含有量が、第2の接着剤の全質量基準で上記範囲であることが更に好ましい。 In the present embodiment, the content of the thermoplastic resin having Tg of 50° C. or higher is preferably in the above range based on the total mass of the second adhesive, and the content of the thermoplastic resin having Tg of 60° C. or higher is More preferably, the above range is based on the total mass of the second adhesive. Similarly, the content of the thermoplastic resin having Tg of 250° C. or lower is more preferably in the above range based on the total mass of the second adhesive, and the content of the thermoplastic resin having Tg of 200° C. or lower is It is more preferable that the content is in the above range based on the total mass of the second adhesive, and the content of the thermoplastic resin having Tg of 160° C. or less is further within the range based on the total mass of the second adhesive. preferable.
 第2の接着剤における、第2の熱可塑性樹脂の含有量に対する熱硬化性樹脂の含有量の比(質量比)は、0.01~5であることが好ましく、0.05~3であることがより好ましく、0.1~2であることが更に好ましい。上記の比を0.01以上とすることで、より良好な硬化性及び接着力が得られ、上記の比を5以下とすることで弾性率をより低減できるとともに、より良好なフィルム形成性が得られる。 The ratio (mass ratio) of the content of the thermosetting resin to the content of the second thermoplastic resin in the second adhesive is preferably 0.01 to 5, and 0.05 to 3. It is more preferable, and 0.1 to 2 is even more preferable. By setting the above ratio to 0.01 or more, better curability and adhesive strength can be obtained, and by setting the above ratio to 5 or less, the elastic modulus can be further reduced and a better film forming property can be obtained. can get.
 第2の接着剤は、高Tg熱可塑性樹脂を主として含有する(例えば、第2の接着剤に含有される熱可塑性樹脂の全質量を基準として、50質量%超含有する)ことが好ましく、低Tg熱可塑性樹脂を含有しないことが好ましい。第2の接着剤における高Tg熱可塑性樹脂(第2の熱可塑性樹脂)の含有量は、第2の接着剤に含有される熱可塑性樹脂の全質量を基準として、75質量%以上、85質量%以上又は95質量%以上であってもよい。第2の接着剤における低Tg熱可塑性樹脂の含有量は、第2の接着剤の全質量基準で、例えば5質量%以下であり、好ましくは1質量%以下であり、より好ましくは0質量%である。 The second adhesive preferably contains mainly a high Tg thermoplastic resin (for example, contains more than 50% by mass based on the total mass of the thermoplastic resin contained in the second adhesive), and has a low content. It is preferable not to contain Tg thermoplastic resin. The content of the high Tg thermoplastic resin (second thermoplastic resin) in the second adhesive is 75 mass% or more and 85 mass% or more based on the total mass of the thermoplastic resin contained in the second adhesive. % Or 95% by mass may be used. The content of the low Tg thermoplastic resin in the second adhesive is, for example, 5% by mass or less, preferably 1% by mass or less, and more preferably 0% by mass, based on the total mass of the second adhesive. Is.
 本実施形態では、第1の層2及び第2の層3の少なくとも一方がフラックス化合物を含有することが好ましい。すなわち、第1の接着剤及び第2の接着剤の少なくとも一方がフラックス化合物を含有することが好ましい。この場合、フラックス化合物を含有する層の厚さは、フラックス化合物が機能するように適宜調整されてよい。例えば、第1の層2がフラックス化合物を含有する場合、第1の層2の厚さは、半導体チップの接続部の高さ以上となるように調整されてよい。第2の層3がピックアップツールと接触するように半導体用フィルム状接着剤1が用いられる場合、第1の層2の厚さが半導体チップの高さ以上であれば、接続部の接続面(半導体チップ搭載用基体の接続部と接続される表面)の少なくとも一部(例えばはんだを含む部分)と、第1の層を構成する第1の接着剤とが接することとなり、当該接触面の不純物を除去され、接続信頼性が向上される。 In the present embodiment, it is preferable that at least one of the first layer 2 and the second layer 3 contains a flux compound. That is, it is preferable that at least one of the first adhesive and the second adhesive contains a flux compound. In this case, the thickness of the layer containing the flux compound may be appropriately adjusted so that the flux compound functions. For example, when the first layer 2 contains a flux compound, the thickness of the first layer 2 may be adjusted to be equal to or higher than the height of the connecting portion of the semiconductor chip. When the film adhesive 1 for a semiconductor is used so that the second layer 3 contacts the pickup tool, if the thickness of the first layer 2 is equal to or higher than the height of the semiconductor chip, the connection surface ( At least a part (for example, a portion containing solder) of the surface connected to the connection portion of the semiconductor chip mounting base comes into contact with the first adhesive forming the first layer, and impurities on the contact surface are contacted. Is eliminated and the connection reliability is improved.
 半導体用フィルム状接着剤の厚さに関しては、上記接続部の高さの和をxとし、半導体用フィルム状接着剤の総厚をyとした場合、xとyとの関係は、圧着時の接続性及び接着剤の充填性の観点から、0.70x≦y≦1.3xを満たすことが好ましく、0.80x≦y≦1.2xを満たすことがより好ましい。半導体用フィルム状接着剤の総厚は、例えば、10~100μmであってよく、10~80μmであってよく、10~50μmであってよい。 Regarding the thickness of the film adhesive for semiconductors, when the sum of the heights of the connection portions is x and the total thickness of the film adhesive for semiconductors is y, the relationship between x and y is as follows. From the viewpoints of connectivity and filling of the adhesive, it is preferable to satisfy 0.70x≦y≦1.3x, and it is more preferable to satisfy 0.80x≦y≦1.2x. The total thickness of the film adhesive for semiconductors may be, for example, 10 to 100 μm, 10 to 80 μm, or 10 to 50 μm.
 本実施形態では、半導体用フィルム状接着剤1の硬化後の弾性率をより低減することができ、反りの低減効果がより一層得られる観点から、第1の層2を厚くすることが好ましい。第1の層2の厚さは、例えば、1~50μmであってよく、3~50μmであってよく、4~30μmであってよく、5~20μmであってよい。 In the present embodiment, it is preferable to thicken the first layer 2 from the viewpoint that the elastic modulus of the film adhesive for semiconductor 1 after curing can be further reduced and the effect of reducing warpage can be further obtained. The thickness of the first layer 2 may be, for example, 1 to 50 μm, 3 to 50 μm, 4 to 30 μm, or 5 to 20 μm.
 第2の層3の厚さは、例えば、7~50μmであってよく、8~45μmであってよく、10~40μmであってよい。 The thickness of the second layer 3 may be, for example, 7 to 50 μm, 8 to 45 μm, or 10 to 40 μm.
 第1の層2の厚さに対する第2の層3の厚さの比(第2の層3の厚さ/第1の層2の厚さ)は、例えば、0.1~10.0であってよく、0.5~6.0であってよく、1.0~4.0であってよく、0.1~1.5であってよく、0.1~1.2であってよく、0.1~1.0であってよい。 The ratio of the thickness of the second layer 3 to the thickness of the first layer 2 (thickness of the second layer 3/thickness of the first layer 2) is, for example, 0.1 to 10.0. May be from 0.5 to 6.0, from 1.0 to 4.0, from 0.1 to 1.5, from 0.1 to 1.2 Well, it may be 0.1 to 1.0.
 上記の半導体用フィルム状接着剤1では、第1の層2のプローブタック値よりも第2の層のプローブタック値を小さくすることができ、ピックアップツールの汚染を防止できる。第1の層2のプローブタック値は、例えば、70N/cm以上であり、150N/cm以下であり、70~150N/cmである。第2の層3のプローブタック値は、好ましくは、60N/cm以下であり、より好ましくは50N/cm以下であり、更に好ましくは30N/cm以下である。第2の層3のプローブタック値は、5N/cm以上であってよい。第2の層3のプローブタック値は、例えば5~60N/cm、5~50N/cm又は5~30N/cmであってよい。上記のプローブタック値は、プローブ温度50℃、ステージ温度25℃でのプローブタック値であり、具体的には、実施例に記載の方法で測定される。 In the above-mentioned film adhesive 1 for a semiconductor, the probe tack value of the second layer can be made smaller than the probe tack value of the first layer 2, and contamination of the pickup tool can be prevented. Probe tack value of the first layer 2 is, for example, 70N / cm 2 or more and 150 N / cm 2 or less, is 70 ~ 150N / cm 2. The probe tack value of the second layer 3 is preferably 60 N/cm 2 or less, more preferably 50 N/cm 2 or less, and further preferably 30 N/cm 2 or less. The probe tack value of the second layer 3 may be 5 N/cm 2 or more. Probe tack value of the second layer 3 may be, for example, 5 ~ 60N / cm 2, 5 ~ 50N / cm 2 or 5 ~ 30N / cm 2. The probe tack value is a probe tack value at a probe temperature of 50° C. and a stage temperature of 25° C. Specifically, it is measured by the method described in Examples.
 半導体用フィルム状接着剤1の硬化後の弾性率は、例えば5MPa以下であり、反りの低減効果がより一層得られる観点から、好ましくは4.5MPa以下であり、更に好ましくは3.5MPa以下である。半導体用フィルム状接着剤1の硬化後の弾性率は、1MPa以上であってよい。例えば、半導体用フィルム状接着剤1の硬化後の弾性率は、1~5MPa、1~4.5MPa又は1~3.5MPaであってよい。上記の弾性率は、実施例に記載の方法で測定することができる。すなわち、半導体用フィルム状接着剤1の硬化後の弾性率とは、半導体用フィルム状接着剤1を240℃で1時間加熱して得られる半導体用フィルム状接着剤1の硬化物の弾性率といいかえることができる。 The elastic modulus of the film adhesive 1 for a semiconductor after curing is, for example, 5 MPa or less, and is preferably 4.5 MPa or less, and more preferably 3.5 MPa or less from the viewpoint of further obtaining the effect of reducing warpage. is there. The elastic modulus of the film adhesive 1 for a semiconductor after curing may be 1 MPa or more. For example, the elastic modulus of the film adhesive for semiconductor 1 after curing may be 1 to 5 MPa, 1 to 4.5 MPa, or 1 to 3.5 MPa. The above elastic modulus can be measured by the method described in Examples. That is, the elastic modulus of the film adhesive for semiconductor 1 after curing is the elastic modulus of a cured product of the film adhesive for semiconductor 1 obtained by heating the film adhesive for semiconductor 1 at 240° C. for 1 hour. You can call it back.
 本実施形態の半導体用フィルム状接着剤は、第1の層及び第2の層以外の他の層を更に備えていてよく、第1の層及び第2の層のみからなっていてもよい。半導体用フィルム状接着剤は、第2の層の第1の層とは反対側に他の層を備えないことが好ましい。また、本実施形態の半導体用フィルム状接着剤は、第2の層における第1の層とは反対側の面上、及び/又は、第1の層における第2の層とは反対側の面上に、基材フィルム及び/又は保護フィルムを備えていてもよい。 The film adhesive for semiconductors of the present embodiment may further include layers other than the first layer and the second layer, and may be composed of only the first layer and the second layer. The film adhesive for semiconductors preferably does not include another layer on the side of the second layer opposite to the first layer. Further, the film adhesive for semiconductors of the present embodiment is on the surface of the second layer opposite to the first layer and/or the surface of the first layer opposite to the second layer. A base film and/or a protective film may be provided on the top.
(第二実施形態)
 第二実施形態において、半導体用フィルム状接着剤1は、硬化後の35℃での弾性率が5MPa以下(例えば1~5MPa)であり、第2の層3のプローブタック値(プローブ温度50℃、ステージ温度25℃でのプローブタック値)が60N/cm以下(例えば5~60N/cm)である。このような半導体用フィルム状接着剤によれば、第2の層3がピックアップツールと接触する側となるように用いることで、ピックアップツールの汚染を抑制することができ、また、半導体チップ搭載用基体及び半導体チップの反りを低減することができる。
(Second embodiment)
In the second embodiment, the film adhesive 1 for a semiconductor has an elastic modulus at curing of 35° C. of 5 MPa or less (for example, 1 to 5 MPa), and the probe tack value of the second layer 3 (probe temperature 50° C.). The probe tack value at a stage temperature of 25° C. is 60 N/cm 2 or less (for example, 5 to 60 N/cm 2 ). According to such a film adhesive for semiconductors, by using the second layer 3 so as to be on the side in contact with the pickup tool, it is possible to suppress contamination of the pickup tool, and to mount the semiconductor chip. The warp of the base body and the semiconductor chip can be reduced.
 半導体用フィルム状接着剤1の硬化後の35℃での弾性率、第1の層2のプローブタック値及び第2の層3のプローブタック値の範囲、並びに、これらの測定方法の例は、第一の実施形態と同じである。また、第1の層2及び第2の層3における各成分の種類及び含有量、並びに、層構成(第1の層2及び第2の層3の層厚等)の例は、第一の実施形態において例示した各成分の種類及び含有量並びに層厚の例と同じであり、好ましい例も同じである。 Examples of the elastic modulus at 35° C. after curing of the film adhesive 1 for a semiconductor, the range of the probe tack value of the first layer 2 and the probe tack value of the second layer 3, and examples of these measuring methods are: This is the same as in the first embodiment. In addition, examples of the type and content of each component in the first layer 2 and the second layer 3 and the layer configuration (layer thickness of the first layer 2 and the second layer 3) are as follows. It is the same as the example of the type and content of each component and the layer thickness illustrated in the embodiment, and the same is true of the preferable example.
 第二実施形態の半導体用フィルム状接着剤は、例えば、第1の層2に上述した第1の熱可塑性樹脂を含有させ、第2の層3に上述した第2の熱可塑性樹脂を含有させることで容易に得ることができる。すなわち、典型的には、接着剤にTgの小さい熱可塑性樹脂を含有させるほど、接着剤の硬化後の弾性率を小さくすることができる一方で、接着剤のタック値が上昇する傾向があるため、第1の層2に第1の熱可塑性樹脂を含有させることで硬化後の35℃での弾性率を容易に5MPa以下とすることができ、第2の層3に第2の熱可塑性樹脂を含有させることで第2の層のプローブタック値(プローブ温度50℃、ステージ温度25℃でのプローブタック値)を60N/cm以下とすることができる。 The film adhesive for semiconductors according to the second embodiment includes, for example, the first thermoplastic resin described above in the first layer 2 and the second thermoplastic resin described above in the second layer 3. It can be easily obtained. That is, typically, as the adhesive contains a thermoplastic resin having a lower Tg, the elastic modulus after curing of the adhesive can be decreased, while the tack value of the adhesive tends to increase. By including the first thermoplastic resin in the first layer 2, the elastic modulus at 35° C. after curing can be easily set to 5 MPa or less, and the second layer 3 can include the second thermoplastic resin. By including the above, the probe tack value of the second layer (probe tack value at a probe temperature of 50° C. and a stage temperature of 25° C.) can be set to 60 N/cm 2 or less.
<半導体用フィルム状接着剤の製造方法>
 上記実施形態の半導体用フィルム状接着剤は、例えば、第1の層を備える第1のフィルム状接着剤と、第2の層を備える第2のフィルム状接着剤とを用意し、第1の層を備える第1のフィルム状接着剤と、第2の層を備える第2のフィルム状接着剤とを貼り合わせることにより得ることができる。
<Method of manufacturing film adhesive for semiconductor>
As the film adhesive for semiconductors of the above-described embodiment, for example, a first film adhesive having a first layer and a second film adhesive having a second layer are prepared, and a first film adhesive is prepared. It can be obtained by laminating a first film adhesive having a layer and a second film adhesive having a second layer.
 第1のフィルム状接着剤を用意する工程では、例えば、まず、熱硬化性成分としての熱硬化性樹脂及び硬化剤と、第1の熱可塑性樹脂と、必要に応じて添加されるフラックス化合物、フィラー等の他の成分とを、有機溶媒中に加え、攪拌混合、混錬等により、溶解又は分散させて、樹脂ワニス(塗工ワニス)を調製する。その後、離型処理を施した基材フィルム又は保護フィルム上に、樹脂ワニスをナイフコーター、ロールコーター、アプリケーター等を用いて塗布した後、加熱により有機溶媒を減少させて、基材フィルム又は保護フィルム上に第1の接着剤からなる第1の層を形成することができる。 In the step of preparing the first film adhesive, for example, first, a thermosetting resin and a curing agent as thermosetting components, a first thermoplastic resin, and a flux compound added as necessary, A resin varnish (coating varnish) is prepared by adding other components such as a filler to an organic solvent and dissolving or dispersing the mixture by stirring, mixing, kneading and the like. Then, on the base film or protective film that has been subjected to a release treatment, after coating the resin varnish using a knife coater, roll coater, applicator, etc., reduce the organic solvent by heating, the base film or protective film A first layer of a first adhesive can be formed on top.
 樹脂ワニスの調製に用いる有機溶媒としては、各成分を均一に溶解又は分散し得る特性を有するものが好ましい。有機溶媒としては、例えば、ジメチルホルムアミド、ジメチルアセトアミド、N-メチル-2-ピロリドン、ジメチルスルホキシド、ジエチレングリコールジメチルエーテル、トルエン、ベンゼン、キシレン、メチルエチルケトン、テトラヒドロフラン、エチルセロソルブ、エチルセロソルブアセテート、ブチルセロソルブ、ジオキサン、シクロヘキサノン、及び酢酸エチルが挙げられる。これらの有機溶媒は、単独で又は2種以上を組み合わせて使用することができる。樹脂ワニス調製の際の攪拌混合及び混錬は、例えば、攪拌機、らいかい機、3本ロール、ボールミル、ビーズミル又はホモディスパーを用いて行うことができる。 The organic solvent used for preparing the resin varnish is preferably one having the property of uniformly dissolving or dispersing each component. Examples of the organic solvent include dimethylformamide, dimethylacetamide, N-methyl-2-pyrrolidone, dimethyl sulfoxide, diethylene glycol dimethyl ether, toluene, benzene, xylene, methyl ethyl ketone, tetrahydrofuran, ethyl cellosolve, ethyl cellosolve acetate, butyl cellosolve, dioxane, cyclohexanone, And ethyl acetate. These organic solvents can be used alone or in combination of two or more kinds. Stirring and mixing and kneading at the time of preparing the resin varnish can be performed using, for example, a stirrer, a raker, a three-roll, a ball mill, a bead mill or a homodisper.
 基材フィルム及び保護フィルムとしては、有機溶媒を揮発させる際の加熱条件に耐え得る耐熱性を有するものであれば特に制限はなく、ポリプロピレンフィルム、ポリメチルペンテンフィルム等のポリオレフィンフィルム、ポリエチレンテレフタレートフィルム、ポリエチレンナフタレートフィルム等のポリエステルフィルム、ポリイミドフィルム及びポリエーテルイミドフィルムを例示できる。基材フィルム及び保護フィルムは、これらのフィルムからなる単層のものに限られず、2種以上の材料からなる多層フィルムであってもよい。また、上記の基材フィルム及び保護フィルムは、その一方面上に粘着層を備えていてもよい。 The substrate film and the protective film are not particularly limited as long as they have heat resistance that can withstand the heating conditions when volatilizing the organic solvent, polypropylene film, polyolefin film such as polymethylpentene film, polyethylene terephthalate film, Examples thereof include polyester films such as polyethylene naphthalate film, polyimide films and polyetherimide films. The base film and the protective film are not limited to single-layer films made of these films, and may be multilayer films made of two or more materials. Moreover, the above-mentioned base film and protective film may be provided with an adhesive layer on one surface thereof.
 基材フィルムへ塗布した樹脂ワニスから有機溶媒を揮発させる際の乾燥条件は、有機溶媒が十分に揮発する条件とすることが好ましく、具体的には、50~200℃、0.1~90分間の加熱を行うことが好ましい。実装後のボイド又は粘度調整に影響がなければ、有機溶媒は、第1のフィルム状接着剤全質量に対して1.5質量%以下まで除去されることが好ましい。 Drying conditions for volatilizing the organic solvent from the resin varnish applied to the base film are preferably conditions under which the organic solvent is sufficiently volatilized, specifically, 50 to 200° C. and 0.1 to 90 minutes. Is preferably heated. The organic solvent is preferably removed up to 1.5% by mass or less with respect to the total mass of the first film adhesive, as long as the voids or the viscosity adjustment after mounting are not affected.
 第2のフィルム状接着剤を用意する工程では、第1の層と同様の方法により基材フィルム又は保護フィルム上に第2の接着剤からなる第2の層を形成することができる。第1の層の形成に基材フィルムを用いた場合には、第2の層の形成に保護フィルムを用いてよく、第1の層の形成に保護フィルムを用いた場合には、第2の形成に基材フィルムを用いてよい。 In the step of preparing the second film adhesive, the second layer made of the second adhesive can be formed on the base film or the protective film by the same method as the first layer. When the base film is used to form the first layer, a protective film may be used to form the second layer, and when the protective film is used to form the first layer, A substrate film may be used for formation.
 第1のフィルム状接着剤と、第2のフィルム状接着剤とを貼り合わせる方法としては、例えば、加熱プレス、ロールラミネート、真空ラミネート等の方法が挙げられる。ラミネートは、例えば、30~120℃の加熱条件下で行ってよい。 As a method of bonding the first film adhesive and the second film adhesive, for example, heating press, roll laminating, vacuum laminating and the like can be mentioned. Lamination may be performed under heating conditions of, for example, 30 to 120°C.
 以上説明した方法では、基材上に半導体用フィルム状接着剤及び保護フィルムをこの順に備える基材及び保護フィルム付き半導体用フィルム状接着剤を得ることができる。 With the method described above, it is possible to obtain a substrate-like film adhesive for semiconductors having a film-like adhesive for semiconductors and a protective film in this order on a substrate and a protective film.
 本実施形態の半導体用フィルム状接着剤は、例えば、基材フィルム上に第1の層又は第2の層の一方を形成した後、得られた第1の層又は第2の層上に、第1の層又は第2の層の他方を形成することにより得てもよい。第1の層及び第2の層は、上述したフィルム状接着剤の製造における第1の層及び第2の層の形成方法と同様の方法により形成してよい。 The film adhesive for semiconductors of the present embodiment, for example, after forming one of the first layer or the second layer on the substrate film, on the obtained first layer or the second layer, It may be obtained by forming the other of the first layer and the second layer. The first layer and the second layer may be formed by the same method as the method for forming the first layer and the second layer in the production of the film adhesive described above.
 本実施形態の半導体用フィルム状接着剤は、例えば、基材フィルム上に第1の層及び第2の層を実質的に同時に形成することにより得てもよい。第1の接着剤と第2の接着剤とを同時に塗工作製する方法としては、例えば、逐次塗工方式、多層塗工方式等の塗工方法が挙げられる。 The film adhesive for semiconductors of the present embodiment may be obtained, for example, by forming the first layer and the second layer substantially simultaneously on the base film. Examples of the method for simultaneously applying and manufacturing the first adhesive and the second adhesive include a coating method such as a sequential coating method or a multilayer coating method.
<半導体装置の製造方法>
 次に、上述した半導体用フィルム状接着剤1を用いて半導体装置を製造する方法について説明する。
<Method of manufacturing semiconductor device>
Next, a method for manufacturing a semiconductor device using the above-mentioned film adhesive 1 for a semiconductor will be described.
 図2~図6は、半導体装置の製造方法の一実施形態を説明するための模式断面図である。本実施形態の半導体装置の製造方法は、
(a)一方の主面に接続部5を有する半導体ウエハAと、半導体ウエハAの主面上に、第1の層2側の面が半導体ウエハA側となるように設けられた、半導体用フィルム状接着剤1と、を備える積層体6を用意する工程と(図2参照)、
(b)積層体6の半導体用フィルム状接着剤1が設けられている側とは反対側(半導体ウエハAの接続部5が設けられている側とは反対側)を研削して半導体ウエハAを薄化する工程と(図3参照)、
(c)工程(b)後の積層体6を個片化し、接続部5を有するフィルム状接着剤付き半導体チップ8を得る工程と(図4参照)、
(d)フィルム状接着剤付き半導体チップ8を、フィルム状接着剤1a側からピックアップする工程と(図5参照)、
(e)フィルム状接着剤付き半導体チップ8を、一方の主面に接続部10を有する半導体チップ搭載用基体9の当該接続部10が設けられている当該主面上に、フィルム状接着剤1a側から配置し、加熱することにより、フィルム状接着剤付き半導体チップ8の接続部5と、半導体チップ搭載用基体9の接続部10とを、電気的に接続する工程と(図6参照)、
を備える。なお、あらかじめ厚さが調整された半導体ウエハを用いる場合には、工程(b)は実施しなくてもよい。
2 to 6 are schematic cross-sectional views for explaining one embodiment of a method for manufacturing a semiconductor device. The semiconductor device manufacturing method of the present embodiment is
(A) A semiconductor wafer A having a connecting portion 5 on one main surface, and a semiconductor wafer A provided on the main surface of the semiconductor wafer A such that the surface on the first layer 2 side is the semiconductor wafer A side. A step of preparing a laminate 6 including the film adhesive 1 (see FIG. 2 ),
(B) The side of the laminated body 6 opposite to the side where the film adhesive 1 for semiconductor is provided (the side opposite to the side where the connecting portion 5 of the semiconductor wafer A is provided) is ground to perform the semiconductor wafer A. And the step of thinning (see FIG. 3),
(C) a step of dividing the laminated body 6 after the step (b) into individual pieces to obtain a semiconductor chip 8 having a film-like adhesive and having a connecting portion 5 (see FIG. 4 ).
(D) a step of picking up the semiconductor chip 8 with the film adhesive from the film adhesive 1a side (see FIG. 5),
(E) The film-shaped adhesive 1a is provided on the main surface of the semiconductor chip mounting substrate 9 having the connection portion 10 on one main surface thereof. A step of electrically connecting the connection part 5 of the semiconductor chip 8 with the film adhesive and the connection part 10 of the semiconductor chip mounting base 9 by arranging from the side and heating (see FIG. 6),
Equipped with. When using a semiconductor wafer whose thickness is adjusted in advance, the step (b) may not be performed.
 以下、図面を参照しながら、各工程について説明する。 Each process will be described below with reference to the drawings.
工程(a)
 工程(a)は、あらかじめ作製された積層体6を用意する工程であってよく、積層体6を作製する工程であってもよい。積層体6は、例えば、以下の方法により作製してよい。
Process (a)
The step (a) may be a step of preparing the laminated body 6 prepared in advance, or a step of manufacturing the laminated body 6. The laminated body 6 may be produced by the following method, for example.
 まず、半導体用フィルム状接着剤1の第2の層3側に基材4が設けられた基材付き半導体用フィルム状接着剤を用意し、これを所定の装置に配置する(図2(a)参照)。次いで、一方の主面に接続部5(配線、バンプ等)を有する半導体ウエハAを準備し、半導体ウエハAの当該主面(接続部5が設けられている面)上に半導体用フィルム状接着剤1を貼付ける。これにより、半導体ウエハA、第1の層2、第2の層3がこの順に積層された積層体6を備える基材付き積層体が得られる(図2(b)参照)。 First, a substrate-attached film adhesive for semiconductor in which a substrate 4 is provided on the second layer 3 side of the film adhesive for semiconductor 1 is prepared and placed in a predetermined device (FIG. 2(a )reference). Next, a semiconductor wafer A having a connection portion 5 (wiring, bump, etc.) on one main surface is prepared, and a semiconductor film-like adhesive is applied onto the main surface of the semiconductor wafer A (the surface on which the connection portion 5 is provided). Apply Agent 1. As a result, a laminated body with a substrate is obtained, which includes the laminated body 6 in which the semiconductor wafer A, the first layer 2, and the second layer 3 are laminated in this order (see FIG. 2B).
 半導体用フィルム状接着剤1の貼付は、加熱プレス、ロールラミネート、真空ラミネート等によって行うことができる。半導体用フィルム状接着剤1の供給面積及び厚みは、半導体ウエハ及び半導体チップ搭載用基体のサイズ、接続部の高さ等によって適宜設定される。 The sticking of the film adhesive 1 for semiconductors can be performed by hot pressing, roll laminating, vacuum laminating, or the like. The supply area and thickness of the film adhesive 1 for a semiconductor are appropriately set depending on the sizes of the semiconductor wafer and the semiconductor chip mounting base, the height of the connecting portion, and the like.
工程(b)
 工程(b)では、例えばグラインダーGを用いて、積層体6の半導体ウエハAを研削する(図3(a)及び図3(b)参照)。研削後の半導体ウエハの厚さは、例えば、10μm~300μmであってよい。半導体装置の小型化及び薄型化の観点から、半導体ウエハの厚さを20μm~100μmとすることが好ましい。
Process (b)
In the step (b), the semiconductor wafer A of the laminated body 6 is ground by using, for example, a grinder G (see FIGS. 3A and 3B). The thickness of the semiconductor wafer after grinding may be, for example, 10 μm to 300 μm. From the viewpoint of miniaturization and thinning of the semiconductor device, the thickness of the semiconductor wafer is preferably 20 μm to 100 μm.
工程(c)
 工程(c)では、例えば、まず、積層体6の半導体ウエハA側にダイシングテープ7を貼付け、これを所定の装置に配置して基材4を剥がす(図4(a)参照)。基材4は、ダイシングテープ7への積層体6の貼り付け前に剥がしてもよい。次いで、積層体6をダイシングソウDによりダイシングする。こうして、積層体6が個片化され、半導体チップA’上にフィルム状接着剤1aを備えるフィルム状接着剤付き半導体チップ8が得られる(図4(b)参照)。半導体チップA’のフィルム状接着剤1a側の面には接続部5が設けられている。フィルム状接着剤1aは第1の接着剤からなる層2aと第2の接着剤からなる層3aとを有している。
Process (c)
In the step (c), for example, first, the dicing tape 7 is attached to the semiconductor wafer A side of the laminated body 6, the dicing tape 7 is placed in a predetermined device, and the base material 4 is peeled off (see FIG. 4A). The base material 4 may be peeled off before the laminated body 6 is attached to the dicing tape 7. Next, the laminated body 6 is diced by the dicing saw D. In this way, the laminated body 6 is divided into individual pieces, and the semiconductor chip 8 with the film adhesive, which is provided with the film adhesive 1a on the semiconductor chip A′, is obtained (see FIG. 4B). A connection portion 5 is provided on the surface of the semiconductor chip A′ on the film adhesive 1a side. The film adhesive 1a has a layer 2a made of a first adhesive and a layer 3a made of a second adhesive.
工程(d)
 工程(d)では、例えば、ダイシングテープ7をエキスパンド(拡張)することにより、上記ダイシングにより得られたフィルム状接着剤付き半導体チップ8を互いに離間させつつ、ダイシングテープ7側からニードルNで突き上げられたフィルム状接着剤付き半導体チップ8を、フィルム状接着剤1a側からピックアップツールPでピックアップする(図5参照)。
Process (d)
In the step (d), for example, by expanding (expanding) the dicing tape 7, the film-like adhesive semiconductor chips 8 obtained by the dicing are separated from each other and pushed up from the dicing tape 7 side by the needle N. The semiconductor chip 8 with the film adhesive is picked up from the film adhesive 1a side by the pickup tool P (see FIG. 5).
工程(e)
 工程(e)では、例えば、フィルム状接着剤付き半導体チップ8をボンディングツールに受け渡した後、ボンディングツールを用いて、フィルム状接着剤付き半導体チップ8を、フィルム状接着剤1a側から半導体チップ搭載用基体9の接続部10(配線、バンプ等)が設けられた主面上に配置し加熱する(図6(a)及び図6(b)参照)。配置の際には、フィルム状接着剤付き半導体チップ8と半導体チップ搭載用基体9とを位置合わせする。これにより、フィルム状接着剤付き半導体チップ8の接続部5と半導体チップ搭載用基体9の接続部10とが電気的に接続されるとともに、半導体チップA’と半導体チップ搭載用基体9との間にフィルム状接着剤1aの硬化物からなる封止部1a’が形成され、接続部5及び接続部10が封止されて半導体装置11が得られる。封止部1a’は、第1の接着剤の硬化物を含む上部分2a’と、第2の接着剤の硬化物を含む下部分3a’を有している。
Process (e)
In the step (e), for example, after the semiconductor chip 8 with the film adhesive is delivered to the bonding tool, the semiconductor chip 8 with the film adhesive is mounted from the side of the film adhesive 1a using the bonding tool. The substrate 9 is placed on the main surface provided with the connecting portions 10 (wiring, bumps, etc.) and heated (see FIGS. 6A and 6B). At the time of arrangement, the semiconductor chip 8 with the film adhesive and the semiconductor chip mounting base 9 are aligned. As a result, the connecting portion 5 of the semiconductor chip 8 with the film adhesive and the connecting portion 10 of the semiconductor chip mounting base 9 are electrically connected, and the semiconductor chip A′ and the semiconductor chip mounting base 9 are connected to each other. A sealing portion 1a′ made of a cured product of the film adhesive 1a is formed on the substrate 1 and the connecting portion 5 and the connecting portion 10 are sealed to obtain the semiconductor device 11. The sealing portion 1a' has an upper portion 2a' containing a cured product of the first adhesive and a lower portion 3a' containing a cured product of the second adhesive.
 また、接続部5又は接続部10の一方にはんだバンプが用いられる場合(例えば、接続部5又は接続部10が、はんだバンプが設けられた配線である場合)、接続部5と接続部10とがはんだ接合されることにより電気的且つ機械的に接続される。 Further, when a solder bump is used for one of the connection portion 5 or the connection portion 10 (for example, when the connection portion 5 or the connection portion 10 is a wiring provided with the solder bump), the connection portion 5 and the connection portion 10 are connected to each other. Are connected to each other electrically and mechanically.
 工程(e)の加熱は半導体チップを配置しながら行ってよく、半導体チップを配置した後に行ってもよい。工程(e)の加熱及び配置は、熱圧着であってよい。工程(e)では、位置合わせをした後に仮固定し(半導体用フィルム状接着剤を介している状態)、リフロー炉で加熱処理することによって、接続部に設けられたバンプ(例えばはんだバンプ)を溶融させて半導体チップA’と半導体チップ搭載用基体9とを接続してもよい。仮固定の段階では、金属接合を形成することが必ずしも必要ではないため、加熱しながら配置する方法に比べて低荷重、短時間、及び低温度による圧着でよく、生産性が向上すると共に接続部の劣化を抑制することができる。 The heating in step (e) may be performed while arranging the semiconductor chip, or may be performed after arranging the semiconductor chip. The heating and placement in step (e) may be thermocompression bonding. In the step (e), the bumps (for example, solder bumps) provided in the connection part are temporarily fixed after alignment (in a state where a film adhesive for semiconductors is used) and heat-treated in a reflow furnace to remove bumps (for example, solder bumps) provided in the connection part. The semiconductor chip A′ and the semiconductor chip mounting substrate 9 may be melted and connected to each other. At the stage of temporary fixing, it is not always necessary to form a metal joint, so compared to the method of arranging while heating, it is possible to perform crimping with a low load, a short time, and a low temperature, which improves the productivity and the connection part. Can be suppressed.
 半導体チップA’と半導体チップ搭載用基体9とを接続した後、オーブン等で加熱処理を行って、更に接続信頼性を高めてもよい。加熱温度は、フィルム状接着剤の硬化が進行する温度が好ましく、完全に硬化する温度がより好ましい。加熱温度及び加熱時間は適宜設定される。 After connecting the semiconductor chip A'and the semiconductor chip mounting substrate 9, heat treatment may be performed in an oven or the like to further improve the connection reliability. The heating temperature is preferably a temperature at which the film adhesive is cured, and more preferably a temperature at which the film adhesive is completely cured. The heating temperature and the heating time are set appropriately.
 接続荷重は、接続部の数及び高さのばらつき、加圧による接続部の変形量等を考慮して設定される。接続温度は、接続部の温度が接続部の融点(例えばバンプの融点)以上であることが好ましいが、それぞれの接続部の金属接合が形成される温度であればよい。接続部にはんだバンプが用いられる場合は、約240℃以上が好ましい。 -The connection load is set in consideration of variations in the number and height of the connection parts, the amount of deformation of the connection parts due to pressure, and the like. The connection temperature is preferably such that the temperature of the connection portion is equal to or higher than the melting point of the connection portion (for example, the melting point of the bump), but may be a temperature at which a metal bond of each connection portion is formed. When solder bumps are used for the connecting portion, it is preferably about 240° C. or higher.
 接続時の接続時間は、接続部の構成金属により異なるが、生産性が向上する観点から短時間であるほど好ましい。接続部にはんだバンプが用いられる場合、接続時間は20秒以下が好ましく、10秒以下がより好ましく、5秒以下が更に好ましい。銅-銅又は銅-金の金属接続の場合は、接続時間は60秒以下が好ましい。 The connection time at the time of connection varies depending on the constituent metal of the connection part, but from the viewpoint of improving productivity, the shorter the connection time, the better. When a solder bump is used for the connection portion, the connection time is preferably 20 seconds or less, more preferably 10 seconds or less, and further preferably 5 seconds or less. For copper-copper or copper-gold metal connections, the connection time is preferably 60 seconds or less.
 半導体ウエハは、シリコン、ゲルマニウム等の同一種類の元素から構成される元素半導体から構成されるウエハ、ガリウムヒ素、インジウムリン等の化合物半導体から構成されるウエハなどを用いることができる。半導体チップ搭載用基体及び接続部の詳細は後述する。 As the semiconductor wafer, a wafer composed of an elemental semiconductor composed of the same kind of element such as silicon or germanium, a wafer composed of a compound semiconductor such as gallium arsenide or indium phosphide can be used. Details of the semiconductor chip mounting base body and the connecting portion will be described later.
<半導体装置>
 本実施形態の半導体用フィルム状接着剤を用いて製造される半導体装置について、図7を用いて具体的に説明する。図7は、半導体装置の一実施形態を示す模式断面図である。図7(a)に示す半導体装置100は、互いに対向する半導体チップ20及び半導体チップ搭載用基体25と、半導体チップ20及び半導体チップ搭載用基体25の互いに対向する面にそれぞれ配置された配線15と、半導体チップ20及び半導体チップ搭載用基体25の配線15を互いに接続する接続バンプ30と、半導体チップ20及び半導体チップ搭載用基体25間の空隙に隙間なく充填された接着剤(第1の接着剤及び第2の接着剤)の硬化物からなる封止部40とを有している。半導体チップ20及び半導体チップ搭載用基体25は、配線15及び接続バンプ30によりフリップチップ接続されている。配線15及び接続バンプ30は、接着剤の硬化物により封止されており外部環境から遮断されている。封止部40は、第1の接着剤の硬化物を含む上部部分40aと、第2の接着剤の硬化物を含む下部部分40bとを有している。
<Semiconductor device>
A semiconductor device manufactured using the semiconductor film adhesive of the present embodiment will be specifically described with reference to FIG. 7. FIG. 7 is a schematic cross-sectional view showing an embodiment of a semiconductor device. The semiconductor device 100 shown in FIG. 7A includes a semiconductor chip 20 and a semiconductor chip mounting base 25 facing each other, and wirings 15 arranged on the surfaces of the semiconductor chip 20 and the semiconductor chip mounting base 25 facing each other. , The connection bumps 30 for connecting the wirings 15 of the semiconductor chip 20 and the semiconductor chip mounting base 25 to each other, and the adhesive filled in the space between the semiconductor chip 20 and the semiconductor chip mounting base 25 without any gap (first adhesive And a sealing portion 40 made of a cured product of a second adhesive). The semiconductor chip 20 and the semiconductor chip mounting base 25 are flip-chip connected by the wiring 15 and the connection bumps 30. The wiring 15 and the connection bumps 30 are sealed with a cured product of an adhesive and are shielded from the external environment. The sealing portion 40 has an upper portion 40a containing a cured product of the first adhesive and a lower portion 40b containing a cured product of the second adhesive.
 図7(b)に示す半導体装置200は、互いに対向する半導体チップ20及び半導体チップ搭載用基体25と、半導体チップ20及び半導体チップ搭載用基体25の互いに対向する面にそれぞれ配置されたバンプ32と、半導体チップ20及び半導体チップ搭載用基体25間の空隙に隙間なく充填された接着剤(第1の接着剤及び第2の接着剤)の硬化物からなる封止部40とを有している。半導体チップ20及び半導体チップ搭載用基体25は、対向するバンプ32が互いに接続されることによりフリップチップ接続されている。バンプ32は、接着剤の硬化物により封止されており外部環境から遮断されている。封止部40は、第1の接着剤の硬化物を含む上部部分40aと、第2の接着剤の硬化物を含む下部部分40bとを有している。 A semiconductor device 200 shown in FIG. 7B includes a semiconductor chip 20 and a semiconductor chip mounting base 25 that face each other, and bumps 32 that are respectively arranged on surfaces of the semiconductor chip 20 and the semiconductor chip mounting base 25 that face each other. And a sealing portion 40 made of a cured product of an adhesive (first adhesive and second adhesive) filled in a space between the semiconductor chip 20 and the semiconductor chip mounting base 25 without any gap. .. The semiconductor chip 20 and the semiconductor chip mounting base 25 are flip-chip connected by connecting opposite bumps 32 to each other. The bump 32 is sealed with a cured product of an adhesive and is shielded from the external environment. The sealing portion 40 has an upper portion 40a containing a cured product of the first adhesive and a lower portion 40b containing a cured product of the second adhesive.
 半導体チップ20としては、特に限定はなく、シリコン、ゲルマニウム等の同一種類の元素から構成される元素半導体から構成される半導体チップ、ガリウムヒ素、インジウムリン等の化合物半導体から構成される半導体チップを用いることができる。 The semiconductor chip 20 is not particularly limited, and a semiconductor chip composed of an elemental semiconductor composed of the same kind of element such as silicon or germanium, or a semiconductor chip composed of a compound semiconductor such as gallium arsenide or indium phosphide is used. be able to.
 半導体チップ搭載用基体25としては、半導体チップ20を搭載するために用いられるものであれば特に制限はなく、例えば、半導体チップ、半導体ウエハ、配線回路基板等が挙げられる。 The semiconductor chip mounting base 25 is not particularly limited as long as it can be used for mounting the semiconductor chip 20, and examples thereof include a semiconductor chip, a semiconductor wafer, and a printed circuit board.
 半導体チップ搭載用基体25として用いることができる半導体チップの例は、上記半導体チップ20の例と同じであり、半導体チップ搭載用基体25として半導体チップ20と同じ半導体チップを用いてもよい。 The example of the semiconductor chip that can be used as the semiconductor chip mounting base 25 is the same as the example of the semiconductor chip 20 described above, and the same semiconductor chip as the semiconductor chip 20 may be used as the semiconductor chip mounting base 25.
 半導体チップ搭載用基体25として用いることができる半導体ウエハとしては、特に限定はなく、上記半導体チップ20に例示した半導体チップが複数連結した構成を有するものであってよい。 The semiconductor wafer that can be used as the semiconductor chip mounting base 25 is not particularly limited, and may have a configuration in which a plurality of semiconductor chips exemplified as the semiconductor chip 20 are connected.
 半導体チップ搭載用基体25として用いることができる配線回路基板としては、特に制限はなく、ガラスエポキシ、ポリイミド、ポリエステル、セラミック、エポキシ、ビスマレイミドトリアジン等を主な成分とする絶縁基板の表面に、金属膜の不要な個所をエッチング除去して形成された配線(配線パターン)15を有する回路基板、上記絶縁基板の表面に金属めっき等によって配線15が形成された回路基板、上記絶縁基板の表面に導電性物質を印刷して配線15が形成された回路基板などを用いることができる。 The wired circuit board that can be used as the semiconductor chip mounting substrate 25 is not particularly limited, and a metal such as glass epoxy, polyimide, polyester, ceramic, epoxy, or bismaleimide triazine may be used on the surface of the insulating board. A circuit board having wiring (wiring pattern) 15 formed by etching away unnecessary portions of the film, a circuit board having wiring 15 formed by metal plating or the like on the surface of the insulating substrate, and conductive on the surface of the insulating substrate. A circuit board or the like in which a wiring 15 is formed by printing a conductive substance can be used.
 配線15、バンプ32等の接続部は、主成分として、金、銀、銅、はんだ(主成分は、例えばスズ-銀、スズ-鉛、スズ-ビスマス、スズ-銅、スズ-銀-銅等)、ニッケル、スズ、鉛などを含有しており、複数の金属を含有していてもよい。 The connection parts such as the wiring 15 and the bumps 32 are mainly composed of gold, silver, copper, and solder (main components are, for example, tin-silver, tin-lead, tin-bismuth, tin-copper, tin-silver-copper, etc.). ), nickel, tin, lead, etc., and may contain a plurality of metals.
 上記金属の中でも、接続部の電気伝導性・熱伝導性に優れたパッケージとする観点から、金、銀及び銅が好ましく、銀及び銅がより好ましい。コストが低減されたパッケージとする観点から、安価な材料である、銀、銅及びはんだが好ましく、銅及びはんだがより好ましく、はんだが更に好ましい。室温において金属の表面に酸化膜が形成すると生産性が低下すること及びコストが増加することがあるため、酸化膜の形成を抑制する観点から、金、銀、銅及びはんだが好ましく、金、銀、はんだがより好ましく、金、銀が更に好ましい。 Among the above metals, gold, silver, and copper are preferable, and silver and copper are more preferable, from the viewpoint of forming a package having excellent electrical and thermal conductivity of the connection portion. From the viewpoint of a package with reduced cost, silver, copper, and solder, which are inexpensive materials, are preferable, copper and solder are more preferable, and solder is still more preferable. When an oxide film is formed on the surface of a metal at room temperature, productivity may be reduced and cost may be increased. Therefore, gold, silver, copper and solder are preferable from the viewpoint of suppressing the formation of the oxide film, and gold and silver. , Solder is more preferable, and gold and silver are more preferable.
 上記配線15及びバンプ32の表面には、金、銀、銅、はんだ(主成分は、例えば、スズ-銀、スズ-鉛、スズ-ビスマス、スズ-銅等)、スズ、ニッケルなどを主な成分とする金属層が、例えばメッキにより形成されていてもよい。この金属層は単一の成分のみで構成されていても、複数の成分から構成されていてもよい。また、上記金属層は、単層又は複数の金属層が積層された構造をしていてもよい。 Gold, silver, copper, solder (main components are, for example, tin-silver, tin-lead, tin-bismuth, tin-copper, etc.), tin, nickel, etc. are mainly formed on the surfaces of the wiring 15 and the bumps 32. The metal layer as a component may be formed by plating, for example. This metal layer may be composed of only a single component or may be composed of a plurality of components. Further, the metal layer may have a structure in which a single layer or a plurality of metal layers are laminated.
 上記半導体装置100及び200は、上述した半導体装置の製造方法により得ることができる。 The above semiconductor devices 100 and 200 can be obtained by the method for manufacturing a semiconductor device described above.
 本実施形態の半導体装置は、半導体装置100及び200に示すような構造(パッケージ)が複数積層されたものであってもよい。この場合、半導体装置100及び200は、金、銀、銅、はんだ(主成分は、例えばスズ-銀、スズ-鉛、スズ-ビスマス、スズ-銅、スズ-銀-銅等)、スズ、ニッケルなどを含むバンプ、配線等で互いに電気的に接続されていてもよい。 The semiconductor device of this embodiment may have a structure in which a plurality of structures (packages) as shown in the semiconductor devices 100 and 200 are stacked. In this case, the semiconductor devices 100 and 200 include gold, silver, copper, solder (main components are, for example, tin-silver, tin-lead, tin-bismuth, tin-copper, tin-silver-copper, etc.), tin, nickel. They may be electrically connected to each other by bumps, wires, etc.
 半導体装置を複数積層する手法としては、図8に示すように、例えばTSV(Through-Silicon Via)技術が挙げられる。図8は、本発明の半導体装置の他の一実施形態を示す模式断面図であり、TSV技術を用いた半導体装置である。図8に示す半導体装置500では、インターポーザ50上に形成された配線15が半導体チップ20の配線15と接続バンプ30を介して接続されることにより、半導体チップ20とインターポーザ50とはフリップチップ接続されている。半導体チップ20とインターポーザ50との間の空隙には接着剤(第1の接着剤及び第2の接着剤)の硬化物が隙間なく充填されており、封止部40を構成している。上記半導体チップ20におけるインターポーザ50と反対側の表面上には、配線15、接続バンプ30及び封止部40を介して半導体チップ20が繰り返し積層されている。半導体チップ20の表裏におけるパターン面の配線15は、半導体チップ20の内部を貫通する孔内に充填された貫通電極34により互いに接続されている。なお、貫通電極34の材質としては、銅、アルミニウム等を用いることができる。 As a method of stacking a plurality of semiconductor devices, as shown in FIG. 8, for example, TSV (Through-Silicon Via) technology can be cited. FIG. 8 is a schematic cross-sectional view showing another embodiment of the semiconductor device of the present invention, which is a semiconductor device using the TSV technique. In the semiconductor device 500 shown in FIG. 8, the wiring 15 formed on the interposer 50 is connected to the wiring 15 of the semiconductor chip 20 via the connection bumps 30, so that the semiconductor chip 20 and the interposer 50 are flip-chip connected. ing. The void between the semiconductor chip 20 and the interposer 50 is filled with a cured product of an adhesive (first adhesive and second adhesive) without any gap, and constitutes the sealing portion 40. On the surface of the semiconductor chip 20 opposite to the interposer 50, the semiconductor chip 20 is repeatedly laminated via the wiring 15, the connection bump 30, and the sealing portion 40. The wirings 15 on the pattern surfaces on the front and back of the semiconductor chip 20 are connected to each other by the through electrodes 34 filled in the holes penetrating the inside of the semiconductor chip 20. The material of the through electrode 34 may be copper, aluminum or the like.
 このようなTSV技術により、通常は使用されない半導体チップの裏面からも信号を取得することが可能となる。さらには、半導体チップ20内に貫通電極34を垂直に通すため、対向する半導体チップ20間、並びに、半導体チップ20及びインターポーザ50間の距離を短くし、柔軟な接続が可能である。本実施形態の半導体用フィルム状接着剤は、このようなTSV技術において、対向する半導体チップ20間、並びに、半導体チップ20及びインターポーザ50間の半導体用フィルム状接着剤として適用することができる。 With such TSV technology, it becomes possible to acquire signals from the back surface of a semiconductor chip that is not normally used. Furthermore, since the penetrating electrode 34 is vertically passed through the semiconductor chip 20, the distance between the semiconductor chips 20 facing each other and the distance between the semiconductor chip 20 and the interposer 50 can be shortened to enable flexible connection. The film adhesive for semiconductors of this embodiment can be applied as a film adhesive for semiconductors between the semiconductor chips 20 facing each other and between the semiconductor chips 20 and the interposer 50 in such a TSV technique.
 また、エリヤバンプチップ技術等の自由度の高いバンプ形成方法では、インターポーザを介さないでそのまま半導体チップをマザーボードに直接実装できる。本実施形態の半導体用フィルム状接着剤は、このような半導体チップをマザーボードに直接実装する場合にも適用することができる。なお、本実施形態の半導体用フィルム状接着剤は、2つの配線回路基板を積層する場合に、基板間の空隙を封止する際にも適用することができる。 Also, with a bump forming method with a high degree of freedom, such as area bump chip technology, the semiconductor chip can be directly mounted on the motherboard without the interposer. The film-shaped adhesive for semiconductors of this embodiment can be applied to the case where such a semiconductor chip is directly mounted on a mother board. In addition, the film adhesive for semiconductors of the present embodiment can be applied when sealing the gap between the substrates when the two printed circuit boards are laminated.
 以上、本発明の実施形態について説明したが、本発明は上記実施形態に限定されるものではない。 The embodiments of the present invention have been described above, but the present invention is not limited to the above embodiments.
 以下、本発明の内容を実施例及び比較例を用いてより詳細に説明するが、本発明は以下の実施例に限定されるものではない。 Hereinafter, the content of the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited to the following Examples.
<単層フィルムAの作製>
 単層フィルムAの作製に使用した化合物を以下に示す。
<Production of Single Layer Film A>
The compounds used for producing the monolayer film A are shown below.
[エポキシ樹脂]
・EP1032(トリフェノールメタン骨格含有多官能固形エポキシ、三菱ケミカル株式会社製、商品名「jER1032H60」、「jER」は登録商標(以下同じ))
・YL983U(ビスフェノールF型液状エポキシ、三菱ケミカル株式会社製、商品名「jERYL983U」)
[Epoxy resin]
EP1032 (polyfunctional solid epoxy containing triphenol methane skeleton, manufactured by Mitsubishi Chemical Corporation, trade name "jER1032H60", "jER" is a registered trademark (the same applies below))
・YL983U (bisphenol F type liquid epoxy, manufactured by Mitsubishi Chemical Corporation, trade name "jERYL983U")
[硬化剤]
・2MAOK-PW(2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]-エチル-s-トリアジンイソシアヌル酸付加体、四国化成工業株式会社製、商品名)
[Curing agent]
2MAOK-PW (2,4-diamino-6-[2'-methylimidazolyl-(1')]-ethyl-s-triazine isocyanuric acid adduct, manufactured by Shikoku Chemicals Co., Ltd.)
[フラックス化合物]
・グルタル酸(富士フイルム和光純薬株式会社製、融点約98℃)
[Flux compound]
・Glutaric acid (Fuji Film Wako Pure Chemical Industries, Ltd., melting point approx. 98° C.)
[熱可塑性樹脂]
・LA2140(アクリル樹脂、株式会社クラレ製、商品名「クラリティ LA2140」、「クラリティ」は登録商標、Tg:約-24℃、Mw:約60000)
・D-21(アクリル樹脂、日立化成株式会社製、商品名「CT-D21」、Tg:約-11℃、Mw:約550000)
・T-8175N(ウレタン樹脂、DICコベストロポリマー株式会社製、商品名「パンデックスT-8175N」、「パンデックス」は登録商標、Tg:-23℃、Mw:120000)
[Thermoplastic resin]
LA2140 (acrylic resin, manufactured by Kuraray Co., Ltd., trade name "Clarity LA2140", "Clarity" is a registered trademark, Tg: about -24°C, Mw: about 60000)
-D-21 (acrylic resin, manufactured by Hitachi Chemical Co., Ltd., trade name "CT-D21", Tg: about -11°C, Mw: about 550000)
-T-8175N (urethane resin, manufactured by DIC Covestro Polymer Co., Ltd., trade name "Pandex T-8175N", "Pandex" is a registered trademark, Tg: -23°C, Mw: 120,000)
[フィラー]
・SE2050(シリカフィラー、株式会社アドマテックス製、商品名、平均粒径:0.5μm)
・SE2050-SEJ(エポキシシラン表面処理フィラー、株式会社アドマテックス製、商品名、平均粒径:0.5μm)
・YA050C-HGF(メタクリル表面処理ナノシリカフィラー、株式会社アドマテックス、商品名、平均粒径:約50nm)
・EXL-2655(有機フィラー、ロームアンドハースジャパン株式会社製、商品名「パラロイド EXL-2655」、「パラロイド」は登録商標、コアシェルタイプ有機微粒子)
[Filler]
・SE2050 (silica filler, manufactured by Admatechs Co., Ltd., trade name, average particle size: 0.5 μm)
SE2050-SEJ (epoxysilane surface-treated filler, manufactured by Admatechs Co., Ltd., trade name, average particle size: 0.5 μm)
・YA050C-HGF (methacryl surface treated nano silica filler, Admatechs Co., Ltd., trade name, average particle size: about 50 nm)
EXL-2655 (organic filler, manufactured by Rohm and Haas Japan Co., Ltd., trade name "Paraloid EXL-2655", "Paraloid" is a registered trademark, core-shell type organic fine particles)
 表1に示す配合量(単位:質量部)のエポキシ樹脂、硬化剤、フラックス化合物、熱可塑性樹脂及びフィラーを、NV値([乾燥後の塗料分質量]/[乾燥前の塗料分質量]×100)が50%になるように有機溶媒(シクロヘキサノン)に添加した。その後、Φ1.0mmのビーズ及びΦ2.0mmのビーズを、固形分(エポキシ樹脂、硬化剤、フラックス化合物、熱可塑性樹脂及びフィラー)と同質量加え、ビーズミル(フリッチュ・ジャパン株式会社製、遊星型微粉砕機P-7)で30分攪拌した。攪拌後、ビーズをろ過によって除去し、第1の接着剤を含む塗工ワニスa1~a3を作製した。 The epoxy resin, the curing agent, the flux compound, the thermoplastic resin, and the filler having the blending amounts (unit: parts by mass) shown in Table 1 were measured by NV value ([mass of paint after drying]/[mass of paint before drying]× 100) was added to the organic solvent (cyclohexanone) so that it would be 50%. After that, Φ1.0 mm beads and Φ2.0 mm beads were added in the same mass as the solid content (epoxy resin, curing agent, flux compound, thermoplastic resin and filler), and a bead mill (Fritsch Japan Co., Ltd. The mixture was stirred for 30 minutes with a pulverizer P-7). After stirring, the beads were removed by filtration to prepare coating varnishes a1 to a3 containing the first adhesive.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 得られた塗工ワニスa1~a3を、基材フィルム(帝人デュポンフィルム株式会社製、商品名「ピューレックスA54」)上に、小型精密塗工装置(株式会社廉井精機製)で塗工し、クリーンオーブン(ESPEC株式会社製)で乾燥(100℃/5min)して、表2に示す厚さの層(熱硬化性接着剤層)を備える単層フィルムAを得た。 The obtained coating varnishes a1 to a3 are coated on a base film (manufactured by Teijin DuPont Films Ltd., trade name "Purex A54") with a small precision coating device (manufactured by Rensai Seiki Co., Ltd.). Then, it was dried (100° C./5 min) in a clean oven (manufactured by ESPEC Co., Ltd.) to obtain a single layer film A including layers (thermosetting adhesive layers) having the thickness shown in Table 2.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
<単層フィルムBの作製>
 単層フィルムBの作製に使用した化合物のうち、単層フィルムAの作製に使用した化合物以外の化合物を以下に示す。
[熱可塑性樹脂]
・ZX1356-2(フェノキシ樹脂、新日鉄住金化学株式会社製、商品名、Tg:約71℃、重量平均分子量Mw:約63000)
・FX-293(フェノキシ樹脂、新日鉄住金化学株式会社製、商品名、Tg:約160℃、重量平均分子量Mw:約40000)
<Production of Single Layer Film B>
Among the compounds used for producing the monolayer film B, compounds other than the compound used for producing the monolayer film A are shown below.
[Thermoplastic resin]
・ZX1356-2 (phenoxy resin, manufactured by Nippon Steel & Sumikin Chemical Co., Ltd., trade name, Tg: about 71° C., weight average molecular weight Mw: about 63000)
FX-293 (phenoxy resin, manufactured by Nippon Steel & Sumikin Chemical Co., Ltd., trade name, Tg: about 160° C., weight average molecular weight Mw: about 40,000)
 表3に示す配合量(単位:質量部)のエポキシ樹脂、硬化剤、フラックス化合物、熱可塑性樹脂及びフィラーを、NV値([乾燥後の塗料分質量]/[乾燥前の塗料分質量]×100)が50%になるように有機溶媒(シクロヘキサノン)に添加した。その後、Φ1.0mmのビーズ及びΦ2.0mmのビーズを、固形分(エポキシ樹脂、硬化剤、フラックス化合物、熱可塑性樹脂及びフィラー)と同質量加え、ビーズミル(フリッチュ・ジャパン株式会社製、遊星型微粉砕機P-7)で30分攪拌した。攪拌後、ビーズをろ過によって除去し、第2の接着剤を含む塗工ワニスb1及びb2を作製した。 The epoxy value, the curing agent, the flux compound, the thermoplastic resin and the filler of the compounding amounts (units: parts by mass) shown in Table 3 were measured by NV value ([mass of paint after drying]/[mass of paint before drying]× 100) was added to the organic solvent (cyclohexanone) so that it would be 50%. After that, Φ1.0 mm beads and Φ2.0 mm beads were added in the same mass as the solid content (epoxy resin, curing agent, flux compound, thermoplastic resin and filler), and a bead mill (Fritsch Japan Co., Ltd. The mixture was stirred for 30 minutes with a pulverizer P-7). After stirring, the beads were removed by filtration to prepare coating varnishes b1 and b2 containing the second adhesive.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 得られた塗工ワニスb1及びb2を、基材フィルム(帝人デュポンフィルム株式会社製、商品名「ピューレックスA54」)上に、小型精密塗工装置(株式会社廉井精機製)で塗工し、クリーンオーブン(ESPEC株式会社製)で乾燥(100℃/5min)して、表4に示す厚さの層(熱硬化性接着剤層)を備える単層フィルムBを得た。 The obtained coating varnishes b1 and b2 are coated on a base film (manufactured by Teijin DuPont Films Ltd., trade name "Purex A54") with a small precision coating device (manufactured by Renui Seiki Co., Ltd.). Then, it was dried (100° C./5 min) in a clean oven (manufactured by ESPEC Co., Ltd.) to obtain a monolayer film B including layers (thermosetting adhesive layers) having the thickness shown in Table 4.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
<2層フィルムの作製>
(実施例1~7、並びに比較例1~8)
 上記で作製した単層フィルムのうちの2つを、第1のフィルム及び第2のフィルムとして用意し、第1のフィルムと第2のフィルムとを50℃でラミネートし、総厚40μmのフィルム状接着剤を作製した。単層フィルムの組み合わせは、表5及び表6に示すとおりとした。以下では、第1のフィルムに形成されている層(熱硬化性接着剤層)を第1の層といい、第2のフィルムに形成されている層(熱硬化性接着剤層)を第2の層という。
<Production of two-layer film>
(Examples 1 to 7 and Comparative Examples 1 to 8)
Two of the single-layer films prepared above were prepared as a first film and a second film, and the first film and the second film were laminated at 50° C. to form a film having a total thickness of 40 μm. An adhesive was prepared. The combinations of single-layer films were as shown in Tables 5 and 6. Hereinafter, the layer (thermosetting adhesive layer) formed on the first film is referred to as a first layer, and the layer (thermosetting adhesive layer) formed on the second film is referred to as a second layer. Of layers.
<評価>
 以下に示す方法で、実施例及び比較例で得られたフィルム状接着剤(第1の層と第2の層との積層体)について、弾性率評価、タック評価及びチップ反り量評価を行った。結果を表5及び表6に示す。
<Evaluation>
By the method described below, the elastic modulus evaluation, the tack evaluation, and the chip warpage evaluation were performed on the film adhesives (the laminated body of the first layer and the second layer) obtained in Examples and Comparative Examples. .. The results are shown in Tables 5 and 6.
(弾性率評価)
 フィルム状接着剤を2つ用意し、卓上ラミネータ(株式会社ラミーコーポレーション製、Hotdog GK-13DX)を用いた50℃でのラミネートによりフィルム状接着剤同士を積層し、総厚80μmのフィルム状接着剤(第1の層、第2の層、第1の層及び第2の層がこの順で積層された積層体)を得た。得られたフィルム状接着剤(積層体)を所定のサイズ(縦40mm×横4.0mm×厚さ0.08mm)に切り出し、クリーンオーブン(ESPEC株式会社製)中でキュア(240℃、1h)することで、試験サンプルを得た。
(Elastic modulus evaluation)
Two film adhesives were prepared, and the film adhesives were laminated by laminating at 50° C. using a desktop laminator (manufactured by Lamy Corporation, Hotdog GK-13DX) to form a film adhesive having a total thickness of 80 μm. (A laminated body in which the first layer, the second layer, the first layer, and the second layer are laminated in this order) was obtained. The obtained film adhesive (laminate) was cut into a predetermined size (length 40 mm x width 4.0 mm x thickness 0.08 mm) and cured (240°C, 1 h) in a clean oven (ESPEC Co., Ltd.). By doing so, a test sample was obtained.
 上記試験サンプルについて、動的粘弾性測定装置を用いて、35℃での弾性率を測定した。弾性率の測定方法の詳細は以下のとおりである。
 装置名:動的粘弾性測定装置(ユー・ビー・エム株式会社製、Rheogel-E4000)
 測定温度領域:30~270℃
 昇温速度:5℃/min
 周波数:10Hz
 歪み:0.05%
The elastic modulus at 35° C. of the test sample was measured using a dynamic viscoelasticity measuring device. Details of the method for measuring the elastic modulus are as follows.
Device name: Dynamic viscoelasticity measurement device (UBM Co., Ltd., Rheogel-E4000)
Measurement temperature range: 30-270°C
Temperature rising rate: 5°C/min
Frequency: 10Hz
Distortion: 0.05%
(タック評価)
 フィルム状接着剤を所定のサイズ(縦76mm×横26mm)に切り取り第2の層側の基材フィルムを剥離し、基材フィルムを剥離した面にガラス板(サイズ:縦76mm×横26mm×厚さ1.2~1.5mm)を貼りつけた。次いで、第1の層側の基材フィルムを剥離し、第1の層の表面を上にした状態でタッキング試験機を用いて第1の層のタック値(プローブタック値)の測定を行った。
(Tack evaluation)
The film adhesive is cut into a predetermined size (length 76 mm x width 26 mm), the base film on the second layer side is peeled off, and the glass plate (size: length 76 mm x width 26 mm x thickness) is peeled off from the base film peeled side. 1.2 to 1.5 mm) was attached. Then, the base film on the first layer side was peeled off, and the tack value (probe tack value) of the first layer was measured using a tacking tester with the surface of the first layer facing upward. ..
 フィルム状接着剤を所定のサイズ(縦76mm×横26mm)に切り取り第1の層側の基材フィルムを剥離し、基材フィルムを剥離した面にガラス板(サイズ:縦76mm×横26mm×厚さ1.2~1.5mm)を貼りつけた。次いで、第2の層側の基材フィルムを剥離し、第2の層の表面を上にした状態でタッキング試験機を用いて第2の層のタック値(プローブタック値)の測定を行った。 The film adhesive is cut into a predetermined size (length 76 mm x width 26 mm), the base film on the first layer side is peeled off, and a glass plate (size: length 76 mm x width 26 mm x thickness) 1.2 to 1.5 mm) was attached. Then, the base film on the second layer side was peeled off, and the tack value (probe tack value) of the second layer was measured using a tacking tester with the surface of the second layer facing upward. ..
 タック値の測定方法の詳細は以下のとおりである。
 装置名:タッキング試験機(株式会社レスカ製、商品名:TAC-1000)
 押し付け速度2.0mm/s
 押し付け荷重200gf
 押し付け時間1.00s
 引き上げ速度10.0mm/s
 ステージ温度25℃
 プローブ温度50℃
The details of the tack value measurement method are as follows.
Device name: Tacking tester (Resc Co., Ltd., trade name: TAC-1000)
Pressing speed 2.0mm/s
Pressing load 200gf
Pressing time 1.00s
Lifting speed 10.0 mm/s
Stage temperature 25℃
Probe temperature 50℃
(チップ反り量評価)
 フィルム状接着剤を、真空ラミネータ(エヌ・ピー・シー株式会社製、LM-50X50-S)を用いて、第1の層側から、表面が酸化膜で被覆されたシリコンチップ(縦10mm×横10mm×厚さ0.05mm)の当該酸化膜上にラミネートした。次に、フィルム状接着剤がラミネートされたシリコンチップを、クリーンオーブン(ESPEC社製)中でキュア(240℃、1h)した。これにより、試験サンプルを得た。
(Evaluation of chip warp amount)
The film-shaped adhesive is a silicon chip whose surface is covered with an oxide film from the first layer side by using a vacuum laminator (LM-50X50-S manufactured by NPC Co., Ltd.) (vertical 10 mm×horizontal). It was laminated on the oxide film of 10 mm×thickness of 0.05 mm). Next, the silicon chip laminated with the film adhesive was cured (240° C., 1 h) in a clean oven (manufactured by ESPEC). Thereby, a test sample was obtained.
 表面形状測定装置(Akrometrix社製)を用いて、上記試験サンプルのチップ反り量を測定した。具体的には、上記試験サンプルをシリコンチップが下側(フィルム状接着剤の硬化物が上側)になるように配置した状態で、表面形状測定装置を用いてフィルム状接着剤の硬化物側の表面の高低差の最大値を測定し、これを反り量とした。 Using a surface shape measuring device (manufactured by Akrometrix), the amount of chip warpage of the test sample was measured. Specifically, in a state where the test sample is arranged so that the silicon chip is on the lower side (the cured product of the film-like adhesive is on the upper side), the surface shape measuring device is used to measure the cured product side of the film-shaped adhesive. The maximum value of the height difference on the surface was measured, and this was taken as the amount of warpage.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
 
Figure JPOXMLDOC01-appb-T000008
 

Claims (10)

  1.  第1の熱硬化性接着剤層と、前記第1の熱硬化性接着剤層上に設けられた第2の熱硬化性接着剤層とを備え、
     前記第1の熱硬化性接着剤層は、Tgが35℃未満である第1の熱可塑性樹脂を含有し、
     前記第2の熱硬化性接着剤層は、Tgが35℃以上である第2の熱可塑性樹脂を含有する、半導体用フィルム状接着剤。
    A first thermosetting adhesive layer; and a second thermosetting adhesive layer provided on the first thermosetting adhesive layer,
    The first thermosetting adhesive layer contains a first thermoplastic resin having a Tg of less than 35° C.,
    The second thermosetting adhesive layer is a film adhesive for semiconductors, which contains a second thermoplastic resin having Tg of 35° C. or higher.
  2.  硬化後の35℃での弾性率が5MPa以下である、請求項1に記載の半導体用フィルム状接着剤。 The film adhesive for semiconductors according to claim 1, which has an elastic modulus of 5 MPa or less at 35° C. after curing.
  3.  前記第2の熱可塑性樹脂のTgは60℃以上である、請求項1又は2に記載の半導体用フィルム状接着剤。 The film adhesive for semiconductors according to claim 1 or 2, wherein the Tg of the second thermoplastic resin is 60°C or higher.
  4.  前記第2の熱可塑性樹脂はフェノキシ樹脂を含む、請求項1~3のいずれか一項に記載の半導体用フィルム状接着剤。 The film adhesive for semiconductors according to any one of claims 1 to 3, wherein the second thermoplastic resin contains a phenoxy resin.
  5.  前記第1の熱可塑性樹脂は、(メタ)アクリル樹脂又はウレタン樹脂を含む、請求項1~4のいずれか一項に記載の半導体用フィルム状接着剤。 The semiconductor film adhesive according to any one of claims 1 to 4, wherein the first thermoplastic resin contains a (meth)acrylic resin or a urethane resin.
  6.  前記第1の熱硬化性接着剤層及び前記第2の熱硬化性接着剤層の少なくとも一方は、熱硬化性樹脂と、硬化剤と、を含有する、請求項1~5のいずれか一項に記載の半導体用フィルム状接着剤。 6. The method according to claim 1, wherein at least one of the first thermosetting adhesive layer and the second thermosetting adhesive layer contains a thermosetting resin and a curing agent. The film-like adhesive for semiconductors according to.
  7.  前記第1の熱硬化性接着剤層及び前記第2の熱硬化性接着剤層の少なくとも一方は、エポキシ樹脂と、イミダゾール系硬化剤と、を含有する、請求項1~6のいずれか一項に記載の半導体用フィルム状接着剤。 7. The at least one of the first thermosetting adhesive layer and the second thermosetting adhesive layer contains an epoxy resin and an imidazole-based curing agent, according to claim 1. The film-like adhesive for semiconductors according to.
  8.  第1の熱硬化性接着剤層と、前記第1の熱硬化性接着剤層上に設けられた第2の熱硬化性接着剤層とを備え、
     硬化後の35℃での弾性率が5MPa以下であり、
     前記第2の熱硬化性接着剤層の、プローブ温度50℃、ステージ温度25℃でのプローブタック値は60N/cm以下である、半導体用フィルム状接着剤。
    A first thermosetting adhesive layer; and a second thermosetting adhesive layer provided on the first thermosetting adhesive layer,
    The elastic modulus at 35° C. after curing is 5 MPa or less,
    A film adhesive for semiconductors, wherein the probe tack value of the second thermosetting adhesive layer at a probe temperature of 50° C. and a stage temperature of 25° C. is 60 N/cm 2 or less.
  9.  一方の主面に接続部を有する半導体ウエハと、前記半導体ウエハの前記主面上に、前記第1の熱硬化性接着剤層側の面が前記半導体ウエハ側となるように設けられた、請求項1~8のいずれか一項に記載の半導体用フィルム状接着剤と、を備える積層体を用意する工程と、
     前記積層体を個片化し、前記接続部を有するフィルム状接着剤付き半導体チップを得る工程と、
     前記フィルム状接着剤付き半導体チップを、フィルム状接着剤側からピックアップする工程と、
     前記フィルム状接着剤付き半導体チップを、一方の主面に接続部を有する半導体チップ搭載用基体の当該接続部が設けられている当該主面上に、フィルム状接着剤側から配置し、加熱することにより、前記フィルム状接着剤付き半導体チップの前記接続部と、前記半導体チップ搭載用基体の前記接続部とを、電気的に接続する工程と、を備える、半導体装置の製造方法。
    A semiconductor wafer having a connecting portion on one main surface, and the semiconductor wafer is provided on the main surface such that the surface on the first thermosetting adhesive layer side is the semiconductor wafer side. Item 9. A step of preparing a laminated body including the film adhesive for semiconductor according to any one of Items 1 to 8,
    A step of obtaining the film-shaped adhesive-equipped semiconductor chip having the connection portion by dividing the laminate into individual pieces;
    A step of picking up the semiconductor chip with the film adhesive from the film adhesive side;
    The film-like adhesive-carrying semiconductor chip is placed from the film-like adhesive side on the main surface of the semiconductor chip mounting substrate having the connection portion on one main surface, on which the connection portion is provided, and heated. Thus, the method of manufacturing a semiconductor device, comprising the step of electrically connecting the connecting portion of the semiconductor chip with the film adhesive and the connecting portion of the semiconductor chip mounting substrate.
  10.  半導体チップ及び半導体チップ搭載用基体のそれぞれの接続部が互いに電気的に接続された半導体装置であって、
     前記接続部の少なくとも一部が、請求項1~8のいずれか一項に記載の半導体用フィルム状接着剤の硬化物によって封止されている、半導体装置。
     
     
    A semiconductor device in which respective connecting portions of a semiconductor chip and a semiconductor chip mounting base are electrically connected to each other,
    A semiconductor device, wherein at least a part of the connection portion is sealed with a cured product of the film-like adhesive for semiconductors according to any one of claims 1 to 8.

PCT/JP2019/044953 2018-11-29 2019-11-15 Film-like adhesive agent for semiconductor, semiconductor device, and method for manufacturing same WO2020110785A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020217007145A KR102652707B1 (en) 2018-11-29 2019-11-15 Film-like adhesive for semiconductors, semiconductor devices and manufacturing methods thereof
CN201980070535.7A CN113169141A (en) 2018-11-29 2019-11-15 Film-like adhesive for semiconductor, semiconductor device, and method for manufacturing semiconductor device
JP2020558357A JP7384171B2 (en) 2018-11-29 2019-11-15 Film adhesive for semiconductors, semiconductor devices and manufacturing methods thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018223726 2018-11-29
JP2018-223726 2018-11-29

Publications (1)

Publication Number Publication Date
WO2020110785A1 true WO2020110785A1 (en) 2020-06-04

Family

ID=70852012

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/044953 WO2020110785A1 (en) 2018-11-29 2019-11-15 Film-like adhesive agent for semiconductor, semiconductor device, and method for manufacturing same

Country Status (5)

Country Link
JP (1) JP7384171B2 (en)
KR (1) KR102652707B1 (en)
CN (1) CN113169141A (en)
TW (1) TWI807135B (en)
WO (1) WO2020110785A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009044732A1 (en) * 2007-10-05 2009-04-09 Hitachi Chemical Company, Ltd. Adhesive composition, circuit connecting material using the same, method for connecting circuit members, and circuit connection structure
JP2011018879A (en) * 2009-06-10 2011-01-27 Sony Chemical & Information Device Corp Insulating resin film, bonded body using the insulating resin film, and method for manufacturing the bonded body
JP2011515839A (en) * 2008-03-14 2011-05-19 チェイル インダストリーズ インコーポレイテッド Composite function tape for semiconductor package and method of manufacturing semiconductor device using the same
WO2012014562A1 (en) * 2010-07-26 2012-02-02 日立化成工業株式会社 Adhesive composition, connection structure, connection structure manufacturing method and application of adhesive composition
JP2014210880A (en) * 2013-04-19 2014-11-13 日東電工株式会社 Thermosetting resin composition and method for manufacturing semiconductor device
JP2017214528A (en) * 2016-06-02 2017-12-07 日東電工株式会社 Pressure-sensitive adhesive tape for vacuum process

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100248582B1 (en) * 1996-07-30 2000-03-15 이사오 우치가사키 A connection sheet for interconnection electrodes facing each other, and electrode connection structure and method using the connection sheet
JP5539073B2 (en) 2010-07-02 2014-07-02 キヤノン株式会社 Authentication system, authentication service control method, program
US9803111B2 (en) 2012-02-24 2017-10-31 Hitachi Chemical Company, Ltd. Adhesive for semiconductor, fluxing agent, manufacturing method for semiconductor device, and semiconductor device
JP5738456B2 (en) 2014-05-22 2015-06-24 リンテック株式会社 Adhesive sheet and method for manufacturing semiconductor device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009044732A1 (en) * 2007-10-05 2009-04-09 Hitachi Chemical Company, Ltd. Adhesive composition, circuit connecting material using the same, method for connecting circuit members, and circuit connection structure
JP2011515839A (en) * 2008-03-14 2011-05-19 チェイル インダストリーズ インコーポレイテッド Composite function tape for semiconductor package and method of manufacturing semiconductor device using the same
JP2011018879A (en) * 2009-06-10 2011-01-27 Sony Chemical & Information Device Corp Insulating resin film, bonded body using the insulating resin film, and method for manufacturing the bonded body
WO2012014562A1 (en) * 2010-07-26 2012-02-02 日立化成工業株式会社 Adhesive composition, connection structure, connection structure manufacturing method and application of adhesive composition
JP2014210880A (en) * 2013-04-19 2014-11-13 日東電工株式会社 Thermosetting resin composition and method for manufacturing semiconductor device
JP2017214528A (en) * 2016-06-02 2017-12-07 日東電工株式会社 Pressure-sensitive adhesive tape for vacuum process

Also Published As

Publication number Publication date
TW202028391A (en) 2020-08-01
KR20210096591A (en) 2021-08-05
JP7384171B2 (en) 2023-11-21
KR102652707B1 (en) 2024-03-29
CN113169141A (en) 2021-07-23
TWI807135B (en) 2023-07-01
JPWO2020110785A1 (en) 2021-10-14

Similar Documents

Publication Publication Date Title
JP5900602B2 (en) Semiconductor adhesive, flux agent, semiconductor device manufacturing method, and semiconductor device
JP5958529B2 (en) Semiconductor device and manufacturing method thereof
JP5915727B2 (en) Semiconductor device and manufacturing method thereof
JP7380926B2 (en) Film adhesive for semiconductors, method for manufacturing semiconductor devices, and semiconductor devices
JP5867584B2 (en) Adhesive for semiconductor and method for manufacturing semiconductor device
JP7363798B2 (en) Semiconductor adhesive, semiconductor device manufacturing method, and semiconductor device
JP7183702B2 (en) Film-like adhesive for semiconductor, method for producing film-like adhesive for semiconductor, method for producing semiconductor device, and semiconductor device
WO2020110785A1 (en) Film-like adhesive agent for semiconductor, semiconductor device, and method for manufacturing same
JP7248007B2 (en) Adhesive for semiconductors and method for manufacturing semiconductor devices using the same
JP2021061276A (en) Method for manufacturing semiconductor device
TW202410369A (en) Film adhesive for semiconductors, manufacturing method of semiconductor device, and semiconductor device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19889265

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020558357

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19889265

Country of ref document: EP

Kind code of ref document: A1