WO2020109080A1 - VERFAHREN ZUM STUMPFSTOßSCHWEIßEN ZWEIER WERKSTÜCKE MITTELS EINES UKP-LASERSTRAHLS SOWIE ZUGEHÖRIGES OPTISCHES ELEMENT - Google Patents

VERFAHREN ZUM STUMPFSTOßSCHWEIßEN ZWEIER WERKSTÜCKE MITTELS EINES UKP-LASERSTRAHLS SOWIE ZUGEHÖRIGES OPTISCHES ELEMENT Download PDF

Info

Publication number
WO2020109080A1
WO2020109080A1 PCT/EP2019/081787 EP2019081787W WO2020109080A1 WO 2020109080 A1 WO2020109080 A1 WO 2020109080A1 EP 2019081787 W EP2019081787 W EP 2019081787W WO 2020109080 A1 WO2020109080 A1 WO 2020109080A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser beam
laser
joining surface
workpieces
workpiece
Prior art date
Application number
PCT/EP2019/081787
Other languages
English (en)
French (fr)
Inventor
Malte Kumkar
Felix Zimmermann
Original Assignee
Trumpf Laser- Und Systemtechnik Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Trumpf Laser- Und Systemtechnik Gmbh filed Critical Trumpf Laser- Und Systemtechnik Gmbh
Priority to CN201980078566.7A priority Critical patent/CN113227001B/zh
Priority to KR1020217018938A priority patent/KR20210093997A/ko
Publication of WO2020109080A1 publication Critical patent/WO2020109080A1/de
Priority to US17/331,089 priority patent/US20210276127A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/21Bonding by welding
    • B23K26/24Seam welding
    • B23K26/26Seam welding of rectilinear seams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/062Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
    • B23K26/0622Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses
    • B23K26/0624Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses using ultrashort pulses, i.e. pulses of 1ns or less
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/0604Shaping the laser beam, e.g. by masks or multi-focusing by a combination of beams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/082Scanning systems, i.e. devices involving movement of the laser beam relative to the laser head
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/0869Devices involving movement of the laser head in at least one axial direction
    • B23K26/0876Devices involving movement of the laser head in at least one axial direction in at least two axial directions
    • B23K26/0884Devices involving movement of the laser head in at least one axial direction in at least two axial directions in at least in three axial directions, e.g. manipulators, robots
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/21Bonding by welding
    • B23K26/24Seam welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/32Bonding taking account of the properties of the material involved
    • B23K26/324Bonding taking account of the properties of the material involved involving non-metallic parts
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B23/00Re-forming shaped glass
    • C03B23/20Uniting glass pieces by fusing without substantial reshaping
    • C03B23/203Uniting glass sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
    • B23K2103/54Glass

Definitions

  • the invention relates to a method for butt welding two, in particular plate-shaped, workpieces by means of at least one pulsed laser steel, in particular UKP laser beam, which is focused into the workpiece material in order to locally melt the two workpieces in the area of their joining surface.
  • the invention further relates to an element which is assembled from at least two workpieces which are laser-welded to one another.
  • the peculiarity of material processing with UKP laser radiation lies in the short interaction time of the laser radiation with the workpiece. Due to this interaction time, extreme thermodynamic imbalances can be generated in the solid, which then lead to unique removal or formation mechanisms.
  • the laser welding of laser-transparent glasses or other materials that are transparent, partially transparent or scattering for the laser beam, e.g. Crystals, polymers, semiconductors, ceramics, using ultra-short laser pulses enable a stable connection without the use of additional materials, but is limited by laser-induced transient and permanent voltages.
  • a UKP laser beam for example, which is focused in the center of the thickness of the two workpieces, is moved along the joint surface in order to locally melt the two workpieces in the area of their joint surface and thereby producing a particularly continuous horizontal weld seam in the material of the two workpieces.
  • the weld seam is typically formed by a melting zone that can be recognized from the outside as a welding bubble, which starts from the laser focus and extends in a drop-shaped manner against the direction of the incident laser beam.
  • a welding bubble which starts from the laser focus and extends in a drop-shaped manner against the direction of the incident laser beam.
  • several weld seams are placed side by side in strips. This type of welding enables gas-tight weld seams and joint connections with high strength and is used for joining protective glasses, for example.
  • the background is the local melting of the material using ultra-short laser pulses. If you focus ultra-short laser pulses in the volume of glass, e.g.
  • Quartz glass the high intensity present in the laser focus leads to non-linear absorption processes, which, depending on the laser parameters, can induce various material modifications. These nonlinear absorption processes generate excited charge carriers that absorb quasi linearly as a result. This creates a local plasma in the absorption area.
  • the Melting zone arises when several pulses (with a high repetition rate) are irradiated with overlap so that the induced heat accumulates and the material melts. After cooling, a permanent connection is created if the modification lies in the interface of the joining partners.
  • the actual weld seam size of the melted area
  • the cooling melt generates a stable connection between the two glasses. Due to the very local joining process, the laser-induced stresses are typically low, which means that very different glasses can also be welded in terms of their thermal properties.
  • the present invention has for its object to provide a butt butt welding process with which the welding result is further improved.
  • laser-transparent workpieces should be securely welded to one another, even if, for example, there are defects on one of the surfaces of the workpieces.
  • This object is achieved according to the invention by a method for butt welding two, in particular plate-shaped workpieces by means of at least one pulsed laser steel, in particular UKP laser beam, which is focused into the workpiece material in order to locally melt the two workpieces in the area of their joining surface, whereby the laser focus of the laser beam focused in the workpiece material is moved transversely, in particular at right angles, to the joining surface in order to produce a weld seam extending transversely to the beam direction of the laser beam in the region of the joining surface.
  • a pulsed laser steel in particular UKP laser beam
  • the UKP laser beam preferably has laser radiation with pulse durations of less than 50 ps, preferably less than 1 ps, in particular in the femtosecond range, and the pulse duration of the pulsed laser beam is between 10 fs and 500 ps.
  • the laser focus is moved longitudinally and / or transversely to the joining surface.
  • the beam direction of the laser beam is parallel to, for example Joining surface and / or perpendicular to the top of the workpiece.
  • the geometry of the laser beam is matched to the corresponding workpiece geometry and can be shaped in space-time. This makes it possible to avoid shadowing or inadequate energy coupling, for example due to defects in the material.
  • the invention makes it possible, in particular, to weld thick plate-shaped workpieces to one another.
  • the workpieces are preferably formed from glass, in particular quartz glass, from polymer, glass ceramic, crystals or combinations thereof and / or with opaque materials. They can also have coatings that would not allow direct irradiation through the workpiece.
  • the laser focus When the laser focus is moved transversely, the laser focus is moved across the joining surface. As a result, the melt induced in the focus area is driven into the joining zone and, after cooling, leads to a permanent connection of both workpieces. It is also possible to focus directly or close to the joint surface and to carry out the welding process with feed along the joint surface, ie along the joint line on the top. It is also possible to simultaneously move the laser focus longitudinally and transversely to the joint surface in order to form a non-straight weld seam in the region of the joint surface, the shape of which results from the superimposed transverse and longitudinal movement of the laser focus.
  • the beam profile of the incident laser beam is spatially and or temporally adjusted.
  • Another possibility of spatially adapting the beam profile is, for example, to irradiate the laser beam obliquely to the joining surface and / or to the top of the workpiece.
  • An example of the temporal adaptation of the beam profile is, for example, that the pulsed laser beam is irradiated at time intervals. These can be short pulse trains, so-called bursts.
  • Another A game for a temporal and spatial adaptation of the beam profile of the irradiated laser beam is that several laser beams offset at right angles to the beam direction are irradiated. These multiple laser beams can, for example, be offset parallel to one another transversely to the beam direction, so that individual or contiguous welding areas result and thus a larger area can be welded in the same time and / or a larger longitudinal melting modification arises which enables a greater focus position tolerance - light.
  • the laser foci of the multiple laser beams can be offset one behind the other in the beam direction in order to minimize the effect of any defects on the workpiece surface or on the joining surface.
  • the multiple laser beams do not have to be offset in parallel, but their beam axes can converge in the workpiece particularly advantageously in order to avoid possible defects.
  • the plurality of laser beams are moved together in a direction that is transverse to their respective beam directions.
  • the adaptation of the beam profile is preferably adapted to the conditions of the workpieces.
  • the extent of the melting zones for welding workpieces with possible hardening layers can be localized in the lateral direction of the hardening layers or in the direction of stress gradients, perpendicular to the hardening zones.
  • the spatial and / or temporal adaptation of beam profiles to the conditions of the workpieces can, for example, prevent or reduce shadowing, for example due to total reflection at gaps or transitions on the joining surface of the workpieces. Losses due to aberrations can also be reduced or avoided, which could result, for example, from spherical aberrations when the interfaces of the workpieces are offset from one another.
  • the laser beam can be modulated, for example, by a spatial light modulator or an acousto-optical deflector (AOD).
  • AOD modulation can take place in a highly dynamic manner during the welding process.
  • the area of absorption of the laser beam in the workpieces can, for example, be active beam-shaping elements, such as diffractive optical elements, spatial light modulators and / or by acousto-optical deflectors, are changed.
  • a temporal absorption dynamic can take place through the irradiation of the laser beam at time intervals, for example through short laser pulse trains, so-called bursts. This means that not only the absorption and / or the melting geometry can be changed, but also the cooling dynamics in order to modify the cooling rate and the final fictitious temperature of the material.
  • the invention also relates to an optical element which is joined with butt butt welding according to the invention from at least two workpieces.
  • the workpieces are welded to one another by means of at least one weld seam in the area of the joining surface.
  • the weld seam runs in the longitudinal direction and / or in the transverse direction to the joining surface.
  • FIG. 1 schematically shows a laser processing machine for butt butt welding two workpieces according to the invention by means of one
  • Fig. 2a-2c schematically a sectional view of two plate-shaped workpieces which are welded to one another by means of a Gaussian-shaped laser beam, the laser focus of which is transverse to the joining surface (FIG. 2a), parallel to the top joining line (FIG. 2b) and transverse to Joining surface and is moved parallel to the upper joining line (Fig. 3c); and
  • FIG. 3a-3c schematically a sectional view of two plate-shaped workpieces, which are formed by means of an inclined, Gaussian-shaped laser beam (FIG. 3a), an annular laser beam (FIG. 3b) and three Gaussian-shaped laser beams running parallel to one another (FIG. 3c ) are welded together.
  • the laser processing machine 1 shown in FIG. 1 is used for butt butt welding two plate-shaped workpieces 2 which abut one another in the butt joint by means of a laser beam 3.
  • the two workpieces 2 are made, for example, of glass, in particular quartz glass, of polymer, glass ceramic, crystals or formed from combinations thereof and / or with opaque materials, and / or coated therewith.
  • the laser processing machine 1 comprises a UKP laser 4 for generating the laser beam 3 in the form of UKP laser pulses 5 with pulse durations of less than 500 ps, in particular in the form of femtosecond pulses, and a laser processing head 6 which can be moved in the XYZ direction and has focusing optics 7 for focusing the bottom laser beam 3 emerging from the laser processing head 6.
  • the assembly to be welded can also be moved out of the two workpieces 2 in the XY direction.
  • the repetition rate of the pulsed laser beam 3 is preferably between 1 kHz and 500 GHz, in particular between 50 kHz and 500 kHz, and the pulse duration of the pulsed laser beam 3 is between 10 fs and 500 ps.
  • the focusing optics 7 can adapt the beam profile of the laser beam 3 spatially and / or temporally.
  • the focusing optics 7 can comprise, for example, a spatial light modulator and / or acousto-optical deflectors, AOD.
  • the absorption area can be actively adapted in the focusing optics 7, for example by beam-shaping elements, such as diffractive optical elements, spatial light modulators or AOD. This can also happen highly dynamically during butt welding itself.
  • the focusing optics 7 can also modify the temporal absorption dynamics by means of short laser pulse trains, so-called bursts, thereby changing the absorption and / or melting geometry directly or indirectly by means of adapted cooling dynamics.
  • the indirect adaptation of the cooling dynamics may, for example, require adaptation of the cooling rate, so that the final fictitious temperature of the glass is modified, influenced by the change in density and thus by the induced voltage.
  • the laser beam 3 can be offset with respect to the optical axis by the focusing optics 7.
  • the laser beam 3 is directed at right angles or almost at right angles to the upper side 2a of the workpiece facing the laser processing head 6 and is focused into the workpiece material in the area of the joint surface 8 of the two workpieces 2, around the two workpieces 2 to melt locally in the area of the joining surface 8.
  • the laser focus F of the laser beam 3 is moved transversely, here at right angles, to the beam direction 9 of the laser beam 3 in order to produce a weld seam 1Qi, 10 2 extending transversely, here at right angles to the beam direction 9 of the laser beam 3 in the region of the joining surface 8.
  • the weld seam can extend transversely, here at right angles, to the joining surface 8 (transverse seam 10 1 ) or along or parallel to the upper joining line 11 of the two workpieces 2 (longitudinal seam 10 2 ).
  • the laser focus F can be located on the joining surface 8 or near the joining surface 8 in the material of one of the two workpieces 2.
  • the laser focus F moves from the workpiece material of one workpiece 2 into the workpiece material of the other workpiece 2 and thereby passes through the joining surface 8.
  • a combined longitudinal and transverse movement of the laser focus is also possible, for example to form a serpentine or zigzag-shaped weld seam to create.
  • the figures 2a-2c each show a sectional view of two plate-shaped workpieces 2 which abut one another in the butt joint and which are welded to one another by means of a pulsed laser beam 3 with, for example, a Gaussian beam profile.
  • the laser beam 3 is irradiated parallel to the joining surface 8 and at right angles to the upper side 2a of the workpiece. Due to the laser focused in the workpiece material beam 3, a drop-shaped melting zone 12 is melted around the laser focus F in the workpiece material.
  • the laser focus F is moved at right angles to the joining surface 8 in direction A and over the joining surface 8, so as to produce a weld seam 10 1 extending over the joining surface 8.
  • the laser beam 3 can also be rotated about an axis parallel to its direction of incidence in order to produce an annular weld seam which intersects the joining surface 8 twice.
  • the laser beam 3 can also be rotated about an axis parallel to its direction of incidence in order to produce a cycloidal or a wider weld seam which intersects the joining surface 8.
  • the laser focus F is moved parallel to the upper joining line 11 in the feed direction B, so as to produce a weld seam 10 2 running along the joining surface 8 in the area of the joining surface 8.
  • the laser focus F is moved back and forth oscillating at right angles to the joining surface 8 (double arrow C) and also moved parallel to the joining line 11 on the top in the feed direction B, so as to form a serpentine or zigzag-shaped weld seam I in the region of the joining surface 8 To generate O3.
  • the laser beam 3 can also be swung back and forth or rotated about an axis parallel to its direction of incidence. In the latter case, the rotation of the laser beam 3 superimposed on the linear feed movement produces a cycloid-shaped or a wide weld seam in the feed direction B.
  • the laser beam 3 differs from FIG. 2a only in that the laser beam 3 is irradiated obliquely to the joining surface 8 and to the workpiece top 2a and is moved in the direction A transversely to the beam direction of the laser beam 3.
  • the angle a between the laser beam 3 and the joining surface 8 is, for example, 10 ° to 20 °.
  • This inclined laser beam 3 makes it possible to bypass any defects 13 on the workpiece surface 2a or on the joining surface 8 and still achieve a good welding result.
  • the inclined laser beam 3 can also be swung back and forth or rotated about an axis parallel to its direction of incidence.
  • the laser beam 3 has a beam profile based on an annular angular distribution, e.g. has a Bessel shape.
  • This beam profile or the Bessel shape has significant beam components outside the optical axis of the laser beam 3. This makes it possible to minimize the effect of any defects 13 on the workpiece surface 2a or on the joining surface 8 and to achieve a good welding result.
  • the laser beam 3 can also be irradiated at right angles to the upper side of the workpiece 2a as in FIG. 2a. Even then, the disruptive influence of surface defects 13 at the joint is reduced (if not in the full angular range).
  • FIG. 3c differs from FIG. 2a only in that several, here only three, pulsed laser beams 3 with, for example, Gaussian beam profile are irradiated.
  • the laser beams 3 are offset parallel to one another in the direction 3, and their laser foci F are offset one behind the other in the beam direction 9.
  • the laser beams 3 are moved together in the direction A at right angles to the joining surface 8 over the joining surface 8, so as to produce a plurality of weld seams 10 1 which are offset in parallel in the depth direction.
  • These multiple laser beams 3 also make it possible to achieve good welding results, even if there are defects 13 in the workpieces 2.
  • the inclined laser beam 3 can be seen in FIGS. 3a and 3b or the plurality of laser beams 3 are also oscillated back and forth or rotated about an axis parallel to the direction of incidence.
  • the laser focus F of the laser beam 3 can also be moved in and against the beam direction in order to produce a weld seam that varies in the workpiece depth.
  • Advantageous parameters in butt welding according to the invention are:
  • Laser beam 3 in the form of laser bursts each with 2 or 4 laser pulses with a brush shape

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Robotics (AREA)
  • Laser Beam Processing (AREA)

Abstract

Bei dem erfindungsgemäßen Verfahren zum Stumpfstoßschweißen zweier, insbesondere plattenförmiger Werkstücke (2), mittels mindestens eines gepulsten Laserstrahls (3), insbesondere UKP-Laserstrahls, der in das Werkstückmaterial fokussiert wird, um die beiden Werkstücke (2) im Bereich ihrer Fügefläche (8) lokal aufzuschmelzen, wird der Laserfokus (F) des in das Werkstückmaterial fokussierten Laserstrahls (3) quer, insbesondere rechtwinklig, zur Fügefläche (8) bewegt, um im Bereich der Fügefläche (8) eine Schweißnaht (101, 102) zu erzeugen.

Description

Verfahren zum Stumpfstoßschweißen zweier Werkstücke mittels eines UKP- Laserstrahls sowie zugehöriges optisches Element
Die Erfindung betrifft ein Verfahren zum Stumpfstoßschweißen zweier, insbeson- dere plattenförmiger Werkstücke mittels mindestens eines gepulsten Laserstahls, insbesondere UKP-Laserstrahls, der in das Werkstückmaterial fokussiert wird, um die beiden Werkstücke im Bereich ihrer Fügefläche lokal aufzuschmelzen. Die Er- findung betrifft weiter ein Element das aus mindestens zwei miteinander Laser verschweißten Werkstücken zusammengefügt ist.
Ultrakurz gepulste (UKP) Laserstrahlung mit Pulsdauern kleiner als 500 ps, insbe- sondere im Femtosekundenbereich, wird zunehmend für die Materialbearbeitung eingesetzt. Die Besonderheit der Materialbearbeitung mit UKP-Laserstrahlung liegt in der kurzen Wechselwirkungszeit der Laserstrahlung mit dem Werkstück. Bedingt durch diese Wechselwirkungszeit lassen sich im Festkörper extreme thermodynamische Ungleichgewichte erzeugen, die dann zu einzigartigen Ab- trags- oder Formationsmechanismen führen.
Das Laserschweißen von lasertransparenten Gläsern oder auch anderen, für den Laserstrahl transparenten, teiltransparenten oder streuenden Materialien, wie z.B. Kristalle, Polymere, Halbleiter, Keramik, mittels ultrakurzer Laserpulse ermöglicht eine stabile Verbindung ohne zusätzlichen Materialeinsatz, ist aber durch laser- induzierte transiente sowie permanente Spannungen limitiert. Zum Stumpfstoß- verbinden zweier lasertransparenter Werkstücke, wie zum Beispiel Gläser oder Kristalle, wird ein zum Beispiel mittig in die Dicke der beiden Werkstücke fokus- sierter UKP-Laserstrahl entlang der Fügefläche bewegt, um die beiden Werkstü- cke im Bereich ihrer Fügefläche lokal aufzuschmelzen und dadurch im Material der beiden Werkstücke eine insbesondere durchgängige horizontale Schweißnaht zu erzeugen. Die Schweißnaht ist typischerweise durch eine von außen als Schweißblase erkennbare Schmelzzone gebildet, die vom Laserfokus ausgeht und sich entgegen der Richtung des einfallenden Laserstrahls tropfenförmig er- streckt. Zur Steigerung der Anbindungsfläche werden mehrere Schweißnähte in Bahnen nebeneinandergesetzt. Diese Art zu Schweißen ermöglicht gasdichte Schweißnähte und Fügeverbindungen mit hohen Festigkeiten und wird zum Fügen von zum Beispiel Schutzgläsern eingesetzt.
Hintergrund ist das lokale Aufschmelzen des Materials mittels ultrakurzer Laser- pulse. Fokussiert man ultrakurze Laserpulse in das Volumen von Glas, z.B.
Quarzglas, führt die im Laserfokus vorliegende hohe Intensität zu nichtlinearen Absorptionsprozessen, wodurch, in Abhängigkeit der Laserparameter, verschie- dene Materialmodifikationen induziert werden können. Durch diese nichtlinearen Absorptionsprozesse werden angeregte Ladungsträger erzeugt, die in Folge quasi linear absorbieren. So entsteht lokal ein Plasma im Absorptionsbereich. Die Schmelzzone entsteht, wenn mehrere Pulse (mit hoher Repetitionsrate) mit Über- lapp eingestrahlt werden, sodass sich die induzierte Wärme aufakkumuliert und das Material aufschmilzt. Nach dem Abkühlen entsteht so eine permanente Ver- bindung, wenn die Modifikation in der Grenzfläche der Fügepartner liegt. Die tat- sächliche Schweißnaht (Größe des aufgeschmolzenen Bereichs) ist dabei i.A. größer als der Absorptionsbereich. Platziert man die Modifikation im Bereich der Grenzfläche zweier Gläser, generiert die abkühlende Schmelze eine stabile Ver- bindung beider Gläser. Aufgrund des sehr lokalen Fügeprozesses sind die laser- induzierten Spannungen typischerweise gering, wodurch auch in ihren thermi- schen Eigenschaften stark verschiedene Gläser verschweißt werden können.
Auch können andere transparente Materialien wie Kristalle mit teilweise noch stär- ker abweichenden thermischen und mechanischen Eigenschaften miteinander bzw. mit Gläsern verschweißt werden.
Die vorliegende Erfindung stellt sich die Aufgabe, ein Stumpfstoßschweißverfah- ren anzugeben, mit dem das Schweißergebnis weiter verbessert wird. Insbeson- dere sollen lasertransparente Werkstücke sicher miteinander verschweißt werden, auch wenn beispielsweise Defekte an einer der Oberflächen der Werkstücke vor- liegen.
Diese Aufgabe wird erfindungsgemäß durch ein Verfahren zum Stumpfstoß- schweißen zweier, insbesondere plattenförmiger Werkstücke mittels mindestens eines gepulsten Laserstahls, insbesondere UKP-Laserstrahls, gelöst, der in das Werkstückmaterial fokussiert wird, um die beiden Werkstücke im Bereich ihrer Fü- gefläche lokal aufzuschmelzen, wobei der Laserfokus des in das Werkstückmate- rial fokussierten Laserstrahls quer, insbesondere rechtwinklig, zur Fügefläche be- wegt wird, um im Bereich der Fügefläche eine sich quer zur Strahlrichtung des Laserstrahls erstreckende Schweißnaht zu erzeugen. Vorzugsweise weist der UKP-Laserstrahl Laserstrahlung mit Pulsdauern kleiner als 50 ps, bevorzugt klei- ner 1 ps, insbesondere im Femtosekundenbereich, auf und beträgt die Pulsdauer des gepulsten Laserstrahls zwischen 10 fs und 500 ps.
Erfindungsgemäß wird dabei der Laserfokus längs und/oder quer zur Fügefläche bewegt. Dabei ist die Strahlrichtung des Laserstrahls beispielsweise parallel zur Fügefläche und/oder rechtwinklig zur Werkstückoberseite. Vorzugsweise ist die
Geometrie des Laserstrahls auf die entsprechende Werkstückgeometrie abge- stimmt und kann raumzeitlich geformt sein. Dies erlaubt es, Abschattungen oder mangelhafte Energieeinkopplung, beispielsweise durch Defekte im Material, zu vermeiden. Die Erfindung ermöglicht es, insbesondere dicke plattenförmige Werk- stücke miteinander zu verschweißen. Vorzugsweise sind die Werkstücke aus Glas, insbesondere Quarzglas, aus Polymer, Glaskeramik, Kristallen oder Kombi- nationen davon und/oder mit opaken Materialien gebildet. Sie können ebenfalls Beschichtungen aufweisen die eine direkte Bestrahlung durch das Werkstück hin- durch nicht erlauben würden.
Bei einer Querbewegung des Laserfokus wird der Laserfokus quer über die Füge- fläche hinwegbewegt. Dadurch wird die im Fokusbereich induzierte Schmelze in die Fügezone getrieben und führt nach dem Abkühlen zu einer permanenten Ver- bindung beider Werkstücke. Es ist außerdem möglich, direkt oder nahe in die Fü- gefläche zu fokussieren und den Schweißprozess unter Vorschub entlang der Fü- gefläche, also längs der oberseitigen Fügelinie, durchzuführen. Es ist auch mög- lich, den Laserfokus gleichzeitig längs und quer zur Fügefläche zu bewegen, um so beispielsweise im Bereich der Fügefläche eine nicht geradlinige Schweißnaht zu bilden, deren Form sich durch die überlagerte Quer- und Längsbewegung des Laserfokus ergibt.
Gemäß einer bevorzugten Ausführungsform der Erfindung wird das Strahlprofil des eingestrahlten Laserstrahls räumlich und oder zeitlich angepasst. Dies bedeu- tet beispielsweise für räumliche Strahlprofile, dass ein gaußförmiges Strahlprofil verwendet oder aber das Strahlprofil so angepasst werden kann, dass ein räumli- ches Strahlprofil gewählt wird, das wesentliche Stahlanteile außerhalb der opti- schen Achse aufweist. Das kann beispielsweise zwei zur optischen Achse versetz- te Fokuspunkte bedeuten. Eine weitere Möglichkeit, das Strahlprofil räumlich an- zupassen, ist beispielsweise, den Laserstrahl schräg zur Fügefläche und/oder zur Werkstückoberseite einzustrahlen. Ein Beispiel für die zeitliche Anpassung des Strahlprofils ist zum Beispiel, dass der gepulste Laserstrahl in zeitlichen Intervallen eingestrahlt wird. Dies können kurze Pulszüge, sogenannte Bursts, sein. Hier- durch kann eine bessere Energieeinkopplung erreicht werden. Ein weiteres Bei- spiel für eine zeitliche und räumliche Anpassung des Strahlprofils des eingestrahl- ten Laserstrahls ist, dass mehrere quer zur Strahlrichtung zueinander versetzte Laserstrahlen eingestrahlt werden. Diese mehreren Laserstrahlen können bei- spielsweise quer zur Strahlrichtung zueinander parallelversetzt sein, sodass sich einzelne oder zusammenhängende Schweißbereiche ergeben und so eine größe- re Fläche in gleicher Zeit geschweißt werden kann und/oder eine größere longitu- dinale Schmelzmodifikation entsteht, die eine größere Fokuslagentoleranz ermög- licht. Die Laserfoki der mehreren Laserstrahlen können dabei in Strahlrichtung hintereinander versetzt sein, um so die Auswirkung eventueller Defekte an der Werkstückoberfläche oder an der Fügefläche zu minimieren. Die mehreren Laser- strahlen müssen aber nicht parallelversetzt verlaufen, sondern ihre Strahlachsen können besonders vorteilhaft im Werkstück zusammenlaufen, um mögliche Defek- te zu umgehen. In diesem Fall werden die mehreren Laserstrahlen gemeinsam in einer Richtung bewegt, welche quer zu ihren jeweiligen Strahlrichtungen verläuft.
Die Anpassung des Strahlprofils wird dabei bevorzugt an die Gegebenheiten der Werkstücke angepasst. Beispielsweise kann die Ausdehnung der Schmelzzonen für das Schweißen von Werkstücken mit eventuellen Härtungsschichten in latera- ler Richtung der Härtungsschichten oder in Richtung von Spannungsgradienten, senkrecht zu den Härtungszonen, lokalisiert werden.
Durch die räumliche und/oder zeitliche Anpassung von Strahlprofilen auf die Ge- gebenheiten der Werkstücke können beispielsweise Abschattungen, beispielswei- se durch Totalreflexion an Spalten oder Übergängen an der Fügefläche der Werk- stücke vermieden oder vermindert werden. Es können ebenfalls aberrationsbe- dingte Verluste verringert oder vermieden werden, die sich beispielsweise bei sphärischen Aberrationen beim Versatz der Grenzflächen der Werkstücke zuei- nander ergeben könnten.
Der Laserstrahl kann beispielsweise durch einen räumlichen Lichtmodulator oder einen akusto-optischen Deflektor (AOD) moduliert werden. Die AOD-Modulation kann hochdynamisch während des Schweißprozesses erfolgen. Das Absorptions- gebiet des Laserstrahls in den Werkstücken kann beispielsweise aktiv durch strahlformende Elemente, wie z.B. diffraktiv optische Elemente, räumliche Licht- modulatoren und/oder durch akusto-optische Deflektoren, verändert werden.
Eine zeitliche Absorptionsdynamik kann durch das Einstrahlen des Laserstrahls in zeitlichen Intervallen erfolgen, beispielsweise durch kurze Laserpulszüge, soge- nannte Bursts. Hierdurch kann nicht nur die Absorptions- und/oder die Schmelz- geometrie verändert werden, sondern auch die Abkühldynamik, um so beispiels- weise die Abkühlrate und die finale fiktive Temperatur des Werkstoffes zu modifi- zieren.
Die Erfindung betrifft in einem weiteren Aspekt auch ein mit dem erfindungsgemä- ßen Stumpfstoßschweißen aus mindestens zwei Werkstücken zusammengefügtes optisches Element. Die Werkstücke sind dabei miteinander mittels mindestens einer Schweißnaht im Bereich der Fügefläche miteinander verschweißt. Die Schweißnaht verläuft dabei in Längsrichtung und/oder in Querrichtung zur Füge- fläche.
Weitere Vorteile und vorteilhafte Ausgestaltungen des Gegenstands der Erfindung ergeben sich aus der Beschreibung, den Ansprüchen und den Zeichnungen. Ebenso können die vorstehend genannten und die noch weiter aufgeführten
Merkmale je für sich oder zu mehreren in beliebigen Kombinationen Verwendung finden. Die gezeigten und beschriebenen Ausführungsformen sind nicht als ab- schließende Aufzählung zu verstehen, sondern haben vielmehr beispielhaften Charakter für die Schilderung der Erfindung.
Es zeigen:
Fig. 1 schematisch eine Laserbearbeitungsmaschine zum erfindungs- gemäßen Stumpfstoßschweißen zweier Werkstücke mittels eines
Laserstrahls;
Fign. 2a-2c schematisch eine Schnittansicht zweier plattenförmiger Werkstü- cke, die mittels eines gaußförmigen Laserstrahls miteinander ver- schweißt werden, dessen Laserfokus quer zur Fügefläche (Fig. 2a), parallel zur oberseitigen Fügelinie (Fig. 2b) sowie quer zur Fügefläche und parallel zur oberseitigen Fügelinie (Fig. 3c) be- wegt wird; und
Fign. 3a-3c schematisch eine Schnittansicht zweier plattenförmiger Werkstü- cke, die mittels eines schräg gestellten, gaußförmigen Laser- strahls (Fig. 3a), eines ringförmigen Laserstrahls (Fig. 3b) und dreier parallel nebeneinander verlaufender, gaußförmiger Laser- strahlen (Fig. 3c) miteinander verschweißt werden.
Die in Fig. 1 gezeigte Laserbearbeitungsmaschine 1 dient zum Stumpfstoß- schweißen zweier im Stumpfstoß aneinander anliegender, plattenförmiger Werk- stücke 2 mittels eines Laserstrahls 3. Die beiden Werkstücke 2 sind beispielswei- se aus Glas, insbesondere Quarzglas, aus Polymer, Glaskeramik, Kristallen oder aus Kombinationen davon und/oder mit opaken Materialien gebildet, und/oder damit beschichtet.
Die Laserbearbeitungsmaschine 1 umfasst einen UKP-Laser 4 zum Erzeugen des Laserstrahls 3 in Form von UKP-Laserpuisen 5 mit Pulsdauern kleiner 500 ps, insbesondere in Form von Femtosekundenpulsen, und einen in X-Y-Z-Richtung bewegbaren Laserbearbeitungskopf 6 mit einer Fokussieroptik 7 zum Fokussieren des unten aus dem Laserbearbeitungskopf 6 austretenden Laserstrahls 3. Alterna- tiv oder zusätzlich kann auch die zu schweißende Baugruppe aus den beiden Werkstücken 2 in X-Y-Richtung bewegt werden. Vorzugsweise beträgt die Repeti- tionsrate des gepulsten Laserstrahls 3 zwischen 1 kHz und 500 GHz, insbesonde- re zwischen 50kHz und 500 kHz, und die Pulsdauer des gepulsten Laserstrahls 3 zwischen 10 fs und 500 ps.
Die Fokussieroptik 7 kann das Strahlprofil des Laserstrahls 3 räumlich und/oder zeitlich anpassen. Hierfür kann die Fokussieroptik 7 beispielsweise einen räumli- chen Lichtmodulator und/oder akusto-optische Deflektoren, AOD, umfassen. In der Fokussieroptik 7 kann das Absorptionsgebiet aktiv angepasst werden, bei- spielsweise durch strahlformende Elemente, wie z.B. diffraktiv optische Elemente, räumliche Lichtmodulatoren oder AOD. Dies kann auch hochdynamisch während des Stoßschweißens selbst passieren. Alternativ oder ergänzend zu der zeitlichen Modulation der Pulsparameter oder auch zu der Erzeugung von Pulszügen direkt aus dem Laser kann die Fokussieroptik 7 außerdem die zeitliche Absorptionsdy- namik durch kurze Laserpulszüge, sogenannte Bursts, modifizieren und dadurch die Absorptions- und/oder Schmelzgeometrie direkt verändern oder indirekt durch angepasste Abkühldynamik verändern. Die indirekte Anpassung der Abkühldyna- mik kann beispielsweise erfordern, die Abkühlrate anzupassen, sodass die finale fiktive Temperatur des Glases, beeinflusst durch die Dichteänderung und somit durch die induzierte Spannung, modifiziert wird. Ebenso kann der Laserstrahl 3 durch die Fokussieroptik 7 bezüglich der optischen Achse versetzt werden.
Beim Stumpfstoßschweißen der beiden Werkstücke 2 wird der Laserstrahl 3 rechtwinklig oder nahezu rechtwinklig auf die dem Laserbearbeitungskopf 6 zuge- wandte Werkstückoberseite 2a gerichtet und im Bereich der gemeinsamen Füge- fläche 8 der beiden Werkstücke 2 in das Werkstückmaterial fokussiert, um die bei- den Werkstücke 2 im Bereich der Fügefläche 8 lokal aufzuschmelzen. Dabei wird der Laserfokus F des Laserstrahls 3 quer, hier rechtwinklig, zur Strahlrichtung 9 des Laserstrahls 3 bewegt, um im Bereich der Fügefläche 8 eine sich quer, hier rechtwinklig, zur Strahlrichtung 9 des Laserstrahls 3 erstreckende Schweißnaht 1Qi, 102 zu erzeugen. Die Schweißnaht kann sich dabei quer, hier rechtwinklig, zur Fügefläche 8 (Quernaht 101) oder längs bzw. parallel zur oberseitigen Fügelinie 11 der beiden Werkstücke 2 (Längsnaht 102) erstrecken. Bei der Längsbewegung kann sich der Laserfokus F an der Fügefläche 8 oder nahe der Fügefläche 8 im Material eines der beiden Werkstücke 2 befinden. Bei der Querbewegung bewegt sich der Laserfokus F vom Werkstückmaterial des einen Werkstückes 2 ins Werk- stückmaterial des anderen Werkstückes 2 und passiert dabei die Fügefläche 8. Auch eine kombinierte Längs- und Querbewegung des Laserfokus ist möglich, um so beispielsweise eine Schlangenlinien- oder zickzackförmige Schweißnaht zu er- zeugen.
Die Fign. 2a-2c zeigen jeweils eine Schnittansicht zweier im Stumpfstoß aneinan- der anliegender, plattenförmiger Werkstücke 2, die mittels eines gepulsten Laser- strahls 3 mit z.B. gaußförmigem Strahlprofil miteinander verschweißt werden. Der Laserstrahl 3 wird parallel zur Fügefläche 8 und rechtwinklig auf die Werkstücko- berseite 2a eingestrahlt. Durch den in das Werkstückmaterial fokussierten Laser- strahl 3 wird in dem Werkstückmaterial eine tropfenförmige Schmelzzone 12 um den Laserfokus F herum aufgeschmolzen.
In Fig. 2a wird der Laserfokus F rechtwinklig zur Fügefläche 8 in Richtung A und über die Fügefläche 8 hinwegbewegt, um so eine über die Fügefläche 8 hinweg verlaufende Schweißnaht 101 zu erzeugen. Statt der gezeigten linearen Querbe- wegung des Laserstrahls 3 in Richtung A kann der Laserstrahl 3 auch um eine zu seiner Einfallsrichtung parallele Achse rotiert werden, um so eine ringförmige Schweißnaht zu erzeugen, welche die Fügefläche 8 zweimal schneidet. Weiterhin alternativ kann der Laserstrahl 3 zusätzlich zu seiner gezeigten linearen Querbe- wegung in Richtung A auch um eine zu seiner Einfallsrichtung parallele Achse ro- tiert werden, um so eine zykloidförmige bzw. eine breitere Schweißnaht zu erzeu- gen, welche die Fügefläche 8 schneidet.
In Fig. 2b wird der Laserfokus F parallel zur oberseitigen Fügelinie 1 1 in Vorschub- richtung B bewegt, um so im Bereich der Fügefläche 8 eine entlang der Fügeflä- che 8 verlaufende Schweißnaht 102 zu erzeugen.
In Fig. 2c wird der Laserfokus F sowohl rechtwinklig zur Fügefläche 8 oszillierend hin- und her bewegt (Doppelpfeil C) als auch parallel zur oberseitigen Fügelinie 11 in Vorschubrichtung B bewegt, um so im Bereich der Fügefläche 8 beispielsweise eine Schlangenlinien- oder zickzackförmige Schweißnaht I O3 zu erzeugen. Statt der translatorischen Querbewegung des Laserstrahls 3 in Richtung A kann der Laserstrahl 3 auch pendelnd hin- und her verschenkt oder auch um eine zu seiner Einfallsrichtung parallele Achse rotiert werden. Im letzteren Fall wird durch die der linearen Vorschubbewegung überlagerte Rotation des Laserstrahls 3 eine zykloid- förmige bzw. eine breite Schweißnaht in Vorschubrichtung B erzeugt.
Von Fig. 2a unterscheidet sich die Fig. 3a lediglich dadurch, dass hier der Laser- strahl 3 schräg zur Fügefläche 8 und zur Werkstückoberseite 2a eingestrahlt und quer zur Strahlrichtung des Laserstrahls 3 in Richtung A bewegt wird. Der Winkel a zwischen Laserstrahl 3 und Fügefläche 8 beträgt z.B. 10° bis 20°. Durch diesen schräggestellten Laserstrahl 3 ist es möglich, eventuelle Defekte 13 an der Werk- stückoberfläche 2a oder an der Fügefläche 8 zu umgehen und trotzdem ein gutes Schweißergebnis zu erreichen. Statt der gezeigten translatorischen Querbewe- gung des Laserstrahls 3 in Richtung A kann der schräg gestellte Laserstrahl 3 auch pendelnd hin- und her verschenkt oder um eine zu seiner Einfallsrichtung parallele Achse rotiert werden.
Von Fig. 3a unterscheidet sich die Fig. 3b lediglich dadurch, dass hier der Laser- strahl 3 ein auf einer ringförmigen Winkelverteilung basierendes Strahlprofil, z.B. eine Bessel-Form, aufweist. Dieses Strahlprofil bzw. die Bessel-Form weist we- sentliche Strahlanteile außerhalb der optischen Achse des Laserstrahls 3 auf. Dadurch ist es möglich, die Auswirkung eventueller Defekte 13 an der Werkstück- oberfläche 2a oder an der Fügefläche 8 zu minimieren und ein gutes Schweißer- gebnis zu erreichen. Statt wie in Fig. 3b schräg, kann der Laserstrahl 3 auch wie in Fig. 2a rechtwinklig auf die Werkstückoberseite 2a eingestrahlt werden. Auch dann ist der störende Einfluss von Oberflächendefekte 13 am Stoß reduziert (wenn auch nicht im vollen Winkelbereich).
Von Fig. 2a unterscheidet sich die Fig. 3c lediglich dadurch, dass hier mehrere, hier lediglich beispielhaft drei, gepulste Laserstrahlen 3 mit z.B. gaußförmigem Strahlprofil eingestrahlt werden. Die Laserstrahlen 3 sind in Richtung 3 zueinander parallelversetzt, und ihre Laserfoki F sind in Strahlrichtung 9 hintereinander ver- setzt. Die Laserstrahlen 3 werden gemeinsam in Richtung A rechtwinklig zur Fü- gefläche 8 über die Fügefläche 8 hinwegbewegt, um so mehrere in Tiefen richtung parallelversetzte Schweißnähte 101 zu erzeugen. Durch diese mehreren Laser- strahlen 3 ist es ebenfalls möglich, gute Schweißergebnisse zu erzielen, auch bei vorliegenden Defekten 13 in den Werkstücken 2.
Statt der in Fign. 3a bis 3c gezeigten translatorischen Querbewegung des Laser- strahls 3 in Richtung A kann der schräg gestellte Laserstrahl 3 in den Fign. 3a und 3b bzw. die mehreren Laserstrahlen 3 auch pendelnd hin- und her verschenkt oder um eine zur Einfallsrichtung parallele Achse rotiert werden.
Zusätzlich zu den in den Fign. 2 und 3 gezeigten Quer- und Längsbewegungen des Laserstrahls 3 kann der Laserfokus F des Laserstrahls 3 auch in und entge- gen der Strahlrichtung bewegt werden, um so eine in der Werkstücktiefe variie- rende Schweißnaht zu erzeugen. Vorteilhafte Parameter beim erfindungsgemäßen Stumpfstoßschweißen sind:
- Laserstrahl 3 in Form von Laserbursts mit jeweils 2 oder 4 Laserpulsen mit Bes- selform,
- Repetitionsrate ca. 50MHz,
- mittlere Leistung ca. 3-10W, und
- Vorschub zwischen 1 und 50mm/s.

Claims

Patentansprüche
1. Verfahren zum Stumpfstoßschweißen zweier, insbesondere plattenförmiger Werkstücke (2), mittels mindestens eines gepulsten Laserstrahls (3), insbe- sondere UKP-Laserstrahls, der in das Werkstückmaterial fokussiert wird, um die beiden Werkstücke (2) im Bereich ihrer Fügefläche (8) lokal aufzu- schmelzen,
wobei der Laserfokus (F) des in das Werkstückmaterial fokussierten Laser- strahls (3) quer, insbesondere rechtwinklig, zur Fügefläche (8) bewegt wird, um im Bereich der Fügefläche (8) eine sich quer zur Strahlrichtung (9) des Laserstrahls (3) erstreckende Schweißnaht (101, 102, 103) zu erzeugen.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass der gepulste Laserstrahl (3) parallel zur Fügefläche (8) und/oder rechtwinklig zur Werk- stückoberseite (2a) eingestrahlt wird.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der La- serfokus (F) des in das Werkstückmaterial fokussierten Laserstrahls (3) längs und quer, insbesondere rechtwinklig, zur Fügefläche (8) bewegt wird, um im Bereich der Fügefläche (8) eine Schweißnaht (101, 102, 103) zu er- zeugen.
4. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekenn- zeichnet, dass der Laserstrahl (3) ein gaußförmiges Strahlprofil oder ein auf einer ringförmigen Winkelverteilung basierendes Strahlprofil, insbesondere eine Bessel-Form, aufweist.
5. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekenn- zeichnet, dass der Laserstrahl (3) schräg zur Werkstückoberseite (2a) und/oder zur Fügefläche (8) eingestrahlt wird.
6. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekenn- zeichnet, dass mehrere quer zur Strahlrichtung (9) zueinander versetzte, insbesondere zueinander parallelversetzte Laserstrahlen (3) in das Werk- stückmaterial fokussiert werden.
7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass die Laserfoki (F) der mehreren Laserstrahlen (3) in Strahlrichtung (9) hintereinander ver- setzt sind.
8. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekenn- zeichnet, dass die Repetitionsrate des gepulsten Laserstrahls (3) zwischen 1 kHz und 500 GHz, insbesondere zwischen 50kHz und 500 kHz, beträgt.
9. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekenn- zeichnet, dass die Pulsdauer des gepulsten Laserstrahls (3) zwischen 10 fs und 500 ps beträgt.
10. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekenn- zeichnet, dass zur Erzeugung einer Querbewegung der Laserstrahl (3) pendelnd hin- und her verschenkt oder um eine zur Einfallsrichtung paralle- le Achse rotiert wird.
11. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekenn- zeichnet, dass der Laserfokus (F) des Laserstrahls (3) in und/oder entge- gen der Strahlrichtung bewegt wird.
12. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekenn- zeichnet, dass der UKP-Laserstrahl (3) Laserstrahlung mit Pulsdauern klei- ner als 50 ps, bevorzugt kleiner 1ps, insbesondere im Femtosekundenbe- reich, aufweist.
13. Element, das aus mindestens zwei miteinander laserverschweißten, insbe- sondere plattenförmigen Werkstücken (2) gebildet ist, die an mindestens einer Fügefiäche (8) zusammengefügt sind, gekennzeichnet durch mindes- tens eine Schweißnaht (101, 102, 103) im Bereich der Fügefläche (8), die in Längsrichtung und/oder in Querrichtung zur Fügefläche (8) verläuft.
PCT/EP2019/081787 2018-11-28 2019-11-19 VERFAHREN ZUM STUMPFSTOßSCHWEIßEN ZWEIER WERKSTÜCKE MITTELS EINES UKP-LASERSTRAHLS SOWIE ZUGEHÖRIGES OPTISCHES ELEMENT WO2020109080A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201980078566.7A CN113227001B (zh) 2018-11-28 2019-11-19 用于借助于ukp激光射束对接焊接两个工件的方法以及所属的光学元件
KR1020217018938A KR20210093997A (ko) 2018-11-28 2019-11-19 초단파 펄스 레이저 빔에 의해 2개의 피공작물을 맞대기 이음 용접하기 위한 방법 및 관련 광학 요소
US17/331,089 US20210276127A1 (en) 2018-11-28 2021-05-26 Butt welding of two workpieces with an ultrashort pulse laser beam, and associated optical elements

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102018220445.4A DE102018220445A1 (de) 2018-11-28 2018-11-28 Verfahren zum Stoßschweißen zweier Werkstücke mittels eines UKP-Laserstrahls sowie zugehöriges optisches Element
DE102018220445.4 2018-11-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/331,089 Continuation US20210276127A1 (en) 2018-11-28 2021-05-26 Butt welding of two workpieces with an ultrashort pulse laser beam, and associated optical elements

Publications (1)

Publication Number Publication Date
WO2020109080A1 true WO2020109080A1 (de) 2020-06-04

Family

ID=68655512

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2019/081787 WO2020109080A1 (de) 2018-11-28 2019-11-19 VERFAHREN ZUM STUMPFSTOßSCHWEIßEN ZWEIER WERKSTÜCKE MITTELS EINES UKP-LASERSTRAHLS SOWIE ZUGEHÖRIGES OPTISCHES ELEMENT

Country Status (5)

Country Link
US (1) US20210276127A1 (de)
KR (1) KR20210093997A (de)
CN (1) CN113227001B (de)
DE (1) DE102018220445A1 (de)
WO (1) WO2020109080A1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114434808A (zh) * 2021-12-29 2022-05-06 深圳泰德激光技术股份有限公司 透明塑料的焊接方法、装置及计算机可读存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0531139A1 (de) * 1991-09-05 1993-03-10 Toyota Jidosha Kabushiki Kaisha Laserschweissverfahren von unterschiedlich dicken Blechen
US20140291304A1 (en) * 2013-03-29 2014-10-02 Photon Automation, Inc. Pulse spread laser
US20160016261A1 (en) * 2013-03-29 2016-01-21 Photon Automation, Inc. Laser welding system and method
US20160368089A1 (en) * 2015-06-19 2016-12-22 Ipg Photonics Corporation Laser welding head with dual movable mirrors providing beam movement and laser welding systems and methods using same

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9138913B2 (en) * 2005-09-08 2015-09-22 Imra America, Inc. Transparent material processing with an ultrashort pulse laser
JP2010070388A (ja) * 2008-09-16 2010-04-02 Olympus Corp レーザ加工装置およびレーザ加工方法
KR101408496B1 (ko) * 2010-03-16 2014-06-18 아이신세이끼가부시끼가이샤 펄스 레이저 장치, 투명 부재 용접 방법 및 투명 부재 용접 장치
DE102010038554A1 (de) * 2010-07-28 2012-02-02 Osram Ag Optoelektronisches Halbleiterbauelement und zugehöriges Herstellverfahren
US9625713B2 (en) * 2011-01-10 2017-04-18 UNIVERSITé LAVAL Laser reinforced direct bonding of optical components
US8739574B2 (en) * 2011-09-21 2014-06-03 Polaronyx, Inc. Method and apparatus for three dimensional large area welding and sealing of optically transparent materials
KR101453855B1 (ko) * 2013-08-21 2014-10-24 한국기계연구원 극초단 펄스 레이저를 이용한 다중 부재의 접합 방법
DE102014203845A1 (de) * 2014-03-03 2015-09-03 BLZ Bayerisches Laserzentrum Gemeinnützige Forschungsgesellschaft mbH Verfahren zum laserinduzierten Fügen eines glasartigen Fügepartners mit einem artfremden Fügepartner mithilfe ultrakurzer Laserpulse
DE102014210486B4 (de) * 2014-06-03 2016-08-04 Lpkf Laser & Electronics Ag Verfahren zum Verschweißen zweier Fügepartner aus thermoplastischen Kunststoffen entlang einer Schweißnaht mittels Laser
JP6089323B2 (ja) * 2014-09-26 2017-03-08 日新製鋼株式会社 差厚材のレーザ溶接方法
DE102017201495A1 (de) * 2017-01-31 2018-08-02 Robert Bosch Gmbh Laserschweißverfahren zum Erzeugen einer Schweißnaht auf einer Oberfläche einer Materialanordnung; Laserschweißvorrichtung
CN108609841B (zh) * 2018-04-10 2020-05-19 华中科技大学 一种适用于玻璃的焊接方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0531139A1 (de) * 1991-09-05 1993-03-10 Toyota Jidosha Kabushiki Kaisha Laserschweissverfahren von unterschiedlich dicken Blechen
US20140291304A1 (en) * 2013-03-29 2014-10-02 Photon Automation, Inc. Pulse spread laser
US20160016261A1 (en) * 2013-03-29 2016-01-21 Photon Automation, Inc. Laser welding system and method
US20160368089A1 (en) * 2015-06-19 2016-12-22 Ipg Photonics Corporation Laser welding head with dual movable mirrors providing beam movement and laser welding systems and methods using same

Also Published As

Publication number Publication date
DE102018220445A1 (de) 2020-05-28
KR20210093997A (ko) 2021-07-28
CN113227001A (zh) 2021-08-06
CN113227001B (zh) 2023-08-15
US20210276127A1 (en) 2021-09-09

Similar Documents

Publication Publication Date Title
DE102012008940B4 (de) Verfahren zum Fügen von mindestens zwei Werkstücken
DE102011100456B4 (de) Extremes Hochgeschwindigkeitslaserauftragsschweißverfahren
EP3774675A1 (de) VERFAHREN ZUM LASERSCHWEIßEN VON TRANSPARENTEN WERKSTÜCKEN UND ZUGEHÖRIGE LASERBEARBEITUNGSMASCHINE
DE102007038502B4 (de) Verfahren zum Fügen von mindestens zwei Werkstücken mittels eines Laserstrahls
DE102011081554A1 (de) Verfahren und Vorrichtung zum Laserschweißen von zwei Fügepartnern aus Kunststoff
EP2915785B1 (de) Verfahren zum laserinduzierten Fügen eines glasartigen Fügepartners mit einem zweiten Fügepartner mithilfe ultrakurzer Laserpulse
EP4034329A1 (de) Verfahren zum herstellen von mikrostrukturen an einem optischen kristall
EP3887321A1 (de) VERFAHREN ZUM STUMPFSTOßSCHWEIßEN MITTELS EINES UKP-LASERSTRAHLS SOWIE AUS EINZELTEILEN ZUSAMMENGEFÜGTES OPTISCHES ELEMENT
EP3735333A1 (de) Verfahren und laserbearbeitungsmaschine zur oberflächenstrukturierung lasertransparenter werkstücke
DE102018120011B4 (de) Schweißverfahren zum Verbinden eines transparenten, aluminiumoxidhaltigen ersten Substrats mit einem opaken zweiten Substrat
WO2020254639A1 (de) Verfahren und vorrichtung zum bearbeiten eines werkstücks mit zusammensetzung des bearbeitungsstrahles aus mindestens zwei strahlprofilen
WO2020109080A1 (de) VERFAHREN ZUM STUMPFSTOßSCHWEIßEN ZWEIER WERKSTÜCKE MITTELS EINES UKP-LASERSTRAHLS SOWIE ZUGEHÖRIGES OPTISCHES ELEMENT
WO2021074427A1 (de) Verfahren zum fügen von zwei fügepartnern mittels ultrakurzer laserpulse
DE102008022142B3 (de) Verfahren zum Verschweißen von Aluminiumteilen
EP0889769B1 (de) Verfahren zum fügen von werkstücken mit laserstrahlung
DE102004027229A1 (de) Verfahren zum Schweißen von Werkstücken aus Aluminium oder einer Aluminiumlegierung
WO2020254615A1 (de) Verfahren und vorrichtung zur bearbeitung eines werkstücks mit hochdynamischer bewegung des laserstrahles zwischen unterschiedlichen räumlichen bereichen
EP3986660A1 (de) Verfahren zum bearbeiten mindestens eines werkstücks mit eine modulierung der energie des laserstrales in die prozesszone
DE19806390A1 (de) Verfahren zum Abtrag beliebiger Strukturen aus spröden Werkstoffen durch Laserimpulse
WO2023001730A1 (de) Verfahren zum fügen mindestens zweier fügepartner
WO2022017892A2 (de) Verfahren zum fügen mindestens zweier fügepartner
DE102020133629A1 (de) Verfahren zum Fügen mindestens zweier Fügepartner
DE102021117530A1 (de) Verfahren zum Fügen mindestens zweier Fügepartner
WO2022018069A2 (de) Vorrichtung und verfahren zum fügen mindestens zweier fügepartner
DE102004045865A1 (de) Verfahren zum Tröpfchen-Schweißen zweier Fügepartner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19809017

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217018938

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 19809017

Country of ref document: EP

Kind code of ref document: A1