WO2020108173A1 - 一种永磁同步电机控制方法 - Google Patents

一种永磁同步电机控制方法 Download PDF

Info

Publication number
WO2020108173A1
WO2020108173A1 PCT/CN2019/112505 CN2019112505W WO2020108173A1 WO 2020108173 A1 WO2020108173 A1 WO 2020108173A1 CN 2019112505 W CN2019112505 W CN 2019112505W WO 2020108173 A1 WO2020108173 A1 WO 2020108173A1
Authority
WO
WIPO (PCT)
Prior art keywords
reference value
axis
value
voltage
control
Prior art date
Application number
PCT/CN2019/112505
Other languages
English (en)
French (fr)
Inventor
石高峰
杨洪波
彭再武
凌岳伦
陈慧民
蔡磊
姚超
夏一帆
Original Assignee
中车时代电动汽车股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中车时代电动汽车股份有限公司 filed Critical 中车时代电动汽车股份有限公司
Publication of WO2020108173A1 publication Critical patent/WO2020108173A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/0085Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation specially adapted for high speeds, e.g. above nominal speed
    • H02P21/0089Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation specially adapted for high speeds, e.g. above nominal speed using field weakening
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/24Vector control not involving the use of rotor position or rotor speed sensors
    • H02P21/28Stator flux based control
    • H02P21/30Direct torque control [DTC] or field acceleration method [FAM]

Definitions

  • the invention relates to the technical field of motor control, in particular, to a control method of a permanent magnet synchronous motor.
  • High-performance permanent magnet synchronous motor control technologies mainly include rotor magnetic field oriented vector control, stator magnetic field oriented vector control and direct torque control.
  • the rotor magnetic field oriented vector control technology based on dq synchronous coordinate system is generally adopted.
  • the rotor field-oriented vector control is simple and easy to implement, an obvious disadvantage of the rotor field-oriented vector control is that it is sensitive to changes in motor parameters.
  • the flux linkage and torque are not completely decoupled, and there is a problem of cross coupling between the flux linkage and the back electromotive force. Back electromotive force is generated on the d axis. This coupling increases the difficulty of motor vector control.
  • the rotor field-oriented vector control usually needs to calculate the voltage feedforward value used to compensate the d-axis and q-axis back electromotive force, it is difficult to accurately give the feedforward of the two axes due to the changes of the motor parameters and the dynamic process Voltage.
  • stator-field-oriented vector control technology based on the M-T synchronous coordinate system, because of the complete decoupling control of the excitation current and torque current, and the closed-loop control of the stator flux linkage, it has relatively good high-speed field weakening control capability.
  • the direct torque control technology based on space voltage vector modulation on the one hand solves the torque ripple problem based on Bang-Bang control, on the other hand, it eliminates the current closed loop, and directly controls the stator flux linkage, which retains direct torque control
  • the advantages of high dynamic response The core of direct torque control is based on accurate stator flux and torque observation, but in practice, effective observation of stator flux is generally a very complicated calculation process.
  • the present invention provides a method for controlling a permanent magnet synchronous motor.
  • the method includes:
  • Step 1 Obtain the motor voltage of the permanent magnet synchronous motor
  • Step 2 Determine whether the motor voltage reaches the preset inverter limit voltage, wherein if the motor voltage reaches the preset inverter limit voltage, the preset field weakening control model is used to synchronize the permanent magnet The motor is controlled so that the voltage applied to the permanent magnet synchronous motor is kept at a preset inverter limit voltage.
  • the ⁇ -axis voltage feedforward reference value is generated according to the following expression And ⁇ axis voltage feedforward reference value
  • R s represents the stator phase resistance
  • T sw represents the control period
  • phase reference value of the stator flux vector is determined according to the following expression:
  • ⁇ * represents the phase reference value of the stator flux vector
  • ⁇ * represents the load angle feedforward value
  • ⁇ m represents the rotor magnetic field position
  • ⁇ ′ represents the first load angle adjustment value
  • the load angle feedforward value of the control period is determined according to the following steps:
  • Step a Calculate the difference between the torque reference value and the torque value obtained in the previous iteration to obtain the torque deviation value for this iteration;
  • Step b Obtain the second load angle adjustment value of this iteration according to the torque deviation value of this iteration, and calculate the second load angle adjustment value of this iteration and the load angle reference value obtained from the previous iteration And to get the load angle reference value of this iteration;
  • Step c Calculate the torque value of this iteration according to the load angle reference value of this iteration
  • Step d Repeat steps a to c to obtain the load angle feedforward value for the control period.
  • the product of the torque deviation value of the current iteration and a preset adjustment coefficient is calculated to obtain the second load angle adjustment value of the current iteration.
  • the torque value of this iteration is determined according to the following expression:
  • T e represents the torque value of this iteration
  • P represents the number of motor poles
  • ⁇ s represents the stator flux linkage
  • ⁇ f represents the main pole flux linkage
  • L ds and L qs represent the stator d-axis inductance and stator q-axis inductance, respectively
  • represents the load angle of this iteration.
  • the load angle adjustment value ⁇ ′ is determined according to the following steps:
  • the preset PID controller is used to generate the load angle adjustment value ⁇ ′ according to the difference.
  • the T-axis stator current reference value is determined according to the following expression
  • T e * represents the torque reference value
  • P represents the motor pole number
  • ⁇ s * represents the stator flux reference value
  • a preset vector control model is used to control the permanent magnet synchronous motor
  • the M-axis stator current reference value is determined according to the following expression
  • I s * represents the stator current reference value
  • the phase reference value of the stator flux vector is determined according to the following expression:
  • ⁇ * represents the phase reference value of the stator flux vector
  • ⁇ * represents the load angle feedforward value
  • ⁇ m represents the rotor magnetic field position
  • the control method of the permanent magnet synchronous motor is directed to the problems of orientation deviation and high-speed field weakening current control.
  • the preset field weakening control model is used to control Controlled by permanent magnet synchronous motor.
  • this method no longer uses the PI regulator to perform closed-loop control of the current, but switches to adjust the load angle to control the T-axis current, while allowing the M-axis current Open-loop operation makes the voltage applied to the motor fixed at the maximum voltage that can be modulated by the inverter, which ensures the stability and speed of the permanent magnet synchronous motor at high speed.
  • the method provided by the present invention adopts a test method to obtain the expected torque that meets MTPA Reference flux linkage And MT coordinate current distribution (including M-axis stator current reference value And T-axis stator current reference value ), which can avoid the use of complex stator flux observation algorithms, thereby effectively avoiding the effects of permanent magnet synchronous motor parameter changes.
  • This method has the advantages of convenient calculation and strong robustness.
  • the method provided by the present invention calculates the feedforward voltage by calculating the differential of a given stator flux in one switching cycle, which can effectively avoid the influence of other parameters except the resistance of the permanent magnet synchronous motor, thereby improving the feedforward voltage Accuracy, can get faster dynamic response.
  • FIG. 1 is a schematic diagram of a d-q coordinate system of a permanent magnet synchronous motor according to an embodiment of the present invention
  • FIG. 2 is a phasor diagram of the flux linkage, voltage and current vectors in the d-q coordinate system and the M-T coordinate system of the embedded permanent magnet synchronous motor according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of an implementation process of a method for controlling a permanent magnet synchronous motor according to an embodiment of the present invention
  • FIG. 4 is a schematic diagram of an implementation process of using a preset vector control model to control a permanent magnet synchronous motor according to an embodiment of the present invention
  • FIG. 5 is a control block diagram of using a preset vector control model to control a permanent magnet synchronous motor according to an embodiment of the present invention
  • FIG. 6 is a schematic diagram of an implementation process for determining a load angle feedforward value ⁇ * according to an embodiment of the present invention
  • FIG. 7 is a logic block diagram for determining a load angle feedforward value ⁇ * according to an embodiment of the present invention.
  • FIG. 8 is a schematic flowchart of an implementation of using a preset field weakening control model to control a permanent magnet synchronous motor according to an embodiment of the present invention
  • FIG. 9 is a control logic block diagram of using a preset field weakening control model to control a permanent magnet synchronous motor according to an embodiment of the present invention.
  • the voltage equation of the permanent magnet synchronous motor can be expressed as:
  • V ds and V qs represent stator d-axis voltage and stator q-axis voltage
  • R s represents stator phase resistance
  • I ds and I qs represent stator d-axis current and stator q-axis current
  • ⁇ ds and ⁇ qs represent respectively
  • ⁇ e represents the synchronous frequency
  • p represents the number of motor poles.
  • the flux linkage equation can be expressed as:
  • ⁇ dr and ⁇ qr represent the rotor d-axis flux linkage and rotor q-axis flux linkage
  • L ds and L qs respectively represent the stator d-axis inductance and stator q-axis inductance
  • L dm and L qm represent the d-axis stator rotor mutual inductance Mutual inductance with the q-axis stator rotor
  • ⁇ f represents the flux linkage (main pole flux linkage) that the permanent magnet can generate in the stator.
  • the torque equation can be expressed as:
  • T e represents the electromagnetic torque of the motor.
  • Stator field orientation is to use the stator flux vector phase as the reference zero point for analysis and control. Take the stator magnetic field axis as the M axis (the positive direction of which coincides with the direction of the magnetic field lines), and the axis rotated 90° counterclockwise as the T axis to establish the MT coordinate system.
  • the motor stator flux linkage ⁇ s is all on the M axis, and the flux linkage component on the T axis is zero.
  • the equation of the permanent magnet synchronous motor is simplified, where the stator voltage equation is simplified as:
  • V M represents the stator M-axis voltage
  • V T represents the stator T-axis voltage
  • IM represents the stator M-axis current
  • IT represents the stator T-axis current
  • FIG. 2 shows the phasor diagram of the flux linkage, voltage and current vector in the dq coordinate system and the MT coordinate system of the embedded permanent magnet synchronous motor under specific working conditions. It can be seen from Figure 2 that the phase difference between the two coordinate systems is equal to the load angle ⁇ .
  • I s represents the stator current vector component in which M, T coordinate axes, respectively, and I M I T.
  • the M-axis component I M of the stator current vector is in phase with the stator flux linkage, which is the current component of the motor generating reactive power; the T-axis component I T of the stator current vector is in phase with the stator back EMF, which is the motor transmitting active power Current component.
  • I M , I T , I ds and I qs have the following relationship:
  • I M I qs sin ⁇ +I ds cos ⁇ (6)
  • Permanent magnet synchronous motors used for speed control operation usually have a position sensor installed on the rotor, so the d-axis phase can be directly detected by the position sensor.
  • the d-axis phase detected by the position sensor is added to the load angle ⁇ to determine the phase of the stator magnetic field. Therefore, the key to orientation is to accurately calculate the value of the load angle ⁇ .
  • the motor design usually only gives the inductance values on the d axis and the q axis in the dq coordinate system, so the calculation in the MT coordinate system must be converted into dq coordinates with the help of the load angle The calculations under the department.
  • Expression (10) describes the relationship between the electromagnetic torque T e and the stator flux ⁇ s and the load angle ⁇ , which is the basic formula for calculating the load angle ⁇ in the present invention.
  • FIG. 3 shows a schematic flowchart of an implementation of the control method of the permanent magnet synchronous motor provided in this embodiment.
  • the permanent magnet synchronous motor control method obtains the motor voltage of the permanent magnet synchronous motor in step S301, and determines whether the motor voltage of the permanent magnet synchronous motor reaches the preset reverse in step S302 Transformer limit voltage.
  • the method will use a preset vector control model to control the permanent magnet synchronous motor in step S303; and if the motor of the permanent magnet synchronous motor When the voltage reaches the preset inverter limit voltage, the method uses the preset field weakening control model to control the permanent magnet synchronous motor in step S304, so that the voltage applied to the permanent magnet synchronous motor is maintained at the preset reverse Transformer limit voltage.
  • the specific values of the above-mentioned preset inverter limit voltages can be configured as different reasonable values according to actual conditions.
  • the present invention does not The specific value is limited.
  • the method when the preset vector control model is used to control the permanent magnet synchronous motor, the method is preferably configured to implement closed-loop control of the M-axis current and the T-axis current by using a PI regulator. Control of permanent magnet synchronous motor.
  • FIG. 4 shows a schematic diagram of an implementation process of using a preset vector control model to control a permanent magnet synchronous motor in this embodiment
  • FIG. 5 shows a preset vector control model to control permanent magnets in this embodiment. Control block diagram of synchronous motor control.
  • step S401 the method obtains the stator flux reference value ⁇ s * and the torque reference value T e * of the current control cycle (ie, the late stage of the current control).
  • the method can preferably obtain the stator flux reference value ⁇ s * under the MTPA condition of the permanent magnet synchronous motor under the torque reference value T e * through a bench test.
  • the method can also obtain the stator reference current I s * under the MTPA condition under the torque reference value T e * of the permanent magnet synchronous motor in the same way.
  • the method may also adopt other reasonable methods to obtain the stator flux reference value ⁇ s * and the stator reference current I s * of the current control cycle, and the present invention is not limited thereto.
  • the method will control according to the current round in step S402 Periodic stator flux reference value ⁇ s * and torque reference value to generate M-axis stator current reference value T-axis stator current reference value ⁇ axis voltage feedforward reference value And ⁇ axis voltage feedforward reference value
  • the method preferably determines the current distribution scheme that satisfies the MT coordinate of the MTPA according to the following expression, namely the M-axis stator current reference T-axis stator current reference value
  • P represents the number of motor poles.
  • stator flux linkage The relationship between the stator flux linkage and stator voltage of a permanent magnet synchronous motor is as follows:
  • R s represents the stator phase resistance
  • stator flux linkage of the motor is equal to the integral of the stator voltage (excluding the voltage drop on the stator resistance) over time, as long as the actual voltage applied to the permanent magnet synchronous motor is equal to the given voltage, the motor will Can establish the corresponding flux linkage.
  • the controller output voltage amplitude and phase are as accurate as possible, thereby indirectly ensuring the accuracy of the stator flux amplitude and phase .
  • the calculated active current given value It is also accurate.
  • the load angle feedforward error is compensated, and the size of the load angle is completely determined by the active current that needs to be generated.
  • the controller output a given voltage accurately, and adjust the load angle with the active current component as a reference.
  • the feedforward voltage is used to compensate the stator resistance voltage drop and back electromotive force.
  • the expected value of the flux linkage vector at the beginning and end of a switching cycle is decomposed into the ⁇ - ⁇ two-phase stationary coordinate system to obtain the magnetic flux on each coordinate axis.
  • the amount of chain change. This amount of change reflects both the change in the amplitude of the flux linkage and the advancement of the flux linkage phase.
  • the instantaneous value of the back electromotive force is equal to the differential of the flux linkage with time. For discrete control, the average value of the back electromotive force within a switching cycle is approximately equal to the change of the flux linkage divided by the switching cycle.
  • this embodiment preferably uses the following expression to generate the ⁇ -axis voltage feedforward reference value And ⁇ axis voltage feedforward reference value
  • R s represents the stator phase resistance
  • T sw represents the control period
  • the method can also use other reasonable ways to generate the M-axis stator current reference T-axis stator current reference value ⁇ axis voltage feedforward reference value And ⁇ axis voltage feedforward reference value This aspect is not limited to this.
  • the M-axis stator current reference value is obtained T-axis stator current reference value ⁇ axis voltage feedforward reference value And ⁇ axis voltage feedforward reference value
  • step S403 the method according to the M-axis stator current reference value And the actual value of the M-axis stator current IM generates the ⁇ -axis current control adjustment voltage value U ⁇
  • step S404 according to the T-axis stator current reference value And the actual value of the T-axis stator current I T generates a ⁇ -axis current control adjustment voltage value U ⁇ .
  • the method preferably calculates the M-axis stator current reference value in step S403
  • the difference between the actual value of the M-axis stator current IM and the PID regulator is used to obtain the M-axis current control adjustment voltage value U M according to the above-mentioned difference.
  • the method calculates the T-axis stator current reference value in step S404 To obtain the PID regulator regulating T-axis current control voltage value based on the difference between the U-T T-axis stator current actual value of the difference between I T and use.
  • the ⁇ -axis current control adjustment voltage value U ⁇ and the ⁇ -axis current control adjustment voltage value U ⁇ can be obtained.
  • the method will feed forward the reference value according to the ⁇ -axis voltage in step S405 ⁇ axis voltage feedforward reference value ⁇ axis current control adjustment voltage value U ⁇ and ⁇ axis current control adjustment voltage value U ⁇ generate ⁇ axis voltage reference value respectively And ⁇ -axis voltage reference
  • the method can also be based on the above ⁇ -axis voltage reference value in step S406 And ⁇ -axis voltage reference Generate corresponding inverter control signals to control the operating state of the inverter.
  • the method can also use other reasonable ways to use the preset vector control model to control the permanent magnet synchronous motor, the present invention is not limited to this.
  • the alpha axis voltage feedforward reference value is determined And ⁇ axis voltage feedforward reference value And used for coordinate transformation of the M-axis current control adjustment voltage value U M and the T-axis current control adjustment voltage value U T to obtain the ⁇ -axis current control adjustment voltage value U ⁇ and the ⁇ -axis current control adjustment voltage value U ⁇
  • the phase reference value ⁇ * of the stator flux vector is preferably determined according to the following expression:
  • ⁇ * represents feedforward value before the load angle
  • ⁇ m represents a position of a rotor magnetic field (which preferably may be acquired by the position sensor).
  • Expression (10) is a univariate equation about the load angle, but the equation also contains the sine, cosine and product of the load angle. After analysis, it is found that it is difficult to directly obtain the analytical solution of the load angle according to expression (10). To solve this problem, in this embodiment, the method preferably adopts a numerical calculation method to obtain a sufficiently accurate numerical solution of the load angle, thereby obtaining the load angle feedforward value ⁇ * .
  • FIG. 6 shows a schematic diagram of an implementation process of determining the load angle feedforward value ⁇ * in this embodiment
  • FIG. 7 shows a logic block diagram of determining the load angle feedforward value ⁇ * in this embodiment.
  • the method first calculates the difference between the torque reference value and the torque value obtained in the previous iteration in step S601 to obtain the torque deviation of this iteration value. That is there:
  • ⁇ T e represents the torque deviation value
  • T ep represents the torque value obtained by iteration.
  • step S602 the method obtains the second load angle adjustment value ⁇ of this iteration according to the torque deviation value ⁇ T e of this iteration.
  • the method preferably present torque deviation by calculating iteration values ⁇ T e with a predetermined adjustment coefficient K e of the product, thereby obtaining a second iteration of this load angle adjustment value ⁇ ⁇ .
  • the method calculates and calculates the second load angle adjustment value ⁇ of this iteration and the load angle reference value T ep obtained in the previous iteration in step S603 The sum of the load angle reference value of this iteration.
  • the preset specific value of the adjustment factor K e may be configured with different values of the actual situation reasonable, the present invention is not the adjustment of the coefficient K e preset specific value limit.
  • step S604 the method calculates the torque value of the current iteration according to the load angle reference value of the current iteration. That is, the load angle reference value of this iteration is substituted into expression (10) to obtain the torque value of this iteration.
  • the method may also adopt other reasonable ways to determine the load angle feedforward value ⁇ * , and the present invention is not limited to this.
  • the number of iterations performed in a control cycle can be configured to different reasonable values according to actual needs, and the present invention does not limit the value of the above iterations .
  • Using PID closed-loop control as shown in Fig. 4 and Fig. 5 can ensure that the motor can output torque stably during stalling and starting.
  • the voltage required by the PID regulator will increase as the motor speed increases.
  • the voltage reserved for the regulator is usually very small or even zero. At this time, it is no longer appropriate to continue to use the PI to regulate the voltage to control the current.
  • step S304 Controlled by permanent magnet synchronous motor.
  • FIG. 8 shows a schematic diagram of an implementation process of using a preset field weakening control model to control a permanent magnet synchronous motor in this embodiment
  • FIG. 9 shows a preset field weakening control model to synchronize a permanent magnet synchronous motor in this embodiment.
  • the method will first obtain the stator flux reference value ⁇ s * and the torque reference value T e * of the current control period (ie, the late stage of the current control) in step S801 . Then, in step S802, the T-axis stator current reference value is determined according to the stator flux reference value ⁇ s * and the torque reference value T e * of the current control cycle ⁇ axis voltage feedforward reference value And ⁇ axis voltage feedforward reference value
  • the method determines the ⁇ -axis voltage feedforward reference value And ⁇ axis voltage feedforward reference value
  • the principle and the process are preferably the same as the determination of the ⁇ -axis voltage feedforward reference value in step S402 above And ⁇ axis voltage feedforward reference value
  • the principle and process are the same, so we will not repeat them in this section.
  • the method determines the alpha axis voltage feedforward reference value And ⁇ axis voltage feedforward reference value
  • the PI regulator is preferably used for closed-loop control of the T-axis stator current, and the PI regulator is no longer used for closed-loop control of the M-axis stator current, but the M-axis stator current is opened for operation.
  • the method preferably determines the phase reference value ⁇ * of the stator flux vector according to the following expression:
  • ⁇ * represents the load angle feedforward value
  • ⁇ m represents the rotor magnetic field position
  • ⁇ ′ represents the first load angle adjustment value
  • the method when determining the load angle adjustment value ⁇ ′, the method preferably first calculates the T-axis stator current reference value I T T of the difference axis of the stator current actual value, followed by a PID controller using a preset adjustment value to generate a load angle ⁇ 'based on the difference.
  • the method may also use other reasonable ways to determine the load angle adjustment value ⁇ ′, and the present invention is not limited to this.
  • step S803 the method can also feed forward the reference value according to the ⁇ -axis voltage And ⁇ axis voltage feedforward reference value Generate corresponding inverter control signals to control the operating state of the inverter.
  • the control method of the permanent magnet synchronous motor provided by the present invention is directed to the problems of orientation deviation and high-speed field weakening region current control. After the back electromotive force of the permanent magnet synchronous motor reaches the inverter limit voltage, it is converted to adopt The field weakening control model is preset to control the permanent magnet synchronous motor.
  • this method no longer uses the PI regulator to perform closed-loop control of the current, but switches to adjust the load angle to control the T-axis current, while allowing the M-axis current Open-loop operation makes the voltage applied to the motor fixed at the maximum voltage that can be modulated by the inverter, which ensures the stability and speed of the permanent magnet synchronous motor at high speed.
  • the method provided by the present invention uses the experimental method to obtain the expected torque that meets MTPA Reference flux linkage And MT coordinate current distribution (including M-axis stator current reference value And T-axis stator current reference value ), which can avoid the use of complex stator flux observation algorithms, thereby effectively avoiding the effects of permanent magnet synchronous motor parameter changes.
  • This method has the advantages of convenient calculation and strong robustness.
  • the method provided by the present invention calculates the feedforward voltage by calculating the differential of a given stator flux in one switching cycle, which can effectively avoid the influence of other parameters except the resistance of the permanent magnet synchronous motor, thereby improving the feedforward voltage Accuracy, can get faster dynamic response.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

一种永磁同步电机控制方法,其包括:获取永磁同步电机的电机电压;判断电机电压是否达到预设逆变器极限电压,其中,如果电机电压达到预设逆变器极限电压,则采用预设弱磁控制模型对永磁同步电机进行控制,以使得施加在永磁同步电机上的电压保持在预设逆变器极限电压。本方法在永磁同步电机的反电动势达到逆变器极限电压后,转为采用预设弱磁控制模型来对永磁同步电机进行控制。在采用预设弱磁控制模型来对永磁同步电机进行控制时,该方法不再使用PI调节器对电流进行闭环控制,而是切换为调节负载角来控制T轴电流,同时让M轴电流开环运行,这样也就保证了永磁同步电机高速运行的稳定性和快速性等优点。

Description

一种永磁同步电机控制方法
相关技术的交叉引用
本申请要求享有2018年11月30日提交的名称为“一种永磁同步电机控制方法”的中国专利申请CN201811453300.X的优先权,其全部内容通过引用并入本文中。
技术领域
本发明涉及电机控制技术领域,具体地说,涉及一种永磁同步电机控制方法。
背景技术
永磁同步电机由于具有高功率密度和高效率的优点,因而广泛用于各种电驱动***中。高性能永磁同步电机控制技术主要有转子磁场定向矢量控制、定子磁场定向矢量控制和直接转矩控制三类。在实际工程应用中,一般采用基于dq同步坐标系的转子磁场定向矢量控制技术。
虽然转子磁场定向矢量控制简便易行,但转子磁场定向矢量控制的一个明显缺点是对电机参数变化很敏感。另外,基于转子磁场定向矢量控制没有对磁链和转矩进行完全解耦,存在磁链与反电动势交叉耦合的问题,即d轴磁链会在q轴上产生反电动势,q轴磁链会在d轴上产生反电动势。这种耦合增加了电机矢量控制的难度。因为基于转子磁场定向矢量控制通常需要计算出用于补偿d轴、q轴反电动势的电压前馈值,受电机参数变化及动态过程的影响,很难准确地给定这两个轴的前馈电压。
在高速弱磁工况下,如果电流轨迹规划不合理,很容易导致实际电流无法跟踪给定电流,从而使得电流调节器迅速饱和,导致电流失控。一旦电流失控,电机及其控制器将有可能出现超速、过流、直流母线电压升高等故障,这不仅会损坏设备,还会危及现场人员的人身安全。
基于M-T同步坐标系的定子磁场定向矢量控制技术,由于将励磁电流和转矩电流进行完全解耦控制,并且对定子磁链进行闭环控制,因此具有相对较好的高速弱磁控制能力。
但如果定子磁场定向不准确,PI调节器需求的电压会随着弱磁深度的增加而越来越 大。在高速弱磁区,逆变器输出电压已经达到最大可调制电压,因而可用于PI调节的实际电压几乎为零,这时继续采用PI调节电压的方式来控制电流已不再合适,也很容易导致实际电流无法跟踪给定电流,使电流调节器迅速饱和,导致电流失控。
基于空间电压矢量调制的直接转矩控制技术一方面解决了基于Bang-Bang控制产生的转矩脉动问题,另一方面省去了电流闭环,对定子磁链直接控制,其保留了直接转矩控制高动态响应的优点。直接转矩控制的核心是基于精确的定子磁链和转矩观测,而实际中对定子磁链进行有效观测一般都会是很复杂的计算过程。
发明内容
为解决上述问题,本发明提供了一种永磁同步电机控制方法,所述方法包括:
步骤一、获取永磁同步电机的电机电压;
步骤二、判断所述电机电压是否达到预设逆变器极限电压,其中,如果所述电机电压达到所述预设逆变器极限电压,则采用预设弱磁控制模型对所述永磁同步电机进行控制,以使得施加在所述永磁同步电机上的电压保持在预设逆变器极限电压。
根据本发明的一个实施例,采用预设弱磁控制模型对所述永磁同步电机进行控制时:
获取当前控制周期的定子磁链参考值和转矩参考值;
根据所述本轮控制周期的定子磁链参考值和转矩参考值,确定T轴定子电流参考值
Figure PCTCN2019112505-appb-000001
α轴电压前馈参考值
Figure PCTCN2019112505-appb-000002
和β轴电压前馈参考值
Figure PCTCN2019112505-appb-000003
根据所述α轴电压前馈参考值
Figure PCTCN2019112505-appb-000004
和β轴电压前馈参考值
Figure PCTCN2019112505-appb-000005
生成相应的逆变器控制信号。
根据本发明的一个实施例,根据如下表达式生成所述α轴电压前馈参考值
Figure PCTCN2019112505-appb-000006
和β轴电压前馈参考值
Figure PCTCN2019112505-appb-000007
Figure PCTCN2019112505-appb-000008
Figure PCTCN2019112505-appb-000009
其中,R s表示定子相电阻,
Figure PCTCN2019112505-appb-000010
Figure PCTCN2019112505-appb-000011
分别表示定子电流参考值在α轴和β轴上的分量,
Figure PCTCN2019112505-appb-000012
Figure PCTCN2019112505-appb-000013
分别表示前一控制周期的定子磁链向量的幅值参考值和相位参考值,
Figure PCTCN2019112505-appb-000014
Figure PCTCN2019112505-appb-000015
分别表示当前控制周期的定子磁链向量的幅值参考值和相位参考值,T sw表示控制周期。
根据本发明的一个实施例,采用预设弱磁控制模型对所述永磁同步电机进行控制时,根据如下表达式确定定子磁链向量的相位参考值:
θ *=δ *m+δ′
其中,θ *表示定子磁链向量的相位参考值,δ *表示负载角前馈值,θ m表示转子磁场位置,δ′表示第一负载角调节值。
根据本发明的一个实施例,对于一控制周期来说,根据如下步骤确定该控制周期的负载角前馈值:
步骤a、计算所述转矩参考值与上次迭代所得到的转矩值的差值,得到本次迭代的转矩偏差值;
步骤b、根据本次迭代的转矩偏差值得到本次迭代的第二负载角调整值,并计算所述本次迭代的第二负载角调整值与上次迭代所得到的负载角参考值之和,得到本次迭代的负载角参考值;
步骤c、根据所述本次迭代的负载角参考值计算本次迭代的转矩值;
步骤d、重复步骤a至步骤c,得到该控制周期的负载角前馈值。
根据本发明的一个实施例,在所述步骤b中,计算所述本次迭代的转矩偏差值与预设调整系数的乘积,得到本次迭代的第二负载角调整值。
根据本发明的一个实施例,在所述步骤c中,根据如下表达式确定本次迭代的转矩值:
Figure PCTCN2019112505-appb-000016
其中,T e表示本次迭代的转矩值,P表示电机极数,ψ s表示定子磁链,ψ f表示主极磁链,L ds和L qs分别表示定子d轴电感和定子q轴电感,δ表示本次迭代的负载角。
根据本发明的一个实施例,根据如下步骤确定所述负载角调节值δ′:
计算所述T轴定子电流参考值
Figure PCTCN2019112505-appb-000017
与T轴定子电流实际值I T的差值;
利用预设PID控制器根据该差值生成所述负载角调节值δ′。
根据本发明的一个实施例,根据如下表达式确定T轴定子电流参考值
Figure PCTCN2019112505-appb-000018
Figure PCTCN2019112505-appb-000019
其中,T e *表示转矩参考值,P表示电机极数,ψ s *表示定子磁链参考值。
根据本发明的一个实施例,如果所述电机电压未达到所述预设逆变器极限电压,则采用预设矢量控制模型对所述永磁同步电机进行控制,
采用预设极限电压控制模型对所述永磁同步电机进行控制时:
获取本轮控制周期的定子磁链参考值和转矩参考值;
根据所述本轮控制周期的定子磁链参考值和转矩参考值,生成M轴定子电流参考值
Figure PCTCN2019112505-appb-000020
T轴定子电流参考值
Figure PCTCN2019112505-appb-000021
α轴电压前馈参考值
Figure PCTCN2019112505-appb-000022
和β轴电压前馈参考值
Figure PCTCN2019112505-appb-000023
根据所述M轴定子电流参考值
Figure PCTCN2019112505-appb-000024
以及M轴定子电流实际值I M生成α轴电流控制调节电压值U α,并根据T轴定子电流参考值
Figure PCTCN2019112505-appb-000025
以及T轴定子电流实际值I T生成β轴电流控制调节电压值U β
根据所述α轴电压前馈参考值
Figure PCTCN2019112505-appb-000026
β轴电压前馈参考值
Figure PCTCN2019112505-appb-000027
α轴电流控制调节电压值U α和β轴电流控制调节电压值U β分别生成α轴电压参考值
Figure PCTCN2019112505-appb-000028
和β轴电压参考值
Figure PCTCN2019112505-appb-000029
根据所述α轴电压参考值
Figure PCTCN2019112505-appb-000030
和β轴电压参考值
Figure PCTCN2019112505-appb-000031
生成相应的逆变器控制信号。
根据本发明的一个实施例,根据如下表达式确定M轴定子电流参考值
Figure PCTCN2019112505-appb-000032
Figure PCTCN2019112505-appb-000033
其中,
Figure PCTCN2019112505-appb-000034
表示T轴定子电流参考值,I s *表示定子电流参考值。
根据本发明的一个实施例,采用预设极限电压控制模型对所述永磁同步电机进行控制时,根据如下表达式确定定子磁链向量的相位参考值:
θ *=δ *m
其中,θ *表示定子磁链向量的相位参考值,δ *表示负载角前馈值,θ m表示转子磁场位置。
本发明所提供的永磁同步电机控制方法针对定向偏差和高速弱磁区电流控制问题,其在永磁同步电机的反电动势达到逆变器极限电压后,转为采用预设弱磁控制模型来对永磁同步电机进行控制。在采用预设弱磁控制模型来对永磁同步电机进行控制时,该方法不再使用PI调节器对电流进行闭环控制,而是切换为调节负载角来控制T轴电流,同时让M轴电流开环运行,进而使得施加在电机上的电压固定为逆变器可调制的最大电 压,这样也就保证了永磁同步电机高速运行的稳定性和快速性等优点。
同时,本发明所提供的方法采用试验的方法获得满足MTPA的期望转矩
Figure PCTCN2019112505-appb-000035
下的参考磁链
Figure PCTCN2019112505-appb-000036
和M-T坐标下的电流分配(包括M轴定子电流参考值
Figure PCTCN2019112505-appb-000037
和T轴定子电流参考值
Figure PCTCN2019112505-appb-000038
),这样也就可以避免使用复杂的定子磁链观测算法,从而有效回避永磁同步电机参数变化的影响,该方法具有运算方便、鲁棒性强等优点。
此外,本发明所提供的方法采用计算给定的定子磁链在一个开关周期的微分来计算前馈电压,其能够有效避免除永磁同步电机电阻以外的其他参数影响,从而提高了前馈电压的准确性,能获得较快的动态响应。
本发明的其它特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本发明而了解。本发明的目的和其他优点可通过在说明书、权利要求书以及附图中所特别指出的结构来实现和获得。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要的附图做简单的介绍:
图1是根据本发明一个实施例的永磁同步电机的d-q坐标系的示意图;
图2是根据本发明一个实施例的内嵌式永磁同步电动机在特定工况下磁链、电压和电流向量在d-q坐标系和M-T坐标系下的相量图;
图3是根据本发明一个实施例的永磁同步电机控制方法的实现流程示意图;
图4是根据本发明一个实施例的采用预设矢量控制模型来对永磁同步电机进行控制的实现流程示意图;
图5是根据本发明一个实施例的采用预设矢量控制模型来对永磁同步电机进行控制的控制框图;
图6是根据本发明一个实施例的确定负载角前馈值δ *的实现流程示意图;
图7是根据本发明一个实施例的确定负载角前馈值δ *的逻辑框图;
图8是根据本发明一个实施例的采用预设弱磁控制模型来对永磁同步电机进行控制的实现流程示意图;
图9是根据本发明一个实施例的采用预设弱磁控制模型来对永磁同步电机进行控制的控制逻辑框图。
具体实施方式
以下将结合附图及实施例来详细说明本发明的实施方式,借此对本发明如何应用技术手段来解决技术问题,并达成技术效果的实现过程能充分理解并据以实施。需要说明的是,只要不构成冲突,本发明中的各个实施例以及各实施例中的各个特征可以相互结合,所形成的技术方案均在本发明的保护范围之内。
同时,在以下说明中,出于解释的目的而阐述了许多具体细节,以提供对本发明实施例的彻底理解。然而,对本领域的技术人员来说显而易见的是,本发明可以不用这里的具体细节或者所描述的特定方式来实施。
另外,在附图的流程图示出的步骤可以在诸如一组计算机可执行指令的计算机***中执行,并且,虽然在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤。
在同步旋转坐标系下,永磁同步电机数学模型中相与相之间的耦合得到了消除,数学模型明显简化。将转子永磁体合成磁场轴线作为d轴(其正方向与磁力线方向一致),逆时针方向旋转90°的轴线作为q轴,可以建立如图1所示的d-q坐标系。
在永磁同步电动机d-q同步旋转坐标系下,永磁同步电机的电压方程可以表示为:
Figure PCTCN2019112505-appb-000039
其中,V ds和V qs分别表示定子d轴电压和定子q轴电压,R s表示定子相电阻,I ds和I qs分别表示定子d轴电流和定子q轴电流,ψ ds和ψ qs分别表示定子d轴磁链和定子q轴磁链,ω e表示同步频率,p表示电机极数。
磁链方程可以表示为:
Figure PCTCN2019112505-appb-000040
其中,ψ dr和ψ qr分别表示转子d轴磁链和转子q轴磁链,L ds和L qs分别表示定子d轴电感和定子q轴电感,L dm和L qm分别表示d轴定子转子互感和q轴定子转子互感,ψ f表示永磁体在定子所能够产生的磁链(主极磁链)。
转矩方程可以表示为:
Figure PCTCN2019112505-appb-000041
其中,T e表示电机电磁转矩。
定子磁场定向就是将定子磁链向量相位作为分析及控制的参考零位。将定子磁场轴线作为M轴(其正方向与磁力线方向一致),逆时针方向旋转90°的轴线作为T轴,建立M-T坐标系。采用定子磁场定向时,电机定子磁链ψ s全部位于M轴上,T轴上的磁链分量为零。在定子磁场定向下,永磁同步电动机方程得到了简化,其中定子电压方程简化为:
Figure PCTCN2019112505-appb-000042
在定子磁场坐标下的转矩方程简化为:
Figure PCTCN2019112505-appb-000043
其中,V M表示定子M轴电压,V T表示定子T轴电压,I M表示定子M轴电流,I T表示定子T轴电流。
从电压方程可以看出,稳态时M轴上的电压分量仅仅是M轴电流分量在定子电阻上的压降。
永磁同步电动机在空载时,定子磁场与主极磁场相位相同;在负载时,定子磁场与主极磁场之间存在一个相角差(也称为负载角,用符号δ表示)。图2示出了内嵌式永磁同步电动机在特定工况下磁链、电压和电流向量在d-q坐标系和M-T坐标系下的相量图。从图2可以看出,两个坐标系的相位差等于负载角δ。在图2中,I s表示定子电流向量,它在M、T坐标轴上的分量分别为I M和I T。定子电流向量的M轴分量I M与定子磁链同相位,它是电机产生无功功率的电流分量;定子电流向量的T轴分量I T与定子反电动势同相位,它是电机传递有功功率的电流分量。
具体地,I M、I T、I ds和I qs具有如下关系:
I M=I qssinδ+I dscosδ     (6)
I T=I qscosδ-I dssinδ      (7)
用于调速运行的永磁同步电动机通常在转子上安装了位置传感器,因此d轴相位可以直接通过位置传感器检测得到。本发明采用位置传感器检测的d轴相位加上负载角δ 的方式来确定定子磁场的相位,因此定向的关键是准确计算出负载角δ的值。
由于永磁同步电动机定子电感受转子位置的影响,电机设计通常只给出了d-q坐标系下d轴和q轴上的电感值,因此M-T坐标系下的计算必须借助负载角δ转换为d-q坐标系下的计算。
由永磁同步电动机磁链方程可以得到:
Figure PCTCN2019112505-appb-000044
Figure PCTCN2019112505-appb-000045
将式(8)和式(9)代入式(3),可以得到:
Figure PCTCN2019112505-appb-000046
表达式(10)描述了电磁转矩T e与定子磁链ψ s及负载角δ之间的关系,是本发明中用来计算负载角δ的基本公式。
图3示出了本实施例所提供的永磁同步电机控制方法的实现流程示意图。
如图3所示,本实施例所提供的永磁同步电机控制方法会在步骤S301中获取永磁同步电机的电机电压,并在步骤S302中判断永磁同步电机的电机电压是否达到预设逆变器极限电压。
其中,如果永磁同步电机的电机电压未达到预设逆变器极限电压,该方法会在步骤S303中采用预设矢量控制模型来对永磁同步电机进行控制;而如果永磁同步电机的电机电压达到预设逆变器极限电压,该方法则会在步骤S304中采用预设弱磁控制模型来对永磁同步电机进行控制,以使得施加在永磁同步电机上的电压保持在预设逆变器极限电压。
需要指出的是,在本发明的不同实施例中,上述预设逆变器极限电压的具体取值可以根据实际情况配置为不同的合理值,本发明并不对上述预设逆变器极限电压的具体取值进行限定。
本实施例中,该方法在采用预设矢量控制模型来对永磁同步电机进行控制时,优选地配置为通过采用PI调节器来对M轴电流和T轴电流进行闭环控制的方式来实现对永磁同步电机的控制。
具体地,图4示出了本实施例中采用预设矢量控制模型来对永磁同步电机进行控制的实现流程示意图,图5示出了本实施例中采用预设矢量控制模型来对永磁同步电机进行控制的控制框图。
如图4和图5所示,本实施例中,该方法会在步骤S401中获取本轮控制周期(即当前控制后期)的定子磁链参考值ψ s *和转矩参考值T e *。其中,该方法优选地可以通过台架试验来获取到永磁同步电机在转矩参考值T e *下满足MTPA条件下的定子磁链参考值ψ s *。同时,该方法还可以通过同样的方式来获取到永磁同步电机在转矩参考值T e *下满足MTPA条件下的定子参考电流I s *
当然,在本发明的其他实施例中,该方法还可以采用其他合理方式来获取本轮控制周期的定子磁链参考值ψ s *和定子参考电流I s *,本发明不限于此。
如图4和图5所示,本实施例中,在得到本轮控制周期的定子磁链参考值ψ s *和转矩参考值T e *后,该方法会在步骤S402中根据本轮控制周期的定子磁链参考值ψ s *和转矩参考值,生成M轴定子电流参考值
Figure PCTCN2019112505-appb-000047
T轴定子电流参考值
Figure PCTCN2019112505-appb-000048
α轴电压前馈参考值
Figure PCTCN2019112505-appb-000049
和β轴电压前馈参考值
Figure PCTCN2019112505-appb-000050
具体地,本实施例中,该方法优选地根据如下表达式确定满足MTPA的M-T坐标下的电流分配方案,即M轴定子电流参考值
Figure PCTCN2019112505-appb-000051
T轴定子电流参考值
Figure PCTCN2019112505-appb-000052
Figure PCTCN2019112505-appb-000053
Figure PCTCN2019112505-appb-000054
其中,P表示电机极数。
永磁同步电机的定子磁链与定子电压之间存在如下关系:
Figure PCTCN2019112505-appb-000055
其中,
Figure PCTCN2019112505-appb-000056
Figure PCTCN2019112505-appb-000057
分别表示永磁同步电机的定子磁链与定子电压,R s表示定子相电阻,
Figure PCTCN2019112505-appb-000058
表示定子电流。
根据表达式(13)可以看出,电机定子磁链等于定子电压(除去定子电阻上的压降)对时间的积分,只要施加在永磁同步电机上的实际电压与给定电压相等,电机就能建立相应的磁链。
通过对逆变器死区、管压降、线路压降、以及数字控制延迟等因素进行补偿,使控 制器输出电压幅值和相位尽量精确,从而间接地保证定子磁链幅值和相位的精度。在磁链准确的前提下,计算出的有功电流给定值
Figure PCTCN2019112505-appb-000059
也是准确的。
Figure PCTCN2019112505-appb-000060
为参考,通过调节器,负载角前馈误差得到了补偿,负载角的大小完全由需要产生的有功电流决定。总之,让控制器准确地输出给定电压,并以有功电流分量为参考调节负载角,这两点共同确保了定向的准确性和转矩控制的精度。
在实际运行中,为了提高控制响应速度,控制量需要前馈给定。前馈电压用于补偿定子电阻压降和反电动势。电机运行过程中定子磁链的幅值和相位都可能变化,将一个开关周期初始时刻和结束时刻的磁链向量期望值分解到α-β两相静止坐标系下,得到每个坐标轴上的磁链变化量。这个变化量既反映了磁链幅值的改变,也反映了磁链相位的推进。反电动势瞬时值等于磁链对时间的微分,对离散控制,一个开关周期内反电动势平均值近似等于磁链的变化量除以开关周期。
因此,基于上述原理,本实施例优选地采用如下表达式生成α轴电压前馈参考值
Figure PCTCN2019112505-appb-000061
和β轴电压前馈参考值
Figure PCTCN2019112505-appb-000062
Figure PCTCN2019112505-appb-000063
Figure PCTCN2019112505-appb-000064
其中,R s表示定子相电阻,
Figure PCTCN2019112505-appb-000065
Figure PCTCN2019112505-appb-000066
分别表示定子电流参考值在α轴和β轴上的分量,
Figure PCTCN2019112505-appb-000067
Figure PCTCN2019112505-appb-000068
分别表示前一控制周期的定子磁链向量的幅值参考值和相位参考值,
Figure PCTCN2019112505-appb-000069
Figure PCTCN2019112505-appb-000070
分别表示当前控制周期的定子磁链向量的幅值参考值和相位参考值,T sw表示控制周期。
需要指出的是,在本发明的其他实施例中,根据实际情况,该方法还可以采用其他合理方式来生成M轴定子电流参考值
Figure PCTCN2019112505-appb-000071
T轴定子电流参考值
Figure PCTCN2019112505-appb-000072
α轴电压前馈参考值
Figure PCTCN2019112505-appb-000073
和β轴电压前馈参考值
Figure PCTCN2019112505-appb-000074
本方面不限于此。
如图4和图5所示,本实施例中,在得到M轴定子电流参考值
Figure PCTCN2019112505-appb-000075
T轴定子电流参考值
Figure PCTCN2019112505-appb-000076
α轴电压前馈参考值
Figure PCTCN2019112505-appb-000077
和β轴电压前馈参考值
Figure PCTCN2019112505-appb-000078
后,该方法会在步骤S403中根据M轴定子电流参考值
Figure PCTCN2019112505-appb-000079
以及M轴定子电流实际值I M生成α轴电流控制调节电压值U α,还会在步骤S404中根据T轴定子电流参考值
Figure PCTCN2019112505-appb-000080
以及T轴定子电流实际值I T生成β轴电流控制调节电压值U β
具体地,本实施例中,该方法在步骤S403中优选地计算M轴定子电流参考值
Figure PCTCN2019112505-appb-000081
与 M轴定子电流实际值I M的差值,并利用PID调节器根据上述差值来得到M轴电流控制调节电压值U M。同理,该方法会在步骤S404中计算T轴定子电流参考值
Figure PCTCN2019112505-appb-000082
与T轴定子电流实际值I T的差值,并利用PID调节器根据上述差值来得到T轴电流控制调节电压值U T。通过对M轴电流控制调节电压值U M以及T轴电流控制调节电压值U T进行坐标变换,也就可以得到α轴电流控制调节电压值U α和β轴电流控制调节电压值U β
如图4和图5所示,在得到α轴电流控制调节电压值U α和β轴电流控制调节电压值U β后,该方法会在步骤S405中根据α轴电压前馈参考值
Figure PCTCN2019112505-appb-000083
β轴电压前馈参考值
Figure PCTCN2019112505-appb-000084
α轴电流控制调节电压值U α和β轴电流控制调节电压值U β分别生成α轴电压参考值
Figure PCTCN2019112505-appb-000085
和β轴电压参考值
Figure PCTCN2019112505-appb-000086
即存在:
Figure PCTCN2019112505-appb-000087
Figure PCTCN2019112505-appb-000088
随后,该方法也就可以在步骤S406中根据上述α轴电压参考值
Figure PCTCN2019112505-appb-000089
和β轴电压参考值
Figure PCTCN2019112505-appb-000090
生成相应的逆变器控制信号,从而控制逆变器的运行状态。
当然,在本发明的其他实施例中,根据实际情况,该方法还可以利用其他合理方式来采用预设矢量控制模型对永磁同步电机进行控制,本发明不限于此。
本实施例中,在确定α轴电压前馈参考值
Figure PCTCN2019112505-appb-000091
和β轴电压前馈参考值
Figure PCTCN2019112505-appb-000092
以及对M轴电流控制调节电压值U M以及T轴电流控制调节电压值U T进行坐标变换而得到α轴电流控制调节电压值U α和β轴电流控制调节电压值U β时所使用到的定子磁链向量的相位参考值θ *优选地根据如下表达式确定:
θ *=δ *m      (18)
其中,δ *表示负载角前馈值,θ m表示转子磁场位置(其优选地可以由位置传感器获取)。
表达式(10)是关于负载角的一元方程,但方程中同时含有负载角的正弦、余弦及两者的乘积,经过分析发现,根据表达式(10)难以直接求出负载角的解析解。针对该问题,本实施例中,该方法优选地采用数值计算方法得到负载角足够精确的数值解,进而得到负载角前馈值δ *
图6示出了本实施例中确定负载角前馈值δ *的实现流程示意图,图7示出了本实施例中确定负载角前馈值δ *的逻辑框图。
如图6和图7所示,本实施例中,该方法首先会在步骤S601中计算转矩参考值与上次迭代所得到的转矩值的差值,从而得到本次迭代的转矩偏差值。即存在:
Figure PCTCN2019112505-appb-000093
其中,△T e表示转矩偏差值,T ep表示迭代所得到的转矩值。
随后,该方法会在步骤S602中根据本次迭代的转矩偏差值△T e来得到本次迭代的第二负载角调整值△δ。具体地,本实施例中,该方法优选地通过计算本次迭代的转矩偏差值△T e与预设调整系数K e的乘积,从而得到本次迭代的第二负载角调整值△δ。
即,存在:
△δ=K e·△T e      (20)
在得到本次迭代的第二负载角调整值△δ后,该方法会在步骤S603中计算计算本次迭代的第二负载角调整值△δ与上次迭代所得到的负载角参考值T ep之和,从而得到本次迭代的负载角参考值。
当然,在本发明的不同实施例中,预设调整系数K e的具体取值可以根据实际情况配置为不同的合理值,本发明并不对预设调整系数K e的具体取值进行限定。
随后,该方法会在步骤S604中根据本次迭代的负载角参考值来计算本次迭代的转矩值。即将本次迭代的负载角参考值代入表达式(10)来得到本次迭代的转矩值。
这样完成了一次迭代过程,通过在一个控制周期内重复上述步骤S601至步骤S604,也就可以得到负载角前馈值δ *的精确的数值解。
需要指出的是,在本发明的其他实施例中,根据实际需要,该方法还可以采用其他合理方式来确定负载角前馈值δ *,本发明不限于此。同时,还需要指出的是,在本发明的不同实施例中,在一个控制周期内所进行的迭代次数可以根据实际需要配置为不同的合理值,本发明并不对上述迭代次数的取值进行限定。
采用如图4以及图5所示的PID闭环控制可以保证电机在堵转和启动过程中稳定地输出转矩。然而,由于参数误差和定向不准确,PID调节器需求的电压会随着电机转速的升高越来越大。但在高转速区,为了充分利用直流电压,为调节器预留的电压通常很小甚至为零,此时如果继续采用PI调节电压的方式来控制电流已不再合适。
针对该情况,再次如图3所示,本实施例中,如果永磁同步电机的电机电压达到了预设逆变器极限电压,该方法会在步骤S304中采用预设弱磁控制模型来对永磁同步电机进行控制。
图8示出了本实施例中采用预设弱磁控制模型来对永磁同步电机进行控制的实现流程示意图,图9示出了本实施例中采用预设弱磁控制模型来对永磁同步电机进行控制的控制逻辑框图。
如图8和图9所示,本实施例中,该方法首先会在步骤S801中获取本轮控制周期(即当前控制后期)的定子磁链参考值ψ s *和转矩参考值T e *。随后再在步骤S802中根据本轮控制周期的定子磁链参考值ψ s *和转矩参考值T e *,确定T轴定子电流参考值
Figure PCTCN2019112505-appb-000094
α轴电压前馈参考值
Figure PCTCN2019112505-appb-000095
和β轴电压前馈参考值
Figure PCTCN2019112505-appb-000096
其中,本实施例中,该方法确定α轴电压前馈参考值
Figure PCTCN2019112505-appb-000097
和β轴电压前馈参考值
Figure PCTCN2019112505-appb-000098
的原理以及过程优选地与上述步骤S402中确定α轴电压前馈参考值
Figure PCTCN2019112505-appb-000099
和β轴电压前馈参考值
Figure PCTCN2019112505-appb-000100
的原理和过程相同,不在此不再对该部分内容进行赘述。
本实施例中,该方法在确定α轴电压前馈参考值
Figure PCTCN2019112505-appb-000101
和β轴电压前馈参考值
Figure PCTCN2019112505-appb-000102
的过程中,优选地会使用PI调节器来对T轴定子电流进行闭环控制,同时不再使用PI调节器来对M轴定子电流进行闭环控制,而是让M轴定子电流开环运行。
具体地,本实施例中,该方法优选地根据如下表达式确定定子磁链向量的相位参考值θ *
θ *=δ *m+δ′     (21)
其中,δ *表示负载角前馈值,θ m表示转子磁场位置,δ′表示第一负载角调节值。
如图9所示,本实施例中,该方法在确定负载角调节值δ′时,优选地首先会计算T轴定子电流参考值
Figure PCTCN2019112505-appb-000103
与T轴定子电流实际值I T的差值,随后再利用预设PID控制器来根据该差值生成负载角调节值δ′。
当然,在本发明的其他实施例中,根据实际情况,该方法还可以采用其他合理方式来确定负载角调节值δ′,本发明不限于此。
如图8所示,本实施例中,在步骤S803中,该方法也就可以根据α轴电压前馈参考值
Figure PCTCN2019112505-appb-000104
和β轴电压前馈参考值
Figure PCTCN2019112505-appb-000105
生成相应的逆变器控制信号,从而控制逆变器的运行状态。
从上述描述中可以看出,本发明所提供的永磁同步电机控制方法针对定向偏差和高速弱磁区电流控制问题,其在永磁同步电机的反电动势达到逆变器极限电压后,转为采用预设弱磁控制模型来对永磁同步电机进行控制。在采用预设弱磁控制模型来对永磁同步电机进行控制时,该方法不再使用PI调节器对电流进行闭环控制,而是切换为调节负 载角来控制T轴电流,同时让M轴电流开环运行,进而使得施加在电机上的电压固定为逆变器可调制的最大电压,这样也就保证了永磁同步电机高速运行的稳定性和快速性等优点。
同时,本发明所提供的方法采用试验的方法获得满足MTPA的期望转矩
Figure PCTCN2019112505-appb-000106
下的参考磁链
Figure PCTCN2019112505-appb-000107
和M-T坐标下的电流分配(包括M轴定子电流参考值
Figure PCTCN2019112505-appb-000108
和T轴定子电流参考值
Figure PCTCN2019112505-appb-000109
),这样也就可以避免使用复杂的定子磁链观测算法,从而有效回避永磁同步电机参数变化的影响,该方法具有运算方便、鲁棒性强等优点。
此外,本发明所提供的方法采用计算给定的定子磁链在一个开关周期的微分来计算前馈电压,其能够有效避免除永磁同步电机电阻以外的其他参数影响,从而提高了前馈电压的准确性,能获得较快的动态响应。
应该理解的是,本发明所公开的实施例不限于这里所公开的特定结构或处理步骤,而应当延伸到相关领域的普通技术人员所理解的这些特征的等同替代。还应当理解的是,在此使用的术语仅用于描述特定实施例的目的,而并不意味着限制。
说明书中提到的“一个实施例”或“实施例”意指结合实施例描述的特定特征、结构或特性包括在本发明的至少一个实施例中。因此,说明书通篇各个地方出现的短语“一个实施例”或“实施例”并不一定均指同一个实施例。
虽然上述示例用于说明本发明在一个或多个应用中的原理,但对于本领域的技术人员来说,在不背离本发明的原理和思想的情况下,明显可以在形式上、用法及实施的细节上作各种修改而不用付出创造性劳动。因此,本发明由所附的权利要求书来限定。

Claims (12)

  1. 一种永磁同步电机控制方法,其中,所述方法包括:
    步骤一、获取永磁同步电机的电机电压;
    步骤二、判断所述电机电压是否达到预设逆变器极限电压,其中,如果所述电机电压达到所述预设逆变器极限电压,则采用预设弱磁控制模型对所述永磁同步电机进行控制,以使得施加在所述永磁同步电机上的电压保持在预设逆变器极限电压。
  2. 如权利要求1所述的方法,其中,采用预设弱磁控制模型对所述永磁同步电机进行控制时:
    获取当前控制周期的定子磁链参考值和转矩参考值;
    根据所述本轮控制周期的定子磁链参考值和转矩参考值,确定T轴定子电流参考值
    Figure PCTCN2019112505-appb-100001
    α轴电压前馈参考值
    Figure PCTCN2019112505-appb-100002
    和β轴电压前馈参考值
    Figure PCTCN2019112505-appb-100003
    根据所述α轴电压前馈参考值
    Figure PCTCN2019112505-appb-100004
    和β轴电压前馈参考值
    Figure PCTCN2019112505-appb-100005
    生成相应的逆变器控制信号。
  3. 如权利要求2所述的方法,其中,根据如下表达式生成所述α轴电压前馈参考值
    Figure PCTCN2019112505-appb-100006
    和β轴电压前馈参考值
    Figure PCTCN2019112505-appb-100007
    Figure PCTCN2019112505-appb-100008
    Figure PCTCN2019112505-appb-100009
    其中,R s表示定子相电阻,
    Figure PCTCN2019112505-appb-100010
    Figure PCTCN2019112505-appb-100011
    分别表示定子电流参考值在α轴和β轴上的分量,
    Figure PCTCN2019112505-appb-100012
    Figure PCTCN2019112505-appb-100013
    分别表示前一控制周期的定子磁链向量的幅值参考值和相位参考值,
    Figure PCTCN2019112505-appb-100014
    Figure PCTCN2019112505-appb-100015
    分别表示当前控制周期的定子磁链向量的幅值参考值和相位参考值,T sw表示控制周期。
  4. 如权利要求3所述的方法,其中,采用预设弱磁控制模型对所述永磁同步电机进行控制时,根据如下表达式确定定子磁链向量的相位参考值:
    θ *=δ *m+δ′
    其中,θ *表示定子磁链向量的相位参考值,δ *表示负载角前馈值,θ m表示转子磁场位置,δ′表示第一负载角调节值。
  5. 如权利要求4所述的方法,其中,对于一控制周期来说,根据如下步骤确定该控制周期的负载角前馈值:
    步骤a、计算所述转矩参考值与上次迭代所得到的转矩值的差值,得到本次迭代的转矩偏差值;
    步骤b、根据本次迭代的转矩偏差值得到本次迭代的第二负载角调整值,并计算所述本次迭代的第二负载角调整值与上次迭代所得到的负载角参考值之和,得到本次迭代的负载角参考值;
    步骤c、根据所述本次迭代的负载角参考值计算本次迭代的转矩值;
    步骤d、重复步骤a至步骤c,得到该控制周期的负载角前馈值。
  6. 如权利要求5所述的方法,其中,在所述步骤b中,计算所述本次迭代的转矩偏差值与预设调整系数的乘积,得到本次迭代的第二负载角调整值。
  7. 如权利要求5或6所述的方法,其中,在所述步骤c中,根据如下表达式确定本次迭代的转矩值:
    Figure PCTCN2019112505-appb-100016
    其中,T e表示本次迭代的转矩值,P表示电机极数,ψ s表示定子磁链,ψ f表示主极磁链,L ds和L qs分别表示定子d轴电感和定子q轴电感,δ表示本次迭代的负载角。
  8. 如权利要求4~7中任一项所述的方法,其中,根据如下步骤确定所述负载角调节值δ′:
    计算所述T轴定子电流参考值
    Figure PCTCN2019112505-appb-100017
    与T轴定子电流实际值I T的差值;
    利用预设PID控制器根据该差值生成所述负载角调节值δ′。
  9. 如权利要求2~8中任一项所述的方法,其中,根据如下表达式确定T轴定子电流参考值
    Figure PCTCN2019112505-appb-100018
    Figure PCTCN2019112505-appb-100019
    其中,T e *表示转矩参考值,P表示电机极数,ψ s *表示定子磁链参考值。
  10. 如权利要求1~9中任一项所述的方法,其中,如果所述电机电压未达到所述预设 逆变器极限电压,则采用预设矢量控制模型对所述永磁同步电机进行控制,
    采用预设极限电压控制模型对所述永磁同步电机进行控制时:
    获取本轮控制周期的定子磁链参考值和转矩参考值;
    根据所述本轮控制周期的定子磁链参考值和转矩参考值,生成M轴定子电流参考值
    Figure PCTCN2019112505-appb-100020
    T轴定子电流参考值
    Figure PCTCN2019112505-appb-100021
    α轴电压前馈参考值
    Figure PCTCN2019112505-appb-100022
    和β轴电压前馈参考值
    Figure PCTCN2019112505-appb-100023
    根据所述M轴定子电流参考值
    Figure PCTCN2019112505-appb-100024
    以及M轴定子电流实际值I M生成α轴电流控制调节电压值U α,并根据T轴定子电流参考值
    Figure PCTCN2019112505-appb-100025
    以及T轴定子电流实际值I T生成β轴电流控制调节电压值U β
    根据所述α轴电压前馈参考值
    Figure PCTCN2019112505-appb-100026
    β轴电压前馈参考值
    Figure PCTCN2019112505-appb-100027
    α轴电流控制调节电压值U α和β轴电流控制调节电压值U β分别生成α轴电压参考值
    Figure PCTCN2019112505-appb-100028
    和β轴电压参考值
    Figure PCTCN2019112505-appb-100029
    根据所述α轴电压参考值
    Figure PCTCN2019112505-appb-100030
    和β轴电压参考值
    Figure PCTCN2019112505-appb-100031
    生成相应的逆变器控制信号。
  11. 如权利要求10所述的方法,其中,根据如下表达式确定M轴定子电流参考值
    Figure PCTCN2019112505-appb-100032
    Figure PCTCN2019112505-appb-100033
    其中,
    Figure PCTCN2019112505-appb-100034
    表示T轴定子电流参考值,I s *表示定子电流参考值。
  12. 如权利要求10或11所述的方法,其中,采用预设极限电压控制模型对所述永磁同步电机进行控制时,根据如下表达式确定定子磁链向量的相位参考值:
    θ *=δ *m
    其中,θ *表示定子磁链向量的相位参考值,δ *表示负载角前馈值,θ m表示转子磁场位置。
PCT/CN2019/112505 2018-11-30 2019-10-22 一种永磁同步电机控制方法 WO2020108173A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811453300.X 2018-11-30
CN201811453300.XA CN111262486B (zh) 2018-11-30 2018-11-30 一种永磁同步电机控制方法

Publications (1)

Publication Number Publication Date
WO2020108173A1 true WO2020108173A1 (zh) 2020-06-04

Family

ID=70852400

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/112505 WO2020108173A1 (zh) 2018-11-30 2019-10-22 一种永磁同步电机控制方法

Country Status (2)

Country Link
CN (1) CN111262486B (zh)
WO (1) WO2020108173A1 (zh)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113746390A (zh) * 2021-10-09 2021-12-03 陕西航空电气有限责任公司 一种航空通用电机控制器多台泵电机切换转子预定位方法
CN113737451A (zh) * 2021-09-18 2021-12-03 海信(山东)冰箱有限公司 洗衣机电机的弱磁控制方法、装置、洗衣机及存储介质
CN113809960A (zh) * 2021-08-31 2021-12-17 西安理工大学 无负载转矩观测器的永磁同步电机模型预测速度控制方法
CN114050748A (zh) * 2021-10-20 2022-02-15 西安理工大学 一种五相双励磁同步电机分区协调控制方法
CN114157204A (zh) * 2021-12-02 2022-03-08 上海维宏智能技术有限公司 针对异步电机定子磁链实现弱磁控制的方法、***、装置、处理器及其计算机可读存储介质
CN114172430A (zh) * 2021-12-02 2022-03-11 广东工业大学 一种矢量控制永磁同步电机的参数检测方法
CN114268259A (zh) * 2021-12-28 2022-04-01 郑州大学 用于永磁同步电机的多目标控制方法、控制器及控制***
CN114531083A (zh) * 2022-03-15 2022-05-24 北京理工大学 永磁同步电机单电流传感器预测控制和参数辨识方法
CN114567224A (zh) * 2022-01-27 2022-05-31 大连海事大学 一种基于比例谐振控制器的永磁同步电机双矢量模型预测电流控制***
CN114629395A (zh) * 2022-03-16 2022-06-14 北京理工大学 一种无电流传感器的电机驱动策略
CN115441787A (zh) * 2022-09-30 2022-12-06 东风商用车有限公司 一种电机前馈解耦控制方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111756291B (zh) * 2020-07-08 2023-08-18 东风电子科技股份有限公司 新能源汽车永磁同步电机控制器实现抑制电压饱和失控控制的方法
CN113452301B (zh) * 2021-05-26 2022-08-30 中车株洲电力机车研究所有限公司 直接转矩弱磁控制方法、装置、存储介质及电子设备
CN115603628B (zh) * 2022-10-27 2023-11-17 西安理工大学 一种永磁同步电机单电流调节的无传感器动态性提升方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104333273A (zh) * 2014-09-28 2015-02-04 四川长虹电器股份有限公司 永磁同步电机变频控制器弱磁控制方法
JP2015119565A (ja) * 2013-12-18 2015-06-25 株式会社東芝 インバータ装置、及び、インバータ制御方法
CN104980076A (zh) * 2015-06-29 2015-10-14 苏州八方电机科技有限公司 一种永磁电机***的弱磁故障控制方法
CN105763118A (zh) * 2016-04-08 2016-07-13 合肥工业大学 一种改善驾驶员快速操纵方向盘手感的eps控制方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005151653A (ja) * 2003-11-13 2005-06-09 Toshiba Corp 同期電動機の制御装置
JP5181551B2 (ja) * 2006-08-11 2013-04-10 株式会社デンソー 多相回転機の制御装置
CN101383547A (zh) * 2008-10-13 2009-03-11 哈尔滨工业大学 适合于弱磁控制的高速永磁同步电机转子
KR101562419B1 (ko) * 2011-07-05 2015-10-22 엘에스산전 주식회사 매입형 영구자석 동기 전동기의 구동장치
CN105450121B (zh) * 2015-12-30 2018-06-15 南京埃斯顿自动控制技术有限公司 一种电机弱磁控制方法
CN106936350A (zh) * 2017-03-15 2017-07-07 上海航天控制技术研究所 永磁同步电动舵机***弱磁控制方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015119565A (ja) * 2013-12-18 2015-06-25 株式会社東芝 インバータ装置、及び、インバータ制御方法
CN104333273A (zh) * 2014-09-28 2015-02-04 四川长虹电器股份有限公司 永磁同步电机变频控制器弱磁控制方法
CN104980076A (zh) * 2015-06-29 2015-10-14 苏州八方电机科技有限公司 一种永磁电机***的弱磁故障控制方法
CN105763118A (zh) * 2016-04-08 2016-07-13 合肥工业大学 一种改善驾驶员快速操纵方向盘手感的eps控制方法

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113809960B (zh) * 2021-08-31 2023-05-12 西安理工大学 无负载转矩观测器的永磁同步电机模型预测速度控制方法
CN113809960A (zh) * 2021-08-31 2021-12-17 西安理工大学 无负载转矩观测器的永磁同步电机模型预测速度控制方法
CN113737451A (zh) * 2021-09-18 2021-12-03 海信(山东)冰箱有限公司 洗衣机电机的弱磁控制方法、装置、洗衣机及存储介质
CN113737451B (zh) * 2021-09-18 2024-04-19 海信冰箱有限公司 洗衣机电机的弱磁控制方法、装置、洗衣机及存储介质
CN113746390B (zh) * 2021-10-09 2023-12-19 陕西航空电气有限责任公司 一种航空通用电机控制器多台泵电机切换转子预定位方法
CN113746390A (zh) * 2021-10-09 2021-12-03 陕西航空电气有限责任公司 一种航空通用电机控制器多台泵电机切换转子预定位方法
CN114050748A (zh) * 2021-10-20 2022-02-15 西安理工大学 一种五相双励磁同步电机分区协调控制方法
CN114172430B (zh) * 2021-12-02 2023-07-04 广东工业大学 一种矢量控制永磁同步电机的参数检测方法
CN114157204B (zh) * 2021-12-02 2023-10-27 上海维宏智能技术有限公司 实现磁链弱磁控制方法、***、装置、处理器及存储介质
CN114172430A (zh) * 2021-12-02 2022-03-11 广东工业大学 一种矢量控制永磁同步电机的参数检测方法
CN114157204A (zh) * 2021-12-02 2022-03-08 上海维宏智能技术有限公司 针对异步电机定子磁链实现弱磁控制的方法、***、装置、处理器及其计算机可读存储介质
CN114268259A (zh) * 2021-12-28 2022-04-01 郑州大学 用于永磁同步电机的多目标控制方法、控制器及控制***
CN114567224A (zh) * 2022-01-27 2022-05-31 大连海事大学 一种基于比例谐振控制器的永磁同步电机双矢量模型预测电流控制***
CN114531083A (zh) * 2022-03-15 2022-05-24 北京理工大学 永磁同步电机单电流传感器预测控制和参数辨识方法
CN114531083B (zh) * 2022-03-15 2024-04-12 北京理工大学 永磁同步电机单电流传感器预测控制和参数辨识方法
CN114629395A (zh) * 2022-03-16 2022-06-14 北京理工大学 一种无电流传感器的电机驱动策略
CN114629395B (zh) * 2022-03-16 2024-04-26 北京理工大学 一种无电流传感器的电机驱动方法
CN115441787A (zh) * 2022-09-30 2022-12-06 东风商用车有限公司 一种电机前馈解耦控制方法

Also Published As

Publication number Publication date
CN111262486B (zh) 2021-11-16
CN111262486A (zh) 2020-06-09

Similar Documents

Publication Publication Date Title
WO2020108173A1 (zh) 一种永磁同步电机控制方法
WO2021017237A1 (zh) 永磁同步电机低载波比无差拍控制***及方法
CN109302111B (zh) 永磁同步电机的混合位置观测器及无位置传感器伺服***
CN107317532B (zh) 基于滑模的永磁同步电机预测电流控制方法和***
CN107046387B (zh) 一种永磁同步电机的变pid参数电流环启动方法
WO2019218389A1 (zh) 基于虚拟电压注入的感应电机无速度传感器驱动控制方法
JP4480696B2 (ja) モータ制御装置
WO2022133892A1 (zh) 永磁同步电机的mtpa控制方法、装置、***及设备
EP3252941B1 (en) Inverter control apparatus and motor driving system
CN103401503B (zh) 一种在谐波平面在线辨识双三相电机参数的方法及装置
CN106549620B (zh) 一种异步电机无速度传感器矢量控制***低频处理方法
CN110022107B (zh) 无位置传感器驱动***电流传感器容错方法
CN108521243B (zh) 一种基于空间矢量调制的高速永磁同步电机直接功率控制方法
JP2004080986A (ja) 電動機の制御装置
KR20070011486A (ko) 동기기 제어 장치
CN103178769A (zh) 永磁同步电机静止状态下参数离线辨识方法
TW201421893A (zh) 永磁同步電機轉子位置偏差測量裝置及方法
WO2008004417A1 (fr) Appareil de commande sans capteur de machine synchrone
CN105680752B (zh) 一种永磁同步电机饱和电感参数的辨识方法及***
JPWO2014192467A1 (ja) 永久磁石型同期電動機の磁極位置検出装置
JP4972135B2 (ja) モータ制御装置
Wang et al. A comparative overview of indirect field oriented control (IFOC) and deadbeat-direct torque and flux control (DB-DTFC) for AC Motor Drives
CN115242154B (zh) 一种I-f启动到位置滑模观测器的自适应平滑切换方法
CN108448971B (zh) 一种无刷双馈发电机的控制***及模型预测电流控制方法
CN112865653A (zh) 一种新型变交轴电压单电流调节器弱磁控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19889396

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19889396

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19889396

Country of ref document: EP

Kind code of ref document: A1