WO2020107232A1 - 一种基于区块链的硬件钱包、交易***以及存储介质 - Google Patents

一种基于区块链的硬件钱包、交易***以及存储介质 Download PDF

Info

Publication number
WO2020107232A1
WO2020107232A1 PCT/CN2018/117752 CN2018117752W WO2020107232A1 WO 2020107232 A1 WO2020107232 A1 WO 2020107232A1 CN 2018117752 W CN2018117752 W CN 2018117752W WO 2020107232 A1 WO2020107232 A1 WO 2020107232A1
Authority
WO
WIPO (PCT)
Prior art keywords
wallet
biological information
transaction data
key
smart terminal
Prior art date
Application number
PCT/CN2018/117752
Other languages
English (en)
French (fr)
Inventor
袁振南
王力丰
Original Assignee
区链通网络有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 区链通网络有限公司 filed Critical 区链通网络有限公司
Priority to CN201880002426.7A priority Critical patent/CN109844787A/zh
Priority to PCT/CN2018/117752 priority patent/WO2020107232A1/zh
Publication of WO2020107232A1 publication Critical patent/WO2020107232A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q20/00Payment architectures, schemes or protocols
    • G06Q20/04Payment circuits
    • G06Q20/06Private payment circuits, e.g. involving electronic currency used among participants of a common payment scheme
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q20/00Payment architectures, schemes or protocols
    • G06Q20/30Payment architectures, schemes or protocols characterised by the use of specific devices or networks
    • G06Q20/36Payment architectures, schemes or protocols characterised by the use of specific devices or networks using electronic wallets or electronic money safes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q20/00Payment architectures, schemes or protocols
    • G06Q20/38Payment protocols; Details thereof
    • G06Q20/40Authorisation, e.g. identification of payer or payee, verification of customer or shop credentials; Review and approval of payers, e.g. check credit lines or negative lists
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q40/00Finance; Insurance; Tax strategies; Processing of corporate or income taxes
    • G06Q40/04Trading; Exchange, e.g. stocks, commodities, derivatives or currency exchange

Definitions

  • This application relates to the field of blockchain, in particular to a hardware wallet, transaction system and storage medium based on blockchain.
  • Blockchain technology is called “distributed ledger technology”
  • distributed ledger technology is an Internet database technology, which has the characteristics of decentralization, collective maintenance, high transparency, detrust and anonymity, and realizes the "end-to-end” transfer of value. It makes more and more people accept, believe and start to use it to construct and transform a new financial and social service system.
  • Current common currency wallets can include web wallets on the computer side, application light wallets and hardware wallets for smart terminals.
  • both the computer-side web wallet and the smart terminal application light wallet can be connected to the Internet. Therefore, important data such as security keys and contracts stored in the computer-side web wallet and smart terminal application light wallet are relatively stolen or stolen.
  • the current hardware wallet is an offline computer, U disk and other devices, so that although important data can be avoided from being stolen or tampered with during the storage process by disconnecting from the Internet, it still needs to read the important data stored in it during use Access to the terminal is inconvenient to use, and there is also a risk of being stolen or tampered with during reading to the terminal.
  • the purpose of this application is to provide a blockchain-based hardware wallet, transaction system and storage medium, which can improve the security of the transaction system.
  • the present application provides a blockchain-based hardware wallet, which includes: a biological information collection module for collecting target biological information entered by a user; a security chip coupled to the biological information collection module, It is used to obtain the target biological information and verify the target biological information based on the standard biological information pre-stored in the security chip; the communication module, coupled to the security chip, is used to receive the first sent by the smart terminal when the target biological information verification is passed Transaction data, and the signed second transaction data to the smart terminal, so that the smart terminal broadcasts the second transaction data to the blockchain network; where the first transaction data is obtained by the smart terminal and calculated using the pre-stored public key The obtained transaction data including the wallet address, the second transaction data is the transaction data obtained by the security chip based on the wallet address contained in the first transaction data to obtain the pre-stored corresponding wallet private key, and using the wallet private key to sign the first transaction data .
  • the present application also proposes a storage medium, which is applied to a hardware wallet and stores standard biological information and program data in the storage medium; wherein, when the program data is executed, it is used to implement the following method: acquiring biological information collection The target bio-information entered by the user collected by the module; the target bio-information is verified based on the pre-stored standard bio-information; when the target bio-information verification is passed, the first transaction data sent by the intelligent terminal is received, and the The second transaction data, so that the smart terminal broadcasts the second transaction data to the blockchain network; where the first transaction data is the transaction data including the wallet address obtained by the smart terminal and calculated using the pre-stored public key, the second The transaction data is the transaction data obtained by the security chip acquiring the pre-stored corresponding wallet private key based on the wallet address contained in the first transaction data, and using the wallet private key to sign the first transaction data.
  • the transaction system includes a hardware wallet and an intelligent terminal; the hardware wallet includes a biological information collection module, a security chip, and a communication module; among them, the biological information collection module Group, used to collect the target biological information entered by the user; a security chip, coupled to the biological information collection module, used to obtain the target biological information, and verify the target biological information based on the standard biological information pre-stored in the security chip; for smart terminals
  • the communication module is used to receive the smart terminal when the target biological information verification is passed
  • the first transaction data and the signed second transaction data are sent to the smart terminal, so that the smart terminal broadcasts the second transaction data to the blockchain network; where the second transaction data is based on the first transaction data in the security chip
  • the included wallet address obtains the pre-stored corresponding wallet private key, and uses the wallet private key to sign transaction data
  • the hardware wallet of this application uses the verification of biological information to activate the wallet function; the smart terminal obtains the transaction data after the wallet function is activated; the hardware wallet obtains the wallet address included in the transaction data, according to the wallet address Corresponding to the wallet private key, the wallet private key is used to sign the transaction data; the signed transaction data is sent to the smart terminal; the smart terminal receives the signed transaction data and broadcasts it to the blockchain network.
  • the use of biological information verification to activate the offline hardware wallet and login using biological information improves the security of the hardware wallet; further, the activated hardware wallet is used to sign the transaction data obtained by the smart terminal.
  • the wallet private key is always in the hardware wallet without leakage, which improves the security of the wallet private key storage.
  • FIG. 1 is a schematic structural diagram of an embodiment of a blockchain-based wallet system of this application
  • FIG. 2 is a schematic structural diagram of an embodiment of the present application based on a hardware wallet
  • FIG. 3 is a flowchart of a first embodiment of a method for using a blockchain-based wallet system of this application
  • FIG. 4 is a schematic diagram of the interaction of the wallet system in the embodiment of the usage method shown in FIG. 3;
  • FIG. 5 is a flowchart of a second embodiment of a method for using a wallet system based on a blockchain in this application;
  • FIG. 6 is a schematic diagram of the interaction of the wallet system in the embodiment of the usage method shown in FIG. 5;
  • FIG. 7 is a flowchart of a third embodiment of a method for using a blockchain-based wallet system of this application.
  • FIG. 8 is a schematic diagram of the interaction of the wallet system in the embodiment of the usage method shown in FIG. 7;
  • FIG. 9 is a flow chart of a fourth embodiment of the application method of the blockchain-based wallet system of this application.
  • FIG. 10 is a schematic diagram of the interaction of the wallet system in the embodiment of the usage method shown in FIG. 9;
  • FIG. 11 is a flowchart of an embodiment of a method for using a blockchain-based wallet of this application.
  • FIG. 12 is a flowchart of an embodiment of a method for using a smart terminal based on a blockchain in this application;
  • FIG. 13 is a schematic structural diagram of an embodiment of a storage medium of the present application.
  • the directional indication is only used to explain a specific posture (as shown in the drawings) The relative positional relationship, movements, etc. of the components below, if the specific posture changes, then the directional indication changes accordingly.
  • first”, “second”, etc. are for descriptive purposes only, and cannot be understood as instructions or hints Its relative importance or implicitly indicates the number of technical features indicated.
  • the features defined with “first” and “second” may include at least one of the features either explicitly or implicitly.
  • the technical solutions between the various embodiments can be combined with each other, but they must be based on the ability of those skilled in the art to realize. When the combination of technical solutions contradicts or cannot be realized, it should be considered that the combination of such technical solutions does not exist , Nor within the scope of protection required by this application.
  • FIG. 1 is a schematic structural diagram of an embodiment of a blockchain-based transaction system of the present application.
  • the transaction system 100 of this embodiment includes a hardware wallet 10 and a smart terminal 20 that can communicate with each other; where the smart terminal 20 can be added to the blockchain network as a blockchain node; the hardware wallet 10 uses Bluetooth, Near-field wireless communication technologies such as WIFI or NFC perform data interaction with the smart terminal 20.
  • a Bluetooth module of Android 6.0 or later may be used.
  • the smart terminal 20 may be a terminal device such as a smart phone, tablet computer, notebook computer, desktop computer, or smart wearable device, which is not specifically limited in this application.
  • the smart terminal 20 may be provided with a touch screen 201 for receiving various control instructions and transaction requests input by the user, and displaying the account information contained in the hardware wallet 10 to the user.
  • the wallet function of the hardware wallet 10 is activated by the user, and the hardware wallet 10 obtains the standard biometric information entered by the user to activate the wallet function. After the wallet function of the hardware wallet 10 is activated, it can communicate with the smart terminal 20 Connect.
  • the hardware wallet 10 before the transaction, the user uses standard biological information to activate the wallet function of the hardware wallet 10; after completing the activation of the wallet function of the hardware wallet 10, the hardware wallet 10 establishes a connection with the smart terminal 20.
  • the user can initiate a transaction request through the smart terminal 20, and the smart terminal 20 obtains the corresponding data from the blockchain network, constructs the first transaction data corresponding to the transaction request from the data, and sets the first transaction data Send to hardware wallet 10.
  • the hardware wallet 10 After receiving the first transaction data, the hardware wallet 10 reads the wallet address contained in the first transaction data, and obtains the wallet private key stored in the hardware wallet 10 according to the wallet address, and the hardware wallet 10 can use the wallet private The key signs the received transaction data, thereby making the transaction valid.
  • the hardware wallet 10 further sends the second transaction data signed by the wallet private key to the smart terminal 20.
  • the smart terminal 20 receives the signed second transaction data and broadcasts it to the blockchain network.
  • the wallet address and wallet public key are stored in the smart terminal 20, and the smart terminal 20 obtains corresponding data from the blockchain network, and verifies the transaction through the wallet public key.
  • the biological information may be fingerprint, palmprint, voiceprint, iris, human face, etc., which has unique biometric information that represents the user's identity.
  • FIG. 2 is a schematic structural diagram of an embodiment of a hardware wallet provided by the present application.
  • the hardware wallet 10 includes a biological information collection module 101, a security chip 102, and a communication module 103.
  • the security chip 102 is respectively coupled to the biological information collection module 101 and the communication module 103.
  • This embodiment takes the biological information collection module 101 as a fingerprint module as an example, where the fingerprint module conforms to Google and github based Standards can be extended to web application authentication devices.
  • the biological information collection module 101 collects the fingerprint information of the user, and uses the fingerprint information as an activation key to activate the wallet function of the hardware wallet 10. Specifically, the biological information collection module 101 sends the collected fingerprint information to the security chip 102, and the security chip 102 encrypts and stores the standard fingerprint information.
  • the security chip 102 is provided inside the hardware wallet.
  • the biological information collection module 101 collects the target biological information entered by the user; the security chip 102 obtains the target biological information collected by the biological information collection module 101, and is based on the standard biological information stored in the security chip The target biological information is verified; the subsequent transaction process is performed only when the target biological information verification is passed, that is, when the target biological information verification is passed, the communication module 103 receives the first transaction data sent by the smart terminal 20 and sends it to the smart terminal 20 The signed second transaction data, so that the smart terminal 20 broadcasts the second transaction data to the blockchain network.
  • a standard algorithm is used to process the standard biological information to obtain data A and store it in the security chip 102, and during verification, the collected target biological information is stored in The security chip 102 adopts the same setting algorithm as described above to process the target biological information to obtain data B, and then compares the data A with the data B to determine whether the collected target biological information passes verification.
  • the security chip 102 in this embodiment is a memory chip with extremely high security.
  • both writing and reading of the security chip 102 need to use corresponding algorithms to encrypt/decrypt to improve its security performance.
  • the transaction data must be signed by the wallet private key transferred out of the wallet before it can take effect. That is to say, if you own the wallet private key, you can assume that you have the digital currency in the corresponding wallet.
  • Digital currency security is to protect the security of users' wallet private keys.
  • the biological information is activated on the offline hardware wallet 10 on the Internet, and the biological information is used to log in to improve the security of the hardware wallet 10; further, the activated hardware wallet 10 is used to obtain transaction data on the smart terminal 20
  • the signature process is performed. During the process, the wallet private key is always in the hardware wallet 10 without leakage, which improves the security of the wallet private key storage.
  • a wallet key pair is generated.
  • the smart terminal 20 acquires the key generation instruction, and sends the key generation instruction to the hardware wallet 10.
  • the security chip 102 After the communication module 103 receives the key generation instruction sent by the smart terminal 20, the security chip 102 generates a wallet key pair based on the key generation instruction, and stores the generated wallet key pair.
  • the wallet key pair generated by the hardware wallet 10 is also stored in the security chip 102.
  • the security chip 102 may use a chip with a larger storage space, for example, may be 512M, in which a part of the space is used to store standard biological information, and the other part is used for a wallet key pair.
  • the wallet key pair includes the wallet private key and the wallet public key; where the wallet private key is a set of random numbers with 256 bits generated by a random number generator, and the corresponding wallet public key is calculated by the elliptic curve algorithm Key; where, the wallet private key cannot be calculated from the wallet public key, only the wallet public key can be calculated from the wallet private key.
  • the public key hash is calculated from the public key of the wallet, and then a one-byte address version number is connected to the public key hash header to perform two hash operations on it, and the first four bytes of the result are used as the public key
  • the check value of the hash is connected to its tail; the result is further encoded, and then the wallet address is obtained through the wallet public key.
  • the derivation calculation process of the wallet private key, wallet public key and wallet address is irreversible, therefore, the wallet private key cannot be derived from the wallet address or wallet public key.
  • the security chip 102 generates a set of random numbers by a random number generator based on a key generation instruction, and then obtains the wallet private key, and further calculates the wallet public key based on the wallet private key.
  • the wallet public key and the wallet The private key forms a wallet key pair.
  • the security chip 102 stores the wallet private key, and sends the calculated wallet public key to the smart terminal 20 through the communication module 103.
  • the smart terminal 20 calculates the corresponding wallet address from the wallet public key; the smart terminal 20 stores the received wallet public key and the calculated wallet address.
  • the wallet address and wallet public key can be broadcast to the blockchain network through the smart terminal 20, and the wallet private key is stored in the security chip 102. Since the hardware wallet 10 is always offline in the Internet, the wallet private key will not be used by the hardware wallet 10 The acquisition of other devices besides improves the security of user accounts.
  • the method of using the transaction system shown in FIG. 1 and the hardware wallet shown in FIG. 2 may include activation before the transaction and use in the transaction:
  • the biological information collection module 10 collects standard biological information
  • the security chip 102 uses the obtained standard biological information to activate the wallet function, and stores the standard biological information.
  • the activated hardware wallet 10 can use the communication module
  • the group 103 establishes a connection with the intelligent terminal 20 to complete data interaction.
  • the smart terminal 20 obtains a key generation instruction, where the key generation instruction can be generated by a user operating the smart terminal 20, and sends the key generation instruction to the hardware wallet 10, and the biological information collection module 10 receives the key
  • the security chip 102 generates the wallet private key and the wallet public key based on the key generation instruction, and stores the wallet private key, and sends the wallet public key to the smart terminal 20 through the communication module 103, so that the smart terminal 20 according to the wallet public key The key is calculated to get the wallet address.
  • the standard biological information and wallet private key are stored in the security chip 102, and the smart terminal 20 stores the wallet public key and wallet address.
  • the login process before the transaction the biological information collection module 10 collects the target biological information, and the security chip 102 verifies the target biological information based on the stored standard biological information. Only after the verification is passed, the subsequent transaction process is performed.
  • the intelligent terminal 20 obtains corresponding data from the blockchain network, thereby constructing corresponding first transaction data, and sending the first transaction data to the hardware wallet 10.
  • the hardware wallet 10 receives the first transaction data through the communication module 103, the security chip 102 reads out the wallet address contained in the transaction data, and obtains the wallet private key stored in the hardware wallet 10 according to the wallet address; further using the wallet private key Sign the transaction data, and use the communication module 103 to send the second transaction data signed by the wallet private key to the smart terminal 20.
  • the smart terminal 20 encrypts the signed second transaction data and broadcasts it to the blockchain network.
  • A1 may only be activated when the device (hardware wallet) is used for the first time, and subsequent A2 and A3 are performed during each transaction.
  • the smart terminal 20 can create an OPEND account (that is, an OPENID public key), and the hardware wallet 10 generates a root key, and generates a wallet key pair and an OPENID private key based on the same root key.
  • an OPEND account that is, an OPENID public key
  • the hardware wallet 10 generates a root key, and generates a wallet key pair and an OPENID private key based on the same root key.
  • the biological information collection module 10 collects standard biological information
  • the security chip 102 uses the obtained standard biological information to activate the wallet function, and stores the standard biological information.
  • the activated hardware wallet 10 can be used with an intelligent terminal 20 Establish a connection. Further, the smart terminal 20 obtains the key generation instruction and sends the key generation instruction to the hardware wallet 10.
  • the security chip 102 After the communication module 103 receives the key generation instruction, the security chip 102 generates a root key based on the key generation instruction; at the same time, the security The chip 102 further generates a wallet private key and an OPENID private key based on the root key step, and further generates a wallet public key based on the wallet private key.
  • the security chip 102 stores the generated wallet private key and OPENID private key, and sends the wallet public key to the smart terminal 20 through the communication module 103, so that the smart terminal 20 calculates the wallet address according to the wallet public key.
  • the hardware wallet 10 stores standard biological information and the wallet private key
  • the smart terminal 20 stores the wallet public key and wallet address.
  • the biological information collection module 10 collects standard biological information, and the security chip 102 verifies the target biological information based on the pre-stored standard biological information; further, the user calls the stored OPENID account on the smart terminal 20 side, and Send the OPENID account to the hardware wallet 10.
  • the security chip 102 uses its stored OPENID private key to verify the received OPENID account, and feeds back the verification result to the smart terminal 20 through the communication module 103. If the user's identity and OPENID account are verified, the transaction can continue.
  • the intelligent terminal 20 obtains corresponding data from the blockchain network, thereby constructing corresponding first transaction data, and sending the first transaction data to the hardware wallet 10.
  • the hardware wallet 10 receives the first transaction data through the communication module 103, the security chip 102 reads out the wallet address contained in the transaction data, and obtains the wallet private key stored in the hardware wallet 10 according to the wallet address; further using the wallet private key Sign the transaction data, and use the communication module 103 to send the second transaction data signed by the wallet private key to the smart terminal 20.
  • the smart terminal 20 encrypts the signed second transaction data and broadcasts it to the blockchain network.
  • FIG. 3 is a flowchart of a first embodiment of a method for using a blockchain-based transaction system of the present application.
  • the method of using the hardware wallet of this embodiment is based on the transaction system shown in FIG. 1.
  • the method of using the transaction system of this embodiment may include the following steps:
  • step S31 the hardware wallet uses the acquired standard biological information to activate the wallet function.
  • the wallet function of the hardware wallet is activated by the user.
  • the hardware wallet obtains the standard biological information entered by the user to activate the wallet function.
  • the transaction information can be communicated with the smart terminal.
  • standard biological information is used as an example of biological information.
  • the hardware wallet is provided with a fingerprint module, through which the hardware wallet obtains the biological information entered when the user activates the hardware wallet, and uses the biological information as standard biological information to activate the wallet function.
  • the hardware wallet also includes a security chip, the fingerprint module is connected to the security chip, and the biological information obtained by it is sent to the security chip, and the security chip stores the biological information when activated.
  • step S32 the smart terminal acquires the first transaction data.
  • the hardware wallet After the hardware wallet is activated, it can communicate with the smart terminal for transaction-related data.
  • the user initiates a transaction request through the smart terminal, and the smart terminal obtains the corresponding data from the blockchain network, constructs the transaction data corresponding to the transaction request from the data, and sends the transaction data to the hardware wallet.
  • the transaction data sent by the smart terminal includes at least data such as the wallet address, transaction amount, and counterparty information related to the transaction.
  • the public key of the wallet is stored in the smart terminal, and the data obtained by the smart terminal from the blockchain network can be verified by the public key of the wallet.
  • step S33 the hardware wallet obtains the wallet address included in the first transaction data, obtains the wallet private key corresponding to it according to the wallet address, and uses the wallet private key to sign the first transaction data; and sends the signed terminal to the smart terminal Second transaction data.
  • the hardware wallet After the hardware wallet obtains the transaction data sent by the smart terminal, it can read the wallet address contained in the transaction data from the transaction data, and obtain the corresponding wallet private key according to the wallet address, and then use the wallet private key to sign the transaction data, and Send the signed transaction data to the smart terminal.
  • step S34 the smart terminal receives the signed second transaction data and broadcasts it to the blockchain network.
  • the smart terminal performs transaction processing according to the signed transaction data, and then completes the transfer operation; and broadcasts the signed transaction data to the blockchain network.
  • step S31 is a step performed before the transaction
  • steps S32 to S34 are steps in the transaction.
  • step S31 after the wallet function of the hardware wallet is activated in step S31, the following steps may be further included:
  • step S31a the hardware wallet acquires a key generation instruction, generates a wallet key pair based on the key generation instruction, and stores the wallet key pair.
  • the smart terminal obtains the key generation instruction and sends the key generation instruction to the hardware wallet.
  • the hardware wallet obtains the key generation instruction sent by the intelligent terminal, generates a wallet key pair based on the key generation instruction, and stores the generated wallet key pair.
  • the wallet key pair generated by the hardware wallet is also stored in the security chip.
  • the generation of the wallet key pair by the hardware wallet is the execution content before the start of the transaction, that is, the user needs to make the hardware wallet generate the corresponding wallet key pair before using the hardware wallet for the transaction; when using the hardware wallet for the transaction, Sign the transaction data using the wallet key stored in it.
  • the wallet key pair includes the wallet private key and the wallet public key.
  • the hardware wallet obtains the key generation instruction, the random number generator survives a set of random numbers, and then obtains the wallet private key.
  • the curve algorithm calculates the corresponding wallet public key; among them, the wallet private key cannot be calculated from the wallet public key, only the wallet public key can be calculated from the wallet private key.
  • the hardware wallet uses the security chip in it to store the wallet private key, and sends the calculated wallet public key to the smart terminal, so that the smart terminal calculates the corresponding wallet address based on the wallet public key.
  • the smart terminal stores the received wallet public key and the calculated wallet address.
  • the wallet address and wallet public key can be broadcast to the blockchain network through the smart terminal, and the wallet private key is stored in the hardware wallet. Since the hardware wallet is always offline in the Internet, the wallet private key will not be used by other than the hardware wallet Device acquisition improves the security of user accounts.
  • steps S31 and S31a are steps performed before the transaction
  • steps S32 to S34 are steps in the transaction.
  • FIG. 7 is a flowchart of a third embodiment of a method for using a blockchain-based transaction system of the present application.
  • the usage method of this embodiment is also based on the transaction system shown in FIG. 1.
  • the method for using the trading system of this embodiment may include the following steps:
  • step S71 the hardware wallet uses the acquired standard biological information to activate the wallet function.
  • step S72 the hardware wallet obtains a key generation instruction, generates a wallet key pair based on the key generation instruction, and stores the wallet key pair.
  • step S71 and step S72 are the execution contents of the hardware wallet before the transaction; further, step S71 and step S72 are the same as step S31 shown in FIG. 3 and step S31a shown in FIG. 5, respectively, and are not repeated here Repeat.
  • step S73 the hardware wallet acquires the collected target biological information, and determines whether the target biological information matches the standard biological information.
  • the hardware wallet can process the transaction data obtained by the smart terminal to complete the transaction.
  • the user enters the corresponding target biological information through the hardware wallet, and the hardware wallet obtains the target biological information to complete the user login.
  • the hardware wallet obtains the target biological information entered by the user during login, judges whether the target biological information matches the standard biological information used when the user activates the hardware wallet, and selects a subsequent execution step according to the judgment result; if the target biological information and standard biological information If there is a match, steps S74, S75, and S76 are continued. If the target biological information does not match the standard biological information, then step S77 is continued.
  • step S74 the smart terminal acquires the first transaction data.
  • step S75 the hardware wallet obtains the wallet address contained in the first transaction data, obtains the wallet private key in the corresponding wallet key pair according to the wallet address, and uses the wallet private key to sign the first transaction data; Send the signed second transaction data.
  • the hardware wallet can process the transaction data acquired by the intelligent terminal.
  • step S76 the smart terminal receives the signed transaction data and broadcasts it to the blockchain network.
  • steps S74 to S76 are respectively the same as step S32 and step S34 shown in FIG. 3, and will not be repeated here. It can be understood that there is no clear limitation on the execution order between step S73 and step S74.
  • the execution bodies of the two are different.
  • the execution body of step S73 is hardware money.
  • the execution body of step S74 is a smart terminal, but step S75 It is necessary that the result of the judgment in step S73 is that the matching of the target biological information with the standard biological information is performed.
  • step S77 the hardware wallet indicates that the wallet login failed.
  • the login fails and the user is prompted.
  • steps S71 and S72 are steps performed before the transaction
  • steps S73 to S76 are steps in the transaction.
  • FIG. 9 is a flowchart of a fourth embodiment of a method for using a blockchain-based transaction system of the present application.
  • the method of using the transaction system of this embodiment is also based on the transaction system shown in FIG. 1.
  • the method for using the trading system of this embodiment may include the following steps:
  • step S91 the hardware wallet uses the acquired standard biological information to activate the wallet function.
  • step S92 the smart terminal creates an OPENID account.
  • step S93 the hardware wallet obtains a key generation instruction, generates a root key based on the key generation instruction, generates a wallet key pair and an OPENID private key corresponding to the OPENID account based on the root key; and stores the wallet key pair and OPENID Private key.
  • the user creates an OPENID account through an intelligent terminal, that is, an OPENID public key. Further, the hardware wallet generates the corresponding root key, calculates the OPENID private key and the wallet private key based on the root key, and calculates the corresponding wallet public key through the elliptic curve algorithm according to the wallet private key. Among them, the wallet public key and the wallet private key The keys form a wallet key pair.
  • the smart terminal stores the generated OPENID account
  • the hardware wallet stores the generated OPENID private key and wallet private key.
  • the hardware wallet uses the security chip installed in it to store the generated wallet private key and OPENID private key.
  • the hardware wallet sends the generated wallet public key to the smart terminal, and the smart terminal calculates the corresponding wallet address according to the wallet public key.
  • steps S91 to S93 are all steps performed by the hardware wallet and the smart terminal before the transaction.
  • the corresponding wallet key pair, OPENID account number, and OPENID private key are generated at the same time.
  • step S94 the hardware wallet acquires the collected target biological information, and determines whether the target biological information matches the standard biological information.
  • step S95 the smart terminal obtains the login instruction, calls the OPENID account, and sends the OPENID account to the hardware wallet.
  • step S96 the hardware wallet receives the OPENID account, and uses the stored OPENID private key to verify the received OPENID account, and feeds back the verification result to the smart terminal.
  • Steps S94 to S96 are the login process of the hardware wallet and smart terminal before the transaction.
  • the hardware wallet obtains the login password and uses the login password and the stored standard biological information to verify the user's identity; this step is the same as step S73 shown in FIG. 7 and will not be repeated here.
  • the user calls the stored OPENID account on the smart terminal to log in to the OPENID account.
  • the OPENID private key needs to be used to verify the OPENID account, and the OPENID private key is stored in the security chip in the hardware wallet and will not be sent to other devices.
  • the smart terminal sends the retrieved OPENID account to the hardware wallet.
  • the hardware wallet receives the OPENID account and uses the OPENID private key stored in its security chip to verify it, and returns the verification result to the smart terminal. If the OPENID account If the verification is passed, the smart terminal side completes the login.
  • step S97 the smart terminal acquires the first transaction data.
  • step S98 the hardware wallet obtains the wallet address contained in the first transaction data, obtains the wallet private key corresponding to it according to the wallet address, and uses the wallet private key to sign the first transaction data; and sends the signed terminal to the smart terminal Second transaction data.
  • step S99 the smart terminal receives the second transaction data and broadcasts it to the blockchain network.
  • step S910 the hardware wallet indicates that the wallet login failed.
  • steps S97 to S99 are respectively the same as steps S32 to S34 shown in FIG. 3, and step S910 is the same as step S77 shown in FIG. 7, which will not be repeated here.
  • the interaction between the hardware wallet and the smart terminal may be as shown in FIG. 10.
  • FIG. 11 is a flowchart of an embodiment of a method for using a blockchain-based wallet of the present application.
  • the hardware wallet in this embodiment is the hardware wallet 10 shown in FIG. 2.
  • the steps performed by the hardware wallet in this embodiment may include:
  • step S111 the wallet function is activated using the acquired standard biological information.
  • step S112 the wallet address included in the first transaction data is obtained, the wallet private key corresponding to the wallet address is obtained according to the wallet address, the wallet private key is used to sign the first transaction data, and the signed terminal is sent to the smart terminal The second transaction data, so that the smart terminal broadcasts the signed second transaction data to the blockchain network.
  • step S111 and step S112 are the same as step S31 and step S33 performed by the hardware wallet shown in FIG. 3, and will not be repeated here.
  • the hardware wallet of this embodiment can execute the content executed by the hardware wallet in the hardware transaction system shown in FIGS. 3 to 10. For details, please refer to the steps executed by the hardware wallet shown in FIGS. 3 to 10. I won't repeat them here.
  • FIG. 12 is a flowchart of an embodiment of a method for using a smart terminal based on a blockchain in this application.
  • the smart terminal in this embodiment is the smart terminal 20 in the transaction system 100 shown in FIG. 1.
  • the steps performed by the intelligent terminal in this embodiment may include:
  • step S121 the first transaction data is acquired after the wallet function of the hardware wallet is activated.
  • step S122 the second transaction data signed by the hardware wallet using the wallet private key is received and broadcast to the blockchain network.
  • step S121 and step 122 are the same as step S32 and step S34 performed by the smart terminal shown in FIG. 3, and details are not described here.
  • the intelligent terminal of this embodiment can execute the content executed by the intelligent terminal in the hardware trading system shown in FIGS. 3 to 10. For details, please refer to the content of the steps executed by the intelligent terminal shown in FIGS. 3 to 10. I won't repeat them here.
  • FIG. 13 is a schematic structural diagram of an embodiment of a storage medium of the present application.
  • the storage medium 300 in this embodiment stores standard biological information and program data 301; where the program data 301 is executed, it is used to implement the following method: acquiring target biological information entered by a user collected by a biological information collection module; The target biological information is verified based on the pre-stored standard biological information; when the target biological information is verified, it receives the first transaction data sent by the smart terminal and the signed second transaction data to the smart terminal, so that the smart terminal will The second transaction data is broadcast to the blockchain network; where the first transaction data is the transaction data including the wallet address obtained by the intelligent terminal and calculated using the pre-stored public key, and the second transaction data is the security chip based on the first transaction data The included wallet address obtains the pre-stored corresponding wallet private key, and uses the wallet private key to sign transaction data obtained by signing the first transaction data.
  • the storage medium 300 also stores a wallet key pair; wherein, the wallet key pair is generated based on a key generation instruction sent by the smart terminal.
  • the storage medium 300 specifically stores the wallet private key; where the wallet private key is based on the key generation instruction to generate the wallet private key and the wallet private key in the wallet public key, the wallet public key is used to send to the smart terminal, In order for the smart terminal to calculate the wallet address based on the wallet public key, the wallet private key and the wallet public key form a wallet key pair.
  • the storage medium 300 also stores an OPENID private key and a wallet key pair; wherein, the OPENID private key is generated based on the key generation instruction sent by the smart terminal, and based on the root key and the smart terminal sent The OPENID account is generated; the wallet key pair is based on the key generation instruction sent by the smart terminal to generate the root key, and is generated based on the root key.

Landscapes

  • Business, Economics & Management (AREA)
  • Engineering & Computer Science (AREA)
  • Accounting & Taxation (AREA)
  • Finance (AREA)
  • General Business, Economics & Management (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Strategic Management (AREA)
  • Development Economics (AREA)
  • Economics (AREA)
  • Marketing (AREA)
  • Technology Law (AREA)
  • Computer Security & Cryptography (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Financial Or Insurance-Related Operations Such As Payment And Settlement (AREA)

Abstract

本申请公开一种基于区块链的硬件钱包、交易***以及存储介质,该硬件钱包,其特征在于,包括:生物信息采集模组,用于采集用户录入的目标生物信息;安全芯片,耦接生物信息采集模组,用于获取目标生物信息,并基于安全芯片中预存的标准生物信息对目标生物信息进行验证;通信模组,耦接安全芯片,用于在目标生物信息验证通过时,接收智能终端发送的第一交易数据,以及向智能终端发送签名后的第二交易数据,以使智能终端将第二交易数据向区块链网络进行广播。通过上述方式,利用对离线的硬件钱包进行生物信息验证登录,提升了硬件钱包的使用安全性。

Description

一种基于区块链的硬件钱包、交易***以及存储介质 【技术领域】
本申请涉及区块链领域,尤其涉及一种基于区块链的硬件钱包、交易***以及存储介质。
【背景技术】
伴随着区块链技术的不断发展和成熟,各式各样的区块链应用逐渐在数据货币、支付清算、金融交易、大数据等行业被广泛应用实施。区块链技术被称为“分布式账本技术”,是一种互联网数据库技术,其具有去中心化、集体维护、高透明度、去信任和匿名等特点,实现了价值“端到端”传递,使得越来越多的人接受、相信并开始使用它构建和改造出新的金融、社会服务体系。
在区块链技术中,参与构建区块的关键数据需要进行正确性、有效性、安全性的验证。当前诸多区块链应用里,通常是由存储在软件上的非对称密码来进行数据的加密、解密、签名及验证;在安全级别要求较高的情况下,安全密钥与合约需要由硬件进行存储,使用也需要在硬件里完成;构建区块的规则或数据使用的方法,即区块链中的智能合约,也需要由硬件进行存储和使用。此外,基于区块链的货币支付交易需要创建对应的货币钱包。
当前常见的货币钱包可包括电脑端的网页钱包、智能终端的应用轻钱包和硬件钱包。其中,电脑端的网页钱包和智能终端的应用轻钱包均能与互联网连接,因此电脑端的网页钱包和智能终端的应用轻钱包中存储的安全密钥、合约等重要数据存在较大的被盗或被篡改的风险。而当前的硬件钱包则为离线电脑、U盘等装置,这样虽然可通过脱离互联网的方式避免重要数据在存储过程中被盗或被篡改,但在使用时却仍需要将其中存储的重要数据读取至终端,使用不便,且在读取至终端的过程中也存在被盗或被篡改的风险。
【发明内容】
本申请的目的在于提供一种基于区块链的硬件钱包、交易***以及存储介质,能够提高交易***的安全性。
为实现上述目的,本申请提供一种基于区块链的硬件钱包,该硬件钱包包 括:生物信息采集模组,用于采集用户录入的目标生物信息;安全芯片,耦接生物信息采集模组,用于获取目标生物信息,并基于安全芯片中预存的标准生物信息对目标生物信息进行验证;通信模组,耦接安全芯片,用于在目标生物信息验证通过时,接收智能终端发送的第一交易数据,以及向智能终端发送签名后的第二交易数据,以使智能终端将第二交易数据向区块链网络进行广播;其中,第一交易数据是智能终端获取并利用预存的公钥计算得到的包含钱包地址的交易数据,第二交易数据是安全芯片基于第一交易数据中包含的钱包地址获取预存的对应的钱包私钥,并利用钱包私钥对第一交易数据签名得到的交易数据。
另一方面,本申请还提出了一种存储介质,应用于硬件钱包,存储介质中存储有标准生物信息以及程序数据;其中,程序数据在被执行时,用于实现以下方法:获取生物信息采集模组采集的用户录入的目标生物信息;基于预存的标准生物信息对目标生物信息进行验证;在目标生物信息验证通过时,接收智能终端发送的第一交易数据,以及向智能终端发送签名后的第二交易数据,以使智能终端将第二交易数据向区块链网络进行广播;其中,第一交易数据是智能终端获取并利用预存的公钥计算得到的包含钱包地址的交易数据,第二交易数据是安全芯片基于第一交易数据中包含的钱包地址获取预存的对应的钱包私钥,并利用钱包私钥对第一交易数据签名得到的交易数据。
另一方面,本申请还提出了一种基于区块链的交易***,交易***包括硬件钱包和智能终端;硬件钱包包括生物信息采集模组、安全芯片和通信模组;其中,生物信息采集模组,用于采集用户录入的目标生物信息;安全芯片,耦接生物信息采集模组,用于获取目标生物信息,并基于安全芯片中预存的标准生物信息对目标生物信息进行验证;智能终端用于获取第一交易数据,利用预存的公钥计算得到钱包地址,并将包含钱包地址的第一交易数据发送给硬件钱包;通信模组用于在目标生物信息验证通过时,接收智能终端发送的第一交易数据,以及向智能终端发送签名后的第二交易数据,以使智能终端将第二交易数据向区块链网络进行广播;其中,第二交易数据是安全芯片基于第一交易数据中包含的钱包地址获取预存的对应的钱包私钥,并利用钱包私钥对第一交易数据签名得到的交易数据。
有益效果:区别于现有技术,本申请的硬件钱包利用生物信息的验证来激活钱包功能;智能终端在钱包功能激活后获取交易数据;硬件钱包获取交易数据中包含的钱包地址,根据钱包地址获取与其对应的钱包私钥,利用钱包私钥对交易数据进行签名;向智能终端发送经过签名后的交易数据;智能终端接收经过签名后的交易数据,并向区块链网络广播。利用对离线的硬件钱包采用生物信息验证进行激活,并利用生物信息进行登录,提升了硬件钱包的使用安全性;进一步,利用激活后的硬件钱包对智能终端获取的交易数据进行签名处理,在处理过程中,钱包私钥始终在硬件钱包中而不会泄露,提升了钱包私钥存储的安全性。
【附图说明】
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。其中:
图1是本申请基于区块链的钱包***一实施例的结构示意图;
图2是本申请基于硬件钱包一实施例的结构示意图;
图3是本申请基于区块链的钱包***使用方法第一实施例的流程图;
图4是图3所示的使用方法实施例中钱包***交互示意图;
图5是本申请基于区块链的钱包***使用方法第二实施例的流程图;
图6是图5所示的使用方法实施例中钱包***交互示意图;
图7是本申请基于区块链的钱包***使用方法第三实施例的流程图;
图8是图7所示的使用方法实施例中钱包***交互示意图;
图9是本申请基于区块链的钱包***使用方法第四实施例的流程图;
图10是图9所示的使用方法实施例中钱包***交互示意图;
图11是本申请基于区块链的钱包使用方法一实施例的流程图;
图12是本申请基于区块链的智能终端使用方法一实施例的流程图;
图13是本申请存储介质一实施例的结构示意图。
【具体实施方式】
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动情况下所获得的所有其他实施例,均属于本申请保护的范围。
需要说明,若本申请实施例中有涉及方向性指示(诸如上、下、左、右、前、后……),则该方向性指示仅用于解释在某一特定姿态(如附图所示)下各部件之间的相对位置关系、运动情况等,如果该特定姿态发生改变时,则该方向性指示也相应地随之改变。
另外,若本申请实施例中有涉及“第一”、“第二”等的描述,则该“第一”、“第二”等的描述仅用于描述目的,而不能理解为指示或暗示其相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。另外,各个实施例之间的技术方案可以相互结合,但是必须是以本领域普通技术人员能够实现为基础,当技术方案的结合出现相互矛盾或无法实现时应当认为这种技术方案的结合不存在,也不在本申请要求的保护范围之内。
请参阅图1,图1是本申请基于区块链的交易***一实施例的结构示意图。如图1所示,本实施例的交易***100包括可相互通信的硬件钱包10和智能终端20;其中,智能终端20能够作为区块链节点加入区块链网络中;硬件钱包10通过蓝牙、WIFI或NFC等近距离无线通信技术与智能终端20进行数据交互。可选的,在一具体的实施例中,可以采用Android 6.0以上版本的蓝牙模组。本实施例中,智能终端20可以智能手机、平板电脑、笔记本电脑、台式电脑、智能穿戴设备等终端设备,本申请对此不作具体限制。智能终端20可设置有触控显示屏201,用于接收用户输入的各类控制指令和交易请求,以及将硬件钱包10中包含的账户信息显示给用户。
在本实施例的交易***100中,硬件钱包10的钱包功能由用户进行激活,硬件钱包10获取用户录入的标准生物信息以激活钱包功能,硬件钱包10的钱包功能激活后即可与智能终端20进行连接。
具体地,本实施例在交易前,用户利用标准生物信息对硬件钱包10的钱包功能进行激活;完成硬件钱包10的钱包功能激活后,硬件钱包10与智能终端20建立连接。交易过程中,用户可通过智能终端20发起交易请求,智能终端20则从区块链网络中获取相应的数据,由该数据构建与交易请求对应的第一交 易数据,并将该第一交易数据发送至硬件钱包10。硬件钱包10接收到第一交易数据后,从第一交易数据中读取出其中包含的钱包地址,并根据钱包地址获取存储在硬件钱包10中的钱包私钥,硬件钱包10即可利用钱包私钥对接收到的交易数据进行签名,进而使本次交易有效。硬件钱包10进一步将经过钱包私钥签名后的第二交易数据发送至智能终端20。智能终端20接收签名后的第二交易数据并向区块链网络广播。本实施例中,钱包地址和钱包公钥存储在智能终端20,智能终端20从区块链网络中获取相应的数据,通过钱包公钥对交易进行验证。
可选的,在上述的实施例中,其中的生物信息可以是指纹、掌纹、声纹、虹膜、人脸等具有表示用户身份唯一性的生物特征信息。
结合图2,图2是本申请提供的硬件钱包一实施例的结构示意图,该硬件钱包10包括生物信息采集模组101、安全芯片102和通信模组103。其中,安全芯片102分别耦接生物信息采集模组101和通信模组103。
本实施例以生物信息采集模组101为指纹模组为例,其中,该指纹模组符合基于***和github的
Figure PCTCN2018117752-appb-000001
标准,可以扩展为web应用认证设备。
在硬件钱包10的激活过程中,生物信息采集模组101采集用户的指纹信息,将该指纹信息作为激活密钥激活硬件钱包10的钱包功能。具体地,生物信息采集模组101将其采集的指纹信息发送至安全芯片102,由安全芯片102对该标准指纹信息进行加密并存储。安全芯片102设置在硬件钱包内部。
在硬件钱包10的登录过程中,生物信息采集模组101采集用户录入的目标生物信息;安全芯片102获取生物信息采集模组101采集的目标生物信息,并基于安全芯片中预存的标准生物信息对目标生物信息进行验证;在目标生物信息验证通过时才进行后续的交易过程,即通信模组103在目标生物信息验证通过时,接收智能终端20发送的第一交易数据,以及向智能终端20发送签名后的第二交易数据,以使智能终端20将第二交易数据向区块链网络进行广播。
可选的,在一实施例中,在标准生物信息录入时,采用设定算法对标准生物信息进行处理得到数据A并存储在安全芯片102内,在验证时,将采集的目标生物信息保存在安全芯片102中并采用与前述相同的设定算法对目标生物信息进行处理得到数据B,然后将数据A与数据B进行对比以判断采集的目标生物信息是否验证通过。
可以理解的,本实施例中的安全芯片102是一种安全度极高的存储芯片。可选的,在一种实施例中,该安全芯片102的写入和读取都需要采用相应的算法进行加密/解密,以提高其安全性能。
在区块链网络中,交易数据必须是由转出钱包的钱包私钥进行签名后才可生效,也就是说,拥有钱包私钥即可认为拥有相应钱包中的数字货币,因此,保护用户的数字货币安全即为保护用户的钱包私钥安全。本实施例通过对互联网离线的硬件钱包10进行生物信息激活,并利用生物信息进行登录,提升了硬件钱包10的使用安全性;进一步,利用激活后的硬件钱包10对智能终端20获取的交易数据进行签名处理,在处理过程中,钱包私钥始终在硬件钱包10中而不会泄露,提升了钱包私钥存储的安全性。
进一步,交易前,硬件钱包10利用标准生物信息激活后,即生成钱包密钥对。具体的,智能终端20获取密钥生成指令,并将密钥生成指令发送给硬件钱包10。通信模组103接收智能终端20发送的密钥生成指令后,安全芯片102基于密钥生成指令生成钱包密钥对,并对生成的钱包密钥对进行存储。本实施例中,硬件钱包10生成的钱包密钥对也存储在安全芯片102中。
可选的,在一实施例中,该安全芯片102可以采用一存储空间较大的芯片,例如,可以是512M,其中利用一部分空间来存储标准生物信息,另一部分用于钱包密钥对。
区块链技术中,钱包密钥对包括钱包私钥和钱包公钥;其中,钱包私钥是由随机数生成器生成的一组具有256bits的随机数,通过椭圆曲线算法计算得到相应的钱包公钥;其中,从钱包公钥无法计算得到钱包私钥,只能从钱包私钥计算得到钱包公钥。进一步,由钱包公钥计算得到公钥哈希,而后将一个字节的地址版本号连接到公钥哈希头部后对其进行两次哈希运算,将结果的前四字节作为公钥哈希的校验值,连接在其尾部;进一步对该结果进行编码,进而通过钱包公钥得到钱包地址。钱包私钥、钱包公钥和钱包地址的推导计算过程是不可逆的,因此,不能从钱包地址或钱包公钥推导出钱包私钥。
本实施例中,安全芯片102基于密钥生成指令,由随机数生成器生存一组随机数,进而得到钱包私钥,进一步根据钱包私钥计算得到钱包公钥,此时,钱包公钥和钱包私钥组成钱包密钥对。安全芯片102对钱包私钥进行存储,并将计算得到的钱包公钥通过通信模组103发送至智能终端20。智能终端20接收到钱包公钥后,通过钱包公钥计算出相应的钱包地址;智能终端20对接收的钱 包公钥和计算得到的钱包地址进行存储。钱包地址和钱包公钥可通过智能终端20广播至区块链网络,而钱包私钥则存储在安全芯片102中,由于硬件钱包10始终处于互联网离线状态,因此钱包私钥不会被硬件钱包10之外的其他设备获取,提升了用户账户的安全性。
在一实施方式中,图1所示的交易***和图2所示的硬件钱包的使用方法可包括交易前的激活和交易中的使用:
A1、交易前的激活过程:生物信息采集模组10采集标准生物信息,安全芯片102利用获取到的标准生物信息激活钱包功能,并存储该标准生物信息,激活后的硬件钱包10可利用通信模组103与智能终端20建立连接,完成数据交互。进一步,智能终端20获取密钥生成指令,其中,该密钥生成指令可由用户操作该智能终端20产生,并将密钥生成指令发送给硬件钱包10,生物信息采集模组10接收到该密钥生成指令后,安全芯片102基于密钥生成指令生成钱包私钥和钱包公钥,并存储钱包私钥,并通过通信模组103向智能终端20发送钱包公钥,以使智能终端20根据钱包公钥计算得到钱包地址。此时,安全芯片102内存储有标准生物信息和钱包私钥,智能终端20存储有钱包公钥和钱包地址。
A2、交易前的登录过程:生物信息采集模组10采集目标生物信息,安全芯片102基于存储的标准生物信息对目标生物信息进行验证,在验证通过后,才进行后续的交易过程。
A3、交易过程:智能终端20从区块链网络中获取相应的数据,由此构建相应的第一交易数据,并将该第一交易数据发送至硬件钱包10。硬件钱包10通过通信模组103接收第一交易数据,安全芯片102从交易数据中读取出其包含的钱包地址,根据钱包地址获取到硬件钱包10中存储的钱包私钥;进一步利用钱包私钥对交易数据进行签名,并利用通信模组103将经过钱包私钥签名后的第二交易数据发送至智能终端20。智能终端20对签名后的第二交易数据进行加密并向区块链网络广播。
可以理解的,在上述的步骤中,A1可以是仅仅是设备(硬件钱包)首次使用时进行激活才进行的,而后续的A2和A3则是在每次交易过程中都要进行的。
在另一实施方式中,智能终端20可创建OPEND账号(即OPENID公钥),硬件钱包10则生成根密钥,基于同一根密钥生成钱包密钥对和OPENID私钥,其流程可如下:
B1、交易前的激活过程:生物信息采集模组10采集标准生物信息,安全芯 片102利用获取到的标准生物信息激活钱包功能,并存储该标准生物信息,激活后的硬件钱包10可与智能终端20建立连接。进一步,智能终端20获取密钥生成指令,并将密钥生成指令发送给硬件钱包10,通信模组103接收密钥生成指令后,安全芯片102基于密钥生成指令生成根密钥;同时,安全芯片102进一步基于根密钥步生成钱包私钥和OPENID私钥,再进一步基于钱包私钥生成钱包公钥。安全芯片102存储生成的钱包私钥和OPENID私钥,并通过通信模组103向智能终端20发送钱包公钥,以使智能终端20根据钱包公钥计算得到钱包地址。此时,硬件钱包10存储有标准生物信息和钱包私钥,智能终端20存储有钱包公钥和钱包地址。
B2、交易前的登录过程:生物信息采集模组10采集标准生物信息,安全芯片102基于预存的标准生物信息对目标生物信息进行验证;进一步,用户在智能终端20侧调用存储的OPENID账号,并将OPENID账号发送至硬件钱包10。通信模组103接收到OPENID账号后,安全芯片102利用其存储的OPENID私钥对接收的OPENID账号进行验证,并将验证结果通过通信模组103反馈回智能终端20。若用户身份和OPENID账号均验证通过,则可继续进行交易。
B3、交易过程:智能终端20从区块链网络中获取相应的数据,由此构建相应的第一交易数据,并将该第一交易数据发送至硬件钱包10。硬件钱包10通过通信模组103接收第一交易数据,安全芯片102从交易数据中读取出其包含的钱包地址,根据钱包地址获取到硬件钱包10中存储的钱包私钥;进一步利用钱包私钥对交易数据进行签名,并利用通信模组103将经过钱包私钥签名后的第二交易数据发送至智能终端20。智能终端20对签名后的第二交易数据进行加密并向区块链网络广播。
进一步,请参阅图3,图3是本申请基于区块链的交易***使用方法第一实施例的流程图。本实施例的硬件钱包使用方法基于图1所示的交易***,本实施例的交易***使用方法可包括如下步骤:
在步骤S31中,硬件钱包利用获取到的标准生物信息激活钱包功能。
硬件钱包的钱包功能由用户进行激活,硬件钱包获取用户录入的标准生物信息以激活钱包功能,硬件钱包的钱包功能激活后即可与智能终端进行交易信息的通信。
本实施例以标准生物信息为生物信息举例。硬件钱包设置有指纹模组,硬件钱包通过该指纹模组获取用户激活硬件钱包时录入的生物信息,将该生物信 息作为标准生物信息激活钱包功能。硬件钱包中还包括安全芯片,指纹模组与安全芯片连接,将其获取的生物信息发送至安全芯片,由安全芯片存储激活时的生物信息。
在步骤S32中,智能终端获取第一交易数据。
硬件钱包被激活后即可与智能终端进行交易的相关数据的通信。在交易过程中,用户通过智能终端发起交易请求,智能终端则从区块链网络中获取相应的数据,由该数据构建与交易请求对应的交易数据,并将该交易数据发送至硬件钱包。此时,智能终端发送的交易数据中至少包含本次交易相关的钱包地址、交易金额、交易对方的信息等数据。智能终端内存储有钱包公钥,可通过钱包公钥对智能终端从区块链网络中获取到的数据进行验证。
在步骤S33中,硬件钱包获取第一交易数据中包含的钱包地址,根据钱包地址获取与其对应的钱包私钥,利用钱包私钥对第一交易数据进行签名;以及向智能终端发送经过签名后的第二交易数据。
硬件钱包获取到智能终端发送的交易数据后,可从交易数据中读取交易数据包含的钱包地址,并根据钱包地址获取到相应的钱包私钥,进而利用钱包私钥对交易数据进行签名,并向智能终端发送经过签名后的交易数据。
在步骤S34中,智能终端接收经过签名后的第二交易数据,并向区块链网络广播。
智能终端根据签名后的交易数据进行交易处理,进而完成转账操作;并将经过签名后的交易数据向区块链网络广播。
本实施例中硬件钱包和智能终端的交互可如图4所示,本实施例中步骤S31是在交易前进行的步骤,步骤S32至步骤S34则是交易中的步骤。
进一步,请参阅图5,在另一实施例中,在步骤S31中硬件钱包的钱包功能被激活后还可包括如下步骤:
在步骤S31a中,硬件钱包获取密钥生成指令,基于密钥生成指令生成钱包密钥对,并存储钱包密钥对。
智能终端获取密钥生成指令,并将密钥生成指令发送给硬件钱包。硬件钱包获取智能终端发送的密钥生成指令,并基于密钥生成指令生成钱包密钥对,并对生成的钱包密钥对进行存储。本实施例中,硬件钱包生成的钱包密钥对也存储在安全芯片中。
可以理解的是,硬件钱包生成钱包密钥对是在交易开始之前的执行内容, 即用户在使用硬件钱包进行交易前需要令硬件钱包生成相应的钱包密钥对;在使用硬件钱包进行交易时,使用其中存储的钱包密钥对交易数据进行签名。
进一步,区块链技术中,钱包密钥对包括钱包私钥和钱包公钥,硬件钱包获取到密钥生成指令后,由随机数生成器生存一组随机数,进而得到钱包私钥,通过椭圆曲线算法计算得到相应的钱包公钥;其中,从钱包公钥无法计算得到钱包私钥,只能从钱包私钥计算得到钱包公钥。硬件钱包利用其内的安全芯片对钱包私钥进行存储,将计算得到的钱包公钥发送至智能终端,以使智能终端根据钱包公钥计算得到相应的钱包地址。智能终端对接收的钱包公钥和计算得到的钱包地址进行存储。钱包地址和钱包公钥可通过智能终端广播至区块链网络,而钱包私钥则存储在硬件钱包中,由于硬件钱包始终处于互联网离线状态,因此钱包私钥不会被硬件钱包之外的其他设备获取,提升了用户账户的安全性。
本实施例中硬件钱包和智能终端的交互可如图6所示,本实施例中步骤S31和步骤S31a是在交易前进行的步骤,步骤S32至步骤S34则是交易中的步骤。
进一步,请参阅图7,图7是本申请基于区块链的交易***使用方法第三实施例的流程图。本实施例的使用方法同样基于图1所示的交易***。本实施例的交易***使用方法可包括如下步骤:
在步骤S71中,硬件钱包利用获取到的标准生物信息激活钱包功能。
在步骤S72中,硬件钱包获取密钥生成指令,基于密钥生成指令生成钱包密钥对,并存储钱包密钥对。
本实施例中,步骤S71和步骤S72均为交易前硬件钱包的执行内容;进一步,步骤S71和步骤S72分别与图3所示的步骤S31和图5所示的步骤S31a相同,此处不再赘述。
在步骤S73中,硬件钱包获取采集的目标生物信息,判断目标生物信息与标准生物信息是否匹配。
交易过程中,用户需对硬件钱包进行登录,当硬件钱包登录成功时,硬件钱包才能对智能终端获得的交易数据进行处理以完成交易。本实施例中,用户通过硬件钱包录入相应的目标生物信息,硬件钱包获取该目标生物信息以完成用户登录。具体的,硬件钱包获取登录时用户录入的目标生物信息,判断目标生物信息与用户激活硬件钱包时使用的标准生物信息是否匹配,根据判断结果选择后续的执行步骤;若目标生物信息与标准生物信息匹配,则继续执行步骤S74、S75和步骤S76,若目标生物信息与标准生物信息不匹配,则继续执行步 骤S77。
在步骤S74中,智能终端获取第一交易数据。
在步骤S75中,硬件钱包获取第一交易数据中包含的钱包地址,根据钱包地址获取与其对应的钱包密钥对中的钱包私钥,利用钱包私钥对第一交易数据进行签名;向智能终端发送经过签名后的第二交易数据。
若目标生物信息与标准生物信息匹配,则用户登录成功,硬件钱包可对智能终端获取的交易数据进行处理。
在步骤S76中,智能终端接收经过签名后的交易数据,并向区块链网络广播。
本实施例中步骤S74至步骤S76分别与图3所示的步骤S32和步骤S34相同,此处不再赘述。可以理解的是,步骤S73和步骤S74之间没有明确的执行先后顺序的限定,两者的执行主体不同,步骤S73的执行主体为硬件钱吧,步骤S74的执行主体为智能终端,但步骤S75则需要在步骤S73的判断结果为目标生物信息与标准生物信息匹配是执行。
在步骤S77中,硬件钱包提示钱包登录失败。
若目标生物信息与标准生物信息不匹配,则登录失败,并提示用户。
本实施例中硬件钱包和智能终端的交互可如图8所示,本实施例中步骤S71和步骤S72是在交易前进行的步骤,步骤S73至步骤S76则是交易中的步骤。
进一步,请参阅图9,图9是本申请基于区块链的交易***使用方法第四实施例的流程图。本实施例的交易***使用方法同样基于图1所示的交易***。本实施例的交易***使用方法可包括如下步骤:
在步骤S91中,硬件钱包利用获取到的标准生物信息激活钱包功能。
在步骤S92中,智能终端创建OPENID账号。
在步骤S93中,硬件钱包获取密钥生成指令,基于密钥生成指令生成根密钥,基于根密钥生成钱包密钥对和与OPENID账号对应的OPENID私钥;并存储钱包密钥对和OPENID私钥。
用户通过智能终端创建OPENID账号,即OPENID公钥。进一步,硬件钱包生成相应的根密钥,基于根密钥计算得到OPENID私钥和钱包私钥,且根据钱包私钥通过椭圆曲线算法计算得到相应的钱包公钥,其中,钱包公钥和钱包私钥组成钱包密钥对。此时,智能终端对生成的OPENID账号进行存储,硬件钱包对生成的OPENID私钥和钱包私钥进行存储。硬件钱包利用其内设置的安 全芯片存储生成的钱包私钥和OPENID私钥。
进一步,硬件钱包将生成的钱包公钥发送至智能终端,由智能终端根据钱包公钥计算得到相应的钱包地址。
本实施例中,步骤S91至步骤S93均为交易前硬件钱包和智能终端执行的步骤内容,为硬件钱包的激活过程,同时生成了相应的钱包密钥对、OPENID账号和OPENID私钥。
在步骤S94中,硬件钱包获取采集的目标生物信息,判断目标生物信息与标准生物信息是否匹配。
在步骤S95中,智能终端获取登录指令,调用OPENID账号,并向硬件钱包发送OPENID账号。
在步骤S96中,硬件钱包接收OPENID账号,并利用存储的OPENID私钥对接收的OPENID账号进行验证,并将验证结果反馈回智能终端。
步骤S94至步骤S96为交易前硬件钱包和智能终端的登录流程。
一方面,硬件钱包硬件钱包获取登录密码,利用登录密码和存储的标准生物信息对用户身份进行验证;本步骤与图7所示的步骤S73相同,此处不再赘述。
进一步,用户在智能终端调用存储的OPENID账号,对OPENID账号进行登录,此时需要使用OPENID私钥对OPENID账号进行验证,而OPENID私钥存储在硬件钱包中安全芯片内,不会发送给其他设备。由此,智能终端将调取的OPENID账号发送至硬件钱包,硬件钱包接收OPENID账号,并利用其安全芯片内存储的OPENID私钥对其进行验证,并将验证结果反馈回智能终端,若OPENID账号验证通过,则智能终端侧完成登录。
在步骤S97中,智能终端获取第一交易数据。
在步骤S98中,硬件钱包获取第一交易数据中包含的钱包地址,根据钱包地址获取与其对应的钱包私钥,利用钱包私钥对第一交易数据进行签名;以及向智能终端发送经过签名后的第二交易数据。
在步骤S99中,智能终端接收第二交易数据,并向区块链网络广播。
在步骤S910中,硬件钱包提示钱包登录失败。
本实施例中步骤S97至步骤S99分别与图3所示的步骤S32至步骤S34相同,步骤S910与图7所示的步骤S77相同,此处均不再赘述。
本实施例中硬件钱包和智能终端的交互可如图10所示。
进一步,请参阅图11,图11是本申请基于区块链的钱包使用方法一实施例的流程图,本实施例的硬件钱包为图2所示的硬件钱包10。本实施例中硬件钱包执行的步骤可包括:
在步骤S111中,利用获取到的标准生物信息激活钱包功能。
在步骤S112中,获取第一交易数据中包含的钱包地址,根据钱包地址获取与其对应的钱包私钥,利用钱包私钥对所述第一交易数据进行签名,并向智能终端发送经过签名后的第二交易数据,以令智能终端将经过签名后的第二交易数据向区块链网络广播。
本实施例中,步骤S111和步骤S112分别与图3中所示的由硬件钱包执行的步骤S31和步骤S33,此处不再赘述。
进一步的,本实施例的硬件钱包可执行图3至图10所示的硬件交易***中的硬件钱包所执行的内容,具体请参阅行图3至图10所示的硬件钱包执行的步骤内容,此处不再赘述。
进一步,请参阅图12,图12是本申请基于区块链的智能终端使用方法一实施例的流程图,本实施例的智能终端为图1所示的交易***100中的智能终端20。本实施例智能终端执行的步骤可包括:
在步骤S121中,在硬件钱包的钱包功能激活后获取第一交易数据。
在步骤S122中,接收经过硬件钱包利用钱包私钥签名后的第二交易数据,并向区块链网络广播。
本实施例中,步骤S121和步骤122分别与图3中所示的由智能终端执行的步骤S32和步骤S34,此处不再赘述。
进一步的,本实施例的智能终端可执行图3至图10所示的硬件交易***中的智能终端所执行的内容,具体请参阅行图3至图10所示的智能终端执行的步骤内容,此处不再赘述。
请参阅图13,图13是本申请存储介质一实施例的结构示意图。本实施例中的存储介质300中存储有标准生物信息以及程序数据301;其中,程序数据301在被执行时,用于实现以下方法:获取生物信息采集模组采集的用户录入的目标生物信息;基于预存的标准生物信息对目标生物信息进行验证;在目标生物信息验证通过时,接收智能终端发送的第一交易数据,以及向智能终端发送签名后的第二交易数据,以使智能终端将第二交易数据向区块链网络进行广播;其中,第一交易数据是智能终端获取并利用预存的公钥计算得到的包含钱包地 址的交易数据,第二交易数据是安全芯片基于第一交易数据中包含的钱包地址获取预存的对应的钱包私钥,并利用钱包私钥对第一交易数据签名得到的交易数据。
可选的,存储介质300中还存储有钱包密钥对;其中,钱包密钥对是基于智能终端发送的密钥生成指令生成的。
可选的,存储介质300中具体存储有钱包私钥;其中,钱包私钥是基于密钥生成指令生成钱包私钥和钱包公钥中的钱包私钥,钱包公钥用于发送给智能终端,以使智能终端基于钱包公钥计算得到钱包地址;其中,钱包私钥和钱包公钥组成钱包密钥对。
可选的,存储介质300中还存储有OPENID私钥和钱包密钥对;其中,OPENID私钥是基于智能终端发送的密钥生成指令生成根密钥,并基于根密钥和智能终端发送的OPENID账号生成的;钱包密钥对是基于智能终端发送的密钥生成指令生成根密钥,并基于根密钥生成的。
以上仅为本申请的实施方式,并非因此限制本申请的专利范围,凡是利用本申请说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本申请的专利保护范围。

Claims (13)

  1. 一种基于区块链的硬件钱包,其特征在于,包括:
    生物信息采集模组,用于采集用户录入的目标生物信息;
    安全芯片,耦接所述生物信息采集模组,用于获取所述目标生物信息,并基于所述安全芯片中预存的标准生物信息对所述目标生物信息进行验证;
    通信模组,耦接所述安全芯片,用于在所述目标生物信息验证通过时,接收所述智能终端发送的第一交易数据,以及向所述智能终端发送签名后的第二交易数据,以使所述智能终端将所述第二交易数据向区块链网络进行广播;
    其中,所述第一交易数据是所述智能终端获取并利用预存的公钥计算得到的包含钱包地址的交易数据,所述第二交易数据是所述安全芯片基于所述第一交易数据中包含的钱包地址获取预存的对应的钱包私钥,并利用所述钱包私钥对所述第一交易数据签名得到的交易数据。
  2. 根据权利要求1所述的硬件钱包,其特征在于,所述生物信息采集模组为指纹采集模组,所述指纹采集模组具体用于采集用户录入的目标生物信息,所述安全芯片用于获取所述生物信息,并基于所述安全芯片中预存的标准生物信息对所述目标生物信息进行验证。
  3. 根据权利要求1所述的硬件钱包,其特征在于,所述通信模组为蓝牙模组。
  4. 根据权利要求1所述的硬件钱包,其特征在于,所述通信模组还用于在钱包功能激活时,接收所述智能终端发送的密钥生成指令;其中,所述钱包功能用于在录入所述标准生物信息时激活;
    所述安全芯片还用于基于所述密钥生成指令生成钱包密钥对,并对所述钱包密钥对进行存储。
  5. 根据权利要求4所述的硬件钱包,其特征在于,所述安全芯片具体用于基于所述密钥生成指令生成钱包私钥和钱包公钥,并存储所述钱包私钥;
    所述通信模组还用于向所述智能终端发送所述钱包公钥,以使所述智能终端基于所述钱包公钥计算得到钱包地址;其中,所述钱包私钥和钱包公钥组成所述钱包密钥对;
    所述安全芯片存储所述钱包私钥。
  6. 根据权利要求1所述的硬件钱包,其特征在于,所述通信模组还用于接收所述智能终端发送的OPENID账号;其中,所述OPENID账号是所述智能终端创建的。
  7. 根据权利要求6所述的硬件钱包,其特征在于,所述通信模组还用于接收所述智能终端发送的密钥生成指令;所述安全芯片还用于基于所述密钥生成指令生成根密钥,并基于所述根密钥生成钱包密钥对,以及基于所述根密钥和所述OPENID账号生成对应的OPENID私钥;
    所述安全芯片还用于对所述钱包密钥对和所述OPENID私钥进行存储。
  8. 一种基于区块链的硬件钱包交易方法,其特征在于,包括:
    采集用户录入的目标生物信息;
    基于安全芯片中预存的标准生物信息对所述目标生物信息进行验证;
    在所述目标生物信息验证通过时,接收智能终端发送的第一交易数据,以及向所述智能终端发送签名后的第二交易数据,以使所述智能终端将所述第二交易数据向区块链网络进行广播;
    其中,所述第一交易数据是所述智能终端获取并利用预存的公钥计算得到的包含钱包地址的交易数据,所述第二交易数据是所述安全芯片基于所述第一交易数据中包含的钱包地址获取预存的对应的钱包私钥,并利用所述钱包私钥对所述第一交易数据签名得到的交易数据。
  9. 一种存储介质,应用于硬件钱包,其特征在于,所述存储介质中存储有标准生物信息以及程序数据;
    其中,所述程序数据在被执行时,用于实现以下方法:
    获取生物信息采集模组采集的用户录入的目标生物信息;
    基于预存的标准生物信息对所述目标生物信息进行验证;
    在所述目标生物信息验证通过时,接收所述智能终端发送的第一交易数据,以及向所述智能终端发送签名后的第二交易数据,以使所述智能终端将所述第二交易数据向区块链网络进行广播;
    其中,所述第一交易数据是所述智能终端获取并利用预存的公钥计算得到的包含钱包地址的交易数据,所述第二交易数据是所述安全芯片基于所述第一交易数据中包含的钱包地址获取预存的对应的钱包私钥,并利用所述钱包私钥 对所述第一交易数据签名得到的交易数据。
  10. 根据权利要求9所述的存储介质,其特征在于,所述存储介质中还存储有钱包密钥对;其中,所述钱包密钥对是基于所述智能终端发送的密钥生成指令生成的。
  11. 根据权利要求10所述的存储介质,其特征在于,所述存储介质中具体存储有钱包私钥;其中,所述钱包私钥是基于所述密钥生成指令生成钱包私钥和钱包公钥中的钱包私钥,所述钱包公钥用于发送给所述智能终端,以使所述智能终端基于所述钱包公钥计算得到钱包地址;其中,所述钱包私钥和钱包公钥组成所述钱包密钥对。
  12. 根据权利要求9所述的存储介质,其特征在于,所述存储介质中还存储有OPENID私钥和钱包密钥对;
    其中,所述OPENID私钥是基于所述智能终端发送的密钥生成指令生成根密钥,并基于所述根密钥和所述智能终端发送的OPENID账号生成的;所述钱包密钥对是基于所述智能终端发送的密钥生成指令生成根密钥,并基于所述根密钥生成的。
  13. 一种基于区块链的交易***,其特征在于,所述交易***包括硬件钱包和智能终端;所述硬件钱包包括生物信息采集模组、安全芯片和通信模组;
    其中,生物信息采集模组,用于采集用户录入的目标生物信息;安全芯片,耦接所述生物信息采集模组,用于获取所述目标生物信息,并基于所述安全芯片中预存的标准生物信息对所述目标生物信息进行验证;
    所述智能终端用于获取第一交易数据,利用预存的公钥计算得到钱包地址,并将包含所述钱包地址的第一交易数据发送给所述硬件钱包;
    所述通信模组用于在所述目标生物信息验证通过时,接收所述智能终端发送的第一交易数据,以及向所述智能终端发送签名后的第二交易数据,以使所述智能终端将所述第二交易数据向区块链网络进行广播;
    其中,所述第二交易数据是所述安全芯片基于所述第一交易数据中包含的钱包地址获取预存的对应的钱包私钥,并利用所述钱包私钥对所述第一交易数据签名得到的交易数据。
PCT/CN2018/117752 2018-11-27 2018-11-27 一种基于区块链的硬件钱包、交易***以及存储介质 WO2020107232A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880002426.7A CN109844787A (zh) 2018-11-27 2018-11-27 一种基于区块链的硬件钱包、交易***以及存储介质
PCT/CN2018/117752 WO2020107232A1 (zh) 2018-11-27 2018-11-27 一种基于区块链的硬件钱包、交易***以及存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/117752 WO2020107232A1 (zh) 2018-11-27 2018-11-27 一种基于区块链的硬件钱包、交易***以及存储介质

Publications (1)

Publication Number Publication Date
WO2020107232A1 true WO2020107232A1 (zh) 2020-06-04

Family

ID=66883760

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/117752 WO2020107232A1 (zh) 2018-11-27 2018-11-27 一种基于区块链的硬件钱包、交易***以及存储介质

Country Status (2)

Country Link
CN (1) CN109844787A (zh)
WO (1) WO2020107232A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110210863A (zh) * 2019-06-11 2019-09-06 深圳市网心科技有限公司 区块链安全交易方法、装置、电子设备及存储介质
CN110599168B (zh) * 2019-09-12 2024-05-28 腾讯科技(深圳)有限公司 基于区块链的数字钱包登录方法、装置以及存储介质
CN112926972B (zh) * 2019-12-05 2024-04-09 中移物联网有限公司 一种基于区块链的信息处理方法、区块链***及终端
CN111242613B (zh) * 2020-01-09 2023-05-23 中信银行股份有限公司 基于网银***的钱包信息管理方法、装置及电子设备
CN114448637A (zh) * 2020-11-02 2022-05-06 上海源庐加佳信息科技有限公司 区块链交易签名设备、***及应用的签名方法、存储介质
CN112529588A (zh) * 2020-12-30 2021-03-19 楚天龙股份有限公司 防止硬件钱包被恶意配对的方法及装置
CN112819470A (zh) * 2020-12-31 2021-05-18 天地融科技股份有限公司 一种硬件钱包指纹认证方法、***及硬件钱包
CN113034139B (zh) * 2021-03-15 2023-12-26 中国人民大学 基于活体生物特征认证的区块链多币钱包及其实现方法
CN115171274A (zh) * 2022-06-13 2022-10-11 爱仕达股份有限公司 一种基于区块链的自助售餐装置及方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106651363A (zh) * 2016-12-28 2017-05-10 飞天诚信科技股份有限公司 一种硬件钱包及其持有者身份验证方法
CN206480041U (zh) * 2016-10-21 2017-09-08 飞天诚信科技股份有限公司 一种数字货币指纹硬件钱包
CN108306887A (zh) * 2018-02-05 2018-07-20 徐正伟 基于区块链的物联网安全与数据隐私保护***
CN108320154A (zh) * 2018-02-12 2018-07-24 北京金山安全软件有限公司 一种数字钱包资产保护方法、装置、电子设备及存储介质

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107993066A (zh) * 2017-12-20 2018-05-04 国民认证科技(北京)有限公司 一种资源交易方法及电子钱包***
CN108564353B (zh) * 2018-04-27 2022-01-25 数字钱包(北京)科技有限公司 基于区块链的支付***及方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN206480041U (zh) * 2016-10-21 2017-09-08 飞天诚信科技股份有限公司 一种数字货币指纹硬件钱包
CN106651363A (zh) * 2016-12-28 2017-05-10 飞天诚信科技股份有限公司 一种硬件钱包及其持有者身份验证方法
CN108306887A (zh) * 2018-02-05 2018-07-20 徐正伟 基于区块链的物联网安全与数据隐私保护***
CN108320154A (zh) * 2018-02-12 2018-07-24 北京金山安全软件有限公司 一种数字钱包资产保护方法、装置、电子设备及存储介质

Also Published As

Publication number Publication date
CN109844787A (zh) 2019-06-04

Similar Documents

Publication Publication Date Title
WO2020107232A1 (zh) 一种基于区块链的硬件钱包、交易***以及存储介质
WO2020107233A1 (zh) 基于区块链的钱包***及钱包使用方法、以及存储介质
US11743042B2 (en) Secure remote token release with online authentication
US11030621B2 (en) System to enable contactless access to a transaction terminal using a process data network
US20200374134A1 (en) Method and apparatus for processing account information in block chain, storage medium, and electronic apparatus
US20210409397A1 (en) Systems and methods for managing digital identities associated with mobile devices
US12028337B2 (en) Techniques for token proximity transactions
CN108352024B (zh) 基于服务器的生物测定认证
US10396985B1 (en) Federated identity management based on biometric data
WO2020063176A1 (zh) 网络中用户身份认证方法和装置
US9935953B1 (en) Secure authenticating an user of a device during a session with a connected server
US10204215B2 (en) System and method for processing a transaction with secured authentication
US20170364911A1 (en) Systems and method for enabling secure transaction
US11824642B2 (en) Systems and methods for provisioning biometric image templates to devices for use in user authentication
KR20180061168A (ko) 무선 바이오메트릭 인증 시스템 및 방법
CN111742314A (zh) 便携式装置上的生物计量传感器
US11868988B2 (en) Devices and methods for selective contactless communication
CN109428722A (zh) 一种内容发布方法及装置
CN108449332A (zh) 一种基于双网关的轻量级移动支付协议设计方法
US20210217024A1 (en) System and Method of Consolidating Identity Services
TW201421393A (zh) 行動裝置互動式二維條碼交易資訊傳輸及驗證之系統及其方法
KR20180001455A (ko) 구매 트랜잭션을 인증하는 모바일 장치 및 그 방법
Raina Integration of Biometric authentication procedure in customer oriented payment system in trusted mobile devices.
KR20210041984A (ko) Kyc 데이터와 생체인증정보를 보유한 스마트 디바이스를 활용한 블록체인 개인키 생성 방법
US20240211947A1 (en) Methods and systems for identity verification in cryptographic transactions

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18941742

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18941742

Country of ref document: EP

Kind code of ref document: A1