WO2020105215A1 - 高耐電圧放熱絶縁性樹脂組成物、およびそれを用いた電子部品 - Google Patents

高耐電圧放熱絶縁性樹脂組成物、およびそれを用いた電子部品

Info

Publication number
WO2020105215A1
WO2020105215A1 PCT/JP2019/026696 JP2019026696W WO2020105215A1 WO 2020105215 A1 WO2020105215 A1 WO 2020105215A1 JP 2019026696 W JP2019026696 W JP 2019026696W WO 2020105215 A1 WO2020105215 A1 WO 2020105215A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
conductive particles
insulating resin
high thermal
thermal conductive
Prior art date
Application number
PCT/JP2019/026696
Other languages
English (en)
French (fr)
Inventor
義和 大胡
Original Assignee
太陽インキ製造株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 太陽インキ製造株式会社 filed Critical 太陽インキ製造株式会社
Priority to CN201980067078.6A priority Critical patent/CN112823188B/zh
Priority to JP2020558077A priority patent/JP7394782B2/ja
Publication of WO2020105215A1 publication Critical patent/WO2020105215A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes

Definitions

  • the present invention relates to a heat-dissipating insulating resin composition having excellent withstand voltage, and an electronic component using the same, and more specifically, high withstand-voltage heat-insulating insulation having excellent withstand voltage characteristics without lowering thermal conductivity.
  • TECHNICAL FIELD The present invention relates to a resin composition and an electronic component such as a printed wiring board using the resin composition.
  • Patent Document 1 As a printed wiring board having good heat dissipation, for example, in Patent Document 1, a metal plate such as copper or aluminum is used, and an electrical insulating layer such as a prepreg or a thermosetting resin composition is provided on one or both surfaces of the metal plate. A metal base substrate on which a circuit pattern is formed is disclosed.
  • Patent Document 2 discloses a high heat conductive resin cured product containing a constant large particle size filler in a constant ratio
  • Patent Document 3 discloses a high thermal conductivity containing a constant small particle size filler in a constant ratio.
  • a conductive resin cured product is disclosed.
  • the insulating layer needs to be thin because the electrical conductivity of the electrical insulating layer is low, and as a result, the withstand voltage characteristic of the electrical insulating layer deteriorates. There was such a problem.
  • the present invention has been made in view of the above problems, and its main purpose is to prevent deterioration of withstand voltage characteristics as well as good heat dissipation with high thermal conductivity, and to perform mechanical processing such as pressure molding and vacuum pressing.
  • An object of the present invention is to provide an unnecessary high withstand voltage heat radiation insulating resin composition.
  • thermosetting and / or photocuring the above high withstand voltage heat radiation insulating resin composition it is to provide an electronic component having a cured product obtained by thermosetting and / or photocuring the above high withstand voltage heat radiation insulating resin composition.
  • the inventor has conducted earnest research toward the achievement of the above object.
  • the (A-2) high thermal conductive particles having a specific surface area of 6.0 to 12.5 m 2 / g measured by the BET method are compounded in such a manner that the compounding amount of these particles becomes a constant ratio, thereby providing the closest packing. It has been found that it is possible to improve the withstand voltage characteristics without lowering the thermal conductivity, and has completed the present invention.
  • the high withstand voltage heat insulating resin composition of the present invention is a high withstand voltage insulating resin composition containing (A) high heat conductive particles and (B) curable resin.
  • A) The volume occupancy of the high thermal conductive particles is 60% by volume or more based on the total solid content of the high withstand voltage heat radiating insulating resin composition, and the high thermal conductive particles (A) are ) High thermal conductivity particles having a specific surface area measured by the BET method of 0.2 to 0.6 m 2 / g and (A-2) high thermal conductivity of a specific surface area measured by the BET method of 6.0 to 12.5 m 2 / g.
  • the solid content of the composition refers to the composition obtained by removing the organic solvent.
  • the high-voltage heat-dissipating heat-insulating resin composition of the present invention preferably further contains (C) an organic solvent, and is preferably a coating type.
  • the (A) high thermal conductive particles are aluminum oxide particles.
  • the high-voltage heat-dissipating insulating resin composition of the present invention is characterized in that the (A) high-thermal-conductivity particles have a high thermal conductivity of (A-1) having a specific surface area of 0.2 to 0.6 m 2 / g measured by the BET method. It is preferable that the heat conductive particles and the high thermal conductive particles (A-2) having a specific surface area measured by the BET method of 6.0 to 12.5 m 2 / g are used.
  • the high-voltage heat-dissipative insulation resin composition of the present invention contains at least one of (B-1) thermosetting resin and (B-2) photocurable resin as the (B) curable resin. Preferably.
  • the high withstand voltage heat dissipation insulating resin composition of the present invention may contain an epoxy compound and / or an oxetane compound as the (B-1) thermosetting resin, and further a curing agent and / or a curing catalyst. preferable.
  • the high-voltage heat-dissipating insulating resin composition of the present invention contains, as the (B-2) photocurable resin, a compound having at least one ethylenically unsaturated bond in one molecule, and further initiates photopolymerization. It is preferable to contain an agent.
  • the cured product of the present invention is characterized by being obtained by curing the above-mentioned high withstand voltage heat dissipation insulating resin composition.
  • An electronic component of the present invention is characterized by having the cured product.
  • an insulating layer and / or a solder resist layer be formed by a cured product obtained by thermosetting and / or photocuring the high-voltage heat-dissipating insulating resin composition. ..
  • a high withstand voltage heat radiating insulating resin composition which has high thermal conductivity and good heat dissipation and can prevent deterioration of withstand voltage characteristics, and which does not require machining such as pressure molding or vacuum pressing. be able to.
  • an electronic component such as a printed wiring board in which an insulating layer and / or a solder resist layer is formed by a cured product obtained by thermosetting and / or photocuring the above high withstand voltage heat-insulating resin composition is also provided.
  • the composition of the present invention can also be provided for filling holes such as via holes and through holes of a printed wiring board.
  • the high-voltage heat-dissipating heat-insulating resin composition of the present invention is a high-voltage heat-dissipating heat-insulating resin composition containing (A) high-heat-conductive particles and (B) curable resin.
  • the volume occupancy of the high thermal conductive particles is 60% by volume or more based on the total solid content of the high withstand voltage heat radiating insulating resin composition, and the high thermal conductive particles (A) are (A-1) BET.
  • High thermal conductivity particles having a specific surface area of 0.2 to 0.6 m 2 / g measured by the (A-2) BET method and a high thermal conductivity of 6.0 to 12.5 m 2 / g.
  • the “BET method” for measuring the specific surface area is, for example, a method in which a fully automatic BET specific surface area measuring apparatus Massorb HM-1201 manufactured by Mountech Co., Ltd. is used and the BET single point method is used for actual measurement. There is, but is not limited to, this.
  • the present invention relates to (A) particles having a high thermal conductivity of (A-1) particles having a specific surface area measured by the BET method of 0.2 to 0.6 m 2 / g and (A-2) particles having a specific surface area measured by the BET method. Having a particle size of 6.0 to 12.5 m 2 / g and a total amount of 60% by volume or more based on the total solid content of the high-voltage heat-dissipative insulation resin composition, heat conduction is improved. The thermal conductivity is increased to obtain sufficient heat conductivity as a heat dissipation material.
  • (A-1) It becomes possible to increase the thermal conductivity by containing the high thermal conductive particles having a specific surface area measured by the BET method of 0.2 to 0.6 m 2 / g, but this alone is not enough to withstand the voltage. Low, not suitable as an insulating material under high voltage. Therefore, in the present invention, (A-2) high thermal conductive particles having a specific surface area of 6.0 to 12.5 m 2 / g measured by the BET method are used in a fixed ratio ((A) high thermal conductive particle total weight). Withstanding 5 to 16% by weight), the withstand voltage characteristics are improved.
  • a high thermal conductive particle having a specific surface area of 6.0 to 12.5 m 2 / g measured by the BET method is blended in a fixed ratio, and preferably (C) an organic solvent is contained, whereby
  • the high withstand voltage heat radiation insulating resin composition can be suitably used as a paint, and by applying it thinly as a paint, fine bubbles adhering to the voids of the filler can be removed. Therefore, in the high withstand voltage heat radiation insulation resin composition of the present invention, high withstand voltage and (A) high heat can be obtained without performing time-consuming and poorly workable machining such as pressure molding and vacuum pressing. Both characteristics of high thermal conductivity, that is, high heat dissipation, can be achieved by filling the conductive particles with the closest packing.
  • the withstand voltage cannot be improved by further containing 1.0 to 1.8 m 2 / g of high thermal conductive particles having a specific surface area of (A-1) and (A-2) measured by the BET method.
  • high thermal conductivity particles having a specific surface area measured by the BET method larger than (A-2) and having a specific surface area of 55 m 2 / g or more have high thixotropy, and it is difficult to reduce voids in the filler, and thus the thermal conductivity, Both withstand voltage characteristics deteriorate.
  • the (A) high thermal conductive particles have a specific surface area of 0.2 to 0.6 m 2 / g measured by the (A-1) BET method and the (A-2) BET method. It is preferable that the specific surface area is 6.0 to 12.5 m 2 / g only.
  • the high thermal conductive particles (A-2) has a specific surface area of 6.0 to 1 measured by the BET method. When only 12.5 m 2 / g of high thermal conductive particles is used, the withstand voltage characteristic is significantly reduced as compared with the present invention.
  • the thermal conductivity becomes very low and the resin does not have the characteristics as a heat radiation insulating resin composition.
  • the volume occupancy of the (A) high thermal conductive particles of the present invention is 60% by volume or more based on the total solid content of the high withstand voltage heat insulating insulating resin composition, and the (A) high thermal conductive particles are
  • g of the high thermal conductive particles is 5 to 16% by weight.
  • the material of the (A) high thermal conductive particles known and conventional materials can be used as long as they have high thermal conductivity.
  • known and conventional materials can be used as long as they have high thermal conductivity.
  • zircon in particular, ZrO 2 .SiO 2
  • cordierite 2MgO.2Al 2 O 3 .5SiO 2
  • silicon nitride Si 3 N 4
  • manganese oxide MnO 2
  • iron oxide Fe 2 O 3
  • cobalt oxide CoO
  • aluminum oxide is preferable because it is chemically stable and excellent in insulating property, and the spherical particles are suitable for the closest packing because they can moderate the increase in viscosity when highly packed, and thus spherical oxidation is possible. It is preferable to use aluminum.
  • Commercially available spherical aluminum oxide particles include (A-1) high thermal conductivity particles having a specific surface area measured by the BET method of 0.2 to 0.6 m 2 / g, DAW-03 (produced by Denki Kagaku Kogyo Co., Ltd.).
  • DAW-70 manufactured by Denki Kagaku Kogyo KK, specific surface area 0.2 m 2 / g measured by BET method
  • A-2 specific surface area measured by BET method
  • high thermal conductive particles of up to 12.5 m 2 / g AO-509 (manufactured by Admatech, specific surface area measured by BET method of 6.5 to 9.0 m 2 / g)
  • ASFP-20 produced by Denki Kagaku Kogyo Co., Ltd.
  • the high thermal conductive particles (A) of the present invention have a specific surface area of 0.2 to 0.6 m 2 / g measured by (A-1) BET method and (A-2) BET method. High filling can be achieved by satisfying the condition that the particles have a specific surface area of 6.0 to 12.5 m 2 / g.
  • the (A) high thermal conductive particles of the present invention are preferably surface-treated with a coupling agent such as a silane coupling agent in order to improve low water absorption, thermal shock resistance and crack resistance of the cured product.
  • a coupling agent such as a silane coupling agent
  • silane-based, titanate-based, aluminate-based, zircoaluminate-based coupling agents and the like can be used. Of these, silane coupling agents are preferred. Examples of such silane coupling agents include vinyltrimethoxysilane, vinyltriethoxysilane, N- (2-aminomethyl) -3-aminopropylmethyldimethoxysilane, and N- (2-aminoethyl) -3-amino.
  • the surface-untreated (A) high thermal conductive particles and the coupling agent may be separately blended, and the (A) high thermal conductive particles may be surface-treated in the composition. It is preferable to immobilize the coupling agent on the surface of the (A) high thermal conductive particles by adsorption or reaction in advance. In this case, the amount of coupling agent used for the surface treatment and the surface treatment method are not particularly limited.
  • the (B) curable resin preferably contains at least one of (B-1) thermosetting resin and (B-2) photocurable resin.
  • thermosetting resin examples include resins that are cured by heating to exhibit electric insulation, such as epoxy resin, oxetane resin, melamine resin, and silicone resin. Particularly, in the present invention, the epoxy compound is used.
  • Thermosetting resins of oxetane compounds and / or oxetane compounds can be preferably used, in which case it is preferable to further use a curing agent and / or a curing catalyst.
  • epoxy compound known compounds can be used as long as they are compounds having one or more, preferably two or more epoxy groups in one molecule.
  • bisphenol A type epoxy resin bisphenol S type epoxy resin, bisphenol F type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, alicyclic epoxy resin, trimethylolpropane polyglycidyl ether, phenyl-1,3 -Diglycidyl ether, biphenyl-4,4'-diglycidyl ether, 1,6-hexanediol diglycidyl ether, ethylene glycol or propylene glycol diglycidyl ether, sorbitol polyglycidyl ether, tris (2,3-epoxypropyl)
  • examples thereof include compounds having two or more epoxy groups in one molecule such as isocyanurate and triglycidyl tris (2-hydroxyethyl) isocyanurate.
  • monoepoxy compounds such as butyl glycidyl ether, phenyl glycidyl ether, and glycidyl (meth) acrylate may be added as long as the characteristics of the cured coating film are not deteriorated.
  • these can be used alone or in combination of two or more in accordance with the demand for improving the characteristics of the coating film.
  • the oxetane compound has the following general formula (I): (In the formula, R 1 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.)
  • R 1 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.
  • a compound containing an oxetane ring, and specific compounds include 3-ethyl-3-hydroxymethyl oxetane (trade name OXT-101 manufactured by Toagosei Co., Ltd.) and 3-ethyl-3- (phenoxymethyl).
  • Oxetane (trade name OXT-211 manufactured by Toagosei Co., Ltd.), 3-ethyl-3- (2-ethylhexyloxymethyl) oxetane (trade name OXT-212 manufactured by Toagosei Co., Ltd.), 1,4-bis ⁇ [(3-Ethyl-3-oxetanyl) methoxy] methyl ⁇ benzene (trade name OXT-121 manufactured by Toagosei Co., Ltd.), bis (3-ethyl-3-oxetanylmethyl) ether (trade name OXT- manufactured by Toagosei Co., Ltd.) 221) and the like. Further, a phenol novolac type oxetane compound and the like are also included.
  • the above-mentioned oxetane compound can be used in combination with the above-mentioned epoxy compound or alone, but since the reactivity is lower than that of the epoxy compound, care must be taken such as raising the curing temperature.
  • polyfunctional phenol compounds, polycarboxylic acids and acid anhydrides thereof, aliphatic or aromatic primary or secondary amines, polyamide resins, polymercapto compounds and the like can be mentioned.
  • polyfunctional phenol compounds, polycarboxylic acids and acid anhydrides thereof are preferably used from the viewpoints of workability and insulating properties.
  • polyfunctional phenol compound known compounds can be used as long as they are compounds having two or more phenolic hydroxyl groups in one molecule. Specific examples thereof include phenol novolac resin, cresol novolac resin, bisphenol A, allylated bisphenol A, bisphenol F, bisphenol A novolac resin, and vinylphenol copolymer resin. Particularly, phenol novolac resin is reactive. Is high and the effect of improving heat resistance is also high, which is preferable. Such a polyfunctional phenol compound also undergoes an addition reaction with the epoxy compound and / or oxetane compound in the presence of a suitable curing catalyst.
  • the polycarboxylic acid and its acid anhydride are compounds having two or more carboxyl groups in one molecule and its acid anhydride, for example, a (meth) acrylic acid copolymer, a maleic anhydride copolymer, Examples thereof include condensates of dibasic acids.
  • Examples of commercially available products include John Kryl (trade name) manufactured by Johnson Polymer, SMA resin (trade name) manufactured by Arco Chemical Co., and polyazelaic anhydride manufactured by Shin Nippon Rika.
  • an epoxy compound and / or an oxetane compound a compound serving as a curing catalyst for the reaction of a polyfunctional phenol compound and / or a polycarboxylic acid and its acid anhydride, or a polymerization catalyst when a curing agent is not used.
  • Compounds such as, for example, tertiary amines, tertiary amine salts, quaternary onium salts, tertiary phosphines, crown ether complexes, and phosphonium ylides, which can be arbitrarily selected from these, Can be used alone or in combination of two or more.
  • imidazoles such as product names 2E4MZ, C11Z, C17Z, 2PZ, imidazole AZINE compounds such as product names 2MZ-A, 2E4MZ-A, product names 2MZ-OK, 2PZ-OK.
  • the usual quantitative ratio of these curing catalysts is sufficient, for example, 0.1 parts by mass or more and 10 parts by mass or less per 100 parts by mass of the epoxy compound and / or oxetane compound is suitable.
  • the (B-2) photocurable resin may be an electrically insulating resin that is cured by irradiation with active energy rays, but a compound having one or more ethylenically unsaturated bonds in one molecule is heat resistant, It has excellent electrical insulation properties and can be preferably used. In this case, it is preferable to further use a photopolymerization initiator.
  • a photopolymerization initiator As the compound having one or more ethylenically unsaturated bond in one molecule, known and commonly used photopolymerizable oligomers, photopolymerizable vinyl monomers and the like are used.
  • Examples of the photopolymerizable oligomer include unsaturated polyester oligomers and (meth) acrylate oligomers.
  • Examples of the (meth) acrylate-based oligomers include epoxy (meth) acrylates such as phenol novolac epoxy (meth) acrylate, cresol novolac epoxy (meth) acrylate, and bisphenol type epoxy (meth) acrylate, urethane (meth) acrylate, epoxy urethane (meth). ) Acrylate, polyester (meth) acrylate, polyether (meth) acrylate, polybutadiene modified (meth) acrylate and the like.
  • (meth) acrylate is a general term for acrylate, methacrylate, and a mixture thereof, and the same applies to other similar expressions.
  • photopolymerizable vinyl monomer examples include known and conventional ones, for example, styrene derivatives such as styrene, chlorostyrene and ⁇ -methylstyrene; vinyl esters such as vinyl acetate, vinyl butyrate or vinyl benzoate; vinyl isobutyl ether, vinyl.
  • Vinyl ethers such as -n-butyl ether, vinyl-t-butyl ether, vinyl-n-amyl ether, vinyl isoamyl ether, vinyl-n-octadecyl ether, vinyl cyclohexyl ether, ethylene glycol monobutyl vinyl ether, triethylene glycol monomethyl vinyl ether; acrylamide , (Meth) acrylamides such as methacrylamide, N-hydroxymethylacrylamide, N-hydroxymethylmethacrylamide, N-methoxymethylacrylamide, N-ethoxymethylacrylamide, N-butoxymethylacrylamide; triallyl isocyanurate, diallyl phthalate Allyl compounds such as diallyl isophthalate; 2-ethylhexyl (meth) acrylate, lauryl (meth) acrylate, tetrahydrofurfuryl (meth) acrylate, isobornyl (meth) acrylate, phenyl (meth) acrylate
  • photopolymerization initiator examples include benzoin compounds such as benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzoin isobutyl ether, and benzyl methyl kethel, and their alkyl ethers.
  • tertiary amines such as triethanolamine and methyldiethanolamine; 2-dimethylaminoethylbenzoic acid, ethyl 4-dimethylaminobenzoate, etc. It can be used in combination with a photoinitiator aid such as a benzoic acid derivative.
  • a carboxyl group is added to the compound having an ethylenically unsaturated bond as a component of the photocurable resin (B-2).
  • a carboxyl group-containing resin having no ethylenically unsaturated bond may be used in addition to the compound having an ethylenically unsaturated bond introduced thereinto.
  • the high withstand voltage heat dissipation insulating resin composition of the present invention is preferably a coating type containing (C) an organic solvent.
  • the organic solvent (C) is also used for adjusting the composition and adjusting the viscosity.
  • any known organic solvent may be used, for example, ketones such as methyl ethyl ketone and cyclohexanone; aromatic hydrocarbons such as toluene, xylene and tetramethylbenzene; cellosolve.
  • Glycol ethers such as, methyl cellosolve, butyl cellosolve, carbitol, methyl carbitol, butyl carbitol, propylene glycol monomethyl ether, dipropylene glycol monomethyl ether, dipropylene glycol diethyl ether, tripropylene glycol monomethyl ether; ethyl acetate, butyl acetate , Butyl lactate, cellosolve acetate, butyl cellosolve acetate, carbitol acetate, butyl carbitol acetate, propylene glycol monomethyl ether acetate, dipropylene glycol monomethyl ether acetate, esters such as propylene carbonate; aliphatic hydrocarbons such as octane and decane; Organic solvents such as petroleum-based solvents such as petroleum ether, petroleum naphtha and solvent naphtha can be used. These organic solvents can be used alone or in combination of two or more.
  • the blending amount of the (C) organic solvent is preferably 3 to 10 parts by mass with respect to 100 parts by mass of the (A) high thermal conductive particles.
  • the blending amount of the organic solvent (C) is in this range, the generation of voids can be favorably suppressed during solvent drying.
  • a wetting / dispersing agent may be added to the high-voltage heat-dissipating heat-insulating resin composition of the present invention, if necessary, in order to facilitate high filling.
  • a wetting / dispersing agent include a compound having a polar group such as a carboxyl group, a hydroxyl group, and an acid ester, or a polymer compound, for example, an acid-containing compound such as a phosphoric acid ester, a copolymer containing an acid group, and a hydroxyl group.
  • a polycarboxylic acid-containing ester, a polysiloxane, a salt of a long-chain polyaminoamide and an acid ester, or the like can be used.
  • Disperbyk (registered trademark) -101, -103, -110, -111, -160, -171, -174, -190,-can be used particularly preferably.
  • the high-voltage heat-dissipating insulating resin composition of the present invention further comprises, if necessary, a commonly used phthalocyanine blue, phthalocyanine green, iodin green, disazo yellow, crystal violet, titanium oxide, carbon black, naphthalene black, etc.
  • Known colorants hydroquinone, hydroquinone monomethyl ether, t-butylcatechol, pyrogallol, phenothiazine, and other known thermal polymerization inhibitors, finely divided silica, organic bentonite, montmorillonite, and other known thickeners, silica, barium sulfate, talc.
  • Known conventional extenders such as clay, clay and hydrotalcite, and known conventional additives such as silicone-based, fluorine-based and polymer-based defoaming agents and / or leveling agents can be added.
  • silicone-based, fluorine-based and polymer-based defoaming agents and / or leveling agents can be added.
  • the high-voltage heat-dissipative insulating resin composition of the present invention is preferably adjusted with (C) an organic solvent to a viscosity suitable for the application method, and applied on a substrate by a method such as screen printing.
  • thermosetting resin When the (B-1) thermosetting resin is contained as the (B) curable resin in the high withstand voltage heat radiating insulating resin composition, it is heated to a temperature of about 140 ° C. to 180 ° C. and then thermoset after application. Thus, a cured coating film can be obtained.
  • the (B-2) photocurable resin is contained as the (B) curable resin in the high-voltage insulating curable resin composition, after application, it is irradiated with ultraviolet rays by a high pressure mercury lamp, a metal halide lamp, a xenon lamp, or the like. Then, a cured coating film can be obtained.
  • an alkali developing type photocuring which is a mixture of (B-1) thermosetting resin and (B-2) photocurable resin
  • a water-soluble resin composition after coating, by pattern exposure with ultraviolet rays of a high pressure mercury lamp, a metal halide lamp, a xenon lamp, etc., development, and heating at a temperature of about 140 ° C. to 180 ° C. to heat-cure it, A patterned cured coating film can be obtained.
  • Praxcel FM1) 109.8 g was added dropwise to diethylene glycol dimethyl ether over 2 hours together with 21.4 g of bis (4-t-butylcyclohexyl) peroxydicarbonate (Perloyl TCP manufactured by NOF CORPORATION), and further 6 hours. By aging, a carboxyl group-containing copolymer resin solution was obtained. The reaction was performed under a nitrogen atmosphere.
  • Examples 1 to 5 and Comparative Examples 1 to 5 The compounding components of Examples 1 to 5 and Comparative Examples 1 to 5 shown in Table 1 below were kneaded with a three-roll mill to obtain a curable resin composition.
  • wetting agent * 13 2,4-diamino-6- [2'-methylimidazolyl- (1 ')]-ethyl-s-triazine
  • 14 Photopolymerization initiator manufactured by BASF * 15: trimethylolpropane triacrylate
  • 16 DIC Corporation phenol novolac type epoxy resin
  • 17 Mitsubishi Chemical Corporation bisphenol A type epoxy resin
  • the specific surface area of each aluminum oxide powder described in * 1 to * 9 was measured by the BET method. It is a manufacturer value.
  • the curable resin composition obtained was evaluated by the following evaluation methods. The evaluation results are shown in Table 2.
  • the curable resin composition was measured for viscosity at 5 rpm and 50 rpm at 25 ° C. using a cone plate type viscometer TV-30 manufactured by Toki Sangyo Co., Ltd., and the thixo ratio of the ratio of viscosity values at two rotation speeds was measured. (TI value) was determined.
  • a dilatancy fluid when it is greater than 1, it is called a thixotropic fluid, when it is 1, it is called a Newtonian fluid, and when it corresponds to a dilatancy fluid or when the thixo ratio is too high, it flows even if the viscosity is low. Poor performance and printability problems occur.
  • the curable resin composition was screen-printed, left at room temperature for 5 minutes, and then dried in a hot air circulation drying oven at 80 ° C. for 20 minutes, and the smoothness of the coating film surface was observed and evaluated.
  • the evaluation criteria are as follows. ⁇ : Good. X: The trace of the screen mesh was clearly left.
  • thermosetting resin compositions of Examples 1 to 4 and Comparative Examples 1 to 5 were screen-printed on a circuit-formed FR-4 substrate so that the dry coating film was about 30 ⁇ m, and the temperature was 150 ° C. Cured for 60 minutes.
  • thermosetting and photocurable resin composition of Example 5 was screen-printed on a circuit-formed FR-4 substrate so that the dry coating film had a thickness of about 30 ⁇ m, and the thickness was 350 nm with a metal halide lamp. After irradiating with the integrated light amount of 2 J / cm 2 at the wavelength of, the resin was thermally cured at 150 ° C. for 60 minutes.
  • the obtained substrate was immersed in propylene glycol monomethyl ether acetate for 30 minutes, dried, and then subjected to a peel test with a cellophane adhesive tape to evaluate peeling and discoloration of the coating film.
  • the evaluation criteria are as follows. ⁇ : There was no peeling or discoloration. X: There was peeling or discoloration.
  • thermosetting resin compositions of Examples 1 to 4 and Comparative Examples 1 to 5 and the thermosetting and photocurable resin compositions of Example 5 were used to cure in the same manner as for solvent resistance. Apply rosin-based flux to the obtained substrate, let it flow for 10 seconds in a solder bath at 260 ° C, wash and dry with propylene glycol monomethyl ether acetate, and then perform a peel test with cellophane adhesive tape to remove the coating film. evaluated. The evaluation criteria are as follows. ⁇ : There was no peeling. X: There was peeling.
  • thermosetting resin compositions of Examples 1 to 4 and Comparative Examples 1 to 5 and the thermosetting and photocurable resin compositions of Example 5 curing was performed in the same manner as for solvent resistance.
  • a pencil lead of B to 9H was sharpened so that the tip was flat and pressed at an angle of about 45 °, and the hardness of the pencil that the coating film was not peeled off was recorded.
  • thermosetting resin compositions of Examples 1 to 4 and Comparative Examples 1 to 5 were pattern-printed on a circuit-formed FR-4 substrate by screen printing so that the dry coating film had a thickness of about 30 ⁇ m. It was cured for 60 minutes.
  • thermosetting and photocurable resin composition of Example 5 was screen-printed on a circuit-formed FR-4 substrate so that the dry coating film had a thickness of about 30 ⁇ m, and the thickness was 350 nm with a metal halide lamp. After irradiating with the integrated light amount of 2 J / cm 2 at the wavelength of, the resin was thermally cured at 150 ° C. for 60 minutes.
  • the film of each sample was made into 100 pieces (10 ⁇ 10) of 1 mm grid and the transparent adhesive tape (Nichiban Co., width: 18 mm) was completely formed on the grid. Immediately after the tape was adhered and one end of the tape was kept perpendicular to the glass substrate, the tape was momentarily separated, and it was examined whether peeling occurred on the grid.
  • the evaluation criteria are as follows. ⁇ : No peeling occurred on the cross. X: Peeling occurred on the cross.
  • thermosetting resin compositions of Examples 1 to 4 and Comparative Examples 1 to 5 were printed on a copper clad laminate by screen printing so that the dry coating film would be about 40 ⁇ m, and cured at 150 ° C. for 60 minutes. Further, the photocurable and thermosetting resin composition of Example 5 was printed on a copper clad laminate by screen printing so that the dry coating film had a thickness of about 40 ⁇ m, and 2 J / cm at a wavelength of 350 nm with a metal halide lamp. After irradiating the integrated light amount of 2, the test substrate was prepared by heat curing at 150 ° C. for 60 minutes.
  • the evaluation results of the comparative example are as follows. ** 1 and ** 3: In Comparative Examples 1 and 3, the closest packing was not achieved and there were voids, so the thermal conductivity was slightly low and the withstand voltage was poor. ** 2, ** 4 and ** 5: In Comparative Examples 2, 4 and 5, the leveling was poor and pinholes were generated on the coating film surface. Since the defoaming property was poor in the coating film as well, the thermal conductivity was low, and the withstand voltage characteristic was either absent or low.
  • thermosetting and photocurable resin compositions in the case of containing any of the thermosetting and photocurable resin compositions, high thermal conductivity and good heat dissipation and foam (micro It was possible to provide a high withstand voltage heat radiating insulating resin composition which can prevent deterioration of withstand voltage characteristics due to no occurrence of valves and which does not require mechanical processing such as pressure molding and vacuum pressing.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Organic Insulating Materials (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Abstract

高熱伝導度で放熱性の良いうえ耐電圧特性の低下を防止でき、かつ加圧成形や真空プレス等の機械加工が不要な高耐電圧放熱絶縁性樹脂組成物を提供する。(A)高熱伝導性粒子および(B)硬化性樹脂を含有してなる高耐電圧放熱絶縁性樹脂組成物であって、前記(A)高熱伝導性粒子の体積占有率が、高耐電圧放熱絶縁性樹脂組成物の固形分全容量に対して60容量%以上であり、前記(A)高熱伝導性粒子が、(A-1)BET法で測定した比表面積が0.2~0.6m2/gの高熱伝導性粒子と(A-2)BET法で測定した比表面積が6.0~12.5m2/gの高熱伝導性粒子を含有し、前記(A)高熱伝導性粒子全重量に対して、前記(A-2)BET法で測定した比表面積が6.0~12.5m2/gの高熱伝導性粒子が5~16重量%であることを特徴とする。

Description

高耐電圧放熱絶縁性樹脂組成物、およびそれを用いた電子部品
 本発明は、耐電圧に優れた放熱絶縁性樹脂組成物、およびそれを用いた電子部品に関し、さらに詳しくは、優れた耐電圧特性を、熱伝導率を低下させることなく有する高耐電圧放熱絶縁性樹脂組成物、及びそれを用いたプリント配線板等の電子部品に関する。
 近年、地球温暖化対策としてCOの削減が求められ、自動車の排気ガス対策のため電気自動車やハイブリッド車等高出力のモーターを使用した車両の開発が進められている。バッテリーからモーターに電力を供給する際に、高電圧、高電流に変換するために用いられるパワートランジスタやパワーダイオードでは動作時の発熱が問題となっており、特に、さらに高電圧に変換することが予定されている次世代の電気自動車では、この発熱の問題がより顕著になることが予想される。そのため、高熱伝導度で高放熱性のさらなる向上が求められている。
 放熱性の良いプリント配線板として、例えば特許文献1には、銅やアルミニウムなどの金属板を使用し、この金属板の片面又は両面に、プリプレグや熱硬化性樹脂組成物などの電気絶縁層を介して回路パターンを形成する金属ベース基板が開示されている。
 また、例えば特許文献2には、一定の大粒径フィラーを一定の割合で含有する高熱伝導性樹脂硬化物が、特許文献3には、一定の小粒径フィラーを一定の割合で含有する高熱伝導性樹脂硬化物が開示されている。
特開平6-224561号公報 特開2014-189701号公報 特開2014-193565号公報
 しかしながら、特許文献1に記載の発明にかかる金属ベース基板では、電気絶縁層の熱伝導性が低いために絶縁層を薄くする必要があり、その結果として、電気絶縁層の耐電圧特性が低下するといった問題があった。
 また、特許文献2および3に記載の発明にかかる高熱伝導性樹脂硬化物では、フィラーの空隙に発生した微細な泡(マイクロバブル)がやはり耐電圧特性を低下させてしまうこととなる。このため、これを防止しながら高熱伝導性粒子を最密充填するためには、加圧成形や真空プレス等の機械加工が必要であり、手間がかかり作業性が悪いといった問題があった。
 本発明は、上記問題点に鑑みなされたものであり、その主たる目的は、高熱伝導度で放熱性の良いうえ耐電圧特性の低下を防止でき、かつ加圧成形や真空プレス等の機械加工が不要な高耐電圧放熱絶縁性樹脂組成物を提供することにある。
 さらに、上記高耐電圧放熱絶縁性樹脂組成物を、熱硬化および/または光硬化して得られる硬化物を有する電子部品を提供することにある。
 発明者は、前記目的の実現に向け鋭意研究を行った。その結果、(B)硬化性樹脂とともに、(A)高熱伝導性粒子として、BET法で測定した比表面積が0.2~0.6m/gの(A-1)高熱伝導性粒子と、BET法で測定した比表面積が6.0~12.5m/gの(A-2)高熱伝導性粒子を、これらの配合量が一定の割合となるように配合することで、最密充填が可能となり、かつ熱伝導率を低下させることなく耐電圧特性を向上させることが可能となることを見出し、本発明を完成させるに至った。
 すなわち、本発明の高耐電圧放熱絶縁性樹脂組成物は、(A)高熱伝導性粒子および(B)硬化性樹脂を含有してなる高耐電圧放熱絶縁性樹脂組成物であって、前記(A)高熱伝導性粒子の体積占有率が、高耐電圧放熱絶縁性樹脂組成物の固形分全容量に対して60容量%以上であり、前記(A)高熱伝導性粒子が、(A-1)BET法で測定した比表面積が0.2~0.6m/gの高熱伝導性粒子と(A-2)BET法で測定した比表面積が6.0~12.5m/gの高熱伝導性粒子を含有し、前記(A)高熱伝導性粒子全重量に対して、前記(A-2)BET法で測定した比表面積が6.0~12.5m/gの高熱伝導性粒子が5~16重量%であることを特徴とするものである。なお、組成物の固形分とは、組成物から有機溶剤を除いたものを言う。
 本発明の高耐電圧放熱絶縁性樹脂組成物は、さらに、(C)有機溶剤を含むことが好ましく、また、塗布型であることが好ましい。
 本発明の高耐電圧放熱絶縁性樹脂組成物は、前記(A)高熱伝導性粒子が酸化アルミニウム粒子であることが好ましい。
 本発明の高耐電圧放熱絶縁性樹脂組成物は、前記(A)高熱伝導性粒子が、(A-1)BET法で測定した比表面積が0.2~0.6m/gの高熱伝導性粒子と(A-2)BET法で測定した比表面積が6.0~12.5m/gの高熱伝導性粒子のみからなることが好ましい。
 本発明の高耐電圧放熱絶縁性樹脂組成物は、前記(B)硬化性樹脂として、少なくとも(B-1)熱硬化性樹脂、または(B-2)光硬化性樹脂のいずれか一方を含有することが好ましい。
 本発明の高耐電圧放熱絶縁性樹脂組成物は、前記(B-1)熱硬化性樹脂として、エポキシ化合物および/またはオキセタン化合物を含有し、さらに硬化剤および/または硬化触媒を含有することが好ましい。
 本発明の高耐電圧放熱絶縁性樹脂組成物は、前記(B-2)光硬化性樹脂として、一分子中に1個以上のエチレン性不飽和結合を有する化合物を含有し、さらに光重合開始剤を含有することが好ましい。
 本発明の硬化物は、前記高耐電圧放熱絶縁性樹脂組成物を硬化して得られることを特徴とするものである。本発明の電子部品は、前記硬化物を有することを特徴とするものである。本発明の電子部品は、前記高耐電圧放熱絶縁性樹脂組成物を、熱硬化および/または光硬化して得られる硬化物により、絶縁層および/またはソルダーレジスト層が形成されてなることが好ましい。
 本発明によれば、高熱伝導度で放熱性の良いうえ耐電圧特性の低下を防止でき、かつ加圧成形や真空プレス等の機械加工が不要な高耐電圧放熱絶縁性樹脂組成物を提供することができる。さらに、上記高耐電圧放熱絶縁性樹脂組成物を、熱硬化および/または光硬化して得られる硬化物により、絶縁層および/またはソルダーレジスト層が形成されてなるプリント配線板等の電子部品も提供することができる。なお、本発明の組成物は、プリント配線板のビアホールやスルーホール等の穴部への充填用としても提供することができる。
 本発明の高耐電圧放熱絶縁性樹脂組成物は、(A)高熱伝導性粒子および(B)硬化性樹脂を含有してなる高耐電圧放熱絶縁性樹脂組成物であって、前記(A)高熱伝導性粒子の体積占有率が、高耐電圧放熱絶縁性樹脂組成物の固形分全容量に対して60容量%以上であり、前記(A)高熱伝導性粒子が、(A-1)BET法で測定した比表面積が0.2~0.6m/gの高熱伝導性粒子と(A-2)BET法で測定した比表面積が6.0~12.5m/gの高熱伝導性粒子を含有し、前記(A)高熱伝導性粒子全重量に対して、前記(A-2)BET法で測定した比表面積が6.0~12.5m/gの高熱伝導性粒子が5~16重量%であることを特徴とするものである。なお、本発明において比表面積を測定する「BET法」には、例えば(株)マウンテック製の全自動BET比表面積測定装置Massorb HM-1201を使用し、BET一点法測定にて実測するといった方法があるが、これに限定されない。
 本発明は、(A)高熱伝導性粒子として(A-1)BET法で測定した比表面積が0.2~0.6m/gの粒子と(A-2)BET法で測定した比表面積が6.0~12.5m/gの粒子を併用したうえで、その総量を高耐電圧放熱絶縁性樹脂組成物の固形分全容量に対して60容量%以上含有することで、熱伝導率を高くし、放熱材料としての十分な熱伝導性を得るものである。
 (A-1)BET法で測定した比表面積が0.2~0.6m/gの高熱伝導性粒子を含有することで熱伝導性を高くすることが可能となるが、これだけでは耐電圧が低く、高電圧下の絶縁材料に適さない。そのため、本発明では(A-2)BET法で測定した比表面積が6.0~12.5m/gの高熱伝導性粒子を一定比率((A)高熱伝導性粒子全重量に対して、前記5~16重量%)配合することで耐電圧特性を向上させる。(A-2)BET法で測定した比表面積が6.0~12.5m/gの高熱伝導性粒子を一定比率配合し、好ましくは(C)有機溶剤を含有することにより、本発明の高耐電圧放熱絶縁性樹脂組成物は塗料として好適に使用することができるようになり、塗料として薄く塗布することによりフィラーの空隙に付着した微細な泡は抜けることとなる。このため、本発明の高耐電圧放熱絶縁性樹脂組成物においては、加圧成形や真空プレス等の、手間がかかり作業性が悪い機械加工を行うことなく、高耐電圧と、(A)高熱伝導性粒子を最密充填することによる高熱伝導率すなわち高放熱性の両特性の両立が可能になる。
 なお、BET法で測定した比表面積が(A-1)と(A-2)の間の、1.0~1.8m/gの高熱伝導性粒子をさらに含有すると耐電圧が向上せず、また、BET法で測定した比表面積が(A-2)よりも大きい、55m/g以上の高熱伝導性粒子ではチキソ性が高くなり、フィラーの空隙を軽減しづらくなるため熱伝導率、耐電圧特性ともに低下する。このため本発明は、(A)高熱伝導性粒子が、(A-1)BET法で測定した比表面積が0.2~0.6m/gの粒子と(A-2)BET法で測定した比表面積が6.0~12.5m/gのみからなることが好ましいが、一方で(A)高熱伝導性粒子として、(A-2)BET法で測定した比表面積が6.0~12.5m/gの高熱伝導性粒子のみを使用した場合は、本発明に比べ耐電圧特性が大きく低下する。また、(A-1)BET法で測定した比表面積が0.2~0.6m/gの粒子と(A-2)BET法で測定した比表面積が6.0~12.5m/gの粒子とを全く使用しない場合は、熱伝導性が非常に低くなり放熱絶縁性樹脂組成物としての特性を有しない。
 以下、本発明の高耐電圧放熱絶縁性樹脂組成物の各構成成分について、詳しく説明する。
 本発明の(A)高熱伝導性粒子は、その体積占有率が、高耐電圧放熱絶縁性樹脂組成物の固形分全容量に対して60容量%以上であり、前記(A)高熱伝導性粒子が、(A-1)BET法で測定した比表面積が0.2~0.6m/gの高熱伝導性粒子と(A-2)BET法で測定した比表面積が6.0~12.5m/gの高熱伝導性粒子を含有し、前記(A)高熱伝導性粒子全重量に対して、前記(A-2)BET法で測定した比表面積が6.0~12.5m/gの高熱伝導性粒子が5~16重量%であることを特徴とするものである。
 本発明において、(A)高熱伝導性粒子の材質としては、高熱伝導度であれば、公知慣用のものが使用できる。例えば、酸化アルミニウム(Al)、シリカ(SiO)、炭化ケイ素(SiC)、ジルコニア(ZrO)、酸化チタン(TiO)、酸化マグネシウム(MgO)、ムライト(3Al・2SiO)、ジルコン(とはのうち特にZrO・SiO)、コージェライト(2MgO・2Al・5SiO)、窒化珪素(Si)、酸化マンガン(MnO)、酸化鉄(Fe)、酸化コバルト(CoO)などが使用できる。
 これらの中でも酸化アルミニウムは、化学的にも安定で、絶縁性にも優れており好ましく、また、球状の粒子は高充填した際の粘度上昇を和らげることができ最密充填に適するため、球状酸化アルミニウムを用いること好ましい。球状酸化アルミニウム粒子の市販品としては、(A-1)BET法で測定した比表面積が0.2~0.6m/gの高熱伝導性粒子として、DAW-03(電気化学工業(株)製、BET法で測定した比表面積0.5~0.6m/g)、DAW-05(電気化学工業(株)製、BET法で測定した比表面積0.4~0.5m/g)、DAW-07(電気化学工業(株)製、BET法で測定した比表面積0.4m/g)、DAW-45(電気化学工業(株)製、BET法で測定した比表面積0.2m/g)、DAW-70(電気化学工業(株)製、BET法で測定した比表面積0.2m/g)が、(A-2)BET法で測定した比表面積が6.0~12.5m/gの高熱伝導性粒子として、AO-509(アドマテック社製、BET法で測定した比表面積6.5~9.0m/g)、ASFP-20(電気化学工業(株)製、BET法で測定した比表面積10~12m/g)、ASFP-25(電気化学工業(株)製、BET法で測定した比表面積8~10m/g)、ASFP-40(電気化学工業(株)製、BET法で測定した比表面積6~8m/g)等が挙げられる。
 また、本発明の(A)高熱伝導性粒子は、(A-1)BET法で測定した比表面積が0.2~0.6m/gの粒子と(A-2)BET法で測定した比表面積が6.0~12.5m/gの粒子との条件を満たすことにより、高充填にすることができる。
 なお、本発明の(A)高熱伝導性粒子は、シランカップリング剤などのカップリング剤で表面処理することが硬化物の低吸水性、耐熱衝撃性および耐クラック性を向上させる点で好ましい。このカップリング剤としては、シラン系、チタネート系、アルミネート系およびジルコアルミネート系等のカップリング剤が使用できる。なかでもシラン系カップリング剤が好ましい。かかるシラン系カップリング剤としては、例えば、ビニルトリメトキシシラン、ビニルトリエトキシシラン、N-(2-アミノメチル)-3-アミノプロピルメチルジメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-アニリノプロピルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メルカプトプロピルトリメトキシシラン等を挙げることができ、これらは単独で、あるいは併用して使用することができる。
 これらのカップリング剤は、表面未処理の(A)高熱伝導性粒子とカップリング剤とを別々に配合して、組成物中で(A)高熱伝導性粒子が表面処理されてもよいが、予め(A)高熱伝導性粒子の表面にカップリング剤を吸着あるいは反応により固定化することが好ましい。この場合、表面処理に用いるカップリング剤量および表面処理方法については特に制限されない。
 本発明においては、(B)硬化性樹脂として、少なくとも(B-1)熱硬化性樹脂、または(B-2)光硬化性樹脂のいずれか一方を含有することが好ましい。
 (B-1)熱硬化性樹脂としては、加熱により硬化して電気絶縁性を示す樹脂、例えばエポキシ樹脂、オキセタン樹脂、メラミン樹脂、シリコン樹脂などが挙げられ、特に、本発明においては、エポキシ化合物および/またはオキセタン化合物の熱硬化性樹脂を、好ましく用いることができ、この場合、硬化剤および/または硬化触媒をさらに用いることが好ましい。
 上記エポキシ化合物としては、一分子中に1個以上、好ましくは2個以上のエポキシ基を有する化合物であれば、公知慣用のものが使用できる。例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、脂環式エポキシ樹脂、トリメチロールプロパンポリグリシジルエーテル、フェニル-1,3-ジグリシジルエーテル、ビフェニル-4,4’-ジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、エチレングリコール又はプロピレングリコールのジグリシジルエーテル、ソルビトールポリグリシジルエーテル、トリス(2,3-エポキシプロピル)イソシアヌレート、トリグリシジルトリス(2-ヒドロキシエチル)イソシアヌレートなどの1分子中に2個以上のエポキシ基を有する化合物などが挙げられる。さらに、硬化塗膜特性を低下させない範囲で、ブチルグリシジルエーテル、フェニルグリシジルエーテル、グリシジル(メタ)アクリレートなどのモノエポキシ化合物を添加しても良い。また、これらは、塗膜の特性向上の要求に合わせて、単独で又は2種以上を組み合わせて使用できる。
 また、前記オキセタン化合物は、下記一般式(I)のように、
Figure JPOXMLDOC01-appb-C000001
 (式中、Rは、水素原子又は炭素数1~6のアルキル基を示す。)
オキセタン環を含有する化合物であり、具体的な化合物としては、3-エチル-3-ヒドロキシメチルオキセタン(東亞合成(株)製の商品名 OXT-101)、3-エチル-3-(フェノキシメチル)オキセタン(東亞合成(株)製の商品名 OXT-211)、3-エチル-3-(2-エチルヘキシロキシメチル)オキセタン(東亞合成社製の商品名 OXT-212)、1,4-ビス{[(3-エチル-3-オキセタニル)メトキシ]メチル}ベンゼン(東亞合成社製の商品名 OXT-121)、ビス(3-エチル-3-オキセタニルメチル)エーテル(東亞合成社製の商品名 OXT-221)などが挙げられる。さらに、フェノールノボラックタイプのオキセタン化合物なども挙げられる。
 上記オキセタン化合物は、前記エポキシ化合物と併用または単独で使用することができるが、エポキシ化合物に比べて反応性が悪い為、硬化の温度を高くする等の注意が必要である。
 次に、硬化剤として使用されるものとしては、多官能フェノール化合物、ポリカルボン酸およびその酸無水物、脂肪族又は芳香族の一級又は二級アミン、ポリアミド樹脂、ポリメルカプト化合物などが挙げられる。これらの中で、多官能フェノール化合物、およびポリカルボン酸およびその酸無水物が、作業性、絶縁性の面から、好ましく用いられる。
 多官能フェノール化合物としては、一分子中に2個以上のフェノール性水酸基を有する化合物であれば、公知慣用のものが使用できる。具体的には、フェノールノボラック樹脂、クレゾールノボラック樹脂、ビスフェノールA、アリル化ビスフェノールA、ビスフェノールF、ビスフェノールAのノボラック樹脂、ビニルフェノール共重合樹脂などが挙げられるが、特に、フェノールノボラック樹脂が、反応性が高く、耐熱性を上げる効果も高いため好ましい。このような多官能フェノール化合物は、適切な硬化触媒の存在下、前記エポキシ化合物および/またはオキセタン化合物とも付加反応する。
 ポリカルボン酸及びその酸無水物は、一分子中に2個以上のカルボキシル基を有する化合物及びその酸無水物であり、例えば(メタ)アクリル酸の共重合物、無水マレイン酸の共重合物、二塩基酸の縮合物などが挙げられる。市販品としては、ジョンソンポリマー社製のジョンクリル(商品群名)、アーコケミカル社製のSMAレジン(商品群名)、新日本理化社製のポリアゼライン酸無水物などが挙げられる。
 前記硬化触媒としては、エポキシ化合物および/またはオキセタン化合物と、多官能フェノール化合物および/またはポリカルボン酸及びその酸無水物の反応の硬化触媒となる化合物、または硬化剤を使用しない場合に重合触媒となる化合物、例えば、三級アミン、三級アミン塩、四級オニウム塩、三級ホスフィン、クラウンエーテル錯体、およびホスホニウムイリドなどが挙げられ、これらの中から任意に選択することが可能であり、これらを単独で又は2種類以上を組み合わせて用いることができる。
 これらの中で、好ましいものとしては、商品名2E4MZ、C11Z、C17Z、2PZ等のイミダゾール類や、商品名2MZ-A、2E4MZ-A等のイミダゾールのAZINE化合物、商品名2MZ-OK、2PZ-OK等のイミダゾールのイソシアヌル酸塩、商品名2PHZ、2P4MHZ等のイミダゾールヒドロキシメチル体(前記商品名はいずれも四国化成工業(株)製)、ジシアンジアミドとその誘導体、メラミンとその誘導体、ジアミノマレオニトリルとその誘導体、ジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、ビス(ヘキサメチレン)トリアミン、トリエタノーアミンジアミノジフェニルメタン、有機酸ジヒドラジド等のアミン類、1,8-ジアザビシクロ[5,4,0]ウンデセン-7(商品名DBU、サンアプロ(株)製)、3,9-ビス(3-アミノプロピル)-2,4,8,10-テトラオキサスピロ[5,5]ウンデカン(商品名ATU、味の素(株)製)、又は、トリフェニルホスフィン、トリシクロヘキシルホスフィン、トリブチルホスフィン、メチルジフェニルホスフィン等の有機ホスフィン化合物などが挙げられる。
 これら硬化触媒の配合量は通常の量的割合で充分であり、例えば前記エポキシ化合物および/またはオキセタン化合物の合計100質量部当り0.1質量部以上、10質量部以下が適当である。
 (B-2)光硬化性樹脂としては、活性エネルギー線照射により硬化する電気絶縁性の樹脂であればよいが、一分子中に1個以上のエチレン性不飽和結合を有する化合物が耐熱性、電気絶縁性に優れており、好ましく用いることができ、この場合、光重合開始剤をさらに用いることが好ましい。
 この一分子中に1個以上のエチレン性不飽和結合を有する化合物としては、公知慣用の光重合性オリゴマーや光重合性ビニルモノマー等が用いられる。
 前記光重合性オリゴマーとしては、不飽和ポリエステル系オリゴマー、(メタ)アクリレート系オリゴマー等が挙げられる。(メタ)アクリレート系オリゴマーとしては、フェノールノボラックエポキシ(メタ)アクリレート、クレゾールノボラックエポキシ(メタ)アクリレート、ビスフェノール型エポキシ(メタ)アクリレート等のエポキシ(メタ)アクリレート、ウレタン(メタ)アクリレート、エポキシウレタン(メタ)アクリレート、ポリエステル(メタ)アクリレート、ポリエーテル(メタ)アクリレート、ポリブタジエン変性(メタ)アクリレート等が挙げられる。なお、本明細書において、(メタ)アクリレートとは、アクリレート、メタクリレート及びそれらの混合物を総称する用語で、他の類似の表現についても同様である。
 前記光重合性ビニルモノマーとしては、公知慣用のもの、例えば、スチレン、クロロスチレン、α-メチルスチレンなどのスチレン誘導体;酢酸ビニル、酪酸ビニル又は安息香酸ビニルなどのビニルエステル類;ビニルイソブチルエーテル、ビニル-n-ブチルエーテル、ビニル-t-ブチルエーテル、ビニル-n-アミルエーテル、ビニルイソアミルエーテル、ビニル-n-オクタデシルエーテル、ビニルシクロヘキシルエーテル、エチレングリコールモノブチルビニルエーテル、トリエチレングリコールモノメチルビニルエーテルなどのビニルエーテル類;アクリルアミド、メタクリルアミド、N-ヒドロキシメチルアクリルアミド、N-ヒドロキシメチルメタクリルアミド、N-メトキシメチルアクリルアミド、N-エトキシメチルアクリルアミド、N-ブトキシメチルアクリルアミドなどの(メタ)アクリルアミド類;トリアリルイソシアヌレート、フタル酸ジアリル、イソフタル酸ジアリルなどのアリル化合物;2-エチルヘキシル(メタ)アクリレート、ラウリル(メタ)アクリレート、テトラヒドロフルフリール(メタ)アクリレート、イソボロニル(メタ)アクリレート、フェニル(メタ)アクリレート、フェノキシエチル(メタ)アクリレートなどの(メタ)アクリル酸のエステル類;ヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレートなどのヒドロキシアルキル(メタ)アクリレート類;メトキシエチル(メタ)アクリレート、エトキシエチル(メタ)アクリレートなどのアルコキシアルキレングリコールモノ(メタ)アクリレート類;エチレングリコールジ(メタ)アクリレート、ブタンジオールジ(メタ)アクリレート類、ネオペンチルグリコールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレートなどのアルキレンポリオールポリ(メタ)アクリレート、;ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、ポリエチレングリコール200ジ(メタ)アクリレート、エトキシ化トリメチロールプロパントリアクリレート、プロポキシ化トリメチロールプロパントリ(メタ)アクリレートなどのポリオキシアルキレングリコールポリ(メタ)アクリレート類;ヒドロキシビバリン酸ネオペンチルグリコールエステルジ(メタ)アクリレートなどのポリ(メタ)アクリレート類;トリス[(メタ)アクリロキシエチル]イソシアヌレートなどのイソシアヌルレート型ポリ(メタ)アクリレート類などが挙げられる。これらは、塗膜の特性上の要求に合わせて、単独で又は2種以上を組み合わせて使用できる。
 前記光重合開始剤としては、例えばベンゾイン、ベンゾインメチルエ-テル、ベンゾインエチルエ-テル、ベンゾインイソプロピルエ-テル、ベンゾインイソブチルエ-テル、ベンジルメチルケタ-ルなどのベンゾイン化合物とそのアルキルエ-テル類;アセトフェノン、2,2-ジメトキシ-2-フェニルアセトフェノン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、ジエトキシアセトフェノン、2,2-ジエトキシ-2-フェニルアセトフェノン、1,1-ジクロロアセトフェノン、1-ヒドロキシシクロヘキシルフェニルケトン、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルフォリノ-プロパン-1-オンなどのアセトフェノン類;メチルアンソラキノン、2-エチルアンソラキノン、2-ターシャリーブチルアンソラキノン、1-クロロアンソラキノン、2-アミルアンソラキノンなどのアンソラキノン類;チオキサントン、2、4-ジエチルチオキサントン、2-クロロチオキサントン、2,4-ジクロロチオキサントン、2-メチルチオキサントン、2,4-ジイソプロピルチオキサントンなどのチオキサントン類;アセトフェノンジメチルケタ-ル、ベンジルジメチルケタ-ルなどのケタ-ル類;ベンゾフェノン、4,4-ビスメチルアミノベンゾフェノンなどのベンゾフェノン類などが挙げられる。これらは単独または2種類以上を混合して使用することが可能であり、さらにトリエタノ-ルアミン、メチルジエタノ-ルアミン等の第3級アミン;2-ジメチルアミノエチル安息香酸、4-ジメチルアミノ安息香酸エチルなどの安息香酸誘導体などの光開始助剤等と組み合わせて使用することができる。
 (B)硬化性樹脂として、アルカリ現像型の光硬化性樹脂組成物を用いる場合は、上記(B-2)光硬化性樹脂の成分として、上記エチレン性不飽和結合を有する化合物にカルボキシル基を導入するか、もしくは上記エチレン性不飽和結合を有する化合物に加えてさらに、エチレン性不飽和結合を有しないカルボキシル基含有樹脂を用いることができる。
 本発明の高耐電圧放熱絶縁性樹脂組成物は(C)有機溶剤を含有した塗布型であることが好ましい。(C)有機溶剤は、組成物の調整や粘度調整のためにも用いられる。(C)有機溶剤としては、公知の有機溶剤であれば、いずれのものを用いることもでき、例えばメチルエチルケトン、シクロヘキサノン等のケトン類;トルエン、キシレン、テトラメチルベンゼン等の芳香族炭化水素類;セロソルブ、メチルセロソルブ、ブチルセロソルブ、カルビトール、メチルカルビトール、ブチルカルビトール、プロピレングリコールモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールジエチルエーテル、トリプロピレングリコールモノメチルエーテル等のグリコールエーテル類;酢酸エチル、酢酸ブチル、乳酸ブチル、セロソルブアセテート、ブチルセロソルブアセテート、カルビトールアセテート、ブチルカルビトールアセテート、プロピレングリコールモノメチルエーテルアセテート、ジプロピレングリコールモノメチルエーテルアセテート、炭酸プロピレン等のエステル類;オクタン、デカン等の脂肪族炭化水素類;石油エーテル、石油ナフサ、ソルベントナフサ等の石油系溶剤などの有機溶剤が使用できる。これらの有機溶剤は、単独で又は2種類以上を組み合わせて用いることができる。
 (C)有機溶剤の配合量は、(A)高熱伝導性粒子100質量部に対して3~10質量部であることが好ましい。(C)有機溶剤の配合量がこの範囲の場合は溶剤乾燥時に空隙の発生を良好に抑制することができる。
 本発明の高耐電圧放熱絶縁性樹脂組成物は、必要に応じて高充填化を容易にするために、湿潤・分散剤を添加することができる。このような湿潤・分散剤としては、カルボキシル基、水酸基、酸エステルなどの極性基を有する化合物や高分子化合物、例えばリン酸エステル類などの酸含有化合物や、酸基を含む共重合物、水酸基含有ポリカルボン酸エステル、ポリシロキサン、長鎖ポリアミノアマイドと酸エステルの塩などを用いることができる。
 市販されている湿潤・分散剤で特に好適に用いることができるものとしては、Disperbyk(登録商標)-101、-103、-110、-111、-160、-171、-174、-190、-300、Bykumen(登録商標)、BYK-P105、-P104、-P104S、-240(いずれもビック・ケミー・ジャパン社製)、EFKA-ポリマー150、EFKA-44、-63、-64、-65、-66、-71、-764、-766、N(いずれもエフカ社製)が挙げられる。
 本発明の高耐電圧放熱絶縁性樹脂組成物は、さらに必要に応じて、フタロシアニン・ブルー、フタロシアニン・グリーン、アイオジン・グリーン、ジスアゾイエロー、クリスタルバイオレット、酸化チタン、カーボンブラック、ナフタレンブラックなどの公知慣用の着色剤、ハイドロキノン、ハイドロキノンモノメチルエーテル、t-ブチルカテコール、ピロガロール、フェノチアジンなどの公知慣用の熱重合禁止剤、微粉シリカ、有機ベントナイト、モンモリロナイトなどの公知慣用の増粘剤、シリカ、硫酸バリウム、タルク、クレイ、ハイドロタルサイトなどの公知慣例の体質顔料、シリコン系、フッ素系、高分子系などの消泡剤および/またはレベリング剤などのような公知慣用の添加剤類を配合することができる。本発明の高耐電圧放熱絶縁性樹脂組成物においては、シリコン系消泡剤と非シリコン系消泡剤とを併用することが、塗布した際により泡(マイクロバブル)が抜けるため好ましい。
 本発明の高耐電圧放熱絶縁性樹脂組成物は、(C)有機溶剤で塗布方法に適した粘度に調整し、基材上に、スクリーン印刷法等の方法により塗布することが好ましい。
 高耐電圧放熱絶縁性樹脂組成物の(B)硬化性樹脂として(B-1)熱硬化性樹脂を含有する場合、塗布後、約140℃~180℃の温度に加熱して熱硬化させることにより、硬化塗膜を得ることができる。
 また、高耐電圧絶縁性硬化性樹脂組成物の(B)硬化性樹脂として(B-2)光硬化性樹脂を含有する場合、塗布後、高圧水銀ランプ、メタルハライドランプ、キセノンランプ等で紫外線照射し、硬化塗膜を得ることができる。
 また、高耐電圧絶縁性硬化性樹脂組成物の(B)硬化性樹脂として、(B-1)熱硬化性樹脂と(B-2)光硬化性樹脂の混合物であるアルカリ現像型の光硬化性樹脂組成物を含有する場合、塗布後、高圧水銀ランプ、メタルハライドランプ、キセノンランプ等の紫外線でパターン露光し、現像し、約140℃~180℃の温度に加熱して熱硬化させることにより、パターン状の硬化塗膜を得ることができる。
 本発明の実施例および比較例を示して本発明について具体的に説明するが、本発明が以下の実施例に限定されるものでないことはもとよりである。なお、以下において「部」および「%」とあるのは、特に断りのない限り全て「質量部」および「質量%」を表わす。
(光重合性オリゴマー(B-2)の合成)
 攪拌機、温度計、還流冷却管、滴下ロートおよび窒素導入管を備えた2リットル容セパラブルフラスコに、ジエチレングリコールジメチルエーテル900g、およびt-ブチルパーオキシ2-エチルヘキサノエート(日本油脂(株)製パーブチルO)21.4gを仕込み、90℃に昇温後、メタクリル酸309.9g、メタクリル酸メチル116.4g、及び一般式(I)で示されるラクトン変性2-ヒドロキシエチルメタクリレート(ダイセル化学工業(株)製プラクセルFM1)109.8gをビス(4-t-ブチルシクロヘキシル)パーオキシジカーボネート(日本油脂(株)製パーロイルTCP)21.4gと共にジエチレングリコールジメチルエーテル中に3時間かけて滴下し、さらに6時間熟成することによってカルボキシル基含有共重合樹脂溶液を得た。反応は、窒素雰囲気下で行った。
 次に上記カルボキシル基含有共重合樹脂溶液に、3,4-エポキシシクロヘキシルメチルアクリレート(ダイセル化学(株)製サイクロマーA200)363.9g、ジメチルベンジルアミン3.6g、ハイドロキノンモノメチルエーテル1.80gを加え、100℃に昇温し、撹拌することによってエポキシの開環付加反応を行った。16時間後、固形分酸価=108.9mgKOH/g、重量平均分子量=25,000(スチレン換算)のカルボキシル基含有共重合樹脂を、53.8%(不揮発分)含む溶液を得た。
(実施例1~5および比較例1~5)
 下記表1に示す実施例1~5及び比較例1~5の配合成分を、3本ロールミルで混練し、硬化性樹脂組成物を得た。
Figure JPOXMLDOC01-appb-T000002
*1:電気化学工業(株)製 比表面積0.4m/gの球状酸化アルミニウム
*2:電気化学工業(株)製 比表面積0.4~0.5m/gの球状酸化アルミニウム
*3:電気化学工業(株)製 比表面積0.5~0.6m/gの球状酸化アルミニウム
*4:Admatechs社製 比表面積1.0~1.8m/gの球状酸化アルミニウム
*5:Admatechs社製 比表面積6.5~9.0m/gの球状酸化アルミニウム
*6:電気化学工業(株)製 比表面積10~12m/gの球状酸化アルミニウム
*7:電気化学工業(株)製 比表面積8~10m/gの球状酸化アルミニウム
*8:電気化学工業(株)製 比表面積6~8m/gの球状酸化アルミニウム
*9:EVONIK社製 比表面積55~75m/gの超微粒子酸化アルミニウム
*10:信越化学工業(株)製シリコン系消泡剤
*11:ビック・ケミー・ジャパン(株)製非シリコン系消泡剤
*12:ビック・ケミー・ジャパン(株)製湿潤剤
*13:2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]-エチル-s-トリアジン
*14:BASF社製の光重合開始剤
*15:トリメチロールプロパントリアクリレート
*16:DIC(株)製フェノールノボラック型エポキシ樹脂
*17:三菱ケミカル(株)製ビスフェノールA型エポキシ樹脂
 なお、*1~*9に記載の、各酸化アルミニウム粉末の比表面積は、BET法により測定したメーカー値である。
 得られた硬化性樹脂組成物について、以下の評価方法で評価した。評価結果を表2に示す。
(チキソ比評価)
 硬化性樹脂組成物を、東機産業(株)製コーンプレート型粘度計TV-30を用いて25℃にて5rpmと50rpmの粘度を測定し、2つの回転速度の粘度値の比のチキソ比(TI値)を求めた。チキソ比が1より小さい場合はダイラタンシー流体、1より大きい場合はチキソトロピック流体、1の場合はニュートン流体と呼ばれ、ダイラタンシー流体に該当する場合やチキソ比が高すぎる場合は粘度が低くても流動性が悪く、印刷性に問題が出る。
(塗膜表面のレベリング性評価)
 硬化性樹脂組成物をスクリーン印刷後、室温で5分間放置後、80℃の熱風循環式乾燥炉にて20分間乾燥した後の塗膜表面の平滑性を観察し、評価した。評価基準は以下の通りとした。
 〇:良好であった。
 ×:スクリーンメッシュの跡がはっきり残っていた。
(塗膜中の気泡評価)
 塗膜表面のレベリング性評価で作成した硬化塗膜の断面について、走査電子顕微鏡(SEM)で、マイクロバブルや空隙の有無を観察した。評価基準は以下の通りとした。
 〇:マイクロバブルや空隙がなかった。
 △:マイクロバブルや空隙があった。
 ×:マイクロバブルや空隙が多数あった。
(耐溶剤性評価)
 実施例1~4および比較例1~5の、熱硬化性樹脂組成物を、回路形成されたFR-4基板上にスクリーン印刷で乾燥塗膜が約30μmとなるようにパターン印刷し、150℃で60分間硬化させた。
 また、実施例5の、熱硬化性および光硬化性樹脂組成物を回路形成されたFR-4基板上にスクリーン印刷で乾燥塗膜が約30μmとなるようにパターン印刷し、メタルハライドランプにて350nmの波長で2J/cmの積算光量を照射した後、150℃で60分間熱硬化させた。得られた基板をプロピレングリコールモノメチルエーテルアセテートに30分間浸漬し、乾燥後、セロハン粘着テープによるピールテストを行い、塗膜の剥がれ・変色について評価した。評価基準は以下の通りとした。
 ○:剥がれや変色がなかった。
 ×:剥がれや変色があった。
(耐熱性評価)
 実施例1~4および比較例1~5の熱硬化性樹脂組成物と、実施例5の熱硬化性および光硬化性樹脂組成物を用いて、耐溶剤性と同様の方法で硬化した。得られた基板にロジン系フラックスを塗布して、260℃のはんだ槽で10秒間フローさせて、プロピレングリコールモノメチルエーテルアセテートで洗浄・乾燥後、セロハン粘着テープによるピールテストを行い、塗膜の剥がれについて評価した。評価基準は以下の通りとした。
 ○:剥がれがなかった。
 ×:剥がれがあった。
(鉛筆硬度評価)
 実施例1~4および比較例1~5の熱硬化性樹脂組成物と実施例5の熱硬化性および光硬化性樹脂組成物を用いて、耐溶剤性と同様の方法で硬化した。得られた基板に、Bから9Hの鉛筆の芯を先が平らになるように研ぎ、約45°の角度で押しつけて塗膜が剥がれない鉛筆の硬さを記録した。
(密着性(碁盤目付着性)評価)
 実施例1~4および比較例1~5の、熱硬化性樹脂組成物を回路形成されたFR-4基板上にスクリーン印刷で乾燥塗膜が約30μmとなるようにパターン印刷し、150℃で60分間硬化させた。
 また、実施例5の、熱硬化性および光硬化性樹脂組成物を回路形成されたFR-4基板上にスクリーン印刷で乾燥塗膜が約30μmとなるようにパターン印刷し、メタルハライドランプにて350nmの波長で2J/cmの積算光量を照射した後、150℃で60分間熱硬化させた。
 得られた基板をJISK5400に準拠して、各サンプルの皮膜に、1mmの碁盤目100個(10×10)を作り、碁盤目上に透明粘着テープ(ニチバン社製、幅:18mm)を完全に付着させ、直ちにテープの一端をガラス基板に対して直角に保ちながら瞬間的に引き離し、碁盤目に剥がれが生じたかを調べた。評価基準は以下の通りとした。 
 ○:碁盤目に剥がれが生じなかった。 
 ×:碁盤目に剥がれが生じた。
(耐電圧測定および評価) 
 実施例1~4及び比較例1~5の熱硬化性樹脂組成物を銅張積層板上にスクリーン印刷で乾燥塗膜が約40μmとなるように印刷し、150℃で60分間硬化させた。
 また、実施例5の光硬化性および熱硬化性樹脂組成物を銅張積層板上にスクリーン印刷で乾燥塗膜が約40μmとなるように印刷し、メタルハライドランプにて350nmの波長で2J/cmの積算光量を照射した後、150℃で60分間熱硬化させ試験基板を作製した。
 菊水電子工業製AC・DC耐電圧試験機TOS5101を用い、ACモードで直径10mmの電極を使用し、60秒間絶縁破壊しない値を読み測定を行った。測定はn=3で行い、平均値を算出した。評価基準は以下の通りとした。
 ○:耐電圧が3kV/100μm以上であった。 
 ×:耐電圧が3kV/100μm未満であった。
(熱伝導率測定)
 実施例1~4及び比較例1~5の熱硬化性樹脂組成物を圧延銅箔上にスクリーン印刷で乾燥塗膜が約50μmとなるように印刷し、150℃で60分間硬化させた。
 また、実施例5の光硬化性および熱硬化性樹脂組成物を圧延銅箔上にスクリーン印刷で乾燥塗膜が約50μmとなるように印刷し、メタルハライドランプにて350nmの波長で2J/cmの積算光量を照射した後、150℃で60分間熱硬化させた。
 その後、圧延銅箔を剥がして得られたフィルム状硬化物を京都電子工業(株)製QTM500を用いて熱伝導率の測定を行い、n=3の平均値を求めた。
Figure JPOXMLDOC01-appb-T000003
 比較例の評価結果は以下の通りである。
**1および**3:
 比較例1および3については、最密充填できておらず、空隙があるため熱伝導率が若干低く、耐電圧が悪い結果となった。
**2、**4および**5:
 比較例2、4および5については、レベリングが悪く、塗膜表面にピンホールが発生した。塗膜中も消泡性が悪いため熱伝導率が低く、耐電圧特性もない、もしくは低いとの結果となった。
 表2に示す結果から明らかなように、本発明によれば、熱硬化性、光硬化性のいずれの樹脂組成物を含有する場合においても、高熱伝導度で放熱性の良いうえ、泡(マイクロバルブ)が発生しないため耐電圧特性の低下を防止でき、かつ加圧成形や真空プレス等の機械加工が不要な高耐電圧放熱絶縁性樹脂組成物を提供することができた。

Claims (8)

  1.  (A)高熱伝導性粒子および(B)硬化性樹脂を含有してなる高耐電圧放熱絶縁性樹脂組成物であって、
     前記(A)高熱伝導性粒子の体積占有率が、高耐電圧放熱絶縁性樹脂組成物の固形分全容量に対して60容量%以上であり、
     前記(A)高熱伝導性粒子が、(A-1)BET法で測定した比表面積が0.2~0.6m/gの高熱伝導性粒子と(A-2)BET法で測定した比表面積が6.0~12.5m/gの高熱伝導性粒子を含有し、
     前記(A)高熱伝導性粒子全重量に対して、前記(A-2)BET法で測定した比表面積が6.0~12.5m/gの高熱伝導性粒子が5~16重量%である
     ことを特徴とする高耐電圧放熱絶縁性樹脂組成物。
  2.  さらに、(C)有機溶剤を含むことを特徴とする請求項1に記載の高耐電圧放熱絶縁性樹脂組成物。
  3.  塗布型であることを特徴とする請求項1に記載の高耐電圧放熱絶縁性樹脂組成物。
  4.  前記(A)高熱伝導性粒子が酸化アルミニウム粒子であることを特徴とする請求項1記載の高耐電圧放熱絶縁性樹脂組成物。
  5.  前記(A)高熱伝導性粒子が、(A-1)BET法で測定した比表面積が0.2~0.6m/gの高熱伝導性粒子と(A-2)BET法で測定した比表面積が6.0~12.5m/gの高熱伝導性粒子のみからなることを特徴とする請求項1記載の高耐電圧放熱絶縁性樹脂組成物。
  6.  前記(B)硬化性樹脂として、少なくとも(B-1)熱硬化性樹脂、または(B-2)光硬化性樹脂のいずれか一方を含有することを特徴とする請求項1記載の高耐電圧放熱絶縁性樹脂組成物。
  7.  請求項1ないし6のいずれか一項に記載の高耐電圧放熱絶縁性樹脂組成物を硬化して得られることを特徴とする硬化物。
  8.  請求項7に記載の硬化物を有することを特徴とする電子部品。
PCT/JP2019/026696 2018-11-20 2019-07-04 高耐電圧放熱絶縁性樹脂組成物、およびそれを用いた電子部品 WO2020105215A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980067078.6A CN112823188B (zh) 2018-11-20 2019-07-04 高耐电压散热绝缘性树脂组合物和使用其的电子部件
JP2020558077A JP7394782B2 (ja) 2018-11-20 2019-07-04 高耐電圧放熱絶縁性樹脂組成物、およびそれを用いた電子部品

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018217275 2018-11-20
JP2018-217275 2018-11-20

Publications (1)

Publication Number Publication Date
WO2020105215A1 true WO2020105215A1 (ja) 2020-05-28

Family

ID=70773999

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/026696 WO2020105215A1 (ja) 2018-11-20 2019-07-04 高耐電圧放熱絶縁性樹脂組成物、およびそれを用いた電子部品

Country Status (4)

Country Link
JP (1) JP7394782B2 (ja)
CN (1) CN112823188B (ja)
TW (1) TWI819033B (ja)
WO (1) WO2020105215A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111164151A (zh) * 2017-10-10 2020-05-15 味之素株式会社 固化体及其制造方法、树脂片材及树脂组合物

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007262398A (ja) * 2006-03-01 2007-10-11 Hitachi Chem Co Ltd エポキシ樹脂組成物及び電子部品装置
WO2009136542A1 (ja) * 2008-05-08 2009-11-12 富士高分子工業株式会社 熱伝導性樹脂組成物
JP2013189625A (ja) * 2012-02-15 2013-09-26 Nippon Steel & Sumikin Chemical Co Ltd 高熱伝導性樹脂硬化物、高熱伝導性半硬化樹脂フィルム及び高熱伝導性樹脂組成物
WO2014192402A1 (ja) * 2013-05-30 2014-12-04 住友ベークライト株式会社 疎水性無機粒子、放熱部材用樹脂組成物および電子部品装置
JP2015103578A (ja) * 2013-11-21 2015-06-04 日東電工株式会社 熱硬化型ダイボンドフィルム、ダイシングシート付きダイボンドフィルム、及び、半導体装置の製造方法
JP2015193687A (ja) * 2014-03-31 2015-11-05 ナミックス株式会社 樹脂組成物、接着フィルム、および半導体装置
JP2016089169A (ja) * 2014-10-30 2016-05-23 Dic株式会社 複合樹脂組成物、成形体、熱伝導材料及び熱伝導材料
WO2018084121A1 (ja) * 2016-11-01 2018-05-11 太陽ホールディングス株式会社 プリント配線板用の硬化性絶縁性組成物、ドライフィルム、硬化物、プリント配線板およびプリント配線板用の硬化性絶縁性組成物の製造方法
WO2018131486A1 (ja) * 2017-01-13 2018-07-19 デンカ株式会社 熱伝導性樹脂組成物、放熱シート、放熱部材及びその製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4920929B2 (ja) * 2005-08-12 2012-04-18 太陽ホールディングス株式会社 ソルダーレジスト組成物、及びその硬化物並びにそれを用いたプリント配線板
JP5089885B2 (ja) * 2006-01-17 2012-12-05 太陽ホールディングス株式会社 放熱絶縁性樹脂組成物、及びそれを用いたプリント配線板
JP5423783B2 (ja) * 2009-02-25 2014-02-19 パナソニック株式会社 熱伝導性組成物とこれを用いた放熱板、放熱基板、回路モジュール、熱伝導性組成物の製造方法
JP5337316B2 (ja) * 2012-01-30 2013-11-06 モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社 高誘電絶縁性樹脂組成物
JP6366228B2 (ja) * 2013-06-04 2018-08-01 日東電工株式会社 接着シート、及びダイシング・ダイボンディングフィルム

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007262398A (ja) * 2006-03-01 2007-10-11 Hitachi Chem Co Ltd エポキシ樹脂組成物及び電子部品装置
WO2009136542A1 (ja) * 2008-05-08 2009-11-12 富士高分子工業株式会社 熱伝導性樹脂組成物
JP2013189625A (ja) * 2012-02-15 2013-09-26 Nippon Steel & Sumikin Chemical Co Ltd 高熱伝導性樹脂硬化物、高熱伝導性半硬化樹脂フィルム及び高熱伝導性樹脂組成物
WO2014192402A1 (ja) * 2013-05-30 2014-12-04 住友ベークライト株式会社 疎水性無機粒子、放熱部材用樹脂組成物および電子部品装置
JP2015103578A (ja) * 2013-11-21 2015-06-04 日東電工株式会社 熱硬化型ダイボンドフィルム、ダイシングシート付きダイボンドフィルム、及び、半導体装置の製造方法
JP2015193687A (ja) * 2014-03-31 2015-11-05 ナミックス株式会社 樹脂組成物、接着フィルム、および半導体装置
JP2016089169A (ja) * 2014-10-30 2016-05-23 Dic株式会社 複合樹脂組成物、成形体、熱伝導材料及び熱伝導材料
WO2018084121A1 (ja) * 2016-11-01 2018-05-11 太陽ホールディングス株式会社 プリント配線板用の硬化性絶縁性組成物、ドライフィルム、硬化物、プリント配線板およびプリント配線板用の硬化性絶縁性組成物の製造方法
WO2018131486A1 (ja) * 2017-01-13 2018-07-19 デンカ株式会社 熱伝導性樹脂組成物、放熱シート、放熱部材及びその製造方法

Also Published As

Publication number Publication date
TW202024205A (zh) 2020-07-01
CN112823188A (zh) 2021-05-18
JP7394782B2 (ja) 2023-12-08
JPWO2020105215A1 (ja) 2021-10-14
TWI819033B (zh) 2023-10-21
CN112823188B (zh) 2023-08-11

Similar Documents

Publication Publication Date Title
JP5860096B2 (ja) インクジェット用硬化性組成物及び電子部品の製造方法
TWI357783B (ja)
WO2018030465A1 (ja) プリント配線板用硬化性樹脂組成物、ドライフィルム、硬化物およびプリント配線板
JP2022009428A (ja) 硬化性樹脂組成物、ドライフィルム、硬化物およびプリント配線板
CN108350107B (zh) 可光固化和可热固化树脂组合物以及阻焊干膜
JP7053485B2 (ja) プリント配線板用の硬化性絶縁性組成物、ドライフィルム、硬化物、プリント配線板およびプリント配線板用の硬化性絶縁性組成物の製造方法
JP4920929B2 (ja) ソルダーレジスト組成物、及びその硬化物並びにそれを用いたプリント配線板
JP7394782B2 (ja) 高耐電圧放熱絶縁性樹脂組成物、およびそれを用いた電子部品
JP7216483B2 (ja) 硬化性樹脂組成物、ドライフィルム、硬化物およびプリント配線板
JP7142453B2 (ja) 放熱絶縁性樹脂組成物、及びそれを用いたプリント配線板
JP7336881B2 (ja) 熱硬化性組成物及びその硬化被膜を有する被覆基材
JP6114641B2 (ja) インクジェット用硬化性組成物、硬化物及び電子部品の製造方法
JP6066559B2 (ja) インクジェット用硬化性組成物及び電子部品の製造方法
WO2020003765A1 (ja) 真空印刷用導電性ペースト
JP7229304B2 (ja) 感光性樹脂組成物及び感光性樹脂組成物を塗布したプリント配線板
JP2023032895A (ja) 感光性樹脂組成物、感光性樹脂組成物の光硬化物及び感光性樹脂組成物を塗布したプリント配線板
KR20230132089A (ko) 감광성 수지 조성물
JPS61276394A (ja) プリント回路板の製造法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19887804

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020558077

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19887804

Country of ref document: EP

Kind code of ref document: A1