WO2020105093A1 - Obstacle detection device - Google Patents

Obstacle detection device

Info

Publication number
WO2020105093A1
WO2020105093A1 PCT/JP2018/042677 JP2018042677W WO2020105093A1 WO 2020105093 A1 WO2020105093 A1 WO 2020105093A1 JP 2018042677 W JP2018042677 W JP 2018042677W WO 2020105093 A1 WO2020105093 A1 WO 2020105093A1
Authority
WO
WIPO (PCT)
Prior art keywords
obstacle
average range
range
average
distance
Prior art date
Application number
PCT/JP2018/042677
Other languages
French (fr)
Japanese (ja)
Inventor
侑己 浦川
井上 悟
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2020552060A priority Critical patent/JP6808113B2/en
Priority to PCT/JP2018/042677 priority patent/WO2020105093A1/en
Publication of WO2020105093A1 publication Critical patent/WO2020105093A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/93Sonar systems specially adapted for specific applications for anti-collision purposes
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems

Definitions

  • the present invention relates to an obstacle detection device.
  • Patent Document 1 calculates a difference value between a first distance value (a1) corresponding to the primary reflected wave and a second distance value (a2) corresponding to the secondary reflected wave, and the difference with respect to time.
  • the height of the obstacle is determined based on the change in the value of.
  • the present invention has been made to solve the above problems, and an object of the present invention is to provide an obstacle detection device capable of accurately determining the height of an obstacle.
  • the obstacle detection device of the present invention groups a direct wave and an indirect wave transmitted / received by a distance sensor to calculate a range between a rising time and a falling time of a received signal in each group, and a range.
  • An averaging processing unit that calculates an average range by averaging, and a height determination unit that determines the height of an obstacle by comparing the average range with a threshold value are provided.
  • FIG. 1A is an explanatory diagram showing an example of an installation position of a distance sensor in a vehicle, and is a diagram showing a state seen from the rear of the vehicle.
  • FIG. 1B is an explanatory diagram illustrating an example of installation positions of distance sensors in a vehicle, and is an explanatory diagram illustrating a state viewed from above the vehicle.
  • FIG. 3 is a block diagram showing a state in which an electronic control unit including the obstacle detection device according to the first embodiment is provided in a vehicle.
  • FIG. 3A is an explanatory diagram illustrating an example of groups including direct waves and indirect waves.
  • FIG. 3B is an explanatory diagram showing an example of transmission signals and reception signals in the group.
  • FIG. 4A is an explanatory diagram showing an example of another group including a direct wave and an indirect wave.
  • FIG. 4B is an explanatory diagram showing an example of transmission signals and reception signals in the group.
  • FIG. 5A is an explanatory diagram showing an example of another group including a direct wave and an indirect wave.
  • FIG. 5B is an explanatory diagram showing an example of transmission signals and reception signals in the group.
  • FIG. 6A is an explanatory diagram showing an example of another group including a direct wave and an indirect wave.
  • FIG. 6B is an explanatory diagram showing an example of transmission signals and reception signals in the group. It is explanatory drawing which shows the example of the direct wave and indirect wave used as the object of grouping. It is explanatory drawing which shows the example of an average range.
  • FIG. 10A is a block diagram showing a hardware configuration of an electronic control unit including the obstacle detection device according to the first embodiment.
  • FIG. 10B is a block diagram showing another hardware configuration of the electronic control unit.
  • 3 is a flowchart showing the operation of the electronic control unit including the obstacle detection device according to the first embodiment.
  • 3 is a flowchart showing the operation of the electronic control unit including the obstacle detection device according to the first embodiment.
  • 7 is a block diagram showing a state in which an electronic control unit including the obstacle detection device according to the second embodiment is provided in a vehicle.
  • 9 is a flowchart showing the operation of the electronic control unit including the obstacle detection device according to the second embodiment. 9 is a flowchart showing the operation of the electronic control unit including the obstacle detection device according to the second embodiment.
  • FIG. 1A is an explanatory diagram showing an example of the installation position of a distance sensor in a vehicle, and is an explanatory diagram showing a state seen from the rear of the vehicle.
  • FIG. 1B is an explanatory diagram illustrating an example of the installation position of the distance sensor in the vehicle, and is an explanatory diagram illustrating a state viewed from above the vehicle.
  • the distance sensor 2 will be described with reference to FIG.
  • a vehicle 1 is provided with a plurality of distance sensors 2. More specifically, four distance sensors 2_roll, 2_ril, 2_rr, 2_or are provided at the rear end of the vehicle 1.
  • Each of the distance sensors 2 is composed of, for example, an ultrasonic type distance sensor or a radio wave type distance sensor.
  • the distance sensors 2_roll, 2_rr and the distance sensors 2_ril, 2_rr are installed at different positions in the left-right direction of the vehicle 1 (hereinafter referred to as “vehicle width direction”, which is the direction along the Y axis in the drawing). is there.
  • vehicle width direction which is the direction along the Y axis in the drawing.
  • the distance sensors 2_roll and 2_lor installed outside in the vehicle width direction may be referred to as “outside installed distance sensors”.
  • the distance sensors 2_ril and 2_rr installed on the inner side in the vehicle width direction may be referred to as “inside installed distance sensors”.
  • the distance sensors 2_roll, 2_orr and the distance sensors 2_ril, 2_rr are installed at different positions in the vertical direction of the vehicle 1 (hereinafter referred to as “vehicle height direction”, which is the direction along the Z axis in the drawing). ..
  • vehicle height direction which is the direction along the Z axis in the drawing.
  • the distance sensors 2_roll, 2_or installed at higher positions may be referred to as “high-side installed distance sensors”.
  • the distance sensors 2_ril and 2_rr installed at lower positions may be referred to as “low side installation distance sensors”.
  • the ultrasonic waves or radio waves transmitted and received by the individual distance sensors 2 are collectively referred to as “search waves”.
  • the search wave reflected by the obstacle O outside the vehicle 1 is referred to as “reflected wave”.
  • the transmission wave and the reception wave are referred to as “direct wave”.
  • the transmission wave and the reception wave are referred to as “indirect waves”.
  • the obstacle O when the height of the obstacle O is high enough to contact the bumper portion of the vehicle 1, the obstacle O is referred to as a "running obstacle".
  • the traveling obstacle is, for example, a wall or a pole.
  • the obstacle O when the height of the obstacle O is so low that the bumper portion of the vehicle 1 cannot be contacted with the obstacle O and the obstacle O is high enough to be overcome by the vehicle 1, the obstacle O is Road obstacles ".
  • the road obstacle is, for example, a curb or a wheel stopper.
  • the obstacle O when the height of the obstacle O is so low that the bumper portion of the vehicle 1 cannot be contacted with the obstacle O and the vehicle 1 is easy to get over the obstacle O, the obstacle O is " Road obstacles ".
  • the road surface obstacle is, for example, a step.
  • FIG. 2 is a block diagram showing a state in which an electronic control unit including the obstacle detection device according to the first embodiment is provided in a vehicle.
  • the obstacle detection device 100 of the first embodiment will be described with reference to FIG.
  • the transmission control unit 11 supplies a predetermined signal (hereinafter referred to as “transmission signal”) TS to each distance sensor 2 to cause each distance sensor 2 to transmit a search wave. More specifically, the transmission control unit 11 sequentially supplies the transmission signals TS_rol, TS_ril, TS_rr, and TS_lor to the four distance sensors 2_roll, 2_ril, 2_rr, and 2_or when the vehicle 1 is moving backward. The four distance sensors 2_roll, 2_ril, 2_rir, and 2_ror sequentially transmit search waves.
  • transmission signal a predetermined signal
  • the reception control unit 12 acquires a signal RS (hereinafter, referred to as “reception signal”) RS corresponding to a reception wave by each distance sensor 2.
  • a signal RS hereinafter, referred to as “reception signal”
  • detection threshold value a predetermined threshold value
  • the time T_down at which the individual reception signal RS falls below the detection threshold is referred to as the “falling time”.
  • the reception control unit 12 detects the rising time T_up and the falling time T_down by comparing each reception signal RS with a detection threshold value.
  • the grouping processing unit 13 sets a plurality of groups G by grouping the direct wave DW and the indirect wave IW transmitted and received by the plurality of distance sensors 2.
  • the range calculator 14 calculates the range R between the times T_up_first and T_down_last in each group G based on the rising time T_up_first of the first received signal RS and the falling time T_down_last of the last received signal RS in each group G. It is a thing.
  • the distance calculation unit 15 calculates the average value T_up_ave of the rising times T_up_ril, T_up_rir of the reception signal RS corresponding to the reception waves by the inside installation distance sensors 2_ril, 2_rr in each group G.
  • the distance calculation unit 15 calculates the distance D corresponding to the calculated average value T_up_ave by the so-called “TOF method”. That is, the distance D corresponds to an estimated value of the distance between the vehicle 1 and the obstacle O.
  • TOF method so-called “TOF method”.
  • the transmission control unit 11 supplies the transmission signal TS_roll to the distance sensor 2_roll.
  • the distance sensor 2_roll transmits the search wave.
  • the distance sensor 2_roll can receive the direct wave DW_roll_roll.
  • the distance sensor 2_ril can receive the indirect wave IW_ril_roll
  • the distance sensor 2_rr can receive the indirect wave IW_rr_rol
  • the distance sensor 2_or can receive the indirect wave IW_ror_roll. It is a thing.
  • the reception control unit 12 can acquire the reception signal RS_roll_roll corresponding to the direct wave DW_roll_roll.
  • the reception control unit 12 is capable of acquiring the reception signal RS_ril_roll corresponding to the indirect wave IW_ril_rol, and capable of acquiring the reception signal RS_rr_rol corresponding to the indirect wave IW_rr_rol, and indirect. It is possible to obtain the reception signal RS_ror_roll corresponding to the wave IW_ror_roll.
  • the grouping processing unit 13 sets a group G_roll including the direct wave DW_roll_roll and the indirect waves IW_ril_roll, IW_rr_roll (see FIG. 3A). That is, the grouping processing unit 13 excludes the indirect wave IW_lor_roll (not shown) from the group G_roll.
  • the indirect wave IW_ror_roll to be excluded is received by the distance sensor 2_roll installed at the farthest position from the distance sensor 2_roll that transmitted the search wave among the plurality of distance sensors 2.
  • the range calculation unit 14 calculates the range R_roll in the group G_roll based on the rising time T_up_first of the received signal RS_rol_rol and the falling time T_down_last of the received signal RS_rr_rol.
  • the distance calculation unit 15 also calculates an average value T_up_ave of the rising time T_up_ril of the received signal RS_ril_rol and the rising time T_up_rr of the received signal RS_ril_rol.
  • the distance calculation unit 15 calculates the distance D in the group G_roll, that is, the distance D corresponding to the range R_roll, based on the calculated average value T_up_ave.
  • the transmission controller 11 supplies the transmission signal TS_ril to the distance sensor 2_ril.
  • the distance sensor 2_ril transmits a search wave.
  • the distance sensor 2_ril can receive the direct wave DW_ril_ril.
  • the distance sensor 2_roll can receive the indirect wave IW_roll_ril
  • the distance sensor 2_rir can receive the indirect wave IW_rir_ril
  • the distance sensor 2_ror can receive the indirect wave IW_ror_ril. It is a thing.
  • the reception control unit 12 can obtain the reception signal RS_ril_ril corresponding to the direct wave DW_ril_ril.
  • the reception control unit 12 can obtain the reception signal RS_roll_ril corresponding to the indirect wave IW_roll_ril, and can obtain the reception signal RS_rr_ril corresponding to the indirect wave IW_rr_ril, and indirectly.
  • the reception signal RS_ror_ril corresponding to the wave IW_ror_ril can be acquired.
  • the grouping processing unit 13 sets a group G_ril including the direct wave DW_ril_ril and the indirect waves IW_roll_ril, IW_rr_ril (see FIG. 4A). That is, the grouping processing unit 13 excludes the indirect wave IW_ror_ril (not shown) from the group G_ril.
  • the indirect wave IW_ror_ril to be excluded is received by the distance sensor 2_ror installed at the farthest position from the distance sensor 2_ril that has transmitted the search wave among the plurality of distance sensors 2.
  • the first reception signal RS is the reception signal RS_ril_ril and the last reception signal RS is the reception signal RS_roll_ril (see FIG. 4B).
  • the range calculation unit 14 calculates the range R_ril in the group G_ril based on the rising time T_up_first of the reception signal RS_ril_ril and the falling time T_down_last of the reception signal RS_rol_ril.
  • the distance calculation unit 15 also calculates an average value T_up_ave of the rising time T_up_ril of the reception signal RS_ril_ril and the rising time T_up_ril of the reception signal RS_ril_ril.
  • the distance calculation unit 15 calculates the distance D in the group G_ril, that is, the distance D corresponding to the range R_ril, based on the calculated average value T_up_ave.
  • the transmission control unit 11 supplies the transmission signal TS_rr to the distance sensor 2_rr.
  • the distance sensor 2_rr transmits the search wave.
  • the distance sensor 2_rr can receive the direct wave DW_rr_rr.
  • the distance sensor 2_roll can receive the indirect wave IW_roll_ri
  • the distance sensor 2_ril can receive the indirect wave IW_ril_rir
  • the distance sensor 2_or can receive the indirect wave IW_ror_rr. It is a thing.
  • the reception control unit 12 can obtain the reception signal RS_rr_rr corresponding to the direct wave DW_rir_r.
  • the reception control unit 12 is capable of acquiring the reception signal RS_roll_ril corresponding to the indirect wave IW_roll_rr, and capable of acquiring the reception signal RS_ril_rr corresponding to the indirect wave IW_ril_rr, and indirect. It is possible to obtain the received signal RS_ror_rr corresponding to the wave IW_ror_rir.
  • the grouping processing unit 13 sets a group G_rir including the direct wave DW_rir_rir and the indirect wave IW_rir_rir and IW_ror_rir (see FIG. 5A). That is, the grouping processing unit 13 excludes the indirect wave IW_roll_rr (not shown) from the group G_rr.
  • the indirect wave IW_roll_rr to be excluded is received by the distance sensor 2_roll installed at the farthest position with respect to the distance sensor 2_rr that transmitted the search wave among the plurality of distance sensors 2.
  • the first received signal RS is the received signal RS_rir_rr and the last received signal RS is the received signal RS_ror_rir (see FIG. 5B).
  • the range calculation unit 14 calculates the range R_rir in the group G_rir based on the rising time T_up_first of the reception signal RS_rir_r and the falling time T_down_last of the reception signal RS_ror_rir.
  • the distance calculation unit 15 also calculates an average value T_up_ave of the rising time T_up_rr of the received signal RS_rr_rr and the rising time T_up_ril of the received signal RS_ril_rir.
  • the distance calculation unit 15 calculates the distance D in the group G_rr, that is, the distance D corresponding to the range R_rr, based on the calculated average value T_up_ave.
  • the transmission control unit 11 supplies the transmission signal TS_ror to the distance sensor 2_ror.
  • the distance sensor 2_or transmits the search wave.
  • the distance sensor 2_or can receive the direct wave DW_or_or.
  • the distance sensor 2_rol can receive the indirect wave IW_roll_ror
  • the distance sensor 2_ril can receive the indirect wave IW_ril_ror
  • the distance sensor 2_rir can receive the indirect wave IW_rir_ror. It is a thing.
  • the reception control unit 12 can acquire the reception signal RS_ror_ror corresponding to the direct wave DW_ror_ror.
  • the reception control unit 12 is capable of acquiring the reception signal RS_roll_ror corresponding to the indirect wave IW_roll_ror, and is capable of acquiring the reception signal RS_ril_ror corresponding to the indirect wave IW_ril_ror, and indirectly. It is possible to acquire the reception signal RS_rr_ror corresponding to the wave IW_rir_ror.
  • the grouping processing unit 13 sets the group G_ror including the direct wave DW_ror_ror and the indirect wave IW_ril_ror, IW_rir_ror (see FIG. 6A). That is, the grouping processing unit 13 excludes the indirect wave IW_roll_ror (not shown) from the group G_ror.
  • the indirect wave IW_roll_roll to be excluded is received by the distance sensor 2_roll installed at the farthest position from the distance sensor 2_lor that has transmitted the search wave among the plurality of distance sensors 2.
  • the range calculation unit 14 calculates the range R_ror in the group G_ror based on the rising time T_up_first of the received signal RS_ror_ror and the falling time T_down_last of the received signal RS_ril_rr.
  • the distance calculation unit 15 also calculates an average value T_up_ave of the rising time T_up_rr of the received signal RS_rr_ror and the rising time T_up_ril of the received signal RS_ril_ror.
  • the distance calculation unit 15 calculates the distance D in the group G_ror, that is, the distance D corresponding to the range R_ror based on the calculated average value T_up_ave.
  • the transmission control unit 11, the reception control unit 12, the grouping processing unit 13, the range calculation unit 14, and the distance calculation unit 15 repeatedly execute these processes when the vehicle 1 is moving backward. Accordingly, the plurality of ranges R_roll, the plurality of distances D corresponding to the plurality of ranges R_roll in a one-to-one relationship, the plurality of ranges R_ril, and the plurality of distances D in a one-to-one correspondence with the plurality of ranges R_ril.
  • FIG. 7 shows a list of direct waves DW and indirect waves IW that are the targets of grouping by the grouping processing unit 13.
  • the indirect waves IW_ror_roll, IW_ror_ril, IW_roll_rir, and IW_roll_ror are excluded from the grouping target by the grouping processing unit 13. Thereby, the variation of the range R calculated by the range calculation unit 14 can be reduced.
  • the estimation accuracy of the distance between the vehicle 1 and the obstacle O can be improved.
  • the rear end of the vehicle 1 usually has a curved shape. Therefore, the outer installation distance sensors 2_roll, 2_or in the front-rear direction of the vehicle 1 (hereinafter, referred to as the “vehicle length direction”, which is the direction along the X axis in the drawing) is more than the inner installation distance sensors 2_ril, 2_rr. It is arranged on the rear side, that is, on the back side. Therefore, if the rise times T_up_rol and T_up_or of the reception signal RS corresponding to the waves received by the outside installed distance sensors 2_roll and 2_or are used to calculate the distance D, an error occurs in the estimation of the distance between the vehicle 1 and the obstacle O. there's a possibility that.
  • the average range calculation unit 16 calculates an average value (hereinafter, referred to as “average range”) R_ave of the range R in each of the N distance sections ⁇ D_1 to ⁇ D_N based on the distance D calculated by the distance calculation unit 15. Is.
  • N is an integer of 2 or more.
  • the average range calculation unit 16 calculates the average value R_roll_ave of the range R_roll, the average value R_ril_ave of the range R_ril, the average value R_rr_ave of the range R_rr, and the average value R_ror_ave of the range R_or in each distance section ⁇ D. To do.
  • the average range calculation unit 16 calculates the average range R_ave_all in each distance section ⁇ D by averaging the calculated average values R_roll_ave, R_ril_ave, R_rir_ave, and R_ror_ave.
  • FIG. 8 shows an example of average values R_roll_ave, R_ril_ave, R_rir_ave, R_ror_ave and an average range R_ave_all in each of the three distance sections ⁇ D_N, ⁇ D_N-1, and ⁇ D_N-2.
  • the size of each distance section ⁇ D is set to a constant value ( ⁇ - ⁇ ).
  • the lower limit of the size is 0.05 meters
  • the upper limit of the size is 10 meters.
  • the amount of deviation between the distance sections ⁇ D adjacent to each other is set to an arbitrary value ⁇ .
  • the lower limit value of the shift amount is 0.05 meters
  • the upper limit value of the shift amount is 5 meters. That is, the distance sections ⁇ D adjacent to each other may partially overlap each other.
  • a distance section ⁇ D including a smaller distance D in a combination of two distance sections ⁇ D among the N distance sections ⁇ D_1 to ⁇ D_N is referred to as a “short distance section”, and a distance section including a larger distance D. ⁇ D is called a “long distance section”.
  • the average range R_ave in the short distance section is referred to as a “short distance section average range”
  • the average range R_ave in the long distance section is referred to as a “long distance section average range”.
  • a two-dimensional map M having a first axis (for example, a horizontal axis) corresponding to a short distance section average range and a second axis (for example, vertical axis) corresponding to a long distance section average range is referred to as “average range”. "Map”.
  • the plot processing unit 17 plots the average range R_ave calculated by the average range calculation unit 16 on the average range map M.
  • the distance section ⁇ D_N is a short distance section
  • the distance section ⁇ D_N -1 is a long distance section.
  • the distance section ⁇ D_N is a short distance section. Further, the distance section ⁇ D_N-2 is a long distance section.
  • the distance section ⁇ D_N-1 is close. It is a distance section
  • the distance section ⁇ D_N-2 is a long distance section.
  • the threshold comparison unit 18 determines the height of the obstacle O by comparing the average range R_ave plotted by the plot processing unit 17 with a predetermined threshold Th. More specifically, the threshold comparing unit 18 compares the plotted average range R_ave with the two thresholds Th_1 and Th_2, so that the obstacle O is a road surface obstacle, a road obstacle or a traveling obstacle. It is to determine which of the two.
  • the threshold Th_1 is referred to as a “first threshold” and the threshold Th_2 is referred to as a “second threshold”.
  • FIG. 9 shows an example of a state in which the average range R_ave is plotted on the average range map M.
  • a circle ( ⁇ ) indicates a plot position of the average range R_ave when the obstacle O is a road surface obstacle.
  • a triangle mark ( ⁇ ) indicates a plot position of the average range R_ave when the obstacle O is a road obstacle.
  • the cross mark (x) indicates the plot position of the average range R_ave when the obstacle O is a traveling obstacle.
  • the distribution range of the average range R_ave in the average range map M varies depending on the height of the obstacle O. Therefore, the height of the obstacle O can be determined using the threshold Th in the average range map M. More specifically, using the first threshold value Th_1 and the second threshold value Th_2, it is possible to determine whether the obstacle O is a road surface obstacle, a road obstacle or a traveling obstacle. That is, the first threshold Th_1 is a threshold for determining whether or not the obstacle O is a road surface obstacle.
  • the second threshold Th_2 is a threshold for determining whether the obstacle O is a traveling obstacle.
  • the warning signal output unit 19 outputs a predetermined signal (hereinafter referred to as “warning signal”) to the warning output device 3 when the threshold comparison unit 18 determines that the obstacle O is a traveling obstacle. ..
  • the warning output device 3 outputs a warning to an occupant of the vehicle 1 when the warning signal output unit 19 outputs a warning signal.
  • the warning output device 3 includes, for example, a display or a speaker. When the warning output device 3 is configured by a display, the warning output by the warning output device 3 is based on image display on the display. When the warning output device 3 is configured by a speaker, the warning output by the warning output device 3 is a voice output from the speaker.
  • a transmission / reception control unit 21 is configured by the transmission control unit 11 and the reception control unit 12.
  • the grouping processing unit 13 and the range calculating unit 14 constitute a range measuring unit 22.
  • the distance calculation unit 15 and the average range calculation unit 16 constitute an averaging processing unit 23.
  • the plot processing unit 17 and the threshold comparison unit 18 constitute a height determination unit 24.
  • the range measurement unit 22, the averaging processing unit 23, and the height determination unit 24 constitute an obstacle detection device 100.
  • the warning signal output unit 19, the transmission / reception control unit 21, and the obstacle detection device 100 are provided in an electronic control unit (hereinafter referred to as “ECU”) 4.
  • ECU electronice control unit
  • the ECU 4 has a processor 41 and a memory 42.
  • the ECU 4 includes a transmission control unit 11, a reception control unit 12, a grouping processing unit 13, a range calculation unit 14, a distance calculation unit 15, an average range calculation unit 16, a plot processing unit 17, a threshold value comparison unit 18, and a warning signal.
  • a program for functioning as the output unit 19 is stored.
  • the processor 41 reads and executes the program stored in the memory 42, the transmission control unit 11, the reception control unit 12, the grouping processing unit 13, the range calculation unit 14, the distance calculation unit 15, the average range calculation unit 16, The functions of the plot processing unit 17, the threshold comparison unit 18, and the warning signal output unit 19 are realized.
  • the ECU 4 has a processing circuit 43.
  • the function is realized by the dedicated processing circuit 43.
  • the ECU 4 has a processor 41, a memory 42 and a processing circuit 43 (not shown).
  • the processor 41 and the memory 42 Some of the functions are realized by the processor 41 and the memory 42, and the remaining functions are realized by the dedicated processing circuit 43.
  • the processor 41 uses, for example, at least one of a CPU (Central Processing Unit), a GPU (Graphics Processing Unit), a microprocessor, a microcontroller, and a DSP (Digital Signal Processor).
  • a CPU Central Processing Unit
  • GPU Graphics Processing Unit
  • microprocessor a microcontroller
  • DSP Digital Signal Processor
  • the memory 42 uses, for example, at least one of a semiconductor memory and a magnetic disk. More specifically, the memory 42 is a RAM (Random Access Memory), a ROM (Read Only Memory), a flash memory, an EPROM (Erasable Programmable Read Only Memory-Memory), an EEPROM (Electrically Organized Memory), or an EEPROM (Electrically Accessible Memory). At least one of State Drive) or HDD (Hard Disk Drive) is used.
  • the processing circuit 43 may be, for example, an ASIC (Application Specific Integrated Circuit), a PLD (Programmable Logic Device), an FPGA (Field-Programmable Gate Array), or a SoC (Sonication) system. At least one of the above is used.
  • ASIC Application Specific Integrated Circuit
  • PLD Programmable Logic Device
  • FPGA Field-Programmable Gate Array
  • SoC SoC
  • the ECU 4 repeatedly executes the processes of steps ST1 to ST5 shown in FIG. 11A when the vehicle 1 is moving backward.
  • the ECU 4 for example, when a distance D equal to or less than a predetermined value (for example, 3 meters) is calculated by the processing of step ST5, or over a distance ⁇ D of a predetermined number (that is, N) or more by the processing of steps ST4 and ST5.
  • a distance D equal to or less than a predetermined value (for example, 3 meters) is calculated by the processing of step ST5, or over a distance ⁇ D of a predetermined number (that is, N) or more by the processing of steps ST4 and ST5.
  • a predetermined value for example, 3 meters
  • step ST1 the transmission control unit 11 supplies the transmission signal TS to each distance sensor 2.
  • the transmission control unit 11 supplies the transmission signal TS_roll to the distance sensor 2_roll.
  • the transmission control unit 11 supplies the transmission signal TS_ril to the distance sensor 2_ril.
  • the transmission control unit 11 supplies the transmission signal TS_rr to the distance sensor 2_rr.
  • the transmission control unit 11 supplies the transmission signal TS_ror to the distance sensor 2_ror.
  • step ST2 the reception control unit 12 acquires the reception signal RS from each distance sensor 2.
  • the reception control unit 12 detects the rising time T_up and the falling time T_down by comparing each reception signal RS with the detection threshold value.
  • step ST3 the grouping processing unit 13 can set the group G corresponding to the distance sensor 2 to which the transmission signal TS is supplied, that is, the group G corresponding to the distance sensor 2 that transmitted the search wave. , Such group G is set.
  • the grouping processing unit 13 sets the group G_roll corresponding to the distance sensor 2_roll.
  • the grouping processing unit 13 sets the group G_ril corresponding to the distance sensor 2_ril.
  • the grouping processing unit 13 sets the group G_rr corresponding to the distance sensor 2_rr.
  • the grouping process part 13 sets the group G_ror corresponding to the distance sensor 2_ror.
  • step ST4 the range calculation unit 14 calculates the range R in the set group G.
  • step ST5 if the distance calculation unit 15 can calculate the distance D corresponding to the calculated range R, the distance calculation unit 15 calculates the distance D.
  • the range R_roll is calculated, and the distance D corresponding to the calculated range R_roll is calculated.
  • the range R_ril is calculated and the distance D corresponding to the calculated range R_ril is calculated.
  • the range R_rr is calculated and the distance D corresponding to the calculated range R_rr is calculated.
  • the range R_ror is calculated, and the distance D corresponding to the calculated range R_ror is calculated.
  • step ST6 the average range calculation unit 16 calculates the average range R_ave in each of the N distance sections ⁇ D_1 to ⁇ D_N.
  • the average range calculation unit 16 calculates the average value R_rol_ave of the range R_roll, the average value R_ril_ave of the range R_ril, the average value R_rr_ave of the range R_rir, and the average value R_ror_ave of the range R_or in each distance section ⁇ D. To do.
  • the average range calculation unit 16 calculates the average range R_ave_all in each distance section ⁇ D by averaging the calculated average values R_roll_ave, R_ril_ave, R_rir_ave, and R_ror_ave.
  • step ST7 the plot processing unit 17 plots the average range R_ave calculated by the average range calculation unit 16 on the average range map M.
  • the threshold comparison unit 18 determines the height of the obstacle O by comparing the plotted average range R_ave with the threshold Th. More specifically, the threshold comparison unit 18 compares the plotted average range R_ave with the first threshold Th_1 and the second threshold Th_2, so that the obstacle O is a road surface obstacle, a road obstacle, or a traveling obstacle. Which of the above is to be determined.
  • step ST9 the warning signal output unit 19 outputs a warning signal according to the determination result by the threshold value comparison unit 18. That is, the warning signal output unit 19 outputs a warning output signal when the obstacle O is determined to be a traveling obstacle. If it is determined that the obstacle O is a road surface obstacle or a road obstacle, the process of step ST9 may be skipped. Alternatively, in this case, different outputs may be executed depending on whether the obstacle O is a road surface obstacle or a road obstacle.
  • four distance sensors 2_fol, 2_fil, 2_fir, and 2_for may be provided at the front end of the vehicle 1. (Not shown).
  • the ECU 4 may execute the same processes as the above processes using the four distance sensors 2_fol, 2_fil, 2_fir, and 2_for when the vehicle 1 is moving forward.
  • the distance sensors 2_fol and 2_for are outer installation distance sensors, and the distance sensors 2_fil and 2_fir are inner installation distance sensors.
  • the distance sensors 2_fol and 2_for are high-side installation distance sensors, and the distance sensors 2_fil and 2_fir are low-side installation distance sensors.
  • the number of the distance sensors 2 installed at the rear end of the vehicle 1 may be two or more, and is not limited to four. Further, the number of the distance sensors 2 installed at the front end of the vehicle 1 may be two or more, and is not limited to four.
  • each distance section ⁇ D may be a constant value.
  • the amount of deviation between the distance sections ⁇ D adjacent to each other may be any value. That is, the distance sections ⁇ D that are adjacent to each other may not completely overlap each other.
  • the number of thresholds Th may be one or more, and is not limited to two. That is, the height determination unit 24 may determine the height of the obstacle O in two or more stages (ie, the obstacle O is a road surface obstacle, a road obstacle or a traveling obstacle). It is not limited to the judgment of which of them).
  • the threshold comparison unit 18 determines whether or not the obstacle O is a road surface obstacle by comparing the average range R_ave plotted in the average range map M with only the first threshold Th_1. Is also good.
  • the threshold comparison unit 18 determines whether the obstacle O is a traveling obstacle by comparing the average range R_ave plotted in the average range map M with only the second threshold Th_2. It may be.
  • the obstacle detection device 100 groups the direct wave DW and the indirect wave IW transmitted / received by the distance sensor 2, and the rise time T_up_first and the fall time of the reception signal RS in each group G.
  • the range measuring unit 22 that calculates the range R between the times T_down_last, the averaging processing unit 23 that calculates the average range R_ave by averaging the range R, and the obstacle O by comparing the average range R_ave with the threshold Th.
  • a height determination unit 24 that determines the height of the.
  • the threshold Th includes a first threshold Th_1 and a second threshold Th_2 that are different from each other, and the height determination unit 24 compares the average range R_ave with the first threshold Th_1 and the second threshold Th_2, so that the obstacle O is It is determined whether the obstacle is a road surface obstacle, a road obstacle or a traveling obstacle.
  • Th the height of the obstacle O can be determined in multiple stages.
  • the average range R_ave includes a short distance section average range and a long distance section average range corresponding to different distance sections ⁇ D, and the height determination unit 24 determines that the first axis and the long distance corresponding to the short distance section average range.
  • the height of the obstacle O is determined by plotting the average range R_ave on the average range map M having the second axis corresponding to the section average range.
  • FIG. 12 is a block diagram showing a state in which an electronic control unit including the obstacle detection device according to the second embodiment is provided in a vehicle.
  • the obstacle detection device 100a according to the second embodiment will be described with reference to FIG. Note that in FIG. 12, the same blocks as the blocks shown in FIG.
  • the average range calculator 16a calculates the average range R_ave in each of the N distance sections ⁇ D_1 to ⁇ D_N based on the distance D calculated by the distance calculator 15.
  • the average range calculation unit 16a in each distance section ⁇ D, the average value R_roll_ave of the range R_roll, the average value R_ril_ave of the range R_ril, the average value R_rr_ave of the range R_rr, and the average value R_ror_ave of the range R_or. To calculate.
  • the average range calculation unit 16a averages the calculated average values R_roll_ave, R_ril_ave, R_rir_ave, and R_ror_ave to obtain an average range (hereinafter referred to as “first average range”) R_ave_all in each distance section ⁇ D. calculate. In addition to this, the average range calculation unit 16a calculates an average range (hereinafter, referred to as “second average range”) R_ave_outer in each distance section ⁇ D by averaging the calculated average values R_roll_ave and R_ror_ave. To do.
  • the first average range R_ave_all is an average of the ranges R_roll, R_ril, R_rr, and R_lor corresponding to the transmission waves from the outer installation distance sensors 2_roll, 2_rr and the inner installation distance sensors 2_ril, 2_rr.
  • the second average range R_ave_outer is an average of the ranges R_roll and R_lor corresponding to the transmission waves from the outside installation distance sensors 2_roll and 2_lor.
  • the average range calculation unit 16a calculates the first average range R_ave_all in each distance section ⁇ D by averaging the calculated average values R_roll_ave, R_ril_ave, R_rr_ave, R_ror_ave. In addition to this, the average range calculation unit 16a calculates an average range (hereinafter, referred to as a “third average range”) R_ave_upper in each distance section ⁇ D by averaging the calculated average values R_roll_ave and R_ror_ave. To do.
  • the first average range R_ave_all is obtained by averaging the ranges R_roll, R_ril, R_rr, and R_lor corresponding to the transmission waves from the high-side installation distance sensors 2_rol, 2_rr and the low-side installation distance sensors 2_ril, 2_rr.
  • the third average range R_ave_upper is an average of the ranges R_roll and R_lor corresponding to the transmission waves from the high side installation distance sensors 2_rol and 2_or.
  • FIG. 13 shows an example of the average values R_roll_ave, R_ril_ave, R_ril_ave, R_ror_ave, an example of the first average range R_ave_all, and an example of the second average range R_ave_outer in each of the three distance sections ⁇ D_N, ⁇ D_N-1, and ⁇ D_N-2. And an example of the third average range R_ave_upper. Note that in the example shown in FIG. 13, the outer installation distance sensors 2_roll, 2_lor and the high installation distance sensors 2_roll, 2_or are the same as each other, and the inner installation distance sensors 2_ril, 2_rr and the low installation distance sensor 2_roll. Since 2_ril and 2_ril are the same as each other, the second average range R_ave_outer and the third average range R_ave_upper in the individual distance sections ⁇ D have the same value.
  • the plot processing unit 17a plots the average range R_ave calculated by the average range calculation unit 16a on the average range map M.
  • the plot processing unit 17a has two average range maps M_1 and M_2.
  • the plot processing unit 17a plots the first average range R_ave_all calculated by the average range calculation unit 16a on one average range map (hereinafter referred to as “first average range map”) M_1.
  • the plot processing unit 17a also plots the second average range R_ave_outer calculated by the average range calculation unit 16a on the other average range map (hereinafter referred to as “second average range map”) M_2.
  • the plotting method for each of the first average range map M_1 and the second average range map M_2 is the same as that described in the first embodiment, and thus the repetitive description will be omitted.
  • the plot processing unit 17a has two average range maps M_1 and M_3.
  • the plot processing unit 17a plots the first average range R_ave_all calculated by the average range calculation unit 16a on one average range map (that is, the first average range map) M_1.
  • the plot processing unit 17a also plots the third average range R_ave_upper calculated by the average range calculation unit 16a on the other average range map (hereinafter referred to as “third average range map”) M_3.
  • the plotting method for each of the first average range map M_1 and the third average range map M_3 is the same as that described in the first embodiment, and therefore the repetitive description will be omitted.
  • the surface portion of the obstacle O that reflects the search wave has an inclination
  • this obstacle O is referred to as an “inclined obstacle”.
  • the tilt obstacle is, for example, a wheel stopper.
  • the type determining unit 31 determines the distribution of the first average range R_ave_all in the first average range map M_1 (hereinafter referred to as “first average range distribution”) and the distribution of the second average range R_ave_outer in the second average range map M_2 (hereinafter “ The second average range distribution ").
  • the type determining unit 31 determines whether or not the obstacle O is a tilted obstacle based on the deviation of the first average range distribution from the second average range distribution. More specifically, the type determination unit 31 determines that the obstacle O is a tilted obstacle when the deviation of the first average range distribution from the second average range distribution is larger than a predetermined value. On the other hand, when the deviation of the first average range distribution from the second average range distribution is less than or equal to a predetermined value, the type determination unit 31 determines that the obstacle O is not a tilted obstacle.
  • the type determination unit 31 compares the first average range distribution with the distribution of the third average range R_ave_upper in the third average range map M_3 (hereinafter referred to as “third average range distribution”). The type determination unit 31 determines whether or not the obstacle O is a tilted obstacle based on the deviation of the first average range distribution from the third average range distribution. More specifically, the type determination unit 31 determines that the obstacle O is a tilted obstacle when the deviation of the first average range distribution from the third average range distribution is larger than a predetermined value. On the other hand, when the deviation of the first average range distribution from the third average range distribution is less than or equal to a predetermined value, the type determination unit 31 determines that the obstacle O is not a tilted obstacle.
  • the threshold comparison unit 18a determines the height of the obstacle O using the first average range map M_1 when the type determination unit 31 determines that the obstacle O is not a tilted obstacle. That is, the threshold comparing unit 18a compares the first average range R_ave_all plotted in the first average range map M_1 with the threshold Th (more specifically, the first threshold Th_1 and the second threshold Th_2) to thereby prevent an obstacle. Judge the height of O.
  • the threshold comparison unit 18a uses the second average range map M_2 or the third average range map M_3 to determine the height of the obstacle O. Is to judge. That is, the threshold comparison unit 18a sets the second average range R_ave_outer plotted on the second average range map M_2 or the third average range R_ave_upper plotted on the third average range map M_3 to the threshold Th (more specifically, the first average range R_ave_outer). The height of the obstacle O is determined by comparing with the threshold Th_1 and the second threshold Th_2).
  • the first threshold Th_1 in the first average range map M_1 and the first threshold Th_1 in the second average range map M_2 may be equal to each other or different from each other.
  • the second threshold Th_2 in the first average range map M_1 and the second threshold Th_2 in the second average range map M_2 may be equal to each other or different from each other.
  • the first threshold Th_1 in the first average range map M_1 and the first threshold Th_1 in the third average range map M_3 may have the same value or different values.
  • the second threshold Th_2 in the first average range map M_1 and the second threshold Th_2 in the third average range map M_3 may have the same value or different values.
  • FIG. 14A shows an example of a state in which the first average range R_ave_all is plotted on the first average range map M_1 when the obstacle O is a tilted obstacle.
  • FIG. 14B shows an example of a state in which the second average range R_ave_outer is plotted on the second average range map M_2 when the obstacle O is a tilted obstacle.
  • FIG. 3C shows an example of a state in which the third average range R_ave_upper is plotted on the third average range map M_3 when the obstacle O is a tilted obstacle.
  • a circle ( ⁇ ) indicates a plot position of the average range R_ave when the obstacle O is a road surface obstacle.
  • a triangle mark ( ⁇ ) indicates a plot position of the average range R_ave when the obstacle O is a road obstacle.
  • the cross mark (x) indicates the plot position of the average range R_ave when the obstacle O is a traveling obstacle.
  • 1 Average range R_ave_all tends to be large. That is, the distributions of circles ( ⁇ ) and triangles ( ⁇ ) in the figure tend to be biased toward the upper right direction in the figure. Therefore, it is difficult to determine the height of the obstacle O using the first average range map M_1.
  • the second average range R_ave_outer is set when the height of the obstacle O is low even when the obstacle O is a slope obstacle (for example, when the obstacle O is a road surface obstacle or a road obstacle). ) Tends to be smaller. Therefore, by using the second average range R_ave_outer, as shown in FIG. 14B, the distribution of circles ( ⁇ ) and triangles ( ⁇ ) in the figure can be widened in the lower left direction in the figure. Therefore, by using the second average range map M_2, the height of the obstacle O can be determined even when the obstacle O is a tilted obstacle. Further, based on the deviation of the first average range distribution from the second average range distribution, it can be determined whether or not the obstacle O is a tilted obstacle.
  • the third average range R_ave_upper is set even when the obstacle O is a slope obstacle when the height of the obstacle O is low (for example, when the obstacle O is a road surface obstacle or a road obstacle). Tends to be smaller. Therefore, by using the third average range R_ave_upper, as shown in FIG. 14C, the distribution of circles ( ⁇ ) and triangles ( ⁇ ) in the drawing can be widened in the lower left direction in the drawing. Therefore, by using the third average range map M_3, the height of the obstacle O can be determined even when the obstacle O is a tilted obstacle. Further, based on the deviation of the first average range distribution from the third average range distribution, it can be determined whether or not the obstacle O is a tilted obstacle.
  • the distance calculating unit 15 and the average range calculating unit 16a constitute an averaging processing unit 23a.
  • a height determination unit 24a is configured by the plot processing unit 17a and the threshold value comparison unit 18a.
  • the range measurement unit 22, the averaging processing unit 23a, the height determination unit 24a, and the type determination unit 31 constitute an obstacle detection device 100a.
  • the warning signal output unit 19, the transmission / reception control unit 21, and the obstacle detection device 100a are provided in the ECU 4.
  • Each function of the determination unit 31 may be realized by the processor 41 and the memory 42, or may be realized by a dedicated processing circuit 43.
  • the ECU 4 repeatedly executes the processes of steps ST1 to ST5 shown in FIG. 15A when the vehicle 1 is moving backward.
  • the ECU 4 for example, when a distance D equal to or less than a predetermined value (for example, 3 meters) is calculated by the processing of step ST5, or over a distance ⁇ D of a predetermined number (that is, N) or more by the processing of steps ST4 and ST5.
  • a distance D equal to or less than a predetermined value (for example, 3 meters) is calculated by the processing of step ST5, or over a distance ⁇ D of a predetermined number (that is, N) or more by the processing of steps ST4 and ST5.
  • a predetermined value for example, 3 meters
  • steps ST1 to ST5 shown in FIG. 15A are the same as the processing contents of steps ST1 to ST5 shown in FIG. 11A. Therefore, the repeated description is omitted.
  • step ST6a the average range calculation unit 16a calculates the average range R_ave in each of the N distance sections ⁇ D_1 to ⁇ D_N. More specifically, the average range calculation unit 16a calculates the first average range R_ave_all in each distance section ⁇ D and also calculates the second average range R_ave_outer in each distance section ⁇ D.
  • step ST7a the plot processing unit 17a plots the average range R_ave calculated by the average range calculation unit 16a on the average range map M. More specifically, the plot processing unit 17a plots the first average range R_ave_all calculated by the average range calculation unit 16a on the first average range map M_1 and the second average calculated by the average range calculation unit 16a. The range R_ave_outer is plotted on the second average range map M_2.
  • step ST11 the type determination unit 31 determines whether or not the obstacle O is a tilted obstacle based on the deviation of the first average range distribution from the second average range distribution. More specifically, when the deviation is larger than the predetermined value, the type determination unit 31 determines that the obstacle O is a tilted obstacle (step ST11 “YES”). On the other hand, when the deviation is less than or equal to the predetermined value, the type determination unit 31 determines that the obstacle O is not a tilted obstacle (step ST11 “NO”).
  • the threshold comparison unit 18a determines the height of the obstacle O using the first average range map M_1 in step ST8a. .. That is, the threshold comparison unit 18a compares the first average range R_ave_all plotted in the first average range map M_1 with the first threshold Th_1 and the second threshold Th_2, so that the obstacle O becomes a road surface obstacle portion or a road obstacle. Alternatively, it is determined whether the obstacle is a traveling obstacle.
  • the threshold comparison unit 18a uses the second average range map M_2 to determine the height of the obstacle O in step ST8b. To judge. That is, the threshold comparison unit 18a compares the second average range R_ave_outer plotted in the second average range map M_2 with the first threshold Th_1 and the second threshold Th_2, so that the obstacle O becomes a road surface obstacle portion or a road obstacle. Alternatively, it is determined whether the obstacle is a traveling obstacle.
  • step ST9 the warning signal output unit 19 outputs a warning signal according to the determination result by the threshold comparison unit 18a. That is, the warning signal output unit 19 outputs a warning output signal when the obstacle O is determined to be a traveling obstacle. If it is determined that the obstacle O is a road surface obstacle or a road obstacle, the process of step ST9 may be skipped. Alternatively, in this case, different outputs may be executed depending on whether the obstacle O is a road surface obstacle or a road obstacle.
  • the obstacle detection device 100a can employ various modifications similar to those described in the first embodiment.
  • the distance sensor 2 includes the outer installation distance sensor and the inner installation distance sensor whose installation positions in the vehicle width direction are different from each other, and the average range R_ave is the outer installation.
  • the average range map M includes a first average range R_ave_all corresponding to a transmission wave from the distance sensor and the inside installed distance sensor, and a second average range R_ave_outer corresponding to a transmission wave from the outside installed distance sensor.
  • the obstacle detection device 100a includes the first average range map M_1 in which R_ave_all is plotted and the second average range map M_2 in which the second average range R_ave_outer is plotted, and the second average in the second average range map M_2.
  • the obstacle O is a slope obstacle.
  • the height determination unit 24a uses the second average range map M_2 to determine the height of the obstacle O when it is determined that the obstacle O is a tilted obstacle. to decide. This makes it possible to determine whether or not the obstacle O is a tilted obstacle. Further, even if the obstacle O is an inclined obstacle, the height of the obstacle O can be determined.
  • the distance sensor 2 includes a high-side installation distance sensor and a low-side installation distance sensor whose installation positions in the vehicle height direction are different from each other, and the average range R_ave is the high-side installation distance sensor and the low-side installation distance sensor.
  • the average range map M includes the first average range R_ave_all corresponding to the transmission wave from the installation distance sensor and the third average range R_ave_upper corresponding to the transmission wave from the high side installation distance sensor, and the first average range R_ave_all is plotted.
  • the obstacle detection apparatus 100a includes the first average range map M_1 and the third average range map M_3 in which the third average range R_ave_upper is plotted, and the obstacle detection device 100a includes the third average range R_ave_upper in the third average range map M_3.
  • the deviation of the distribution (first average range distribution) of the first average range R_ave_all in the first average range map M_1 from the distribution (third average range distribution) is larger than a predetermined value
  • the obstacle O is a tilted obstacle.
  • the height determination unit 24a includes the type determination unit 31 that determines the height of the obstacle O using the third average range map M_3. This makes it possible to determine whether or not the obstacle O is a tilted obstacle. Further, even when the obstacle O is an inclined obstacle, the height of the obstacle O can be determined.
  • the invention of the present application is capable of freely combining the embodiments, modifying any constituent element of each embodiment, or omitting any constituent element in each embodiment. ..
  • the obstacle detection device of the present invention can be used, for example, as a driving support device for a vehicle.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • General Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Traffic Control Systems (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

This obstacle detection device (100) comprises a range measurement unit (22) for grouping direct waves (DW) and indirect waves (IW) transmitted and received by a distance sensor (2) and calculating the ranges (R) between the rising times (T_up_first) and falling times (T_down_last) of the reception signals (RS) of the groups (G), an averaging processing unit (23) for calculating an average range (R_ave) by averaging the ranges (R), and a height determination unit (24) for determining the height of an obstacle (O) by comparing the average range (R_ave) with a threshold (Th).

Description

障害物検出装置Obstacle detection device
 本発明は、障害物検出装置に関する。 The present invention relates to an obstacle detection device.
 従来、車両に設けられているTOF(Time of Flight)方式の距離センサを用いて、車両の周囲における障害物の高さを判断する技術が開発されている(例えば、特許文献1参照。)。 Conventionally, a technology has been developed for determining the height of an obstacle around a vehicle by using a TOF (Time of Flight) type distance sensor provided in the vehicle (see, for example, Patent Document 1).
国際公開第2016/059087号International Publication No. 2016/059087
 特許文献1記載のシステムは、一次反射波に対応する第1距離値(a1)と二次反射波に対応する第2距離値(a2)との差の値を算出して、時間に対する当該差の値の変化に基づき障害物の高さを判断するものである。 The system described in Patent Document 1 calculates a difference value between a first distance value (a1) corresponding to the primary reflected wave and a second distance value (a2) corresponding to the secondary reflected wave, and the difference with respect to time. The height of the obstacle is determined based on the change in the value of.
 通常、一次反射波の伝搬経路は複数存在するものであり(いわゆる「マルチパス」)、これらの伝搬経路の経路長は互いに異なるものである。このため、第1距離値(a1)が複数回算出されたとき、これらの第1距離値(a1)はばらつきを有するものとなる。同様に、二次反射波の伝搬経路は複数存在するものであり、これらの伝搬経路の経路長は互いに異なるものである。このため、第2距離値(a2)が複数回算出されたとき、これらの第2距離値(a2)はばらつきを有するものとなる。特許文献1記載のシステムは、かかる距離値(a1,a2)のばらつきにより、すなわちマルチパスの影響により、障害物の高さの判断精度が低いという問題があった。 Normally, there are multiple primary reflection wave propagation paths (so-called “multipath”), and the path lengths of these propagation paths are different from each other. Therefore, when the first distance value (a1) is calculated a plurality of times, these first distance values (a1) have variations. Similarly, there are a plurality of secondary reflected wave propagation paths, and the path lengths of these propagation paths are different from each other. Therefore, when the second distance value (a2) is calculated a plurality of times, the second distance value (a2) has variations. The system described in Patent Document 1 has a problem that the accuracy of determining the height of an obstacle is low due to the variation in the distance values (a1, a2), that is, due to the influence of multipath.
 本発明は、上記のような課題を解決するためになされたものであり、障害物の高さを精度良く判断することができる障害物検出装置を提供することを目的とする。 The present invention has been made to solve the above problems, and an object of the present invention is to provide an obstacle detection device capable of accurately determining the height of an obstacle.
 本発明の障害物検出装置は、距離センサにより送受信された直接波及び間接波をグルーピングして、各グループにおける受信信号の立ち上がり時刻と立ち下がり時刻間のレンジを算出するレンジ測定部と、レンジを平均化することにより平均レンジを算出する平均化処理部と、平均レンジを閾値と比較することにより障害物の高さを判断する高さ判断部と、を備えるものである。 The obstacle detection device of the present invention groups a direct wave and an indirect wave transmitted / received by a distance sensor to calculate a range between a rising time and a falling time of a received signal in each group, and a range. An averaging processing unit that calculates an average range by averaging, and a height determination unit that determines the height of an obstacle by comparing the average range with a threshold value are provided.
 本発明によれば、上記のように構成したので、障害物の高さを精度良く判断することができる。 According to the present invention, since it is configured as described above, it is possible to accurately determine the height of an obstacle.
図1Aは、車両における距離センサの設置位置の例を示す説明図であって、車両の後方から見た状態を示す説明図である。図1Bは、車両における距離センサの設置位置の例を示す説明図であって、車両の上方から見た状態を示す説明図である。FIG. 1A is an explanatory diagram showing an example of an installation position of a distance sensor in a vehicle, and is a diagram showing a state seen from the rear of the vehicle. FIG. 1B is an explanatory diagram illustrating an example of installation positions of distance sensors in a vehicle, and is an explanatory diagram illustrating a state viewed from above the vehicle. 実施の形態1に係る障害物検出装置を含む電子制御ユニットが車両に設けられている状態を示すブロック図である。FIG. 3 is a block diagram showing a state in which an electronic control unit including the obstacle detection device according to the first embodiment is provided in a vehicle. 図3Aは、直接波及び間接波を含むグループの例を示す説明図である。図3Bは、当該グループにおける送信信号及び受信信号の例を示す説明図である。FIG. 3A is an explanatory diagram illustrating an example of groups including direct waves and indirect waves. FIG. 3B is an explanatory diagram showing an example of transmission signals and reception signals in the group. 図4Aは、直接波及び間接波を含む他のグループの例を示す説明図である。図4Bは、当該グループにおける送信信号及び受信信号の例を示す説明図である。FIG. 4A is an explanatory diagram showing an example of another group including a direct wave and an indirect wave. FIG. 4B is an explanatory diagram showing an example of transmission signals and reception signals in the group. 図5Aは、直接波及び間接波を含む他のグループの例を示す説明図である。図5Bは、当該グループにおける送信信号及び受信信号の例を示す説明図である。FIG. 5A is an explanatory diagram showing an example of another group including a direct wave and an indirect wave. FIG. 5B is an explanatory diagram showing an example of transmission signals and reception signals in the group. 図6Aは、直接波及び間接波を含む他のグループの例を示す説明図である。図6Bは、当該グループにおける送信信号及び受信信号の例を示す説明図である。FIG. 6A is an explanatory diagram showing an example of another group including a direct wave and an indirect wave. FIG. 6B is an explanatory diagram showing an example of transmission signals and reception signals in the group. グルーピングの対象となる直接波及び間接波の例を示す説明図である。It is explanatory drawing which shows the example of the direct wave and indirect wave used as the object of grouping. 平均レンジの例を示す説明図である。It is explanatory drawing which shows the example of an average range. 平均レンジマップの例を示す説明図である。It is explanatory drawing which shows the example of an average range map. 図10Aは、実施の形態1に係る障害物検出装置を含む電子制御ユニットのハードウェア構成を示すブロック図である。図10Bは、当該電子制御ユニットの他のハードウェア構成を示すブロック図である。FIG. 10A is a block diagram showing a hardware configuration of an electronic control unit including the obstacle detection device according to the first embodiment. FIG. 10B is a block diagram showing another hardware configuration of the electronic control unit. 実施の形態1に係る障害物検出装置を含む電子制御ユニットの動作を示すフローチャートである。3 is a flowchart showing the operation of the electronic control unit including the obstacle detection device according to the first embodiment. 実施の形態1に係る障害物検出装置を含む電子制御ユニットの動作を示すフローチャートである。3 is a flowchart showing the operation of the electronic control unit including the obstacle detection device according to the first embodiment. 実施の形態2に係る障害物検出装置を含む電子制御ユニットが車両に設けられている状態を示すブロック図である。7 is a block diagram showing a state in which an electronic control unit including the obstacle detection device according to the second embodiment is provided in a vehicle. FIG. 第1平均レンジ、第2平均レンジ及び第3平均レンジの例を示す説明図である。It is explanatory drawing which shows the example of a 1st average range, a 2nd average range, and a 3rd average range. 第1平均レンジマップの例を示す説明図である。It is explanatory drawing which shows the example of a 1st average range map. 第2平均レンジマップの例を示す説明図である。It is explanatory drawing which shows the example of a 2nd average range map. 第3平均レンジマップの例を示す説明図である。It is explanatory drawing which shows the example of a 3rd average range map. 実施の形態2に係る障害物検出装置を含む電子制御ユニットの動作を示すフローチャートである。9 is a flowchart showing the operation of the electronic control unit including the obstacle detection device according to the second embodiment. 実施の形態2に係る障害物検出装置を含む電子制御ユニットの動作を示すフローチャートである。9 is a flowchart showing the operation of the electronic control unit including the obstacle detection device according to the second embodiment.
 以下、この発明をより詳細に説明するために、この発明を実施するための形態について、添付の図面に従って説明する。 Hereinafter, in order to explain the present invention in more detail, modes for carrying out the present invention will be described with reference to the accompanying drawings.
実施の形態1.
 図1Aは、車両における距離センサの設置位置の例を示す説明図であって、車両の後方から見た状態を示す説明図である。図1Bは、車両における距離センサの設置位置の例を示す説明図であって、車両の上方から見た状態を示す説明図である。図1を参照して、距離センサ2について説明する。
Embodiment 1.
FIG. 1A is an explanatory diagram showing an example of the installation position of a distance sensor in a vehicle, and is an explanatory diagram showing a state seen from the rear of the vehicle. FIG. 1B is an explanatory diagram illustrating an example of the installation position of the distance sensor in the vehicle, and is an explanatory diagram illustrating a state viewed from above the vehicle. The distance sensor 2 will be described with reference to FIG.
 図1に示す如く、車両1に複数個の距離センサ2が設けられている。より具体的には、車両1の後端部に4個の距離センサ2_rol,2_ril,2_rir,2_rorが設けられている。個々の距離センサ2は、例えば、超音波式の距離センサ又は電波式の距離センサにより構成されている。 As shown in FIG. 1, a vehicle 1 is provided with a plurality of distance sensors 2. More specifically, four distance sensors 2_roll, 2_ril, 2_rr, 2_or are provided at the rear end of the vehicle 1. Each of the distance sensors 2 is composed of, for example, an ultrasonic type distance sensor or a radio wave type distance sensor.
 ここで、距離センサ2_rol,2_rorと距離センサ2_ril,2_rirとは、車両1の左右方向(以下「車幅方向」という。図中Y軸に沿う方向である。)に対する設置位置が互いに異なるものである。以下、複数個の距離センサ2のうち、車幅方向におけるより外側に設置された距離センサ2_rol,2_rorを「外側設置距離センサ」ということがある。また、複数個の距離センサ2のうち、車幅方向におけるより内側に設置された距離センサ2_ril,2_rirを「内側設置距離センサ」ということがある。 Here, the distance sensors 2_roll, 2_rr and the distance sensors 2_ril, 2_rr are installed at different positions in the left-right direction of the vehicle 1 (hereinafter referred to as “vehicle width direction”, which is the direction along the Y axis in the drawing). is there. Hereinafter, among the plurality of distance sensors 2, the distance sensors 2_roll and 2_lor installed outside in the vehicle width direction may be referred to as “outside installed distance sensors”. Further, among the plurality of distance sensors 2, the distance sensors 2_ril and 2_rr installed on the inner side in the vehicle width direction may be referred to as “inside installed distance sensors”.
 また、距離センサ2_rol,2_rorと距離センサ2_ril,2_rirとは、車両1の上下方向(以下「車高方向」という。図中Z軸に沿う方向である。)に対する設置位置が互いに異なるものである。以下、複数個の距離センサ2のうち、より高い位置に設置された距離センサ2_rol,2_rorを「高側設置距離センサ」ということがある。また、複数個の距離センサ2のうち、より低い位置に設置された距離センサ2_ril,2_rirを「低側設置距離センサ」ということがある。 Further, the distance sensors 2_roll, 2_orr and the distance sensors 2_ril, 2_rr are installed at different positions in the vertical direction of the vehicle 1 (hereinafter referred to as “vehicle height direction”, which is the direction along the Z axis in the drawing). .. Hereinafter, among the plurality of distance sensors 2, the distance sensors 2_roll, 2_or installed at higher positions may be referred to as “high-side installed distance sensors”. Further, among the plurality of distance sensors 2, the distance sensors 2_ril and 2_rr installed at lower positions may be referred to as “low side installation distance sensors”.
 以下、個々の距離センサ2により送受信される超音波又は電波などを総称して「探索波」という。また、車両1外の障害物Oにより反射された探索波を「反射波」という。また、いずれかの距離センサ2が探索波を送信した場合において、この距離センサ2が反射波を受信したとき、当該送信波及び当該受信波を「直接波」という。また、いずれかの距離センサ2が探索波を送信した場合において、他の距離センサ2が反射波を受信したとき、当該送信波及び当該受信波を「間接波」という。 Hereafter, the ultrasonic waves or radio waves transmitted and received by the individual distance sensors 2 are collectively referred to as “search waves”. Further, the search wave reflected by the obstacle O outside the vehicle 1 is referred to as “reflected wave”. Further, when any one of the distance sensors 2 transmits the search wave, when the distance sensor 2 receives the reflected wave, the transmission wave and the reception wave are referred to as “direct wave”. Further, when any one of the distance sensors 2 transmits a search wave and another distance sensor 2 receives a reflected wave, the transmission wave and the reception wave are referred to as “indirect waves”.
 また、障害物Oの高さが車両1のバンパ部に接触し得る程度に高いものである場合、この障害物Oを「走行障害物」という。走行障害物は、例えば、壁又はポールである。また、障害物Oの高さが、車両1のバンパ部に接触し得ない程度に低いものであり、かつ、車両1による乗り越えが困難である程度に高いものである場合、この障害物Oを「路上障害物」という。路上障害物は、例えば、縁石又は輪止めである。また、障害物Oの高さが、車両1のバンパ部に接触し得ない程度に低いものであり、かつ、車両1による乗り越えが容易である程度に低いものである場合、この障害物Oを「路面障害物」という。路面障害物は、例えば、段差である。 Also, when the height of the obstacle O is high enough to contact the bumper portion of the vehicle 1, the obstacle O is referred to as a "running obstacle". The traveling obstacle is, for example, a wall or a pole. Further, when the height of the obstacle O is so low that the bumper portion of the vehicle 1 cannot be contacted with the obstacle O and the obstacle O is high enough to be overcome by the vehicle 1, the obstacle O is Road obstacles ". The road obstacle is, for example, a curb or a wheel stopper. Further, when the height of the obstacle O is so low that the bumper portion of the vehicle 1 cannot be contacted with the obstacle O and the vehicle 1 is easy to get over the obstacle O, the obstacle O is " Road obstacles ". The road surface obstacle is, for example, a step.
 図2は、実施の形態1に係る障害物検出装置を含む電子制御ユニットが車両に設けられている状態を示すブロック図である。図2を参照して、実施の形態1の障害物検出装置100について説明する。 FIG. 2 is a block diagram showing a state in which an electronic control unit including the obstacle detection device according to the first embodiment is provided in a vehicle. The obstacle detection device 100 of the first embodiment will be described with reference to FIG.
 送信制御部11は、個々の距離センサ2に所定の信号(以下「送信信号」という。)TSを供給することにより、個々の距離センサ2に探索波を送信させるものである。より具体的には、送信制御部11は、車両1が後退しているとき、4個の距離センサ2_rol,2_ril,2_rir,2_rorに送信信号TS_rol,TS_ril,TS_rir,TS_rorを順次供給することにより、4個の距離センサ2_rol,2_ril,2_rir,2_rorに探索波を順次送信させるものである。 The transmission control unit 11 supplies a predetermined signal (hereinafter referred to as “transmission signal”) TS to each distance sensor 2 to cause each distance sensor 2 to transmit a search wave. More specifically, the transmission control unit 11 sequentially supplies the transmission signals TS_rol, TS_ril, TS_rr, and TS_lor to the four distance sensors 2_roll, 2_ril, 2_rr, and 2_or when the vehicle 1 is moving backward. The four distance sensors 2_roll, 2_ril, 2_rir, and 2_ror sequentially transmit search waves.
 受信制御部12は、個々の距離センサ2による受信波に対応する信号(以下「受信信号」という。)RSを取得するものである。以下、個々の受信信号RSが所定の閾値(以下「検出閾値」という。)を超える時刻T_upを「立ち上がり時刻」という。また、個々の受信信号RSが検出閾値を下回る時刻T_downを「立ち下がり時刻」という。受信制御部12は、個々の受信信号RSを検出閾値と比較することにより、立ち上がり時刻T_up及び立ち下がり時刻T_downを検出するものである。 The reception control unit 12 acquires a signal RS (hereinafter, referred to as “reception signal”) RS corresponding to a reception wave by each distance sensor 2. Hereinafter, the time T_up at which each received signal RS exceeds a predetermined threshold value (hereinafter referred to as “detection threshold value”) is referred to as “rise time”. Further, the time T_down at which the individual reception signal RS falls below the detection threshold is referred to as the “falling time”. The reception control unit 12 detects the rising time T_up and the falling time T_down by comparing each reception signal RS with a detection threshold value.
 グルーピング処理部13は、複数個の距離センサ2により送受信された直接波DW及び間接波IWをグルーピングすることにより、複数個のグループGを設定するものである。 The grouping processing unit 13 sets a plurality of groups G by grouping the direct wave DW and the indirect wave IW transmitted and received by the plurality of distance sensors 2.
 レンジ算出部14は、個々のグループGにおける最初の受信信号RSの立ち上がり時刻T_up_first及び最後の受信信号RSの立ち下がり時刻T_down_lastに基づき、個々のグループGにおける時刻T_up_first,T_down_last間のレンジRを算出するものである。 The range calculator 14 calculates the range R between the times T_up_first and T_down_last in each group G based on the rising time T_up_first of the first received signal RS and the falling time T_down_last of the last received signal RS in each group G. It is a thing.
 距離算出部15は、個々のグループGにおける、内側設置距離センサ2_ril,2_rirによる受信波に対応する受信信号RSの立ち上がり時刻T_up_ril,T_up_rirの平均値T_up_aveを算出するものである。距離算出部15は、いわゆる「TOF法」により、当該算出された平均値T_up_aveに対応する距離Dを算出するものである。すなわち、距離Dは、車両1と障害物O間の距離の推定値に相当するものである。距離Dの算出には公知の種々の方法を用いることができるものであり、これらの方法についての詳細な説明は省略する。 The distance calculation unit 15 calculates the average value T_up_ave of the rising times T_up_ril, T_up_rir of the reception signal RS corresponding to the reception waves by the inside installation distance sensors 2_ril, 2_rr in each group G. The distance calculation unit 15 calculates the distance D corresponding to the calculated average value T_up_ave by the so-called “TOF method”. That is, the distance D corresponds to an estimated value of the distance between the vehicle 1 and the obstacle O. Various known methods can be used to calculate the distance D, and detailed description of these methods will be omitted.
 ここで、図3~図6を参照して、送信制御部11、受信制御部12、グルーピング処理部13、レンジ算出部14及び距離算出部15による処理の具体例について説明する。 Here, a specific example of processing by the transmission control unit 11, the reception control unit 12, the grouping processing unit 13, the range calculation unit 14, and the distance calculation unit 15 will be described with reference to FIGS. 3 to 6.
 まず、送信制御部11が距離センサ2_rolに送信信号TS_rolを供給する。これにより、距離センサ2_rolが探索波を送信する。当該送信波が障害物Oにより反射された場合、距離センサ2_rolが直接波DW_rol_rolを受信し得るものである。これに加えて、距離センサ2_rilが間接波IW_ril_rolを受信し得るものであり、かつ、距離センサ2_rirが間接波IW_rir_rolを受信し得るものであり、かつ、距離センサ2_rorが間接波IW_ror_rolを受信し得るものである。 First, the transmission control unit 11 supplies the transmission signal TS_roll to the distance sensor 2_roll. As a result, the distance sensor 2_roll transmits the search wave. When the transmission wave is reflected by the obstacle O, the distance sensor 2_roll can receive the direct wave DW_roll_roll. In addition to this, the distance sensor 2_ril can receive the indirect wave IW_ril_roll, the distance sensor 2_rr can receive the indirect wave IW_rr_rol, and the distance sensor 2_or can receive the indirect wave IW_ror_roll. It is a thing.
 したがって、受信制御部12は、直接波DW_rol_rolに対応する受信信号RS_rol_rolを取得し得るものである。これに加えて、受信制御部12は、間接波IW_ril_rolに対応する受信信号RS_ril_rolを取得し得るものであり、かつ、間接波IW_rir_rolに対応する受信信号RS_rir_rolを取得し得るものであり、かつ、間接波IW_ror_rolに対応する受信信号RS_ror_rolを取得し得るものである。 Therefore, the reception control unit 12 can acquire the reception signal RS_roll_roll corresponding to the direct wave DW_roll_roll. In addition to this, the reception control unit 12 is capable of acquiring the reception signal RS_ril_roll corresponding to the indirect wave IW_ril_rol, and capable of acquiring the reception signal RS_rr_rol corresponding to the indirect wave IW_rr_rol, and indirect. It is possible to obtain the reception signal RS_ror_roll corresponding to the wave IW_ror_roll.
 このとき、グルーピング処理部13は、直接波DW_rol_rol及び間接波IW_ril_rol,IW_rir_rolを含むグループG_rolを設定する(図3A参照)。すなわち、グルーピング処理部13は、間接波IW_ror_rol(不図示)をグループG_rolから除外する。除外対象となる間接波IW_ror_rolは、複数個の距離センサ2のうちの探索波を送信した距離センサ2_rolに対して最も遠い位置に設置された距離センサ2_rorにより受信されたものである。 At this time, the grouping processing unit 13 sets a group G_roll including the direct wave DW_roll_roll and the indirect waves IW_ril_roll, IW_rr_roll (see FIG. 3A). That is, the grouping processing unit 13 excludes the indirect wave IW_lor_roll (not shown) from the group G_roll. The indirect wave IW_ror_roll to be excluded is received by the distance sensor 2_roll installed at the farthest position from the distance sensor 2_roll that transmitted the search wave among the plurality of distance sensors 2.
 グループG_rolにおいて、最初の受信信号RSが受信信号RS_rol_rolであり、かつ、最後の受信信号RSが受信信号RS_rir_rolであるものとする(図3B参照)。この場合、レンジ算出部14は、受信信号RS_rol_rolの立ち上がり時刻T_up_first及び受信信号RS_rir_rolの立ち下がり時刻T_down_lastに基づき、グループG_rolにおけるレンジR_rolを算出する。 In the group G_roll, it is assumed that the first received signal RS is the received signal RS_rol_rol and the last received signal RS is the received signal RS_rr_rol (see FIG. 3B). In this case, the range calculation unit 14 calculates the range R_roll in the group G_roll based on the rising time T_up_first of the received signal RS_rol_rol and the falling time T_down_last of the received signal RS_rr_rol.
 また、距離算出部15は、受信信号RS_ril_rolの立ち上がり時刻T_up_rilと受信信号RS_rir_rolの立ち上がり時刻T_up_rirとの平均値T_up_aveを算出する。距離算出部15は、当該算出された平均値T_up_aveに基づき、グループG_rolにおける距離D、すなわちレンジR_rolに対応する距離Dを算出する。 The distance calculation unit 15 also calculates an average value T_up_ave of the rising time T_up_ril of the received signal RS_ril_rol and the rising time T_up_rr of the received signal RS_ril_rol. The distance calculation unit 15 calculates the distance D in the group G_roll, that is, the distance D corresponding to the range R_roll, based on the calculated average value T_up_ave.
 次いで、送信制御部11が距離センサ2_rilに送信信号TS_rilを供給する。これにより、距離センサ2_rilが探索波を送信する。当該送信波が障害物Oにより反射された場合、距離センサ2_rilが直接波DW_ril_rilを受信し得るものである。これに加えて、距離センサ2_rolが間接波IW_rol_rilを受信し得るものであり、かつ、距離センサ2_rirが間接波IW_rir_rilを受信し得るものであり、かつ、距離センサ2_rorが間接波IW_ror_rilを受信し得るものである。 Next, the transmission controller 11 supplies the transmission signal TS_ril to the distance sensor 2_ril. As a result, the distance sensor 2_ril transmits a search wave. When the transmission wave is reflected by the obstacle O, the distance sensor 2_ril can receive the direct wave DW_ril_ril. In addition to this, the distance sensor 2_roll can receive the indirect wave IW_roll_ril, the distance sensor 2_rir can receive the indirect wave IW_rir_ril, and the distance sensor 2_ror can receive the indirect wave IW_ror_ril. It is a thing.
 したがって、受信制御部12は、直接波DW_ril_rilに対応する受信信号RS_ril_rilを取得し得るものである。これに加えて、受信制御部12は、間接波IW_rol_rilに対応する受信信号RS_rol_rilを取得し得るものであり、かつ、間接波IW_rir_rilに対応する受信信号RS_rir_rilを取得し得るものであり、かつ、間接波IW_ror_rilに対応する受信信号RS_ror_rilを取得し得るものである。 Therefore, the reception control unit 12 can obtain the reception signal RS_ril_ril corresponding to the direct wave DW_ril_ril. In addition to this, the reception control unit 12 can obtain the reception signal RS_roll_ril corresponding to the indirect wave IW_roll_ril, and can obtain the reception signal RS_rr_ril corresponding to the indirect wave IW_rr_ril, and indirectly. The reception signal RS_ror_ril corresponding to the wave IW_ror_ril can be acquired.
 このとき、グルーピング処理部13は、直接波DW_ril_ril及び間接波IW_rol_ril,IW_rir_rilを含むグループG_rilを設定する(図4A参照)。すなわち、グルーピング処理部13は、間接波IW_ror_ril(不図示)をグループG_rilから除外する。除外対象となる間接波IW_ror_rilは、複数個の距離センサ2のうちの探索波を送信した距離センサ2_rilに対して最も遠い位置に設置された距離センサ2_rorにより受信されたものである。 At this time, the grouping processing unit 13 sets a group G_ril including the direct wave DW_ril_ril and the indirect waves IW_roll_ril, IW_rr_ril (see FIG. 4A). That is, the grouping processing unit 13 excludes the indirect wave IW_ror_ril (not shown) from the group G_ril. The indirect wave IW_ror_ril to be excluded is received by the distance sensor 2_ror installed at the farthest position from the distance sensor 2_ril that has transmitted the search wave among the plurality of distance sensors 2.
 グループG_rilにおいて、最初の受信信号RSが受信信号RS_ril_rilであり、かつ、最後の受信信号RSが受信信号RS_rol_rilであるものとする(図4B参照)。この場合、レンジ算出部14は、受信信号RS_ril_rilの立ち上がり時刻T_up_first及び受信信号RS_rol_rilの立ち下がり時刻T_down_lastに基づき、グループG_rilにおけるレンジR_rilを算出する。 In the group G_ril, the first reception signal RS is the reception signal RS_ril_ril and the last reception signal RS is the reception signal RS_roll_ril (see FIG. 4B). In this case, the range calculation unit 14 calculates the range R_ril in the group G_ril based on the rising time T_up_first of the reception signal RS_ril_ril and the falling time T_down_last of the reception signal RS_rol_ril.
 また、距離算出部15は、受信信号RS_ril_rilの立ち上がり時刻T_up_rilと受信信号RS_rir_rilの立ち上がり時刻T_up_rirとの平均値T_up_aveを算出する。距離算出部15は、当該算出された平均値T_up_aveに基づき、グループG_rilにおける距離D、すなわちレンジR_rilに対応する距離Dを算出する。 The distance calculation unit 15 also calculates an average value T_up_ave of the rising time T_up_ril of the reception signal RS_ril_ril and the rising time T_up_ril of the reception signal RS_ril_ril. The distance calculation unit 15 calculates the distance D in the group G_ril, that is, the distance D corresponding to the range R_ril, based on the calculated average value T_up_ave.
 次いで、送信制御部11が距離センサ2_rirに送信信号TS_rirを供給する。これにより、距離センサ2_rirが探索波を送信する。当該送信波が障害物Oにより反射された場合、距離センサ2_rirが直接波DW_rir_rirを受信し得るものである。これに加えて、距離センサ2_rolが間接波IW_rol_rirを受信し得るものであり、かつ、距離センサ2_rilが間接波IW_ril_rirを受信し得るものであり、かつ、距離センサ2_rorが間接波IW_ror_rirを受信し得るものである。 Next, the transmission control unit 11 supplies the transmission signal TS_rr to the distance sensor 2_rr. As a result, the distance sensor 2_rr transmits the search wave. When the transmitted wave is reflected by the obstacle O, the distance sensor 2_rr can receive the direct wave DW_rr_rr. In addition to this, the distance sensor 2_roll can receive the indirect wave IW_roll_ri, the distance sensor 2_ril can receive the indirect wave IW_ril_rir, and the distance sensor 2_or can receive the indirect wave IW_ror_rr. It is a thing.
 したがって、受信制御部12は、直接波DW_rir_rirに対応する受信信号RS_rir_rirを取得し得るものである。これに加えて、受信制御部12は、間接波IW_rol_rirに対応する受信信号RS_rol_rirを取得し得るものであり、かつ、間接波IW_ril_rirに対応する受信信号RS_ril_rirを取得し得るものであり、かつ、間接波IW_ror_rirに対応する受信信号RS_ror_rirを取得し得るものである。 Therefore, the reception control unit 12 can obtain the reception signal RS_rr_rr corresponding to the direct wave DW_rir_r. In addition to this, the reception control unit 12 is capable of acquiring the reception signal RS_roll_ril corresponding to the indirect wave IW_roll_rr, and capable of acquiring the reception signal RS_ril_rr corresponding to the indirect wave IW_ril_rr, and indirect. It is possible to obtain the received signal RS_ror_rr corresponding to the wave IW_ror_rir.
 このとき、グルーピング処理部13は、直接波DW_rir_rir及び間接波IW_ril_rir,IW_ror_rirを含むグループG_rirを設定する(図5A参照)。すなわち、グルーピング処理部13は、間接波IW_rol_rir(不図示)をグループG_rirから除外する。除外対象となる間接波IW_rol_rirは、複数個の距離センサ2のうちの探索波を送信した距離センサ2_rirに対して最も遠い位置に設置された距離センサ2_rolにより受信されたものである。 At this time, the grouping processing unit 13 sets a group G_rir including the direct wave DW_rir_rir and the indirect wave IW_rir_rir and IW_ror_rir (see FIG. 5A). That is, the grouping processing unit 13 excludes the indirect wave IW_roll_rr (not shown) from the group G_rr. The indirect wave IW_roll_rr to be excluded is received by the distance sensor 2_roll installed at the farthest position with respect to the distance sensor 2_rr that transmitted the search wave among the plurality of distance sensors 2.
 グループG_rirにおいて、最初の受信信号RSが受信信号RS_rir_rirであり、かつ、最後の受信信号RSが受信信号RS_ror_rirであるものとする(図5B参照)。この場合、レンジ算出部14は、受信信号RS_rir_rirの立ち上がり時刻T_up_first及び受信信号RS_ror_rirの立ち下がり時刻T_down_lastに基づき、グループG_rirにおけるレンジR_rirを算出する。 In the group G_rr, the first received signal RS is the received signal RS_rir_rr and the last received signal RS is the received signal RS_ror_rir (see FIG. 5B). In this case, the range calculation unit 14 calculates the range R_rir in the group G_rir based on the rising time T_up_first of the reception signal RS_rir_r and the falling time T_down_last of the reception signal RS_ror_rir.
 また、距離算出部15は、受信信号RS_rir_rirの立ち上がり時刻T_up_rirと受信信号RS_ril_rirの立ち上がり時刻T_up_rilとの平均値T_up_aveを算出する。距離算出部15は、当該算出された平均値T_up_aveに基づき、グループG_rirにおける距離D、すなわちレンジR_rirに対応する距離Dを算出する。 The distance calculation unit 15 also calculates an average value T_up_ave of the rising time T_up_rr of the received signal RS_rr_rr and the rising time T_up_ril of the received signal RS_ril_rir. The distance calculation unit 15 calculates the distance D in the group G_rr, that is, the distance D corresponding to the range R_rr, based on the calculated average value T_up_ave.
 次いで、送信制御部11が距離センサ2_rorに送信信号TS_rorを供給する。これにより、距離センサ2_rorが探索波を送信する。当該送信波が障害物Oにより反射された場合、距離センサ2_rorが直接波DW_ror_rorを受信し得るものである。これに加えて、距離センサ2_rolが間接波IW_rol_rorを受信し得るものであり、かつ、距離センサ2_rilが間接波IW_ril_rorを受信し得るものであり、かつ、距離センサ2_rirが間接波IW_rir_rorを受信し得るものである。 Next, the transmission control unit 11 supplies the transmission signal TS_ror to the distance sensor 2_ror. As a result, the distance sensor 2_or transmits the search wave. When the transmission wave is reflected by the obstacle O, the distance sensor 2_or can receive the direct wave DW_or_or. In addition to this, the distance sensor 2_rol can receive the indirect wave IW_roll_ror, the distance sensor 2_ril can receive the indirect wave IW_ril_ror, and the distance sensor 2_rir can receive the indirect wave IW_rir_ror. It is a thing.
 したがって、受信制御部12は、直接波DW_ror_rorに対応する受信信号RS_ror_rorを取得し得るものである。これに加えて、受信制御部12は、間接波IW_rol_rorに対応する受信信号RS_rol_rorを取得し得るものであり、かつ、間接波IW_ril_rorに対応する受信信号RS_ril_rorを取得し得るものであり、かつ、間接波IW_rir_rorに対応する受信信号RS_rir_rorを取得し得るものである。 Therefore, the reception control unit 12 can acquire the reception signal RS_ror_ror corresponding to the direct wave DW_ror_ror. In addition to this, the reception control unit 12 is capable of acquiring the reception signal RS_roll_ror corresponding to the indirect wave IW_roll_ror, and is capable of acquiring the reception signal RS_ril_ror corresponding to the indirect wave IW_ril_ror, and indirectly. It is possible to acquire the reception signal RS_rr_ror corresponding to the wave IW_rir_ror.
 このとき、グルーピング処理部13は、直接波DW_ror_ror及び間接波IW_ril_ror,IW_rir_rorを含むグループG_rorを設定する(図6A参照)。すなわち、グルーピング処理部13は、間接波IW_rol_ror(不図示)をグループG_rorから除外する。除外対象となる間接波IW_rol_rorは、複数個の距離センサ2のうちの探索波を送信した距離センサ2_rorに対して最も遠い位置に設置された距離センサ2_rolにより受信されたものである。 At this time, the grouping processing unit 13 sets the group G_ror including the direct wave DW_ror_ror and the indirect wave IW_ril_ror, IW_rir_ror (see FIG. 6A). That is, the grouping processing unit 13 excludes the indirect wave IW_roll_ror (not shown) from the group G_ror. The indirect wave IW_roll_roll to be excluded is received by the distance sensor 2_roll installed at the farthest position from the distance sensor 2_lor that has transmitted the search wave among the plurality of distance sensors 2.
 グループG_rorにおいて、最初の受信信号RSが受信信号RS_ror_rorであり、かつ、最後の受信信号RSが受信信号RS_ril_rorであるものとする(図6B参照)。この場合、レンジ算出部14は、受信信号RS_ror_rorの立ち上がり時刻T_up_first及び受信信号RS_ril_rorの立ち下がり時刻T_down_lastに基づき、グループG_rorにおけるレンジR_rorを算出する。 In the group G_ror, it is assumed that the first received signal RS is the received signal RS_ror_ror and the last received signal RS is the received signal RS_ril_ror (see FIG. 6B). In this case, the range calculation unit 14 calculates the range R_ror in the group G_ror based on the rising time T_up_first of the received signal RS_ror_ror and the falling time T_down_last of the received signal RS_ril_rr.
 また、距離算出部15は、受信信号RS_rir_rorの立ち上がり時刻T_up_rirと受信信号RS_ril_rorの立ち上がり時刻T_up_rilとの平均値T_up_aveを算出する。距離算出部15は、当該算出された平均値T_up_aveに基づき、グループG_rorにおける距離D、すなわちレンジR_rorに対応する距離Dを算出する。 The distance calculation unit 15 also calculates an average value T_up_ave of the rising time T_up_rr of the received signal RS_rr_ror and the rising time T_up_ril of the received signal RS_ril_ror. The distance calculation unit 15 calculates the distance D in the group G_ror, that is, the distance D corresponding to the range R_ror based on the calculated average value T_up_ave.
 送信制御部11、受信制御部12、グルーピング処理部13、レンジ算出部14及び距離算出部15は、車両1が後退しているとき、これらの処理を繰り返し実行する。これにより、複数個のレンジR_rol、当該複数個のレンジR_rolと一対一に対応する複数個の距離D、複数個のレンジR_ril、当該複数個のレンジR_rilと一対一に対応する複数個の距離D、複数個のレンジR_rir、当該複数個のレンジR_rirと一対一に対応する複数個の距離D、複数個のレンジR_ror、及び当該複数個のレンジR_rorと一対一に対応する複数個の距離Dが算出される。 The transmission control unit 11, the reception control unit 12, the grouping processing unit 13, the range calculation unit 14, and the distance calculation unit 15 repeatedly execute these processes when the vehicle 1 is moving backward. Accordingly, the plurality of ranges R_roll, the plurality of distances D corresponding to the plurality of ranges R_roll in a one-to-one relationship, the plurality of ranges R_ril, and the plurality of distances D in a one-to-one correspondence with the plurality of ranges R_ril. , A plurality of ranges R_rr, a plurality of distances D corresponding to the plurality of ranges R_rr in a one-to-one relationship, a plurality of ranges R_ror, and a plurality of distances D in a one-to-one correspondence with the plurality of ranges R_ror. Is calculated.
 図7は、グルーピング処理部13によるグルーピングの対象となる直接波DW及び間接波IWの一覧を示している。上記のとおり、間接波IW_ror_rol,IW_ror_ril,IW_rol_rir,IW_rol_rorは、グルーピング処理部13によるグルーピングの対象から除外されるものである。これにより、レンジ算出部14により算出されるレンジRのばらつきを低減することができる。 FIG. 7 shows a list of direct waves DW and indirect waves IW that are the targets of grouping by the grouping processing unit 13. As described above, the indirect waves IW_ror_roll, IW_ror_ril, IW_roll_rir, and IW_roll_ror are excluded from the grouping target by the grouping processing unit 13. Thereby, the variation of the range R calculated by the range calculation unit 14 can be reduced.
 また、内側設置距離センサ2_ril,2_rirによる受信波に対応する受信信号RSの立ち上がり時刻T_up_ril,T_up_rirを距離Dの算出に用いることにより、車両1と障害物O間の距離の推定精度を向上することができる。 Further, by using the rising times T_up_ril, T_up_rr of the reception signal RS corresponding to the reception waves by the inside installation distance sensors 2_ril, 2_rr for calculating the distance D, the estimation accuracy of the distance between the vehicle 1 and the obstacle O can be improved. You can
 すなわち、通常、車両1の後端部は曲線形状を有している。このため、外側設置距離センサ2_rol,2_rorは、内側設置距離センサ2_ril,2_rirに比して、車両1の前後方向(以下「車長方向」という。図中X軸に沿う方向である。)における後側、すなわち奥側に配置されている。したがって、仮に外側設置距離センサ2_rol,2_rorによる受信波に対応する受信信号RSの立ち上がり時刻T_up_rol,T_up_rorを距離Dの算出に用いた場合、車両1と障害物O間の距離の推定に誤差が発生する可能性がある。これに対して、立ち上がり時刻T_up_ril,T_up_rirを距離Dの算出に用いることにより、当該誤差の発生を回避することができる。この結果、車両1と障害物O間の距離の推定精度を向上することができる。 That is, the rear end of the vehicle 1 usually has a curved shape. Therefore, the outer installation distance sensors 2_roll, 2_or in the front-rear direction of the vehicle 1 (hereinafter, referred to as the “vehicle length direction”, which is the direction along the X axis in the drawing) is more than the inner installation distance sensors 2_ril, 2_rr. It is arranged on the rear side, that is, on the back side. Therefore, if the rise times T_up_rol and T_up_or of the reception signal RS corresponding to the waves received by the outside installed distance sensors 2_roll and 2_or are used to calculate the distance D, an error occurs in the estimation of the distance between the vehicle 1 and the obstacle O. there's a possibility that. On the other hand, by using the rising times T_up_ril and T_up_rr for calculating the distance D, it is possible to avoid the occurrence of the error. As a result, the accuracy of estimating the distance between the vehicle 1 and the obstacle O can be improved.
 平均レンジ算出部16は、距離算出部15により算出された距離Dに基づき、N個の距離区間ΔD_1~ΔD_Nの各々におけるレンジRの平均値(以下「平均レンジ」という。)R_aveを算出するものである。ここで、Nは2以上の整数である。 The average range calculation unit 16 calculates an average value (hereinafter, referred to as “average range”) R_ave of the range R in each of the N distance sections ΔD_1 to ΔD_N based on the distance D calculated by the distance calculation unit 15. Is. Here, N is an integer of 2 or more.
 より具体的には、平均レンジ算出部16は、個々の距離区間ΔDにおける、レンジR_rolの平均値R_rol_ave、レンジR_rilの平均値R_ril_ave、レンジR_rirの平均値R_rir_ave、及びレンジR_rorの平均値R_ror_aveを算出する。平均レンジ算出部16は、当該算出された平均値R_rol_ave,R_ril_ave,R_rir_ave,R_ror_aveを平均化することにより、個々の距離区間ΔDにおける平均レンジR_ave_allを算出する。 More specifically, the average range calculation unit 16 calculates the average value R_roll_ave of the range R_roll, the average value R_ril_ave of the range R_ril, the average value R_rr_ave of the range R_rr, and the average value R_ror_ave of the range R_or in each distance section ΔD. To do. The average range calculation unit 16 calculates the average range R_ave_all in each distance section ΔD by averaging the calculated average values R_roll_ave, R_ril_ave, R_rir_ave, and R_ror_ave.
 図8は、3個の距離区間ΔD_N,ΔD_N-1,ΔD_N-2の各々における、平均値R_rol_ave,R_ril_ave,R_rir_ave,R_ror_aveの例、及び平均レンジR_ave_allの例を示している。図8に示す如く、個々の距離区間ΔDの大きさは、一定値(β-α)に設定されている。ここで、当該大きさの下限値は0.05メートルであり、かつ、当該大きさの上限値は10メートルである。また、互いに隣接する距離区間ΔD間のずれ量は、任意の値γに設定されている。ここで、当該ずれ量の下限値は0.05メートルであり、かつ、当該ずれ量の上限値は5メートルである。すなわち、互いに隣接する距離区間ΔDは、その一部が互いに重複するものであっても良い。 FIG. 8 shows an example of average values R_roll_ave, R_ril_ave, R_rir_ave, R_ror_ave and an average range R_ave_all in each of the three distance sections ΔD_N, ΔD_N-1, and ΔD_N-2. As shown in FIG. 8, the size of each distance section ΔD is set to a constant value (β-α). Here, the lower limit of the size is 0.05 meters, and the upper limit of the size is 10 meters. Further, the amount of deviation between the distance sections ΔD adjacent to each other is set to an arbitrary value γ. Here, the lower limit value of the shift amount is 0.05 meters, and the upper limit value of the shift amount is 5 meters. That is, the distance sections ΔD adjacent to each other may partially overlap each other.
 以下、N個の距離区間ΔD_1~ΔD_Nのうちの各2個の距離区間ΔDの組合せにおける、より小さい距離Dを含む距離区間ΔDを「近距離区間」といい、より大きい距離Dを含む距離区間ΔDを「遠距離区間」という。また、近距離区間における平均レンジR_aveを「近距離区間平均レンジ」といい、遠距離区間における平均レンジR_aveを「遠距離区間平均レンジ」という。また、近距離区間平均レンジに対応する第1軸(例えば横軸)を有し、かつ、遠距離区間平均レンジに対応する第2軸(例えば縦軸)を有する2次元マップMを「平均レンジマップ」という。プロット処理部17は、平均レンジ算出部16により算出された平均レンジR_aveを平均レンジマップMにプロットするものである。 Hereinafter, a distance section ΔD including a smaller distance D in a combination of two distance sections ΔD among the N distance sections ΔD_1 to ΔD_N is referred to as a “short distance section”, and a distance section including a larger distance D. ΔD is called a “long distance section”. In addition, the average range R_ave in the short distance section is referred to as a “short distance section average range”, and the average range R_ave in the long distance section is referred to as a “long distance section average range”. In addition, a two-dimensional map M having a first axis (for example, a horizontal axis) corresponding to a short distance section average range and a second axis (for example, vertical axis) corresponding to a long distance section average range is referred to as “average range”. "Map". The plot processing unit 17 plots the average range R_ave calculated by the average range calculation unit 16 on the average range map M.
 ここで、図8を参照して、プロット処理部17によるプロットの具体例について説明する。距離区間ΔD_N(D=α~β[m])と距離区間ΔD_N-1(D=α+γ~β+γ[m])との組合せにおいては、距離区間ΔD_Nが近距離区間であり、かつ、距離区間ΔD_N-1が遠距離区間である。当該組合せにより、横軸9.3cmかつ縦軸8.4cmの位置にプロットが得られる。また、距離区間ΔD_N(D=α~β[m])と距離区間ΔD_N-2(D=α+2×γ~β+2×γ[m])との組合せにおいては、距離区間ΔD_Nが近距離区間であり、かつ、距離区間ΔD_N-2が遠距離区間である。当該組合せにより、横軸9.3cmかつ縦軸9.4cmの位置にプロットが得られる。さらに、距離区間ΔD_N-1(D=α+γ~β+γ[m])と距離区間ΔD_N-2(D=α+2×γ~β+2×γ[m])との組合せにおいては、距離区間ΔD_N-1が近距離区間であり、かつ、距離区間ΔD_N-2が遠距離区間である。当該組合せにより、横軸8.4cmかつ縦軸9.4cmの位置にプロットが得られる。 Here, a specific example of plotting by the plotting processing unit 17 will be described with reference to FIG. In the combination of the distance section ΔD_N (D = α to β [m]) and the distance section ΔD_N−1 (D = α + γ to β + γ [m]), the distance section ΔD_N is a short distance section and the distance section ΔD_N -1 is a long distance section. With the combination, a plot is obtained at a position of 9.3 cm on the horizontal axis and 8.4 cm on the vertical axis. In the combination of the distance section ΔD_N (D = α to β [m]) and the distance section ΔD_N-2 (D = α + 2 × γ to β + 2 × γ [m]), the distance section ΔD_N is a short distance section. Further, the distance section ΔD_N-2 is a long distance section. With this combination, a plot is obtained at the position of 9.3 cm on the horizontal axis and 9.4 cm on the vertical axis. Furthermore, in the combination of the distance section ΔD_N-1 (D = α + γ to β + γ [m]) and the distance section ΔD_N-2 (D = α + 2 × γ to β + 2 × γ [m]), the distance section ΔD_N-1 is close. It is a distance section, and the distance section ΔD_N-2 is a long distance section. With the combination, a plot is obtained at a position of 8.4 cm on the horizontal axis and 9.4 cm on the vertical axis.
 閾値比較部18は、プロット処理部17によりプロットされた平均レンジR_aveを所定の閾値Thと比較することにより、障害物Oの高さを判断するものである。より具体的には、閾値比較部18は、当該プロットされた平均レンジR_aveを2個の閾値Th_1,Th_2と比較することにより、障害物Oが路面障害物、路上障害物又は走行障害物のうちのいずれであるのかを判断するものである。以下、閾値Th_1を「第1閾値」といい、閾値Th_2を「第2閾値」という。 The threshold comparison unit 18 determines the height of the obstacle O by comparing the average range R_ave plotted by the plot processing unit 17 with a predetermined threshold Th. More specifically, the threshold comparing unit 18 compares the plotted average range R_ave with the two thresholds Th_1 and Th_2, so that the obstacle O is a road surface obstacle, a road obstacle or a traveling obstacle. It is to determine which of the two. Hereinafter, the threshold Th_1 is referred to as a “first threshold” and the threshold Th_2 is referred to as a “second threshold”.
 図9は、平均レンジマップMに平均レンジR_aveがプロットされた状態の例を示している。図中、丸印(○)は、障害物Oが路面障害物であるときの平均レンジR_aveのプロット位置を示している。また、三角印(△)は、障害物Oが路上障害物であるときの平均レンジR_aveのプロット位置を示している。また、バツ印(×)は、障害物Oが走行障害物であるときの平均レンジR_aveのプロット位置を示している。 FIG. 9 shows an example of a state in which the average range R_ave is plotted on the average range map M. In the figure, a circle (◯) indicates a plot position of the average range R_ave when the obstacle O is a road surface obstacle. Further, a triangle mark (Δ) indicates a plot position of the average range R_ave when the obstacle O is a road obstacle. The cross mark (x) indicates the plot position of the average range R_ave when the obstacle O is a traveling obstacle.
 図9に示す如く、障害物Oの高さに応じて、平均レンジマップMにおける平均レンジR_aveの分布範囲が異なるものとなる。このため、平均レンジマップMにおける閾値Thを用いて、障害物Oの高さを判断することができる。より具体的には、第1閾値Th_1及び第2閾値Th_2を用いて、障害物Oが路面障害物、路上障害物又は走行障害物のうちのいずれであるのかを判断することができる。すなわち、第1閾値Th_1は、障害物Oが路面障害物であるか否かを判断するための閾値である。また、第2閾値Th_2は、障害物Oが走行障害物であるか否かを判断するための閾値である。 As shown in FIG. 9, the distribution range of the average range R_ave in the average range map M varies depending on the height of the obstacle O. Therefore, the height of the obstacle O can be determined using the threshold Th in the average range map M. More specifically, using the first threshold value Th_1 and the second threshold value Th_2, it is possible to determine whether the obstacle O is a road surface obstacle, a road obstacle or a traveling obstacle. That is, the first threshold Th_1 is a threshold for determining whether or not the obstacle O is a road surface obstacle. The second threshold Th_2 is a threshold for determining whether the obstacle O is a traveling obstacle.
 警告信号出力部19は、閾値比較部18により障害物Oが走行障害物であると判断されたとき、所定の信号(以下「警告信号」という。)を警告出力装置3に出力するものである。 The warning signal output unit 19 outputs a predetermined signal (hereinafter referred to as “warning signal”) to the warning output device 3 when the threshold comparison unit 18 determines that the obstacle O is a traveling obstacle. ..
 警告出力装置3は、警告信号出力部19により警告信号が出力されたとき、車両1の搭乗者に対する警告を出力するものである。警告出力装置3は、例えば、ディスプレイ又はスピーカにより構成されている。警告出力装置3がディスプレイにより構成されている場合、警告出力装置3による警告出力は、当該ディスプレイにおける画像表示によるものである。警告出力装置3がスピーカにより構成されている場合、警告出力装置3による警告出力は、当該スピーカにおける音声出力によるものである。 The warning output device 3 outputs a warning to an occupant of the vehicle 1 when the warning signal output unit 19 outputs a warning signal. The warning output device 3 includes, for example, a display or a speaker. When the warning output device 3 is configured by a display, the warning output by the warning output device 3 is based on image display on the display. When the warning output device 3 is configured by a speaker, the warning output by the warning output device 3 is a voice output from the speaker.
 送信制御部11及び受信制御部12により、送受信制御部21が構成されている。グルーピング処理部13及びレンジ算出部14により、レンジ測定部22が構成されている。距離算出部15及び平均レンジ算出部16により、平均化処理部23が構成されている。プロット処理部17及び閾値比較部18により、高さ判断部24が構成されている。レンジ測定部22、平均化処理部23及び高さ判断部24により、障害物検出装置100が構成されている。警告信号出力部19、送受信制御部21及び障害物検出装置100は、電子制御ユニット(以下「ECU」と記載する。)4に設けられている。 A transmission / reception control unit 21 is configured by the transmission control unit 11 and the reception control unit 12. The grouping processing unit 13 and the range calculating unit 14 constitute a range measuring unit 22. The distance calculation unit 15 and the average range calculation unit 16 constitute an averaging processing unit 23. The plot processing unit 17 and the threshold comparison unit 18 constitute a height determination unit 24. The range measurement unit 22, the averaging processing unit 23, and the height determination unit 24 constitute an obstacle detection device 100. The warning signal output unit 19, the transmission / reception control unit 21, and the obstacle detection device 100 are provided in an electronic control unit (hereinafter referred to as “ECU”) 4.
 次に、図10を参照して、ECU4の要部のハードウェア構成について説明する。 Next, with reference to FIG. 10, a hardware configuration of a main part of the ECU 4 will be described.
 図10Aに示す如く、ECU4はプロセッサ41及びメモリ42を有している。メモリ42には、ECU4を送信制御部11、受信制御部12、グルーピング処理部13、レンジ算出部14、距離算出部15、平均レンジ算出部16、プロット処理部17、閾値比較部18及び警告信号出力部19として機能させるためのプログラムが記憶されている。メモリ42に記憶されているプログラムをプロセッサ41が読み出して実行することにより、送信制御部11、受信制御部12、グルーピング処理部13、レンジ算出部14、距離算出部15、平均レンジ算出部16、プロット処理部17、閾値比較部18及び警告信号出力部19の機能が実現される。 As shown in FIG. 10A, the ECU 4 has a processor 41 and a memory 42. In the memory 42, the ECU 4 includes a transmission control unit 11, a reception control unit 12, a grouping processing unit 13, a range calculation unit 14, a distance calculation unit 15, an average range calculation unit 16, a plot processing unit 17, a threshold value comparison unit 18, and a warning signal. A program for functioning as the output unit 19 is stored. When the processor 41 reads and executes the program stored in the memory 42, the transmission control unit 11, the reception control unit 12, the grouping processing unit 13, the range calculation unit 14, the distance calculation unit 15, the average range calculation unit 16, The functions of the plot processing unit 17, the threshold comparison unit 18, and the warning signal output unit 19 are realized.
 または、図10Bに示す如く、ECU4は処理回路43を有している。この場合、送信制御部11、受信制御部12、グルーピング処理部13、レンジ算出部14、距離算出部15、平均レンジ算出部16、プロット処理部17、閾値比較部18及び警告信号出力部19の機能が専用の処理回路43により実現される。 Alternatively, as shown in FIG. 10B, the ECU 4 has a processing circuit 43. In this case, the transmission control unit 11, the reception control unit 12, the grouping processing unit 13, the range calculation unit 14, the distance calculation unit 15, the average range calculation unit 16, the plot processing unit 17, the threshold value comparison unit 18, and the warning signal output unit 19. The function is realized by the dedicated processing circuit 43.
 または、ECU4はプロセッサ41、メモリ42及び処理回路43を有している(不図示)。この場合、送信制御部11、受信制御部12、グルーピング処理部13、レンジ算出部14、距離算出部15、平均レンジ算出部16、プロット処理部17、閾値比較部18及び警告信号出力部19の機能のうちの一部の機能がプロセッサ41及びメモリ42により実現されて、残余の機能が専用の処理回路43により実現される。 Alternatively, the ECU 4 has a processor 41, a memory 42 and a processing circuit 43 (not shown). In this case, the transmission control unit 11, the reception control unit 12, the grouping processing unit 13, the range calculation unit 14, the distance calculation unit 15, the average range calculation unit 16, the plot processing unit 17, the threshold value comparison unit 18, and the warning signal output unit 19. Some of the functions are realized by the processor 41 and the memory 42, and the remaining functions are realized by the dedicated processing circuit 43.
 プロセッサ41は、例えば、CPU(Central Processing Unit)、GPU(Graphics Processing Unit)、マイクロプロセッサ、マイクロコントローラ又はDSP(Digital Signal Processor)のうちの少なくとも一つを用いたものである。 The processor 41 uses, for example, at least one of a CPU (Central Processing Unit), a GPU (Graphics Processing Unit), a microprocessor, a microcontroller, and a DSP (Digital Signal Processor).
 メモリ42は、例えば、半導体メモリ又は磁気ディスクのうちの少なくとも一方を用いたものである。より具体的には、メモリ42は、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリ、EPROM(Erasable Programmable Read Only Memory)、EEPROM(Electrically Erasable Programmable Read-Only Memory)、SSD(Solid State Drive)又はHDD(Hard Disk Drive)のうちの少なくとも一つを用いたものである。 The memory 42 uses, for example, at least one of a semiconductor memory and a magnetic disk. More specifically, the memory 42 is a RAM (Random Access Memory), a ROM (Read Only Memory), a flash memory, an EPROM (Erasable Programmable Read Only Memory-Memory), an EEPROM (Electrically Organized Memory), or an EEPROM (Electrically Accessible Memory). At least one of State Drive) or HDD (Hard Disk Drive) is used.
 処理回路43は、例えば、ASIC(Application Specific Integrated Circuit)、PLD(Programmable Logic Device)、FPGA(Field-Programmable Gate Array)、SoC(System-on-a-Chip)又はシステムLSI(Large-Scale Integration)のうちの少なくとも一つを用いたものである。 The processing circuit 43 may be, for example, an ASIC (Application Specific Integrated Circuit), a PLD (Programmable Logic Device), an FPGA (Field-Programmable Gate Array), or a SoC (Sonication) system. At least one of the above is used.
 次に、図11のフローチャートを参照して、障害物検出装置100を含むECU4の動作について説明する。 Next, the operation of the ECU 4 including the obstacle detection device 100 will be described with reference to the flowchart of FIG.
 ECU4は、車両1が後退しているとき、図11Aに示すステップST1~ST5の処理を繰り返し実行する。ECU4は、例えば、ステップST5の処理により所定値(例えば3メートル)以下の距離Dが算出されたとき、又はステップST4,ST5の処理により所定個数(すなわちN個)以上の距離区間ΔDに亘る距離Dに対応するレンジRが算出されたとき、図11Bに示すステップST6以降の処理を実行する。 The ECU 4 repeatedly executes the processes of steps ST1 to ST5 shown in FIG. 11A when the vehicle 1 is moving backward. The ECU 4, for example, when a distance D equal to or less than a predetermined value (for example, 3 meters) is calculated by the processing of step ST5, or over a distance ΔD of a predetermined number (that is, N) or more by the processing of steps ST4 and ST5. When the range R corresponding to D is calculated, the processing from step ST6 shown in FIG. 11B is executed.
 まず、ステップST1にて、送信制御部11は、個々の距離センサ2に送信信号TSを供給する。 First, in step ST1, the transmission control unit 11 supplies the transmission signal TS to each distance sensor 2.
 例えば、第1回目のステップST1にて、送信制御部11は、距離センサ2_rolに送信信号TS_rolを供給する。第2回目のステップST1にて、送信制御部11は、距離センサ2_rilに送信信号TS_rilを供給する。第3回目のステップST1にて、送信制御部11は、距離センサ2_rirに送信信号TS_rirを供給する。第4回目のステップST1にて、送信制御部11は、距離センサ2_rorに送信信号TS_rorを供給する。 For example, in the first step ST1, the transmission control unit 11 supplies the transmission signal TS_roll to the distance sensor 2_roll. In step ST1 of the second time, the transmission control unit 11 supplies the transmission signal TS_ril to the distance sensor 2_ril. In step ST1 of the third time, the transmission control unit 11 supplies the transmission signal TS_rr to the distance sensor 2_rr. In the fourth step ST1, the transmission control unit 11 supplies the transmission signal TS_ror to the distance sensor 2_ror.
 次いで、ステップST2にて、受信制御部12は、個々の距離センサ2による受信信号RSを取得する。受信制御部12は、個々の受信信号RSを検出閾値と比較することにより、立ち上がり時刻T_up及び立ち下がり時刻T_downを検出する。 Next, in step ST2, the reception control unit 12 acquires the reception signal RS from each distance sensor 2. The reception control unit 12 detects the rising time T_up and the falling time T_down by comparing each reception signal RS with the detection threshold value.
 次いで、ステップST3にて、グルーピング処理部13は、送信信号TSが供給された距離センサ2に対応するグループG、すなわち探索波を送信した距離センサ2に対応するグループGの設定が可能であれば、かかるグループGを設定する。 Next, in step ST3, the grouping processing unit 13 can set the group G corresponding to the distance sensor 2 to which the transmission signal TS is supplied, that is, the group G corresponding to the distance sensor 2 that transmitted the search wave. , Such group G is set.
 例えば、第1回目のステップST3にて、グルーピング処理部13は、距離センサ2_rolに対応するグループG_rolを設定する。第2回目のステップST3にて、グルーピング処理部13は、距離センサ2_rilに対応するグループG_rilを設定する。第3回目のステップST3にて、グルーピング処理部13は、距離センサ2_rirに対応するグループG_rirを設定する。第4回目のステップST3にて、グルーピング処理部13は、距離センサ2_rorに対応するグループG_rorを設定する。 For example, in the first step ST3, the grouping processing unit 13 sets the group G_roll corresponding to the distance sensor 2_roll. In step ST3 of the second time, the grouping processing unit 13 sets the group G_ril corresponding to the distance sensor 2_ril. In step ST3 of the third time, the grouping processing unit 13 sets the group G_rr corresponding to the distance sensor 2_rr. In step ST3 of the 4th time, the grouping process part 13 sets the group G_ror corresponding to the distance sensor 2_ror.
 次いで、ステップST4にて、レンジ算出部14は、当該設定されたグループGにおけるレンジRを算出する。また、ステップST5にて、距離算出部15は、当該算出されたレンジRに対応する距離Dの算出が可能であれば、かかる距離Dを算出する。 Next, in step ST4, the range calculation unit 14 calculates the range R in the set group G. In step ST5, if the distance calculation unit 15 can calculate the distance D corresponding to the calculated range R, the distance calculation unit 15 calculates the distance D.
 例えば、第1回目のステップST4,ST5にて、レンジR_rolが算出されるとともに、当該算出されたレンジR_rolに対応する距離Dが算出される。第2回目のステップST4,ST5にて、レンジR_rilが算出されるとともに、当該算出されたレンジR_rilに対応する距離Dが算出される。第3回目のステップST4,ST5にて、レンジR_rirが算出されるとともに、当該算出されたレンジR_rirに対応する距離Dが算出される。第4回目のステップST4,ST5にて、レンジR_rorが算出されるとともに、当該算出されたレンジR_rorに対応する距離Dが算出される。 For example, in the first steps ST4 and ST5, the range R_roll is calculated, and the distance D corresponding to the calculated range R_roll is calculated. In steps ST4 and ST5 of the second time, the range R_ril is calculated and the distance D corresponding to the calculated range R_ril is calculated. In steps ST4 and ST5 of the third time, the range R_rr is calculated and the distance D corresponding to the calculated range R_rr is calculated. In steps ST4 and ST5 of the fourth time, the range R_ror is calculated, and the distance D corresponding to the calculated range R_ror is calculated.
 次いで、ステップST6にて、平均レンジ算出部16は、N個の距離区間ΔD_1~ΔD_Nの各々における平均レンジR_aveを算出する。 Next, in step ST6, the average range calculation unit 16 calculates the average range R_ave in each of the N distance sections ΔD_1 to ΔD_N.
 より具体的には、平均レンジ算出部16は、個々の距離区間ΔDにおける、レンジR_rolの平均値R_rol_ave、レンジR_rilの平均値R_ril_ave、レンジR_rirの平均値R_rir_ave、及びレンジR_rorの平均値R_ror_aveを算出する。平均レンジ算出部16は、当該算出された平均値R_rol_ave,R_ril_ave,R_rir_ave,R_ror_aveを平均化することにより、個々の距離区間ΔDにおける平均レンジR_ave_allを算出する。 More specifically, the average range calculation unit 16 calculates the average value R_rol_ave of the range R_roll, the average value R_ril_ave of the range R_ril, the average value R_rr_ave of the range R_rir, and the average value R_ror_ave of the range R_or in each distance section ΔD. To do. The average range calculation unit 16 calculates the average range R_ave_all in each distance section ΔD by averaging the calculated average values R_roll_ave, R_ril_ave, R_rir_ave, and R_ror_ave.
 次いで、ステップST7にて、プロット処理部17は、平均レンジ算出部16により算出された平均レンジR_aveを平均レンジマップMにプロットする。 Next, in step ST7, the plot processing unit 17 plots the average range R_ave calculated by the average range calculation unit 16 on the average range map M.
 次いで、ステップST8にて、閾値比較部18は、当該プロットされた平均レンジR_aveを閾値Thと比較することにより、障害物Oの高さを判断する。より具体的には、閾値比較部18は、当該プロットされた平均レンジR_aveを第1閾値Th_1及び第2閾値Th_2と比較することにより、障害物Oが路面障害物、路上障害物又は走行障害物のうちのいずれであるのかを判断する。 Next, in step ST8, the threshold comparison unit 18 determines the height of the obstacle O by comparing the plotted average range R_ave with the threshold Th. More specifically, the threshold comparison unit 18 compares the plotted average range R_ave with the first threshold Th_1 and the second threshold Th_2, so that the obstacle O is a road surface obstacle, a road obstacle, or a traveling obstacle. Which of the above is to be determined.
 次いで、ステップST9にて、警告信号出力部19は、閾値比較部18による判断結果に応じて警告信号を出力する。すなわち、警告信号出力部19は、障害物Oが走行障害物であると判断された場合、警告出力信号を出力する。なお、障害物Oが路面障害物又は路上障害物であると判断された場合、ステップST9の処理はスキップされるものであっても良い。または、この場合、障害物Oが路面障害物であるか路上障害物であるかに応じて異なる出力が実行されるものであっても良い。 Next, in step ST9, the warning signal output unit 19 outputs a warning signal according to the determination result by the threshold value comparison unit 18. That is, the warning signal output unit 19 outputs a warning output signal when the obstacle O is determined to be a traveling obstacle. If it is determined that the obstacle O is a road surface obstacle or a road obstacle, the process of step ST9 may be skipped. Alternatively, in this case, different outputs may be executed depending on whether the obstacle O is a road surface obstacle or a road obstacle.
 なお、4個の距離センサ2_rol,2_ril,2_rir,2_rorに代えて又は加えて、車両1の前端部に4個の距離センサ2_fol,2_fil,2_fir,2_forが設けられているものであっても良い(不図示)。この場合、ECU4は、車両1が前進しているとき、4個の距離センサ2_fol,2_fil,2_fir,2_forを用いて、上記各処理と同様の各処理を実行するものであっても良い。 Instead of or in addition to the four distance sensors 2_rol, 2_ril, 2_rr, and 2_or, four distance sensors 2_fol, 2_fil, 2_fir, and 2_for may be provided at the front end of the vehicle 1. (Not shown). In this case, the ECU 4 may execute the same processes as the above processes using the four distance sensors 2_fol, 2_fil, 2_fir, and 2_for when the vehicle 1 is moving forward.
 ここで、距離センサ2_fol,2_forは外側設置距離センサであり、かつ、距離センサ2_fil,2_firは内側設置距離センサである。また、距離センサ2_fol,2_forは高側設置距離センサであり、かつ、距離センサ2_fil,2_firは低側設置距離センサである。 Here, the distance sensors 2_fol and 2_for are outer installation distance sensors, and the distance sensors 2_fil and 2_fir are inner installation distance sensors. The distance sensors 2_fol and 2_for are high-side installation distance sensors, and the distance sensors 2_fil and 2_fir are low-side installation distance sensors.
 また、車両1の後端部における距離センサ2の設置個数は2個以上であれば良く、4個に限定されるものではない。また、車両1の前端部における距離センサ2の設置個数は2個以上であれば良く、4個に限定されるものではない。 Also, the number of the distance sensors 2 installed at the rear end of the vehicle 1 may be two or more, and is not limited to four. Further, the number of the distance sensors 2 installed at the front end of the vehicle 1 may be two or more, and is not limited to four.
 また、個々の距離区間ΔDの大きさは一定値であれば良い。また、互いに隣接する距離区間ΔD間のずれ量は任意の値であれば良い。すなわち、互いに隣接する距離区間ΔDは、互いに完全に重複したものでなければ良い。 Also, the size of each distance section ΔD may be a constant value. The amount of deviation between the distance sections ΔD adjacent to each other may be any value. That is, the distance sections ΔD that are adjacent to each other may not completely overlap each other.
 また、閾値Thの個数は1個以上であれば良く、2個に限定されるものではない。すなわち、高さ判断部24による障害物Oの高さの判断は2段階以上の判断であれば良く、3段階の判断(すなわち、障害物Oが路面障害物、路上障害物又は走行障害物のうちのいずれであるかの判断)に限定されるものではない。 Also, the number of thresholds Th may be one or more, and is not limited to two. That is, the height determination unit 24 may determine the height of the obstacle O in two or more stages (ie, the obstacle O is a road surface obstacle, a road obstacle or a traveling obstacle). It is not limited to the judgment of which of them).
 例えば、閾値比較部18は、平均レンジマップMにプロットされた平均レンジR_aveを第1閾値Th_1のみと比較することにより、障害物Oが路面障害物であるか否かを判断するものであっても良い。または、例えば、閾値比較部18は、平均レンジマップMにプロットされた平均レンジR_aveを第2閾値Th_2のみと比較することにより、障害物Oが走行障害物であるか否かを判断するものであっても良い。 For example, the threshold comparison unit 18 determines whether or not the obstacle O is a road surface obstacle by comparing the average range R_ave plotted in the average range map M with only the first threshold Th_1. Is also good. Alternatively, for example, the threshold comparison unit 18 determines whether the obstacle O is a traveling obstacle by comparing the average range R_ave plotted in the average range map M with only the second threshold Th_2. It may be.
 以上のように、実施の形態1の障害物検出装置100は、距離センサ2により送受信された直接波DW及び間接波IWをグルーピングして、各グループGにおける受信信号RSの立ち上がり時刻T_up_firstと立ち下がり時刻T_down_last間のレンジRを算出するレンジ測定部22と、レンジRを平均化することにより平均レンジR_aveを算出する平均化処理部23と、平均レンジR_aveを閾値Thと比較することにより障害物Oの高さを判断する高さ判断部24と、を備える。レンジRを用いることにより、マルチパスによるノイズの影響を低減することができる。また、レンジRを平均化することにより(すなわち平均レンジR_aveを用いることにより)、障害物Oの高さの判断を安定させることができる。この結果、障害物Oの高さを精度良く判断することができる。 As described above, the obstacle detection device 100 according to the first embodiment groups the direct wave DW and the indirect wave IW transmitted / received by the distance sensor 2, and the rise time T_up_first and the fall time of the reception signal RS in each group G. The range measuring unit 22 that calculates the range R between the times T_down_last, the averaging processing unit 23 that calculates the average range R_ave by averaging the range R, and the obstacle O by comparing the average range R_ave with the threshold Th. A height determination unit 24 that determines the height of the. By using the range R, the influence of noise due to multipath can be reduced. Further, by averaging the range R (that is, by using the average range R_ave), it is possible to stabilize the determination of the height of the obstacle O. As a result, the height of the obstacle O can be accurately determined.
 また、閾値Thは、互いに異なる第1閾値Th_1及び第2閾値Th_2を含み、高さ判断部24は、平均レンジR_aveを第1閾値Th_1及び第2閾値Th_2と比較することにより、障害物Oが路面障害物、路上障害物又は走行障害物のうちのいずれであるのかを判断する。複数個の閾値Thを用いることにより、障害物Oの高さを多段階に判断することができる。 The threshold Th includes a first threshold Th_1 and a second threshold Th_2 that are different from each other, and the height determination unit 24 compares the average range R_ave with the first threshold Th_1 and the second threshold Th_2, so that the obstacle O is It is determined whether the obstacle is a road surface obstacle, a road obstacle or a traveling obstacle. By using a plurality of threshold values Th, the height of the obstacle O can be determined in multiple stages.
 また、平均レンジR_aveは、互いに異なる距離区間ΔDに対応する近距離区間平均レンジ及び遠距離区間平均レンジを含み、高さ判断部24は、近距離区間平均レンジに対応する第1軸及び遠距離区間平均レンジに対応する第2軸を有する平均レンジマップMに平均レンジR_aveをプロットすることにより、障害物Oの高さを判断する。平均レンジマップMを用いることにより、障害物Oの高さの判断精度を更に向上することができる。 In addition, the average range R_ave includes a short distance section average range and a long distance section average range corresponding to different distance sections ΔD, and the height determination unit 24 determines that the first axis and the long distance corresponding to the short distance section average range. The height of the obstacle O is determined by plotting the average range R_ave on the average range map M having the second axis corresponding to the section average range. By using the average range map M, the accuracy of determining the height of the obstacle O can be further improved.
実施の形態2.
 図12は、実施の形態2に係る障害物検出装置を含む電子制御ユニットが車両に設けられている状態を示すブロック図である。図12を参照して、実施の形態2の障害物検出装置100aについて説明する。なお、図12において、図2に示すブロックと同様のブロックには同一符号を付して説明を省略する。
Embodiment 2.
FIG. 12 is a block diagram showing a state in which an electronic control unit including the obstacle detection device according to the second embodiment is provided in a vehicle. The obstacle detection device 100a according to the second embodiment will be described with reference to FIG. Note that in FIG. 12, the same blocks as the blocks shown in FIG.
 平均レンジ算出部16aは、距離算出部15により算出された距離Dに基づき、N個の距離区間ΔD_1~ΔD_Nの各々における平均レンジR_aveを算出するものである。 The average range calculator 16a calculates the average range R_ave in each of the N distance sections ΔD_1 to ΔD_N based on the distance D calculated by the distance calculator 15.
 より具体的には、まず、平均レンジ算出部16aは、個々の距離区間ΔDにおける、レンジR_rolの平均値R_rol_ave、レンジR_rilの平均値R_ril_ave、レンジR_rirの平均値R_rir_ave、及びレンジR_rorの平均値R_ror_aveを算出する。 More specifically, first, the average range calculation unit 16a, in each distance section ΔD, the average value R_roll_ave of the range R_roll, the average value R_ril_ave of the range R_ril, the average value R_rr_ave of the range R_rr, and the average value R_ror_ave of the range R_or. To calculate.
 次いで、平均レンジ算出部16aは、当該算出された平均値R_rol_ave,R_ril_ave,R_rir_ave,R_ror_aveを平均化することにより、個々の距離区間ΔDにおける平均レンジ(以下「第1平均レンジ」という。)R_ave_allを算出する。これに加えて、平均レンジ算出部16aは、当該算出された平均値R_rol_ave,R_ror_aveを平均化することにより、個々の距離区間ΔDにおける平均レンジ(以下「第2平均レンジ」という。)R_ave_outerを算出する。すなわち、第1平均レンジR_ave_allは、外側設置距離センサ2_rol,2_ror及び内側設置距離センサ2_ril,2_rirによる送信波に対応するレンジR_rol,R_ril,R_rir,R_rorが平均化されたものである。これに対して、第2平均レンジR_ave_outerは、外側設置距離センサ2_rol,2_rorによる送信波に対応するレンジR_rol,R_rorが平均化されたものである。 Next, the average range calculation unit 16a averages the calculated average values R_roll_ave, R_ril_ave, R_rir_ave, and R_ror_ave to obtain an average range (hereinafter referred to as “first average range”) R_ave_all in each distance section ΔD. calculate. In addition to this, the average range calculation unit 16a calculates an average range (hereinafter, referred to as “second average range”) R_ave_outer in each distance section ΔD by averaging the calculated average values R_roll_ave and R_ror_ave. To do. That is, the first average range R_ave_all is an average of the ranges R_roll, R_ril, R_rr, and R_lor corresponding to the transmission waves from the outer installation distance sensors 2_roll, 2_rr and the inner installation distance sensors 2_ril, 2_rr. On the other hand, the second average range R_ave_outer is an average of the ranges R_roll and R_lor corresponding to the transmission waves from the outside installation distance sensors 2_roll and 2_lor.
 または、次いで、平均レンジ算出部16aは、当該算出された平均値R_rol_ave,R_ril_ave,R_rir_ave,R_ror_aveを平均化することにより、個々の距離区間ΔDにおける第1平均レンジR_ave_allを算出する。これに加えて、平均レンジ算出部16aは、当該算出された平均値R_rol_ave,R_ror_aveを平均化することにより、個々の距離区間ΔDにおける平均レンジ(以下「第3平均レンジ」という。)R_ave_upperを算出する。すなわち、第1平均レンジR_ave_allは、高側設置距離センサ2_rol,2_ror及び低側設置距離センサ2_ril,2_rirによる送信波に対応するレンジR_rol,R_ril,R_rir,R_rorが平均化されたものである。これに対して、第3平均レンジR_ave_upperは、高側設置距離センサ2_rol,2_rorによる送信波に対応するレンジR_rol,R_rorが平均化されたものである。 Alternatively, then, the average range calculation unit 16a calculates the first average range R_ave_all in each distance section ΔD by averaging the calculated average values R_roll_ave, R_ril_ave, R_rr_ave, R_ror_ave. In addition to this, the average range calculation unit 16a calculates an average range (hereinafter, referred to as a “third average range”) R_ave_upper in each distance section ΔD by averaging the calculated average values R_roll_ave and R_ror_ave. To do. That is, the first average range R_ave_all is obtained by averaging the ranges R_roll, R_ril, R_rr, and R_lor corresponding to the transmission waves from the high-side installation distance sensors 2_rol, 2_rr and the low-side installation distance sensors 2_ril, 2_rr. On the other hand, the third average range R_ave_upper is an average of the ranges R_roll and R_lor corresponding to the transmission waves from the high side installation distance sensors 2_rol and 2_or.
 図13は、3個の距離区間ΔD_N,ΔD_N-1,ΔD_N-2の各々における、平均値R_rol_ave,R_ril_ave,R_rir_ave,R_ror_aveの例、第1平均レンジR_ave_allの例、第2平均レンジR_ave_outerの例、及び第3平均レンジR_ave_upperの例を示している。なお、図13に示す例においては、外側設置距離センサ2_rol,2_rorと高側設置距離センサ2_rol,2_rorとが互いに同一のものであり、かつ、内側設置距離センサ2_ril,2_rirと低側設置距離センサ2_ril,2_rirとが互いに同一のものであるため、個々の距離区間ΔDにおける第2平均レンジR_ave_outerと第3平均レンジR_ave_upperとが互いに同一の値である。 FIG. 13 shows an example of the average values R_roll_ave, R_ril_ave, R_ril_ave, R_ror_ave, an example of the first average range R_ave_all, and an example of the second average range R_ave_outer in each of the three distance sections ΔD_N, ΔD_N-1, and ΔD_N-2. And an example of the third average range R_ave_upper. Note that in the example shown in FIG. 13, the outer installation distance sensors 2_roll, 2_lor and the high installation distance sensors 2_roll, 2_or are the same as each other, and the inner installation distance sensors 2_ril, 2_rr and the low installation distance sensor 2_roll. Since 2_ril and 2_ril are the same as each other, the second average range R_ave_outer and the third average range R_ave_upper in the individual distance sections ΔD have the same value.
 プロット処理部17aは、平均レンジ算出部16aにより算出された平均レンジR_aveを平均レンジマップMにプロットするものである。 The plot processing unit 17a plots the average range R_ave calculated by the average range calculation unit 16a on the average range map M.
 より具体的には、プロット処理部17aは、2個の平均レンジマップM_1,M_2を有している。プロット処理部17aは、平均レンジ算出部16aにより算出された第1平均レンジR_ave_allを一方の平均レンジマップ(以下「第1平均レンジマップ」という。)M_1にプロットする。また、プロット処理部17aは、平均レンジ算出部16aにより算出された第2平均レンジR_ave_outerを他方の平均レンジマップ(以下「第2平均レンジマップ」という。)M_2にプロットする。第1平均レンジマップM_1及び第2平均レンジマップM_2の各々に対するプロットの方法は実施の形態1にて説明したものと同様であるため、再度の説明は省略する。 More specifically, the plot processing unit 17a has two average range maps M_1 and M_2. The plot processing unit 17a plots the first average range R_ave_all calculated by the average range calculation unit 16a on one average range map (hereinafter referred to as “first average range map”) M_1. The plot processing unit 17a also plots the second average range R_ave_outer calculated by the average range calculation unit 16a on the other average range map (hereinafter referred to as “second average range map”) M_2. The plotting method for each of the first average range map M_1 and the second average range map M_2 is the same as that described in the first embodiment, and thus the repetitive description will be omitted.
 または、プロット処理部17aは、2個の平均レンジマップM_1,M_3を有している。プロット処理部17aは、平均レンジ算出部16aにより算出された第1平均レンジR_ave_allを一方の平均レンジマップ(すなわち第1平均レンジマップ)M_1にプロットする。また、プロット処理部17aは、平均レンジ算出部16aにより算出された第3平均レンジR_ave_upperを他方の平均レンジマップ(以下「第3平均レンジマップ」という。)M_3にプロットする。第1平均レンジマップM_1及び第3平均レンジマップM_3の各々に対するプロットの方法は実施の形態1にて説明したものと同様であるため、再度の説明は省略する。 Alternatively, the plot processing unit 17a has two average range maps M_1 and M_3. The plot processing unit 17a plots the first average range R_ave_all calculated by the average range calculation unit 16a on one average range map (that is, the first average range map) M_1. The plot processing unit 17a also plots the third average range R_ave_upper calculated by the average range calculation unit 16a on the other average range map (hereinafter referred to as “third average range map”) M_3. The plotting method for each of the first average range map M_1 and the third average range map M_3 is the same as that described in the first embodiment, and therefore the repetitive description will be omitted.
 以下、障害物Oにおける探索波を反射する面部が傾斜を有するものである場合、この障害物Oを「傾斜障害物」という。傾斜障害物は、例えば、輪止めである。 Hereafter, when the surface portion of the obstacle O that reflects the search wave has an inclination, this obstacle O is referred to as an “inclined obstacle”. The tilt obstacle is, for example, a wheel stopper.
 種別判断部31は、第1平均レンジマップM_1における第1平均レンジR_ave_allの分布(以下「第1平均レンジ分布」という。)と第2平均レンジマップM_2における第2平均レンジR_ave_outerの分布(以下「第2平均レンジ分布」という。)とを比較するものである。種別判断部31は、第2平均レンジ分布に対する第1平均レンジ分布の偏差に基づき、障害物Oが傾斜障害物であるか否かを判断するものである。より具体的には、種別判断部31は、第2平均レンジ分布に対する第1平均レンジ分布の偏差が所定値よりも大きいとき、障害物Oが傾斜障害物であると判断する。他方、第2平均レンジ分布に対する第1平均レンジ分布の偏差が所定値以下であるとき、種別判断部31は、障害物Oが傾斜障害物でないと判断する。 The type determining unit 31 determines the distribution of the first average range R_ave_all in the first average range map M_1 (hereinafter referred to as “first average range distribution”) and the distribution of the second average range R_ave_outer in the second average range map M_2 (hereinafter “ The second average range distribution "). The type determining unit 31 determines whether or not the obstacle O is a tilted obstacle based on the deviation of the first average range distribution from the second average range distribution. More specifically, the type determination unit 31 determines that the obstacle O is a tilted obstacle when the deviation of the first average range distribution from the second average range distribution is larger than a predetermined value. On the other hand, when the deviation of the first average range distribution from the second average range distribution is less than or equal to a predetermined value, the type determination unit 31 determines that the obstacle O is not a tilted obstacle.
 または、種別判断部31は、第1平均レンジ分布と第3平均レンジマップM_3における第3平均レンジR_ave_upperの分布(以下「第3平均レンジ分布」という。)とを比較するものである。種別判断部31は、第3平均レンジ分布に対する第1平均レンジ分布の偏差に基づき、障害物Oが傾斜障害物であるか否かを判断するものである。より具体的には、種別判断部31は、第3平均レンジ分布に対する第1平均レンジ分布の偏差が所定値よりも大きいとき、障害物Oが傾斜障害物であると判断する。他方、第3平均レンジ分布に対する第1平均レンジ分布の偏差が所定値以下であるとき、種別判断部31は、障害物Oが傾斜障害物でないと判断する。 Alternatively, the type determination unit 31 compares the first average range distribution with the distribution of the third average range R_ave_upper in the third average range map M_3 (hereinafter referred to as “third average range distribution”). The type determination unit 31 determines whether or not the obstacle O is a tilted obstacle based on the deviation of the first average range distribution from the third average range distribution. More specifically, the type determination unit 31 determines that the obstacle O is a tilted obstacle when the deviation of the first average range distribution from the third average range distribution is larger than a predetermined value. On the other hand, when the deviation of the first average range distribution from the third average range distribution is less than or equal to a predetermined value, the type determination unit 31 determines that the obstacle O is not a tilted obstacle.
 閾値比較部18aは、種別判断部31により障害物Oが傾斜障害物でないと判断された場合、第1平均レンジマップM_1を用いて障害物Oの高さを判断するものである。すなわち、閾値比較部18aは、第1平均レンジマップM_1にプロットされた第1平均レンジR_ave_allを閾値Th(より具体的には第1閾値Th_1及び第2閾値Th_2)と比較することにより、障害物Oの高さを判断する。 The threshold comparison unit 18a determines the height of the obstacle O using the first average range map M_1 when the type determination unit 31 determines that the obstacle O is not a tilted obstacle. That is, the threshold comparing unit 18a compares the first average range R_ave_all plotted in the first average range map M_1 with the threshold Th (more specifically, the first threshold Th_1 and the second threshold Th_2) to thereby prevent an obstacle. Judge the height of O.
 他方、種別判断部31により障害物Oが傾斜障害物であると判断された場合、閾値比較部18aは、第2平均レンジマップM_2又は第3平均レンジマップM_3を用いて障害物Oの高さを判断するものである。すなわち、閾値比較部18aは、第2平均レンジマップM_2にプロットされた第2平均レンジR_ave_outer又は第3平均レンジマップM_3にプロットされた第3平均レンジR_ave_upperを閾値Th(より具体的には第1閾値Th_1及び第2閾値Th_2)と比較することにより、障害物Oの高さを判断する。 On the other hand, when the type determination unit 31 determines that the obstacle O is a tilted obstacle, the threshold comparison unit 18a uses the second average range map M_2 or the third average range map M_3 to determine the height of the obstacle O. Is to judge. That is, the threshold comparison unit 18a sets the second average range R_ave_outer plotted on the second average range map M_2 or the third average range R_ave_upper plotted on the third average range map M_3 to the threshold Th (more specifically, the first average range R_ave_outer). The height of the obstacle O is determined by comparing with the threshold Th_1 and the second threshold Th_2).
 ここで、第1平均レンジマップM_1における第1閾値Th_1と第2平均レンジマップM_2における第1閾値Th_1とは、互いに同等の値であっても良く、又は互いに異なる値であっても良い。また、第1平均レンジマップM_1における第2閾値Th_2と第2平均レンジマップM_2における第2閾値Th_2とは、互いに同等の値であっても良く、又は互いに異なる値であっても良い。同様に、第1平均レンジマップM_1における第1閾値Th_1と第3平均レンジマップM_3における第1閾値Th_1とは、互いに同等の値であっても良く、又は互いに異なる値であっても良い。また、第1平均レンジマップM_1における第2閾値Th_2と第3平均レンジマップM_3における第2閾値Th_2とは、互いに同等の値であっても良く、又は互いに異なる値であっても良い。 Here, the first threshold Th_1 in the first average range map M_1 and the first threshold Th_1 in the second average range map M_2 may be equal to each other or different from each other. Further, the second threshold Th_2 in the first average range map M_1 and the second threshold Th_2 in the second average range map M_2 may be equal to each other or different from each other. Similarly, the first threshold Th_1 in the first average range map M_1 and the first threshold Th_1 in the third average range map M_3 may have the same value or different values. The second threshold Th_2 in the first average range map M_1 and the second threshold Th_2 in the third average range map M_3 may have the same value or different values.
 図14Aは、障害物Oが傾斜障害物である場合における、第1平均レンジマップM_1に第1平均レンジR_ave_allがプロットされた状態の例を示している。図14Bは、障害物Oが傾斜障害物である場合における、第2平均レンジマップM_2に第2平均レンジR_ave_outerがプロットされた状態の例を示している。図3Cは、障害物Oが傾斜障害物である場合における、第3平均レンジマップM_3に第3平均レンジR_ave_upperがプロットされた状態の例を示している。図中、丸印(○)は、障害物Oが路面障害物であるときの平均レンジR_aveのプロット位置を示している。また、三角印(△)は、障害物Oが路上障害物であるときの平均レンジR_aveのプロット位置を示している。また、バツ印(×)は、障害物Oが走行障害物であるときの平均レンジR_aveのプロット位置を示している。 FIG. 14A shows an example of a state in which the first average range R_ave_all is plotted on the first average range map M_1 when the obstacle O is a tilted obstacle. FIG. 14B shows an example of a state in which the second average range R_ave_outer is plotted on the second average range map M_2 when the obstacle O is a tilted obstacle. FIG. 3C shows an example of a state in which the third average range R_ave_upper is plotted on the third average range map M_3 when the obstacle O is a tilted obstacle. In the figure, a circle (◯) indicates a plot position of the average range R_ave when the obstacle O is a road surface obstacle. Further, a triangle mark (Δ) indicates a plot position of the average range R_ave when the obstacle O is a road obstacle. The cross mark (x) indicates the plot position of the average range R_ave when the obstacle O is a traveling obstacle.
 図14Aに示す如く、障害物Oが傾斜障害物であるときは、障害物Oの高さが低い場合(例えば障害物Oが路面障害物又は路上障害物である場合)であっても、第1平均レンジR_ave_allは大きくなる傾向がある。すなわち、図中丸印(○)及び図中三角印(△)の分布が図中右上方向に偏る傾向がある。このため、第1平均レンジマップM_1を用いて障害物Oの高さを判断するのは困難である。 As shown in FIG. 14A, when the obstacle O is an inclined obstacle, even when the height of the obstacle O is low (for example, when the obstacle O is a road surface obstacle or a road obstacle), 1 Average range R_ave_all tends to be large. That is, the distributions of circles (◯) and triangles (Δ) in the figure tend to be biased toward the upper right direction in the figure. Therefore, it is difficult to determine the height of the obstacle O using the first average range map M_1.
 これに対して、第2平均レンジR_ave_outerは、障害物Oが傾斜障害物である場合においても、障害物Oの高さが低いとき(例えば障害物Oが路面障害物又は路上障害物であるとき)は小さくなる傾向がある。したがって、第2平均レンジR_ave_outerを用いることにより、図14Bに示す如く、図中丸印(○)及び図中三角印(△)の分布を図中左下方向に広げることができる。このため、第2平均レンジマップM_2を用いることにより、障害物Oが傾斜障害物である場合であっても、障害物Oの高さを判断することができる。また、第2平均レンジ分布に対する第1平均レンジ分布の偏差に基づき、障害物Oが傾斜障害物であるか否かを判断することができる。 On the other hand, the second average range R_ave_outer is set when the height of the obstacle O is low even when the obstacle O is a slope obstacle (for example, when the obstacle O is a road surface obstacle or a road obstacle). ) Tends to be smaller. Therefore, by using the second average range R_ave_outer, as shown in FIG. 14B, the distribution of circles (◯) and triangles (Δ) in the figure can be widened in the lower left direction in the figure. Therefore, by using the second average range map M_2, the height of the obstacle O can be determined even when the obstacle O is a tilted obstacle. Further, based on the deviation of the first average range distribution from the second average range distribution, it can be determined whether or not the obstacle O is a tilted obstacle.
 同様に、第3平均レンジR_ave_upperは、障害物Oが傾斜障害物である場合においても、障害物Oの高さが低いとき(例えば障害物Oが路面障害物又は路上障害物であるとき)は小さくなる傾向がある。したがって、第3平均レンジR_ave_upperを用いることにより、図14Cに示す如く、図中丸印(○)及び図中三角印(△)の分布を図中左下方向に広げることができる。このため、第3平均レンジマップM_3を用いることにより、障害物Oが傾斜障害物である場合であっても、障害物Oの高さを判断することができる。また、第3平均レンジ分布に対する第1平均レンジ分布の偏差に基づき、障害物Oが傾斜障害物であるか否かを判断することができる。 Similarly, the third average range R_ave_upper is set even when the obstacle O is a slope obstacle when the height of the obstacle O is low (for example, when the obstacle O is a road surface obstacle or a road obstacle). Tends to be smaller. Therefore, by using the third average range R_ave_upper, as shown in FIG. 14C, the distribution of circles (◯) and triangles (Δ) in the drawing can be widened in the lower left direction in the drawing. Therefore, by using the third average range map M_3, the height of the obstacle O can be determined even when the obstacle O is a tilted obstacle. Further, based on the deviation of the first average range distribution from the third average range distribution, it can be determined whether or not the obstacle O is a tilted obstacle.
 距離算出部15及び平均レンジ算出部16aにより、平均化処理部23aが構成されている。プロット処理部17a及び閾値比較部18aにより、高さ判断部24aが構成されている。レンジ測定部22、平均化処理部23a、高さ判断部24a及び種別判断部31により、障害物検出装置100aが構成されている。警告信号出力部19、送受信制御部21及び障害物検出装置100aは、ECU4に設けられている。 The distance calculating unit 15 and the average range calculating unit 16a constitute an averaging processing unit 23a. A height determination unit 24a is configured by the plot processing unit 17a and the threshold value comparison unit 18a. The range measurement unit 22, the averaging processing unit 23a, the height determination unit 24a, and the type determination unit 31 constitute an obstacle detection device 100a. The warning signal output unit 19, the transmission / reception control unit 21, and the obstacle detection device 100a are provided in the ECU 4.
 ECU4の要部のハードウェア構成は実施の形態1にて図10を参照して説明したものと同様であるため、図示及び説明を省略する。すなわち、送信制御部11、受信制御部12、グルーピング処理部13、レンジ算出部14、距離算出部15、平均レンジ算出部16a、プロット処理部17a、閾値比較部18a、警告信号出力部19及び種別判断部31の各々の機能は、プロセッサ41及びメモリ42により実現されるものであっても良く、又は専用の処理回路43により実現されるものであっても良い。 Since the hardware configuration of the main part of the ECU 4 is the same as that described in Embodiment 1 with reference to FIG. 10, illustration and description thereof will be omitted. That is, the transmission control unit 11, the reception control unit 12, the grouping processing unit 13, the range calculation unit 14, the distance calculation unit 15, the average range calculation unit 16a, the plot processing unit 17a, the threshold value comparison unit 18a, the warning signal output unit 19, and the type. Each function of the determination unit 31 may be realized by the processor 41 and the memory 42, or may be realized by a dedicated processing circuit 43.
 次に、図15のフローチャートを参照して、障害物検出装置100aを含むECU4の動作について説明する。より具体的には、第2平均レンジマップM_2を用いる場合の例について説明する。 Next, the operation of the ECU 4 including the obstacle detection device 100a will be described with reference to the flowchart of FIG. More specifically, an example of using the second average range map M_2 will be described.
 ECU4は、車両1が後退しているとき、図15Aに示すステップST1~ST5の処理を繰り返し実行する。ECU4は、例えば、ステップST5の処理により所定値(例えば3メートル)以下の距離Dが算出されたとき、又はステップST4,ST5の処理により所定個数(すなわちN個)以上の距離区間ΔDに亘る距離Dに対応するレンジRが算出されたとき、図15Bに示すステップST6a以降の処理を実行する。 The ECU 4 repeatedly executes the processes of steps ST1 to ST5 shown in FIG. 15A when the vehicle 1 is moving backward. The ECU 4, for example, when a distance D equal to or less than a predetermined value (for example, 3 meters) is calculated by the processing of step ST5, or over a distance ΔD of a predetermined number (that is, N) or more by the processing of steps ST4 and ST5. When the range R corresponding to D is calculated, the processes after step ST6a shown in FIG. 15B are executed.
 なお、図15Aに示すステップST1~ST5の処理内容は、図11Aに示すステップST1~ST5の処理内容と同様である。このため、再度の説明は省略する。 Note that the processing contents of steps ST1 to ST5 shown in FIG. 15A are the same as the processing contents of steps ST1 to ST5 shown in FIG. 11A. Therefore, the repeated description is omitted.
 ステップST6aにて、平均レンジ算出部16aは、N個の距離区間ΔD_1~ΔD_Nの各々における平均レンジR_aveを算出する。より具体的には、平均レンジ算出部16aは、個々の距離区間ΔDにおける第1平均レンジR_ave_allを算出するとともに、個々の距離区間ΔDにおける第2平均レンジR_ave_outerを算出する。 In step ST6a, the average range calculation unit 16a calculates the average range R_ave in each of the N distance sections ΔD_1 to ΔD_N. More specifically, the average range calculation unit 16a calculates the first average range R_ave_all in each distance section ΔD and also calculates the second average range R_ave_outer in each distance section ΔD.
 次いで、ステップST7aにて、プロット処理部17aは、平均レンジ算出部16aにより算出された平均レンジR_aveを平均レンジマップMにプロットする。より具体的には、プロット処理部17aは、平均レンジ算出部16aにより算出された第1平均レンジR_ave_allを第1平均レンジマップM_1にプロットするとともに、平均レンジ算出部16aにより算出された第2平均レンジR_ave_outerを第2平均レンジマップM_2にプロットする。 Next, in step ST7a, the plot processing unit 17a plots the average range R_ave calculated by the average range calculation unit 16a on the average range map M. More specifically, the plot processing unit 17a plots the first average range R_ave_all calculated by the average range calculation unit 16a on the first average range map M_1 and the second average calculated by the average range calculation unit 16a. The range R_ave_outer is plotted on the second average range map M_2.
 次いで、ステップST11にて、種別判断部31は、第2平均レンジ分布に対する第1平均レンジ分布の偏差に基づき、障害物Oが傾斜障害物であるか否かを判断する。より具体的には、種別判断部31は、当該偏差が所定値よりも大きい場合、障害物Oが傾斜障害物であると判断する(ステップST11“YES”)。他方、当該偏差が所定値以下である場合、種別判断部31は、障害物Oが傾斜障害物でないと判断する(ステップST11“NO”)。 Next, in step ST11, the type determination unit 31 determines whether or not the obstacle O is a tilted obstacle based on the deviation of the first average range distribution from the second average range distribution. More specifically, when the deviation is larger than the predetermined value, the type determination unit 31 determines that the obstacle O is a tilted obstacle (step ST11 “YES”). On the other hand, when the deviation is less than or equal to the predetermined value, the type determination unit 31 determines that the obstacle O is not a tilted obstacle (step ST11 “NO”).
 障害物Oが傾斜障害物でないと判断された場合(ステップST11“NO”)、ステップST8aにて、閾値比較部18aは、第1平均レンジマップM_1を用いて障害物Oの高さを判断する。すなわち、閾値比較部18aは、第1平均レンジマップM_1にプロットされた第1平均レンジR_ave_allを第1閾値Th_1及び第2閾値Th_2と比較することにより、障害物Oが路面障害部、路上障害物又は走行障害物のうちのいずれであるのかを判断する。 When it is determined that the obstacle O is not a tilted obstacle (step ST11 “NO”), the threshold comparison unit 18a determines the height of the obstacle O using the first average range map M_1 in step ST8a. .. That is, the threshold comparison unit 18a compares the first average range R_ave_all plotted in the first average range map M_1 with the first threshold Th_1 and the second threshold Th_2, so that the obstacle O becomes a road surface obstacle portion or a road obstacle. Alternatively, it is determined whether the obstacle is a traveling obstacle.
 他方、障害物Oが傾斜障害物であると判断された場合(ステップST11“YES”)、ステップST8bにて、閾値比較部18aは、第2平均レンジマップM_2を用いて障害物Oの高さを判断する。すなわち、閾値比較部18aは、第2平均レンジマップM_2にプロットされた第2平均レンジR_ave_outerを第1閾値Th_1及び第2閾値Th_2と比較することにより、障害物Oが路面障害部、路上障害物又は走行障害物のうちのいずれであるのかを判断する。 On the other hand, when it is determined that the obstacle O is a tilted obstacle (step ST11 “YES”), the threshold comparison unit 18a uses the second average range map M_2 to determine the height of the obstacle O in step ST8b. To judge. That is, the threshold comparison unit 18a compares the second average range R_ave_outer plotted in the second average range map M_2 with the first threshold Th_1 and the second threshold Th_2, so that the obstacle O becomes a road surface obstacle portion or a road obstacle. Alternatively, it is determined whether the obstacle is a traveling obstacle.
 次いで、ステップST9にて、警告信号出力部19は、閾値比較部18aによる判断結果に応じて警告信号を出力する。すなわち、警告信号出力部19は、障害物Oが走行障害物であると判断された場合、警告出力信号を出力する。なお、障害物Oが路面障害物又は路上障害物であると判断された場合、ステップST9の処理はスキップされるものであっても良い。または、この場合、障害物Oが路面障害物であるか路上障害物であるかに応じて異なる出力が実行されるものであっても良い。 Next, in step ST9, the warning signal output unit 19 outputs a warning signal according to the determination result by the threshold comparison unit 18a. That is, the warning signal output unit 19 outputs a warning output signal when the obstacle O is determined to be a traveling obstacle. If it is determined that the obstacle O is a road surface obstacle or a road obstacle, the process of step ST9 may be skipped. Alternatively, in this case, different outputs may be executed depending on whether the obstacle O is a road surface obstacle or a road obstacle.
 なお、障害物検出装置100aは、実施の形態1にて説明したものと同様の種々の変形例を採用することができる。 Note that the obstacle detection device 100a can employ various modifications similar to those described in the first embodiment.
 以上のように、実施の形態2の障害物検出装置100aにおいて、距離センサ2は、車幅方向に対する設置位置が互いに異なる外側設置距離センサ及び内側設置距離センサを含み、平均レンジR_aveは、外側設置距離センサ及び内側設置距離センサによる送信波に対応する第1平均レンジR_ave_allと、外側設置距離センサによる送信波に対応する第2平均レンジR_ave_outerと、を含み、平均レンジマップMは、第1平均レンジR_ave_allがプロットされる第1平均レンジマップM_1と、第2平均レンジR_ave_outerがプロットされる第2平均レンジマップM_2と、を含み、障害物検出装置100aは、第2平均レンジマップM_2における第2平均レンジR_ave_outerの分布(第2平均レンジ分布)に対する第1平均レンジマップM_1における第1平均レンジR_ave_allの分布(第1平均レンジ分布)の偏差が所定値よりも大きいとき、障害物Oが傾斜障害物であると判断する種別判断部31を備え、高さ判断部24aは、障害物Oが傾斜障害物であると判断されたとき、第2平均レンジマップM_2を用いて障害物Oの高さを判断する。これにより、障害物Oが傾斜障害物であるか否かを判断することができる。また、障害物Oが傾斜障害物である場合であっても、障害物Oの高さを判断することができる。 As described above, in the obstacle detection device 100a of the second embodiment, the distance sensor 2 includes the outer installation distance sensor and the inner installation distance sensor whose installation positions in the vehicle width direction are different from each other, and the average range R_ave is the outer installation. The average range map M includes a first average range R_ave_all corresponding to a transmission wave from the distance sensor and the inside installed distance sensor, and a second average range R_ave_outer corresponding to a transmission wave from the outside installed distance sensor. The obstacle detection device 100a includes the first average range map M_1 in which R_ave_all is plotted and the second average range map M_2 in which the second average range R_ave_outer is plotted, and the second average in the second average range map M_2. When the deviation of the distribution (first average range distribution) of the first average range R_ave_all in the first average range map M_1 from the distribution of the range R_ave_outer (second average range distribution) is larger than a predetermined value, the obstacle O is a slope obstacle. The height determination unit 24a uses the second average range map M_2 to determine the height of the obstacle O when it is determined that the obstacle O is a tilted obstacle. to decide. This makes it possible to determine whether or not the obstacle O is a tilted obstacle. Further, even if the obstacle O is an inclined obstacle, the height of the obstacle O can be determined.
 また、障害物検出装置100aにおいて、距離センサ2は、車高方向に対する設置位置が互いに異なる高側設置距離センサ及び低側設置距離センサを含み、平均レンジR_aveは、高側設置距離センサ及び低側設置距離センサによる送信波に対応する第1平均レンジR_ave_allと、高側設置距離センサによる送信波に対応する第3平均レンジR_ave_upperと、を含み、平均レンジマップMは、第1平均レンジR_ave_allがプロットされる第1平均レンジマップM_1と、第3平均レンジR_ave_upperがプロットされる第3平均レンジマップM_3と、を含み、障害物検出装置100aは、第3平均レンジマップM_3における第3平均レンジR_ave_upperの分布(第3平均レンジ分布)に対する第1平均レンジマップM_1における第1平均レンジR_ave_allの分布(第1平均レンジ分布)の偏差が所定値よりも大きいとき、障害物Oが傾斜障害物であると判断する種別判断部31を備え、高さ判断部24aは、障害物Oが傾斜障害物であると判断されたとき、第3平均レンジマップM_3を用いて障害物Oの高さを判断する。これにより、障害物Oが傾斜障害物であるか否かを判断することができる。また、障害物Oが傾斜障害物である場合であっても、障害物Oの高さを判断することができる。 In the obstacle detection device 100a, the distance sensor 2 includes a high-side installation distance sensor and a low-side installation distance sensor whose installation positions in the vehicle height direction are different from each other, and the average range R_ave is the high-side installation distance sensor and the low-side installation distance sensor. The average range map M includes the first average range R_ave_all corresponding to the transmission wave from the installation distance sensor and the third average range R_ave_upper corresponding to the transmission wave from the high side installation distance sensor, and the first average range R_ave_all is plotted. The obstacle detection apparatus 100a includes the first average range map M_1 and the third average range map M_3 in which the third average range R_ave_upper is plotted, and the obstacle detection device 100a includes the third average range R_ave_upper in the third average range map M_3. When the deviation of the distribution (first average range distribution) of the first average range R_ave_all in the first average range map M_1 from the distribution (third average range distribution) is larger than a predetermined value, the obstacle O is a tilted obstacle. When the obstacle O is determined to be a tilted obstacle, the height determination unit 24a includes the type determination unit 31 that determines the height of the obstacle O using the third average range map M_3. This makes it possible to determine whether or not the obstacle O is a tilted obstacle. Further, even when the obstacle O is an inclined obstacle, the height of the obstacle O can be determined.
 なお、本願発明はその発明の範囲内において、各実施の形態の自由な組み合わせ、あるいは各実施の形態の任意の構成要素の変形、もしくは各実施の形態において任意の構成要素の省略が可能である。 It should be noted that, within the scope of the invention, the invention of the present application is capable of freely combining the embodiments, modifying any constituent element of each embodiment, or omitting any constituent element in each embodiment. ..
 本発明の障害物検出装置は、例えば、車両用の運転支援装置に用いることができる。 The obstacle detection device of the present invention can be used, for example, as a driving support device for a vehicle.
 1 車両、2 距離センサ、3 警告出力装置、4 電子制御ユニット(ECU)、11 送信制御部、12 受信制御部、13 グルーピング処理部、14 レンジ算出部、15 距離算出部、16,16a 平均レンジ算出部、17,17a プロット処理部、18,18a 閾値比較部、19 警告信号出力部、21 送受信制御部、22 レンジ測定部、23,23a 平均化処理部、24,24a 高さ判断部、31 種別判断部、41 プロセッサ、42 メモリ、43 処理回路、100,100a 障害物検出装置。 1 vehicle, 2 distance sensor, 3 warning output device, 4 electronic control unit (ECU), 11 transmission control unit, 12 reception control unit, 13 grouping processing unit, 14 range calculation unit, 15 distance calculation unit, 16, 16a average range Calculation unit, 17, 17a plot processing unit, 18, 18a threshold comparison unit, 19 warning signal output unit, 21 transmission / reception control unit, 22 range measurement unit, 23, 23a averaging processing unit, 24, 24a height determination unit, 31 Type determination unit, 41 processor, 42 memory, 43 processing circuit, 100, 100a obstacle detection device.

Claims (5)

  1.  距離センサにより送受信された直接波及び間接波をグルーピングして、各グループにおける受信信号の立ち上がり時刻と立ち下がり時刻間のレンジを算出するレンジ測定部と、
     前記レンジを平均化することにより平均レンジを算出する平均化処理部と、
     前記平均レンジを閾値と比較することにより障害物の高さを判断する高さ判断部と、
     を備える障害物検出装置。
    A range measurement unit that groups the direct wave and the indirect wave transmitted and received by the distance sensor to calculate the range between the rising time and the falling time of the reception signal in each group,
    An averaging processing unit that calculates an average range by averaging the ranges,
    A height determination unit that determines the height of an obstacle by comparing the average range with a threshold value,
    Obstacle detection device comprising.
  2.  前記閾値は、互いに異なる第1閾値及び第2閾値を含み、
     前記高さ判断部は、前記平均レンジを前記第1閾値及び前記第2閾値と比較することにより、前記障害物が路面障害物、路上障害物又は走行障害物のうちのいずれであるのかを判断する
     ことを特徴とする請求項1記載の障害物検出装置。
    The threshold includes a first threshold and a second threshold that are different from each other,
    The height determination unit determines whether the obstacle is a road surface obstacle, a road obstacle or a traveling obstacle by comparing the average range with the first threshold value and the second threshold value. The obstacle detection device according to claim 1, wherein
  3.  前記平均レンジは、互いに異なる距離区間に対応する近距離区間平均レンジ及び遠距離区間平均レンジを含み、
     前記高さ判断部は、前記近距離区間平均レンジに対応する第1軸及び前記遠距離区間平均レンジに対応する第2軸を有する平均レンジマップに前記平均レンジをプロットすることにより、前記障害物の高さを判断する
     ことを特徴とする請求項1記載の障害物検出装置。
    The average range includes a short range section average range and a long range section average range corresponding to different distance sections,
    The height determining unit plots the average range on an average range map having a first axis corresponding to the short range average range and a second axis corresponding to the long range average range, thereby obstructing the obstacle. The obstacle detection device according to claim 1, wherein the height of the obstacle is determined.
  4.  前記距離センサは、車幅方向に対する設置位置が互いに異なる外側設置距離センサ及び内側設置距離センサを含み、
     前記平均レンジは、前記外側設置距離センサ及び前記内側設置距離センサによる送信波に対応する第1平均レンジと、前記外側設置距離センサによる送信波に対応する第2平均レンジと、を含み、
     前記平均レンジマップは、前記第1平均レンジがプロットされる第1平均レンジマップと、前記第2平均レンジがプロットされる第2平均レンジマップと、を含み、
     前記第2平均レンジマップにおける前記第2平均レンジの分布に対する前記第1平均レンジマップにおける前記第1平均レンジの分布の偏差が所定値よりも大きいとき、前記障害物が傾斜障害物であると判断する種別判断部を備え、
     前記高さ判断部は、前記障害物が前記傾斜障害物であると判断されたとき、前記第2平均レンジマップを用いて前記障害物の高さを判断する
     ことを特徴とする請求項3記載の障害物検出装置。
    The distance sensor includes an outer installation distance sensor and an inner installation distance sensor having different installation positions in the vehicle width direction,
    The average range includes a first average range corresponding to a transmitted wave by the outer installed distance sensor and the inner installed distance sensor, and a second average range corresponding to a transmitted wave by the outer installed distance sensor,
    The average range map includes a first average range map in which the first average range is plotted, and a second average range map in which the second average range is plotted,
    When the deviation of the distribution of the first average range in the first average range map from the distribution of the second average range in the second average range map is larger than a predetermined value, it is determined that the obstacle is a tilted obstacle. Equipped with a type determination unit that
    The height determination unit determines the height of the obstacle by using the second average range map when it is determined that the obstacle is the inclined obstacle. Obstacle detection device.
  5.  前記距離センサは、車高方向に対する設置位置が互いに異なる高側設置距離センサ及び低側設置距離センサを含み、
     前記平均レンジは、前記高側設置距離センサ及び前記低側設置距離センサによる送信波に対応する第1平均レンジと、前記高側設置距離センサによる送信波に対応する第3平均レンジと、を含み、
     前記平均レンジマップは、前記第1平均レンジがプロットされる第1平均レンジマップと、前記第3平均レンジがプロットされる第3平均レンジマップと、を含み、
     前記第3平均レンジマップにおける前記第3平均レンジの分布に対する前記第1平均レンジマップにおける前記第1平均レンジの分布の偏差が所定値よりも大きいとき、前記障害物が傾斜障害物であると判断する種別判断部を備え、
     前記高さ判断部は、前記障害物が前記傾斜障害物であると判断されたとき、前記第3平均レンジマップを用いて前記障害物の高さを判断する
     ことを特徴とする請求項3記載の障害物検出装置。
    The distance sensor includes a high-side installation distance sensor and a low-side installation distance sensor having different installation positions in the vehicle height direction,
    The average range includes a first average range corresponding to a transmission wave from the high-side installation distance sensor and the low-side installation distance sensor, and a third average range corresponding to a transmission wave from the high-side installation distance sensor. ,
    The average range map includes a first average range map in which the first average range is plotted, and a third average range map in which the third average range is plotted,
    When the deviation of the distribution of the first average range in the first average range map from the distribution of the third average range in the third average range map is larger than a predetermined value, it is determined that the obstacle is a tilted obstacle. Equipped with a type determination unit that
    The height determination unit determines the height of the obstacle by using the third average range map when it is determined that the obstacle is the inclined obstacle. Obstacle detection device.
PCT/JP2018/042677 2018-11-19 2018-11-19 Obstacle detection device WO2020105093A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020552060A JP6808113B2 (en) 2018-11-19 2018-11-19 Obstacle detector
PCT/JP2018/042677 WO2020105093A1 (en) 2018-11-19 2018-11-19 Obstacle detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/042677 WO2020105093A1 (en) 2018-11-19 2018-11-19 Obstacle detection device

Publications (1)

Publication Number Publication Date
WO2020105093A1 true WO2020105093A1 (en) 2020-05-28

Family

ID=70774664

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/042677 WO2020105093A1 (en) 2018-11-19 2018-11-19 Obstacle detection device

Country Status (2)

Country Link
JP (1) JP6808113B2 (en)
WO (1) WO2020105093A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009502636A (en) * 2005-08-02 2009-01-29 バレオ・シャルター・ウント・ゼンゾーレン・ゲーエムベーハー Method for determining the depth limit of a parking space using an ultrasonic sensor and apparatus for carrying out this method
JP2010197342A (en) * 2009-02-27 2010-09-09 Nippon Soken Inc Body detector
US20110259106A1 (en) * 2007-08-21 2011-10-27 Niemz Volker Distance sensor and method for determining a distance
WO2013024509A1 (en) * 2011-08-16 2013-02-21 三菱電機株式会社 Object detection device
JP2015055571A (en) * 2013-09-12 2015-03-23 株式会社日本自動車部品総合研究所 Object determination device
JP2015105915A (en) * 2013-12-02 2015-06-08 三菱電機株式会社 Obstacle detection device
JP2016128769A (en) * 2015-01-09 2016-07-14 三菱電機株式会社 Obstacle detection device and obstacle detection method
WO2018221255A1 (en) * 2017-05-30 2018-12-06 株式会社デンソー Object detecting device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009502636A (en) * 2005-08-02 2009-01-29 バレオ・シャルター・ウント・ゼンゾーレン・ゲーエムベーハー Method for determining the depth limit of a parking space using an ultrasonic sensor and apparatus for carrying out this method
US20110259106A1 (en) * 2007-08-21 2011-10-27 Niemz Volker Distance sensor and method for determining a distance
JP2010197342A (en) * 2009-02-27 2010-09-09 Nippon Soken Inc Body detector
WO2013024509A1 (en) * 2011-08-16 2013-02-21 三菱電機株式会社 Object detection device
JP2015055571A (en) * 2013-09-12 2015-03-23 株式会社日本自動車部品総合研究所 Object determination device
JP2015105915A (en) * 2013-12-02 2015-06-08 三菱電機株式会社 Obstacle detection device
JP2016128769A (en) * 2015-01-09 2016-07-14 三菱電機株式会社 Obstacle detection device and obstacle detection method
WO2018221255A1 (en) * 2017-05-30 2018-12-06 株式会社デンソー Object detecting device

Also Published As

Publication number Publication date
JPWO2020105093A1 (en) 2021-02-15
JP6808113B2 (en) 2021-01-06

Similar Documents

Publication Publication Date Title
JP6272582B2 (en) Parking type determination device
EP2899076B1 (en) Parking assistance device
US11161547B2 (en) Parking assistance device
JP7119720B2 (en) Driving support device
JP6073646B2 (en) Correction value setting device and distance detection device
US10884125B2 (en) Parking assistance device
JP6577767B2 (en) Object detection apparatus and object detection method
JP2010091317A (en) Radar system
JP2012154630A (en) On-vehicle radar device
JP6599075B2 (en) Obstacle detection device
WO2020105166A1 (en) Obstacle detection device
CN112744215B (en) System and method for avoiding rear cross traffic collisions
US11142187B2 (en) Parking assistance device
US20210223384A1 (en) Moving object detection apparatus
CN112578371B (en) Signal processing method and device
WO2020105093A1 (en) Obstacle detection device
JP6820132B2 (en) Driving support device
WO2020152935A1 (en) Object detection device and object detection method
WO2020008534A1 (en) Obstacle detection device and driving support device
WO2020008536A1 (en) Obstacle detection device
JP7193414B2 (en) Axial misalignment estimator
JP6890744B2 (en) Parking type judgment device
WO2020008535A1 (en) Obstacle detection device
WO2020017559A1 (en) Moving object detecting device
KR102356497B1 (en) Position detection system and method using sensor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18940516

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020552060

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18940516

Country of ref document: EP

Kind code of ref document: A1