WO2020101033A1 - Method for assessing overload of wound electric motor, and method for manufacturing winder - Google Patents

Method for assessing overload of wound electric motor, and method for manufacturing winder Download PDF

Info

Publication number
WO2020101033A1
WO2020101033A1 PCT/JP2019/044967 JP2019044967W WO2020101033A1 WO 2020101033 A1 WO2020101033 A1 WO 2020101033A1 JP 2019044967 W JP2019044967 W JP 2019044967W WO 2020101033 A1 WO2020101033 A1 WO 2020101033A1
Authority
WO
WIPO (PCT)
Prior art keywords
overload
determination threshold
overload determination
curve
input voltage
Prior art date
Application number
PCT/JP2019/044967
Other languages
French (fr)
Japanese (ja)
Inventor
勇作 井戸
正 山野
択真 一色
愉 戸部
Original Assignee
株式会社キトー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社キトー filed Critical 株式会社キトー
Priority to JP2020556202A priority Critical patent/JP7253307B2/en
Priority to CN201980071085.3A priority patent/CN112955400B/en
Publication of WO2020101033A1 publication Critical patent/WO2020101033A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66DCAPSTANS; WINCHES; TACKLES, e.g. PULLEY BLOCKS; HOISTS
    • B66D1/00Rope, cable, or chain winding mechanisms; Capstans
    • B66D1/54Safety gear
    • B66D1/58Safety gear responsive to excess of load
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/34Testing dynamo-electric machines
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/02Providing protection against overload without automatic interruption of supply

Definitions

  • the present invention relates to a hoisting motor overload determination method and a hoisting machine manufacturing method.
  • the hoisting machine is equipped with an overload limiter, which is a safety device to prevent accidents due to overload and damage to the motor (hoisting electric motor).
  • the OLL includes a mechanical OLL that stops winding when a clutch slips due to a predetermined overload, and an electronic OLL that detects overload from the value of a motor current and electrically stops winding.
  • the electronic OLL is required to reliably perform the hoisting operation up to 1.1 times the rated load (W), and to stop the hoisting operation up to 1.25 times the rated load. Therefore, it is important to detect an overload based on the motor current value to determine whether or not the electronic OLL needs to be operated.
  • the overload threshold value for stopping the hoisting operation is initialized. A pre-shipment inspection is performed in order to do so. At that time, it may be necessary to adjust the setting of the overload threshold due to the individual difference of the hoisting machine.
  • the customer who rents or purchases the hoist wants to change the initially set overload threshold to a safer direction, or the power supply situation at the hoist installation location (voltage drop due to power distribution, etc.) Depending on the situation, it may be desired to change the overload threshold.
  • Patent Document 1 Conventionally, there is an invention disclosed in Patent Document 1, for example, for overload detection of a hoisting motor.
  • the present invention detects the overload by approximating the power supply voltage-input power characteristic of the hoisting electric motor (motor) with a straight line, and is extremely excellent in that the overload can be easily detected with a certain degree of accuracy.
  • the present invention is capable of performing overload determination with good determination accuracy, and continues to provide an overload determination method for a hoisting motor and a method for manufacturing a hoisting machine that have good determination accuracy even if the overload threshold is changed. To aim.
  • an overload determining method for determining an overload of a hoisting motor is A step of measuring the relationship between the input voltage and the current by applying a reference overload to the reference winding motor, B step of deriving a reference overload determination threshold curve as a reference threshold for overload determination, which is based on the measured value and comprises a reference function that defines a current (i) by a quadratic expression of the input voltage (v); , C step of determining whether to change the reference overload determination threshold curve, When not changing the reference overload determination threshold curve, to determine the overload of the target hoisting motor based on the reference overload determination threshold curve, when changing the reference overload determination threshold curve, D step of determining an overload of the target hoisting motor based on a corrected overload determination threshold curve formed by a quadratic equation in which the intercept of the reference function is corrected, It is characterized by including.
  • the coefficient and the intercept of the reference function are corrected based on the difference between the current values at the input voltages of the first load curve and the second load curve.
  • the first load curve is at the input voltage of the reference hoisting motor in the first load set to the lower limit load that guarantees the hoisting operation of the reference hoisting motor measured in the step A.
  • the second load curve is at the input voltage of the reference hoisting motor at the second load set to the lower limit load that guarantees hoisting stop of the reference hoisting motor measured in the step A. Calculated based on the measured current value, Preferably.
  • the input voltage region for determining the overload is divided into a low voltage side input voltage region and a high voltage side input voltage region having a higher voltage than the low voltage side input voltage region, In the low voltage side input voltage region, overload is determined by a method including the A step, the B step, the C step and the D step, In the high voltage side input voltage region, The A step, Based on the measured value of the current, instead of the reference overload determination threshold curve, as a reference threshold for overload determination, which comprises a reference function that defines the current (i) by a linear expression of the input voltage (v).
  • B2 step of deriving a reference overload threshold line C2 step of determining whether to change the reference overload determination threshold line, When not changing the reference overload determination threshold straight line, determine the overload of the target hoisting motor based on the reference overload determination threshold straight line, when changing the reference overload determination threshold straight line, A D2 step of determining an overload of the target hoisting motor based on a corrected overload determination threshold line obtained by correcting the reference overload determination threshold line; It is preferable to include.
  • a hoisting machine manufacturing method comprising a hoisting motor and a microcomputer, the microcomputer having a function of determining an overload of the hoisting motor, Reference overload in which the current (i) is defined by a quadratic expression of the input voltage (v) based on the measured value of the relationship between the input voltage and the current, in which various loads are applied to the reference hoisting motor.
  • a determination threshold curve the step of deriving the function of deriving the reference overload determination threshold curve as a reference threshold for overload determination, a mounting step of mounting in a microcomputer, C step of determining whether to change the reference overload determination threshold curve,
  • the reference overload determination threshold curve is changed, the reference overload determination threshold curve is changed to a corrected overload determination threshold curve formed by a quadratic equation in which the intercept of the reference function is corrected, and the microcomputer is changed.
  • Change step to implement It is characterized by including.
  • the corrected overload determination threshold curve in the changing step is based on the difference between the current values at the respective input voltages of the first load curve and the second load curve, and is obtained by correcting the coefficient and the intercept of the reference function,
  • the first load curve is set to a lower limit load that applies various loads to the reference hoisting motor, measures the relationship between input voltage and current, and guarantees the hoisting operation of the reference hoisting motor.
  • the second load curve sets various loads to the reference hoisting motor, measures the relationship between the input voltage and the current, and sets the lower limit load that guarantees hoisting stop of the reference hoisting motor.
  • the load is calculated based on the measured value of the current at the input voltage of the reference winding motor, Preferably.
  • the mounting step has a low voltage side mounting step and a high voltage side mounting step
  • the function of deriving the reference overload determination threshold curve is mounted on a microcomputer
  • the high voltage side mounting step a reference overload in which the current (i) is defined by a linear expression of the input voltage (v) is on the high voltage side in the input voltage region for determining the overload, as compared with the low voltage side mounting step.
  • the changing step includes a low voltage side changing step and a high voltage side changing step
  • the low voltage side changing step the reference overload determination threshold curve is changed to the corrected overload determination threshold curve and mounted on the microcomputer
  • the high voltage side changing step in the input voltage region for determining the overload is higher than the low voltage side changing step, the reference overload determination threshold curve is corrected, and the reference overload determination threshold straight line is corrected.
  • Corrected overload determination threshold value is changed to a straight line and mounted on the microcomputer, Preferably.
  • FIG. 3 is a diagram for explaining the overload determination method according to the first embodiment, and is a diagram illustrating a hardware configuration of an overload determination device (hoisting machine) for a hoisting motor.
  • FIG. 3 is a diagram for explaining the overload determination method according to the first embodiment, and is a diagram showing functional blocks of an overload determination device for a hoisting motor.
  • FIG. 6 is a diagram for explaining the overload determination method according to the first embodiment, and is a diagram showing reference overload determination threshold curves for various loads.
  • FIG. 6 is a diagram for explaining a processing flow of an overload determination method according to the first embodiment.
  • FIG. 6 is a diagram for explaining the overload determination method according to the first embodiment, and is an explanatory diagram for deriving a reference overload determination threshold curve.
  • FIG. 1 is a diagram for explaining the overload determination method according to the first embodiment, and is a diagram illustrating a hardware configuration of an overload determination device (hoisting machine) for a hoisting motor.
  • FIG. 3 is
  • FIG. 6 is a diagram for explaining the overload determination method according to the first embodiment, and is a diagram for explaining a flow for deriving a reference overload determination threshold curve.
  • FIG. 6 is a diagram for explaining the overload determination method according to the first embodiment, and is an explanatory diagram regarding a change in a reference overload determination threshold curve.
  • FIG. 6 is a diagram for explaining the overload determination method according to the first embodiment, and is a diagram for explaining a processing flow relating to a change in a reference overload determination threshold curve.
  • FIG. 6 is a diagram for explaining the overload determination method according to the first embodiment, and is an explanatory diagram regarding a corrected overload determination threshold curve.
  • FIG. 9 is a diagram for explaining a processing flow of an overload determination method according to the second embodiment.
  • FIG. 9 is a diagram for explaining an overload determination method according to the second embodiment.
  • FIG. 9 is a diagram for explaining an overload determination method according to a third embodiment.
  • FIG. 1 to 9 are diagrams for explaining an overload determination method for the hoisting electric motor 22 according to the first embodiment.
  • FIG. 1 is a diagram showing a hardware configuration of an overload determination device 24 (hoisting machine 21) of a hoisting motor 22 used in the overload determination method according to the first embodiment.
  • the hoisting electric motor 22 means a motor in a state of being assembled with the hoisting machine 21.
  • the “overload” refers to a load which the hoisting electric motor 22 is more than an allowable load. Which load is to be overloaded is not necessarily uniquely determined, and is determined by the manufacturer or user of the hoisting motor 22 (hoisting machine 21) after comprehensively judging safety and usability. .
  • load 0000% may be referred to as “load XX%” or “overload XX%” as it is.
  • the “load” is a force for turning the shaft (shaft) of the hoisting motor 22 or a force for stopping the rotation of the shaft, and is mainly a load.
  • the rated load (W) is 100% load, and 1.1 times the rated load (W) is 110% load.
  • the hoisting machine 21 is an electric chain block.
  • the hoisting machine 21 includes a hoisting electric motor (motor) 22, and axially rotates a load sheave connected to the hoisting electric motor 22 via a reduction mechanism to wind a chain and hoist a load 51 such as a suspended load.
  • the hoisting machine 21 may be a rope hoist or a winch that winds a wire rope by rotating a drum.
  • the hoisting machine 21 includes an operating switch 25 for operating hoisting and hoisting of the hoisting motor 22, an overload determination device 24 for determining whether the load 51 is overloaded, and a braking device for braking the hoisting motor 22. 26 is provided.
  • the braking device 26 is, for example, a pull rotor brake that applies a brake when power supply to the hoisting electric motor 22 is cut off by opening and closing an electric path between the power source 52 and the hoisting electric motor 22.
  • the operation switch 25 is a push button switch.
  • the hoist button switch When the hoist button switch is pressed, electric power is supplied from the power source 52 to the hoist electric motor 22 to hoist the load 51.
  • the hoisting switch When the hoisting switch is released, the power supply to the hoisting motor 22 is cut off and the hoisting is stopped.
  • the overload determination device 24 includes a CPU 29, a ROM 31, a memory 30, and a sensor 23.
  • the CPU 29 is incorporated in a microcomputer (microcomputer), and reads and executes a computer program (software) in which instructions (processing) for the CPU 29 are described.
  • the program is stored in the ROM 31 or the RAM 32 in advance.
  • the memory 30 includes a ROM 31 and a RAM 32.
  • the CPU 29, the ROM 31, the RAM 32, and the sensor 23 are connected by BUS to form a microcomputer (microcomputer).
  • FIG. 2 is a diagram for explaining the overload determination method according to the first embodiment, and is a diagram showing functional blocks of the overload determination device 24 of the hoisting motor 22.
  • the overload determination device 24 includes a sensor 23, a memory 30, an overload determination means 61, a reference overload determination threshold curve derivation means 62, a reference overload determination threshold curve change determination means 63, and a corrected overload determination threshold curve derivation means 64.
  • the sensor 23 detects an input voltage detector 53 that detects an input voltage of the hoisting machine 21 (hoisting electric motor 22) and a current that flows through the hoisting electric motor 22 with respect to the electric power supplied from the power supply 52 to the hoisting motor 21.
  • the current detector 54 is provided.
  • the "overload determining means” 61 is a microcomputer that reads a program and executes a function of determining an overload.
  • the “reference overload determination threshold curve deriving means” 62 is a microcomputer that reads a program and executes a function of deriving a reference overload determination threshold curve.
  • the “reference overload determination threshold curve change determination means” 63 is a microcomputer that executes a function of reading a program and determining whether to change the reference overload determination threshold curve.
  • the “correction overload determination threshold curve deriving means” 64 is a microcomputer that executes a function of reading a program and deriving a correction overload determination threshold curve.
  • the memory 30 stores the input voltage and current value of the hoisting motor 22 at a constant (over) load.
  • the braking device 26 includes braking command means 71 for issuing a braking command to the hoisting electric motor 22, and a braking mechanism 261 for receiving a braking command and braking.
  • FIG. 3 is a diagram for explaining the overload determination method according to the first embodiment, and is a diagram showing a reference overload determination threshold curve of the hoisting motor 22 that serves as a reference in the reference load. It is also a figure which shows the reference overload determination threshold value curve in the hoisting electric motor 22 which does. The same applies to the other figures.
  • the "reference hoisting electric motor” refers to “a hoisting electric motor that serves as a base for measurement and the like”.
  • the “target hoisting electric motor” refers to "a hoisting electric motor to be an object of overload determination”. For example, if there are multiple hoisting motors of the same model number, then an average or model hoisting motor is defined as the “reference hoisting motor”, and the relationship between the input voltage and the current is measured in advance. Find the characteristics of the hoisting motor.
  • the hoisting motor to be subjected to the overload determination in the pre-shipment inspection or the like by reflecting the measurement result is referred to as the “target hoisting motor”.
  • the hoisting motors 22 of the same type such as the hoisting motor 22 of the same model number, do not need to be individually measured, and the reference overload determination threshold curve 1 is derived based on the measurement of the hoisting motor 22 as a reference. Then, the overload of the target hoisting electric motor 22 may be determined.
  • the "hoisting electric motor 22" does not strictly separate the "reference hoisting electric motor” and the "target hoisting electric motor”.
  • the reference overload determination threshold curve 1 of FIG. 3 shows the relationship between the input voltage of the hoisting motor 22 and the current (value) flowing through the hoisting motor 22 at a predetermined load.
  • the horizontal axis represents the input voltage (v) and the vertical axis represents the current (i).
  • the input voltage in the usage range is 340V (volt) to 460V.
  • the input voltage in this range is the guaranteed range of use of the hoisting motor 22.
  • the rated voltage is 400V.
  • the curve indicated by reference numeral 1 is a curve showing the relationship between each input voltage (340V, 360V, 380V, 400V, 420V, 440V, 460V) and the current at a reference load of 117.5%.
  • the load 117.5% is set as a threshold, and the load 117.5% or more is overloaded.
  • the "threshold value” refers to the minimum value that causes an overload. It is also called a limit value or a critical value.
  • the threshold of 117.5% is taken into consideration between safety by taking an intermediate value between the load of 125% that strictly prohibits hoisting and should ensure safety and the load of 110% where winding is allowed. Because it was done.
  • the overload threshold at factory shipment is 117.5% load.
  • the load of 117.5% is a guideline for the threshold value, and the winding does not stop at a load of 110% or less, and it is sufficient if the winding stops at a load of 110% to 125%. It is not necessary to stop winding at a load of 0.5%.
  • FIG. 3 in addition to the load 117.5% (curve with reference numeral 1), the relationship between the input voltage and the current (actual measurement value) at load 100% and 125% is indicated by reference numeral 100 and reference numeral 125, respectively. It is shown by an overload judgment threshold curve. As can be seen from each curve, the increasing / decreasing trend of input voltage-current (motor characteristic) at each load can be read. Actually, the quadratic curve of the load 117.5% is obtained in advance, and the current values of at least the input voltages 340V, 400V and 460V at the loads 100% and 125% are measured and stored in the memory 30.
  • the load of 117.5% is used as the reference load in the present embodiment
  • the reference load (overload threshold) at the time of factory shipment is set to 115% of the load, for example, the load obtained in advance from the measured value is the same as the above.
  • a 115% quadratic curve is used as a reference overload determination threshold curve.
  • FIG. 4 is a diagram for explaining the processing flow of the overload determination method according to the first embodiment.
  • the overload determining method for determining the overload of the hoisting motor 22 of the first embodiment first, the reference load 51 (1.175 W (117.5%) in the present embodiment) is applied to the hoisting motor 22 as a reference. And the relationship between the input voltage and the current (value) is measured in advance (step S1, step A). The input voltage detector 53 and the current detector 54 measure the relationship between the input voltage and the current. The measurement result is stored in the memory 30. "Measurement" was performed by actual measurement. The measured value is an actual measured value.
  • the reference overload determination threshold curve deriving means 62 is based on the measured values stored in the memory 30, and is based on the measured value stored in the memory 30.
  • a reference overload determination threshold curve 1 (approximate curve) is derived as a reference threshold for (step S2, step B).
  • the “quadratic equation” refers to an equation in which the current of the hoisting motor 22 is represented by a polynomial of degree 2 of the input voltage.
  • the reference overload determination threshold curve change determination means 63 determines whether to change the reference overload determination threshold curve 1 (step S3, C step). It should be noted that this decision is made manually and is not made automatically by the overload determination device 24. In the case of deciding the change, in addition to the case of intentionally lowering the threshold when the customer wants to move it to the safe side, even if the threshold is set to 117.5% due to variations in individual hoisting machines. It is assumed that the threshold is raised when the winding stops when the load is 110% or less, or the threshold is lowered when the winding does not stop in the range of 110% to 125% of the load.
  • step S4 if the reference overload determination threshold curve 1 (overload threshold) is not changed, the overload of the target hoisting motor 22 is determined based on the reference overload determination threshold curve 1 (Ste S4-1).
  • the target overload of the hoisting motor 22 is based on the corrected overload determination threshold curve 2 formed by a quadratic equation in which the intercept of the reference function is corrected. Is determined (step S4-2).
  • the overload determination means 61 includes the input voltage (value) detected by the input voltage detector 53, the current value detected by the current detector 54, and the reference overload derived by the reference overload determination threshold curve deriving means 62. The above processing (overload determination) is performed based on the determination threshold curve 1.
  • Reference numeral 1 denotes a reference overload determination threshold curve (approximate curve) obtained from a plurality of measured values 121 by a mathematical method such as the least square method.
  • FIG. 6 is a diagram for explaining the overload determination method according to the first embodiment, and is a diagram for explaining a flow for deriving the reference overload determination threshold curve 1.
  • the reference overload threshold is determined to be 117.5% (step S21).
  • the reference overload determination threshold curve deriving means 62 reads the measured values 121 of the input voltage and current values at the reference threshold overload (117.5%) from the memory 30 (step S23).
  • step 24 a plurality of combinations of each input voltage and current value at the reference threshold overload (117.5%) are substituted into the above-mentioned quadratic equation whose constant has not been determined, and the constant a of the approximate curve thereof is substituted. (Coefficient), b (coefficient) and c (intercept) are obtained, and a quadratic equation is created (step 25).
  • a “reference overload determination” (as a reference threshold for overload determination) including a reference function that defines the current (i) by a quadratic equation of the input voltage (v)
  • the overload of the target hoisting motor 22 is determined. Specifically, when attempting to lift the load 51 at a constant power supply voltage, the value of the current flowing through the hoisting motor 22 once rises abruptly, then slightly decreases and settles to a substantially constant current value. When the constant current value exceeds the reference threshold value, it is determined to be overload, the power supply is cut off, and the hoisting motor 22 is stopped. This makes it possible to perform overload determination with higher determination accuracy when used with any input voltage in the use range, as compared with the overload determination based on the threshold value by the approximation straight line described in the prior art document.
  • FIG. 7 is a diagram for explaining the overload determination method according to the first embodiment, and is an explanatory diagram regarding a change in the reference overload determination threshold curve 1.
  • the derivation of the reference overload determination threshold curve 1 has been described above with reference to FIGS. 5 to 6 as the reference threshold for overload determination is 117.5%. However, it is assumed that the standard threshold value is changed (corrected) to, for example, 115% after shipping in response to a request from the customer to improve safety. In that case, the overload of the target hoisting electric motor 22 is determined based on the corrected overload determination threshold value curve 2 (2-115) in which the reference threshold value (load) is 115%.
  • FIG. 7 shows a reference overload determination threshold curve 1 when the reference threshold is 117.5% and a corrected overload determination threshold curve 2 (2-115) when the reference threshold is 115%.
  • the corrected overload determination threshold curve 2 (2-115) basically passes the reference overload determination threshold curve 1 through a current value of 115% load and rated voltage (400V) as shown in FIG. Is a curve translated in the vertical axis (y-axis) direction.
  • the current value at the rated input voltage with a load of 115% (Z%) is obtained from the proportional relationship between the current value of 100% load and the current value of 117.5% load stored in the memory 30.
  • FIG. 8 is a diagram for explaining the overload determination method according to the first embodiment, and is a diagram for explaining in more detail the processing flow regarding the change of the reference overload determination threshold curve 1.
  • FIG. 9 is a diagram for explaining the overload determination method according to the first embodiment, and is an explanatory diagram regarding the corrected overload determination threshold curve 2.
  • the correction overload determination threshold curve curve deriving means 64 derives the correction overload determination threshold curve 2 for changing (correcting) the reference overload determination threshold curve 1.
  • the overload determination means 61 performs the overload determination.
  • step 42 the reference overload determination threshold curve 1 is translated in the y-axis direction (longitudinal direction) so as to pass through the measured current value at the rated voltage (400 V) at the overload Z% (the intercept c is changed). .. Then, a curve obtained by moving the reference overload determination threshold curve 1 in parallel is set as a corrected overload determination threshold curve 2 (corrected overload determination threshold curve 2-115 when the overload is 115%) (step 43).
  • FIG. 7 is a diagram illustrating the above processing and has been described above.
  • the interval between the curve 1 (overload 117.5%) and the curve 100 (rated load 100%) in the y-axis direction is (117.5-Z) :( Z-100).
  • FIG. 9 is an explanatory diagram in the case of NO (when the difference is not within the fixed range).
  • the overload of the corrected overload determination threshold curve 2 (2-110) to be obtained is 110%, and the difference from the overload 117.5% of the reference overload determination threshold curve 1 exceeds 5%.
  • Draw a curve (a curve that passes through the distributed points) that is proportionally distributed at 5:10.
  • the curves 1 and 100 of the input voltages 340 V, 400 V, and 460 V are divided by 7.5: 10, and the curves pass through the points.
  • the above-mentioned proportionally divided curve is used as a correction overload determination threshold curve 2 (correction overload determination threshold curve 2-110 at 110% overload).
  • a manufacturing method for manufacturing the hoisting machine 21 in which the above-described overload determination can be performed by the above-described microcomputer is as follows. That is, the current (i) is defined by the quadratic equation of the input voltage (v) as described in the above B step (step S2) based on the measurement value previously measured in the above A step (step S1).
  • the above-mentioned microcomputer is equipped with a function of deriving the reference overload determination threshold curve, which is the above-mentioned reference overload determination threshold curve as a reference threshold for overload determination (mounting step).
  • step C step S3 above, it is determined whether to change the reference overload determination threshold curve.
  • step S3 when the reference overload determination threshold curve is changed, the reference overload determination threshold curve is set to the intercept of the reference function as described in step S4-2 above. Is changed to a corrected overload determination threshold curve having a corrected quadratic equation, and is mounted on the microcomputer (change step).
  • step S3 when the reference overload determination threshold curve is not changed, the reference overload determination threshold curve is left mounted.
  • the hoisting machine 21 capable of judging the overload of the hoisting motor 22 with high accuracy as described above.
  • the curve for overload determination can be changed from the reference overload determination threshold curve to the corrected overload determination threshold curve before the hoisting machine 21 is shipped, the individual variation of the product is well absorbed. Since the hoisting machine 21 can be shipped in this state, the quality can be stabilized.
  • the overload determination method is the overload determination method described in the first embodiment, in which the input voltage region for determining overload is a low voltage side input voltage region and a high voltage higher than the low voltage side input voltage region. It is divided into a voltage side input voltage region, and an overload is determined by a method including A step, B step, C step and D step in the low voltage side input voltage region, and an A step and a current in the high voltage side input voltage region.
  • the reference overload as a reference threshold for overload determination, which is a reference function that defines the current (i) by a linear expression of the input voltage (v) instead of the reference overload determination threshold curve.
  • the overload of the target hoisting motor is corrected based on the corrected overload judgment threshold straight line obtained by correcting the reference overload judgment threshold straight line.
  • D2 step for determining the load including.
  • the input voltage region for determining overload is divided into a low voltage side input voltage region and a high voltage side input voltage region having a higher voltage than the low voltage side input voltage region, and the reference overload determination threshold is set in the low voltage side input voltage region.
  • Overload of the target hoisting motor is determined based on the curve, and in the high voltage side input voltage region, overload is determined by the reference overload threshold straight line instead of the reference overload determination threshold curve. By doing so, the risk of erroneous overload determination is reduced.
  • FIG. 10 is a diagram for explaining the overload determination method according to the second embodiment, and is a diagram showing functional blocks of the overload determination device 24 of the hoisting motor 22.
  • FIG. 2 is different from the diagram for explaining the overload determination method according to the first embodiment (the diagram showing the functional blocks of the overload determination device 24 of the hoisting motor 22) in that the overload determination device 24 is a sensor.
  • the overload determination device 24 is a sensor.
  • This is a point provided with a straight line deriving means 65, a reference overload determination threshold straight line change determining means 66, and a corrected overload determination threshold straight line deriving means 67.
  • the configuration shown in FIG. 10 also differs from the configuration shown in FIG. 2 in that a sounding device 27 for generating a predetermined sound and an interface 28 for connecting to an external device and transmitting / receiving information are provided.
  • the "reference overload determination threshold straight line deriving means” 65 is a microcomputer that executes a function of reading a program and deriving the reference overload determination threshold straight line 3.
  • the “reference overload determination threshold straight line change determination means” 66 is a microcomputer that reads a program and determines whether to change the reference overload determination threshold straight line 3.
  • the “correction overload determination threshold straight line deriving means” 67 is a microcomputer that executes a function of reading a program and deriving the correction overload determination threshold straight line 4.
  • FIG. 11 is a diagram for explaining the processing flow of the overload determination method according to the second embodiment.
  • FIG. 12 is a diagram for explaining the overload determination method according to the second embodiment.
  • step S51 it is determined whether or not to divide the input voltage region. For example, when the power supply voltage is 420 V or higher, it may be decided to divide the input voltage region uniformly.
  • step S51 division: YES
  • step S52 it is divided into a low voltage side input voltage region and a high voltage side input voltage region (step S52).
  • the low voltage side input voltage region is set to 340V to 420V
  • the high voltage side input voltage region is set to 420V to 460V. This is because the amount of change in the value of the current flowing through the hoisting electric motor 22 is starting to decrease near 420 V even if the load is changed.
  • the input voltage region is divided into a low voltage side input voltage region and a high voltage side input voltage region having a higher voltage than the low voltage side input voltage region (step S53), and the processing flow is different for each.
  • the processes of steps S54 to S57 are performed.
  • the processes of steps S58 to S61 are performed.
  • the sensor 23 measures the relationship between the input voltage and the current in the constant load 51 of the hoisting motor 22 (step S54, step A).
  • the reference overload determination threshold curve deriving means 62 uses the reference value 121 of the input voltage (v) to define the current (i) based on the measured current value 121.
  • a reference overload determination threshold curve 1 (overload 117.5%) as a reference threshold is derived (step B).
  • the reference overload determination threshold curve change determination means 63 determines whether or not to change the reference overload determination threshold curve 1 (step S56, C step). ..
  • the overload determination means 61 determines the overload of the target hoisting electric motor 22 based on the reference overload determination threshold curve 1 (step S571, D step).
  • the target is based on the correction overload determination threshold curve 2 which is derived by the correction overload determination threshold curve deriving means 64 and which is a quadratic equation in which the intercept of the reference function is corrected.
  • Load 117.5%) is translated based on the corrected overload judgment threshold curve 2 (2-112.5), which is translated in the y-axis direction so as to pass through the current value flowing at overload 112.5% at the rated input voltage 400V. judge.
  • the overload determination means 61 includes the input voltage (value) detected by the input voltage detector 53, the current value detected by the current detector 54, and the reference overload derived by the reference overload determination threshold curve deriving means 62. The above process is performed based on the determination threshold curve 1.
  • the sensor 23 measures the relationship between the input voltage and the current in the constant load 51 of the hoisting motor 22 (step S58, A2 step).
  • the reference overload determination threshold straight line deriving means 65 is a reference for the overload determination, which is based on the measured value 121 of the current, and which comprises a reference function that defines the current (i) by a linear expression of the input voltage (v).
  • a reference overload determination threshold line 3 as a threshold value is derived (step S58, B2 step).
  • the reference overload determination threshold straight line 3 is derived by the reference overload determination threshold straight line deriving means 65.
  • the “first-order equation” means an equation in which the current of the hoisting motor 22 is represented by a polynomial of degree 1 of the input voltage.
  • the reference overload determination threshold line 3 is a straight line, it can be easily derived in comparison with the reference overload determination threshold curve 1, which is a curved line. Since both the reference overload determination threshold line 3 and the reference overload determination threshold curve 1 have a load of 117.5%, the low voltage side input voltage region (340V to 420V) and the high voltage side input voltage region (420V) (-460V), the two must be continuous with the same current value at an input voltage of 420V which is the boundary. Therefore, the reference overload determination threshold line 3 is a line passing through this point.
  • the reference overload judgment threshold line 3 can be derived.
  • One point is also determined by determining the current value at the highest voltage (460V) in the high voltage side input voltage region (420V to 460V). It is determined in consideration of the current value characteristic in the high voltage side input voltage region (420V to 460V). Here, the current value is set to be equal to or larger than the current value at the input voltage of 460 V of the reference overload determination threshold curve 1.
  • the overload determination means 61 determines the overload of the target hoisting electric motor 22 based on the reference overload determination threshold line 3 (steps S61-1, D2). Step).
  • the hoisting motor 22 to be targeted is based on the corrected overload determination threshold line 4 which is a linear equation corrected (derived) by the corrected overload determination threshold line deriving means 67.
  • Overload is determined (step S61-2, D2 step). It is to be noted that reference numeral 100 in FIG. 9 is a load curve at the rated load (100%).
  • the reference overload determination threshold straight line change determination means 66 determines whether to change the reference overload determination threshold straight line 3 in accordance with the change of the reference threshold or the like (step S60, C2 step).
  • the reference overload determination threshold line 3 is also corrected to the corrected overload determination threshold line 4 in many cases. ..
  • the reference overload determination threshold curve 1 load 117.5%) is translated in the y-axis direction so that the curve 1 passes through the measured current value of the load 112.5% at the rated voltage 400V.
  • the overload determination threshold curve 2 (2-112.5, load 112.5%) is corrected
  • the reference overload determination threshold line 3 (load 117.5%) is also corrected. The load was corrected to 112.5%).
  • the correction overload determination threshold straight line 4 is a straight line, it can be easily derived in comparison with the correction overload determination threshold curve 2 which is a curve. Since both the corrected overload determination threshold straight line 4 and the corrected overload determination threshold curve 2 have a load of 112.5%, the low voltage side input voltage region (340 V to 420 V) and the high voltage side input voltage region (420 V (-460V), the two must be continuous with the same current value at an input voltage of 420V which is the boundary. Therefore, the correction overload determination threshold straight line 4 is a straight line passing through this point.
  • the reference overload judgment threshold line 3 can be derived.
  • One point is also determined by determining the current value at the highest voltage (460V) in the high voltage side input voltage region (420V to 460V). It is determined in consideration of the current value characteristic in the high voltage side input voltage region (420V to 460V). Here, the current value is set to be equal to or larger than the current value at the input voltage of 460 V of the reference overload determination threshold curve 1.
  • the overload determining means 61 includes an input voltage (value) detected by the input voltage detector 53 and a current value detected by the current detector 54, a straight line 3 derived by the reference overload determining threshold straight line deriving means 65, Alternatively, it is determined whether or not there is an overload based on the straight line 4 derived by the corrected overload determination threshold straight line deriving means 67.
  • step S51 division: NO
  • the process of FIG. 4 is performed. Since it is performed as described above, it is possible to perform the overload determination with a higher determination accuracy that is closer to the actual overload, and even if the overload threshold is changed, the overload determination of the hoisting motor 22 can be performed with a higher determination accuracy.
  • the input voltage region is divided into a low voltage side input voltage region and a high voltage high voltage side input voltage region, and the overload is determined by the reference overload determination threshold curve 1 and the reference overload threshold straight line, respectively. The risk of erroneous determination of can be further reduced.
  • the manufacturing method for manufacturing the hoisting machine 21 in which the above-described overload determination can be performed by the microcomputer is as follows.
  • the mounting step includes a low voltage side mounting step and a high voltage side mounting step.
  • the function of deriving the reference overload determination threshold curve is mounted on the microcomputer.
  • the high voltage side mounting step in which the input voltage region for determining the overload is the higher voltage side than in the low voltage side mounting step, the current (i) is calculated by the linear expression of the input voltage (v) as described above.
  • the function of deriving a reference overload threshold straight line as a reference threshold for overload determination that is a defined reference overload threshold straight line is installed in the microcomputer instead of the function of deriving a reference overload determination threshold curve.
  • the changing step includes a low voltage side changing step and a high voltage side changing step. Then, in the low voltage side changing step, the reference overload determination threshold curve is changed to the corrected overload determination threshold curve and mounted on the microcomputer.
  • the high voltage side changing step when the input voltage region for judging overload is higher than in the low voltage side changing step, the reference overload judgment threshold curve is corrected and the reference overload judgment threshold straight line is corrected. It is changed to a judgment threshold line and mounted on a microcomputer.
  • the hoisting machine 21 it is possible to perform overload determination with a higher determination accuracy that is closer to the actual overload, and even if the overload threshold value is changed, the overload determination of the hoisting motor 22 with a high determination accuracy can be continued. It is possible to manufacture the hoisting machine 21. Moreover, in the hoisting machine 21 manufactured, the overload is determined by the reference overload determination threshold curve in the input voltage region where the input voltage region is the low voltage side. On the other hand, when the input voltage region is the high voltage side input voltage region, overload is determined by the reference overload determination threshold straight line. Therefore, it is possible to manufacture the hoisting machine 21 which can further reduce the risk of erroneous determination of overload.
  • FIG. 13 is a diagram for explaining the overload determination method according to the third embodiment.
  • the method of deriving the reference overload determination threshold curve 1 is changed from the overload determination method described in the first embodiment. That is, in the third embodiment, when the reference overload determination threshold curve 1 is changed in the C step, the lower limit load that guarantees the hoisting operation of the reference hoisting motor measured in the A step is set to the lower limit load.
  • the second load set to the lower limit load that guarantees hoisting stop of the reference hoisting motor, based on the measured value of the current at each input voltage of the reference hoisting motor, the first load A curve and a second load curve are obtained, and based on the difference between the current values at the respective input voltages of both curves, the target winding is based on the corrected overload determination threshold curve 2 which is a quadratic equation in which the coefficient and the intercept of the reference function are corrected. Determine the overload of the upper motor.
  • reference numeral 13 is a first load curve at the first load (load 125%) set to the lower limit load that guarantees hoisting of the hoisting motor 22. If the current value exceeds this curve, the hoisting operation must be stopped.
  • Reference numeral 14 is a second load curve at the second load (load 112.5%) set to the lower limit load that guarantees the hoisting operation of the hoisting motor 22. The hoisting operation is guaranteed at the load of 112.5%, and the hoisting electric motor 22 must perform the hoisting operation (not stop).
  • the first load curve 13 and the second load curve 14 are curves obtained based on the measured value 121 of the current at each input voltage of the hoisting electric motor 22 which is the reference. These curves were obtained by the same method as that described in Embodiment 1 with reference to FIGS.
  • a corrected overload determination threshold curve 2 which is a quadratic equation in which the coefficient and the intercept of the reference function are corrected is derived, and the curve thereof is derived. Based on the above, the overload of the target hoisting electric motor 22 is determined.
  • a manufacturing method for manufacturing the hoisting machine 21 in which the above-described overload determination can be performed by the above-described microcomputer is as follows. That is, the mounting step, the C step, and the changing step as described in the first embodiment are executed.
  • the corrected overload determination threshold curve in the above-mentioned changing step is based on the difference between the current values at the input voltages of the first load curve and the second load curve, and the coefficient and the intercept of the reference function. It was corrected.
  • the first load curve (indicated by reference numeral 13 in FIG. 13) is used to measure the relationship between the input voltage and the current by applying various loads to the reference hoisting motor and to show the hoisting operation of the reference hoisting motor.
  • the second load curve is set to a lower limit load that applies various loads to the reference hoisting motor, measures the relationship between the input voltage and the current, and guarantees hoisting stop of the reference hoisting motor. It is calculated based on the measured value of the current at the input voltage of the hoisting electric motor as the reference in the second load.
  • the reference overload determination threshold curve (between 110% and 125% load) 1A is the curve between the curve 13 (125% load) and the curve 14 (110% load). Therefore, it is possible to manufacture the hoisting machine 21 in which the operation is guaranteed when the load is 110% and the operation is stopped when the load is 125%.
  • the curve 13 is a load curve with a load of 125% (the load that must be absolutely stopped) as in the third embodiment, but the curve 14 is a load curve with a load of 115%.
  • the load of 115% is a load of 110% or more for which the hoisting operation is guaranteed, and the hoisting operation of the hoisting motor 22 may be stopped. This is mainly determined by the manufacturer and user of the hoisting motor 22 (hoisting machine 21) in consideration of the convenience and safety of the hoisting machine 21.
  • the reference overload determination threshold value curve 1A is a curve between the curve 13 with a load of 125% and the curve 14 with a load of 110% in the same manner as in the third embodiment except that the curve 14 is changed. Part of the reference overload determination threshold curve 1A may overlap the curve 13 or the curve 14.
  • the reference overload determination threshold curve 1B can be easily created. It is possible to easily meet the user request when the overload determination by the reference overload determination threshold value curve 1A is not strictly the load 117.5% but somewhere between the load 110% and the load 125%.
  • braking device 29 ... CPU, 30 ... memory, 31 ... ROM, 32 ... RAM, 51 ... Load, 52 ... Power supply, 53 ... Input voltage detector, 54 ... Current detector, 61 ... Overload determination means, 62 ... Reference overload determination threshold curve deriving means, 63 ... Reference overload determination threshold Curve change determination means, 64 ... Corrected overload determination threshold curve derivation means, 65 ... Reference overload determination threshold line derivation means, 66 ... Reference overload determination threshold line change determination means, 67 ... Corrected overload determination threshold line derivation means, 71 ... Braking command means, 100 ... Load curve (rated load 100%), 121 ... Measured value (actual measured value), 125 ... Overload determination threshold straight line (Overload 125%), 261 ... Braking mechanism

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Control Of Electric Motors In General (AREA)
  • Tests Of Circuit Breakers, Generators, And Electric Motors (AREA)

Abstract

Provided is a method for assessing an overload of a wound electric motor, the method making it possible to assess an overload with excellent precision, and moreover to ongoingly assess an overload with high precision even when an overload threshold value is changed. This method includes: an A step for measuring the relationship between an input voltage and a current over various loads in a wound electric motor serving as a reference; a B step for deriving, on the basis of the measured value, a reference overload assessment threshold value curve as a reference threshold value for assessing an overload, the reference threshold value being obtained through a reference function in which the current (i) is defined using a quadratic expression of the input voltage (v); a C step for determining whether to change the reference overload assessment threshold value curve; and a D step for assessing an overload of the wound electric motor serving as a subject on the basis of the reference overload assessment threshold value curve when the reference overload assessment threshold value curve is not changed, and assessing the overload of the wound electric motor serving as a subject on the basis of a corrected overload assessment threshold value curve obtained using a quadratic expression in which a segment of the reference function is corrected when the reference overload assessment threshold value curve is changed.

Description

巻上電動機の過負荷判定方法および巻上機の製造方法Method of determining overload of hoisting motor and method of manufacturing hoisting machine
 本発明は巻上電動機の過負荷判定方法および巻上機の製造方法に関する。 The present invention relates to a hoisting motor overload determination method and a hoisting machine manufacturing method.
 巻上機には、過負荷による事故の発生や、モータ(巻上電動機)の損傷等を防止するための安全装置であるオーバーロードリミッタ(Over Load Limiter)が備えられている。OLLには所定の過負荷でクラッチがスリップすることで巻上げを停止させる機械式OLLや、モータ電流の値から過負荷を検出し電気的に巻上げを停止させる電子式OLLなどが存在する。機械式OLLと電子式OLLの両方が備えられた巻上機もあり、そのような巻上機では、通常、電子式OLLがまず作動し、機械式OLLがその補完(バックアップ)をするようになっている(定格荷重と機械式OLL設定値の間に電子式OLLの閾値が設定されている)。 The hoisting machine is equipped with an overload limiter, which is a safety device to prevent accidents due to overload and damage to the motor (hoisting electric motor). The OLL includes a mechanical OLL that stops winding when a clutch slips due to a predetermined overload, and an electronic OLL that detects overload from the value of a motor current and electrically stops winding. There are also hoisting machines equipped with both mechanical and electronic OLLs, in which case the electronic OLL usually works first and the mechanical OLL complements (backs up) it. (The electronic OLL threshold is set between the rated load and the mechanical OLL set value).
 電子式OLLには、たとえば定格荷重(W)の1.1倍までは確実に巻上下動作を行わせ、定格荷重の1.25倍では確実に巻上動作を停止させることが求められる。そのため、電子式OLLの作動の要否を判定するためのモータ電流値に基づく過負荷の検出は重要であり、巻上機の出荷前には、巻上動作を停止させる過負荷閾値を初期設定するための出荷前検査が行なわれる。その際、巻上機の個体差に起因して過負荷閾値の設定の調整が必要になることがある。 ㆍ The electronic OLL is required to reliably perform the hoisting operation up to 1.1 times the rated load (W), and to stop the hoisting operation up to 1.25 times the rated load. Therefore, it is important to detect an overload based on the motor current value to determine whether or not the electronic OLL needs to be operated. Before the hoist is shipped, the overload threshold value for stopping the hoisting operation is initialized. A pre-shipment inspection is performed in order to do so. At that time, it may be necessary to adjust the setting of the overload threshold due to the individual difference of the hoisting machine.
 また、巻上機を貸与されたり購入した客先自身が、初期設定されている過負荷閾値をより安全方向に変更したい場合や巻上機の設置場所における電源事情(配電に伴う電圧降下など)により過負荷閾値を変更したい場合もある。 Also, if the customer who rents or purchases the hoist wants to change the initially set overload threshold to a safer direction, or the power supply situation at the hoist installation location (voltage drop due to power distribution, etc.) Depending on the situation, it may be desired to change the overload threshold.
 従来、巻上電動機の過負荷検出については例えば特許文献1に開示される発明がある。この発明は、巻上電動機(モーター)の電源電圧-入力電力特性を直線で近似して過負荷を検出するものであり、過負荷をある程度の精度で簡易に検出できる点で大変優れている。 Conventionally, there is an invention disclosed in Patent Document 1, for example, for overload detection of a hoisting motor. The present invention detects the overload by approximating the power supply voltage-input power characteristic of the hoisting electric motor (motor) with a straight line, and is extremely excellent in that the overload can be easily detected with a certain degree of accuracy.
特許第2593270号公報Japanese Patent No. 2593270
 しかしながら、初期設定を特許文献1に記載の発明よりも実際の過負荷(閾値)に近似させることにより過負荷の判定精度(検出精度)をより良くしたい要請がある。また、過負荷閾値を変更しても引き続き判定精度を良くしたい。 However, there is a demand to improve the overload determination accuracy (detection accuracy) by making the initial setting closer to the actual overload (threshold value) than the invention described in Patent Document 1. Moreover, it is desired to continue to improve the determination accuracy even if the overload threshold is changed.
 そこで、本発明は、判定精度の良い過負荷判定が可能で、過負荷閾値を変更しても引き続き判定精度の良い巻上電動機の過負荷判定方法および巻上機の製造方法を提供することを目的とする。 Therefore, the present invention is capable of performing overload determination with good determination accuracy, and continues to provide an overload determination method for a hoisting motor and a method for manufacturing a hoisting machine that have good determination accuracy even if the overload threshold is changed. To aim.
 本発明の第1の観点によると、巻上電動機の過負荷を判定する過負荷判定方法は、
基準とする巻上電動機に基準となる過負荷をかけ入力電圧と電流の関係を測定するAステップと、
 その測定値に基づいて、入力電圧(v)の二次式で電流(i)を定義した基準関数よりなる過負荷判定のための基準閾値としての基準過負荷判定閾値曲線を導出するBステップと、
 前記基準過負荷判定閾値曲線を変更するか否かを決定するCステップと、
 前記基準過負荷判定閾値曲線を変更しない場合には、前記基準過負荷判定閾値曲線に基づき対象とする巻上電動機の過負荷を判定し、前記基準過負荷判定閾値曲線を変更する場合には、前記基準関数の切片を補正した二次式よりなる補正過負荷判定閾値曲線に基づき前記対象とする巻上電動機の過負荷を判定するDステップと、
 を含むことを特徴とする。
According to a first aspect of the present invention, an overload determining method for determining an overload of a hoisting motor is
A step of measuring the relationship between the input voltage and the current by applying a reference overload to the reference winding motor,
B step of deriving a reference overload determination threshold curve as a reference threshold for overload determination, which is based on the measured value and comprises a reference function that defines a current (i) by a quadratic expression of the input voltage (v); ,
C step of determining whether to change the reference overload determination threshold curve,
When not changing the reference overload determination threshold curve, to determine the overload of the target hoisting motor based on the reference overload determination threshold curve, when changing the reference overload determination threshold curve, D step of determining an overload of the target hoisting motor based on a corrected overload determination threshold curve formed by a quadratic equation in which the intercept of the reference function is corrected,
It is characterized by including.
 ここで本発明の巻上電動機の過負荷判定方法においては、
 前記Cステップで、前記基準過負荷判定閾値曲線を変更する場合には、第一負荷曲線と第二負荷曲線の各前記入力電圧における電流値の差に基づき、前記基準関数の係数と切片を補正した二次式よりなる補正過負荷判定閾値曲線に基づき前記対象とする巻上電動機の過負荷を判定すると共に、
 前記第一負荷曲線は、前記Aステップで測定した前記基準とする巻上電動機の巻上動作を保証する下限負荷に設定する第一の負荷における、前記基準とする巻上電動機の前記入力電圧における電流の測定値を基に算出され、
 前記第二負荷曲線は、前記Aステップで測定した前記基準とする巻上電動機の巻上停止を保証する下限負荷に設定する第二の負荷における、前記基準とする巻上電動機の前記入力電圧における電流の測定値を基に算出される、
ことが好ましい。
Here, in the hoisting motor overload determination method of the present invention,
In the step C, when the reference overload determination threshold curve is changed, the coefficient and the intercept of the reference function are corrected based on the difference between the current values at the input voltages of the first load curve and the second load curve. With determining the overload of the target hoisting motor based on the corrected overload determination threshold curve consisting of the quadratic formula,
The first load curve is at the input voltage of the reference hoisting motor in the first load set to the lower limit load that guarantees the hoisting operation of the reference hoisting motor measured in the step A. Calculated based on the measured current value,
The second load curve is at the input voltage of the reference hoisting motor at the second load set to the lower limit load that guarantees hoisting stop of the reference hoisting motor measured in the step A. Calculated based on the measured current value,
Preferably.
 また本発明の巻上電動機の過負荷判定方法においては、
 前記過負荷を判定する入力電圧領域を低電圧側入力電圧領域と、前記低電圧側入力電圧領域より高電圧の高電圧側入力電圧領域に分け、
 前記低電圧側入力電圧領域では、前記Aステップ、前記Bステップ、前記Cステップ及び前記Dステップを含む方法により過負荷を判定し、
 前記高電圧側入力電圧領域では、
 前記Aステップと、
 前記電流の測定値を基に、前記基準過負荷判定閾値曲線の代わりに、入力電圧(v)の一次式で電流(i)を定義した基準関数よりなる過負荷判定のための基準閾値としての基準過負荷閾値直線を導出するB2ステップと、
 前記基準過負荷判定閾値直線を変更するか否かを決定するC2ステップと、
 前記基準過負荷判定閾値直線を変更しない場合には、前記基準過負荷判定閾値直線に基づき対象とする巻上電動機の過負荷を判定し、前記基準過負荷判定閾値直線を変更する場合には、前記基準過負荷判定閾値直線を補正した補正過負荷判定閾値直線に基づき前記対象とする巻上電動機の過負荷を判定するD2ステップと、
 を含むことが好ましい。
Further, in the overload determination method of the hoisting motor of the present invention,
The input voltage region for determining the overload is divided into a low voltage side input voltage region and a high voltage side input voltage region having a higher voltage than the low voltage side input voltage region,
In the low voltage side input voltage region, overload is determined by a method including the A step, the B step, the C step and the D step,
In the high voltage side input voltage region,
The A step,
Based on the measured value of the current, instead of the reference overload determination threshold curve, as a reference threshold for overload determination, which comprises a reference function that defines the current (i) by a linear expression of the input voltage (v). B2 step of deriving a reference overload threshold line,
C2 step of determining whether to change the reference overload determination threshold line,
When not changing the reference overload determination threshold straight line, determine the overload of the target hoisting motor based on the reference overload determination threshold straight line, when changing the reference overload determination threshold straight line, A D2 step of determining an overload of the target hoisting motor based on a corrected overload determination threshold line obtained by correcting the reference overload determination threshold line;
It is preferable to include.
 また、本発明の第1の観点によると、巻上電動機およびマイクロコンピュータを備え、前記マイクロコンピュータによって前記巻上電動機の過負荷判定を行う機能を備える巻上機の製造方法は、
 基準とする巻上電動機に諸負荷をかけた状態で、入力電圧と電流の関係を予め測定した測定値に基づいて入力電圧(v)の二次式で電流(i)を定義した基準過負荷判定閾値曲線であって、過負荷判定のための基準閾値としての前記基準過負荷判定閾値曲線を導出する機能を、マイクロコンピュータに実装する実装ステップと、
 前記基準過負荷判定閾値曲線を変更するか否かを決定するCステップと、
 前記基準過負荷判定閾値曲線を変更する場合には、前記基準過負荷判定閾値曲線を、前記基準関数の切片を補正した二次式よりなる補正過負荷判定閾値曲線へと変更して前記マイクロコンピュータに実装する変更ステップと、
 を含むことを特徴とする。
Further, according to a first aspect of the present invention, there is provided a hoisting machine manufacturing method comprising a hoisting motor and a microcomputer, the microcomputer having a function of determining an overload of the hoisting motor,
Reference overload in which the current (i) is defined by a quadratic expression of the input voltage (v) based on the measured value of the relationship between the input voltage and the current, in which various loads are applied to the reference hoisting motor. A determination threshold curve, the step of deriving the function of deriving the reference overload determination threshold curve as a reference threshold for overload determination, a mounting step of mounting in a microcomputer,
C step of determining whether to change the reference overload determination threshold curve,
When the reference overload determination threshold curve is changed, the reference overload determination threshold curve is changed to a corrected overload determination threshold curve formed by a quadratic equation in which the intercept of the reference function is corrected, and the microcomputer is changed. Change step to implement
It is characterized by including.
 ここで本発明の巻上機の製造方法においては、
 前記変更ステップにおける前記補正過負荷判定閾値曲線は、第一負荷曲線と第二負荷曲線の各前記入力電圧における電流値の差に基づき、前記基準関数の係数と切片を補正したものであり、
 前記第一負荷曲線は、前記基準とする巻上電動機に諸負荷をかけ入力電圧と電流の関係を測定すると共に前記基準とする巻上電動機の巻上動作を保証する下限負荷に設定する第一の負荷における、前記基準とする巻上電動機の前記入力電圧における電流の測定値を基に算出され、
 前記第二負荷曲線は、前記基準とする巻上電動機に諸負荷をかけ入力電圧と電流の関係を測定すると共に前記基準とする巻上電動機の巻上停止を保証する下限負荷に設定する第二の負荷における、前記基準とする巻上電動機の前記入力電圧における電流の測定値を基に算出される、
 ことが好ましい。
Here, in the method for manufacturing the hoisting machine of the present invention,
The corrected overload determination threshold curve in the changing step is based on the difference between the current values at the respective input voltages of the first load curve and the second load curve, and is obtained by correcting the coefficient and the intercept of the reference function,
The first load curve is set to a lower limit load that applies various loads to the reference hoisting motor, measures the relationship between input voltage and current, and guarantees the hoisting operation of the reference hoisting motor. In the load of, is calculated based on the measured value of the current at the input voltage of the hoisting motor as the reference,
The second load curve sets various loads to the reference hoisting motor, measures the relationship between the input voltage and the current, and sets the lower limit load that guarantees hoisting stop of the reference hoisting motor. Of the load, is calculated based on the measured value of the current at the input voltage of the reference winding motor,
Preferably.
 また本発明の巻上機の製造方法においては、
 前記実装ステップは、低電圧側実装ステップと、高電圧側実装ステップとを有し、
 前記低電圧側実装ステップでは、前記基準過負荷判定閾値曲線を導出する機能を、マイクロコンピュータに実装し、
 前記高電圧側実装ステップでは、前記低電圧側実装ステップよりも前記過負荷を判定する入力電圧領域が高電圧側において、入力電圧(v)の一次式で電流(i)を定義した基準過負荷閾値直線であって過負荷判定のための基準閾値としての前記基準過負荷閾値直線を導出する機能を、前記前記基準過負荷判定閾値曲線を導出する機能に代えて、前記マイクロコンピュータに実装すると共に、
 前記変更ステップは、低電圧側変更ステップと、高電圧側変更ステップとを有し、
 前記低電圧側変更ステップでは、前記基準過負荷判定閾値曲線を、前記補正過負荷判定閾値曲線へと変更して前記マイクロコンピュータに実装し、
 前記高電圧側変更ステップでは、前記低電圧側変更ステップよりも前記過負荷を判定する入力電圧領域が高電圧側において、前記基準過負荷判定閾値曲線を、前記基準過負荷判定閾値直線を補正した補正過負荷判定閾値直線へと変更して前記マイクロコンピュータに実装する、
 ことが好ましい。
In the method for manufacturing the hoisting machine of the present invention,
The mounting step has a low voltage side mounting step and a high voltage side mounting step,
In the low voltage side mounting step, the function of deriving the reference overload determination threshold curve is mounted on a microcomputer,
In the high voltage side mounting step, a reference overload in which the current (i) is defined by a linear expression of the input voltage (v) is on the high voltage side in the input voltage region for determining the overload, as compared with the low voltage side mounting step. A function of deriving the reference overload threshold straight line as a reference threshold for overload determination that is a threshold straight line, instead of a function of deriving the reference overload determination threshold curve, and is mounted on the microcomputer. ,
The changing step includes a low voltage side changing step and a high voltage side changing step,
In the low voltage side changing step, the reference overload determination threshold curve is changed to the corrected overload determination threshold curve and mounted on the microcomputer,
In the high voltage side changing step, in the input voltage region for determining the overload is higher than the low voltage side changing step, the reference overload determination threshold curve is corrected, and the reference overload determination threshold straight line is corrected. Corrected overload determination threshold value is changed to a straight line and mounted on the microcomputer,
Preferably.
 本発明の巻上電動機の過負荷判定方法および巻上機の製造方法によれば、精度の良い過負荷判定が可能である。そして、過負荷閾値を変更する事情が生じた際にも、引き続き精度の良い巻上電動機の過負荷判定が可能である。 According to the hoisting motor overload determination method and the hoisting machine manufacturing method of the present invention, accurate overload determination is possible. Then, even when a situation occurs in which the overload threshold value is changed, it is possible to continue accurate overload determination of the hoisting motor.
実施形態1に係る過負荷判定方法を説明するための図で、巻上電動機の過負荷判定装置(巻上機)のハードウエア構成を示す図である。FIG. 3 is a diagram for explaining the overload determination method according to the first embodiment, and is a diagram illustrating a hardware configuration of an overload determination device (hoisting machine) for a hoisting motor. 実施形態1に係る過負荷判定方法を説明するための図で、巻上電動機の過負荷判定装置の機能ブロックを示す図である。FIG. 3 is a diagram for explaining the overload determination method according to the first embodiment, and is a diagram showing functional blocks of an overload determination device for a hoisting motor. 実施形態1に係る過負荷判定方法を説明するための図で、諸負荷における基準過負荷判定閾値曲線を示す図である。FIG. 6 is a diagram for explaining the overload determination method according to the first embodiment, and is a diagram showing reference overload determination threshold curves for various loads. 実施形態1に係る過負荷判定方法の処理フローを説明するための図である。FIG. 6 is a diagram for explaining a processing flow of an overload determination method according to the first embodiment. 実施形態1に係る過負荷判定方法を説明するための図で、基準過負荷判定閾値曲線の導出についての説明図である。FIG. 6 is a diagram for explaining the overload determination method according to the first embodiment, and is an explanatory diagram for deriving a reference overload determination threshold curve. 実施形態1に係る過負荷判定方法を説明するための図で、基準過負荷判定閾値曲線を導出するフローを説明する図である。FIG. 6 is a diagram for explaining the overload determination method according to the first embodiment, and is a diagram for explaining a flow for deriving a reference overload determination threshold curve. 実施形態1に係る過負荷判定方法を説明するための図で、基準過負荷判定閾値曲線の変更に関する説明図である。FIG. 6 is a diagram for explaining the overload determination method according to the first embodiment, and is an explanatory diagram regarding a change in a reference overload determination threshold curve. 実施形態1に係る過負荷判定方法を説明するための図で、基準過負荷判定閾値曲線の変更に関する処理フローを説明する図である。FIG. 6 is a diagram for explaining the overload determination method according to the first embodiment, and is a diagram for explaining a processing flow relating to a change in a reference overload determination threshold curve. 実施形態1に係る過負荷判定方法を説明するための図で、補正過負荷判定閾値曲線に関する説明図である。FIG. 6 is a diagram for explaining the overload determination method according to the first embodiment, and is an explanatory diagram regarding a corrected overload determination threshold curve. 実施形態2に係る過負荷判定方法を説明するための図で、巻上電動機の過負荷判定装置の機能ブロックを示す図である。It is a figure for explaining the overload judging method concerning Embodiment 2, and is a figure showing the functional block of the overload judging device of a hoisting motor. 実施形態2に係る過負荷判定方法の処理フローを説明するための図である。FIG. 9 is a diagram for explaining a processing flow of an overload determination method according to the second embodiment. 実施形態2に係る過負荷判定方法を説明するための図である。FIG. 9 is a diagram for explaining an overload determination method according to the second embodiment. 実施形態3に係る過負荷判定方法を説明するための図である。FIG. 9 is a diagram for explaining an overload determination method according to a third embodiment.
以下、本発明の巻上電動機の過負荷判定方法および巻上機の製造方法について、図に示す実施形態に基づいて説明する。なお、各図面は模式図であり、必ずしも実際の構造、外観等を厳密に反映したものではない。 Hereinafter, a method for determining an overload of a hoisting motor and a method for manufacturing a hoisting machine according to the present invention will be described based on an embodiment shown in the drawings. It should be noted that each drawing is a schematic diagram and does not necessarily reflect the actual structure, appearance, etc. strictly.
[実施形態1]
 図1~図9は実施形態1に係る巻上電動機22の過負荷判定方法を説明するための図である。
[Embodiment 1]
1 to 9 are diagrams for explaining an overload determination method for the hoisting electric motor 22 according to the first embodiment.
 まず、巻上機21全体について説明する。
 図1は、実施形態1に係る過負荷判定方法に用いる巻上電動機22の過負荷判定装置24(巻上機21)のハードウエア構成を示す図である。なお巻上電動機22とは巻上機21に組み上げられた状態におけるモータを意味する。
 ここで、「過負荷」とは、巻上電動機22にとって許容以上の負荷をいう。どの負荷を過負荷とするかは、必ずしも一義的に決まる訳ではなく、巻上電動機22(巻上機21)の製造者やユーザーが安全性や使用性等を総合的に判断して決定する。そのため、本明細書では、「負荷〇〇%」を、そのまま「負荷〇〇%」という場合もあれば「過負荷〇〇%」という場合もある。なお「負荷」とは、巻上電動機22のシャフト(軸)を回す力または軸の回転を止めようとする力をいい、主として荷重である。以下たとえば、定格荷重(W)を負荷100%、定格荷重(W)の1.1倍を負荷110%ということとする。
First, the entire hoisting machine 21 will be described.
FIG. 1 is a diagram showing a hardware configuration of an overload determination device 24 (hoisting machine 21) of a hoisting motor 22 used in the overload determination method according to the first embodiment. The hoisting electric motor 22 means a motor in a state of being assembled with the hoisting machine 21.
Here, the “overload” refers to a load which the hoisting electric motor 22 is more than an allowable load. Which load is to be overloaded is not necessarily uniquely determined, and is determined by the manufacturer or user of the hoisting motor 22 (hoisting machine 21) after comprehensively judging safety and usability. . Therefore, in this specification, "load 0000%" may be referred to as "load XX%" or "overload XX%" as it is. The “load” is a force for turning the shaft (shaft) of the hoisting motor 22 or a force for stopping the rotation of the shaft, and is mainly a load. Hereinafter, for example, the rated load (W) is 100% load, and 1.1 times the rated load (W) is 110% load.
 巻上機21は電気チェーンブロックである。巻上機21は巻上電動機(モータ)22を備え、減速機構を介して巻上電動機22に繋がれたロードシーブを軸回転させることでチェーンを巻き取りつり荷等の負荷51を巻上げる。なお巻上機21は、ドラムを回転させてワイヤーロープを巻取るロープホイストやウインチであってもよい。 The hoisting machine 21 is an electric chain block. The hoisting machine 21 includes a hoisting electric motor (motor) 22, and axially rotates a load sheave connected to the hoisting electric motor 22 via a reduction mechanism to wind a chain and hoist a load 51 such as a suspended load. The hoisting machine 21 may be a rope hoist or a winch that winds a wire rope by rotating a drum.
 巻上機21は、巻上電動機22の巻上、巻下を操作する操作スイッチ25、負荷51が過負荷であるかを判定する過負荷判定装置24、及び巻上電動機22を制動する制動装置26を備える。制動装置26としては、例えば、電源52と巻上電動機22との間の電路を開閉による巻上電動機22への給電遮断に伴いブレーキをかけるプルロータブレーキである。 The hoisting machine 21 includes an operating switch 25 for operating hoisting and hoisting of the hoisting motor 22, an overload determination device 24 for determining whether the load 51 is overloaded, and a braking device for braking the hoisting motor 22. 26 is provided. The braking device 26 is, for example, a pull rotor brake that applies a brake when power supply to the hoisting electric motor 22 is cut off by opening and closing an electric path between the power source 52 and the hoisting electric motor 22.
 操作スイッチ25は押しボタンスイッチである。巻上ボタンスイッチが押されると、電源52から巻上電動機22に電力が供給され、負荷51を巻上げる。巻上スイッチが離されると、巻上電動機22への電力供給が断たれ巻上が停止する。 The operation switch 25 is a push button switch. When the hoist button switch is pressed, electric power is supplied from the power source 52 to the hoist electric motor 22 to hoist the load 51. When the hoisting switch is released, the power supply to the hoisting motor 22 is cut off and the hoisting is stopped.
 過負荷判定装置24は、CPU29、ROM31、メモリー30及びセンサー23を備える。 The overload determination device 24 includes a CPU 29, a ROM 31, a memory 30, and a sensor 23.
 CPU29はマイコン(マイクロコンピュータ)に組み込まれ、CPU29に対する命令(処理)を記述したコンピュータプログラム(ソフトウエア)を読み込んで実行する。
 プログラムは、予めROM31やRAM32に格納されている。
 メモリー30は、ROM31、及びRAM32を備える。CPU29、ROM31、RAM32及びセンサー23はBUSで接続されマイコン(マイクロコンピュータ)を構成している。
The CPU 29 is incorporated in a microcomputer (microcomputer), and reads and executes a computer program (software) in which instructions (processing) for the CPU 29 are described.
The program is stored in the ROM 31 or the RAM 32 in advance.
The memory 30 includes a ROM 31 and a RAM 32. The CPU 29, the ROM 31, the RAM 32, and the sensor 23 are connected by BUS to form a microcomputer (microcomputer).
 図2は、実施形態1に係る過負荷判定方法を説明するための図で、巻上電動機22の過負荷判定装置24の機能ブロックを示す図である。 FIG. 2 is a diagram for explaining the overload determination method according to the first embodiment, and is a diagram showing functional blocks of the overload determination device 24 of the hoisting motor 22.
 過負荷判定装置24は、センサー23、メモリー30、過負荷判定手段61、基準過負荷判定閾値曲線導出手段62、基準過負荷判定閾値曲線変更判断手段63及び補正過負荷判定閾値曲線導出手段64を備える。 The overload determination device 24 includes a sensor 23, a memory 30, an overload determination means 61, a reference overload determination threshold curve derivation means 62, a reference overload determination threshold curve change determination means 63, and a corrected overload determination threshold curve derivation means 64. Prepare
 センサー23は、電源52から巻上機21に供給される電力について、巻上機21(巻上電動機22)の入力電圧を検出する入力電圧検出器53と、巻上電動機22に流れる電流を検出する電流検出器54を備える。 The sensor 23 detects an input voltage detector 53 that detects an input voltage of the hoisting machine 21 (hoisting electric motor 22) and a current that flows through the hoisting electric motor 22 with respect to the electric power supplied from the power supply 52 to the hoisting motor 21. The current detector 54 is provided.
 なお、「過負荷判定手段」61とは、プログラムを読み込み、過負荷を判定する機能を実行するマイコンをいう。
 「基準過負荷判定閾値曲線導出手段」62とは、プログラムを読み込み、基準過負荷判定閾値曲線を導出する機能を実行するマイコンをいう。
 「基準過負荷判定閾値曲線変更判断手段」63とは、プログラムを読み込み、基準過負荷判定閾値曲線の変更を判断する機能を実行するマイコンをいう。
 「補正過負荷判定閾値曲線導出手段」64とは、プログラムを読み込み、補正過負荷判定閾値曲線を導出する機能を実行するマイコンをいう。
 メモリー30は、巻上電動機22の一定の(過)負荷における入力電圧と電流値を記憶する。
 制動装置26は、巻上電動機22に制動指令をする制動指令手段71と、制動指令を受け制動する制動機構261を備える。
The "overload determining means" 61 is a microcomputer that reads a program and executes a function of determining an overload.
The “reference overload determination threshold curve deriving means” 62 is a microcomputer that reads a program and executes a function of deriving a reference overload determination threshold curve.
The "reference overload determination threshold curve change determination means" 63 is a microcomputer that executes a function of reading a program and determining whether to change the reference overload determination threshold curve.
The “correction overload determination threshold curve deriving means” 64 is a microcomputer that executes a function of reading a program and deriving a correction overload determination threshold curve.
The memory 30 stores the input voltage and current value of the hoisting motor 22 at a constant (over) load.
The braking device 26 includes braking command means 71 for issuing a braking command to the hoisting electric motor 22, and a braking mechanism 261 for receiving a braking command and braking.
 [基準過負荷判定閾値曲線]
 基準過負荷判定閾値曲線について説明する。
 図3は、実施形態1に係る過負荷判定方法を説明するための図で、基準負荷における基準とする巻上電動機22の基準過負荷判定閾値曲線を示す図であるが、これは同時に対象とする巻上電動機22における基準過負荷判定閾値曲線を示す図でもある。他の図でも同様である。
[Reference overload judgment threshold curve]
The reference overload determination threshold curve will be described.
FIG. 3 is a diagram for explaining the overload determination method according to the first embodiment, and is a diagram showing a reference overload determination threshold curve of the hoisting motor 22 that serves as a reference in the reference load. It is also a figure which shows the reference overload determination threshold value curve in the hoisting electric motor 22 which does. The same applies to the other figures.
 ここで、「基準とする巻上電動機」とは、「測定等の拠り所となる巻上電動機」をいう。「対象とする巻上電動機」とは、「過負荷判定の対象とする巻上電動機」をいう。例えば、同じ型番の巻上電動機が複数ある場合、それらのうちで平均的な、あるいはモデルとなる巻上電動機を「基準とする巻上電動機」とし、入力電圧と電流の関係を予め測定し、巻上電動機の特性を求めておく。この測定結果を反映させて出荷前検査などで過負荷判定を行う対象とする巻上電動機を「対象とする巻上電動機」とする。これは同じ型番の巻上電動機22等の同種の巻上電動機22であれば、個々に測定する必要性が乏しく、基準とする巻上電動機22の測定に基づき基準過負荷判定閾値曲線1を導出して、対象とする巻上電動機22の過負荷を判定すればよいからである。
 実施形態1を含めた以下の実施形態では、「巻上電動機22」は「基準とする巻上電動機」と「対象とする巻上電動機」とを厳密には分けていない。
Here, the "reference hoisting electric motor" refers to "a hoisting electric motor that serves as a base for measurement and the like". The "target hoisting electric motor" refers to "a hoisting electric motor to be an object of overload determination". For example, if there are multiple hoisting motors of the same model number, then an average or model hoisting motor is defined as the "reference hoisting motor", and the relationship between the input voltage and the current is measured in advance. Find the characteristics of the hoisting motor. The hoisting motor to be subjected to the overload determination in the pre-shipment inspection or the like by reflecting the measurement result is referred to as the “target hoisting motor”. This is because the hoisting motors 22 of the same type, such as the hoisting motor 22 of the same model number, do not need to be individually measured, and the reference overload determination threshold curve 1 is derived based on the measurement of the hoisting motor 22 as a reference. Then, the overload of the target hoisting electric motor 22 may be determined.
In the following embodiments including the first embodiment, the "hoisting electric motor 22" does not strictly separate the "reference hoisting electric motor" and the "target hoisting electric motor".
 図3の基準過負荷判定閾値曲線1は、所定の負荷における、巻上電動機22の入力電圧と、巻上電動機22に流れる電流(値)との関係を示す。横軸が入力電圧(v)で縦軸が電流(i)である。
 使用範囲の入力電圧は、340V(ボルト)~460Vである。この範囲の入力電圧が巻上電動機22の使用保証範囲である。定格電圧は400Vである。
The reference overload determination threshold curve 1 of FIG. 3 shows the relationship between the input voltage of the hoisting motor 22 and the current (value) flowing through the hoisting motor 22 at a predetermined load. The horizontal axis represents the input voltage (v) and the vertical axis represents the current (i).
The input voltage in the usage range is 340V (volt) to 460V. The input voltage in this range is the guaranteed range of use of the hoisting motor 22. The rated voltage is 400V.
 符号1の曲線は、基準とする負荷117.5%での各入力電圧(340V,360V,380V,400V,420V,440V,460V)と電流との関係を示す曲線であり、本実施形態ではこれを基準過負荷判定閾値曲線1とした。すなわち負荷117.5%を閾値とし、負荷117.5%以上の負荷は過負荷とする。
 ここで、「閾値」とは、過負荷とする最小の値をいう。限界値または臨界値ともいう。閾値を117.5%としたのは、厳重に巻上げを禁止し安全を確保すべき負荷125%と、巻上が許容されている負荷110%との中間の値をとり、より安全性に配慮したためである。工場出荷時の過負荷閾値は負荷117.5%とするのが出願人の出荷標準である。ただし負荷117.5%は閾値の目安となるものであり、負荷110%以下で巻上げが停止することなく、かつ、負荷110%から負荷125%の範囲で巻上げが停止すればよく、厳密に117.5%の負荷で巻上げを停止させる必要はない。
The curve indicated by reference numeral 1 is a curve showing the relationship between each input voltage (340V, 360V, 380V, 400V, 420V, 440V, 460V) and the current at a reference load of 117.5%. Was set as the reference overload determination threshold curve 1. That is, the load 117.5% is set as a threshold, and the load 117.5% or more is overloaded.
Here, the "threshold value" refers to the minimum value that causes an overload. It is also called a limit value or a critical value. The threshold of 117.5% is taken into consideration between safety by taking an intermediate value between the load of 125% that strictly prohibits hoisting and should ensure safety and the load of 110% where winding is allowed. Because it was done. Applicant's standard for shipping is that the overload threshold at factory shipment is 117.5% load. However, the load of 117.5% is a guideline for the threshold value, and the winding does not stop at a load of 110% or less, and it is sufficient if the winding stops at a load of 110% to 125%. It is not necessary to stop winding at a load of 0.5%.
 また図3には、負荷117.5%(符号1の曲線)の他に、負荷100%、125%での入力電圧と電流(実測値)との関係をそれぞれ符号100の曲線及び符号125の過負荷判定閾値曲線で示した。各曲線から分かるように、各負荷での入力電圧-電流の増減傾向(モータ特性)を読み取ることができる。
 実際には、負荷117.5%の二次曲線を予め求めるとともに、負荷100%、125%での、少なくとも入力電圧340V、400Vおよび460Vの電流値を実測しメモリー30に記憶しておく。これにより必要に応じて、負荷100%、125%での基準となる巻上電動機22のモータ特性の概略曲線を描くことができる。そして、負荷100%、125%の概略曲線を基に、例えば負荷110%での、任意の入力電圧におけるおおよその電流値を、負荷100%と負荷117.5%との差の比例関係から求めることができる。
Also, in FIG. 3, in addition to the load 117.5% (curve with reference numeral 1), the relationship between the input voltage and the current (actual measurement value) at load 100% and 125% is indicated by reference numeral 100 and reference numeral 125, respectively. It is shown by an overload judgment threshold curve. As can be seen from each curve, the increasing / decreasing trend of input voltage-current (motor characteristic) at each load can be read.
Actually, the quadratic curve of the load 117.5% is obtained in advance, and the current values of at least the input voltages 340V, 400V and 460V at the loads 100% and 125% are measured and stored in the memory 30. As a result, it is possible to draw a rough curve of the motor characteristics of the hoisting electric motor 22 as a reference at loads of 100% and 125%, if necessary. Then, based on the approximate curves of the loads 100% and 125%, for example, an approximate current value at an arbitrary input voltage at the load 110% is obtained from the proportional relationship of the difference between the loads 100% and the loads 117.5%. be able to.
 なお本実施形態では負荷117.5%を基準負荷としたが、工場出荷時の基準負荷(過負荷閾値)を例えば負荷115%にする場合には、上記と同様に実測値から予め求めた負荷115%の二次曲線を基準過負荷判定閾値曲線とする。 Although the load of 117.5% is used as the reference load in the present embodiment, when the reference load (overload threshold) at the time of factory shipment is set to 115% of the load, for example, the load obtained in advance from the measured value is the same as the above. A 115% quadratic curve is used as a reference overload determination threshold curve.
 [過負荷判定方法の処理フロー]
 図4は、実施形態1に係る過負荷判定方法の処理フローを説明するための図である。
 実施形態1の巻上電動機22の過負荷を判定する過負荷判定方法では、まず、基準とする巻上電動機22に基準負荷51(本実施形態では1.175W(117.5%)とする)をかけ、入力電圧と電流(値)の関係を予め測定する(ステップS1、Aステップ)。
 入力電圧と電流の関係の測定は、入力電圧検出器53及び電流検出器54で行う。
 測定結果は、メモリー30に記憶される。「測定」は実測で行った。測定値は実測値である。
[Processing flow of overload determination method]
FIG. 4 is a diagram for explaining the processing flow of the overload determination method according to the first embodiment.
In the overload determining method for determining the overload of the hoisting motor 22 of the first embodiment, first, the reference load 51 (1.175 W (117.5%) in the present embodiment) is applied to the hoisting motor 22 as a reference. And the relationship between the input voltage and the current (value) is measured in advance (step S1, step A).
The input voltage detector 53 and the current detector 54 measure the relationship between the input voltage and the current.
The measurement result is stored in the memory 30. "Measurement" was performed by actual measurement. The measured value is an actual measured value.
 次に、基準過負荷判定閾値曲線導出手段62は、メモリー30に記憶された測定値を基に、入力電圧(v)の二次式で電流(i)を定義した基準関数よりなる過負荷判定のための基準閾値としての基準過負荷判定閾値曲線1(近似曲線)を導出する(ステップS2、Bステップ)。
 ここで、「二次式」とは、巻上電動機22の電流を、入力電圧の次数2の多項式で表した式をいう。
Next, the reference overload determination threshold curve deriving means 62 is based on the measured values stored in the memory 30, and is based on the measured value stored in the memory 30. A reference overload determination threshold curve 1 (approximate curve) is derived as a reference threshold for (step S2, step B).
Here, the “quadratic equation” refers to an equation in which the current of the hoisting motor 22 is represented by a polynomial of degree 2 of the input voltage.
 次に、基準過負荷判定閾値曲線変更判断手段63は、基準過負荷判定閾値曲線1を変更するか否かを決定する(ステップS3、Cステップ)。なおこの決定は、人的に行なわれるものであり、過負荷判定装置24が自動的に行なうものではない。変更を決定する場合とは、客先の要望により安全サイドに寄せたい場合などに意図的に閾値を引き下げるケースの他、巻上機個体のばらつきから、閾値を117.5%に設定しても負荷110%以下で巻上げが停止してしまう場合に閾値を引き上げ、または、負荷110%~125%の範囲で巻上げが停止しない場合に閾値を引き下げるケースが想定される。 Next, the reference overload determination threshold curve change determination means 63 determines whether to change the reference overload determination threshold curve 1 (step S3, C step). It should be noted that this decision is made manually and is not made automatically by the overload determination device 24. In the case of deciding the change, in addition to the case of intentionally lowering the threshold when the customer wants to move it to the safe side, even if the threshold is set to 117.5% due to variations in individual hoisting machines. It is assumed that the threshold is raised when the winding stops when the load is 110% or less, or the threshold is lowered when the winding does not stop in the range of 110% to 125% of the load.
 ステップS4(Dステップ)では、基準過負荷判定閾値曲線1(過負荷閾値)を変更しない場合には、基準過負荷判定閾値曲線1に基づき対象とする巻上電動機22の過負荷を判定する(ステップS4-1)。
 基準過負荷判定閾値曲線1(過負荷閾値)を変更する場合には、基準関数の切片を補正した二次式よりなる補正過負荷判定閾値曲線2に基づき対象とする巻上電動機22の過負荷を判定する(ステップS4-2)。
 過負荷判定手段61は、入力電圧検出器53で検出された入力電圧(値)及び電流検出器54で検出された電流値と、基準過負荷判定閾値曲線導出手段62で導出された基準過負荷判定閾値曲線1に基づき上記処理(過負荷判定)を行う。
In step S4 (D step), if the reference overload determination threshold curve 1 (overload threshold) is not changed, the overload of the target hoisting motor 22 is determined based on the reference overload determination threshold curve 1 ( Step S4-1).
When the reference overload determination threshold curve 1 (overload threshold) is changed, the target overload of the hoisting motor 22 is based on the corrected overload determination threshold curve 2 formed by a quadratic equation in which the intercept of the reference function is corrected. Is determined (step S4-2).
The overload determination means 61 includes the input voltage (value) detected by the input voltage detector 53, the current value detected by the current detector 54, and the reference overload derived by the reference overload determination threshold curve deriving means 62. The above processing (overload determination) is performed based on the determination threshold curve 1.
 [基準過負荷判定閾値曲線の導出]
 図5~図6を用いて基準過負荷判定閾値曲線1の導出について説明する。
 過負荷判定のための基準閾値は117.5%とした。
 基準過負荷判定閾値曲線1の導出は、主として基準過負荷判定閾値曲線導出手段62が行う。
[Derivation of reference overload judgment threshold curve]
Derivation of the reference overload determination threshold curve 1 will be described with reference to FIGS.
The reference threshold for overload determination was 117.5%.
The reference overload determination threshold curve 1 is derived mainly by the reference overload determination threshold curve deriving unit 62.
 図5に示すように、基準とする巻上電動機22で、基準負荷として117.5%の負荷を実際にかけ、巻上電動機22の各入力電圧と電流(値)との関係を測定した。具体的には入力電圧340V~460Vの範囲で、340Vから20V毎に測定した。121は各測定値である。この測定値121はメモリー30に記憶される。
 そして符号1は、複数の測定値121から最小二乗法など数学的手法により求めた基準過負荷判定閾値曲線(近似曲線)を示す。
As shown in FIG. 5, with the hoisting electric motor 22 serving as a reference, a load of 117.5% was actually applied as a reference load, and the relationship between each input voltage and the current (value) of the hoisting electric motor 22 was measured. Specifically, the measurement was performed every 340V to 20V in the input voltage range of 340V to 460V. 121 is each measured value. This measured value 121 is stored in the memory 30.
Reference numeral 1 denotes a reference overload determination threshold curve (approximate curve) obtained from a plurality of measured values 121 by a mathematical method such as the least square method.
 図6は、実施形態1に係る過負荷判定方法を説明するための図で、基準過負荷判定閾値曲線1を導出するフローを説明する図である。 FIG. 6 is a diagram for explaining the overload determination method according to the first embodiment, and is a diagram for explaining a flow for deriving the reference overload determination threshold curve 1.
 まず、基準過負荷閾値を決定する。ここでは、基準過負荷閾値を117.5%に決定した(ステップS21)。 First, determine the reference overload threshold. Here, the reference overload threshold is determined to be 117.5% (step S21).
 次に基準過負荷判定閾値曲線導出手段62は、二次式
 i=a・v2 +b・v+c …(1)
 i:電流(値)、v:入力電圧(値)、
 a(係数、≠0)、b(係数)、c(切片):定数
を準備する(ステップS22)。
 これは、入力電圧(v)の二次式で電流(i)を定義した基準関数であり、過負荷判定のための基準閾値としての基準過負荷判定閾値曲線1を表す。
Next, the reference overload determination threshold curve deriving means 62 uses the quadratic equation i = a · v 2 + b · v + c (1)
i: current (value), v: input voltage (value),
a (coefficient, ≠ 0), b (coefficient), c (intercept): constants are prepared (step S22).
This is a reference function that defines the current (i) by a quadratic expression of the input voltage (v), and represents the reference overload determination threshold curve 1 as a reference threshold for overload determination.
 次に、基準過負荷判定閾値曲線導出手段62は、基準閾値過負荷(117.5%)での入力電圧及び電流値の測定値121をメモリー30から読み出す(ステップS23)。 Next, the reference overload determination threshold curve deriving means 62 reads the measured values 121 of the input voltage and current values at the reference threshold overload (117.5%) from the memory 30 (step S23).
 次に、ステップ24で、上記の定数未定の二次式に、基準閾値過負荷(117.5%)での各入力電圧、電流値の複数の組み合わせを代入して、その近似曲線の定数a(係数)、b(係数)及びc(切片)を求め、二次式を作成する(ステップ25)。 Next, in step 24, a plurality of combinations of each input voltage and current value at the reference threshold overload (117.5%) are substituted into the above-mentioned quadratic equation whose constant has not been determined, and the constant a of the approximate curve thereof is substituted. (Coefficient), b (coefficient) and c (intercept) are obtained, and a quadratic equation is created (step 25).
 そして、上記の式(1)のように、入力電圧(v)の二次式で電流(i)を定義した基準関数よりなる(過負荷判定のための基準閾値としての)「基準過負荷判定閾値曲線1」に基づき、対象とする巻上電動機22の過負荷を判定する。具体的には一定の電源電圧において負荷51を吊り上げようとすると巻上電動機22に流れる電流値が一旦急激に上昇してから若干減少しほぼ一定の電流値に落ち着く。この一定の電流値がこの基準閾値を超えた場合には過負荷と判定し、電力の供給を遮断し巻上電動機22を停止させる。これにより使用範囲のいずれの入力電圧での使用においても、先行技術文献に記載した近似直線による閾値に基づく過負荷判定に比べより判定精度の良い過負荷判定が可能となる。 Then, as in the above equation (1), a “reference overload determination” (as a reference threshold for overload determination) including a reference function that defines the current (i) by a quadratic equation of the input voltage (v) Based on "threshold curve 1", the overload of the target hoisting motor 22 is determined. Specifically, when attempting to lift the load 51 at a constant power supply voltage, the value of the current flowing through the hoisting motor 22 once rises abruptly, then slightly decreases and settles to a substantially constant current value. When the constant current value exceeds the reference threshold value, it is determined to be overload, the power supply is cut off, and the hoisting motor 22 is stopped. This makes it possible to perform overload determination with higher determination accuracy when used with any input voltage in the use range, as compared with the overload determination based on the threshold value by the approximation straight line described in the prior art document.
 [基準過負荷判定閾値曲線の変更]
 図7~図9を用いて、基準過負荷判定閾値曲線1を変更する場合について説明する。
[Change of reference overload judgment threshold curve]
A case where the reference overload determination threshold curve 1 is changed will be described with reference to FIGS. 7 to 9.
 図7は、実施形態1に係る過負荷判定方法を説明するための図で、基準過負荷判定閾値曲線1の変更に関する説明図である。
 上記では図5~図6を用いて、過負荷判定のための基準閾値を117.5%とし、その基準過負荷判定閾値曲線1の導出について説明した。
 しかし、客先のより安全性を高めたいとの要請で、基準閾値を例えば出荷後に115%に変更(補正)する場合を想定する。その場合には、基準閾値(負荷)を115%とする補正過負荷判定閾値曲線2(2-115)に基づき対象とする巻上電動機22の過負荷を判定することになる。
FIG. 7 is a diagram for explaining the overload determination method according to the first embodiment, and is an explanatory diagram regarding a change in the reference overload determination threshold curve 1.
The derivation of the reference overload determination threshold curve 1 has been described above with reference to FIGS. 5 to 6 as the reference threshold for overload determination is 117.5%.
However, it is assumed that the standard threshold value is changed (corrected) to, for example, 115% after shipping in response to a request from the customer to improve safety. In that case, the overload of the target hoisting electric motor 22 is determined based on the corrected overload determination threshold value curve 2 (2-115) in which the reference threshold value (load) is 115%.
 図7には、基準閾値を117.5%としたときの基準過負荷判定閾値曲線1と、基準閾値を115%としたときの補正過負荷判定閾値曲線2(2-115)が示されている。
 補正過負荷判定閾値曲線2(2-115)は、基本的には、図7に示すように、基準過負荷判定閾値曲線1を、負荷115%、定格電圧(400V)の電流値を通るように、縦軸(y軸)方向に平行移動した曲線である。なお負荷115%(Z%)での定格入力電圧における電流値は、メモリー30に記憶しておいた負荷100%の電流値と負荷117.5%の電流値との比例関係から求められる。
 図8は、実施形態1に係る過負荷判定方法を説明するための図で、基準過負荷判定閾値曲線1の変更に関する処理フローをより詳しく説明する図である。
 図9は、実施形態1に係る過負荷判定方法を説明するための図で、補正過負荷判定閾値曲線2に関する説明図である。
FIG. 7 shows a reference overload determination threshold curve 1 when the reference threshold is 117.5% and a corrected overload determination threshold curve 2 (2-115) when the reference threshold is 115%. There is.
The corrected overload determination threshold curve 2 (2-115) basically passes the reference overload determination threshold curve 1 through a current value of 115% load and rated voltage (400V) as shown in FIG. Is a curve translated in the vertical axis (y-axis) direction. The current value at the rated input voltage with a load of 115% (Z%) is obtained from the proportional relationship between the current value of 100% load and the current value of 117.5% load stored in the memory 30.
FIG. 8 is a diagram for explaining the overload determination method according to the first embodiment, and is a diagram for explaining in more detail the processing flow regarding the change of the reference overload determination threshold curve 1.
FIG. 9 is a diagram for explaining the overload determination method according to the first embodiment, and is an explanatory diagram regarding the corrected overload determination threshold curve 2.
 なお、基準過負荷判定閾値曲線1を変更(補正)する補正過負荷判定閾値曲線2の導出は、補正過負荷判定閾値曲線導出手段64が行う。過負荷判定は過負荷判定手段61が行う。 The correction overload determination threshold curve curve deriving means 64 derives the correction overload determination threshold curve 2 for changing (correcting) the reference overload determination threshold curve 1. The overload determination means 61 performs the overload determination.
 図8のフローに沿って説明する。
 まず、基準過負荷判定閾値曲線1(過負荷117.5%)の「過負荷」117.5%と、求めようとする補正過負荷判定閾値曲線2の「過負荷」Z%(変更後の過負荷%)判定閾値との差が一定範囲内(例えば、5%以内)かを判定する(ステップS41)。
 YESの場合は、ステップ42に進む。例えば、一定範囲を5%とした場合、Z=115(過負荷115%)なら117.5-115=2.5(%)で5%以内である場合はYESである。
 ステップ42では、基準過負荷判定閾値曲線1を、過負荷Z%における定格電圧(400V)での測定電流値を通るようにy軸方向(縦方向)に平行移動する(切片cを変更する)。
 そして、基準過負荷判定閾値曲線1を平行移動した曲線を補正過負荷判定閾値曲線2(過負荷115%では補正過負荷判定閾値曲線2-115)とする(ステップ43)。図7は上記処理を図示した図であり前述した。
Description will be given along the flow of FIG.
First, “overload” 117.5% of the reference overload determination threshold curve 1 (overload 117.5%) and “overload” Z% (after change) of the corrected overload determination threshold curve 2 to be obtained. It is determined whether the difference from the overload%) determination threshold value is within a certain range (for example, within 5%) (step S41).
If YES, the process proceeds to step 42. For example, when the fixed range is 5%, if Z = 115 (overload 115%), 117.5-115 = 2.5 (%), and if it is within 5%, YES.
In step 42, the reference overload determination threshold curve 1 is translated in the y-axis direction (longitudinal direction) so as to pass through the measured current value at the rated voltage (400 V) at the overload Z% (the intercept c is changed). ..
Then, a curve obtained by moving the reference overload determination threshold curve 1 in parallel is set as a corrected overload determination threshold curve 2 (corrected overload determination threshold curve 2-115 when the overload is 115%) (step 43). FIG. 7 is a diagram illustrating the above processing and has been described above.
 NOの場合(差が一定範囲内でない場合)は、ステップ44に進む。例えば、一定範囲を5%とした場合、Z=110(過負荷110%)なら117.5-110=7.5(%)で5%を超え、NOである。
ステップ44では、曲線1(過負荷117.5%)と曲線100(定格負荷100%)との間に、両者のy軸方向の間隔を(117.5-Z):(Z-100)で按分(比例配分)した曲線(按分した点を通る曲線)を引く。
 そして、上記の按分した曲線を補正過負荷判定閾値曲線2(過負荷110%では補正過負荷判定閾値曲線2-110)とする。
If NO (if the difference is not within the fixed range), the process proceeds to step 44. For example, when the fixed range is set to 5%, if Z = 110 (110% overload), 117.5-110 = 7.5 (%), which exceeds 5%, is NO.
In step 44, the interval between the curve 1 (overload 117.5%) and the curve 100 (rated load 100%) in the y-axis direction is (117.5-Z) :( Z-100). Draw a curve that has been proportionally distributed (proportional distribution) (a curve that passes through the proportionally distributed points).
Then, the above-mentioned proportionally divided curve is used as a correction overload determination threshold curve 2 (correction overload determination threshold curve 2-110 when the overload is 110%).
 図9は、NOの場合(差が一定範囲内でない場合)の説明図である。求めようとする補正過負荷判定閾値曲線2(2-110)の過負荷が110%であり、基準過負荷判定閾値曲線1の過負荷117.5%との差は、5%を超える。
 この場合、曲線1(過負荷117.5%)と曲線100(定格負荷100%)との間に、両者のy軸方向の間隔を(117.5-110):(110-100)=7.5:10で按分(比例配分)した曲線(按分した点を通る曲線)を引く。図9では、入力電圧340V、400V及び460Vにおいて両者の曲線1、100間を7.5:10に按分した点を通る曲線とした。
 そして、上記の按分した曲線を補正過負荷判定閾値曲線2(過負荷110%では補正過負荷判定閾値曲線2-110)とした。
FIG. 9 is an explanatory diagram in the case of NO (when the difference is not within the fixed range). The overload of the corrected overload determination threshold curve 2 (2-110) to be obtained is 110%, and the difference from the overload 117.5% of the reference overload determination threshold curve 1 exceeds 5%.
In this case, the distance between the curve 1 (overload 117.5%) and the curve 100 (rated load 100%) in the y-axis direction is (117.5-110) :( 110-100) = 7. Draw a curve (a curve that passes through the distributed points) that is proportionally distributed at 5:10. In FIG. 9, the curves 1 and 100 of the input voltages 340 V, 400 V, and 460 V are divided by 7.5: 10, and the curves pass through the points.
Then, the above-mentioned proportionally divided curve is used as a correction overload determination threshold curve 2 (correction overload determination threshold curve 2-110 at 110% overload).
 以上のような処理をするため、過負荷閾値を変更しても引き続き判定精度の良い巻上電動機22の過負荷判定が可能である。 Due to the above processing, overload judgment of the hoisting motor 22 with high judgment accuracy is possible even if the overload threshold is changed.
 なお、このような過負荷判定が、上述したマイクロコンピュータによって可能な巻上機21を製造する製造方法は、以下の通りである。
 すなわち、上述のAステップ(ステップS1)で予め測定した測定値に基づいて、上述のBステップ(ステップS2)で説明したような、入力電圧(v)の二次式で電流(i)を定義した基準過負荷判定閾値曲線であって、過負荷判定のための基準閾値としての前記基準過負荷判定閾値曲線を導出する機能を、上記のマイクロコンピュータに実装する(実装ステップ)。
A manufacturing method for manufacturing the hoisting machine 21 in which the above-described overload determination can be performed by the above-described microcomputer is as follows.
That is, the current (i) is defined by the quadratic equation of the input voltage (v) as described in the above B step (step S2) based on the measurement value previously measured in the above A step (step S1). The above-mentioned microcomputer is equipped with a function of deriving the reference overload determination threshold curve, which is the above-mentioned reference overload determination threshold curve as a reference threshold for overload determination (mounting step).
 また、上記のCステップ(ステップS3)のように、基準過負荷判定閾値曲線を変更するか否かを決定する。 Also, as in step C (step S3) above, it is determined whether to change the reference overload determination threshold curve.
 そして、上記のCステップ(ステップS3)において、基準過負荷判定閾値曲線を変更する場合には、その基準過負荷判定閾値曲線を、上述のステップS4-2で説明したような、基準関数の切片を補正した二次式よりなる補正過負荷判定閾値曲線へと変更して前記マイクロコンピュータに実装する(変更ステップ)。
 なお、上記のCステップ(ステップS3)において、基準過負荷判定閾値曲線を変更しない場合には、上記の基準過負荷判定閾値曲線を実装したままの状態とする。
Then, in the above-mentioned step C (step S3), when the reference overload determination threshold curve is changed, the reference overload determination threshold curve is set to the intercept of the reference function as described in step S4-2 above. Is changed to a corrected overload determination threshold curve having a corrected quadratic equation, and is mounted on the microcomputer (change step).
In addition, in the above C step (step S3), when the reference overload determination threshold curve is not changed, the reference overload determination threshold curve is left mounted.
 このようにすれば、上記のように判定精度の良い巻上電動機22の過負荷判定が可能な巻上機21を良好に製造することが可能となる。特に、巻上機21の出荷前に、過負荷判定のための曲線を、基準過負荷判定閾値曲線から補正過負荷判定閾値曲線へと変更することができるので、製品の固体ばらつきを良好に吸収した状態で巻上機21を出荷できるので、品質の安定化が図れる。 By doing so, it becomes possible to satisfactorily manufacture the hoisting machine 21 capable of judging the overload of the hoisting motor 22 with high accuracy as described above. In particular, since the curve for overload determination can be changed from the reference overload determination threshold curve to the corrected overload determination threshold curve before the hoisting machine 21 is shipped, the individual variation of the product is well absorbed. Since the hoisting machine 21 can be shipped in this state, the quality can be stabilized.
[実施形態2]
 図10~図12を用いて、実施形態2に係る過負荷判定方法について説明する。
[Embodiment 2]
An overload determination method according to the second embodiment will be described with reference to FIGS. 10 to 12.
 実施形態2の過負荷判定方法は、実施形態1で説明した過負荷判定方法で、過負荷を判定する入力電圧領域を低電圧側入力電圧領域と、低電圧側入力電圧領域より高電圧の高電圧側入力電圧領域に分け、低電圧側入力電圧領域では、Aステップ、Bステップ、Cステップ及びDステップを含む方法により過負荷を判定し、高電圧側入力電圧領域では、Aステップと、電流の測定値を基に、基準過負荷判定閾値曲線の代わりに、入力電圧(v)の一次式で電流(i)を定義した基準関数よりなる過負荷判定のための基準閾値としての基準過負荷閾値直線を導出するB2ステップと、基準過負荷判定閾値直線を変更するか否かを決定するC2ステップと、基準過負荷判定閾値直線を変更しない場合には、基準過負荷判定閾値直線に基づき対象とする巻上電動機の過負荷を判定し、基準過負荷判定閾値直線を変更する場合には、基準過負荷判定閾値直線を補正した補正過負荷判定閾値直線に基づき対象とする巻上電動機の過負荷を判定するD2ステップと、
を含む。
The overload determination method according to the second embodiment is the overload determination method described in the first embodiment, in which the input voltage region for determining overload is a low voltage side input voltage region and a high voltage higher than the low voltage side input voltage region. It is divided into a voltage side input voltage region, and an overload is determined by a method including A step, B step, C step and D step in the low voltage side input voltage region, and an A step and a current in the high voltage side input voltage region. Based on the measured value of, the reference overload as a reference threshold for overload determination, which is a reference function that defines the current (i) by a linear expression of the input voltage (v) instead of the reference overload determination threshold curve. Step B2 for deriving a threshold straight line, step C2 for deciding whether to change the reference overload determination threshold straight line, and if the reference overload determination threshold straight line is not changed, target based on the reference overload determination threshold straight line When determining the overload of the hoisting motor and changing the reference overload judgment threshold straight line, the overload of the target hoisting motor is corrected based on the corrected overload judgment threshold straight line obtained by correcting the reference overload judgment threshold straight line. D2 step for determining the load,
including.
 入力電圧領域で入力電圧が高い高電圧側では、巻上電動機22の磁気飽和の開始等で、巻上電動機22を流れる電流値が、負荷を変更しても変化の程度が少ない場合がある。そこで、過負荷を判定する入力電圧領域を低電圧側入力電圧領域と、低電圧側入力電圧領域より高電圧の高電圧側入力電圧領域に分け、低電圧側入力電圧領域では基準過負荷判定閾値曲線に基づき対象とする巻上電動機の過負荷を判定し、高電圧側入力電圧領域では基準過負荷判定閾値曲線の代わりに基準過負荷閾値直線により過負荷を判定する。
このようにすることで、過負荷の誤判定のリスクが低減される。
On the high voltage side where the input voltage is high in the input voltage region, the degree of change in the current value flowing through the hoisting electric motor 22 may be small even if the load is changed due to the start of magnetic saturation of the hoisting electric motor 22 or the like. Therefore, the input voltage region for determining overload is divided into a low voltage side input voltage region and a high voltage side input voltage region having a higher voltage than the low voltage side input voltage region, and the reference overload determination threshold is set in the low voltage side input voltage region. Overload of the target hoisting motor is determined based on the curve, and in the high voltage side input voltage region, overload is determined by the reference overload threshold straight line instead of the reference overload determination threshold curve.
By doing so, the risk of erroneous overload determination is reduced.
 図10は、実施形態2に係る過負荷判定方法を説明するための図で、巻上電動機22の過負荷判定装置24の機能ブロックを示す図である。 FIG. 10 is a diagram for explaining the overload determination method according to the second embodiment, and is a diagram showing functional blocks of the overload determination device 24 of the hoisting motor 22.
 図2の、実施形態1に係る過負荷判定方法を説明するための図(巻上電動機22の過負荷判定装置24の機能ブロックを示す図)と異なるのは、過負荷判定装置24は、センサー23、メモリー30、過負荷判定手段61、基準過負荷判定閾値曲線導出手段62、基準過負荷判定閾値曲線変更判断手段63及び補正過負荷判定閾値曲線導出手段64の他に、基準過負荷判定閾値直線導出手段65、基準過負荷判定閾値直線変更判断手段66及び補正過負荷判定閾値直線導出手段67を備える点である。その他、図10に示す構成では、所定の音を発生させる発音装置27と、外部機器と接続して情報の送受信をするためのインターフェース28を備える点でも、図2に示す構成と異なっている。 2 is different from the diagram for explaining the overload determination method according to the first embodiment (the diagram showing the functional blocks of the overload determination device 24 of the hoisting motor 22) in that the overload determination device 24 is a sensor. 23, the memory 30, the overload determination means 61, the reference overload determination threshold curve derivation means 62, the reference overload determination threshold curve change determination means 63 and the corrected overload determination threshold curve derivation means 64, as well as the reference overload determination threshold value. This is a point provided with a straight line deriving means 65, a reference overload determination threshold straight line change determining means 66, and a corrected overload determination threshold straight line deriving means 67. In addition, the configuration shown in FIG. 10 also differs from the configuration shown in FIG. 2 in that a sounding device 27 for generating a predetermined sound and an interface 28 for connecting to an external device and transmitting / receiving information are provided.
 ここで、「基準過負荷判定閾値直線導出手段」65とは、プログラムを読み込み、基準過負荷判定閾値直線3を導出する機能を実行するマイコンをいう。
 「基準過負荷判定閾値直線変更判断手段」66とは、プログラムを読み込み、基準過負荷判定閾値直線3を変更するか否かを決定するマイコンをいう。
 「補正過負荷判定閾値直線導出手段」67とは、プログラムを読み込み、補正過負荷判定閾値直線4を導出する機能を実行するマイコンをいう。
Here, the "reference overload determination threshold straight line deriving means" 65 is a microcomputer that executes a function of reading a program and deriving the reference overload determination threshold straight line 3.
The “reference overload determination threshold straight line change determination means” 66 is a microcomputer that reads a program and determines whether to change the reference overload determination threshold straight line 3.
The “correction overload determination threshold straight line deriving means” 67 is a microcomputer that executes a function of reading a program and deriving the correction overload determination threshold straight line 4.
 図11は、実施形態2に係る過負荷判定方法の処理フローを説明するための図である。図12は、実施形態2に係る過負荷判定方法を説明するための図である。 FIG. 11 is a diagram for explaining the processing flow of the overload determination method according to the second embodiment. FIG. 12 is a diagram for explaining the overload determination method according to the second embodiment.
 まず、入力電圧領域を分割するか否かを決める(ステップS51)。例えば電源電圧が420V以上の場合には一律に入力電圧領域を分割すると決めてもよい。
 入力電圧領域を分割する場合(ステップS51、分割する:YES)、低電圧側入力電圧領域と、高電圧側入力電圧領域とに分割する(ステップS52)。
 実施形態2では、図12に示すように、低電圧側入力電圧領域を340V~420V、高電圧側入力電圧領域で420V~460Vとした。420V付近で、巻上電動機22を流れる電流値が、負荷を変更しても変化の程度が少なくなり始めているためである。
First, it is determined whether or not to divide the input voltage region (step S51). For example, when the power supply voltage is 420 V or higher, it may be decided to divide the input voltage region uniformly.
When the input voltage region is divided (step S51, division: YES), it is divided into a low voltage side input voltage region and a high voltage side input voltage region (step S52).
In the second embodiment, as shown in FIG. 12, the low voltage side input voltage region is set to 340V to 420V, and the high voltage side input voltage region is set to 420V to 460V. This is because the amount of change in the value of the current flowing through the hoisting electric motor 22 is starting to decrease near 420 V even if the load is changed.
 次に、入力電圧領域を低電圧側入力電圧領域と、低電圧側入力電圧領域より高電圧の高電圧側入力電圧領域に分ける(ステップS53)、それぞれで処理フローを異にする。
 低電圧側入力電圧領域では、ステップS54~ステップS57の処理を行う。
 高電圧側入力電圧領域では、ステップS58~ステップS61の処理を行う。
Next, the input voltage region is divided into a low voltage side input voltage region and a high voltage side input voltage region having a higher voltage than the low voltage side input voltage region (step S53), and the processing flow is different for each.
In the low voltage side input voltage region, the processes of steps S54 to S57 are performed.
In the high voltage side input voltage region, the processes of steps S58 to S61 are performed.
 低電圧側入力電圧領域では、まず、センサー23で、巻上電動機22の、一定の負荷51における、入力電圧と、電流との関係を測定する(ステップS54、Aステップ)。 In the low-voltage side input voltage region, first, the sensor 23 measures the relationship between the input voltage and the current in the constant load 51 of the hoisting motor 22 (step S54, step A).
 次に、基準過負荷判定閾値曲線導出手段62は、電流の測定値121を基に、入力電圧(v)の二次式で電流(i)を定義した基準関数よりなる過負荷判定のための基準閾値としての基準過負荷判定閾値曲線1(過負荷117.5%)を導出する(Bステップ)。 Next, the reference overload determination threshold curve deriving means 62 uses the reference value 121 of the input voltage (v) to define the current (i) based on the measured current value 121. A reference overload determination threshold curve 1 (overload 117.5%) as a reference threshold is derived (step B).
 次に、基準過負荷判定閾値の変更指令等に基づき、基準過負荷判定閾値曲線変更判断手段63は、基準過負荷判定閾値曲線1を変更するか否かを決定する(ステップS56、Cステップ)。 Next, based on a reference overload determination threshold change command or the like, the reference overload determination threshold curve change determination means 63 determines whether or not to change the reference overload determination threshold curve 1 (step S56, C step). ..
 次に、基準過負荷判定閾値曲線1を変更しない場合には、過負荷判定手段61は、基準過負荷判定閾値曲線1に基づき対象とする巻上電動機22の過負荷を判定する(ステップS571、Dステップ)。 Next, when the reference overload determination threshold curve 1 is not changed, the overload determination means 61 determines the overload of the target hoisting electric motor 22 based on the reference overload determination threshold curve 1 (step S571, D step).
 基準過負荷判定閾値曲線1を変更する場合には、補正過負荷判定閾値曲線導出手段64が導出した、基準関数の切片を補正した二次式よりなる補正過負荷判定閾値曲線2に基づき対象とする巻上電動機22の過負荷を判定する(ステップS57-2)。
 例えば、過負荷判定閾値を過負荷117.5%から過負荷112.5%に変更する場合は、117.5%-112.5%=5%で5%以内であるから、曲線1(過負荷117.5%)を、定格入力電圧400Vにおける過負荷112.5%で流れる電流値を通るようにy軸方向に平行移動した補正過負荷判定閾値曲線2(2-112.5)に基づき判定する。
 なお、図12中に符号100で示すのは、定格負荷(100%)における負荷曲線である。
 過負荷判定手段61は、入力電圧検出器53で検出された入力電圧(値)及び電流検出器54で検出された電流値と、基準過負荷判定閾値曲線導出手段62で導出された基準過負荷判定閾値曲線1に基づき上記処理を行う。
When the reference overload determination threshold curve 1 is changed, the target is based on the correction overload determination threshold curve 2 which is derived by the correction overload determination threshold curve deriving means 64 and which is a quadratic equation in which the intercept of the reference function is corrected. The overload of the hoisting motor 22 is determined (step S57-2).
For example, when the overload determination threshold is changed from 117.5% overload to 112.5% overload, 117.5% -112.5% = 5%, which is within 5%. Load 117.5%) is translated based on the corrected overload judgment threshold curve 2 (2-112.5), which is translated in the y-axis direction so as to pass through the current value flowing at overload 112.5% at the rated input voltage 400V. judge.
In addition, reference numeral 100 in FIG. 12 is a load curve at the rated load (100%).
The overload determination means 61 includes the input voltage (value) detected by the input voltage detector 53, the current value detected by the current detector 54, and the reference overload derived by the reference overload determination threshold curve deriving means 62. The above process is performed based on the determination threshold curve 1.
 高電圧側入力電圧領域では、まず、センサー23で、巻上電動機22の、一定の負荷51における、入力電圧と、電流との関係を測定する(ステップS58、A2ステップ)。 In the high-voltage side input voltage region, first, the sensor 23 measures the relationship between the input voltage and the current in the constant load 51 of the hoisting motor 22 (step S58, A2 step).
 次に、基準過負荷判定閾値直線導出手段65は、電流の測定値121を基に、入力電圧(v)の一次式で電流(i)を定義した基準関数よりなる過負荷判定のための基準閾値としての基準過負荷判定閾値直線3を導出する(ステップS58、B2ステップ)。 Next, the reference overload determination threshold straight line deriving means 65 is a reference for the overload determination, which is based on the measured value 121 of the current, and which comprises a reference function that defines the current (i) by a linear expression of the input voltage (v). A reference overload determination threshold line 3 as a threshold value is derived (step S58, B2 step).
 [基準過負荷判定閾値直線の導出]
 基準過負荷判定閾値直線3の導出は、基準過負荷判定閾値直線導出手段65が行う。
 基準過負荷判定閾値直線3は、入力電圧(v)の一次式で電流(i)を定義した基準関数よりなる過負荷判定のための基準閾値としての基準過負荷閾値直線であり、次式で表される。
 i=d・v+e
  但し、d(係数、≠0)、e(切片):(d、eをあわせて定数とよぶ)
 なお、「一次式」とは、巻上電動機22の電流を、入力電圧の次数1の多項式で表した式をいう。
[Deriving the reference overload judgment threshold line]
The reference overload determination threshold straight line 3 is derived by the reference overload determination threshold straight line deriving means 65.
The reference overload determination threshold line 3 is a reference overload threshold straight line as a reference threshold for overload determination, which is composed of a reference function that defines the current (i) in the linear expression of the input voltage (v). expressed.
i = dv + e
However, d (coefficient, ≠ 0), e (intercept): (d and e are collectively called constant)
The “first-order equation” means an equation in which the current of the hoisting motor 22 is represented by a polynomial of degree 1 of the input voltage.
 基準過負荷判定閾値直線3は直線であるため、曲線である基準過負荷判定閾値曲線1に比較して容易に導出できる。
 基準過負荷判定閾値直線3と、基準過負荷判定閾値曲線1とは、共に負荷117.5%であるため、低電圧側入力電圧領域(340V~420V)と、高電圧側入力電圧領域(420V~460V)との境である入力電圧420Vで同じ電流値として、両者が連続していなければならない。従って、基準過負荷判定閾値直線3はこの点を通る直線とする。
Since the reference overload determination threshold line 3 is a straight line, it can be easily derived in comparison with the reference overload determination threshold curve 1, which is a curved line.
Since both the reference overload determination threshold line 3 and the reference overload determination threshold curve 1 have a load of 117.5%, the low voltage side input voltage region (340V to 420V) and the high voltage side input voltage region (420V) (-460V), the two must be continuous with the same current value at an input voltage of 420V which is the boundary. Therefore, the reference overload determination threshold line 3 is a line passing through this point.
 もう1点が定まれば基準過負荷判定閾値直線3を導出することができる。高電圧側入力電圧領域(420V~460V)の最も高い電圧(460V)における電流値を決めることでも1点を決める。高電圧側入力電圧領域(420V~460V)における電流値特性を考慮して決まる。ここでは、基準過負荷判定閾値曲線1の入力電圧460Vにおける電流値以上の電流値とした。 If one more point is determined, the reference overload judgment threshold line 3 can be derived. One point is also determined by determining the current value at the highest voltage (460V) in the high voltage side input voltage region (420V to 460V). It is determined in consideration of the current value characteristic in the high voltage side input voltage region (420V to 460V). Here, the current value is set to be equal to or larger than the current value at the input voltage of 460 V of the reference overload determination threshold curve 1.
 基準過負荷判定閾値直線3を変更しない場合には、過負荷判定手段61は、基準過負荷判定閾値直線3に基づき対象とする巻上電動機22の過負荷を判定する(ステップS61-1、D2ステップ)。
 基準過負荷判定閾値直線3を変更する場合には、補正過負荷判定閾値直線導出手段67が補正した(導出した)一次式よりなる補正過負荷判定閾値直線4に基づき対象とする巻上電動機22の過負荷を判定する(ステップS61-2、D2ステップ)。
 なお、図9中に符号100で示すのは、定格負荷(100%)における負荷曲線である。
When the reference overload determination threshold line 3 is not changed, the overload determination means 61 determines the overload of the target hoisting electric motor 22 based on the reference overload determination threshold line 3 (steps S61-1, D2). Step).
When the reference overload determination threshold line 3 is changed, the hoisting motor 22 to be targeted is based on the corrected overload determination threshold line 4 which is a linear equation corrected (derived) by the corrected overload determination threshold line deriving means 67. Overload is determined (step S61-2, D2 step).
It is to be noted that reference numeral 100 in FIG. 9 is a load curve at the rated load (100%).
 [基準過負荷判定閾値直線の変更]
 次に、基準過負荷判定閾値直線変更判断手段66は、基準閾値の変更等に伴い、基準過負荷判定閾値直線3を変更するか否かを決定する(ステップS60、C2ステップ)。
 基準閾値が変更され、基準過負荷判定閾値曲線1が補正過負荷判定閾値曲線2に補正されると、多くの場合、基準過負荷判定閾値直線3も補正過負荷判定閾値直線4に補正される。
 本実施形態では、基準過負荷判定閾値曲線1(負荷117.5%)が、曲線1を定格電圧400Vでの負荷112.5%の測定電流値を通るようにy軸方向に平行移動した補正過負荷判定閾値曲線2(2-112.5、負荷112.5%)に補正されたのに伴い、基準過負荷判定閾値直線3(負荷117.5%)も補正過負荷判定閾値直線4(負荷112.5%)に補正された。
[Changing the reference overload judgment threshold line]
Next, the reference overload determination threshold straight line change determination means 66 determines whether to change the reference overload determination threshold straight line 3 in accordance with the change of the reference threshold or the like (step S60, C2 step).
When the reference threshold is changed and the reference overload determination threshold curve 1 is corrected to the corrected overload determination threshold curve 2, the reference overload determination threshold line 3 is also corrected to the corrected overload determination threshold line 4 in many cases. ..
In this embodiment, the reference overload determination threshold curve 1 (load 117.5%) is translated in the y-axis direction so that the curve 1 passes through the measured current value of the load 112.5% at the rated voltage 400V. As the overload determination threshold curve 2 (2-112.5, load 112.5%) is corrected, the reference overload determination threshold line 3 (load 117.5%) is also corrected. The load was corrected to 112.5%).
 補正過負荷判定閾値直線4は直線であるため、曲線である補正過負荷判定閾値曲線2に比較して容易に導出できる。
 補正過負荷判定閾値直線4と、補正過負荷判定閾値曲線2とは、共に負荷112.5%であるため、低電圧側入力電圧領域(340V~420V)と、高電圧側入力電圧領域(420V~460V)との境である入力電圧420Vで同じ電流値として、両者が連続していなければならない。従って、補正過負荷判定閾値直線4はこの点を通る直線とする。
Since the correction overload determination threshold straight line 4 is a straight line, it can be easily derived in comparison with the correction overload determination threshold curve 2 which is a curve.
Since both the corrected overload determination threshold straight line 4 and the corrected overload determination threshold curve 2 have a load of 112.5%, the low voltage side input voltage region (340 V to 420 V) and the high voltage side input voltage region (420 V (-460V), the two must be continuous with the same current value at an input voltage of 420V which is the boundary. Therefore, the correction overload determination threshold straight line 4 is a straight line passing through this point.
 もう1点が定まれば基準過負荷判定閾値直線3を導出することができる。高電圧側入力電圧領域(420V~460V)の最も高い電圧(460V)における電流値を決めることでも1点を決める。高電圧側入力電圧領域(420V~460V)における電流値特性を考慮して決まる。ここでは、基準過負荷判定閾値曲線1の入力電圧460Vにおける電流値以上の電流値とした。 If one more point is determined, the reference overload judgment threshold line 3 can be derived. One point is also determined by determining the current value at the highest voltage (460V) in the high voltage side input voltage region (420V to 460V). It is determined in consideration of the current value characteristic in the high voltage side input voltage region (420V to 460V). Here, the current value is set to be equal to or larger than the current value at the input voltage of 460 V of the reference overload determination threshold curve 1.
 過負荷判定手段61は、入力電圧検出器53で検出された入力電圧(値)及び電流検出器54で検出された電流値と、基準過負荷判定閾値直線導出手段65で導出された直線3、あるいは補正過負荷判定閾値直線導出手段67で導出された直線4に基づき過負荷であるか否かの判定を行う。 The overload determining means 61 includes an input voltage (value) detected by the input voltage detector 53 and a current value detected by the current detector 54, a straight line 3 derived by the reference overload determining threshold straight line deriving means 65, Alternatively, it is determined whether or not there is an overload based on the straight line 4 derived by the corrected overload determination threshold straight line deriving means 67.
 入力電圧領域を分割しない場合(ステップS51、分割する:NO)、図4の処理を行う。
 以上のように行うため、実際の過負荷に、より近似した判定精度の良い過負荷判定が可能で、過負荷閾値を変更しても引き続き判定精度の良い巻上電動機22の過負荷判定が可能となる。
 また、入力電圧領域を低電圧側入力電圧領域と、高電圧の高電圧側入力電圧領域に分け、それぞれ基準過負荷判定閾値曲線1と基準過負荷閾値直線により過負荷を判定するため、過負荷の誤判定のリスクをより低減できる。
When the input voltage region is not divided (step S51, division: NO), the process of FIG. 4 is performed.
Since it is performed as described above, it is possible to perform the overload determination with a higher determination accuracy that is closer to the actual overload, and even if the overload threshold is changed, the overload determination of the hoisting motor 22 can be performed with a higher determination accuracy. Becomes
Further, the input voltage region is divided into a low voltage side input voltage region and a high voltage high voltage side input voltage region, and the overload is determined by the reference overload determination threshold curve 1 and the reference overload threshold straight line, respectively. The risk of erroneous determination of can be further reduced.
 なお、このような過負荷判定が、上述したマイクロコンピュータによって可能な巻上機21を製造する製造方法は、以下の通りである。 The manufacturing method for manufacturing the hoisting machine 21 in which the above-described overload determination can be performed by the microcomputer is as follows.
 すなわち、上記の実施形態1で述べたような、実装ステップ、Cステップ、変更ステップを実行する。ここで、実施形態2では、上記の実装ステップは、低電圧側実装ステップと、高電圧側実装ステップとを有している。
 そして、低電圧側実装ステップでは、基準過負荷判定閾値曲線を導出する機能を、マイクロコンピュータに実装する。
 一方、低電圧側実装ステップよりも前記過負荷を判定する入力電圧領域が高電圧側となる高電圧側実装ステップでは、上記のように、入力電圧(v)の一次式で電流(i)を定義した基準過負荷閾値直線であって過負荷判定のための基準閾値としての基準過負荷閾値直線を導出する機能を、基準過負荷判定閾値曲線を導出する機能に代えて、前記マイクロコンピュータに実装する。
That is, the mounting step, the C step, and the changing step as described in the first embodiment are executed. Here, in the second embodiment, the mounting step includes a low voltage side mounting step and a high voltage side mounting step.
Then, in the low voltage side mounting step, the function of deriving the reference overload determination threshold curve is mounted on the microcomputer.
On the other hand, in the high voltage side mounting step in which the input voltage region for determining the overload is the higher voltage side than in the low voltage side mounting step, the current (i) is calculated by the linear expression of the input voltage (v) as described above. The function of deriving a reference overload threshold straight line as a reference threshold for overload determination that is a defined reference overload threshold straight line is installed in the microcomputer instead of the function of deriving a reference overload determination threshold curve. To do.
 また、実施形態2では、上記の変更ステップは、低電圧側変更ステップと、高電圧側変更ステップとを有している。
 そして、低電圧側変更ステップでは、上記の基準過負荷判定閾値曲線を、上記の補正過負荷判定閾値曲線へと変更してマイクロコンピュータに実装する。
 一方、高電圧側変更ステップでは、低電圧側変更ステップよりも過負荷を判定する入力電圧領域が高電圧側において、基準過負荷判定閾値曲線を、基準過負荷判定閾値直線を補正した補正過負荷判定閾値直線へと変更してマイクロコンピュータに実装する。
In addition, in the second embodiment, the changing step includes a low voltage side changing step and a high voltage side changing step.
Then, in the low voltage side changing step, the reference overload determination threshold curve is changed to the corrected overload determination threshold curve and mounted on the microcomputer.
On the other hand, in the high voltage side changing step, when the input voltage region for judging overload is higher than in the low voltage side changing step, the reference overload judgment threshold curve is corrected and the reference overload judgment threshold straight line is corrected. It is changed to a judgment threshold line and mounted on a microcomputer.
 このようにする場合、実際の過負荷に、より近似した判定精度の良い過負荷判定が可能で、過負荷閾値を変更しても引き続き判定精度の良い巻上電動機22の過負荷判定が可能な巻上機21を製造することが可能となる。しかも、製造される巻上機21は、入力電圧領域が低電圧側入力電圧領域では、基準過負荷判定閾値曲線によって過負荷を判定する。一方、入力電圧領域が高電圧側入力電圧領域では、基準過負荷判定閾値直線によって過負荷を判定する。そのため、過負荷の誤判定のリスクをより低減できる巻上機21を製造することが可能となる。 In this case, it is possible to perform overload determination with a higher determination accuracy that is closer to the actual overload, and even if the overload threshold value is changed, the overload determination of the hoisting motor 22 with a high determination accuracy can be continued. It is possible to manufacture the hoisting machine 21. Moreover, in the hoisting machine 21 manufactured, the overload is determined by the reference overload determination threshold curve in the input voltage region where the input voltage region is the low voltage side. On the other hand, when the input voltage region is the high voltage side input voltage region, overload is determined by the reference overload determination threshold straight line. Therefore, it is possible to manufacture the hoisting machine 21 which can further reduce the risk of erroneous determination of overload.
[実施形態3]
 図13は、実施形態3に係る過負荷判定方法を説明するための図である。
[Third Embodiment]
FIG. 13 is a diagram for explaining the overload determination method according to the third embodiment.
 実施形態3の過負荷判定方法では、実施形態1で説明した過負荷判定方法で、基準過負荷判定閾値曲線1を導出する方法を変更した。
 即ち、実施形態3では、Cステップで、基準過負荷判定閾値曲線1を変更する場合には、Aステップで測定した基準とする巻上電動機の巻上動作を保証する下限負荷に設定する第一の負荷および、基準とする巻上電動機の巻上停止を保証する下限負荷に設定する第二の負荷における、基準とする巻上電動機の各入力電圧における電流の測定値を基に、第一負荷曲線と第二負荷曲線を求め、両曲線の各入力電圧における電流値の差に基づき、基準関数の係数と切片を補正した二次式よりなる補正過負荷判定閾値曲線2に基づき対象とする巻上電動機の過負荷を判定する。
In the overload determination method of the third embodiment, the method of deriving the reference overload determination threshold curve 1 is changed from the overload determination method described in the first embodiment.
That is, in the third embodiment, when the reference overload determination threshold curve 1 is changed in the C step, the lower limit load that guarantees the hoisting operation of the reference hoisting motor measured in the A step is set to the lower limit load. Load and the second load set to the lower limit load that guarantees hoisting stop of the reference hoisting motor, based on the measured value of the current at each input voltage of the reference hoisting motor, the first load A curve and a second load curve are obtained, and based on the difference between the current values at the respective input voltages of both curves, the target winding is based on the corrected overload determination threshold curve 2 which is a quadratic equation in which the coefficient and the intercept of the reference function are corrected. Determine the overload of the upper motor.
 図13で、符号13で示すのは、巻上電動機22の巻上停止を保証する下限負荷に設定する第一の負荷(負荷125%)における第一負荷曲線である。電流値がこの曲線以上となった場合は、巻上動作を必ず停止しなくてはならない。
 符号14で示すのは、巻上電動機22の巻上動作を保証する下限負荷に設定する第二の負荷(負荷112.5%)における第二負荷曲線である。負荷112.5%では巻上動作が保証されており、巻上電動機22は巻上動作をしなければならない(停止してはならない)。
In FIG. 13, reference numeral 13 is a first load curve at the first load (load 125%) set to the lower limit load that guarantees hoisting of the hoisting motor 22. If the current value exceeds this curve, the hoisting operation must be stopped.
Reference numeral 14 is a second load curve at the second load (load 112.5%) set to the lower limit load that guarantees the hoisting operation of the hoisting motor 22. The hoisting operation is guaranteed at the load of 112.5%, and the hoisting electric motor 22 must perform the hoisting operation (not stop).
 これら第一負荷曲線13と第二負荷曲線14は、基準とする巻上電動機22の各入力電圧における電流の測定値121を基に求めた曲線である。
 これらの曲線は、実施形態1で、図5~図6を用いて説明したと同様の方法で求めた。
The first load curve 13 and the second load curve 14 are curves obtained based on the measured value 121 of the current at each input voltage of the hoisting electric motor 22 which is the reference.
These curves were obtained by the same method as that described in Embodiment 1 with reference to FIGS.
 実施形態3では、両曲線13、14の各入力電圧における電流値の差に基づき、前記基準関数の係数と切片を補正した二次式よりなる補正過負荷判定閾値曲線2を導出し、その曲線に基づき前記対象とする巻上電動機22の過負荷を判定する。 In the third embodiment, based on the difference between the current values of the respective curves 13 and 14 at each input voltage, a corrected overload determination threshold curve 2 which is a quadratic equation in which the coefficient and the intercept of the reference function are corrected is derived, and the curve thereof is derived. Based on the above, the overload of the target hoisting electric motor 22 is determined.
 曲線13と曲線14との間には、図13に示すように、差が生じている。そこでこれらの曲線13と曲線14との間を通る任意の曲線1Aを導出し、これを基準過負荷判定閾値曲線(負荷110%・125%間)とした。 A difference occurs between the curve 13 and the curve 14 as shown in FIG. Therefore, an arbitrary curve 1A that passes between these curves 13 and 14 was derived and used as the reference overload determination threshold curve (between 110% and 125% load).
 このようにすると、基準過負荷判定閾値曲線(負荷110%・125%間)1Aを容易に作成できる。また、この曲線1Aは、曲線13(負荷125%)・曲線14(負荷110%)間の曲線であるため、負荷110%では動作が保証され、負荷125%では動作が停止される。 By doing this, it is possible to easily create the reference overload determination threshold curve (load between 110% and 125%) 1A. Further, since the curve 1A is a curve between the curve 13 (load 125%) and the curve 14 (load 110%), the operation is guaranteed at the load 110%, and the operation is stopped at the load 125%.
 なお、このような過負荷判定が、上述したマイクロコンピュータによって可能な巻上機21を製造する製造方法は、以下の通りである。
 すなわち、上記の実施形態1で述べたような、実装ステップ、Cステップ、変更ステップを実行する。ここで、実施形態3では、上記の変更ステップにおける補正過負荷判定閾値曲線は、第一負荷曲線と第二負荷曲線の各前記入力電圧における電流値の差に基づき、基準関数の係数と切片を補正したものである。
 また、第一負荷曲線(図13で符号13で示すもの)は、基準とする巻上電動機に諸負荷をかけ入力電圧と電流の関係を測定すると共に基準とする巻上電動機の巻上動作を保証する下限負荷に設定する第一の負荷における、前記基準とする巻上電動機の前記入力電圧における電流の測定値を基に算出されたものである。
 また、前記第二負荷曲線は、前記基準とする巻上電動機に諸負荷をかけ入力電圧と電流の関係を測定すると共に前記基準とする巻上電動機の巻上停止を保証する下限負荷に設定する第二の負荷における、前記基準とする巻上電動機の前記入力電圧における電流の測定値を基に算出されたものである。
A manufacturing method for manufacturing the hoisting machine 21 in which the above-described overload determination can be performed by the above-described microcomputer is as follows.
That is, the mounting step, the C step, and the changing step as described in the first embodiment are executed. Here, in the third embodiment, the corrected overload determination threshold curve in the above-mentioned changing step is based on the difference between the current values at the input voltages of the first load curve and the second load curve, and the coefficient and the intercept of the reference function. It was corrected.
The first load curve (indicated by reference numeral 13 in FIG. 13) is used to measure the relationship between the input voltage and the current by applying various loads to the reference hoisting motor and to show the hoisting operation of the reference hoisting motor. It is calculated based on the measured value of the current at the input voltage of the reference hoisting motor in the first load set to the guaranteed lower limit load.
Further, the second load curve is set to a lower limit load that applies various loads to the reference hoisting motor, measures the relationship between the input voltage and the current, and guarantees hoisting stop of the reference hoisting motor. It is calculated based on the measured value of the current at the input voltage of the hoisting electric motor as the reference in the second load.
 このようにする場合、上記のように、基準過負荷判定閾値曲線(負荷110%・125%間)1Aは、曲線13(負荷125%)・曲線14(負荷110%)間の曲線である。このため、負荷110%では動作が保証され、負荷125%では動作が停止されるような、巻上機21を製造することが可能となる。 In this case, as described above, the reference overload determination threshold curve (between 110% and 125% load) 1A is the curve between the curve 13 (125% load) and the curve 14 (110% load). Therefore, it is possible to manufacture the hoisting machine 21 in which the operation is guaranteed when the load is 110% and the operation is stopped when the load is 125%.
[実施形態4]
 図13で、曲線13は実施形態3と同じく負荷125%の負荷曲線(絶対的に停止させる必要がある負荷)としたが、曲線14は負荷115%の負荷曲線とした。負荷115%は、巻上動作が保証されている負荷110%以上の負荷であり巻上電動機22の巻上動作を停止させてもよい負荷であることとする。これは、巻上機21の利便性、安全性等を考慮して、主として巻上電動機22(巻上機21)のメーカーやユーザーが決定する。
 曲線14を変更しただけで、他は実施形態3と同様にし、基準過負荷判定閾値曲線1Aを負荷125%の曲線13と、負荷110%の曲線14との間の曲線とした。
 基準過負荷判定閾値曲線1Aの一部が曲線13または曲線14と重なっていてもよい。
[Embodiment 4]
In FIG. 13, the curve 13 is a load curve with a load of 125% (the load that must be absolutely stopped) as in the third embodiment, but the curve 14 is a load curve with a load of 115%. The load of 115% is a load of 110% or more for which the hoisting operation is guaranteed, and the hoisting operation of the hoisting motor 22 may be stopped. This is mainly determined by the manufacturer and user of the hoisting motor 22 (hoisting machine 21) in consideration of the convenience and safety of the hoisting machine 21.
The reference overload determination threshold value curve 1A is a curve between the curve 13 with a load of 125% and the curve 14 with a load of 110% in the same manner as in the third embodiment except that the curve 14 is changed.
Part of the reference overload determination threshold curve 1A may overlap the curve 13 or the curve 14.
 このようにすると、基準過負荷判定閾値曲線1Bを容易に作成できる。
 基準過負荷判定閾値曲線1Aによる過負荷判定が、厳密に負荷117.5%でなく、負荷110%と負荷125%の間のどこかでよい場合のユーザー要請に容易に応えることができる。
By doing so, the reference overload determination threshold curve 1B can be easily created.
It is possible to easily meet the user request when the overload determination by the reference overload determination threshold value curve 1A is not strictly the load 117.5% but somewhere between the load 110% and the load 125%.
 以上、本発明を上記の実施形態に基づいて説明したが、本発明は上記の実施形態に限定されるものではない。その趣旨を逸脱しない範囲において種々の形態において実施することが可能である。 Although the present invention has been described based on the above embodiment, the present invention is not limited to the above embodiment. The present invention can be implemented in various forms without departing from the spirit of the invention.
1…基準過負荷判定閾値曲線(負荷117.5%)、1A…基準過負荷判定閾値曲線(負荷110%・125%間)、2…補正過負荷判定閾値曲線、2-110…補正過負荷判定閾値曲線(過負荷110%)、2-112.5…補正過負荷判定閾値曲線(過負荷112.5%)、2-115…補正過負荷判定閾値曲線(過負荷115%)、3…基準過負荷判定閾値直線(過負荷117.5%)、4…基準過負荷判定閾値直線(負荷112.5%)、13…第一負荷曲線(負荷125%)、14…第二負荷曲線(負荷110%)、21…巻上機、22…巻上電動機、23…センサー、24…過負荷判定装置、25…操作スイッチ、26…制動装置、29…CPU、30…メモリー、31…ROM、32…RAM、51…負荷、52…電源、53…入力電圧検出器、54…電流検出器、61…過負荷判定手段、62…基準過負荷判定閾値曲線導出手段、63…基準過負荷判定閾値曲線変更判断手段、64…補正過負荷判定閾値曲線導出手段、65…基準過負荷判定閾値直線導出手段、66…基準過負荷判定閾値直線変更判断手段、67…補正過負荷判定閾値直線導出手段、71…制動指令手段、100…負荷曲線(定格負荷100%)、121…測定値(実測値)、125…過負荷判定閾値直線(過負荷125%)、261…制動機構 1 ... Standard overload determination threshold curve (load 117.5%), 1A ... Reference overload determination threshold curve (between 110% and 125% load), 2 ... Corrected overload determination threshold curve, 2-110 ... Corrected overload Determination threshold curve (overload 110%), 2-112.5 ... Corrected overload determination threshold curve (overload 112.5%), 2-115 ... Corrected overload determination threshold curve (overload 115%), 3 ... Reference overload determination threshold line (overload 117.5%), 4 ... Reference overload determination threshold line (load 112.5%), 13 ... First load curve (load 125%), 14 ... Second load curve ( Load 110%), 21 ... hoisting machine, 22 ... hoisting motor, 23 ... sensor, 24 ... overload determination device, 25 ... operation switch, 26 ... braking device, 29 ... CPU, 30 ... memory, 31 ... ROM, 32 ... RAM, 51 ... Load, 52 ... Power supply, 53 ... Input voltage detector, 54 ... Current detector, 61 ... Overload determination means, 62 ... Reference overload determination threshold curve deriving means, 63 ... Reference overload determination threshold Curve change determination means, 64 ... Corrected overload determination threshold curve derivation means, 65 ... Reference overload determination threshold line derivation means, 66 ... Reference overload determination threshold line change determination means, 67 ... Corrected overload determination threshold line derivation means, 71 ... Braking command means, 100 ... Load curve (rated load 100%), 121 ... Measured value (actual measured value), 125 ... Overload determination threshold straight line (Overload 125%), 261 ... Braking mechanism

Claims (6)

  1.  巻上電動機の過負荷を判定する過負荷判定方法であって、
     基準とする巻上電動機に諸負荷をかけ入力電圧と電流の関係を測定するAステップと、
     その測定値に基づいて、入力電圧(v)の二次式で電流(i)を定義した基準関数よりなる過負荷判定のための基準閾値としての基準過負荷判定閾値曲線を導出するBステップと、
     前記基準過負荷判定閾値曲線を変更するか否かを決定するCステップと、
     前記基準過負荷判定閾値曲線を変更しない場合には、前記基準過負荷判定閾値曲線に基づき対象とする巻上電動機の過負荷を判定し、前記基準過負荷判定閾値曲線を変更する場合には、前記基準関数の切片を補正した二次式よりなる補正過負荷判定閾値曲線に基づき前記対象とする巻上電動機の過負荷を判定するDステップと、
     を含むことを特徴とする巻上電動機の過負荷判定方法。
    A method for determining an overload of a hoisting motor, comprising:
    A step for measuring the relationship between the input voltage and the current by applying various loads to the reference hoisting motor,
    B step of deriving a reference overload determination threshold curve as a reference threshold for overload determination, which is based on the measured value and comprises a reference function that defines a current (i) by a quadratic expression of the input voltage (v); ,
    C step of determining whether to change the reference overload determination threshold curve,
    When not changing the reference overload determination threshold curve, to determine the overload of the target hoisting motor based on the reference overload determination threshold curve, when changing the reference overload determination threshold curve, D step of determining an overload of the target hoisting motor based on a corrected overload determination threshold curve formed by a quadratic equation in which the intercept of the reference function is corrected,
    A method for determining an overload of a hoisting motor, comprising:
  2.  請求項1に記載の巻上電動機の過負荷判定方法において、
     前記Cステップで、前記基準過負荷判定閾値曲線を変更する場合には、第一負荷曲線と第二負荷曲線の各前記入力電圧における電流値の差に基づき、前記基準関数の係数と切片を補正した二次式よりなる補正過負荷判定閾値曲線に基づき前記対象とする巻上電動機の過負荷を判定すると共に、
     前記第一負荷曲線は、前記Aステップで測定した前記基準とする巻上電動機の巻上動作を保証する下限負荷に設定する第一の負荷における、前記基準とする巻上電動機の前記入力電圧における電流の測定値を基に算出され、
     前記第二負荷曲線は、前記Aステップで測定した前記基準とする巻上電動機の巻上停止を保証する下限負荷に設定する第二の負荷における、前記基準とする巻上電動機の前記入力電圧における電流の測定値を基に算出される、
     ことを特徴とする巻上電動機の過負荷判定方法。
    The overload determination method for the hoisting motor according to claim 1,
    In the step C, when the reference overload determination threshold curve is changed, the coefficient and the intercept of the reference function are corrected based on the difference between the current values at the input voltages of the first load curve and the second load curve. With determining the overload of the target hoisting motor based on the corrected overload determination threshold curve consisting of the quadratic formula,
    The first load curve is at the input voltage of the reference hoisting motor in the first load set to the lower limit load that guarantees the hoisting operation of the reference hoisting motor measured in the step A. Calculated based on the measured current value,
    The second load curve is at the input voltage of the reference hoisting motor at the second load set to the lower limit load that guarantees hoisting stop of the reference hoisting motor measured in the step A. Calculated based on the measured current value,
    A method for determining an overload of a hoisting motor, comprising:
  3.  請求項1又は2に記載の巻上電動機の過負荷判定方法において、
     前記過負荷を判定する入力電圧領域を低電圧側入力電圧領域と、前記低電圧側入力電圧領域より高電圧の高電圧側入力電圧領域に分け、
     前記低電圧側入力電圧領域では、前記Aステップ、前記Bステップ、前記Cステップ及び前記Dステップを含む方法により過負荷を判定し、
     前記高電圧側入力電圧領域では、
     前記Aステップと、
     前記電流の測定値を基に、前記基準過負荷判定閾値曲線の代わりに、入力電圧(v)の一次式で電流(i)を定義した基準関数よりなる過負荷判定のための基準閾値としての基準過負荷閾値直線を導出するB2ステップと、
     前記基準過負荷判定閾値直線を変更するか否かを決定するC2ステップと、
     前記基準過負荷判定閾値直線を変更しない場合には、前記基準過負荷判定閾値直線に基づき対象とする巻上電動機の過負荷を判定し、前記基準過負荷判定閾値直線を変更する場合には、前記基準過負荷判定閾値直線を補正した補正過負荷判定閾値直線に基づき前記対象とする巻上電動機の過負荷を判定するD2ステップと、
     を含むことを特徴とする巻上電動機の過負荷判定方法。
    The overload determination method for the hoisting motor according to claim 1 or 2,
    The input voltage region for determining the overload is divided into a low voltage side input voltage region and a high voltage side input voltage region having a higher voltage than the low voltage side input voltage region,
    In the low voltage side input voltage region, overload is determined by a method including the A step, the B step, the C step and the D step,
    In the high voltage side input voltage region,
    The A step,
    Based on the measured value of the current, instead of the reference overload determination threshold curve, as a reference threshold for overload determination, which comprises a reference function that defines the current (i) by a linear expression of the input voltage (v). B2 step of deriving a reference overload threshold line,
    C2 step of determining whether to change the reference overload determination threshold line,
    When not changing the reference overload determination threshold straight line, determine the overload of the target hoisting motor based on the reference overload determination threshold straight line, when changing the reference overload determination threshold straight line, A D2 step of determining an overload of the target hoisting motor based on a corrected overload determination threshold line obtained by correcting the reference overload determination threshold line;
    A method for determining an overload of a hoisting motor, comprising:
  4.  巻上電動機およびマイクロコンピュータを備え、前記マイクロコンピュータによって前記巻上電動機の過負荷判定を行う機能を備える巻上機の製造方法において、
     基準とする巻上電動機に諸負荷をかけた状態で、入力電圧と電流の関係を予め測定した測定値に基づいて入力電圧(v)の二次式で電流(i)を定義した基準過負荷判定閾値曲線であって、過負荷判定のための基準閾値としての前記基準過負荷判定閾値曲線を導出する機能を、マイクロコンピュータに実装する実装ステップと、
     前記基準過負荷判定閾値曲線を変更するか否かを決定するCステップと、
     前記基準過負荷判定閾値曲線を変更する場合には、前記基準過負荷判定閾値曲線を、前記基準関数の切片を補正した二次式よりなる補正過負荷判定閾値曲線へと変更して前記マイクロコンピュータに実装する変更ステップと、
     を含むことを特徴とする巻上機の製造方法。
    A method of manufacturing a hoisting machine, comprising: a hoisting motor and a microcomputer, wherein the microcomputer has a function of determining overload of the hoisting motor.
    Reference overload in which the current (i) is defined by a quadratic expression of the input voltage (v) based on the measured value of the relationship between the input voltage and the current, in which various loads are applied to the reference hoisting motor. A determination threshold curve, the step of deriving the function of deriving the reference overload determination threshold curve as a reference threshold for overload determination, a mounting step of mounting in a microcomputer,
    C step of determining whether to change the reference overload determination threshold curve,
    When the reference overload determination threshold curve is changed, the reference overload determination threshold curve is changed to a corrected overload determination threshold curve formed by a quadratic equation in which the intercept of the reference function is corrected, and the microcomputer is changed. Change step to implement
    A method of manufacturing a hoisting machine, comprising:
  5.  請求項4に記載の巻上機の製造方法において、
     前記変更ステップにおける前記補正過負荷判定閾値曲線は、第一負荷曲線と第二負荷曲線の各前記入力電圧における電流値の差に基づき、前記基準関数の係数と切片を補正したものであり、
     前記第一負荷曲線は、前記基準とする巻上電動機に諸負荷をかけ入力電圧と電流の関係を測定すると共に前記基準とする巻上電動機の巻上動作を保証する下限負荷に設定する第一の負荷における、前記基準とする巻上電動機の前記入力電圧における電流の測定値を基に算出され、
     前記第二負荷曲線は、前記基準とする巻上電動機に諸負荷をかけ入力電圧と電流の関係を測定すると共に前記基準とする巻上電動機の巻上停止を保証する下限負荷に設定する第二の負荷における、前記基準とする巻上電動機の前記入力電圧における電流の測定値を基に算出される、
     ことを特徴とする巻上機の製造方法。
    The method for manufacturing a hoisting machine according to claim 4,
    The corrected overload determination threshold curve in the changing step is based on the difference between the current values at the respective input voltages of the first load curve and the second load curve, and is obtained by correcting the coefficient and the intercept of the reference function,
    The first load curve is set to a lower limit load that applies various loads to the reference hoisting motor, measures the relationship between input voltage and current, and guarantees the hoisting operation of the reference hoisting motor. In the load of, is calculated based on the measured value of the current at the input voltage of the hoisting motor as the reference,
    The second load curve sets various loads to the reference hoisting motor, measures the relationship between the input voltage and the current, and sets the lower limit load that guarantees hoisting stop of the reference hoisting motor. Of the load, is calculated based on the measured value of the current at the input voltage of the reference winding motor,
    A method for manufacturing a hoisting machine, comprising:
  6.  請求項4又は5に記載の巻上機の製造方法において、
     前記実装ステップは、低電圧側実装ステップと、高電圧側実装ステップとを有し、
     前記低電圧側実装ステップでは、前記基準過負荷判定閾値曲線を導出する機能を、マイクロコンピュータに実装し、
     前記高電圧側実装ステップでは、前記低電圧側実装ステップよりも前記過負荷を判定する入力電圧領域が高電圧側において、入力電圧(v)の一次式で電流(i)を定義した基準過負荷閾値直線であって過負荷判定のための基準閾値としての前記基準過負荷閾値直線を導出する機能を、前記前記基準過負荷判定閾値曲線を導出する機能に代えて、前記マイクロコンピュータに実装すると共に、
     前記変更ステップは、低電圧側変更ステップと、高電圧側変更ステップとを有し、
     前記低電圧側変更ステップでは、前記基準過負荷判定閾値曲線を、前記補正過負荷判定閾値曲線へと変更して前記マイクロコンピュータに実装し、
     前記高電圧側変更ステップでは、前記低電圧側変更ステップよりも前記過負荷を判定する入力電圧領域が高電圧側において、前記基準過負荷判定閾値曲線を、前記基準過負荷判定閾値直線を補正した補正過負荷判定閾値直線へと変更して前記マイクロコンピュータに実装する、
     ことを特徴とする巻上機の製造方法。
    The method for manufacturing a hoisting machine according to claim 4 or 5,
    The mounting step has a low voltage side mounting step and a high voltage side mounting step,
    In the low voltage side mounting step, the function of deriving the reference overload determination threshold curve is mounted on a microcomputer,
    In the high voltage side mounting step, a reference overload in which the current (i) is defined by a linear expression of the input voltage (v) is on the high voltage side in the input voltage region for determining the overload, as compared with the low voltage side mounting step. A function of deriving the reference overload threshold straight line as a reference threshold for overload determination that is a threshold straight line, instead of a function of deriving the reference overload determination threshold curve, and is mounted on the microcomputer. ,
    The changing step includes a low voltage side changing step and a high voltage side changing step,
    In the low voltage side changing step, the reference overload determination threshold curve is changed to the corrected overload determination threshold curve and mounted on the microcomputer,
    In the high voltage side changing step, in the input voltage region for determining the overload is higher than the low voltage side changing step, the reference overload determination threshold curve is corrected, and the reference overload determination threshold straight line is corrected. Corrected overload determination threshold value is changed to a straight line and mounted on the microcomputer,
    A method for manufacturing a hoisting machine, comprising:
PCT/JP2019/044967 2018-11-16 2019-11-15 Method for assessing overload of wound electric motor, and method for manufacturing winder WO2020101033A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020556202A JP7253307B2 (en) 2018-11-16 2019-11-15 Overload determination method for hoisting motor and method for manufacturing hoisting machine
CN201980071085.3A CN112955400B (en) 2018-11-16 2019-11-15 Overload determination method for hoist motor and manufacturing method for hoist

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018215998 2018-11-16
JP2018-215998 2018-11-16

Publications (1)

Publication Number Publication Date
WO2020101033A1 true WO2020101033A1 (en) 2020-05-22

Family

ID=70730463

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/044967 WO2020101033A1 (en) 2018-11-16 2019-11-15 Method for assessing overload of wound electric motor, and method for manufacturing winder

Country Status (3)

Country Link
JP (1) JP7253307B2 (en)
CN (1) CN112955400B (en)
WO (1) WO2020101033A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114264948A (en) * 2021-12-17 2022-04-01 北京市科通电子继电器总厂有限公司 Product overload characteristic analysis method and device, electronic equipment and medium

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5133451A (en) * 1974-09-13 1976-03-22 Hitachi Ltd
JPH05229785A (en) * 1991-12-26 1993-09-07 Mitsubishi Electric Corp Motor overload detection device for hoist
JP2593270B2 (en) * 1992-04-27 1997-03-26 株式会社キトー Power measurement type load detector

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5133451A (en) * 1974-09-13 1976-03-22 Hitachi Ltd
JPH05229785A (en) * 1991-12-26 1993-09-07 Mitsubishi Electric Corp Motor overload detection device for hoist
JP2593270B2 (en) * 1992-04-27 1997-03-26 株式会社キトー Power measurement type load detector

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114264948A (en) * 2021-12-17 2022-04-01 北京市科通电子继电器总厂有限公司 Product overload characteristic analysis method and device, electronic equipment and medium
CN114264948B (en) * 2021-12-17 2023-09-05 北京市科通电子继电器总厂有限公司 Product overload characteristic analysis method and device, electronic equipment and medium

Also Published As

Publication number Publication date
CN112955400A (en) 2021-06-11
CN112955400B (en) 2023-02-24
JP7253307B2 (en) 2023-04-06
JPWO2020101033A1 (en) 2021-10-14

Similar Documents

Publication Publication Date Title
KR100784887B1 (en) Over current detection apparatus of motor for car
EP3217539A1 (en) Temperature monitoring device, temperature monitoring method, information processing program and recording medium
WO2020101033A1 (en) Method for assessing overload of wound electric motor, and method for manufacturing winder
US20190031470A1 (en) Brake torque detection for elevator brake
JP2010024052A (en) Load measuring and control system with selective boom-up lock-out
KR20140086303A (en) Electric oil pump system and control method thereof
DE102017001507A1 (en) Engine control or regulation, engine control or regulating procedures and engine control program
JPS62114428A (en) Temperature monitor of dc shunt motor of rotary printer
JP4685715B2 (en) Power system stabilization method and power system stabilization system using the method
JP6308927B2 (en) Rolling control device, rolling control method, and rolling control program
US6690136B2 (en) Numerical controlling unit
JP5523533B2 (en) Feedback control system and feedback control method for powder clutch and brake
CN111052019B (en) Operation method and control device for machine and machine
JP2018182778A (en) Motor drive device
KR102107289B1 (en) Method for Measuring Brake Torque of Elevator Traction Machine
JP6707210B2 (en) Power converter and abnormality detection method
JP2007288829A (en) Method and device for detecting abnormality of machine
US20120277929A1 (en) Method of initiating the load shedding within an electrical power system
KR100759030B1 (en) Run out table fault monitering apparatus for hot steel mill line
CN114342247B (en) Power amplifier device, tension controller, and load determination method
US20180239344A1 (en) Motor controller and method for controlling motor
CN111868653B (en) State change detection device and state change detection method
JP2915158B2 (en) Failure detection device for detection device
JP5653677B2 (en) Breaking breakage detector for level crossing breaker
JPH08303168A (en) Motor protective controller

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19885010

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020556202

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19885010

Country of ref document: EP

Kind code of ref document: A1